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Abstract. In this work, a job-flow scheduling approach for grid virtual orga-
nizations (VOs) is proposed and studied. Users’ and resource providers’ pref-
erences, VOs internal policies, resources geographical distribution along with
local private utilization impose specific requirements for efficient scheduling
according to different, usually contradictive, criteria. With increasing level of
resources utilization, the set of available resources and corresponding decision
space are reduced. This further complicates the problem of efficient scheduling.
In order to improve overall scheduling efficiency, we propose an anticipation
scheduling approach based on a cyclic scheduling scheme. It generates a near
optimal but infeasible scheduling solution and includes a special replication
procedure for efficient and feasible resources allocation. Anticipation scheduling
is compared with the general cycle scheduling scheme and conservative back-
filling using such criteria as average jobs’ start and finish times as well as users’
and VO economic criteria: total execution time and cost.
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1 Introduction and Related Works

In grids with non-dedicated resources the computational nodes are usually partly uti-
lized by local high-priority jobs coming from resource owners. Thus, the resources
available for use are represented with a set time intervals (slots) during which the
individual computational nodes are capable to execute parts of independent users’
parallel jobs. These slots generally have different start and finish times and a perfor-
mance difference. The presence of a set of slots impedes the problem of resources
allocation necessary to execute the job flow from VOs users. Resource fragmentation
also results in a decrease of the total level of computing environment utilization [1, 2].

Application-level scheduling [3], as a rule, does not imply any global resource
sharing or allocation policy. Applications try to control grid resources independently.
Job flow scheduling in VOs [4, 5] supposes uniform rules of resource sharing and
consumption, in particular based on economic models [2, 4–6]. Usually there are three
parties in these models: users, resource owners, and VO administrators. General
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interaction and resources or services provisioning between these parties is performed
by means of a certain currency. VO scheduling policy may offer optimization rules to
satisfy both users’ and VO common preferences (owners’ and administrators’ com-
bined). The VO scheduling problems may be formulated as follows: to optimize users’
criteria or utility function for selected jobs [6, 7], to keep resource overall load balance
[8, 9], to have job run in strict order or maintain job priorities [10], to optimize overall
scheduling performance by some custom criteria [11, 12], etc.

Users’ preferences and VO common preferences may conflict with each other.
Users are likely to be interested in the fastest possible running time for their jobs with
least possible costs whereas VO preferences are usually directed to balancing of
available resources load or node owners’ profit boosting. In fact, an economical model
of resource distribution per se reduces tendencies to cooperate [13]. Thus, VO eco-
nomic policies in general should respect all members to function properly and the most
important aspect of rules suggested by VO is their fairness. A number of works
understand fairness as it is defined in the theory of cooperative games [7], such as fair
job flow distribution [9], fair quotas [14, 15], fair user jobs prioritization [10], and
non-monetary distribution [16]. In many studies VO stakeholders’ preferences are
usually ensured only partially: either owners are competing for jobs optimizing only
users’ criteria [6, 17], or the main purpose is the efficient resources utilization not
considering users’ preferences [18].

The goal of the current study is to design a general job-flow scheduling approach
which will be able to find a tradeoff between VO stakeholders’ contradictory prefer-
ences based on the cyclic scheduling scheme (CSS). CSS [19, 20] has fair resource
share in a sense that every VO stakeholder has mechanisms to influence scheduling
results providing own preferences. Thus, we elaborate a problem of parallel jobs
scheduling in heterogeneous computing environment with non-dedicated resources
considering users’ individual preferences and goals.

The downside of a majority of centralized metascheduling approaches is that they
lose their efficiency and optimization features in distributed environments with a sig-
nificant workload. In such conditions of a limited resources supply overall job-flow
execution makespan and individual jobs’ finish time minimization become essential
scheduling criteria. For example in [2], a traditional backfilling algorithm provided
better scheduling outcome when compared to different optimization approaches in
resource domain with a minimal performance configuration.

