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Abstract. The rise of computational science has facilitated rapid progress in
many areas of science and technology over the last decade. There is a growing
demand in computational scientists and engineers capable of efficient collabora‐
tion in interdisciplinary groups. Training such specialists includes courses on
numerical analysis and parallel computing. In this paper we present a new
Master’s course Parallel Numerical Methods which bridges the gap between
theoretical aspects of numerical methods and issues of implementation for
modern multicore and manycore systems. The course aims to guide students
through the complete process of solving computational problems, from a problem
statement to developing parallel software and analyzing results of computational
experiments. An important feature is that many of practical classes are based on
research done at the HPC Center of the University of Nizhni Novgorod and there‐
fore illustrate issues, which students may encounter in their research and future
career.
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1 Introduction

The importance and relevance of modern methods of computational science can hardly
be overestimated. The progress in development of computer systems and applications
for solving scientific and technical problems confronts more and more new ambitious
challenges to scientists and engineers. In many fields there is a demand for non-ordinary
solutions which allow replacing natural experiments with computational ones, therefore
essentially shortening the way from an innovative idea to its technological implemen‐
tation. Among such fields are computer-aided design, computational physics, compu‐
tational biomedicine and others. These areas can greatly benefit from collaboration of
experts in different areas: researchers in natural and social sciences, theoretical and
applied, mathematicians, and software engineers. However, efficient collaboration in
such multidisciplinary groups is not always easy, as different professional communities
tend to have specific traditions, methods and terminology.
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A way to approach this issue is to train specialists oriented towards multidisciplinary
collaboration as a part of Master’s programs. The institute of IT, mathematics and
mechanics at the Lobachevsky State University of Nizhni Novgorod (UNN) has created
a Master’s program in computational science, which includes a wide range of topics
concerning numerical simulation, applied mathematics, computational mathematics,
and computer science. Many students on this program are members of multidisciplinary
groups carrying out research projects at the UNN HPC center [1]. By the time of grad‐
uation these students have some real-world experience in computational science, which
can be valuable for their career.

This paper describes a core course in our Master’s program in computational science,
Parallel Numerical Methods. To date, a considerable amount of educational and method‐
ical literature on numerical methods is available, for example, the latest editions of the
classical textbooks [2–4]. In the literature on numerical methods, the issues of devel‐
opment, application and theoretical substantiation of algorithms for numerical solution
of various classes of mathematical problems are considered. Courses on theoretical
aspects of numerical methods have been developed for decades with lots of excellent
courses and materials available. Parallel programming, performance analysis and opti‐
mization are much more rapidly developing areas. Evolution of hardware, tools and
technologies constantly creates new challenges and requires development and modern‐
ization of course materials. There are respectable textbooks on key technologies for
parallel programming, for example, [5, 6]. Some books consider optimization of appli‐
cations from various areas for modern architectures [7–9]. Our Parallel Numerical
Methods course aims to guide students through the complete process of solving compu‐
tational problems, from a problem statement to developing parallel software and
analyzing results of computational experiments. The course forms skills in studying a
problem at hand and its mathematical model, choosing appropriate numerical methods,
developing a parallel algorithm and its implementation for multicore and manycore
systems, performing computational experiments and analyzing results in terms of accu‐
racy and performance. An important feature of the course is that most problems consid‐
ered are based on the experience from research projects done at the UNN HPC Center.
These examples illustrate the common issues, which students are likely to encounter in
their future career.

This paper is organized as follows. Section 2 contains a short overview of courses
on numerical analysis and numerical methods. Section 3 presents the main ideas and
principles of our Parallel Numerical Methods course. Course structure is described in
Sect. 4 with examples of lectures and practical classes given in Sect. 5. Section 6 is
devoted to assessment of student performance. Section 7 concludes the paper.

2 Related Work

Courses on numerical analysis and numerical methods, for example [10–14] are deliv‐
ered in many universities worldwide. The textbooks with several editions released,
including [15, 16], form a methodical basis for such courses. In general, these are mostly
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classical courses on numerical methods with the main focus on theoretical material:
theorems on approximation, stability and convergence.

