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Preface

The Third Russian Supercomputing Days Conference (RuSCDays 2017) was held
September 25–26, 2017, in Moscow, Russia. It was organized by the Supercomputing
Consortium of Russian Universities and the Federal Agency for Scientific Organiza-
tions. The conference was supported by the Russian Foundation for Basic Research and
our respected platinum educational partner (Intel), platinum sponsors (T-Platforms,
NVIDIA, RSC), gold sponsor (Mellanox), and silver sponsors (Almaz-SP, Atos,
Dell EMC, IBM, Xilinx). The conference was organized in a partnership with the ISC
High-Performance conference series and the NESUS project.

The conference was born in 2015 as a union of several supercomputing events in
Russia and quickly became one of the most notable Russian supercomputing meetings.
The conference caters to the interests of a wide range of representatives from science,
industry, business, education, government, and students – anyone connected to the
development or the use of supercomputing technologies. The conference topics cover
all aspects of supercomputing technologies: software and hardware design, solving
large tasks, application of supercomputing technologies in industry, exaflops com-
puting issues, supercomputing co-design technologies, supercomputing education, and
others.

All papers submitted to the conference were reviewed by three referees in the first
review round. The papers were evaluated according to the quality of relevance to the
conference topics, scientific contribution, presentation, approbation, and related works
description. After notification of the conditional acceptance of a paper, the second
review round was arranged. It was aimed at the final polishing of papers and also at
evaluating the authors work after the referees’ comments. After the conference, the
final selection was made, and the 42 best works were carefully selected to be included
in this volume.

The proceedings editors would like to thank all conference committee members,
especially the Organizing and Program Committee members as well as other referees
and reviewers for their contributions. We also thank Springer for producing these
high-quality proceedings of RuSCDays 2017.

October 2017 Vladimir Voevodin
Sergey Sobolev
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Abstract. The rise of computational science has facilitated rapid progress in
many areas of science and technology over the last decade. There is a growing
demand in computational scientists and engineers capable of efficient collabora‐
tion in interdisciplinary groups. Training such specialists includes courses on
numerical analysis and parallel computing. In this paper we present a new
Master’s course Parallel Numerical Methods which bridges the gap between
theoretical aspects of numerical methods and issues of implementation for
modern multicore and manycore systems. The course aims to guide students
through the complete process of solving computational problems, from a problem
statement to developing parallel software and analyzing results of computational
experiments. An important feature is that many of practical classes are based on
research done at the HPC Center of the University of Nizhni Novgorod and there‐
fore illustrate issues, which students may encounter in their research and future
career.

Keywords: Education in computational science · Numerical analysis · Parallel
computing · Master’s program

1 Introduction

The importance and relevance of modern methods of computational science can hardly
be overestimated. The progress in development of computer systems and applications
for solving scientific and technical problems confronts more and more new ambitious
challenges to scientists and engineers. In many fields there is a demand for non-ordinary
solutions which allow replacing natural experiments with computational ones, therefore
essentially shortening the way from an innovative idea to its technological implemen‐
tation. Among such fields are computer-aided design, computational physics, compu‐
tational biomedicine and others. These areas can greatly benefit from collaboration of
experts in different areas: researchers in natural and social sciences, theoretical and
applied, mathematicians, and software engineers. However, efficient collaboration in
such multidisciplinary groups is not always easy, as different professional communities
tend to have specific traditions, methods and terminology.

© Springer International Publishing AG 2017
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A way to approach this issue is to train specialists oriented towards multidisciplinary
collaboration as a part of Master’s programs. The institute of IT, mathematics and
mechanics at the Lobachevsky State University of Nizhni Novgorod (UNN) has created
a Master’s program in computational science, which includes a wide range of topics
concerning numerical simulation, applied mathematics, computational mathematics,
and computer science. Many students on this program are members of multidisciplinary
groups carrying out research projects at the UNN HPC center [1]. By the time of grad‐
uation these students have some real-world experience in computational science, which
can be valuable for their career.

This paper describes a core course in our Master’s program in computational science,
Parallel Numerical Methods. To date, a considerable amount of educational and method‐
ical literature on numerical methods is available, for example, the latest editions of the
classical textbooks [2–4]. In the literature on numerical methods, the issues of devel‐
opment, application and theoretical substantiation of algorithms for numerical solution
of various classes of mathematical problems are considered. Courses on theoretical
aspects of numerical methods have been developed for decades with lots of excellent
courses and materials available. Parallel programming, performance analysis and opti‐
mization are much more rapidly developing areas. Evolution of hardware, tools and
technologies constantly creates new challenges and requires development and modern‐
ization of course materials. There are respectable textbooks on key technologies for
parallel programming, for example, [5, 6]. Some books consider optimization of appli‐
cations from various areas for modern architectures [7–9]. Our Parallel Numerical
Methods course aims to guide students through the complete process of solving compu‐
tational problems, from a problem statement to developing parallel software and
analyzing results of computational experiments. The course forms skills in studying a
problem at hand and its mathematical model, choosing appropriate numerical methods,
developing a parallel algorithm and its implementation for multicore and manycore
systems, performing computational experiments and analyzing results in terms of accu‐
racy and performance. An important feature of the course is that most problems consid‐
ered are based on the experience from research projects done at the UNN HPC Center.
These examples illustrate the common issues, which students are likely to encounter in
their future career.

This paper is organized as follows. Section 2 contains a short overview of courses
on numerical analysis and numerical methods. Section 3 presents the main ideas and
principles of our Parallel Numerical Methods course. Course structure is described in
Sect. 4 with examples of lectures and practical classes given in Sect. 5. Section 6 is
devoted to assessment of student performance. Section 7 concludes the paper.

2 Related Work

Courses on numerical analysis and numerical methods, for example [10–14] are deliv‐
ered in many universities worldwide. The textbooks with several editions released,
including [15, 16], form a methodical basis for such courses. In general, these are mostly

4 I. Meyerov et al.



classical courses on numerical methods with the main focus on theoretical material:
theorems on approximation, stability and convergence.

There are also courses which cover the classical topics of numerical methods and
are directed particularly towards the issues of implementation for modern computational
systems. A notable example is the Introduction to Numerical Methods course at MIT
[10]. The course begins with considering the issues of performance, software optimi‐
zation, and floating-point arithmetic. Then, the basic numerical algorithms of linear
algebra (solving the eigenvalue problem, direct and iterative methods for solving
systems of linear equations) are considered. There are several advanced courses
concerning parallel aspects of numerical algorithms, most notably in linear algebra [17,
18]. Linear algebra problems are rather intuitive, and, therefore, very suitable to demon‐
strate the basics of parallel computing. Other numerical methods are typically part of
courses on scientific computing, for example [19–21].

This paper presents the Parallel Numerical Methods course developed at the UNN
HPC Center based on 15 years’ experience of research in computational science. The
course covers numerical methods and issues of parallel implementation for a wide range
of problems: dense and sparse linear algebra, direct and iterative solvers, finite-differ‐
ence schemes for ordinary and partial differential equations, Monte Carlo methods.

3 Course Description

The Parallel Numerical Methods course described in this paper is a core course of the
Master’s program in computational science at the Lobachevsky State University of
Nizhni Novgorod. The goals of the course are mastery of numerical algorithms and
considering the issues of implementation, performance and scalability on modern hard‐
ware. The course covers parallel aspects of the classical topics of numerical methods,
including dense and sparse linear algebra, ordinary and partial differential equations,
Monte Carlo methods.

Course prerequisites include fundamentals of linear algebra, mathematical analysis,
numerical methods, and parallel programming. This set of skills is rather typical for
graduates of Bachelor’s programs in applied mathematics and computer science, such
as [22]. Since some students with a solid mathematical background may not be familiar
with parallel programming, for example, Bachelor’s in mathematics, our curriculum
offers an optional parallel programming course in the same semester, which completely
covers demands of the Parallel Numerical Methods course.

The course is based on the following main principles:

1. A wide range of topics: the course covers basic topics of numerical methods, widely
used for scientific and engineering computing in various areas.

2. Balance between numerical analysis and computer science: the course combines
mathematically strict presentation of material with proper attention to efficient
implementation for parallel hardware.

3. Integrity: the course demonstrates the whole chain of stages required to solve a
computational problem (problem statement, mathematical model, serial algorithm,
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parallel algorithms, implementation and parallelization, computational experiment
and analysis).

4. Real-world experience: demonstrating approaches used by research groups to solve
state-of-the-art problems of computational science.

5. Assessment based on applications: assessment of student performance is done based
mostly on ability to solve a problem going through all stages, from problem statement
to computational experiment and analysis.

6. Flexibility: the course is designed in such a way that modules/practical classes are
to a large degree independent.

Based on the above mentioned principles and course prerequisite we have decided
to give basic mathematical statements and theorems in the lectures without proofs,
making references to textbooks on numerical methods. Most lectures combine theoret‐
ical descriptions of methods with approaches to parallel implementation and demon‐
strations of performance results. Each practical class is a detailed study and development
of a parallel implementation for a computational problem, using tools part of Intel
Parallel Studio (C++ Compiler, Cilk Plus, TBB, MKL, Amplifier). The course contains
a large number of case studies demonstrating applications from computational physics,
computational finance, computational biology, and other areas.

4 Course Outline

Below we give a list of basic modules of the course with brief descriptions.

1. Elements of computer arithmetic. The topic of this module is representation of
floating point numbers in computer memory [23]. The problems of computational
error accumulation and methods for its reduction and control are discussed. Typical
examples, where error accumulation may result in incorrect computation results, are
presented.

2. Direct methods for solving systems of linear equations. This module is devoted to
direct methods of solving systems of linear algebraic equations: Gaussian elimina‐
tion, Cholesky decomposition, Thomas and reduction methods. The classical
methods are presented and estimates of complexity given. We demonstrate insuffi‐
cient efficiency of naïve implementations of these methods on modern computational
architectures. The idea of block data processing is highlighted consistently. The
problems of sparse algebra are considered here as well. A brief review of the data
structures for storing sparse matrices is given, typical problems arising when
performing the basic operations with sparse matrices are considered. Comparison of
the matrix-vector and matrix-matrix multiplication algorithms for the cases of dense
and sparse matrices is given. Cholesky decomposition is considered as an example
of a more complex computational algorithm for sparse matrices. The issue of
increasing amount of nonzero elements after factorization is demonstrated, several
algorithms of matrix reordering to reduce the fill-in of the resulting matrix (minimum
degree and nested dissection methods) are presented.
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3. Iterative methods for solving systems of linear equations. This module considers
iterative methods for solving the systems of linear equations, from the basic methods
(simple iteration, Jacobi, Seidel, upper relaxation methods) to Krylov-type methods
(generalized minimal residual, conjugated and biconjugated gradient methods). We
discuss approaches to parallelization, give theoretical and experimental estimates of
speed-up. The module also covers some methods of preconditioning: the basic
methods (Jacobi method, Gauss-Seidel method) and the methods based on the
incomplete LU-decomposition (ILU(0) and ILU(p) factorization).

4. Methods for solving ordinary differential equations. This module concerns the basic
methods for solving ODEs: Runge-Kutta methods and Adams methods. The parallel
variants of the methods for solving systems of ODEs are considered. For Runge-
Kutta methods, the pipelining scheme of solving systems of ODEs with a sparse
right-hand part is given. Solving a system of ODEs arising from simulating a neural
system is considered as an illustrative example.

5. Methods for solving differential equations in partial derivatives. The module encom‐
passes the issues of parallel solving differential equations in partial derivatives.
Typical equations in partial derivatives (of hyperbolic, parabolic, and elliptical
types) are considered. The finite differences method is delivered to the students as a
method of reduction of differential equations to algebraic ones, leading to solving
the difference equations. The explicit and implicit schemes of solving parabolic and
hyperbolic equations and issues of parallel implementation are considered. The
advantages and drawbacks of each approach are discussed. The pentadiagonal
system of linear equations arising while solving 2D Poisson equation is discussed
separately. The wave scheme of data processing in parallel solving of this system
by iterative methods is presented.

6. Monte Carlo methods. This module introduces general concepts of the Monte Carlo
methods. It describes issues of utilizing pseudo-random number generators in
parallel programs, ways of reducing variance and presents applications for multidi‐
mensional integration, computational physics, and computational finance.

5 Conducting the Classes

The lecture part of the course concerns construction and analysis of efficient parallel
algorithms from various topics of numerical methods. The presentation is accompanied
by the results of the computational experiments and analysis. For example, a lecture on
Cholesky factorization of a dense matrix is organized as follows. We start with the
definition of Cholesky factorization and describe applications for solving systems of
linear equations with a symmetric positive-definite matrix. Then we show how a naive
algorithm can be constructed based on the definition and estimate its complexity.
Approaches to parallelization are considered and scaling efficiency obtained for our
implementation is demonstrated. We proceed to estimating cache efficiency of the naive
algorithm and introducing the idea of blocking to increase cache reuse. Serial and parallel
block Cholesky factorization algorithms are presented along with performance and
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scaling efficiency of our implementation compared to the naive algorithm. Analysis of
the results concludes the lecture.

Another section of the course covers sparse linear algebra algorithms. One of the
lectures considers sparse direct solvers. We discuss advantages and disadvantages of
direct methods, give a general computational scheme, review main approaches to paral‐
lelization of sparse matrix factorization, and introduce widely used software. The
demonstration is done using the open source sparse matrix reordering library PMORSy
[24] developed at the UNN HPC Center. The example of workload distribution during
a sparse matrix reordering is shown below (Fig. 1).

Fig. 1. Task mapping for a test matrix on 16 threads. Logical tasks are nodes of the graph,
dependencies between them are edges. Descendant nodes correspond to the tasks generated after
the parent task is completed. Same colored nodes are processed by the same thread [24].

Each practical class is a study of a selected computational problem. A problem
description includes a problem statement, brief information on the research area, numer‐
ical method, possible approaches of parallelization, analysis of correctness, performance
and scaling efficiency, and possible ways to improve it. The class is conducted either in
form of a demonstration and analysis done by a teacher or in form of students gradually
developing and analyzing their implementation following the description.

Let us describe several practical classes, which are part of the course. One group of
classes is based on research done by a group of mathematicians and computer scientists
on computational finance. A feature of this area is that problems are often seemingly
simple; however the models and methods used are rather complicated and rely on statis‐
tics, differential equations and mathematical optimization. Nevertheless, all formalisms
used have a clear financial interpretation, which makes it easier to introduce financial
terms while keeping the material mathematically strict. Some of the methods used in
computational finance can also be applied for other areas. Below we describe two
concrete examples of this group.
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The first example is performance optimization of Black-Scholes pricing. The
problem is to calculate the fair prices for a set of European options [25], which is a fairly
simple problem of financial mathematics. In this case, the result can be calculated
analytically. From the programming point of view, this is a trivial problem (just to apply
a formula for input data); however, it demonstrates that the computational time can vary
by an order of magnitude even in such a simple program depending on programming
and optimization skills and techniques. First, we introduce a model and basic concepts
of a financial market and some intuitive descriptions of the option pricing problem
briefly. We create a basic implementation, analyze its performance and improve it in a
step-by-step fashion: eliminate unnecessary type casts, carry out invariants, perform
mathematical transforms that replace heavy math routines with the lighter ones,
vectorize and parallelize, perform warm-up to reduce overhead on thread creation, try
reducing precision of floating-point operations, utilize streaming stores. The effects of
these optimization techniques are demonstrated on both CPU and Intel Xeon Phi. The
main methodological direction of this work is to teach pragmatics of using mathematical
routines (choosing efficient mathematical library, controlled reduction of precision if
justified), vectorization by compiler directives and optimization for manycore architec‐
tures. The detailed description of this work is published in [25].

The second example on computational finance is performance optimization of Monte
Carlo option pricing (Fig. 2). We consider the case where the fair prices cannot be
computed analytically. A widely used method is Monte Carlo simulation, which is rela‐
tively easy to implement and has a huge degree of parallelism. We cover topics of correct
pseudo-random number generation in parallel applications and demonstrate typical
errors in this area. Efficiency of low-discrepancy sequences and approaches to parallel
implementation are shown. We demonstrate methods to check accuracy of a Monte
Carlo simulation. The main value for students is to learn how to correctly use pseudo-
random number generators in parallel programs.

Fig. 2. Evolution of option price in time. Several Monte Carlo trajectories and the average are
shown.

Another group of practical classes is devoted to computational physics. One example
is based on a research project in plasma physics done by a large group of theoretical and
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experimental physicists, mathematicians and software developers from the UNN HPC
Center, Institute of Applied Physics of Russian Academy of Sciences and Chalmers
University of Technology. The example concerns solving Maxwell’s equations in 3D
space using the Finite Difference Time Domain method, a cell of the grid used is given
at Fig. 3. We discuss choosing data layout, vectorization, scaling efficiency on Intel
Xeon Phi. Another example is Monte Carlo simulation of brain sensing by optical diffuse
spectroscopy based on a joint research by the UNN HPC Center and Institute of Applied
Physics. We show problem statement and demonstrate results of a straightforward
implementation of Monte Carlo simulation. Using a profiler, we show an approach to
change data structures in order to improve memory efficiency and load balancing on
Xeon Phi. The methodical value of these two examples is to demonstrate a pragmatic
choice of data structures and approaches to load balancing on many-core architectures.

Fig. 3. A cell of the spatial grid used in the Finite Difference Time Domain method.

6 Assessment of Student Performance

As a very basic form of assessment, all students pass online testing on every module of
the course. While useful for monitoring the current progress, it only focuses on theo‐
retical knowledge, not practical skills. Thus, the main form of assessment is solving one
or several computational problems. We believe it is a better form of assessment since it
covers the whole cycle of computational scientist work: studying methods, creating a
serial implementation, verifying its correctness, creating a parallel implementation,
optimizing its performance and scaling efficiency.

There are currently three groups of test problems:

1. Block algorithms for dense linear algebra problems (e.g. block LU and Cholesky
factorization).

2. Iterative solvers for sparse systems of linear equations (e.g. conjugate gradient
method).

10 I. Meyerov et al.



3. Solvers for ODEs and PDEs (e.g. finite-difference schemes).

Each student is randomly assigned one problem from each group to provide a good
coverage of the course material.

For each problem we provide sets of parameters to be used for testing and require‐
ments for performance and scaling efficiency. An implementation is accepted once it
passes all tests in terms of correctness, performance and scaling efficiency.

On a technical side, we use an automated checking system based on the open source
edge software (https://ejudge.ru/). Students upload source code files and a make file via
a web interface. The system builds the submitted code, runs it on all test items, and
checks correctness and performance. The specific way of checking the correctness
depends on the type of a problem. For example, for the direct methods for solving
systems of linear equations, the checking is performed by substitution (with a tolerance
depending on a norm of the matrix); for the methods for solving differential equations,
the accordance of behavior of the error when increasing the grid dimensionality to the
theoretical properties of the methods is checked. The efficiency of parallel implemen‐
tations is checked by means of comparing the speed-up relative to the sequential version
with the threshold value dependent on the problem.

Let us present two examples of problem statements.

Example 1. The conjugate gradient method for sparse systems of linear equations.
Problem statement: Implement the conjugate gradient method for solving a sparse

symmetric system of linear equations in form Ax = b. Choose an exact solution x* and
use Ax* as the right-hand side. Use the norm of the difference between the consecutive
approximations as the stop condition. Output the norm of the residual on the last step of
the method.

Input format: a sparse symmetric matrix in .mtx format (from the University of
Florida Sparse Matrix Collection).

Output format: a single number that is the norm of the residual on the last step of the
method.

Verification: checking that the norm of the residual does not exceed 1% of the norm
of the input matrix.

Limitations of the problem size: no more than 100 000 000 non-zero elements in the
input matrix.

Requirements on scalability: the scaling efficiency is not less than 50%.

Example 2. The Crank-Nicolson method for solving the 1D heat equation.
Problem statement: Implement the Crank-Nicolson method for solving the 1D

dynamic heat equation with the Dirichlet boundary conditions. Choose a non-trivial
function as the exact solution and construct the right-hand side, initial and boundary
conditions accordingly. Use the cyclic reduction method for solving the resulting system
of linear equations with a tridiagonal matrix.

Input format: the number of grid nodes on space and time axes.
Output format: the maximum difference between the exact and numerical solutions

on the grid.
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Verification: steadily increasing the number of grid nodes checking that the error is
proportional so the sum of squares of space and time steps.

Limitations of the problem size: the total number of grid nodes is no more than 1 000
000.

Requirements to scalability: the scaling efficiency is not less than 40%.

7 Conclusion

This paper describes the Parallel Numerical Methods course for Master’s program in
computational science at the Lobachevsky State University of Nizhni Novgorod. The
main goal of the course is to bridge the gap between theoretical aspects of numerical
methods and issues of implementation for modern multicore and manycore systems.
This is an important chain in training specialists capable of working in multidisciplinary
scientific and engineering groups. The course relies on basic knowledge of numerical
methods and parallel programming obtained during Bachelor’s programs and concen‐
trates of parallelization and efficiency.

The course has a flexible modular structure. Each module is devoted to a key area
of numerical methods. Most lectures demonstrate a whole cycle from a mathematical
model to results of computational experiments in terms of accuracy and efficiency. Most
practical classes are devoted to solving computational problems in different areas. An
important feature is that many of practical classes are based on research done at the UNN
HPC Center and therefore illustrate issues, which students may encounter in their
research and future career. Assessment of student performance is mostly done based on
solving test computational problems. By means of an automated system, we control
accuracy of submitted solutions as well as performance and scaling efficiency.

Course materials are currently available in Russian on the website http://www.
hpcc.unn.ru/?doc=491. These materials have been used for several training programs
for teachers and researchers. Over 500 students have been trained since 2012. There is
an ongoing process of extending the materials and translating them to English; a prelimi‐
nary English version of materials for some modules is available at http://hpc-educa‐
tion.unn.ru/en/trainings/collection-of-courses. Another direction of future work is
creating a course for one of the widely used e-learning systems.
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Abstract. GPU based acceleration of computations with dense matrices
and blocks over large prime finite field are studied. Particular attention
is paid to the following algorithms:

– multiplication of rectangular N × K blocks with N � K;
– multiplication of N × K blocks by square K × K matrices;
– LU-decomposition of matrices.

Several approaches for optimal use of GPU resources are proposed.
Efficiency analysis of implemented algorithms is provided for prime

finite field with number of elements about 2512, 2768, 21024 and GPUs
of different computational performance and architecture generations.
Numerical experiments prove efficiency of proposed solutions.

From numerical results it follows that GPU usage allows to accelerate
block operations and to expand area of almost linear parallel scalability
of Lanczos method implementation by INM RAS. Moreover, a sparse
system of size about 2 millions, with 82 average nonzero elements per
row, over field with about 2512 elements, on 128 nodes of Lomonosov
supercomputer will be solved 2 times faster in case of GPUs used.

Keywords: GPGPU · RSA · Large prime finite field · Block Lanczos
method

1 Introduction

This research is the result of analysis made for implementation of the improved
block Lanczos method for the linear systems over large prime finite field (see, [6]).

Until recently, large data exchanges were considered as the main reason for
poor scalability of block Lanczos method implementations on powerful comput-
ing systems [3–5,7]. Moreover, in case of low speed communication network the
acceleration noticeably deviated from linear for the number of nodes about 100.

The basic idea of [6] was the efficient way of data storage. Thanks to this, the
data exchange is significantly reduced, and is perfectly scalable for block size K.
As a result, in the improved implementation the time for data exchange turned
out to be less than the time for operations with dense matrices and blocks, which
c© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 14–26, 2017.
https://doi.org/10.1007/978-3-319-71255-0_2
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does not depend on the block size K. As a matter of fact, the larger the block
size K the greater the difference.