Main contribution of this paper is a CSS-based heuristic anticipation approach
which retains scheduling efficiency and at the same time minimizes job-flow processing
time. Initially this heuristic generates a near optimal but infeasible (anticipated)
schedule. A special replication procedure is proposed and studied to ensure and pro-
vide a feasible scheduling solution.

The rest of the paper is organized as follows. Section 2 presents a general CSS fair
scheduling concept. The proposed heuristic-based scheduling technique is presented in
Sect. 3. Section 4 contains experiment setup and results for the proposed scheduling
approach and its comparison with backfilling. Finally, Sect. 5 summarizes the paper.
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2 Cyclic Alternative-Based Scheduling

Scheduling of a job flow using CSS is performed in time cycles known as scheduling
intervals, by job batches [19, 20]. The actual scheduling procedure consists of two main
steps. The first step involves a search for alternative scenarios of each job execution, or
simply alternatives [21]. During the second step the dynamic programming methods
[19, 20] are used to choose an optimal alternatives’ combination. One alternative is
selected for each job with respect to the given VO and user criteria. An example for a
user scheduling criterion may be a job runtime, finish time, an overall running cost, etc.
This criterion describes user’s preferences for that specific job execution and expresses
a type of an additional optimization to perform when searching for alternatives.
Alongside with time (T) and cost (C) properties each job execution alternative has a
user utility (U) value: user evaluation against the scheduling criterion. A common VO
optimization problem may be stated as either minimization or maximization of one of
the properties, having other fixed or limited, or involve Pareto-optimal strategy search
involving both kinds of properties [3, 20, 22].

We consider the following relative approach to represent the user utility U. A job
alternative with the minimum (best) user-defined criterion value Zmin corresponds to
the left interval boundary (U ¼ 0%) of all possible job scheduling outcomes. An
alternative with the worst possible criterion value Zmax corresponds to the right interval
boundary (U ¼ 100%). In the general case, for each alternative with value Z; U is set
depending on its position in Zmin; Zmax½ � interval as follows: U ¼ Z � Zmin

Zmax � Zmin
� 100%.

Thus, each alternative gets its utility in relation to the “best” and the “worst” opti-
mization criterion values user could expect according to the job’s priority. The more
some alternative corresponds to user’s preferences the smaller is the U value.

For a fair scheduling model the second step of the VO optimization problem could
be in form of: C ! max, lim U (maximize total job flow execution cost, while
respecting user’s preferences to some extent: U�Umax); U ! min, lim T (meet user’s
best interests, while ensuring some acceptable job flow execution time: T � Tmax) and
so on [19].

The launch of any job requires a co-allocation of a specified number of slots, as
well as in the classic backfilling variation. A single slot is a time span that can be
assigned to run a part of a parallel job. The target is to scan a list of available slots and
to select a window of parallel slots with a “length” of the required resource reservation
time. The user job requirements are arranged into a resource request containing a
resource reservation time, characteristics of computational nodes (clock speed, RAM
volume, disk space, operating system etc.), limitation on the selected window maxi-
mum cost.

ALP, AMP and AEP window search algorithms were discussed in [21]. The job
batch scheduling performs consecutive allocation of a multiple nonintersecting in terms
of slots alternatives for each job. Otherwise irresolvable collisions for resources may
occur if different jobs will share the same time-slots. Sequential alternatives search and
resources reservation procedures help to prevent such scenario. However in an extreme
case when resources are limited or over utilized only at most one alternative execution
could be reserved for each job. In this case alternatives-based scheduling result will be
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no different from First Fit resources allocation procedure [2]. First Fit resource selec-
tion algorithms [23] assign any job to the first set of slots matching the resource request
conditions without any optimization.

3 Cyclic Anticipation Scheduling

In order to address the scheduling optimization problem the following anticipation
heuristic for job batch scheduling is proposed. It consists of three main steps.

First, a set of all possible execution alternatives is found for each job not consid-
ering time slots intersections and without any resources reservation. The resulting
intersecting alternatives found for each job reflect a full range of different job execution
possibilities which user may expect on the current scheduling interval.