There are also courses which cover the classical topics of numerical methods and
are directed particularly towards the issues of implementation for modern computational
systems. A notable example is the Introduction to Numerical Methods course at MIT
[10]. The course begins with considering the issues of performance, software optimi‐
zation, and floating-point arithmetic. Then, the basic numerical algorithms of linear
algebra (solving the eigenvalue problem, direct and iterative methods for solving
systems of linear equations) are considered. There are several advanced courses
concerning parallel aspects of numerical algorithms, most notably in linear algebra [17,
18]. Linear algebra problems are rather intuitive, and, therefore, very suitable to demon‐
strate the basics of parallel computing. Other numerical methods are typically part of
courses on scientific computing, for example [19–21].

This paper presents the Parallel Numerical Methods course developed at the UNN
HPC Center based on 15 years’ experience of research in computational science. The
course covers numerical methods and issues of parallel implementation for a wide range
of problems: dense and sparse linear algebra, direct and iterative solvers, finite-differ‐
ence schemes for ordinary and partial differential equations, Monte Carlo methods.

3 Course Description

The Parallel Numerical Methods course described in this paper is a core course of the
Master’s program in computational science at the Lobachevsky State University of
Nizhni Novgorod. The goals of the course are mastery of numerical algorithms and
considering the issues of implementation, performance and scalability on modern hard‐
ware. The course covers parallel aspects of the classical topics of numerical methods,
including dense and sparse linear algebra, ordinary and partial differential equations,
Monte Carlo methods.

Course prerequisites include fundamentals of linear algebra, mathematical analysis,
numerical methods, and parallel programming. This set of skills is rather typical for
graduates of Bachelor’s programs in applied mathematics and computer science, such
as [22]. Since some students with a solid mathematical background may not be familiar
with parallel programming, for example, Bachelor’s in mathematics, our curriculum
offers an optional parallel programming course in the same semester, which completely
covers demands of the Parallel Numerical Methods course.

The course is based on the following main principles:

1. A wide range of topics: the course covers basic topics of numerical methods, widely
used for scientific and engineering computing in various areas.

2. Balance between numerical analysis and computer science: the course combines
mathematically strict presentation of material with proper attention to efficient
implementation for parallel hardware.

3. Integrity: the course demonstrates the whole chain of stages required to solve a
computational problem (problem statement, mathematical model, serial algorithm,
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parallel algorithms, implementation and parallelization, computational experiment
and analysis).

4. Real-world experience: demonstrating approaches used by research groups to solve
state-of-the-art problems of computational science.

5. Assessment based on applications: assessment of student performance is done based
mostly on ability to solve a problem going through all stages, from problem statement
to computational experiment and analysis.

6. Flexibility: the course is designed in such a way that modules/practical classes are
to a large degree independent.

Based on the above mentioned principles and course prerequisite we have decided
to give basic mathematical statements and theorems in the lectures without proofs,
making references to textbooks on numerical methods. Most lectures combine theoret‐
ical descriptions of methods with approaches to parallel implementation and demon‐
strations of performance results. Each practical class is a detailed study and development
of a parallel implementation for a computational problem, using tools part of Intel
Parallel Studio (C++ Compiler, Cilk Plus, TBB, MKL, Amplifier). The course contains
a large number of case studies demonstrating applications from computational physics,
computational finance, computational biology, and other areas.

4 Course Outline

Below we give a list of basic modules of the course with brief descriptions.

1. Elements of computer arithmetic. The topic of this module is representation of
floating point numbers in computer memory [23]. The problems of computational
error accumulation and methods for its reduction and control are discussed. Typical
examples, where error accumulation may result in incorrect computation results, are
presented.