Thus, it is the computations with dense matrices and blocks that determine
the limit of linear scalability for the improved implementation of block Lanczos
method. Namely, while the time for symmetrized sparse matrix by the block
multiplication significantly exceeds the time for operations with dense matrices
and blocks, the parallel properties of the method are almost perfect. In practice,
this is valid up to a few hundreds or a thousand nodes.

In order to spread the ideal scalability even further (for example, up to 213

nodes), we have to speed up the computation with blocks.
As modern computing nodes are multi-core systems, they are very advan-

tageous for operations with dense matrices and blocks. The use of multicore
accelerates these operations proportionally to the number of cores. However, the
number of cores per node is usually limited (typical values about 8 – 16). But for
really hard problems this is not enough. The systems with much larger number
of cores are needed. The most common example of such system are the graphic
accelerators (GPUs).

This paper explores the possibility of the using GPUs for computations with
dense matrices and blocks with elements from large prime fields. The examples
are considered for the fields with the number of elements of order 2512, 2768, and
21024.

The choice of algorithms for efficient implementation is constricted due to
restrictions on access to GPU resources and dependence of time on presence of
branches in the program. For these reasons, we prefer simple algorithms with a
regular structure. However, if possible we use the Winograd’s idea to reduce the
number of multiplications twice. This is important, since in large prime fields
the complexity of multiplying greatly exceeds the complexity of addition and
subtraction.

Our main purpose is to clarify the possibility of significant acceleration (more
than 10 times) of calculation dense matrix by block product.

The applicability of this research is not just limited to calculations in the
block Lanczos method. The same improvements can be useful for Thome type
algorithm implementations [1,2].

2 GPU Acceleration of Operations with Dense Matrices
and Blocks

2.1 Algorithms

The algorithms with simple structure are preferred for GPU accelerators since
the limited resource management, and dependence of algorithm running time on
the presence of branches in the program.

Let us assume that elements in the large prime field can be specified using
512, 768, or 1024 bits. Further we show that the field size (the number of elements
in the field) can significantly affect the implementation efficiency.

We are interested in two particular cases:
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1. implementation of block-by-block multiplication XTY for N×K blocks X,Y ;
2. implementation of block-by-matrix multiplication XU for N × K block X,

and K × K matrix U ;

We decided on “naive algorithm”, as well as on an algorithm by Winograd, which
reduces the number of multiplications twice.

In addition, we use Winograd idea for efficient LU decomposition, which is
used in block Lanczos method for K × K matrix inversion. However, the total
time for operations with K×K matrices is still significantly smaller than the time
for operations with N×K blocks [6,7]. So the improvement of LU decomposition
via Winograd method is considered only as a theoretical result.

The Winograd method is based on the elementary equality for the elements
of matrix C = AB. Assuming the number of columns and rows of A to be 2m,
we write

cij =
2m∑

k=1

aikbkj

=
m∑

k=1

(ai,2k−1 + b2k,j) (ai,2k + b2k−1,j)

−
m∑

k=1

ai,2k−1ai,2k −
m∑

k=1

b2k−1,jb2k,j . (1)

The last two sums have low complexity and can be pre-calculated in advance.
The main calculation corresponds to the sum (1). It is easy to see that the
number of multiplications in this sum is 2 times less than the one in “naive
algorithm”.

While Winograd method for matrix product multiplication is well known, the
similar technique for Gaussian elimination is not. Since a complete description
of an algorithm would be unnecessarily cumbersome, we only give its main idea.

Consider a strictly regular matrix A of order N in the block form

A =
[
A11 A12

A21 A22

]
, (2)

with 2 × 2 block A11. The first two steps of elimination can be written as

A → A −
[
A11

A21

]
A−1

11

[
A11 A12

]
=

[
0 0
0 A

(1)
22

]
, (3)

where the submatrix A
(1)
22 of A is used as a starting point for the next steps

of Gaussian eliminations. Thus calculation of A(1)
22 determines the complexity of

the whole algorithm.
Indeed, let us transform (3) by removing A−1

11 from it. For this, we represent
A11 using the strict regularity of A and O(1) multiplications as

A11 = L11U11, (4)
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with lower triangular 2 × 2 matrix L11 and upper-triangular 2 × 2 matrix U11.
Then

A → A −
[

L11

A21U
−1
11

] [
U11 L−1

11 A12

]
= A −

[
L11

Â21

] [
U11 Â12

]
, (5)

Note that O(N) multiplications are enough to find Â21 and Â12.

Now we will show that it is possiple to calculate A
(1)
22 = A22 − Â21Â12 with

just (N − 2)2 + O(N − 2) multiplications. In order to do this consider a matrix
product

C =
[
A1 A2

] [
B1

B2

]
, (6)

where A1, A2 are columns, and B1, B2 are rows of order N−2 (take into account
that the sizes of Â21 and Â12 are equal to (n−2)×2 and 2×(N−2), respectively).
Then using Winograd technique we can write

Ci
j = (ai1 + bj2) (ai2 + bj1) − ai1ai2 − bj1bj2 , (7)

where ai1, ai2, bj1, and bj2 are components of the vectors A1, A2, B1 and B2,
respectively. The statement about the number of multiplications for two steps
of Gaussian eliminations directly follows from (7), and the general result follows
from the induction on the matrix size.

2.2 Algoritm Mapping on GPU Architecture

“Naive Algorithm” for Matrix Multiplication. The organization of cal-
culations is similar to the one proposed in [9]. Consider multiplication of N ×M
matrix A and M × K matrix B with the elements in a large prime field.

Suppose that the memory size of GPU is sufficient to store the matrices A,
B and the resulting matrix C = AB. Let the matrix A be represented in the
following row-block form

A =

⎡

⎢⎢⎣

A1

A2

· · ·
A

M
t

⎤

⎥⎥⎦ , (8)

and B in column-block form

B =
[
B1 B2 · · · BK

t

]
, (9)

with parameter t denoting the block size (number of rows/columns).
Each executable block relates to calculation of Ci

j = AiBj . Since the subma-
trices Ci

j do not intersect, the operating results for different blocks are indepen-
dent. The total number of executable blocks in the algorithm is Nb = MK

t2 .
Now let’s turn to the threads inside the executable blocks. Each thread cal-

culates a product of a row of Ai by a column of Bj , which corresponds to one
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Fig. 1. Calculation in one executable block

Fig. 2. “Naive” matrix multiplication algorithm: data loading for one executable block.

element in the submatrix Ci
j . Thus, the number of threads is equal to t2 (Figs. 1

and 2).
As follows from the above, the number of executable blocks and the number of

threads in blocks depend on the value t, namely with increasing t the number of
blocks decreases, while the number of threads increases. We propose the following
heuristic principle to obtain the optimal value of t:

the more blocks, the better.

Without going into details, we note that a large number of blocks has the
following advantages:

1. More multiprocessors on GPU are filled (and more uniformly);
2. The scheduler can more effectively “hide” the time for data and instructions

swapping.

But this rule is applicable only for reasonable value of t, as there are sev-
eral GPU architecture limitations on number of threads per block and number
of blocks for multiprocessor [10]. Formally, the maximum number of blocks is
obtained with t = 1. But there are four objections to this choice.

First, the number of blocks is limited by the computational grid size of the
particular GPU. This restriction, however, is not too strong. For example, it can
be avoided by considering multiplication of smaller submatrices, such as parts
of the rows of A, and parts of the columns of B.

Second limitation is the linear dependence of the number of downloads from
global memory from t. Actually, due to high complexity of the calculations with
long numbers the loading time does not have a decisive influence.
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Third, maximal number of blocks per multiprocessor is limited, so with small
number of threads per block total number of threads per multiprocessors would
be less than maximal available (occupancy will be low). In this case multiproces-
sor would worse hide data and instruction fetch.

Fourth reason is provided by the condition that the number of threads in
the block must be a multiple of 32 (the number of threads in a warp). Choosing
t = 1, we use only one of the 32 threads that are allocated anyway. This is
absolutely ineffective. Therefore, we must chose t such that t2 is a multiple of
32 and the optimal t is t = 8 (the minimal t such that t2 is a multiple of 32).

Note, that with t = 8 occupancy of multiprocessor is not limited by maximal
number of blocks for the most modern GPU: each block uses 64 threads, maximal
number of blocks is equal to 32. So, in this case block number limitation allows
to use 2048 threads per multiprocessor and that is exactly limitation of thread
number per multiprocessor. For older architectures such t limits occupancy by
maximal number of blocks per multiprocessors, but for this architectures real
limiter for occupancy would be number of used registers.

Consider executable block algorithm.

Algorithm 1. Multiplication of N × 8 blocks. “Naive approach”

1. Two 1×8 vectors are loaded from the device’s memory in the shared memory
(could be considered as equivalent of shared L2 cache of multicore CPU) of
streaming multiprocessor (SM): one vector corresponds to the column of the
row-block, and another is the row of the column-block;

2. Each of the 64 threads loads two numbers (elements of a large prime field)
into the registers (Cache L1) of its stream processor (SP);

3. Each thread executes a product of its own numbers and sums it with the
current value of the result;

4. Montgomery conversion is performed once at the end of all calculations; the
necessary constants are loaded from the constant memory.

Despite the simplicity of the Algorithm 1, the very possibility of its execution
on a GPU is nontrivial. Let us consider the necessary resources for its execution.
Each thread is associated with:

1. 2W +1 32-bit registers for storing the result, where W is the number of 32-bit
words necessary for storing elements of a prime field. For example, for a field
with 512 bits per element, W = 16; for 768-bit field W = 24, and for 1024-bit
field W = 32.

2. 2W registers for storing the inputs (i.e. elements of the corresponding row
and column).
Note that without loss of performance, we can store only one of the input
numbers on registers, and load the second one word by word as needed. There-
fore, only W + 1 registers are needed to store the inputs.

Thus, even by the most primitive calculations 3W +2 registers per an executable
block are needed, that is:
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512-bit field: not less than 50 registers;
768-bit field: not less than 74 registers;
1024-bit field: not less than 98 registers.

These elementary estimates show that GPUs with 63 registers per thread have
a very limited applicability resource. The latter, of course, does not mean that
it is impossible to organize calculations on such GPUs. One can certainly get an
implementation for any large field by arranging calculations involving additional
work with memory. But the aim of our research is to obtain the maximum accel-
eration. Therefore, we are primarily interested in situations without unnecessary
obstacles to the most rapid implementation.

Remark 1. We are interested in two types of block operations for the block
Lanczos method: block-by-block multiplications in form XTY , and block-by-
matrix multiplications in form XU (with K × K matrix U , and N × K blocks
X and Y ). Note that in applications the parameter N, is usually very large, but
the block size K can be insignificant (for example, about 8). In this case, there
are certain difficulties in choosing t. This is especially characteristic for XTY
calculation. Indeed, by the above scheme, for t = 8 we get only one executable
block. And reducing t would result in inefficient use of threads.
We can partially solve the problem by considering X and Y in a form

X =

⎡

⎢⎢⎣

X1

X2

· · ·
Xl

⎤

⎥⎥⎦ , Y =

⎡

⎢⎢⎣

Y1

Y2

· · ·
Yl

⎤

⎥⎥⎦ , (10)

with the same number of rows in each block Xi, Yj . Since in this case

XTY =
l∑

j=1

XT
j Yj , (11)

one can consider computations of the form XT
j Yj as executable blocks.

However, this solution is not perfect. The results of calculations for individual
threads are not independent. In addition, it becomes necessary to synchronize the
calculations. Both factors negatively affect the efficiency of computing XTY . We
emphasize, that the problem arises only for small K and we are mostly interested
in situations with K large. In this case the problem is not so critical.

Finally, due to the large number of registers in use, the number of threads
on SM will be noticeably less than the maximum possible. For older architec-
tures only 20 registers could be used to achieve full occupancy, for new – about
30. However, since the number of downloads is smaller than the number of cal-
culations, only the instructions loading is worse compensated, which leads to
uncritical decrease in performance.

For 512 bit numbers achieved occupancy is good enough — performance
profiler show that instruction and data fetch are successfully hided and more
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than 90 percent of time is spent by arithmetic operations. Nevertheless, in case of
fields with more than 512 bits per element for more optimal use of GPU resources,
it is necessary to further consider the algorithms that use fewer registers, that
is, multiplying long numbers in several stages.

Matrix Multiplication with Winograd Approach. The organization of
matrix multiplication with Winograd approach is similar to the “naive algo-
rithm” (see Sect. 2.2) (Fig. 3).

Fig. 3. Matrix multiplication algorithm with Winograd approach: data loading for one
executable block

Analogously to the “naive algorithm” each executive block performs the cal-
culation of 8 × 8 submatrix Ci

j = AiBj , and each thread calculates one element
of Ci

j . The difference is that for Winograd approach a two columns of Ai and two
rows of Bj are loaded to L2 and L1 Cache. This is necessary for the following

elementary calculation = (ai,2k−1 + b2k,j) (ai,2k + b2k−1,j) . (12)

Below we describe the main ideas of the algorithm for GPU.

Algorithm 2. Multiplication of N × 8 blocks with Winograd approach

1. Two 2 × 8 blocks are loaded from the device’s memory in the shared memory
(could be considered as equivalent of shared L2 cache of multicore CPU) of
streaming multiprocessor (SM) : one block corresponds to the column of the
row-block, and another is the row of the column-block;

2. Each of the 64 threads loads 4 numbers (elements of a large prime field) into
the registers (Cache L1);

3. Each thread executes (12) for its own 4 numbers and sums it with the current
value of the result;

4. Montgomery conversion is performed once at the end of all calculations; the
necessary constants are loaded from the constant memory.

Let us consider the necessary resources for the Algorithm 2 execution. Each
executable thread is associated with:
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Fig. 4. Calculations in matrix multiplication algorithm with Winograd approach.

1. 2W + 1 32-bit registers for storing the result. Recall that W is the number
32-bit words required per element of the large field.

2. 4W registers for storing the inputs.
Analogously to the “naive algorithm”, only 2W + 2 registers are enough to
store the inputs without loss of performance. Moreover we can reduce the
number of input data registers to W +3 by a slight increase of the operations
number (not more than 3W extra additions for one multiplication of numbers)
(Fig. 4).

However, the most estimate gives 4W + 2 registers per an executable block,
that is:

512-bit field: not less than 67 registers;
768-bit field: not less than 99 registers;
1024-bit field: not less than 131 registers.

Note that Winograd algorithm requires a larger number of registers, so the need
of economical algorithms for it is more critical.

2.3 Important Realization Details

An important feature of GPU is the instruction madc in the pseudo-assembler
(CUDA PTX). This instruction multiplies two numbers with obtaining the first
or the last word of the result, and adding it to the third number, taking into
account the carry flag. Also it can change the carry flag in case of overflow. This
makes it easy to implement the arithmetic with numbers from large prime finite
fields [8].

Note that for architectures of the second and third generations, the instruc-
tion for 32-bit numbers is translated into assembler instruction which is slower
than 32-bit instructions with floating-point numbers (2 – 3 times for the sec-
ond generation, and 6 times for the third one). For the newer architectures, it is
translated into a set of 16-bit instructions that are executed with the same speed
as 32-bit floating-point instructions. Thus, in general, the instruction is executed
4 times slower than the instructions with a floating point numbers. And the peak
performance of calculations with long numbers is 2 – 6 times lower than the one
for floating-point numbers.

However, the performance of CPUs for this task is also far from peak:
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– due to the lack of integer instruction for simultaneous multiplication and
addition;

– due to the lack of a vector instructions for addition with a carry flag, and for
multiplication with obtaining the major word.

As a result, for modern CPUs performance for long arithmetic is 8 - 32 times
below the peak performance for 32-bit floating point numbers. Thus, theoreti-
cally, in case of such tasks GPU should be so many times faster than CPU, as
GPU single-precision peak performance is higher than CPU one. Thus, theoret-
ically, in case of such tasks the gain of GPU performance to CPU performance
coincides to the proportion of the peak performances for single-precision tasks.

An important task for the GPU programming is to get rid of branches. Since
all threads within a group (warp) must perform the same instruction, branching
(with threads executing different branches) is converted to a sequential code,
where each thread executes all branches. This leads to more registers and slower
execution.

For matrix multiplication over a large prime field, such branching occur only
at the stage of reduction, and can significantly affect the performance only for
small block sizes. These branching compare two long numbers, and subtract if
the first one is greater. However, it is easy enough to get rid of it. To do this, we
subtract the second number from the first one, and then add the second number
multiplied by the carry flag occurred in the subtraction.

2.4 Numerical Experiments

We compare results for CPUs and GPUs of different generations on the following
problems: 221 ×K block by K ×K matrix multiplication (with K = 8, 16), and
multiplication of square matrices of order 1024.

We use implementations of Winograd approach and Strassen method for CPU
(Strassen only for square matrix multiplication), and “naive” implementation
and Winograd method for GPU.

The experiments were performed on the following devices (note, that due to
frequency boost technologies peak performance of the newest hardware is given
approximately):

– 4-core CPU Intel Core i5-4440, 3.1 GHz, power consumption 84W.
It is CPU of 4th generation of Intel Core microarchitecture. From that gen-
eration (and till the latest available at the moment) CPU core could execute
per clock 2 fused multiply-add vector instruction with 256-bit vector.
For single precision floats each such instruction performs 16 floating point
operation (8 multiplications and 8 additions). Thus, single core executes up to
32 floating point operations per clock, 4 cores — 128 flop per clock.
As considered CPU has 4 cores and its clock frequency is 3.1 GHz, its theo-
retical single precision peak performance is 396.8 Gflops.

– Nvidia Tesla C2070, power consumption 250W, compute capability 2.0, peak
single precision performance — 1.03Tflops.
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– Nvidia Tesla K40, power consumption 235W, compute capability 3.5, peak
single precision performance — 4.2Tflops.

– Nvidia GeForce GTX 1050, power consumption 75W, compute capability 6.1,
peak single precision performance — 2 Tflops.

Results of multithread experiments on CPU are presented in Table 1.
The results of operations on GPU are given in Table 2 (221 ×8 block by 8×8

matrix multiplication), in Table 3 (221 × 16 block by 16 × 16 matrix), and in
Table 4 (for matrices of order 1024).

The considered large prime fields required 512 bits, 768 bits, and 1024 bits
per element.

Table 1. Time for matrix multiplications on CPU (sec.)

Matrix size 221 × 8 221 × 16 1024 × 1024 1024 × 1024, Strassen

512 bits 3.98 13.41 20.92 12.62

768 bits 7.24 24.28 39.53 23.57

1024 bits 12.6 54.97 69 40.9

Table 2. Time for 221 × 8 block by 8 × 8 matrix multiplications on GPU (sec.)

GPU C2070 K40 GTX1050

Naive algorithm, 512 bits 0.35 0.28 0.41

Winograd approach, 512 bits 0.26 0.19 0.28

Naive algorithm, 768 bits 0.85 0.58 1.15

Winograd approach, 768 bits 0.8 0.63 1

Naive algorithm, 1024 bits 2.04 1.06 2.83

Winograd approach, 1024 bits 1.53 1.07 2.12

Table 3. Time for 221 × 16 block by 16 × 16 matrix multiplications on GPU (sec.)

GPU C2070 K40 GTX1050

Naive algorithm, 512 bits 1.31 0.89 1.56

Winograd approach, 512 bits 0.89 0.6 0.95

Naive algorithm, 768 bits 3.1 2 3.88

Winograd approach, 768 bits 2.86 2.07 3.5

Naive algorithm, 1024 bits 7.59 3.91 10.82

Winograd approach, 1024 bits 5.47 3.57 6.8
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Table 4. Time for 1024 × 1024 matrix multiplications on GPU (sec.)

GPU C2070 K40 GTX1050

Naive algorithm, 512 bits 2.38 1.57 2.53

Winograd approach, 512 bits 1.48 0.91 1.42

Naive algorithm, 768 bits 5.75 3.67 6.49

Winograd approach, 768 bits 5.38 3.31 5.52

Naive algorithm, 1024 bits 13.55 7.16 18.11

Winograd approach, 1024 bits 9.37 5.77 9.74

It is noticeable that, due to the use of a larger number of registers, the
Winograd approach usually accelerates the computation much less than twice,
especially in case of 768 bit numbers. In addition, the advantage of the GPU
over the CPU becomes smaller with increasing the field sizes. This proves the
necessity of algorithms for long numbers that require smaller number of registers
(with multiplying via several stages).

Nevertheless, all the GPUs significantly outperform CPUs for this problem
both in terms of computing speed and performance per watt of power. Note that
the algorithm used on CPU is quite efficient, and although the CPU is not the
most modern, but has almost the same performance on this task as the most
modern Intel CPUs (especially at the same clock frequency).

Now consider the results on the Tesla C2070 adapter for 512 bit numbers.
This accelerator is similar to the Tesla X2070, which is used on “Lomonosov”.
Matrix multiplication with Winograd method is 15 times faster than on CPU.
Note, than CPU used in our experiments is even slightly faster on such task
than 2 Intel Xeon X5570 4-core CPUs (which “Lomonosov” node contains). It
has a slightly higher clock frequency and the execution of 64-bit instructions
ADC and MUL (which dominate in the algorithms) requires 2 and 3 times less
cycles, respectively.

Thus, the matrix multiplication on GPU of supercomputer “Lomonosov” will
be no less than 15 times faster than the one on its CPU. This means that in case
of the same time spent on the above operations, the block size in the algorithm
can be increased in 15 times, and the time spent for data exchanges will be
reduced approximately in 15 times too.

For a linear system of order about 2 million, with 82 nonzero elements, over
a large simple field of size 512 bits, on 128 nodes of “Lomonosov”, the time for
data exchanges was about 55%. Thus, the implementation of matrix operations
on the GPU reduce calculation time in approximately 2 times.

3 Conclusion

The possibility of using GPU for a significant acceleration of computations with
dense matrices and blocks with elements from the large prime fields is experimen-
tally substantiated. The implementation of “naive algorithm” and the algorithm
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using the Winograd approach for multiplication number reduction are described.
Numerical simulations were made for various graphics accelerators architecture
and performance. It is shown that for the prime fields with more than 2512

elements, in order to obtain the greatest possible acceleration, the multi-stage
algorithm should be implemented for the multiplications of long numbers.
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Abstract. This study proposes architectural solutions and operations for the
rapid implementation of distributed associative operations in supercomputers.
The operations are carried out by means of interactions between supercomputer
devices using wireless optical links. Some operations result in improved distrib‐
uted versions of the local operations of associative memory devices and associa‐
tive processors. The operations for distributed fast digital calculations are also
included. The operations for analog-digital counting are proposed for quick
counting the number of records in distributed big data. The structure of the
connections between devices can be completely changed in comparable time to
the execution time of the processor command.

Keywords: Wireless optical network · Retroreflector · Dynamical
reconfiguration · Distributed synchronization · Barrier synchronization ·
Distributed computing · Fault tolerance

1 Introduction

The distributed associative operations (DAO) refer to the operations of distributed search
and data processing while analyzing data from many records included in supercomputer
devices (objects). The associative operations (AO) are similar in function to DAO but
act with the records located within the same device. The associative (or Content
Addressable) memory devices (AM) and the associative parallel processors (APP) were
created to quickly perform AO operations.

The AM device performs a parallel search in the base of records, which have keys
equal to those in AO. The search also retrieves the records of keys-number values in a
given interval, with a maximum value and so on. The AM counts the number of records
found and resolves conflicts when multiple records meet the search criteria. The APP
simultaneously separates the array of records into clusters, performs a limited set of
logical and arithmetic operations.

The history of the use of associative operations in computers has many stages. A
large number of studies on AM and APP were done in the 1960s of the last century.

By the early 1970s, these studies had led to the creation of several large computers,
focused on the implementation of associative operations. Reviews of these areas of work
are contained in several books [1–3]. However, ever-increasing demands on the
processing of large amounts of data led to the fact that AO, as a rule, is now carried out
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by programming. The programmed associative operations are more powerful than the
operations in AM or APP but are much slower. Such operations are used in many algo‐
rithms, such as when using associative rules [4, 5].