Second, CSS procedure [19, 20] is performed to select alternatives combination
(one alternative for each job of the batch) optimal according to VO policy. The
resulting alternatives combination most likely corresponds to an infeasible scheduling
solution as possible time slots intersection will cause collisions on resources allocation
stage. The main idea of this step is that obtained infeasible and anticipated solution will
provide some heuristic insights on how each job should be handled during the
scheduling. For example, if time-biased or cost-biased execution is preferred, how it
should correspond to user criterion and VO administration policy and so on.

Third, a feasible resources allocation is performed. The resulting solution is both
feasible and efficient as it reflects scheduling pattern obtained from a near-optimal
reference solution – a replication step. The base for this replication is an Algorithm
searching for Extreme Performance (AEP) described in details in [21]. AEP helps to
find and reserve feasible execution alternatives most similar to those selected in the
near-optimal infeasible solution.

We used AEP modification to allocate a diverse set of execution alternatives for
each job. Originally AEP scans through a whole list of available time slots and retrieves
one alternative execution satisfying user resource request and optimal according to the
user custom criterion. During this scan, we saved all intermediate AEP search results to
a dedicated list of possible alternatives.

For the replication purpose a new Execution Similarity criterion was introduced
which helps AEP to find a window with a minimum distance to a reference alternative.
Generally, we define a distance between two different alternatives (windows) as a
relative difference or error between their significant criteria values. For example if
reference alternative has Cref total cost, and some candidate alternative cost is Ccan, then

the relative cost error EC is calculated as EC ¼ Cref � Ccanj j
Cref

. If one needs to consider
several criteria the distance D between two alternatives may be calculated as a linear
sum of criteria errors: Dl ¼ EC þ ET þ :: þ EU , or as a geometric distance in a
parameters space: Dg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
C þ E2

T þ :: E2
U

p

.
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AEP modification with the Execution Similarity criterion is represented below.

In this algorithm an expanded window windowSlotList moves through a whole list
of all available slots slotList sorted by their start time in ascending order. At each step
any combination of job.nodesNeed slots inside windowSlotList can form a window that
meets all the requirements to run the job. The main difference from the original AEP is
that instead of searching for a window with a maximum single criterion value, we
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retrieve window with a minimum distance Dg or Dl to a reference execution alternative.
Generally, this distance can reflect job execution preferences in terms of multiple
criteria such as job execution cost, runtime, start time, finish time, etc.

4 Simulation Study

An experiment was prepared as follows using a custom distributed environment sim-
ulator [2, 19–21]. For our purpose, it implements a heterogeneous resource domain
model: nodes have different usage costs and performance levels. A space-shared
resources allocation policy simulates a local queuing system (like in GridSim or
CloudSim [24]) and, thus, each node can process only one task at any given simulation
time. The execution cost of each task depends on its execution time which is pro-
portional to the dedicated node’s performance level. The execution of a single job
requires parallel execution of all its tasks.

The simulation environment was configured with the following features. The
resource pool includes 80 heterogeneous computational nodes grouped in a single
resource domain. A specific cost of a node is an exponential function of its performance
value (base cost) with an added variable margin distributed normally as ±0.6 of a base
cost. The scheduling interval length is 800 time quanta. The initial resource load with
owner jobs is distributed hyper-geometrically resulting in 5% to 10% time quanta
excluded in total.

Jobs number in a batch is 75. Nodes quantity needed for a job is a whole number
distributed evenly on [2; 6]. Node reservation time is a whole number distributed
evenly on [100; 500]. Job budget varies in the way that some of jobs can pay as much
as 160% of base cost whereas some may require a discount. Every request contains a
specification of a custom user criterion which is one of the following: job execution
runtime or overall execution cost.