2. Direct methods for solving systems of linear equations. This module is devoted to
direct methods of solving systems of linear algebraic equations: Gaussian elimina‐
tion, Cholesky decomposition, Thomas and reduction methods. The classical
methods are presented and estimates of complexity given. We demonstrate insuffi‐
cient efficiency of naïve implementations of these methods on modern computational
architectures. The idea of block data processing is highlighted consistently. The
problems of sparse algebra are considered here as well. A brief review of the data
structures for storing sparse matrices is given, typical problems arising when
performing the basic operations with sparse matrices are considered. Comparison of
the matrix-vector and matrix-matrix multiplication algorithms for the cases of dense
and sparse matrices is given. Cholesky decomposition is considered as an example
of a more complex computational algorithm for sparse matrices. The issue of
increasing amount of nonzero elements after factorization is demonstrated, several
algorithms of matrix reordering to reduce the fill-in of the resulting matrix (minimum
degree and nested dissection methods) are presented.
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3. Iterative methods for solving systems of linear equations. This module considers
iterative methods for solving the systems of linear equations, from the basic methods
(simple iteration, Jacobi, Seidel, upper relaxation methods) to Krylov-type methods
(generalized minimal residual, conjugated and biconjugated gradient methods). We
discuss approaches to parallelization, give theoretical and experimental estimates of
speed-up. The module also covers some methods of preconditioning: the basic
methods (Jacobi method, Gauss-Seidel method) and the methods based on the
incomplete LU-decomposition (ILU(0) and ILU(p) factorization).

4. Methods for solving ordinary differential equations. This module concerns the basic
methods for solving ODEs: Runge-Kutta methods and Adams methods. The parallel
variants of the methods for solving systems of ODEs are considered. For Runge-
Kutta methods, the pipelining scheme of solving systems of ODEs with a sparse
right-hand part is given. Solving a system of ODEs arising from simulating a neural
system is considered as an illustrative example.

5. Methods for solving differential equations in partial derivatives. The module encom‐
passes the issues of parallel solving differential equations in partial derivatives.
Typical equations in partial derivatives (of hyperbolic, parabolic, and elliptical
types) are considered. The finite differences method is delivered to the students as a
method of reduction of differential equations to algebraic ones, leading to solving
the difference equations. The explicit and implicit schemes of solving parabolic and
hyperbolic equations and issues of parallel implementation are considered. The
advantages and drawbacks of each approach are discussed. The pentadiagonal
system of linear equations arising while solving 2D Poisson equation is discussed
separately. The wave scheme of data processing in parallel solving of this system
by iterative methods is presented.

6. Monte Carlo methods. This module introduces general concepts of the Monte Carlo
methods. It describes issues of utilizing pseudo-random number generators in
parallel programs, ways of reducing variance and presents applications for multidi‐
mensional integration, computational physics, and computational finance.

5 Conducting the Classes

The lecture part of the course concerns construction and analysis of efficient parallel
algorithms from various topics of numerical methods. The presentation is accompanied
by the results of the computational experiments and analysis. For example, a lecture on
Cholesky factorization of a dense matrix is organized as follows. We start with the
definition of Cholesky factorization and describe applications for solving systems of
linear equations with a symmetric positive-definite matrix. Then we show how a naive
algorithm can be constructed based on the definition and estimate its complexity.
Approaches to parallelization are considered and scaling efficiency obtained for our
implementation is demonstrated. We proceed to estimating cache efficiency of the naive
algorithm and introducing the idea of blocking to increase cache reuse. Serial and parallel
block Cholesky factorization algorithms are presented along with performance and
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scaling efficiency of our implementation compared to the naive algorithm. Analysis of
the results concludes the lecture.

Another section of the course covers sparse linear algebra algorithms. One of the
lectures considers sparse direct solvers. We discuss advantages and disadvantages of
direct methods, give a general computational scheme, review main approaches to paral‐
lelization of sparse matrix factorization, and introduce widely used software. The
demonstration is done using the open source sparse matrix reordering library PMORSy
[24] developed at the UNN HPC Center. The example of workload distribution during
a sparse matrix reordering is shown below (Fig. 1).

Fig. 1. Task mapping for a test matrix on 16 threads. Logical tasks are nodes of the graph,
dependencies between them are edges. Descendant nodes correspond to the tasks generated after
the parent task is completed. Same colored nodes are processed by the same thread [24].

Each practical class is a study of a selected computational problem. A problem
description includes a problem statement, brief information on the research area, numer‐
ical method, possible approaches of parallelization, analysis of correctness, performance
and scaling efficiency, and possible ways to improve it. The class is conducted either in
form of a demonstration and analysis done by a teacher or in form of students gradually
developing and analyzing their implementation following the description.