The hardware implementation of the DAO in the supercomputers (SC) could accel‐
erate the implementation of these algorithms, but this requires the active cooperation of
distributed objects, the exchange of short messages, and distributed quick computations.
Standard communications between SC devices are not effective at such actions, since
they were designed for long message exchanges and do not support calculations directly
in communication media. In the article, this disadvantage is eliminated, and objects
quickly perform distributed associative operations.

There are opportunities for new types of relations between the SC objects used, as
considered by the author at the conference “Supercomputer Days in Russia in 2016” [6, 7]
and in [8]. These opportunities allow each facility to operate as a standalone device that
performs the AO on its local data, but the DAO and distributed computations are carried out
by means of communications between the objects.

2 Structure of the SC That Supports Distributed Associative
Operations

The structure of the optical connections between the objects [6–8] will be used to
perform the DAO with additions that the DAO require (Fig. 1).

  Communication modules (MS) 

         System informant (SI) 
                           Objects (O) 

Fig. 1. The structure of the SC connections

The structure contains two sets of nodes - the objects (O) and the communication
modules (MSs). The wireless signals are transmitted between the communication
modules and the objects. One MS—the systems informant (SI)—has special properties.

Any object can send signals of three types—f1, f2, f3—to a selected MS or simulta‐
neously to groups of MSs (including MSs not associated with objects). The signals f1
and f3 have arbitrary lengths. The objects transmit the messages by means of the f2 signal.
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As the MS receives signals from f2 objects, it simultaneously modulates all entering into
MS f1 signals without delaying the f2 signals. This results in the f1 signals informing the
objects about the f2 signals coming into the MS. The f3 signals prohibit the MS to return
the f1 signals to the objects. If the object is associated with the MS for receiving signals,
it sends the f1 signal continuously to the MS (solid line in Fig. 1). The receiver and its
MS is the single device consisting of two spaced components.

The source sends f2 signals into the MS modules of the receivers. The MS module
receives f2 signals from the source (dashed line), modulates them with continuous f1
signals coming from all sources (dash-dot line), and returns them to the receiver and to
all sources of f1 signals.

The object receiver acts like the source transmitting f2 signals for the sources of the
f1 signals. However, it only sends the signals to its MS, which the other sources watch.

Technically, all operations of the objects in interaction in the system are carried out
by the network controller part of the object. The module (SI) is different from the MS:
in obtaining f2 signal, the module creates the non-directional fsi signal, which is specific
only for SI, and sends it for all network objects.

Section 4 of the article requires the next addition in the SI. The photodetector (SI)
will summarize the energy of the f2 signal from the objects (The VCSEL sources of the
objects may have 30 ppm/oC stability [9]). Its analog output is connected to an analog-
digital converter (ADC) that digitizes the analog signal from the photodetector and
returns it to all objects.

The following characteristics of network resources are used below [6–8]:

1. The fast synchronization of the objects—message sources are obtained. If the group
of sources receives the synchronization start signal from the receiver, they send the
signals or messages to the receiver so that they arrive at the MS receiver simultane‐
ously or sequentially, without pause time between sending sources.

This principle of fast synchronization is as follows: Let the source Oi know the
delivery times of the signal Tij to an arbitrary communication modulus MSj.

For synchronization, the object Oi sends a signal to the MSj with a delay of ∗T
i
.

Relative to the time of arrival from the MSj, the clock signal ∗T
i
 = Tmax – Tij, where

Tmax ≥ max Tij. Then, the signals of all objects acting in the same way will go to MSj
simultaneously, with the same delay of Tmax.

If the objects transmit messages at the same time, the same-named bits of the
messages will be combined and represented as a single message.

2. If there are conflicts in the message access to the MS, they will be quickly detected
and eliminated by conflict resolution algorithms using rapid synchronization. There
are several ways to resolve the conflict, one of which is discussed in Sect. 3.1 below.

3. There is the quick barrier synchronization operation. The barrier synchronization is
widely used in computers. Its main purpose is to allow interacting computers (or
programs) to determine the total time of completion of the task with minimum
latency in order to ensure that the results obtained are correct. Usually, this is a
lengthy operation, but a quick way is given in [6–8].
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Let us consider its variant. Let all the sources of the interacting group complete the
work and then transmit the messages—the results of their work to the receivers waiting
for the message. The sources need different amounts of time to complete the work. After
the completion of work by all sources, they must transmit messages to the receivers as
a single message without time delays between the individual messages.

To synchronize in a group of sources, one member of the group is allocated. Its
module MS

∗ is known to all sources and receivers that monitor MS
∗ by sending it a f1

signal. (A free module that is not associated with the object can be taken as MS
∗.)

When preparing the message, the sources transmit a continuous f3 signal to the
MS

∗, which prohibits the return of the f1 signals. Having prepared the message, the source
removes the prohibiting signal. After all sources are ready, the MS

∗ will start to return
the f1 signal, which will be a clock signal for the objects. After receiving the signal, the
objects will transmit messages synchronously (using fast synchronization) to the MS

∗,
and all receivers will receive it as a single message.

4. Simultaneous arrival of the messages from the objects in MS allow bitwise logical
addition and multiplication, as well as finding the max and min values in times that
do not depend on the number of participants in the operation. The object connections
in the chain allow the logical operations and the arithmetic operations of addition,
subtraction and multiplication without delay the calculations [6–8].

It is useful to consider the organization of the associative memory for comparison
with the organization of the system in Fig. 1. Let us turn to Fig. 2. The associative
memory contains the memory of the cells with the records (1), with the separate logical
unit connected to each of its cells. The aggregate of these units is the distributed control
unit (2) cells. The units from (2) store the result of the search task impacted on each cell
in (1). On (1) and (2), a search query (3) is received from the computer containing the
AM, and each unit from (2) stores the result of the request for this record, allocating the
record corresponding to the request. Next, the unit state is used to perform associative
operations (Sect. 1). The AM has the central control unit (4), which interacts with the
computer by exchanging control signals (5). It also receives search results (6) outputted
from (1) and (2) to the computer and acts on (1) and (2) together with the signals (3).

 1     3 
     2

4     5 

 6     

Fig. 2. The structure of the associative device
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Thus, the AM is an orderly structure of simple devices, where many records are
analyzed simultaneously. The structure of the APP is close to the structure of the AM,
but since the APP performs more complex operations, its control unit (2) is more
complicated. In the early version of the APP [10], the array of records is simultaneously
divided into clusters directly in the associative memory of APP.

The flexibility of the structure of AM, APP and the structure in Fig. 1 are significantly
different. In AM and APP the structure is fixed—all units of devices and their connec‐
tions are unchanged. The structure in Fig. 1 changes cardinally during the execution of
the processor command. In this case, the functions of the devices also change—the
search initiator becomes its executor, a group of interacting initiators of the search is
quickly created, and so on. As will be shown below, distributed associative devices that
perform DAO obtain results with significantly expanded capabilities compared to those
available in AM and APP.

3 Distributed Associative Units and Their Actions

In the article, the distributed associative unit (DAU) is a collection of objects using
wireless optical communications and performs both the AO, like the devices AM and
APP, and a number of additional operations, which may be implemented only in the
structure of Sect. 2.

3.1 The Simple Search in DAU

Let the objects be combined in accordance with Fig. 1 and have the records, among
which the operation DAO is making the distributed associative search. This search
depends on a particular implementation of the object. It runs in the AM of the object, in
its operative storage device, or directly in the small AM in the network controller of the
object.

One of the objects Oi is the search initiator and sends the SI a command of the simple
search for implementation in the DAU devices. This command contains the search key
(Q). In the simple search the value of the key should have an exact match in the records.
Objects get this information, conduct a local search in their memory devices (or in the
AM), and prepare a response for their initiators.

An answer or multiple answers are placed in the network controller of the object for
use outside the object. Depending on the tasks involved in the operation, the object sends
the reply message to the SI or into the module MS of the initiator.

A conflict will occur in the transfer if the objects are transmitting messages simul‐
taneously, and it must be resolved. We offer the method of using the binary scale to
resolve this conflict, which is slightly modified compared to [6–8]. The object does not
have information about the conflict, and it sends their messages in SI, starting with its
name (address). If there is a conflict, the address will be distorted, and the object receives
the distorted message from the SI.

The object perceives such distortion as a synchrosignal for synchronous transmission
of these messages. The physical addresses in these messages, assigned to N objects, are
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divided into n groups with m objects in the group. Each object knows its affiliation to
the group and its serial number between the m objects of the group.

We introduce the scale of A—the binary string of n positions, each of which is one
of n groups. We will be writing the value one into the position of the string that corre‐
sponds to the value of the digit if the object has the answer for DAO.

The objects synchronously send their messages—the scales A into the module SI
with superposition of the bits in these scales A. The combined scale A is returned from
SI to the objects.

Only the objects, which record the digit one in the scale, send the new scale B
consisting of m bits, where each bit is allocated to one of the objects of the group. This
is similar to scale A. The scale B comes to SI, and the combined scale returns to the
objects.

The objects, which record the digit one in the scale B, create the new scale C. The
scale C has slots where the objects point to the number of ready answers. After returning
the scale to the objects, they consistently convey their messages without pauses. For
small N, the types of scales can be reduced and may even have only one scale C. The
conflict is resolved.

For many years, the AM used the paraphase presentation of binary digits with the
active zero signal [6–8] for searching. Each bit is encoded by a pair of binary digits: 10
for 1, 01 for 0 and 00 for the mask M. The mask in Q coincides with any value of the
corresponding bit in the records.

The arrival on the object of several responses with the paraphase pair of the bits 11
(U) indicates the difference in the responses. The paraphase encoding is also used in the
DAO for speeding up the distributed logical and arithmetic operations [6–8].

3.2 The DAO That Have Keys with Numeric Values

Consider a search of records that have keys with numerical values in the DAU. This
search includes searching in the records that have keys with maximum (minimum)
values, in the records that have keys with values closest to the question, and in the records
that have a key with a value in the given interval.

The p-ary positional system is used with digits that represent the strings of the bits
[6, 11]. We will include digit one in the position of the string, corresponding to the value
of the digit. For example, the number 36, with p equal to 10, is 000000100_000100000;
for the paraphase bit encoding, it is 010101010101100101_010101100101010101.

The unary representation of the digits greatly speeds up the work when the DAO is
executed directly on the network, such as when calculating the maximum or minimum
value of the number of numbers sent to the network by objects. We will use the result
from [6–8].

To determine the maximum or minimum, a group of the objects (performers of the
DAO) synchronously sends the messages to the MS module of the initiator of the
DAO, and the bits in the same position of the record of the digit are combined together.
At first, each source-participant of the DAO sends a message with the high-order digit
of the compared numbers to the MS module. The MS module returns the messages
received as a result of superimposing the bits of the messages from the sources, and if
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the source sending the digit to the module detects the presence of a larger number, then
it stops attempting to transmit its number. This operation continues for all other digits
of the compared numbers. As a result, the maximum value of the numbers sent by the
objects will be detected simultaneously for all sources. By inverting the representations
of the signals one and zero, the minimum value will be found in a similar way.

The result of the operation is created by the MS module without involvement from
the object computing facilities, and the execution time of the operation does not depend
on the number of the objects participating in the operation. The result is sent in parallel
to all objects. Similarly, the value closest to the specified value is found.

Now let us go to the search for the numbers in a given interval. The source sets the
search interval and directs it to the distributed objects. It is assumed that the object or
its network controller has an AM device, and it is required to select the search request
form that is directly perceived by the AM without the use of the processor. We use a
slightly modified solution from [11, 12].

For example, let us say that it is a requirement to find the records with values of the
parameter U in the interval 137 ≤ U ≤ 628 in the AM of objects with the searching rule
“bitwise AND ≠ 0”. We perform the searches with the specification of the intervals U:
13 (y ≥ 7); 1 (y ≥ 4) z; (2 ≤ y ≤ 5)zz; 62 (y ≤ 8); 6 (y ≤ 1) z, where y is the value of the
digit and z is any value of the digit. For example, the record 2 ≤ y ≤ 5 in the paraphase
code has the form 000000001010101000. Digits 2–5 are selected. The searching rule
“bitwise AND = 0” selects digit “0”.

It is easy to check that these searches select all records with values in the specified
interval.

Let the digit “0” is represented by an additional position containing «1», then, for
example, the searching “bitwise AND ≠ 0” with the form 00000010101010101010
selects digits 0÷6 simultaneously.

Now let the DAO source require delivery of the numbers from the objects in order
to carry out the next steps of the DAO on their basis. Objects simultaneously send the
p-bit strings of the code of the highest digits (or the intervals of digits, given by the chain
“1”) of numbers corresponding to the requirements of the request to the DAO source.
The source decides which bits in the string are stored to refine the search, sends the next
refined query, etc. The additional controls for the search steps appear if analog-to-digital
computation is used (Sect. 4): for each bit one in the string of the digit, the number of
records that generate this bit is calculated.

3.3 Distributed Associative Parallel Processor (DAPP)

Let us consider the implementation of two DAO operations in the DAPP, close to the
operations in the APP. It is the separation of the set of records into clusters and the
ordering of records in clusters. The difference from the APP arises from the distribution
of the records between the objects.

– Selecting the clusters of objects and records. Let one of the above DAOs be
performed in the DAPP, and the objects put the records—the results of the local
search—in the AM or in the registers of the network controllers. Let there be
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additional bits in the records of the analyzed array, and the DAO specifies the addi‐
tional bit and requires all objects with the correct answer to write the value equal to
one into this bit for all the records found. Thus, a cluster of records distributed among
objects will be allocated, and it can be accessed by its name.

– Sorting the records in the clusters. The required order of the objects and the records
in them will be created by repeating the scheme for eliminating conflicts with the
scales A, B, and C.

The DAO states the keys for selecting a group of objects which contain the allocated
record clusters. The group objects attempt to send messages to the initiator of the search,
and a conflict arises. It is eliminated using the scales A, B and C, after which the objects
transmit special messages containing their physical addresses. The distributed cluster is
ordered by these addresses, and the source of the DAO can change this order.

Then, the DAO conducts an analysis of the data, already taking into account the order
of the location of records in the objects. Communication facilities allow the distributed
parts of the array of records to quickly form and be ordered into a single array, ensuring
interaction with it as a single entity. Such actions are easily supplemented by distributed
computations with distributed records, which are performed directly on the network in
accordance with [6–8].

This ordering of the records stored in different objects speeds up the analysis of
logical, spatial and temporal relationships between the records. The same task was
typical for the APP.

For example, one of the first developments of the APP was intended for grammatical
analysis of texts in the information-logical computer [13] with a variable structure.
Specialized devices were developed for this computer—the AM and APP used in this
article [10–12].

4 Distributed Analog-Digital Operations

4.1 Distributed Analog-Digital Counting and Summation

Many tasks require counting the number of objects and records corresponding to the
condition specified in the DAO. Such counts are often iterative. At the beginning of the
process, it is enough to have inaccurate but quickly obtained results, and only at the last
steps may an exact calculation be required.

If an exact solution is required, ordering records in sub-sets is used (Sect. 3.3). After
the completion of work with the scales A, B and C, the total number of messages sent
by the objects is determined, and the quantities of records found by the object are
summarized in each message.

The operation of distributed summation from [6–8], in which the objects are
connected in a chain, is also applicable. If the records in the object satisfy the condition
in the DAO, then the object adds their number to the number in the message passing
through the chain of objects. The operation is performed without delaying the message
to perform the summation.
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For a quick approximate calculation, the analog-to-digital method of interaction via
SI (or MS) is proposed below, for which it was required in Sect. 2 to modify SI in
comparison with [6–8]. The objects perform the following steps for the approximate
count.

Step 1
The initiator of the DAO chooses the objects for the counting and conditions of the
counting. As objects are programmable, complex conditions are admissible to require a
sequence of searches within the object and interaction with other objects within the same
DAO.

The time of execution of such operations is unknown, so in general, the operation
should be performed in barrier synchronization mode. For its conduct, the initiator of
the DAO sends the participants of the operation the name of the communication module
MSbr and the indicator of the moment when the DAO be completed.

Step 2
Each DAO executor sends the command in the MSbr that prohibits the MSbr from returning
the f1 signals to the objects that sent them in MSbr. After that, the object conducts the anal‐
ysis of records specified by the initiator, and after completing it, removes the prohibition of
MSbr from returning f1 signals. All DAO performers watch the MSbr, and returning the f1
signal to them from MSbr is the start of the count in step 3.

Step 3

– The general provisions for step 3. The source of the DAO sends information about
the search condition and the keys K in the records to the objects. Each object
containing the required records must send to the source of the DAO a message
consisting of a string of references. Each reference corresponds to one of the keys K.

The reference contains the number Nb, which fixes the number of records found by
the object with such a key. The number of digits in Nb is given by the source. Each digit
is represented by a scale S - a string of binary digits in an amount equal to p – which is
the base of the chosen number system (Sect. 3.2). The reference has a binary digit Ro,
where the object puts “one”, if it finds the corresponding key K in the records.

– The object’s actions in step 3. Each object sends a message to SI. In the references
of the messages, the object sends the f2 signals to Ro and to the strings S into the bits
represented the digits of the numbers.

The strings are transmitted synchronously, and their same name bits must coincide
in time when they enter the SI. As a result, the SI photodetector will receive a signal
from each bit of the string with the total energy sent by all objects.

The signal will be digitized, and the result is sent simultaneously to the initiator of
the search and to all objects. Having received digital values, objects determine the total
number of records found and the number of objects that have them. The computation is
completed.

If the source only needs the number of objects that meet the request, then the
messages are limited to the Ro bit. The counting time does not depend on the number of
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objects participating in the DAO, and consists of a double time interval that includes the
time required for the signal to pass between the SI and the object most distant from it
and the time required to convert the analog signal to a digit.

Another solution is possible. The DAO selects certain modules of MS
∗, to which the

objects will send signals now instead of to SI. The module does not create a digital
message as SI does, but reduces the transparency of the light filter for the f1 signal in
proportion to the energy of all incoming f2 signals. Each object has a photodetector and
an analog-to-digital converter. The object forms the digital value as it does SI.

To reduce the number of O∗ objects that perform analog-to-digital conversion, we
will create a small number of such objects, and we will provide the object O∗ in dynamics
to different initiators of the DAO.

After performing the analog-to-digital conversion, the O∗ object will send the result
to MS

∗, and the result will receive the DAO initiator and other objects that watch MS
∗.

If the range of energy levels of the total signal arriving at the photodetector SI and
O

∗ exceeds the linear region the photodetector, two methods may be applied to reduce
the energy of the signals arriving at the photodetector.

The first method: the ADC reduces the throughput of the light filter-modulator
receiving the f2 signals and supplements the message sent to the objects with information
about the small precision of the sample.

The second method is the logical method: the request initiator selects groups of
objects that must simultaneously send signals to SI and O∗. To do this, the initiator details
the request in the DAO, reducing the number of the sources of the messages, and/or
indicates the area of physical addresses of objects that are allowed to send messages.

If different groups of objects are allocated different O∗ values, then this reduces the
total energy of the signals arriving at O∗.

Additional information is provided using paraphase binary signals. Let us give an
example. The group of records, in which the search is performed, usually, has an
unknown size. However, to assess the significance of the data found, their share in the
total search volume must be known. The paraphase code in the position Ro will be
applied. The number of analyzed records may be determined by a count of active signals
one and zero in the Ro.

The counting in large numbers of records is required by many applied algorithms,
for example, algorithms that work with associative rules [4, 5], and algorithms using a
naive Bayesian classifier [14]. The counting operations of keys in various combinations
in large sets of records take considerable time in such algorithms.

Our solutions turn the distributed operations of counting records into the summation
of the energy of signals within a single message, which is created simultaneously by all
objects.

It should be noted that an operation analogous to the summation of the number of
records allows the summation of any numbers to be simultaneously transmitted by
objects to the communication module. In MS, the energy of the signals in the scales
representing the digits is summed. From these sums, the objects get the sum of numbers.

Such summation is also performed during the simultaneous sending of messages by
objects.
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4.2 Associative Operations as a Means of Managing SC Objects

The DAO is a quick tool for monitoring the state of SC objects, but it is also useful for
managing their behavior. Let us turn to Fig. 3.

IS Idao

O2

* 

G6

G5

G4
G3

G1

G2

O1

* 

Fig. 3. Managing the state of objects

Let the object Idao, initiator of the DAO, send a group program (a sequence of the
DAO commands) via the SI module that collects information about the state of objects.
The analog-digital calculations and barrier synchronization is used.

Let Idao initially receive a number that exceeds the resolution of its analog-to-digital
converter. Upon discovering this, Idao refines the requests (Sect. 4.1) by dividing the set
of responding objects into groups G1, G2 …, G6. The groups G1, G2 and G3 are assigned
an object O∗

1 to convert the analog-digit, and the object O∗

2 is assigned to groups G4, G5

and G6. The objects O∗

1 and O∗

2 forward the answers to the Idao after they receive it.
Now Idao can proceed to the management of the objects, sending the new DAO to the

group Gi via the SI to all objects.
In Fig. 3, the object Idao is somehow allocated in advance. However, unlike AM and

APP, the objects participating in the DAO are active and each takes into account its state
and the state of the objects it observes. They can each receive the rights of the initiator
of the DAO. Therefore, within the framework of Fig. 3, there is a place for a common
control center of the system, but there is an additional control capability. Any object is
allowed to promptly intervene in the behavior of the system, leaving slow work for the
center to manage access to the shared resources.

5 Conclusions

The considered organization of the DAO with the use of wireless optical connections
makes it possible to obtain the following main results.

1. This study proposes the extension of local operations of associative memory and
associative processors up to the distributed associative operations that operate
between the groups of interacting SC objects.
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2. Data exchange with distributed computations requires the same amount of time as
data exchange without computation.

3. Analog-to-digital approximate calculations are developed that accelerate the distrib‐
uted summation of numbers, each of which is located in a separate device of the
SC. The time of the summation does not depend on the number of participants in the
addition operation and is performed during the time of simultaneous message trans‐
mission by devices with overlapping messages in time (Sect. 4). The options to
increase the accuracy of calculations are shown. Such a calculation method greatly
speeds up the analysis of large data sets.

4. Proposed DAOs do not require sophisticated technical aids in addition to the tech‐
nical aids proposed in [6–8].

5. The structure of the device connections and their functions are quickly changed by
sending a broadcast message to the SC devices.

New SC functions are obtained through the use of optical wireless connections, using
retroreflectors.
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Abstract. The paper is devoted to a scalability study of the NSLP
algorithm for solving non-stationary high-dimension linear programming
problem on the cluster computing systems. The analysis is based on the
BSF model of parallel computations. The BSF model is a new parallel
computation model designed on the basis of BSP and SPMD models. The
brief descriptions of the NSLP algorithm and the BSF model are given.
The NSLP algorithm implementation in the form of a BSF program is
considered. On the basis of the BSF cost metric, the upper bound of the
NSLP algorithm scalability is derived and its parallel efficiency is esti-
mated. NSLP algorithm implementation using BSF skeleton is described.
A comparison of scalability estimations obtained analytically and exper-
imentally is provided.

Keywords: Non-stationary linear programming problem · Large-scale
linear programming · NSLP algorithm · BSF parallel computation
model · Cost metric · Scalability bound · Parallel efficiency estimation

1 Introduction

The Big Data phenomenon has spawned the large-scale linear programming (LP)
problems [1]. Such problems arise in the following areas: scheduling, logistics,
advertising, retail, e-commerce [2], quantum physics [3], asset-liability manage-
ment [4], algorithmic trading [5–8] and others. The similar LP problems include
up to tens of millions of constraints and up to hundreds of millions of decision
variables. In many cases, especially in mathematical economy, these LP prob-
lems are nonstationary (dynamic). It means that input data (matrix A, vectors
b and c) is evolving with time, and the period of data change is within the range
of hundredths of a second.
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Until now, one of the most popular methods solving LP problems is the class
of algorithms proposed and designed by Dantzig on the base of the simplex
method [9]. The simplex method has proved to be effective in solving a large
class of LP problems. However, in certain cases the simplex method has to move
across all the vertices of the polytope, which corresponds to an exponential time
complexity [10]. Karmarkar in [11] proposed a method for linear programming
called “Interior point method” which runs in polynomial time and is also very
efficient in practice.