4.1 Replication Scheduling Accuracy

The first experiment is dedicated to a replication scheduling accuracy study. For this
matter we conducted and collected data from more than 1000 independent job batch
scheduling simulations. First, the general CSS was performed in each experiment for the
following job-flow execution cost maximization problem C ! max, lim Ua ¼ 10%. Ua

stands for the average user utility for one job, i.e. lim Ua ¼ 10% means that at average
resulting deviation from the best possible outcome for each user did not exceed 10%.
Next, linear and geometric replication algorithms were executed to replicate CSS
solution using linear Dl and geometric Dg distance criteria. In the current experiment we
used job execution cost error and processor time usage error to calculate distances.

In order to evaluate the resulting difference in scheduling outcomes, we additionally
performed CSS algorithm ensuring users’ individual preferences only (lim Ua ¼ 0%)
and ensuringVOpreferencebymaximizingoverall costwithout taking into account users’
criteria (lim Ua ¼ 100%). These additional problems reflect extreme boundaries for
scheduling results, which can be used to evaluate a relative replication error. Table 1
contains scheduling results for all these three problems and two replication algorithms.
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The results indicate that both linear and geometric replication algorithms provided
average scheduling parameters very close to the reference solution (indicated as bold in
Table 1), and especially close against job execution cost and processor time usage, i.e.
characteristics which were used for a replication distance calculation. For example,
borderline problems provided average job execution cost (main job-flow optimization
criterion) values 1283 and 1475 correspondingly. Reference intermediate solution
provided 1349. And both replication algorithms ensured average job execution cost
1353 with only 2% deviation from reference solution against [1283; 1475] interval of
possible scheduling outcomes. Although replication algorithms showed their efficiency
with respect to integral job flow processing parameters (such as average job execution
cost, runtime, finish time), individual user’s preferences were considered to a lesser
extent. It can be observed in the Table 1 that both replication algorithms provided
average user utility Ua almost twice as much as the reference problem.

4.2 Anticipation and Backfilling Scheduling Comparison

The second experiment setup reiterates work [2] and is intended to compare antici-
pation scheduling procedure with a traditional backfilling algorithm. Backfilling is able
to minimize the whole job-flow execution makespan as well as to generally follow the
initial jobs relative queue order. These features make backfilling scheduling solution a
good reference target for the anticipation scheduling scheme. The main criteria for
comparison include average jobs’ start and finish times as well as users’ and VO
economic criteria (such as execution time and cost). We used the following three
algorithms for the comparison:

• CSS – the original cycle scheduling scheme;
• ANT – the anticipation scheduling procedure;
• BF – the conservative backfilling algorithm.

In a single experiment CSS and ANT solved C ! max, lim Ua ¼ 10% problem.
Execution cost (C ! min) and processor time (T ! min) criteria were uniformly
distributed between 75 user jobs generated in each experiment.

Table 1. CSS replication average scheduling results

Job
execution
characteristic

C -> max,
lim
Ua ¼ 0%

C -> max,
lim
Ua ¼ 10%

Linear
replication

Geometric
replication

C -> max,
lim
Ua ¼ 100%

Cost 1283 1349 1353 1353 1475
Processor
time

191.6 191.2 190.6 190.5 202.3

Finish time 367.1 353.8 356.2 356.4 358.5
Ua, % 0 9.9 17.6 17.8 65
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Important addition was introduced for ANT scheduling. In contrast with experi-
ment series in Subsect. 4.1, job replication geometric distance Dg was calculated as

Dg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
C þE2

T þE2
S

p

, where additional element Es stands for job start time error. As a
reference start time value for each job we used start time obtained for a particular job
by a prior backfilling scheduling. Thus, when searching for a job execution window we
used infeasible solution for time and cost reference values, and a feasible backfilling
solution as a reference for an attainable start time values complying with a queue
priority.

To observe the behavior of the main scheduling parameters we conducted exper-
iments with a different number N of computing nodes available during the scheduling:
N 2 20; 25; 30; 40f g.

Average job’s start and finish times are presented in Figs. 1 and 2.