Let us describe several practical classes, which are part of the course. One group of
classes is based on research done by a group of mathematicians and computer scientists
on computational finance. A feature of this area is that problems are often seemingly
simple; however the models and methods used are rather complicated and rely on statis‐
tics, differential equations and mathematical optimization. Nevertheless, all formalisms
used have a clear financial interpretation, which makes it easier to introduce financial
terms while keeping the material mathematically strict. Some of the methods used in
computational finance can also be applied for other areas. Below we describe two
concrete examples of this group.
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The first example is performance optimization of Black-Scholes pricing. The
problem is to calculate the fair prices for a set of European options [25], which is a fairly
simple problem of financial mathematics. In this case, the result can be calculated
analytically. From the programming point of view, this is a trivial problem (just to apply
a formula for input data); however, it demonstrates that the computational time can vary
by an order of magnitude even in such a simple program depending on programming
and optimization skills and techniques. First, we introduce a model and basic concepts
of a financial market and some intuitive descriptions of the option pricing problem
briefly. We create a basic implementation, analyze its performance and improve it in a
step-by-step fashion: eliminate unnecessary type casts, carry out invariants, perform
mathematical transforms that replace heavy math routines with the lighter ones,
vectorize and parallelize, perform warm-up to reduce overhead on thread creation, try
reducing precision of floating-point operations, utilize streaming stores. The effects of
these optimization techniques are demonstrated on both CPU and Intel Xeon Phi. The
main methodological direction of this work is to teach pragmatics of using mathematical
routines (choosing efficient mathematical library, controlled reduction of precision if
justified), vectorization by compiler directives and optimization for manycore architec‐
tures. The detailed description of this work is published in [25].

The second example on computational finance is performance optimization of Monte
Carlo option pricing (Fig. 2). We consider the case where the fair prices cannot be
computed analytically. A widely used method is Monte Carlo simulation, which is rela‐
tively easy to implement and has a huge degree of parallelism. We cover topics of correct
pseudo-random number generation in parallel applications and demonstrate typical
errors in this area. Efficiency of low-discrepancy sequences and approaches to parallel
implementation are shown. We demonstrate methods to check accuracy of a Monte
Carlo simulation. The main value for students is to learn how to correctly use pseudo-
random number generators in parallel programs.

Fig. 2. Evolution of option price in time. Several Monte Carlo trajectories and the average are
shown.

Another group of practical classes is devoted to computational physics. One example
is based on a research project in plasma physics done by a large group of theoretical and
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experimental physicists, mathematicians and software developers from the UNN HPC
Center, Institute of Applied Physics of Russian Academy of Sciences and Chalmers
University of Technology. The example concerns solving Maxwell’s equations in 3D
space using the Finite Difference Time Domain method, a cell of the grid used is given
at Fig. 3. We discuss choosing data layout, vectorization, scaling efficiency on Intel
Xeon Phi. Another example is Monte Carlo simulation of brain sensing by optical diffuse
spectroscopy based on a joint research by the UNN HPC Center and Institute of Applied
Physics. We show problem statement and demonstrate results of a straightforward
implementation of Monte Carlo simulation. Using a profiler, we show an approach to
change data structures in order to improve memory efficiency and load balancing on
Xeon Phi. The methodical value of these two examples is to demonstrate a pragmatic
choice of data structures and approaches to load balancing on many-core architectures.

Fig. 3. A cell of the spatial grid used in the Finite Difference Time Domain method.

6 Assessment of Student Performance

As a very basic form of assessment, all students pass online testing on every module of
the course. While useful for monitoring the current progress, it only focuses on theo‐
retical knowledge, not practical skills. Thus, the main form of assessment is solving one
or several computational problems. We believe it is a better form of assessment since it
covers the whole cycle of computational scientist work: studying methods, creating a
serial implementation, verifying its correctness, creating a parallel implementation,
optimizing its performance and scaling efficiency.

There are currently three groups of test problems:

1. Block algorithms for dense linear algebra problems (e.g. block LU and Cholesky
factorization).

2. Iterative solvers for sparse systems of linear equations (e.g. conjugate gradient
method).
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3. Solvers for ODEs and PDEs (e.g. finite-difference schemes).