The simplex method and the method of interior points remain today the main
methods for solving the LP problem. However, these methods may prove ineffec-
tive in the case of large scale LP problems with rapidly evolving input data. To
overcome the problem of non-stationarity of input data, the authors proposed
in [12] the scalable algorithm NSLP (Non-Stationary Linear Programming) for
solving large-scale non-stationary LP problems on cluster computing systems. It
includes two phases: Quest and Targeting. The Quest phase calculates a solution
of the system of inequalities defining the constraint system of the linear program-
ming problem under condition of the dynamic changes of input data. The point
of pseudo-projection on n-polytope M is taken as a solution. Polytope M is the
set of feasible solutions of the LP problem. The pseudo-projection is an exten-
sion of the projection, which uses Fejer (relaxation) iterative process [13–16]. A
distinctive feature of the Fejer process is its “self-guided” capability: the Fejer
process automatically corrects its motion path according to the polytope posi-
tion changes during the calculation of the pseudo-projection. The Quest phase
was investigated in [12], where the convergence theorem was proved for the case
when the polytope is translated with a fixed vector in the each unit of time. In the
paper [17], the authors demonstrated that Intel Xeon Phi multi-core processors
can be efficiently used for calculating the pseudo-projections.

The Targeting phase forms a special system of points having the shape of
the n-dimensional axisymmetric cross. The cross moves in the n-dimensional
space in such a way that the solution of the LP problem permanently was in
the ε-vicinity of the central point of the cross. The Targeting phase can be
effectively implemented as a parallel program for a clustered computing system
by using the “master-workers” framework [18–20]. In this paper, we discuss a
parallel implementation of the NSLP algorithm using the BSF computational
model presented in [21]. On the base of the described BSF-implementation, a
quantitative scalability analysis of the NSLP algorithm is performed.

The rest of the paper is organized as follows. Section 2 gives a formal state-
ment of a LP problem and presents the brief description of the NSLP algorithm.
Section 3 provides an outline of the BSF computational model and presents cor-
responding cost metrics. Section 4 describes a BSF-implementation of the NSLP
algorithm, calculates the upper bound of scalability and evaluates the parallel
efficiency depending on the percentage of initial data being changed dynami-
cally. Section 5 describes an implementation of the NSLP algorithm based on
the BSF skeleton in C language and compares the results obtained analytically
and experimentally. Section 6 summarizes the results obtained and proposes the
directions for future research.



42 I. Sokolinskaya and L.B. Sokolinsky

2 NSLP Algorithm

Let we be given a non-stationary LP problem in the vector space R
n:

max {〈ct, x〉 |Atx ≤ bt, x ≥ 0} , (1)

where the matrix At has m rows. The non-stationarity of the problem means
that the values of the elements of the matrix At and the vectors bt, ct depend on
the time t ∈ R≥0. We assume that the value of t = 0 corresponds to the initial
instant of time:

A0 = A, b0 = b, c0 = c (2)

Let Mt be a polytope defined by the constraints of the non-stationary LP
problem (1). Such a polytope is always convex. The Quest phase calculates a
point z belonging to the polytope Mt. This phase is described in detail in [12].
The Quest Phase is followed by the Targeting phase. At the Targeting phase,
a n-dimensional axisymmetric cross is formed. The n-dimensional axisymmetric
cross is a finite set G = {g0, . . . , gP−1} ⊂ R

n having the cardinality equals P +1,
where P is a multiple of n ≥ 2. Among points of the cross, the point g0 called
the central point is single out. The initial coordinates of the central point are
assigned the coordinates of the point z calculated in the Quest phase. The set
G\{g0} is divided into n disjoint subsets Ci (i = 0, . . . , n−1) called the cohorts:

G\{g0} =
n−1⋃

i=0

Ci.

Each i-th cohort (i = 0, . . . , n − 1) consists of

K = P/n (3)

points lying on the straight line, which is parallel to the i-th coordinate axis
and passing through the central point g0. By itself, the central point does not
belong to any cohort. The distance between any two neighbor points of the set
G ∪ {g0} is equal to the constant s. It can be changed during computing. An
example of the two-dimensional cross is shown in Fig. 1. The number of points
in one dimension excluding the central point is equal to K. The symmetry of the
cross supposes that K takes only even values greater than or equal to 2. Using
Eq. (3), we obtain the following equation giving the total number of points in
the cross:

P + 1 = nK + 1 (4)

Since K can take only even values greater than or equal to 2 and n ≥ 2, from
Eq. (4), it follows that P can also take only even values and P ≥ 4. In Fig. 1, we
have n = 2, K = 6, P = 12.

Each point of the cross G is uniquely identified by a marker being a pair of
integers numbers (χ, η) such that 0 ≤ χ < n, |η| ≤ K/2. Informally, χ specifies
the number of the cohort, and η specifies the sequence number of the point in the
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Fig. 1. Two-dimensional cross G: K = 6, P = 12

cohort Cχ, being counted out of the central point. The corresponding marking
of points for the two-dimensional case is given in Fig. 1. The coordinates of the
point x(χ,η) having the marker (χ, η) can be reconstructed as follows:

x(χ,η) = g0 + (0, . . . , 0, η · s︸︷︷︸
χ

, 0, . . . , 0) (5)

The vector being added to g0 in the right part of the Eq. (5) has a single non-zero
coordinate in the position χ. This coordinate equals η ·s, where s is the distance
between neighbor points in a cohort.

The Targeting phase includes the following steps.

1. Build the n-dimensional axisymmetric cross G that has K points in each
cohort, the distance between neighbor points equaling s, and the center at
point g0 = zk, where zk is obtained in the Quest phase.

2. Calculate G′ = G ∩ Mk.
3. Calculate C ′

χ = Cχ ∩ G′ for χ = 0, . . . , n − 1.

4. Calculate Q =
n−1⋃
χ=0

{arg max {〈ck, g〉 | g ∈ C ′
χ, C ′

χ 
= ∅}}.

5. If g0 ∈ Mk and 〈ck, g0〉 ≥ max
q∈Q

〈ck, q〉, then k := k + 1, and go to step 2.

6. g0 :=

∑

q∈Q

q

|Q| .
7. k := k + 1.
8. Go to step 2.
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Thus, in the Targeting phase, the steps 2–7 form a perpetual loop in which
the approximate solution of the non-stationary LP problem is permanently recal-
culated. From the non-formal point of view, in the step 2, we determine which
points of the cross G are belonged to the polytope Mk. In the step 3, points that
do not belong to the polytope are dropped out of each cohort. In the step 4, the
point with the maximum value of the objective function is chosen among the
residuary points of each cohort. In the step 5, we check if the value of the objec-
tive function at the central point of the cross is greater than all the maximums
found in the step 4. If this condition is true then the cross does not shift, the
time counter t is incremented by one unit and the next iteration is started. If this
condition is false then we go to step 6 where the new center point is calculated
as the centroid of the set of points obtained in the step 4. In the step 7, the time
counter t is incremented by one unit. In the step 8, we go to the new iteration.
In such a way, the center g0 of the cross G permanently performs the role of an
approximate solution of the non-stationary problem (1).

3 BSF Computational Model

We use the BSF parallel computation model proposed in [21] to evaluate the
upper bound of the scalability of the NSLP algorithm in the Targeting phase.
The BSF (Bulk Synchronous Farm) model was proposed to multiprocessor sys-
tems with distributed memory. A BSF-computer consists of a collection of homo-
geneous computing nodes with private memory connected by a communication
network that delivers messages among the nodes. Among all the computing
nodes, one node called the master-node is single out. The rest of the nodes are
the slave-nodes. The BSF-computer must include at least one master-node and
one slave-node. Thus, if P is the number of slave-nodes then P ≥ 1.

BSF-computer utilizes the SPMD programming model [22] according to
which all nodes executes the same program but process different data. A BSF-
program consists of sequences of macro-steps and global barrier synchronizations
performed by the master and all the slaves. Each macro-step is divided into two
sections: master section and slave section. A master section includes instructions
performed by the master only. A slave section includes instructions performed by
the slaves only. The sequential order of the master section and the slave section
within the macro-step is not important. All the slave nodes act on the same data
array, but the base address of the data assigned to the slave-node for processing
is determined by the logical number of this node. The BSF-program includes the
following sequential sections (see Fig. 2):

– initialization;
– iterative process;
– finalization.

Initialization is a macro-step, during which the master and slaves read or gen-
erate input data. The initialization is followed by a barrier synchronization. The
iterative process repeatedly performs its body until the exit condition checked
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Fig. 2. BSF-program structure

by the master becomes true. In the finalization macro-step, the master outputs
the results and ends the program.

Body of the iterative process includes the following macro-steps:

(1) sending the orders (from master to slaves);
(2) processing the orders (slaves);
(3) receiving the results (from slaves to master);
(4) evaluating the results (master).

In the first macro-step, the master sends the same orders to all the slaves.
Then, the slaves execute the received orders (the master is idle at that time).
All the slaves execute the same program code but act on the different data with
the base address depending on the slave-node number.

It means that all slaves spend the same time for calculating. During process-
ing the order, there are no data transfers between nodes. In the third step, all
slaves send the results to the master. After that, global barrier synchronization
is performed. During the fourth step, the master evaluates received results. The
slaves are idle at that time. After result evaluations, the master checks the exit
condition. If the exit condition is true then iterative process is finished, otherwise
the iterative process is continued.

The BSF model provides an analytical estimation of the scalability of a BSF-
program. The main parameters of the model are [21]:
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P : the number of slave-nodes;
L: an upper bound on the latency, or delay, incurred in communicating a mes-

sage containing one byte from its source node to its target node;
ts: time that the master-node is engaged in sending one order to one slave-node

excluding the latency;
tv: time that a slave-node is engaged in execution an order within one iteration

(BSF-model assumes that this time is the same for all the slave-nodes and
it is a constant within the iterative process;

tr: total time that the master-node is engaged in receiving the results from all
the slave-nodes excluding the latency;

tp: total time that the master-node is engaged in evaluating the results received
from all the slave-nodes.

Lets denote tw = P · tv – summarized time which is spent by slave-nodes for
order executions. Then, the upper bound of a BSF-program scalability can be
estimated by the following inequality [21]:

P ≤
√

tw
2L + ts

. (6)

Note that the upper bound of the BSF-program scalability does not depend
on the time, which the master is engaged in receiving and evaluating the slave
results. The speedup of BSF-program can be calculated by the following equa-
tion [21]:

a =
P (2L + ts + tr + tp + tw)

P 2(2L + ts) + P (tr + tp) + tw
. (7)

One more important property of a parallel program is the parallel efficiency.
The parallel efficiency of a BSF-program can be calculated by the following
approximate equation [21]:

e ≈ 1
1 + (P 2(2L + ts) + P (tr + tp))

/
tw

. (8)

4 BSF-implementation of NSLP Algorithm

In this section, we demonstrate how the algorithm presented in Sect. 2 can be
implemented in the BSF-program form. Based on this implementation, we cal-
culate the time complexity of one iteration and give an analytical estimation of
the scalability upper bound of the NSLP algorithm in the Targeting phase. For
calculating, we use the synthetic scalable linear programming problem of the
dimension called Model-n [17]. This LP problem has the matrix A of the size
n × 2(n + 1). We assume n > 104.

The NSLP algorithm can be implemented in the BSF-program form by the
following way. In the Initialization macro-step, the master and all the slaves
read (generate) and store in the local memory all the initial data of the non-
stationary LP problem (1); the master executes the Quest phase and finds a
point z belonging to the polytope Mt. Then, the iterative process begins. In
each iteration, the following steps are performed:
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(1) sending the orders from master to slaves;
(2) processing the orders by slaves;
(3) sending the results from slaves to master;
(4) evaluating the results by master.

Table 1. Structure of message “Order for slaves”

No. Attribute ID Attribute semantic Overhead

1 θ New central point coordinates of the
n-dimensional cross

tθ

2 α New values of matrix A entries tα

3 β New values of column b elements tβ

4 γ New values of objective function coefficients tγ

The order includes the information given in Table 1. Suppose that the frac-
tion of the changed elements of matrix A, column b and objective function c
coefficients equals to δ(n), where ∀n (0 ≤ δ(n) ≤ 1). In that case, the time ts
that the master-node is engaged in sending one order to one slave-node (exclud-
ing the latency) can be approximated according to Table 1 as follows:

ts = tθ + tα + tβ + tγ = O(n) + O(δ(n) · n · 2(n + 1)) + O(δ(n) · 2(n + 1)) + O(δ(n)n)

= O(n) + O(δ(n) · n(n + 1)) + O(δ(n)(n + 1)) + O(δ(n)n)

< O(n + 1) + O(δ(n) · (n + 1)2) + O(δ(n)(n + 1)) + O(δ(n)(n + 1))

= O(n + 1) + O(δ(n) · (n + 1)2) + O(δ(n)(n + 1))

< O(δ(n) · (n + 1)2) + O(n + 1).

Hence,
ts < O(δ(n) · (n + 1)2) + O(n + 1). (9)

The smallest unit of parallelization in the BSF-implementation of the NSLP
algorithm is the cohort. The number of cohorts equals to the space dimension
n. Thus, the number P of slave-nodes should be less than or equal to the space
dimension n. We shall assume n � P . A slave-node sequentially process all the
cohorts assigned to it. In the current cohort, the coordinates of every point x are
calculated using Eq. (5). The time complexity of this operation is O(n). Then the
point x is checked to be belonged to the polytope Mt. To do this, it is sufficient
for the slave to verify the truth of the condition Atx = bt. Since At is of size
n × 2(n + 1), the time complexity of this operation is O(n2 + n). The number of
points in a cohort excluding the central one is equal to the constant K. According
to the Eq. (4), the total number of points in the cross excluding the central one
is equal to nK. Hence, the time complexity of the calculations performed for all
points of the cross in steps 2–3 can be estimated as O(n3 + n2). After this, the
slaves partially (for their cohorts only) execute the step 4 of Targeting phase
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(see Sect. 2). The total time complexity of these operations is O(n2). Thus, the
total time complexity of all the calculations performed by slaves has the following
estimation:

tw = O(n3 + n2) + O(n2) + O(n) ≤ O(n3 + n2 + n). (10)

As a result, each slave sends to the master a summarized vector of points
which belong to the polytope and have the maximum value of the objective func-
tion in the corresponding cohort. Thus, the total time complexity of transferring
the results from the slaves to the master is

tr = O(PKn) ≈ O(n). (11)

Having received the results from the slaves, the master sums them up to
complete the step 4 of the algorithm. The time complexity of these calculations
will have the following estimation:

tstep 4 ≈ O(n2). (12)

Because of the non-stationarity of the LP problem, the condition in step 5 will
be rarely true. Hence, we may assume that the next step after the step 4 will be
the step 6 in most cases. Since the number of cohorts equals to n, the total time
complexity of the step 6 of the Targeting phase is

tstep 6 = O(n2). (13)

Thus, the total time complexity of processing the results obtained by the master
from the slaves is

tp ≈ tstep 4 + tstep 6 = O(n2). (14)

Substituting the values from (10) and (9) into Eq. (6), we obtain the following
estimation for the upper bound of the NSLP algorithm scalability:

PNSLP ≤
√

O(n3 + n2 + n)
2L + O(δ(n) · (n + 1)2) + O(n + 1)

. (15)

Suppose all the input data of the problem are changed at each iteration. It
corresponds to δ(n) = 1. In this case, inequality (15) is converted to the following
form

PNSLP ≤
√

O(n3 + n2 + n)
2L + O((n + 1)2) + O(n + 1)

≈ O(
√

n). (16)

It means that the upper bound of the BSF-program scalability increases propor-
tionally to the square root of the problem dimension. Hence, the NSLP algorithm
implementation in the form of a BSF-program has limited scalability in this case.

Now suppose that the fraction of the changed problem input data at each
iteration is

δ(n) =
1

2(n + 1)
. (17)
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It corresponds to a situation where the matrix has only one changed row, the
column has only one changed element, and the objective function has no more
than one changed coefficient. In this case, we obtain the following estimation

PNSLP ≤
√

O(n3 + n2 + n)
2L + O(n + 1) + O(n + 1)

≈ O(
√

n2) = O(n) (18)

substituting the value of δ(n) from the Eq. (17) into the Eq. (15). It means that
the upper bound of the BSF-program scalability increases proportionally to the
problem dimension. Hence, the NSLP algorithm implementation in the form of
a BSF-program is scalable well in this case.

We can also estimate the BSF-implementation parallel efficiency of the NSLP
algorithm using approximate Eq. (8):

e =
1

1 + P 2·(2L+ts)+P ·(tr+tp)
tw

=
1

1 + P 2·(2L+O(δ(n)·(n+1)2)+O(n+1))+P ·(O(n)+O(n2))
O(n3+n2)

.
(19)

For δ(n) = 1, n → ∞ and P → ∞, we get from (19) the following estimation

e =
1

1 + P 2(2L+O((n+1)2)+O(n+1))+P (O(n)+O(n2))
O(n3+n2)

≈ 1

1 + P 2(O(n2)+O(n))+P ·(O(n2)+O(n))
O(n3+n2)

=
1

1 + (P 2 + P )O(n2)+O(n)
O(n3+n2)

≈ 1
1 + P 2+P

O(n)

≈ 1
1 + P 2/O(n)

.

(20)

In such a way, we obtain

e ≈ 1
1 + P 2

/
O(n)

. (21)

Hence for δ(n) = 1, the high parallel efficiency is achieved when n � P 2.
For δ(n) = 1

2(n+1) we get from (19) the following estimation

e ≈ 1
1 + P 2

/
O(n2) + P/O(n)

. (22)

Hence for δ(n) = 1
2(n+1) , the high parallel efficiency is achieved when n � P .

5 Numerical Experiments

The implementation of the Qwest phase was described and evaluated by us in the
paper [17]. In the present work, we have done the implementation of the Targeting
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phase in C language using the BSF skeleton. The source code of this program is
freely available on Github, at https://github.com/leonid-sokolinsky/BSF-NSLP.
We investigated the speedup and parallel efficiency of this BSF-program on
the supercomputer “Tornado SUSU” [23] using the synthetic scalable linear

Fig. 3. Experiments for n = 400.

Fig. 4. Experiments for n = 800.

Fig. 5. Experiments for n = 1080.

https://github.com/leonid-sokolinsky/BSF-NSLP


Scalability Evaluation of NSLP Algorithm 51

programming problem Model n [17] mentioned in the Sect. 4. The calculations
were performed for the dimensions 400, 800 and 1080. At the same time, we plotted
the curves of speedup and parallel efficiency for these dimensions using Eqs. (7)
and (8). We assumed that δ(n) = 1/2(n + 1). The results are presented in Figs. 3,
4 and 5. In all cases, the analytical estimations were very close to experimental
ones. Moreover, the performed experiments show that the upper bound of the
BSF-program scalability increases proportionally to the problem dimension. It
was analytically predicted using the Eq. (18) in Sect. 4.

6 Conclusion

In this paper, the scalability and parallel efficiency of the NSLP algorithm used to
solve large-scale non-stationary linear programming problems on cluster comput-
ing systems were investigated. To do this, we used the BSF (Bulk Synchronous
Farm) parallel computation model based on the “master-slave” paradigm. The
BSF-implementation of the NSLP algorithm is described. A scalability upper
bound of the BSF-implementation of the NSLP algorithm is obtained. This esti-
mation tells us the following. If all the input data of the problem are changed
at each iteration then the upper bound of the BSF-program scalability increases
proportionally to the square root of the problem dimension. In this case, the
NSLP algorithm implementation in the form of a BSF-program has limited scal-
ability. If each inequality of the constraint system has no more than one coef-
ficient changed during an iteration then the upper bound of the BSF-program
scalability increases proportionally to the problem dimension. In this case, the
NSLP algorithm implementation in the form of a BSF-program is scalable well.
The equations for estimating the parallel efficiency of the BSF-implementation
of the NSLP algorithm are also deduced. These equations allow us to conclude
the following. If during the iteration all the problem input data are dynamically
changed then for the high parallel efficiency it is necessary that the problem
dimension is much greater than the square of the number of slaves: n � P 2.
However, if in each inequality of the constraint system no more than one coef-
ficient changes during each iteration then for a high parallel efficiency it is nec-
essary that the problem dimension be much greater than the number of slaves:
n � P . The numerical experiments with a synthetic problem showed that the
BSF model accurately predicts the upper bound of the scalability of the program
that implements the Targeting phase using the BSF skeleton.

As future research directions, we intend to do the following:

(1) implement the Qwest phase in C language using the BSF skeleton and MPI-
library;

(2) carry out numerical experiments on a cluster computing system using syn-
thetic and real LP problems;

(3) compare the scalability boundaries of the Qwest phase obtained experimen-
tally and analytically.
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Abstract. The optimization of linear solver parameters in unsteady
multiphase groundflow modelling is considered. Two strategies of
dynamic parameters setting for the linear solver are proposed when the
linear systems properties are modified during simulation in the INMOST
framework. It is shown that the considered algorithms for dynamic selec-
tion of linear solver parameters provide a more efficient solution than any
prescribed set of parameters. The results of numerical experiments on the
INM RAS cluster are presented.
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1 Introduction

The problem of software performance tuning is of great importance for efficient
usage of the modern supercomputer facilities. It is very important for numerical
modelling applications exploiting such a software.

One of the most famous examples of automatic software tuning is the ATLAS
package [1] which carry out the performance optimization for several BLAS
functions during the installation of the package.

Another important and very popular idea of software performance tuning
is the usage of data mining techniques. For example, Self-Adapting Numerical
Software (SANS) [2] and Self-Adapting Large-scale Solver Architecture (SALSA)
[3] perform the analysis of the input data to select the linear solver from the set
of available ones. The machine learning techniques is used for the same goal as
well [4].

The genetic algorithms are used in [5] in a software system called Intelli-
gent Performance Assistant (IPA) to improve the performance of ExxonMobil’s
proprietary reservoir simulator, EMpowerTM.

c© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 54–66, 2017.
https://doi.org/10.1007/978-3-319-71255-0_5
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In the present paper we would like to return ‘back to basics’ of linear algebra
and to knowledge on the mathematical properties of the preconditioned itera-
tive algorithms considered. For this reason we consider the solution of unsteady
problems that comes from multiphase black-oil reservoir simulation. The main
difficulty of selecting the optimal parameters of the linear solvers at each sim-
ulation time step is the modification of the stiffness matrix properties. If the
linear solver is already selected prior to the unsteady problem solution, then one
has at least a possibility to select the input set of linear solver parameters. The
main idea is to construct the procedure of automatic and dynamic selection of
parameters that are close to the optimal ones, i.e. provide the minimum of the
solution time. In the present paper we propose two different algorithms for this
approach.

For our numerical experiments on dynamic parameters tuning we have
exploited an INMOST software platform [6]. Besides the ability to operate with
the distributed meshes of general form, this platform includes a convenient inter-
face for solving large sparse linear systems. It allows user to forget about specific
implementations of each particular linear solver and to focus only on parame-
ters optimizations. INMOST provides a large variety of different linear solvers,
some of them are implemented inside the platform, the others can be enabled as
external libraries, such as PETSc [7] or Trilinos [8].