As can be seen in Figs. 1 and 2, backfilling provided better start and finish times for
a job-flow execution compared to CSS and this result is consistent with [2]. In the
current problem setup backfilling was able to finish the job flow execution almost twice
earlier then CSS. It can be explained by C ! max, lim U scheduling problem which
required CSS to allocate resources for job-flow execution cost maximization consid-
ering contradictory user preferences, not minimizing jobs’ completion times.

At the same time anticipation algorithm during each experiment solved the same
C ! max, lim U problem and provided jobs’ start and finish times only 10% behind
the backfilling scheduling outcome.

The details of anticipation scheduling can be examined in Figs. 3 and 4.
Figure 3 shows average job execution time provided by backfilling and anticipation

algorithm. Additionally ANT T and ANT C represent average execution times obtained
by anticipation scheduling for jobs with time minimization and cost minimization
criteria correspondingly. As it can be observed, ANT and BF generally provided
comparable execution times, which is not a direct optimization criterion for either of

Fig. 1. Average jobs’ start time in C ! max, lim U problem
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them. At the same time ANT applied completely different scheduling policies for jobs
with different private scheduling criteria. So that ANT T jobs used 25%–33% less
processor time then ANT C jobs and 15% less compared to BF solution.

A similar pattern can be observed in Fig. 4, where average jobs’ execution cost is
presented. ANT and BF provided comparable general job-flow execution cost value.
However ANT was able to consider user preferences and shared resources so that
ANT C jobs execution cost was 10–15% less then ANT T jobs and 6–9% less com-
pared to backfilling.

Summarizing the results, ANT is able to provide a general scheduling outcome
similar to backfilling (with at most 10% error on job’s start and finish times), and at the

Fig. 2. Average jobs’ finish time in C ! max, lim U problem

Fig. 3. Average jobs’ execution time in C ! max, lim U problem
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same time considers users’ and VO preferences by efficiently solving C ! max, lim U
problem. Thereby the available resources are distributed between user jobs according to
the predefined scheduling requirements (see Figs. 3 and 4). In our experiment set they
include individual jobs execution preferences (for example, certain job’s execution cost
minimization) and a common job-flow scheduling policy (total job-flow execution cost
maximization in our example).

Speaking of a whole job-flow scheduling policy it is worth noting that despite the
cost maximization performed by ANT, backfilling still provided higher total job-flow
execution cost (Fig. 4). This result may be explained by the need of ANT to addi-
tionally consider user preferences (lim Ua ¼ 10%), including user jobs with a cost
minimization criterion. For example, in C ! max, lim Ua ¼ 100% problem, which
performs cost maximization without taking into account user preferences, ANT pro-
vides 1–2% higher job-flow execution cost compared to backfilling, but does not reach
original CSS by 10%. In this case ANT was limited by a start time reference (obtained
from backfilling solution) and, thus, had fewer opportunities to use available resources
for a total cost maximization as opposed to CSS.

5 Conclusions and Future Work

In this paper, we study the problem of fair job batch scheduling with a relatively limited
resources supply. The main problem that arises is a scarce set of job execution alter-
natives which eliminates scheduling optimization efficiency.

We propose a heuristic anticipation scheduling which generates a near-optimal but
infeasible reference solution and then replicates it to allocate a feasible accessible
solution. The special replication procedure is proposed which provides 2–5% error
from the reference scheduling solution. The obtained results show that the new
heuristic approach provides flexible and efficient solutions for different fair scheduling

Fig. 4. Average jobs’ execution cost in C ! max, lim U problem
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scenarios. In case when computing environment with a limited set of resources is
considered the anticipation algorithm is still able to allocate resources according to VO
stakeholders’ preferences, generally complies with queue priorities and provides a
job-flow completion time up to 10% behind backfilling solution.

Future work will be focused on replication algorithm studies and its possible
application to fulfill complex user preferences expressed in a resource request. Ref-
erence parameters may be obtained from user expectations or transformed from dif-
ferent scheduling solutions. Different weights may be introduced for errors calculation
on different reference parameters.
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