Each student is randomly assigned one problem from each group to provide a good
coverage of the course material.

For each problem we provide sets of parameters to be used for testing and require‐
ments for performance and scaling efficiency. An implementation is accepted once it
passes all tests in terms of correctness, performance and scaling efficiency.

On a technical side, we use an automated checking system based on the open source
edge software (https://ejudge.ru/). Students upload source code files and a make file via
a web interface. The system builds the submitted code, runs it on all test items, and
checks correctness and performance. The specific way of checking the correctness
depends on the type of a problem. For example, for the direct methods for solving
systems of linear equations, the checking is performed by substitution (with a tolerance
depending on a norm of the matrix); for the methods for solving differential equations,
the accordance of behavior of the error when increasing the grid dimensionality to the
theoretical properties of the methods is checked. The efficiency of parallel implemen‐
tations is checked by means of comparing the speed-up relative to the sequential version
with the threshold value dependent on the problem.

Let us present two examples of problem statements.

Example 1. The conjugate gradient method for sparse systems of linear equations.
Problem statement: Implement the conjugate gradient method for solving a sparse

symmetric system of linear equations in form Ax = b. Choose an exact solution x* and
use Ax* as the right-hand side. Use the norm of the difference between the consecutive
approximations as the stop condition. Output the norm of the residual on the last step of
the method.

Input format: a sparse symmetric matrix in .mtx format (from the University of
Florida Sparse Matrix Collection).

Output format: a single number that is the norm of the residual on the last step of the
method.

Verification: checking that the norm of the residual does not exceed 1% of the norm
of the input matrix.

Limitations of the problem size: no more than 100 000 000 non-zero elements in the
input matrix.

Requirements on scalability: the scaling efficiency is not less than 50%.

Example 2. The Crank-Nicolson method for solving the 1D heat equation.
Problem statement: Implement the Crank-Nicolson method for solving the 1D

dynamic heat equation with the Dirichlet boundary conditions. Choose a non-trivial
function as the exact solution and construct the right-hand side, initial and boundary
conditions accordingly. Use the cyclic reduction method for solving the resulting system
of linear equations with a tridiagonal matrix.

Input format: the number of grid nodes on space and time axes.
Output format: the maximum difference between the exact and numerical solutions

on the grid.
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Verification: steadily increasing the number of grid nodes checking that the error is
proportional so the sum of squares of space and time steps.

Limitations of the problem size: the total number of grid nodes is no more than 1 000
000.

Requirements to scalability: the scaling efficiency is not less than 40%.

7 Conclusion

This paper describes the Parallel Numerical Methods course for Master’s program in
computational science at the Lobachevsky State University of Nizhni Novgorod. The
main goal of the course is to bridge the gap between theoretical aspects of numerical
methods and issues of implementation for modern multicore and manycore systems.
This is an important chain in training specialists capable of working in multidisciplinary
scientific and engineering groups. The course relies on basic knowledge of numerical
methods and parallel programming obtained during Bachelor’s programs and concen‐
trates of parallelization and efficiency.

The course has a flexible modular structure. Each module is devoted to a key area
of numerical methods. Most lectures demonstrate a whole cycle from a mathematical
model to results of computational experiments in terms of accuracy and efficiency. Most
practical classes are devoted to solving computational problems in different areas. An
important feature is that many of practical classes are based on research done at the UNN
HPC Center and therefore illustrate issues, which students may encounter in their
research and future career. Assessment of student performance is mostly done based on
solving test computational problems. By means of an automated system, we control
accuracy of submitted solutions as well as performance and scaling efficiency.

Course materials are currently available in Russian on the website http://www.
hpcc.unn.ru/?doc=491. These materials have been used for several training programs
for teachers and researchers. Over 500 students have been trained since 2012. There is
an ongoing process of extending the materials and translating them to English; a prelimi‐
nary English version of materials for some modules is available at http://hpc-educa‐
tion.unn.ru/en/trainings/collection-of-courses. Another direction of future work is
creating a course for one of the widely used e-learning systems.
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