We consider the INMOST linear solver BIILU2 for our numerical experi-
ments. This solver is the combination of the second order incomplete triangular
factorization ILU2(τ) and the incomplete inverse LU factorization BIILU(q) (as
a replacement of additive Schwarz preconditioning AS(q)) [9,10]. Here, τ is the
factorization threshold and q is the number of overlap levels for blocks corre-
sponding to each processor. The use of ILU2(τ) factorization is chosen due to it’s
robust and efficient preconditioning in comparison with the conventional struc-
tural incomplete factorization ILU(k) or the conventional incomplete threshold
factorization ILU(τ).

As an example of simulation we use the multi-phase flow model based on the
fully implicit time discretization and the nonlinear monotone two-point approx-
imation for the Darcy fluxes in Jacobian matrix [11].

2 Algorithm’s Description

2.1 The Choice of Appropriate Optimization Algorithm

The function to be optimized can be defined as

Tk = G(Ak, bk, p, ε) ≡ F (Ak, bk, p) ± ε, (1)

where Ak is the linear system matrix on kth time step, bk is the right-hand side
vector on kth time step, p is the parameter (or parameters) of some liner solver
to be optimized, Tk is the return value of function which is equal to the time
needed for solving the linear system Akx = bk.
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A lot of difficulties associated with the real unsteady processes should be
taken into account while choosing algorithms for parameter optimization of linear
solvers:

1. Function G can behave differently from run to run, as we solve the problem in
parallel mode using the MPI library. The time of messages delivery between
processors is nondeterministic, so the function value may vary on some small
but essential unknown value ε which is impossible to predict. Therefore the
target function may have several local minima and maxima.

2. During unsteady process both Ak and bk will be modified with each time step
and as a result optimal parameters p will be changed as well. The optimization
algorithm should be able to find these parameters (or close to it) regardless
their modification in time.

3. The value of function G can be calculated only once for given Ak, bk and for
the selected parameters p. There is no reason to solve linear system Akx = bk

again even with more optimal parameters.
4. As Ak may vary with the simulation time, the minimum value of function

F may increase. This is why it is really hard to use the previous values of
F (Ak, bk, p).

5. The algorithm should not be computationally expensive and time spent on
the parameters optimization should not affect the total time of solving the
unsteady problem.

To deal with the above difficulties we should also use a number of assumptions
on the function F :

1. For given Ak and bk the function is continuous by parameters p and has the
form close to a paraboloid, and since F > 0 the global minima exists and
finite.

2. In a real simulation matrices Ak may differ, however they have about the
same structure and properties, and as a result we expect that the optimal
parameters based on the kth time step are moved in its small neighborhood
and within this area the values of the Tk are roughly equal.

3. We also assume that at some time step k′ the minimal solution time Tk is
not increasing and depends only on parameters p.

Based on the above issues and assumptions we have proposed to use two
optimization algorithms.

2.2 Very Fast Simulated Re-annealing

Annealing (simulated annealing, SA) is a probabilistic technique for approxi-
mating the global optimum of a given function. At each step, the SA heuristic
considers some neighbouring state s′ of the current state s, and probabilistically
decides between moving the system to state s′ or staying in state s. These prob-
abilities ultimately lead the system to move to states of lower energy. Typically
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this step is repeated until the system reaches a state that is good enough for the
application, or until a given computation budget has been exhausted.

The probability of making the transition from the current state s to a can-
didate new state s′ is specified by an acceptance probability function h(e, e′, T ),
that depends on the energies e = E(s) and e′ = E(s′) of the two states, and on
a global time-varying parameter T called the temperature. States with a smaller
energy are better than those with a greater energy. The probability function
P must be positive even when e′ is greater than e. This feature prevents the
method from becoming stuck at a local minimum that is worse than the global
one.

When T tends to zero, the probability h(e, e′, T ) must tend to zero if e′ > e
and to a positive value otherwise. For sufficiently small values of T , the system
will then increasingly favor moves that go “downhill” (i.e., to lower energy val-
ues), and avoid those that go “uphill”. With T = 0 the procedure reduces to the
greedy algorithm, which makes only the downhill transitions [12].

The method of simulated annealing consists of three functional relationships:

g – probability density of state-space of D parameters x = {xi, i = 1,D};
h – probability density for acceptance of new cost-function given the just

previous value;
T (k) – schedule of annealing temperature T in annealing time steps k, i.e. of

changing volatility or fluctuations of the two previous probability densities.

The acceptance probability is based on the chances of obtaining a new state
s′ relative to a previous state s,

h =
exp(−e′/T )

exp(−e′/T ) + exp(−e/T )
≈ 1

1 + exp(ΔE/T )
, (2)

where ΔE represents the energy difference between the present and previous
values of the cost-function appropriate to the physical problem, i.e. ΔE = e′ − e
(see [13]).

The algorithm itself can be described by the following steps:

1. Select a random state s. The energy values of the system is set to E(s).
2. On kth step:

(a) Compare the energy of the system E(s) in the state s with the global
minimum. If it is smaller then change the global minimum value.

(b) Generate a new state s′ and calculate E(s′).
(c) Generate a random number α uniformly distributed over [0, 1]. If α <

h(ΔE,T (k)) then set s′ as the current state and go to the next iteration
k + 1. Otherwise repeat the previous step until a suitable state s′ will be
found.

In the present paper we are using the “very fast annealing scheme” produced
by Ingber [13]. In this scheme different parameters may have different finite
ranges, fixed by physical considerations, and different annealing-time-dependent
sensitivities, measured by the curvature of the cost-function at local minima.
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Consider parameters xi
k in ith dimension generated by an annealing step k

with the following range
xi

k ∈ [Ai, Bi] (3)

calculated with the random variable ξi:

xi
k+1 = xi

k + ξi(Bi − Ai), ξi ∈ [−1, 1]. (4)

The above formula can be applied several times until xi
k+1 ∈ [Ai, Bi].

Generating function defined as

gT (ξ) =
n∏

i=1

1
2(|ξi| + Ti) ln(1 + 1/Ti)

≡
n∏

i=1

g(i;T )(ξi), ξi ∈ [−1, 1],

ξi = sgn
(

αi − 1
2

)
Ti((1 + 1/Ti)|2αi−1| − 1), (5)

where αi are random numbers, uniformly distributed over segment [0, 1].
Annealing schedule will be defined as

Ti(k) = T(i;0) exp(−cik
1/D), ci > 0. (6)

It is proven [13], that the very fast annealing algorithm are one of the most
effective method of random search of optimal solutions for a wide class of prob-
lems.

2.3 Alternating Parameters Probe Based Tuning

Another idea for constructing the algorithm for dynamic parameters tuning for
unsteady problem is the attempt to stay at a local minimum probing a nearby
area. If the current parameters set is near to the minimum or the minimum is
moving not too fast then the algorithm may track the minimum.

The algorithm (1U) for unsteady problem can be formulated as follows:

Specify initial values for τ , q, and probe direction dir from {δτ+, δq+, δτ−, δq−}
while simulation stopping criterion do

Make time step
Solve linear system
if new minimum found then

Update minimum set (τ, q)
end if
if dir= δτ+ then

ind(τ) + +
else if dir= δq+ then

ind(q) + +
else if dir= δτ− then

ind(τ) − −



Dynamic Optimization of Linear Solver Parameters 59

else if dir= δq− then
ind(q) − −

else
Stay with no change of (τ, q)

end if
end while

2.4 Linear Brute-Force Searching

Linear brute-force search is the simplest algorithm, which can find the global
minimum of the given function F (x), where x = (x1, x2, . . . xn) on an arbitrary
grid D.

Linear brute-force search algorithm implies optimizing each variable xi inde-
pendently and was implemented in the following way:

– The set of runs for different values of τ from τmin to τmax for a fixed value of
overlap size parameter q = 3 was performed, and a quasi-optimal value of τ∗

was found.
– The set of runs for different values of q from qmin to qmax for a fixed value

of quasi-optimal τ∗ was performed, and a quasi-optimal pair of parameters
(τ∗, q∗) was found.

This method are very computationally expensive and therefore can’t be rec-
ommended for solving real problems. However it can be used to find the almost
precise global minimum on quite dense grids and enable us to verify the other
parameter tuning approaches.

3 Numerical Experiments

3.1 INM Cluster Configuration

All numerical experiments was performed on INM RAS cluster. The configura-
tion of the cluster computational nodes, used for numerical experiments [14]:

– Compute Node Arbyte Alkazar+ R2Q50;
– 16 cores (two 8-core processors Intel Xeon E5-2665@2.40 GHz);
– 64 Gb RAM;
– SUSE Linux Enterprise Server 11 SP1 (x86 64).

3.2 Dependance on Parameters for a Sample Problem

As a sample linear system we have used the system (called below N14) obtained
from the INM RAS Black-Oil Simulator for Scholars (BOSS) for the well-known
SPE-10 problem [15]. The size of the model mesh is 60 × 220 × 85 cells (1.122 ·
106 cells). The top 35 layers of the model is a Tarbert formation, and is a
representation of a prograding near shore environment, while the bottom 50
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Fig. 1. The porosity and permeability distributions for SPE-10 problem

layers represents Upper Ness which is fluvial. The coefficients of the media are
very contrast. The porosity varies from 1.3 · 10−5 to 0.5 (see Fig. 1, left) and
the permeability varies from 10−3 to 3 · 104 (see Fig. 1, right). The model has
5 vertical wells completed throughout formation. The central well is an injector
and the other 4 wells in the corners are producers.

The dimension of the obtained linear system N14 is 3 896 013 unknowns. The
dependences of solution time T (in seconds) on parameters τ and q is demon-
strated in Fig. 2 for 16 cores and it is quite smooth with the minimum pro-
nounced.

Figure 3 shows the 2D surface of the solution time T in variables τ and q for
the same problem N14 solved on 16 cores. The obtained surface is of paraboloid
type.

(a) T = f(q = 3, τ) (b) T = f(q, τ = 0.003)

Fig. 2. Total solution time T in s. for N14 depending on τ and q for p = 16

3.3 Dynamic Function Simulation

We consider the following two-parameter function for the research purposes:

f(τ, q) =
(

16
25

(lg(τ/τ0))2 + 1
) (

1
25

(
17.5(q − q0)
7.5 + q − q0

)2

+ 1

)
, (7)

τ0 = 0.003, q0 = 3. (8)
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Fig. 3. Total solution time T in s. for N14 in variables τ and q for p = 16

Fig. 4. Two-parameter function (7) and (8)

(a) T = f(q = 3, τ) (b) T = f(q, τ = 0.003)

Fig. 5. Cross-sections for q = qopt = 3 and τ = τopt = 0 : 003

This function can be used as a solution time T measured in seconds instead of
that for real black-oil simulation process and demonstrates more strong depen-
dence on lg(τ) as well as more weak one on overlap parameter q. Figure 4 demon-
strates the respective paraboloid for the above function, which is qualitatively
similar to the paraboloid on Fig. 3. The minimum of this two-parameter function
is in (τ = 0.003, q = 3) in accordance with (8). Figures 5a and b show the cross-
sections for q = qopt = 3 and τ = τopt = 0.003, respectively. With this simple
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(a) Brute-force search and SA algorithm values of τ

(b) Brute-force search and 1U algorithm values of τ

Fig. 6. τopt depending on the time step k for function (7), (9)

function we can easily examine the proposed parameter tuning approaches as
well as provide the complete repeatability of our numerical experiments.

The most interesting is the behavior of proposed algorithms in the unsteady
case. We can modify the above steady state function (7) in the following way:

τ0 = 10−2−cos(2πt/t0), q0 = 2 + cos(2πt/t0), t0 = 100 (9)

where we have the local optimal values lg τ ∈ [−3;−1] and q ∈ [1; 3] for time
moment t ∈ [0; t0].

Figures 6a and b plot τopt depending on the time step for above unsteady-
state function (7), (9). This figures show that proposed algorithms SA and 1U
are able to track the optimal parameters even if they change in time.

3.4 Unsteady Black-Oil Simulation

We consider the two-phase flow model of the INM RAS BOSS simulator for the
real unsteady problem. We simulate 6000 days of the quarter five spot problem
with one injector and one producer wells. The initial water saturation is equal to
residual saturation which results in rather sharp front. The starting time step is
0.0001 days, which increases to 25 days later in the simulation. An incremental
time step leads to an increase in the complexity of linear systems, so does the
water breakthrough which results in higher flow velocities. In our simulation the
water breakthrough occurs at about time 1400 or at about 65th time steps.
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Fig. 7. Unsteady black-oil simulation times with fixed parameters and the dynamic
optimal ones depending on the simulation time step k

Fig. 8. Unsteady black-oil simulation cumulative times with the fixed parameters and
the dynamic optimal ones depending on the simulation time step k

Fig. 9. Optimizing τ for black-oil simulator
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First, in Figs. 7 and 8 we plot solution and cumulative times depending on
the simulation time step for several fixed sets of parameters: (τ = 0.3, q = 2),
(τ = 0.03, q = 3), (τ = 0.003, q = 3), (τ = 0.0003, q = 3) and compare it with
the optimal one, which was found using the linear brute-force search algorithm.
One can see that any fixed set of parameters produce the result which is far from
the optimal solution time.

The same experiment was performed for the two proposed algorithms very
fast simulated re-annealing (SA) and 1U. Figures 9 and 10 present the plots for
the estimated value τopt, local and cumulative solution time T and TΣ , respec-
tively, depending on the simulation time step k. One can observe that the results
of the proposed algorithms are very close to that for the optimal set of parame-
ters. The cumulative solution time for all the proposed algorithms is less than
that for any observed fixed set of parameters (τ, q) (Fig. 11).

Fig. 10. Local and cumulative times depending on the simulation time step k

Fig. 11. Cumulative times bar chart for default sets of parameters and for proposed
algorithms compared with the optimal one
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4 Conclusion

The proposed linear solver parameters tuning algorithms were implemented in
the INMOST framework as an optional toolkit named Trace and Tuning Software
Platform (TTSP). In conclusion of the present paper, we formulate the most
important issues of the progress in this area:

– The influence of the linear solver parameters on the real black-oil simulation
performance was examined;

– The set of optimization algorithms for linear solver parameters tuning were
proposed;

– The TTSP toolkit for parallel linear solver parameters tuning was devel-
oped and verified for the INM RAS black-oil reservoir simulator for scholars
(BOSS);

– It was shown that proposed algorithms essentially increase the performance
of the real unsteady black-oil simulation in comparison with even the best
fixed set of parameters.
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01-00886, Russian Federation President Grant MK-2951.2017.1, and ExxonMobil
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Abstract. The paper is dedicated to optimizing numerical algorithms to solve
wave tomography problems by using supercomputers. The problem is formulated
as a non-linear coefficient inverse problem for the wave equation. Due to the huge
amount of computations required, solving such problems is impossible without
the use of high-performance supercomputers. Gradient iterative methods are
employed to solve the problem. The gradient of the residual functional is cal-
culated from the solutions of the direct and the “conjugate” wave-propagation
problems with transparent boundary conditions. Two formulations of the trans-
parency condition are compared. We show that fourth-order finite-difference
schemes allow us to reduce the size of the grid by a factor of 1.5–2 in each
coordinate compared to second-order schemes. This makes it possible to sig-
nificantly reduce the amount of computations and memory required, which is
especially important for 3D problems of wave tomography. The primary appli-
cation of the method is medical ultrasonic tomography.

Keywords: Ultrasound � Coefficient inverse problems � Supercomputer �Wave
tomography � Finite-difference schemes

1 Introduction

Currently, intensive works are being carried out to develop new tomographic devices
that use wave radiation sources. The most promising technology is ultrasonic tomog-
raphy. The most important applications of ultrasonic tomography are in medical
research, primarily the differential diagnosis of breast cancer, which is one of the most
pressing issues of medical diagnostics. Wave tomography technology can also be used
in many other applications, such as seismic studies, non-destructive testing, and
medical ultrasonic imaging [1–3].

One of the problems in the development of ultrasonic tomography is associated
with the nonlinearity of inverse problems of wave tomography. These inverse problems
are formulated as coefficient inverse problems for the wave equation [4, 5].
The developments of ultrasonic tomography devices are currently at the stages of
modelling and prototypes [6–8]. These works employ simplified mathematical models.
The most promising approach is to develop methods for solving inverse problems of
wave tomography under models that account for both wave diffraction effects
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(diffraction, refraction, multiple scattering) and absorption. The derivation of the gra-
dient of the residual functional of the coefficient inverse problem, as obtained in [9–14],
was the breakthrough result in this field.

The approximate gradient-based methods for solving inverse problems of ultrasonic
tomography have been developed in [15–19]. The developed algorithms are designed
for supercomputers. These algorithms implement iterative gradient methods to mini-
mize the residual functional between the wave field measured experimentally and the
numerically simulated wave field. To calculate the gradient of the residual functional at
each iteration of the method, it is necessary to solve the “direct” problem of simulating
the wave propagation process in an inhomogeneous medium in forward time and the
“conjugate” problem in reverse time. The efficiencies of the developed numerical
methods were evaluated by benchmarking numerous model problems on the “Lomo-
nosov” supercomputer. The developed methods allow effective parallelization. The
numerical algorithms practically linearly scale with the number of processors in CPU-
and GPU-based systems.

The aim of this study is to optimize the developed numerical algorithms. The first
way to optimize the algorithms is to use a finite-difference scheme. The numerical
methods for solving the inverse problem of wave tomography that have been imple-
mented in the previous works are based on the finite-difference time-domain (FDTD)
method that provides a second-order approximation of the wave equation. The FDTD
method has been chosen because it has a very large potential for relatively simple
parallelization of computations. Because of the large amount of computations, highly
parallel computing is required. Supercomputer technologies drastically reduce the
computation time required to solve inverse problems. However, one of the issues is the
accuracy of the calculations. To solve the ill-posed inverse problems of wave
tomography, very high accuracy is required. For second-order FDTD schemes, this
leads to the need to use very large grids. With the increase of the sounding frequencies,
the volume of data becomes unacceptably large. This is especially true for 3D prob-
lems, where high-performance GPU processors are required, and GPUs have a limited
memory capacity. Additionally, there are numerical error accumulation issues associ-
ated with large grids.

For second-order FDTD schemes, it is necessary to use at least n = 1000 grid
points in each coordinate for the numerical error to be no more than a few percent. In
the 3D version of the method, this results in a 10003-point grid. Even when solving
such problems on powerful GPU clusters, such an amount of data does not fit into the
internal memory of the GPU devices. Another problem is the dependence of the
number of operations in the gradient iterative algorithms on the number of grid points,
which is of the form O(n4). A fourth power of n means that whereas it takes one hour to
solve a 3D problem for n = 400 on a GPU cluster, it would take approximately 5 h to
solve a problem for n = 600. Therefore, one of the ways to optimize the algorithms is
to use higher-order approximations. As will be shown, using a fourth-order approxi-
mation scheme results in a decrease in the number of grid points n by a factor of 1.5–2,
which significantly reduces the computation time.

The second important issue is the problem of boundary conditions. This problem
arises because we have to solve direct and inverse problems in a bounded domain.
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As a result, reflection of waves occurs at the boundary of the computational domain. In
this paper, two methods of implementing a “transparent” boundary are considered.

The third issue is that the inverse problem of wave tomography typically has
incomplete input data — the sources and detectors are not located on all sides of the
studied object. In ultrasonic mammography applications, the data incompleteness
results from the fact that we cannot place sources and detectors at the patient’s
chest-wall side. Thus, it is an incomplete-data tomography.

2 Formulation of the Inverse Problem of Ultrasonic
Tomography with Incomplete Data and Solution Methods

Let us consider the “direct” problem of computing the acoustic pressure u(r,t) for the
time (0; T) in the region X � RN (N = 2, 3), bounded by the surface ∂X (Fig. 1), with a
point source at the point r0:

cðrÞuttðr; tÞ � Duðr; tÞ ¼ dðr� r0Þ gðtÞ: ð1Þ

Let us assume that u(r,t) satisfies the zero initial and boundary conditions

uðr; t ¼ 0Þ ¼ utðr; t ¼ 0Þ ¼ 0; @nu r; tð Þj@X ¼ 0: ð2Þ

Here, c−0.5(r) = v(r) is the sound speed in the medium, r 2 RN ; D is the Laplace
operator with respect to r. The pulse generated by the source is described by the
function g(t); @nu r; tð Þj@X is the derivative along the normal to the boundary ∂X. It is
assumed that the inhomogeneities of the medium are sound-speed variations and are
localized within the studied object G. Outside of the object, v(r) = v0 is constant and v0
is known. The acoustic pressure is measured at the boundary of the domain R, G � R.
The sources insonify the studied object from different directions. We assume that the
sources and the region R are located far enough from the boundary ∂X such that the
conditions (2) are satisfied.

Fig. 1. The scheme of the 2D experiment.
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Figure 1 illustrates the arrangement of sources and detectors in the two-dimensional
inverse problem of wave tomography. The number 1 denotes the positions of the
sources of ultrasound waves, and the measurements are taken at the boundary ∂R. The
studied object G is located inside the domain R, which is filled with a homogeneous
medium with a known sound speed v0.

The inverse problem consists of determining the sound speed c(r) from the
experimental data Uðs; tÞ measured at the boundary @R of the domain R during the time
ð0; TÞ with different positions r0 of the source. In the formulation with incomplete data,
the acoustic pressure Uðs; tÞ is not measured on the whole boundary ∂R. The inverse
problem with incomplete data can be formulated as a problem of minimizing the
residual functional

UðuðcÞÞ ¼ 1
2

XM
j¼1

ZT

0

Z

@R

E2ðs; tÞdsdt; ð3Þ

whereEðs; tÞ ¼ uðs; tÞ � Uðs; tÞ; for s 2 @R; where Uðs; tÞ is known
0; otherwise

�
: ð4Þ

Here, u jðcÞ is the solution of the problem (1)–(2) for some c(r); the index j = 1,…,
M denotes the position of the source. The inverse problem is formulated as the problem
offinding a function �c rð Þ that minimizes the residual functional min

c rð Þ
UðuðcÞÞ ¼ Uðuð�cÞÞ.

Let us consider another problem, which we call “conjugate” to the “direct” problem
(1)–(2):

cðrÞwttðr; tÞ � Dwðr; tÞ ¼ E r:tð Þjr2@R; ð5Þ

wðr; t ¼ TÞ ¼ wtðr; t ¼ TÞ ¼ 0; @nw r; tð Þj@X ¼ 0; ð6Þ

where E(r,t) from (4) is derived from the measured data U(s,t) and the solution u of the
direct problem (1)–(2). Then, as shown in [9, 11, 14], the gradient of the functional (3)
has the form

U0 u cð Þ; dcð Þ ¼
XM
j¼1

Z

X

ZT

0

wj
t r; tð Þu j

t r; tð Þdt
2
4

3
5dc rð Þ

8<
:

9=
;dr; ð7Þ

where uj is the solution of the “direct” problem (1)–(2) and wj is the solution of the
“conjugate” problem (5)–(6) for the j-th position of the source.

In contrast to [9, 11, 14], in the above formulation, the experimental data may be
absent on some part of the boundary surrounding the object. Such incomplete data
problems are typical in ultrasonic tomography. For example, in ultrasonic mammog-
raphy the data cannot be measured at the chest-wall side. Nevertheless, the expression
for the gradient (7) is mathematically exact. The formulations of the “direct” and
“conjugate” problems considered in this paper also differ from those used in previous
works [9, 11, 14].
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3 Numerical Algorithms for Solving Inverse Problems
of Ultrasonic Tomography

3.1 Finite-Difference Approximations of the Wave Equation

To solve the coefficient inverse problem for the wave equation, we used a
finite-difference time-domain method (FDTD). In this formulation, solving the differ-
ential wave equation reduces to solving finite-difference equations. Let us present the
discretization scheme of the problem in the two-dimensional case. On the computa-
tional domain defined by the spatial coordinates (x, y) and the time t, we introduce a
uniform discrete grid with a space step of h and a time step of s. To approximate the
second-order partial derivatives in Eq. (1), we use second-order finite differences. We
obtain the following explicit finite-difference scheme for Eq. (1) for the region that
does not contain any sources:

ukþ 1
ij ¼ 1

cij
s2Dukij þ 2ukij � uk�1

ij ; ð8Þ

where Dukij ¼
ukiþ 1j�2ukij þ uki�1j

h2 þ ukijþ 1�2ukij þ ukij�1

h2 is the discrete Laplacian, ukij are the values
of u(r,t) at the point (i, j) at the time step k, and cij are the values of c(r) at the point
(i, j). The parameters h and s are connected by the Courant stability condition
c�0:5s\h=

ffiffiffi
2

p
for a 2D problem. The “conjugate” problem (5)–(6) is computed using a

similar FDTD scheme.
This explicit 2nd-order FDTD scheme for the wave equation is the simplest and is

quite effective for the numerical simulation of wave propagation on a supercomputer.
Nevertheless, when the ultrasound pulse propagates distances much larger than the
wavelength, the errors of the finite-difference approximation accumulate, which leads
to dispersion of the wave. One of the ways to overcome the numerical dispersion is to
increase the number of grid points. Model calculations showed that for typical prob-
lems of ultrasonic mammography, 25–30 grid points per wavelength are required to
obtain sufficient precision. This means that the computational grid size should be
approximately n = 1000 points in each spatial coordinate and in time. In the 2D case,
such grid sizes do not pose a problem for modern supercomputers. However, in the 3D
case, the amount of computation grows as n4 and the required memory capacity grows
as n3. A large grid size in the 3D case requires a very large number of computing nodes
and faces memory size limitations on the GPU processors.

One possible approach to resolving this issue in ultrasonic tomography problems is
to increase the accuracy of the finite-difference approximation, which would reduce the
size of the grid, the amount of computations and the required memory capacity while
maintaining the accuracy of the calculations. In this paper, the use of fourth-order
FDTD schemes is considered. Model calculations were performed to compare the
performances of second- and fourth-order FDTD schemes for the wave tomography
problem (Fig. 2).
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Following the work [20], we construct a 2D FDTD scheme that provides
fourth-order accuracy with respect to the spatial coordinates. This FDTD scheme is
shown in Fig. 3. It has the following general form:

ukþ 1
ij þ uk�1

ij ¼ k2a ukijþ 1þ ukij�1 þ ukiþ 1j þ uki�1j

� �

þ k2b ukiþ 1jþ 1 þ ukiþ 1j�1þ uki�1jþ 1 þ uki�1j�1

� �
þ k2c ukiþ 2j þ uki�2j þ ukijþ 2 þ ukij�2

� �

þ k2d ukiþ 2jþ 1 þ ukiþ 2j�1þ uki�2jþ 1 þ uki�2j�1 þ ukiþ 1jþ 2 þ ukiþ 1j�2 þ uki�1jþ 2 þ uki�1j�2

� �

þ k2e ukiþ 2jþ 2 þ ukiþ 2j�2 þ uki�2jþ 2þ uki�2j�2

� �
þ k2fukij:

ð9Þ

For this scheme to approximate the wave equation to the fourth order, the
parameters must satisfy the following relations:

a ¼ 14dþ 32eþ 4=3; b ¼ �8d � 16e;

c ¼ �2d � 2e� 1=12; f ¼ 2=k2 � 24d � 60e� 5:

For the scheme to be direction-independent up to the sixth order of accuracy, an
additional condition d=2þ 2e ¼ �1=60 must be satisfied. The parameter k ¼ �vs=h is
determined from the Courant stability condition. The choice of the parameters d and
e specifies various variants of the scheme. In this paper, for simplicity, we assume that
d = 0; therefore, e = −1/120. The variant with d = 0 and e = 0 reduces the accuracy of
the scheme but also reduces the computation time because the diagonal elements are
excluded from the calculations.

Figure 5 shows the results of the numerical simulations for the 2D case. The
propagation of a short pulse in a homogeneous medium was computed using the 2nd-
order scheme (8) and the 4th-order scheme (9). The cross-sections of the pulse gen-
erated by the source according to formula (1) has the waveform shown in Fig. 4.
Figure 5 shows the cross-sections of the wave function u(r,t) perpendicular to the wave
front at the same time step for the 2nd-order scheme (solid line) and the 4th-order
scheme (dashed line). The X-axis shows the grid-point number. The computational

Fig. 2. The stencil of the second-order
2D FDTD scheme.

Fig. 3. The stencil of the fourth-order 2D
FDTD scheme.
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domain size is 200 � 200 mm, and the number of grid points is 350 � 350. The
central wavelength of the pulse is 7 mm, so there are approximately 12 grid points per
wavelength.

The time moment in Fig. 5 is chosen so that the wave propagation distance reaches
approximately 200 mm. It is evident that, for the 4th-order scheme, the distortion of the
pulse is insignificant and that, for the 2nd-order scheme, the grid step turned out to be
too large, which resulted in the distorted waveform and appearance of a “tail”. If we use
a grid that is two times finer in the 2nd-order scheme, we can obtain a waveform similar
to that in Fig. 5 for the 4th-order scheme. Thus, the use of the 4th-order scheme makes it
possible to reduce the grid size by a factor of 1.5–2 in each coordinate compared to the
2nd-order scheme for the problem of wave tomography, given parameters that are
typical for medical imaging.

3.2 Transparency Conditions for the Boundary of the Computational
Domain

When solving the “direct” (1)–(2) and “conjugate” (5)–(6) problems numerically, the
boundary conditions must be applied at the boundary ∂X. The boundary is assumed to
be located far enough from the domain R such that during the time T the waves from
the sources do not reach the boundary. In this case, the zero boundary conditions (2) are
automatically satisfied. When carrying out the calculations, we can either choose a
sufficiently large computational domain X or assume that X = R, which has a much
smaller volume, and apply the non-reflecting (“transparent”) boundary conditions.

In this paper, the numerical simulations are implemented with approximate
non-reflecting boundary conditions. There are various options for the “transparency”
conditions [21–25]. The first option considered in this study is to create a border zone
with a width of M grid points. Within this zone, an absorbing term a(r)ut (r,t) is added
to the left-hand side of the wave Eq. (1). The absorption coefficient quadratically
increases for the points closer to the boundary ∂R.

The second option is to apply non-reflecting boundary conditions (NRBC) at the
boundary of the computational domain. The exact NRBC formulation is non-local and
is quite difficult to calculate. The first-order approximation of the NRBC has the form

Fig. 4. Waveform of the
sounding pulse.

Fig. 5. Cross-sections of the propagating waves for the 2nd-
order (solid line) and 4th−order (dashed line) FDTD schemes.
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v @nuj@R ¼ �@tuj@R and is exact for incident waves propagating perpendicular to the
boundary. In this study, we use a second-order approximation, which has the form

@2u
@x@t

� 1
v
@2u
@t2

þ v
2
@2u
@y2

¼ 0: ð10Þ

Figure 6 shows the results of the 2D numerical simulations of a reflected pulse that
has a width of 10 mm (25 grid points) and amplitude of 1. Figure 6a shows the results
of the first method (absorbing layer). The width M of the absorbing layer is 50 points in
this case. Figure 6b shows the results of the second method (10). The solid line shows
the cross-section of the incident wave propagating perpendicular to the boundary, and
the dashed line shows that of the wave propagating at a 45-degree angle.

The X-axis shows the grid-point number, and the boundary is located at the right
edge of the plots. The maximum amplitude of the reflections in Fig. 6a is 5%, and in
Fig. 6b, it is 3%. In the second case, the reflections for the 90-degree angle of incidence
are practically absent. In the first case, the reflected signal is almost 10 times wider than
the original.

As follows from the numerical simulations, both methods allow us to approximate
the boundary transparency condition with good accuracy, including steep angles of
incidence. This made it possible to significantly reduce the size of the computational
domain compared to the size at which the wave does not reach the boundary in time T.
Even if a supercomputer is available, the reduction of the grid size is very important,
especially in the 3D case, where the number of operations grows as n4 and the data
volume grows as n3.

3.3 The Iterative Process of Solving the Inverse Problem

The following iterative process was used to solve the inverse problem numerically. As
the initial approximation, we use the value c(0) = c0 = const, which corresponds to the

a) b)

Fig. 6. The reflected waves for the 90-degree angle of incidence (solid line) and the 45-degree
angle (dashed line): (a) using an absorbing layer, (b) using a 2nd-order approximate NRBC.
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speed of sound in pure water, v0 = 1500 m�s−1. At each iteration (m), the following
actions are performed:

1. The “direct” problem (1)–(2) is solved for the current approximation cðmÞ. The
propagation of the wave u(m)(r,t) is computed using formula (8) or (9). The values
of u(r,t) at each detector are computed.

2. The residual U(m) = U(u(m)(r)) is computed using formula (3).
3. The “conjugate” problem (5)–(6) is solved for w(m)(r,t) The gradient U’C(u

(m)(r)) is
computed using formula (7) for all sources.

4. The current approximation is updated: c(m+1) = c(m) +k (m)U’C(u
(m)(r)). The process

returns to step 1.

The iteration process is stopped if the residual becomes smaller than some prede-
termined value, which corresponds to the a priori known precision of the measured
data. The step of the gradient descent k(m) is chosen based on a priori considerations.
Determining the step more precisely requires performing additional iterations and
would increase the computation time by a factor of 2 or more. If the residual U(m) at the
current iteration becomes larger that U(m−1), the step k(m) is reduced by a factor of 1.5.

4 Numerical Simulations of Ultrasonic Tomography
for the Second- and Fourth-Order FDTD Schemes

The numerical simulations for the 2D ultrasonic tomography problem were performed
according to the scheme shown in Fig. 1. First, the direct problem of wave propagation
through the simulated test object was solved using the 4th-order FDTD scheme (9). The
wave field at the perimeter of the square (Fig. 1) was recorded and used as simulated
measurement data to solve the inverse problem. The inverse problem was solved using
both the 4th- and 2nd-order FDTD schemes. The approximate non-reflecting boundary
condition (10) was applied.

The central wavelength of the pulse was 7 mm, the sound-speed range in the test
object — 1430–1600 m�s−1, the sound speed in the environment — 1500 m�s−1, the
size of the computational domain — 200 � 200 mm, and the size of the FDTD grid —
350 � 350 points. In the numerical simulations, we used eight sources that were
located in the middle of each side of the square and in the corners of the square, as
shown in Fig. 1. The detectors were located at the sides of the square with a pitch of
0.6 mm.

Figure 7a shows an image of the simulated test object, Fig. 7b shows the image
reconstructed using the 4th−order FDTD scheme, and Fig. 7c shows the image
reconstructed using the 2nd−order FDTD scheme.

Comparing Fig. 7b and c, we can see that the numerical dispersion shown in Fig. 5
becomes significant for the 2nd-order FDTD scheme and significantly deteriorates the
image quality, thus producing numerous artefacts. Using the 4th-order scheme allows
the reconstruction of not only the shapes of irregularities but also the sound-speed
function with high precision. Even small inclusions of size of 2–3 mm are recon-
structed, and the precision of the sound speed reconstruction is 10 m�s−1 or better.
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The computing time for the 2D problem using eight computing cores of the
“Lomonosov-1” supercomputer was approximately 2 h for 400 iterations of the gra-
dient method. Figure 7c shows the result obtained after 150 iterations; then, the process
stopped because the residual functional did not decrease any further.

The developed program for solving ultrasonic tomography problems is realized in
the C++ language, designed for operation on high-performance cluster computer sys-
tems under the control of one of the Linux OS clones. For interprocessor exchange, the
MPI interface was selected. Computations were carried out on the “Lomonosov-1”
supercomputer of the Lomonosov Moscow State University Supercomputer Center on
CPU Intel Xeon X5570 2.93 GHz processors, 1.5 GB of memory per core, 8 x86 cores
per node, Infiniband [26].

When carrying out computation in the problem under consideration on the CPU of
the cluster system, it is natural to have a two-level parallelization based on the number
of sources at the first level and then decomposition of the calculation area at the second
level. This approach was implemented when performing computations with the 2nd-
order FDTD scheme for 7-point stencil and showed high efficiency and scalability up to
several tens of thousands of computing cores [14]. Moreover, scalability by sources is
practically linear, since calculations for different sources are practically independent.
When parallelizing the decomposition of the calculation area, it is necessary to perform
data exchanges between neighboring regions, so the decomposition into too small areas
is impractical. In the present work, in computations with the 4th-order FDTD scheme
for 27-point stencil, parallelization by sources was performed, which showed linear
scalability. Parallelization by the technique of domain decomposition is supposed to be
implemented in subsequent works.

As follows from the results of the work, using the 4th-order FDTD scheme allows
us to reduce the size n of the computational grid by a factor of 1.5–2 compared to the
2nd-order scheme while maintaining the accuracy of the calculations. This fact is very
important for inverse problems of wave tomography, especially in the 3D case, because
the computation time increases as n4. Although the increase of the stencil size causes
approximately a two-fold increase of the computation time per grid point and a
two-fold increase in inter-processor communications if the domain is divided among
multiple processors, the number of grid points decreases by at least a factor of 3.

a) b) c)

Fig. 7. (a) Simulated test object, (b) the image reconstructed using the 4th-order FDTD scheme,
(c) the image reconstructed using the 2nd-order FDTD scheme.
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Moreover, for GPU processors, the memory requirement is a very important factor.
For efficient GPU computing, all of the data used in the FDTD scheme must reside in
the on-board memory of the GPU device. The volume of these data grows as n3 in the
3D case. The memory capacity limits the problem size to *5003 points per computing
node. This number of points is insufficient for precise calculations using a 2nd-order
finite-difference scheme.

5 Conclusions

This paper is concerned with the optimization of numerical algorithms for solving the
inverse problem of wave tomography using supercomputers. To reduce the computa-
tional grid dimensions, required memory capacity and computation time and to
improve the accuracy of the calculations, the use of higher-order finite-difference
schemes is proposed. It is shown that the fourth-order FDTD scheme allows us to
decrease the grid size by a factor of 1.5–2 in each dimension compared to a
second-order scheme while preserving the accuracy of the calculations. This approach
significantly reduces both the computation time and the required memory capacity.

An important issue for numerical methods is the problem of boundary conditions
for solving direct and inverse problems in a bounded domain. The article discusses two
approximate methods that implement boundary “transparency”. It is shown that both
methods allow precise calculations and have significantly smaller computational
complexities than exact non-reflecting boundary conditions.

The inverse problem is formulated as the incomplete-data tomography problem,
where the sources and the detectors cannot be located on all sides of the examined
object. To solve this important problem mathematically strictly, a method of calculating
the gradient of the residual functional is proposed, which includes solving special
“direct” and “conjugate” problems.

The proposed optimization scheme of the numerical algorithms is relevant due to
the very large amount of computations required to solve the problems of wave
tomography. The method is easy to implement on supercomputers.

Acknowledgements. This research was supported by Russian Science Foundation (project
No. 17–11–01065). The study was carried out at the Lomonosov Moscow State University.

References

1. Bazulin, A.E., Bazulin, E.G., Vopilkin, A.K., Kokolev, S.A., Romashkin, S.V., Tikhonov,
D.S.: Application of 3D coherent processing in ultrasonic testing. Russ. J. Nondestr. Test.
50(2), 92–108 (2014)

2. Ruvio, G., Solimene, R., D’Alterio, A., Ammann, M.J., Pierri, R.: RF breast cancer detection
employing a noncharacterized vivaldi antenna and a MUSIC-inspired algorithm. Int. J. RF
Microwave Comp. Aid Eng. 23, 598–609 (2012)

3. Tran-Duc, T., Linh-Trung, N., Do, M.N.: Modified distorted born iterative method for
ultrasound tomography by random sampling. In: International Symposium on Communi-
cations and Information Technologies (ISCIT), pp. 1065–1068, Gold Coast, QLD (2012)

Optimization of Numerical Algorithms for Solving Inverse Problems 77



4. Goncharskii, A.V., Romanov, S.Y.: On a three-dimensional diagnostics problem in the wave
approximation. Comput. Math. Math. Phys. 40(9), 1308–1311 (2000)

5. Goncharskii, A.V., Ovchinnikov, S.L., Romanov, S.Y.: On the one problem of wave
diagnostic. Moscow Univ. Comput. Math. Cybern. 34(1), 1–7 (2010)

6. Duric, N., Littrup, P., Li, C., Roy, O., Schmidt, S., Janer, R., Cheng, X., Goll, J., Rama, O.,
Bey-Knight, L., Greenway, W.: Breast ultrasound tomography: bridging the gap to clinical
practice. In: Proceedings of SPIE, Medical Imaging: Ultrasonic Imaging, Tomography, and
Therapy, vol. 8320, p. 83200O (2012)

7. Gemmeke, H., Berger, L., Birk, M., Gobel, G., Menshikov, A., Tcherniakhovski, D., Zapf,
M., Ruiter, N.V.: Hardware setup for the next generation of 3D ultrasound computer
tomography. In: IEEE Nuclear Science Symposuim and Medical Imaging Conference,
pp. 2449–2454 (2010)

8. Wiskin, J., Borup, D., Andre, M., Johnson, S., Greenleaf, J., Parisky, Y., Klock, J.:
Three-dimensional nonlinear inverse scattering: Quantitative transmission algorithms,
refraction corrected reflection, scanner design, and clinical results. J. Acoust. Soc. Am.
133, 3229 (2013)

9. Natterer, F.: Possibilities and limitations of time domain wave equation imaging.
Contemp. Math. Providence Am. Math. Soc. 559, 151–162 (2011)

10. Natterer, F.: Sonic imaging. In: Handbook of Mathematical Methods in Imaging, pp. 1253–
1278. Springer, New York (2015)

11. Beilina, L., Klibanov, M.V., Kokurin, M.Y.: Adaptivity with relaxation for ill-posed
problems and global convergence for a coefficient inverse problem. J. Math. Sci. 167,
279–325 (2010)

12. Beilina, L., Klibanov, M.V.: Approximate Global Convergence and Adaptivity for
Coefficient Inverse Problems. Springer, New York (2012)

13. Goncharskii, A.V., Romanov, S.Y.: Two approaches to the solution of coefficient inverse
problems for wave equations. Comput. Math. Math. Phys. 52, 245–251 (2012)

14. Goncharsky, A.V., Romanov, S.Y.: Supercomputer technologies in inverse problems of
ultrasound tomography. Inverse Probl. 29(7), 075004 (2013)

15. Goncharsky, A.V., Romanov, S.Y.: Inverse problems of ultrasound tomography in models
with attenuation. Phys. Med. Biol. 59(8), 1979–2004 (2014)

16. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Inverse problems of 3D ultrasonic
tomography with complete and incomplete range data. Wave Motion 51(3), 389–404 (2014)

17. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: A computer simulation study of
soft tissue characterization using low-frequency ultrasonic tomography. Ultrasonics 67,
136–150 (2016)

18. Goncharskii, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Low-frequency three-dimensional
ultrasonic tomography. Dokl. Phys. 61(5), 211–214 (2016)

19. Goncharsky, A.V., Romanov, S.Y.: Iterative methods for solving coefficient inverse
problems of wave tomography in models with attenuation. Inverse Prob. 33(2), 025003
(2017)

20. Bilbao, S.: Numerical Sound Synthesis: Finite Difference Schemes and Simulation in
Musical Acoustics. Wiley, Chichester (2009)

21. Manolis, G.D., Beskos, D.E.: Boundary Element Methods in Elastodynamics. Unwin
Hyman, London (1988)

22. Givoli, D., Keller, J.B.: Non-reflecting boundary conditions for elastic waves. Wave Motion
12(3), 261–279 (1990)

23. Clayton, R., Engquist, B.: Absorbing boundary conditions for acoustic and elastic wave
equations. Bull. Seismol. Soc. Am. 67(6), 1529–1540 (1977)

78 S. Romanov



24. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of
waves. Math. Comput. 31, 629 (1977)

25. Alpert, B., Greengard, L., Hagstrom, T.: Boundary conditions for the time-dependent wave
equation. J. Comput. Phys. 180, 270–296 (2002)

26. Sadovnichy, V., Tikhonravov, A., Voevodin, V., Opanasenko, V.: “Lomonosov”: Super-
computing at Moscow State University. In: Vetter, Contemporary High Performance
Computing: from Petascale Toward Exascale, pp. 283–307. Chapman and Hall/CRC, Boca
Raton (2013)

Optimization of Numerical Algorithms for Solving Inverse Problems 79



The Comparison of Large-Scale Graph Processing
Algorithms Implementation Methods for Intel KNL

and NVIDIA GPU

Ilya Afanasyev(✉) and Vladimir Voevodin

Lomonosov Moscow State University, Moscow, Russia
afanasiev_ilya@icloud.com

Abstract. The paper describes implementation approaches to large-graph
processing on two modern high-performance computational platforms: NVIDIA
GPU and Intel KNL. The described approach is based on a deep a priori analysis
of algorithm properties that helps to choose implementation method correctly. To
demonstrate the proposed approach, shortest paths and strongly connected
components computation problems have been solved for sparse graphs. The
results include detailed description of the whole algorithm’s development cycle:
from algorithm information structure research and selection of efficient imple‐
mentation methods, suitable for the particular platforms, to specific optimizations
for each of the architectures. Based on the joint analysis of algorithm properties
and architecture features, a performance tuning, including graph storage format
optimizations, efficient usage of the memory hierarchy and vectorization is
performed. The developed implementations demonstrate high performance and
good scalability of the proposed solutions. In addition, a lot of attention was paid
to profiling implemented algorithms with NVIDIA Visual Profiler and Intel®
VTune ™ Amplifier utilities. This allows current paper to present a fair compar‐
ison, demonstrating advantages and disadvantages of each platform for large-
scale graph processing.

Keywords: Graph algorithms · GPU · KNL · CUDA · Vectorization · SSSP ·
SCC · Large-scale graph processing

1 Introduction

The interest to large-scale graph processing is growing rapidly, since graphs successfully
emulate real-world objects and connections between them. In many areas, people need
to identify some patterns and rules from object relationships that results into processing
large amounts of data. The examples of such objects and relationships are: analysis of
social, semantic and Internet networks, infrastructural problems solution (analysis of
transport and energy networks), biology (analysis of the network of protein-protein
interactions), health-care (epidemic spreading analysis), social-economic modelling. All
those problems have one common property: their model graphs have a very large size,
so a parallel approach is required to perform computations in reasonable amount of time.
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The question, which parallel computational platforms are able to process graphs
more efficiently, is still open. Graphic accelerators and coprocessors perform really well
for solving traditional problems, such as linear algebra computations, image processing
or solving molecular dynamics problems, since they provide high performance and
energy efficient computational power together with high throughput memory. The most
well-known and widely used families of coprocessors are NVidia GPU and Intel Xeon
Phi. Recent important trend is that vendors try to combine central processors and copro‐
cessor functions, which results into modern KNL Xeon PHI architecture.

2 Target Architectures

2.1 NVidia GPU

Modern NVidia GPUs belong to three architectures: Kepler, Maxwell and Pascal.
Currently, Kepler is the most common and widely used architecture in HPC. Tesla K40
accelerator, which has been used for all testing in current paper, has 2880 cores with
clock signal rate of 745 MHz. This GPU provides peak performance up to 4.29 TFLOPs
on single precision computations and 12 GB device memory with 288 GB/s bandwidth.
The PCI-express 3.0 bus with 32 Gbps bandwidth is used to maintain connection
between host and device. Memory hierarchy also includes L1 (64 KB), and L2 (1.5 MB)
caches. Device computational model is very important: thread is a single computational
unit; 32 threads are grouped into a warp, which works using SIMD approach. The warp
performance is also very affected by memory access data pattern (coalesced memory
access) and conditional operations presence.

During the tests the corresponding host was equipped with Intel(R) Xeon(R) CPU
E5-2697 v3 @ 2.60 GHz processor. For compilation NVCC v6.5.12 from CUDA Toolkit
6.5 has been used with –O3 –m64 –gencode arch = compute_35,code = sm_35 options.

2.2 Intel KNL

The newest architecture of Intel Xeon Phi coprocessors is Knights Landing (KNL). Each
processor has 64-72 cores (in current paper a 68-core accelerator is used) with a clock
signal rate of 1.3-1.5 GHz. Processor provides a peak performance up to 6 TFLOPs on
single precision computations. It also has two memory levels: high-bandwidth
MCDRAM memory with a capacity up to 16 GB and bandwidth up to 400 GB/s, and
DDR4 memory with a capacity up to 384 GB and bandwidth up to 90 GB/s. Cores are
grouped in Tile-s (pair of cores), each having a common 1 MB size L2 cache. Another
important feature of Intel KNL is the support of vector instructions AVX-512, containing
gather and scatter operations, which are necessary for graph processing. For compilation
ICC 17.0.0 has been used with –O3 –m64 options.

The Comparison of Large-Scale Graph Processing Algorithms 81



3 State of Art

Algorithms for solving shortest paths problem for CPU and GPU are described following
papers: [1–3] This approach can be applied for KNL architecture too, which is demon‐
strated in the current paper. Sequential (Tarjan) algorithm for solving strongly connected
components problem is presented in [4]. Another algorithm (Forward-Backward), which
has a much larger parallelism potential, but also have a larger computational complexity,
is presented in the papers [5, 6]. CUDA implementation of this algorithm is also
researched in papers [6, 8].

4 Research Methodology

The current paper uses the following structure to describe both graph problems. First,
an accurate mathematical problem definition is formulated, to prevent any ambiguity.
After that, a review of most important possible algorithms is presented together with
target architecture features. Based on the results of this survey, well-suited algorithms
for all architectures are selected.

After that, first implementation of all selected algorithm is developed, followed by
a series of iterative optimizations and profiling. It is extremely important to analyze the
final implementation perfomance, and how well the implementations use target hard‐
ware features. As a result, conclusions about advantages and disadvantages of both
architectures for solving a specific graph problem can be presented.

5 Shortest Paths Problem

5.1 Mathematical Description

A directed graph G = (V , E) with vertices V = (v1, v2,… , vn) and edges
E = (e1, e2,… , em) is given. Each edge e ∈ E has a weight value w(e). The path is defined
as edges sequence 𝜋u,v =

(
e1,… , ek

)
, beginning in vertex u and ending in vertex v, so

that each edge follows another one. A path length can be defined as w
(
𝜋u,v

)
=

k∑

i=1
w
(
ei

)
.

A path 𝜋∗

u,v with minimal possible length between vertices u and v is called a shortest

path: d(u, v) = w
(
𝜋
∗

u,v

)
= min w

(
𝜋u,v

)
.

Depending on a vertices pair choice, between which a search is performed, the
shortest paths problem can be formulated in three different ways:

– SSSP (single source shortest paths) — shortest paths from a single selected source
vertex are computed.

– APSP (all pairs shortest paths) — shortest paths between all pairs of graph vertices
are computed.

– SPSP (some pairs shortest paths) — shortest paths between some pre-selected pairs
of vertices are computed.
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In the current paper the SSSP problem will be researched, since it is the simplest and
most basic between these problems: for example, APSP problem for large-scale graphs
can be solved by repeated calls of SSSP operation for each source vertex, since tradi‐
tional algorithms, such as Floyd-Warshal, can not be applied because high memory
requirements.

5.2 Algorithm Descriptions

SSSP problem can be solved with two traditional algorithms: Dijkstra and Bellman-
Ford.

– Dijkstra’s algorithm is designed to solve the problem in graphs with edges, having
only non-negative weights. A variation of the algorithm, implemented with a Fibo‐
nacci heap has the most efficient time complexity O(|E| + |V|log|V|). The algo‐
rithm’s computational core includes sequential traversals of vertices beginning from
the source vertex; during each traversal algorithm while puts adjacent vertices to the
stack (or heap), so they can be processed later. As a result, the global vertices traversal
in the algorithm can be performed only sequentially, while local adjacent vertices
traversal can be executed in parallel as described in [10], but it’s usually provides
not enough parallelism for significant GPU utilization.

– Bellman-Ford algorithm is designed to solve the problem in graphs, including those
which have edges with negative weights. The computational core of the algorithm
consists of a few iterations, each of which requires traverses of all graph edges.
Computations continue until there are no changes in the distance array. The algorithm
has a sequential complexity equal to O(p|E|), where p is the maximum possible length
of the shortest path from the source vertex to any other. As a consequence, the worst-
case complexity is equal to O(|V||E|). However, for many real-world graphs, the
algorithm is terminates in a much smaller amount of steps. Moreover, the algorithm

has a significant parallel potential: its parallel complexity is equal to O
(

p
|E|
N

)
, where

N is the number of processors being used.

5.3 Algorithm Selection for Target Architectures

Before the implementation, one needs to select the algorithms, most suitable for all target
architectures. Both KNL and NVidia GPU have a large number of cores with a relatively
low clock rate. If Dijkstra’s algorithm, which is strictly sequential, is used for compu‐
tations, all those cores will be idle, and, in addition, it will be very difficult to handle a
stack or queue complex data structures on cores with a low clock rate. At the same time,
Bellman-Ford algorithm does not require a processing of complex data structures;
moreover, on any iteration this algorithm performs a parallel traversal of all graph edges.
It will be shown later, that those properties will compensate algorithm’s greater arith‐
metical complexity. In addition, it is possible to develop Bellman-Ford algorithm modi‐
fication, which allows to process graphs with a size larger than the amount of available
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memory. This property is very important advantage for architectures with a limited
amount of available memory, such as GPUs.

Before implementing the chosen algorithm, it is important to determine the storage
data format for input graphs. For Bellman-Ford algorithm, the most suitable format is
an edges list, where each edge is stored as a triple {vertex-start, vertex-end, edge’s
weight}; all edges are stored in a single array in any order.

5.4 GPU Implementation

5.4.1 Basic Version
CUDA-kernel, implementing the basic version of Bellman-Ford algorithm for the GPU
is presented in listing 1:

Listing 1: Bellman-Ford algorithm’s CUDA-kernel

The presented non-optimized kernel fully corresponds to the classical version of
Bellman-Ford algorithm. The kernel is executed on number of threads, equal to the graph
edges count. Each thread gets its corresponding edge’s data (5) (6) (7), then reads current
distance data of source and destination vertices of corresponding edge (9) (10). If those
values minimize current distance to the destination vertex, the array of distances (12),
(14) is updated. In Fig. 1 the results of profiling (obtained with NVidia Visual Profiler)
of the kernel are presented, clearly demonstrating kernel’s disadvantages.

A first important observation is that this kernel is memory-bound, since every two
arithmetic operations are followed by 6 memory access operations. Second, there is an
indirect addressing during (9), (10), (12) and (14) memory accesses, where the optimal
memory access pattern for the GPU is violated (coalesced memory access). In addition,
values src_id and dst_id may point into completely different memory locations, what
prevents efficient using of GPU caches.

The results of profiling clearly demonstrate the main reason of basic kernel’s low
performance — inefficient usage of GPU memory bandwidth (“device memory total”
metric, due to non-coalesced memory accesses), as well as weak usage of L1 and L2
caches (due to weak locality of data accesses). These problems can be avoided with
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graph storage format optimization, which allows changing memory access pattern,
making it more suitable for GPU architecture.

5.4.2 Graph Storage Format Optimization
In the current section, the main optimization (graph edges reordering) is described. It
allows improving memory access pattern, to achieve higher performance, since the data
with indirect memory accesses will be placed more locally and stored in the caches.
Modern K40 GPUs of Kepler architecture are equipped with 64 KB of L1 cache and
1.5 MB of L2 cache. The distances array has 1 MB size for a graph with 218 vertices,
2 MB for a graph with 219 vertices; so, even for medium-scaled graphs, the whole
distance array can’t be fully placed in caches.

That is why edges rearrangement strategy is used to make sure that the data from
distances arrays remains in cache memory as long as possible. The reordering process
is illustrated in Fig. 3. A similar reordering approach is described in [7].

Fig. 1. Analysis of memory bandwidth usage for the basic kernel implementation.

Fig. 2. Graph edges reordering example for graph with 5 vertices and 16 edges. (Color figure
online)
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Fig. 3. Analysis of memory bandwidth of basic kernel with optimized graph format storage

An array of distances is divided into segments (red, green and blue colors – in
Fig. 2), which size is equal to the size of the lowest level cache - L2 for GPU (size 2 on
Fig. 2). After that, the edges are placed into the array in the following way: in the begin‐
ning of the array edges are stored, which source vertices belong the first segment of the
distances array, then to the second, then to the third. Edges with the same segment
number are sorted with the similar strategy, applied to their destination vertices.

Due to described sorting approach, threads from the same warp will be accessing
data within one or two segments; this result into a smaller number of different memory
cells accessed by a single warp. Without this optimization, 32 different memory cells
could be accessed, which would lead to a 32-times slowdown. The profiling report of
optimized kernel is presented on Fig. 3. It demonstrates almost 5 times increase in used
memory bandwidth (device memory reads/ total). In addition, for the threads from a
single block, distance array data will be stored in L2 cache for a much longer time, which
can be also observed on presented profiling report: L2 cache used bandwidth is 15x times
better now.

5.4.3 GPU Implementation Results
The performance comparison between basic and fully optimized kernel versions (with
graph storage format optimization) is demonstrated on Fig. 4. Another important GPU-
program characteristic is the percentage of program execution time, spent for data trans‐
fers between host and device. That is why fully optimized version is represented with
two curves: with and without time spent for memory copy operation. The performance
is measured with TEPs metrics — number of traversed edges per second (the edge is
considered “traversed” when the data about it’s source and destination vertices is
requested). RMAT graphs with average connection count equal to 32 and vertices count
from 215 to 224 are used as input data.
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Fig. 4. Performance comparison of GPU Bellman-Ford algorithms versions, RMAT graphs with
215 — 224 vertices.

Figure 4 demonstrates two important implementation properties. First, non-opti‐
mized and optimized versions have similar behavior on graphs with size less than 218,
since on smaller sizes graphs corresponding to the distances array can be fully placed
into L2 cache of GPU. Second, the presented results demonstrate, that data transfers
between host and device indeed require a significant amount of time. However, in other
shortest paths problem variations (APSP, SPSP), data transfers will be less important,
since more computations will be performed after coping data into device memory.

5.5 KNL Implementation

First of all, it is important to decide which parallel technology should be used for KNL
implementations [9]. The two most widely-used technologies are openMP and Intel
TBB. Experimental results confirm that openMP technology is more suitable for graph
algorithms implementations, since it requires fewer overheads for threads creation and
synchronizations.

Simple openMP implementation is universal, since it can be compiled and executed
on both classic CPUs and on Intel Xeon co-processors. However, even for the simplest
version it is important to take into an account some KNL features, discussed below.

First, the threads creation must be performed only once in the beginning of the algo‐
rithm. Second, the number of synchronizations between threads should be minimized,
since those synchronizations are extremely expensive with a larger number of parallel
threads (60-70 for KNL). Last, it is important to select thread scheduler correctly
between static, guided and dynamic thread scheduling policies. VTune Amplifier anal‐
ysis on Fig. 5, demonstrates the crucial difference between static and guided modes.
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Fig. 5. Threads occupation analysis for static (top) and guided (bottom) modes, red color shows
threads stall time. (Color figure online)

In addition, Intel KNL has two types of memory: DDR4 and MCDRAM. The
simplest usage of high-performance MCDRAM memory is possible with the following
command: numactl -m 1./program_name, where 1 is the MCDRAM memory node
number. Also, hbwmalloc library can be used to allocate MCDRAM memory region
inside the program; it allows allocating only certain arrays in high-bandwidth memory,
if program memory requirements are larger than MCDRAM memory size. It can be very
useful for large-scale graph processing, where only the distances array can be stored in
MCDRAM memory, while edges arrays can be stored in usual DDR4 memory with
larger size (Fig. 6).

Fig. 6. Memory throughput usage analysis for different types of launches: program launched on
MCDRAM node (bottom) and DDR4 node (top)

As second optimization, a similar reordering of graph edges (discussed in
Sect. 5.4.2) was performed. Segment size was chosen equal to KNL L2 cache size,
devided on two (since L2 cache is shared by 2 cores in Tile).

The last important optimization was vectorization. An important feature of vectori‐
zation is the possibility to manually load distance data into the cache using
_mm512_prefetch_i32extgather_ps instructions. As a result, vectorization allowed to
achieve in average 1.5 times acceleration, which can be observed on Fig. 7.
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5.6 GPU and KNL Implementations Comparison

Current section demonstrates general comparison of the two architectures in the context
of solving shortest paths problem. The two GPU implementations are presented: with
and without memory copies from host to device and back. For Intel KNL, the most
optimized version with vectorization is presented. All graphs used for testing have
RMAT and SSCA-2 structure and average connections count equal to 32.

Results from Fig. 8 demonstrate, that, first, KNL is able to process graphs with larger
size. GPU is limited with 12 GB device memory, which can only contain graphs with
224 vertices and 229 edges. KNL processors can be equipped with up to 384 GB memory,
which is able to contain graphs with up to 229 vertices and 234 edges.
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Fig. 8. Performance of Bellman-Ford algorithm implementations for different architectures.
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Fig. 10. Forward-Backward-Trim algorithm implementations performance for different
architectures: NVidia GPU (left) and Intel KNL (right). RMAT graphs with 218 — 225 vertices.

Second, GPU has better performance on small-scale RMAT graphs, since it requires
less preprocessing before starting computations (no reallocation of aligned arrays and
faster threads creation), but on large-scale RMAT graphs KNL show higher perform‐
ance. For SSCA-2 graphs performance behavior is different, because of irregular size
of those graphs cliques. As a result, the following conclusion can be made: KNL has
better performance for large-scale graphs of both types, and is also capable of processing
significantly larger graphs.

90 I. Afanasyev and V. Voevodin



6 Strongly Connected Components

6.1 Mathematical Description

A directed graph G = (V , E) with vertices V = (v1, v2,… , vn) and edges
E = (e1, e2,… , em) is given. Edges may not have any data assigned (so graphs without
edges weights are discussed in the current section). A strongly connected component
(SCC) of a directed graph G is a strongly connected subgraph, which is maximal within
the following property: no additional vertices from G can be included in the subgraph
without breaking its property of being strongly connected.

6.2 Algorithm Descriptions

Strongly connected components can be found with one of the following algorithms.

– Tarjan’s algorithm is based on a single depth first search (DFS) and uses O(|E|)
operations. Due to the fact that the algorithm is based on the DFS, only a sequential
implementation is possible.

– The DCSC algorithm (Divide and Conquer Strong Components), or FB (Forward-
backward) is based on BFS and requires O(|V| ∗ log(|V|)) operations. This algorithm
is initially designed for parallel implementations: at each step it finds a single strongly
connected component and allocates up to three subgraph, each of which may contain
other strongly connected components, and, as a result, can be processed in parallel.

– Variations of the DCSC algorithm, such as Coloring and FB with step-trim. These
modified versions of the DCSC algorithm are described in detail in papers [5, 6].

6.3 Algorithm Selection for Target Architectures

For obvious reasons, Tarjan’s algorithm is not suitable for solving SCC problem on
parallel architectures, since it is based on a depth first search, as well as complex data
structures (stack and queue) processing, which can not be implemented efficiently on
GPUs.

A large number of papers, such as [6], have already investigated different variation
of DCSC algorithms, which can be more or less effective for different types of graphs;
paper [6] concludes that the forward-backward-trim algorithm is the most efficient way
to process RMAT graphs; the same was also proved during the current research.

The Forward-Backward-Trim algorithm is designed in the following way: in the first
step, the removal of the strongly connected components of size 1 is performed. After
that, on each step the algorithm finds one nontrivial strongly connected component and
allocates up to three subgraphs, each of which contains other components, and, more
important, can be processed in parallel. This step heavily relies on breadth-first search
to find all vertices, which can be reached from the selected pivot, and all vertices, from
which the current pivot vertex can be reached. Thus, this algorithm has two levels of
parallelism: “BFS level” and “parallel subgraphs handling level”, which appears to be
a big advantage for target parallel architectures.
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6.4 GPU Implementation

A forward-Backward-Trim algorithm is based on three important stages — a trim step,
a pivot selection and BFS in selected subgraphs. At the trim step the number of edges,
adjacent to each vertex (equal to number of incoming and out-coming edges), is calcu‐
lated, with a removal of vertices, which incoming or outgoing degrees are equal to zero.
Since the graph is stored in edges list format, these values can be computed using new
atomic operations, added in Kepler architecture. Random pivot selection can be imple‐
mented with a simple kernel, based on random nature of thread execution. Breadth-first
search can be performed by the algorithm, similar to Bellman-Ford shortest paths
computations. The downward is that it has a higher computational complexity, compared
to the traditional BFS algorithm (using queues), but for RMAT graphs the efficiency of
proposed approach has already been demonstrated.

Since all steps can be implemented for a graph, which is stored in edges list format,
this format is selected again for graph storage. Since FB algorithm will be performing
BFS and trim steps both in original and transposed graphs, it is even more important to
sort graph edges using approach, already discussed in Sect. 5.4.2. Without edges reor‐
dering, sub step performance (such as BFS) in transposed graph will be much lower,
compared to the performance in original graph.

There is another way how this problem can be avoided — with a pre-processing
transpose of the input graph before SCC operation (as proposed in [8]), but edges reor‐
dering is proved to be much more efficient for two reasons. First, edges reordering can
be performed much faster on parallel architectures (such as KNL), since it can be based
on parallel sorting algorithms, and does not require complex data structures (like maps
or dictionaries) to be supported. Second, proposed reordering is universal for many
different operations. For example, this reordering can be used to improve performance
for shortest paths, breadth-first search, bridges and transitive closure computational
problems. As a result, input graphs can be optimized right after generation, and stored
in reordered intermediate representation to allow more efficient graph processing in the
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Fig. 11. Forward-Backward-Trim algorithm implementations performance for different
architectures. RMAT graphs with 218 — 227 vertices.
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future. Figure 11 in next section demonstrates computational time difference between
two approaches: when input graph is optimized and not.

It is important to notice the percentage of time, required for trim and BFS steps. Later
it will be shown, that these values greatly differ for both architectures. For GPU archi‐
tecture and RMAT graphs this ratio is approximately equal to 6:10; the trim step requires
slightly less time, since atomic operations implementation in Kepler architecture is very
effective.

6.5 KNL Implementation

First of all, it is important to study algorithms, implementing sub steps performance
separately for all steps: trim, BFS and pivot selection. Trim step on KNL is executed in
average 1.1-1.2x times slower, compared to GPU, since the openMP atomic operations
appear to be less efficient compared to GPU ones. The breadth-first search, in contrary,
can be implemented much more efficiently on KNL, using vectorization and similar to
Bellman-Ford approach. Figure 9 demonstrate BFS-only step performance for single
graph traversal; for RMAT graphs trim/BFS ratio is almost 1:1 on KNL.

As shown in Fig. 9, the Intel KNL BFS implementation has significantly better
performance on large-scale graphs, compared to GPU implementation (Fig. 10).

6.6 GPU and KNL Implementations Comparison

Similar to previously discussed shortest paths problem, SCC algorithm implementation
for Intel KNL is also capable of processing larger graphs (up to 227) vertices. Since
strongly connected components problem doesn’t require edges weights stored, this value
is bigger, compared to shortest paths one (226). Inetl KNL also demonstrates slightly
better execution time, since its BFS implementation for RMAT graphs demonstrates
better performance.

7 Conclusion

In the current paper, an implementation comparison of two important graph-processing
problems on modern high-performance architectures (NVidia GPU and Intel KNL) has
been discussed in details. Algorithms have been selected for both architectures, based
on algorithm properties and target architecture features. As a result of many optimiza‐
tions, high-performance and scalable parallel implementations have been created; more‐
over, the implementations have been examined in details using profiling utilities and
theoretical research, which granted the ability to find potential bottlenecks and signifi‐
cantly improve final performance.

The best performance was achieved by Intel KNL processor for both investigated
problems. Moreover, it was shown that Intel KNL is capable of processing much larger
graphs with up to 134 million vertices and 42 billion edges. On K40 GPU, the maximum
processed graph consisted from 33 million vertices and 10 billion edges. It is important,
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that Kepler architecture accelerators are currently outdated, while new GPUs from
Pascal generation can achieve higher performance.

The results were obtained in the Lomonosov Moscow State University with the
financial support of the Russian Science Foundation (agreement N 14-11-00190).
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Abstract. A dynamical model of continuously variable transmission
(CVT) is considered. The model is described by ordinary differential
equations (ODE) of motion with about 1800 generalized coordinates,
and the same number of generalized speeds. Despite the low dimension
of the model, the times of numerical simulations of global dynamics are
high due to the properties of the system, namely its stiffness. This work
presents our activities aimed on the reduction of simulation time. Two
approaches are covered. The first one is to parallelize the code computing
ODE right-hand side using OpenMP. The other one is to find or develop
a faster numerical integration method. The paper presents results of per-
formance tests of the parallelized algorithm on various computer systems
and describes scalability problems related to peculiarities of the NUMA
architecture. The second approach is illustrated by the results of appli-
cation of several explicit and implicit numerical methods.

Keywords: Dynamics simulation · Initial value problem · Numerical
integration · Parallel algorithm

1 Introduction

In this paper we consider numerical simulations of global dynamics for a model
of continuously variable transmission (CVT).

Mathematical model of CVT has been obtained in the framework of
Lagrangian mechanics and contains about 1800 generalized coordinates, plus
the same number of generalized speeds, so the total problem dimension is about
3600. To numerically simulate dynamics, one has to solve an initial value problem
for ordinary differential equations (ODE).

Taking into account today’s sizes of numerical problems solved in the fields
of structural mechanics, computational fluid dynamics, and others, we have to
state that our problem has a low dimension. Nevertheless, simulation running
times are high: sequential code takes several hours of CPU time to simulate
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V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 95–107, 2017.
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one second of real time. Speeding up simulations is important since it enables
user to apply new analysis types, such as optimization, based on global dynamics
simulations. Therefore, a significant speedup factor is highly desired for practical
applications. To achieve this goal, we use two approaches.

First of all, it is possible to parallelize the code implementing the numeri-
cal simulation, aiming on modern multi-core or hybrid hardware architectures.
However, the scalability of parallelization is very limited due to low dimension
of the problem and the heterogeneity of the model.

The paper is organized as follows. Section 2 presents an overview of the
model. Section 3 discusses current results of OpenMP-based parallelization of the
code. Section 4 illustrates the behavior of various numerical integration methods
applied to the problem of CVT dynamics. Section 5 provides a summary of the
results obtained and outlines future work.

2 CVT Model Overview

The model of CVT includes two elastic shafts, the input and the output one, on
nonlinearly elastic supports. There are two pulleys on each shaft, one motion-
less and one moving (Fig. 1). The pulleys have toroidal (almost conical) contact
surfaces. There is a chain consisting of rocker pins and plates (Fig. 2). Each pin
has two halves that roll over each other during chain motion. End surfaces of
pin halves are in contact with the pulleys. The application of clamping forces to
pulleys leads to certain chain configuration such that pins are at certain contact
radius at each pulley set; the gear ratio can be changed by shifting the moving
pulleys along the shafts. The torque is transmitted due to the friction forces at
pin-pulley contact points. Mathematical models of CVT parts for global dynam-
ics simulation have to be as simple as possible, while being able to correspond
to the reality good enough and represent stressed and deformed state in indi-
vidual elements, such as pins and links. Therefore, CVT shafts, rocker pins, and
plates are modeled as elastic bodies. To describe the state of CVT chain, there
are 21 generalized coordinates per link: 10 for each pin half (at each end of pin
half axis, there are three coordinates determining its position and two angles
determining its small slope; rotation of a pin half about the axis is determined
by the positions of the neighboring pins) and one to determine the position of
pack of plates along pin axis (see Fig. 3). Those coordinates fully determine the
deformed state of each pin half and each plate in our model of CVT chain.

There are many contact interactions in the CVT model: first of all, we have
pin-pulley contact; there are two more types of contact, namely the interactions
between pin halves and between a pins and plates (Fig. 4).

Special attention should be paid to the contact interaction between pins and
pulleys because the torque is transmitted solely due to the friction forces at
pin-pulley contact points. The model of contact interaction is physically very
simple: for each end surface of a pin half, the interaction is localized at one
point; in that point, normal reaction force N and tangential friction force R are
applied to pin half, and the opposite forces are applied to the pulley (Fig. 6).
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The elastic normal reaction force is computed according to the Hertz’ theory [1];
the contact deformation is assumed to be the depth of mutual penetration of
contact surfaces, which remain rigid. The friction force is proportional to the
normal reaction magnitude and the friction coefficient f . The latter is assumed
to be a function of relative tangential speed v, and the dependency corresponds
to the Coulomb friction at speeds higher than v0 (a constant parameter), and
to the linearly viscous friction at speeds less than v0 (Fig. 5), so there is no
sticking at contact point. The accepted friction law can be interpreted as a kind
of regularization of the Coulomb dry friction; the value of v0 is quite small, which
is a source of numerical stiffness of resulting ODEs.

To resolve contact point kinematics, contact surfaces are locally approximaed
with quadratic functions, which allows to determine the right position of con-
tact point on pin half end surface. This is important because the contact point
positions ultimately determine the deformed state of pins and plates.

The model of CVT is described in more detail in [2].
Differential equations of motion for the CVT model are obtained in the frame-

work of Lagrangian mechanics, so they have the following form:

d

dt

∂L

∂q̇k
− ∂L

∂qk
= Q̃k, k = 1, . . . , n, (1)

where t is the time, qk are generalized coordinates, L is the Lagrangian, Q̃k

are non-potential applied generalized forces, and n is the number of degrees of
freedom.

3 Parallelization with OpenMP

Initially CVT simulation application was rather complex sequential code written
in C++ that is why OpenMP was treated as preferable technology of paralleliza-
tion. OpenMP’s important advantage is its relative simplicity when it is applied
to existing sequential code. Of course, it does not exclude abilities of the code
restyling if necessary.

Due to the problem pecularities the most obvious way of introduction of
parallel computing is the parallelization of each step of numerical integration
procedure of differential equations of motion. As one can see in Fig. 7 most of
the time of integration step in sequential application is spent on calculation of
the right-hand side of the system of ODEs and foremost for the chain forces
calculation, contact forces and time-dependent inertia matrix evaluation and
factorization. So these fragments are to be parallelized first.

Current work represents results of parallelization of chain and contact forces
evaluation. Due to the chain’s periodicity the pins and the links of the chain are
natural candidates to parallelization cells. These approaches to the cell definition
are both used now, depending on the force being calculated. Therefore the chain
forces calculation block is organized as a sequence of two parallel loops (pragma
omp for) with static scheduling across the links and pins respectively, combined
in common parallel section (pragma omp parallel). For example, the link-based
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loop contains evaluation of the forces of the link plates deformation and elastic
and damping forces of pin halves deformation. At the other hand, the pin-based
loop contains calculation of pin halves interaction of the same pin, such as pin
halves contact and friction forces. It also contains evaluation of damping forces
in joints.

As it has been mentioned above, the problem has a low dimension so it is pos-
sible to use thread-local buffers for the vector of generalized forces of the chain.
Due to usage of thread-local buffers OpenMP threads require few synchroniza-
tion and the procedure of chain force calculation can be scaled well. But this
approach has drawback too. The buffers should be initialized with zeros before
each forces calculation takes place and also the results should be gathered into
common forces vector after it. In the worst case these steps can not be scaled at
all, because the amount of arithmetical operations per thread does not depend
on the thread count. Of course, it is worth taking into account that the count of
non-zero elements in each thread-local buffer decreases when the thread count
increases and, namely, has an order of N/n, where N is the length of the vector
of the forces of the chain and n is the count of threads.

Fig. 7. CPU time consumption in CVT simulation. Sequential code

Therefore, the sequence of chain force calculation at each simulation time
point consists of the next steps: thread-local buffers initialization, chain force
calculation, gathering of the thread-local results into common force vector. All
the steps are being executed in parallel inside pragma omp parallel block.

The results of simulation of the same CVT model are presented in Figs. 8
and 9. The simulation is performed on Tesla computer of Computer Technologies
in Engineering dept. (CTM). It consists of 2 NUMA nodes and its hardware
and software parameters are presented in Table 1. CPU affinity was managed
with environment variable GOMP CPU AFFINITY so that when n ≤ 6 only one
NUMA node is in use. And only when n > 6 the cores of the second node are
used. Therefore, the influence of non-uniformity of memory access in NUMA
architecture becomes more explicit in this case.

The values of Y axis of Fig. 8 is time and the X axis shows number of threads.
The data of the curves in the Fig. 8, refered as “CPU time” is calculated in
the following way. Let us denote as T

(init)
i,t , T

(calc)
i,t and T

(g)
i,t durations of buffer
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Fig. 8. CPU time Fig. 9. Relative speedup, chain forces,
Tesla

Table 1. Hardware parameters and OS/GCC versions of computers used in simulations

Tesla Tornado

Cores per socket 6 14

NUMA nodes 2 2

CPUs Intel Xeon X5660 2.80 GHz Intel Xeon E5-2697 v3 2.60 GHz

Linux Ubuntu 12.04.05 LTS CentOS Linux release 7.0.1406 (Core)

GCC version 4.6.3 4.8.2

initialization, chain force calculation and gathering respectively, measured in i-th
thread with help of omp get wtime function at simulation time moment t. Then
the data points of Buffer initialization/gathering and Chain Force calculation
curves in Fig. 8 are evaluated with the formulas:

T1 =
∑

t

n∑

i=1

(
T

(init)
i,t + T

(g)
i,t

)
, T2 =

∑

t

n∑

i=1

T
(calc)
i,t (2)

and represent overall amount of time spent in all threads for buffers initial-
ization/gathering and forces calculation respectively over all simulation steps.
This chart demonstrates scalability of the code: in ideal case both curves should
be straight horizontal lines, which means that there are no extra CPU time
consumption when number of threads grows. One can see that the time of ini-
tialization/gathering grows faster than the time of the forces calculation and it
will degrade efficiency of the code when the number of threads becomes large.
But contribution of initialization/gathering is relatively small in the interval of
thread numbers considered from 1 to 12.

The values shown in Fig. 8 do not take into account time that has been spent
on parallel section creation/closing (pragma omp parallel block creation). This
fraction can be significant, as it is shown in Fig. 9. The speeding up of chain forces
parallel calculation with respect to single-thread case is presented there. The Y
axis contains ratios of calculation time at 1 core to calculation time at n cores
and X axis is the numbers of cores. Both curves refer to the same simulation but
use time evaluated in the different way. The time used in curve ChainForceTotal
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Fig. 10. Relative speedup, chain forces Fig. 11. Relative speedup, contact
forces

evaluation takes into account time consumed on omp parallel section.
This time has been measured as a difference of omp get wtime calls after and
before omp parallel section, therefore it shows real time of calculation. The
time used in curve loops evaluation is the sum of curves 1 and 2 from Fig. 8
divided by corresponding number of threads and characterizes calculation time
with omp parallel excluded. One can see that the difference between these
curves becomes especially significant when both NUMA nodes are involved
(n > 6).

This CVT configuration has been also simulated on another machine
described in the second column of the Table 1. This is two nodes of computational
cluster “Polytechnic RSK Tornado” of Supercomputer Center “Polytechnic” of
SPbPU. Further it is referred as Tornado. Unlike the simulation on Tesla this
computation does not use explicit thread binding with GOMP CPU AFFINITY vari-
able, so the system assigns threads to cores implicitly.

Figure 10 represents chart analogous to Fig. 9: relative speed up in depen-
dency on the number of threads. The curve Tesla is the same as ChainForceTo-
tal in Fig. 9, i.e., relative speedup of chain forces calculation on Tesla. Tornado
curve is analogous result obtained at Tornado. One can see that in the second
case the scalability is much worse and there is no speed up since the level of
11–12 threads is reached. This dependency on architecture of hardware used is
subject to future investigation.

The calculation of contact forces between chain and pulleys takes place in
a separate parallel block and because it is being performed faster relatively to
chain forces calculation, the contribution of parallel section creation/closing in
this case is more significant. Contact forces calculations on both machines are
presented in Fig. 11. Meanings of the curves are the same as in Fig. 10 with
respective replacement of “chain forces” with “contact forces”. One can see the
loss of performance on Tornado with the number of threads growing. Code of
contact forces calculation does not contain explicit synchronization structures,
therefore the genesis of such slowing down is not obvious and requires additional
investigation. Measuring of time of contact forces calculation without taking
into account parallel section creation/closing shows much better scalability so
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the problem might be in rather significant contribution of pragma omp parallel
code.

4 Investigation of Numerical Methods

Production version of the CVT simulation code has always been using the
Runge–Kutta numerical integration scheme of fourth order (RK4) [3] to solve
the initial value problem of CVT dynamics. It is known that the RK4 scheme, as
well as other explicit numerical integration schemes, have a step size limitation
due to the stability requirement: in general, for a linear system the value hλ,
where h is the step size and λ is an eigenvalue of ODE right-hand side Jacobian,
must belong to the stability region, which for an explicit scheme is always a
bounded area in the complex plane; for nonlinear ODEs, it is usually the same.

The step size used for CVT numerical simulations with the RK4 scheme has
to be quite small, between 10−8 and 10−7 due to the above mentioned stability
limitation. As a consequence, CPU time required for a simulation is high. The
analysis of ODE system Jacobian has shown that without friction, maximum
eigenvalue magnitude is about 106 and corresponds to pin axial vibrations; due
to the friction, there are also real negative eigenvalues up to −108. Therefore,
the ODE system can be considered mildly stiff.

While the actual goal of the entire investigation is to decrease CPU time of
simulations, in this section we try to achieve a different goal: find a method that
can be applied with significantly larger step sizes than those currently in use.
Once such a method is found, its performance has to be further optimized.

Sections below illustrate our attempts to apply different numerical methods
to CVT dynamics simulation; we cover explicit methods (Sect. 4.2), semi-implicit
methods (Sect. 4.3), and one completely implicit method (Sect. 4.4).

4.1 Numerical Experiment Setup

For each numerical integration scheme, two tests have been done. In the first
test, the dependency of step local error on the step size is investigated. The error
is computed simply by comparison with the “exact” solution obtained with a
very small step size of 2 · 10−9 using the RK4 scheme. The test can be used, in
particular, to verify scheme order of accuracy. In the second test, a dynamics
simulation is performed during 0.005 second of real time; a sample history curve
is obtained (namely, the axial force in a pin half entering a pulley set) as an
evident indicator of the acceptability of numerical results.

To illustrate the impact of nonsmoothness of friction law on the accuracy of
numerical results, we also included the results of testing for smooth friction law
f = f0 arctan v

v0f0
, where f0 is the saturation value of friction coefficient.

Sections below present the results of first test for the original and smoothed
friction law, and the results of second test for both friction laws and for selected
step sizes.



Two Approaches to Speeding Up Dynamics Simulation 103

4.2 Explicit Methods

Explicit methods covered in this subsection are the following classical ones.

– Three embedded Dormand–Prince schemes with step size control [3]. The step
size control was disabled in test simulation. An embedded scheme provides
two solutions of different orders of accuracy at each step, which can be used
to control the step size; those orders are encoded in the name of the scheme.
The three schemes are DOPRI45 (orders 4, 5), DOPRI56 (orders 5, 6), and
DOPRI78 (orders 7, 8).

– Gragg–Bulirsch–Stoer method (GBS) with smoothing step [3]. It is an extrap-
olation method with the symmetric Gragg’s scheme used as the reference
scheme. We tried this method with a fixed number of extrapolation stages
(2, 4, 6) and the harmonic step size sequence (the schemes are referred to as
GBS2, GBS4, GBS6 below).

– Extrapolated explicit Euler scheme, with 2 extrapolation stages and the har-
monic step size sequence (referred to as Euler-x2 below).

Fig. 12. Step local error for explicit methods

The step local error test (Fig. 12) shows that the local error is generally less
for smooth friction law; further data processing also indicates that the local error
behaves according to scheme order only in a limited step size ranges, different
for different schemes; some schemes (DOPRI45, DOPRI78, GBS4, GBS6) do not
show the expected behavior at all, although they do in tests with simple ODEs.

The dynamics test (Fig. 13) confirms that all explicit schemes considered
have severe step size limitation that is about 10−7 for nonsmooth friction law
and schemes GBS2, DOPRI56, and is less for other schemes; for smooth friction
law, the limit is higher yet it is less than 5 · 10−7. We can also conclude that low
order schemes (2–4) are preferrable in model with non-smooth friction low; in
model with smooth friction law, higher order schemes may be preferrable.
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Fig. 13. Sample curves for explicit methods

4.3 Semi-implicit Methods

There was a hope that a W-method [4] is capable of producing acceptable numer-
ical solution at steps much greater than 10−7, because those methods generally
have better stability properties than explicit ones. However, in our case all W-
methods tested failed for some reason, though they worked good in tests with
simple ODEs.

The schemes considered in this subsection are W24 [4] and the W1 method
extrapolated according to the Richardson’s procedure [3]. The W1 scheme is as
follows:

xk+1 = xk + hf(tk,xk) + hdA(xk+1 − xk), (3)

where x is the numerical solution vector, the subscript k denotes the step num-
ber, h is the step size, t is the time, f is the ODE right-hand side vector, d
is a parameter (usually between 0 and 1), and A is the matrix approximat-
ing the ODE system Jacobian Df/Dx. W-methods are attractive compared to
Rosenbrock methods [5] due to the ability to keep A constant during many
time steps, thus eliminating the necessity to compute it and factorize the matrix
I − hdA at each time step.

Figure 14 shows that all schemes tested have much greater local step error
than explicit schemes. The expected order of schemes is observed at step sizes
less than 10−7; the higher the order, the less the range in which scheme order is
obeyed.

Figure 15 shows that all W-method schemes produce inacceptable solution
even at step 10−7. We have to conclude that they didn’t work in our case.
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Fig. 14. Step local error for semi-implicit W-methods

Nonsmooth friction law Smooth friction law

exact W24 W1-x2 W1-x4 W1-x6

Fig. 15. Sample curves for W-methods, h = 10−7

4.4 Trapezoidal Rule Method

Among many implicit methods, we chose the trapezoidal rule (2-nd order
scheme):

xk+1 = xk +
h

2
[f(tk,xk) + f(tk + h,xk+1)], (4)

Figure 16 shows the step local error for the trapezoidal rule. Notice that it is
less than for any other scheme tested at steps greater than 4 · 10−7.

Sample curve shown in Fig. 17 is obtained at step size 2 ·10−6 and practically
coincides with the exact solution. It is possible to use larger step sizes, but only
with step size control because the Newton’s method used at a time step may fail
to converge.
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5 Conclusions and Future Work

The paper considers two approaches for speeding up the numerical integration of
about 3600 ODEs of CVT dynamics. The ODE right-hand side is quite numer-
ically expensive, and the ODE system is mildly stiff.

The first approach is to parallelize the computation of ODE right-hand side.
Usage of pins and chain links as cells of parallelization allows to calculate forces
in the chain in natural way. But scalability of present implementation strongly
depends on parameters of machine used and may be rather poor. The cause of
it is the goal of future investigation.

The second approach is to find a numerical method faster than RK4 currently
used in the production version of CVT software. The investigation has shown
that traditional explicit numerical integration schemes and W-methods don’t
work in our case. Implicit methods give good results; however, to make those
methods run faster than RK4, additional efforts are required: for example, ODE
right-hand side Jacobian could be computed much faster but it requires tedious
programming (the idea is to combine the approach presented in [6] with the
decomposition of the ODE right-hand side into a sum and providing faster code
for the Jacobian of contact forces).

Future plans include performance improvements for implicit schemes. In addi-
tion, we are planning to test so called stabilized explicit Runge–Kutta methods
because they have not been covered in this research, while seem to be quite
apropriate for the case of Jacobian eigenvalues that we really have.
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Abstract. In this paper, we describe the Globalizer software system for solving
global optimization problems. The system implements an approach to solving
the global optimization problems using the block multistage scheme of the
dimension reduction, which combines the use of Peano curve type evolvents and
the multistage reduction scheme. The scheme allows an efficient parallelization
of the computations and increasing the number of processors employed in the
parallel solving of the global optimization problems many times.

Keywords: Multidimensional multiextremal optimization � Global search
algorithms � Parallel computations � Dimension reduction � Block multistage
dimension reduction scheme

1 Introduction

The development of optimization methods that use high-performance computing sys-
tems to solve time-consuming global optimization problems is an area receiving
extensive attention. The theoretical results obtained provide efficient solutions to many
applied global optimization problems in various fields of scientific and technological
applications.

At the same time, the practical software implementation of these algorithms for
multiextremal optimization is quite limited. Among the software for the global opti-
mization, one can select the following systems:

• LGO (Lipschitz Global Optimization) [1] is designed to solve global optimization
problems for which the criteria and constraints satisfy the Lipschitz condition. The
system is a commercial product based on diagonal extensions of one-dimensional
multiextremal optimization algorithms.

• GlobSol [2] is oriented towards solving global optimization problems as well as
systems of nonlinear equations. The system includes interval methods based on the
branch and bound method. There are some extensions of the system for parallel
computations, and it is available to use for free.

• LINDO [3] is features by a wide spectrum of problem solving methods that can be
used for these include linear, integer, stochastic, nonlinear, and global optimization
problems. The ability to interact with the Microsoft Excel software environment is a
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key feature of the system. The system is widely used in practical applications and is
available to use for free.

• IOSO (Indirect Optimization on the basis of Self-Organization) [4] is oriented
toward solving of a wide class of the extremal problems including global opti-
mization problems. The system is widely used to solve applied problems in various
fields. There are versions of the system for parallel computational systems. The
system is a commercial product, but is available for trial use.

• MATLAB Global Optimization Toolkit [5], includes a wide spectrum of methods
for solving the global optimization problems, including multistart methods, global
pattern search, simulated annealing methods, etc. The library is compatible to the
TOMLAB system [6], which is an additional extension the widely-used MATLAB.
It is also worth noting that similar libraries for solving global optimization problems
are available for MathCAD, Mathematica, and Maple systems as well.

• BARON (Branch-And-Reduce Optimization Navigator) [7], is designed to solve
continuous integer programming and global optimization problems using the branch
and bound method. BARON is included in the GAMS (General Algebraic
Modeling System) system used widely [8].

• Global Optimization Library in R [9] is a large collection of optimization methods
implemented in the R language. Among these methods, there are stochastic and
deterministic global optimization algorithms, the branch and bound method, etc.

The list provided above is certainly not exhaustive – additional information on
software systems for a wider spectrum of optimization problems can be obtained, for
example, in [10–12], etc. Nevertheless, even from such a short list the following
conclusions can be drawn (see also [13]).

• The collection of available global optimization software systems for practical use is
insufficient.

• The availability of numerous methods through these systems allows complex
optimization problems to be solved in a number of cases, however, it requires a
rather high level of user knowledge and understanding in the field of global
optimization.

• The use of the parallel computing to increase the efficiency in solving complex
time-consuming problems is limited, therefore, the computational potential of
modern supercomputer systems is very poorly utilized.

In this paper, a novel Globalizer software system is considered. The development of
the system was conducted based on the information-statistical theory of multiextremal
optimization aimed at developing efficient parallel algorithms for global search – see,
for example, [14–16]. The advantage of the Globalizer is that the system is designed to
solve time-consuming multiextremal optimization problems. In order to obtain global
optimized solutions within a reasonable time and cost, the system efficiently uses
modern high-performance computer systems.

The paper is further structured as follows. In Sect. 2, the general statement of the
multidimensional global optimization problem is considered. In Sect. 3, the Globalizer
software system is presented and its architecture is described. In Sect. 4, the approaches
to solving the multidimensional global optimization problem based on the
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information-statistical theory of multiextremal optimization is given. In Sect. 5, the
results of applied problem solving with the Globalizer system are described. Finally,
Sect. 6 presents the conclusion.

2 Statement of Multidimensional Global Optimization
Problem

In this paper, the core class of optimization problems which can be solved using the
Globalizer is examined. This involves multidimensional global optimization problems
without constraints, which can be defined in the following way:

u yð Þ ! inf; y 2 D � RN; ð1Þ

D ¼ y 2 RN : ai � yi � bi; 1� i�N
� �

; ð2Þ

i.e., a problem of finding the globally optimal values of the objective (minimized)
function u yð Þ in a domain D defined by the coordinate bounds (2) on the choice of
feasible points y ¼ y1; y2; . . .; yNð Þ.

If y� is an exact solution of problem (1) – (2), the numerical solution of the problem
is reduced to building an estimate y0 of the exact solution matching to some notion of
nearness to a point (for example, y� � y0

�� ��� e where e[ 0 is a predefined accuracy)
based on a finite number k of computations of the optimized function values.

Regarding to the class of problems considered, the fulfillment of the following
important conditions is supposed:

1. The optimized function φ(y) can be defined by some algorithm for the computation
of its values at the points of the domain D.

2. The computation of the function value at every point is a computation-costly
operation.

3. Function φ(y) satisfy the Lipschitz condition:

u y1ð Þ � u y2ð Þj j �L y1 � y2k k;where y1; y2 2 D; 0\L\1; ð3Þ

that corresponds to a limited variation of the function value at limited variation of the
argument.

The multiextremal optimization problems i.e. the problems, which the objective
function u yð Þ has several local extrema in the feasible domain D in, are the subjects of
consideration in the present paper. The dimensionality affects the difficulty of solving
such problems considerably. For multiextremal problems so called “curse of dimen-
sionality” consisting in an exponential increase of the computational costs with
increasing dimensionality takes place.
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3 Globalizer Architecture

The Globalizer considered in this paper expands the family of global optimization
software systems successively developed by the authors during the past several years.
One of the first developments was the SYMOP multiextremal optimization system [17],
which has been successfully applied for solving many optimization problems. A special
place is occupied by the ExaMin system [18], which was developed and used exten-
sively to investigate the application of novel parallel algorithms to solve global opti-
mization problems using high-performance multiprocessor computing systems.

The program architecture of Globalizer system is presented in Fig. 1.

The structural components of the systems are:

– Block 0 is an external block. It consists of the procedures for computing the
function values (criteria and constraints) for the optimization problem being solved.

– Blocks 1-4 form the optimization subsystem and solve the global optimization
problems (Block 1), nonlinear programming (Block 2), multicriterial optimization
(Block 3), and general decision making problems (Block 4). It is worth noting the
successive scheme of interaction between these components – the decision making
problems are solved using the multicriterial optimization block, which, in turn, uses
the nonlinear programming block, etc.

Optimization 

Nonlinear 
programming Global 

Multi-criteria General 

1 2

3 4

Search  
information 

5 

Visualization 

11

Parallel  
manager 

8

Parallel 
scheme 

7 

Dimension 
reduction 

6

Manager 

9

Dialog  
interaction 

10 

Function  
computation 

0 

Fig. 1. Program architecture of Globalizer system (Blocks 1-2, 5-7 have been implemented;
Blocks 3-4 and 8-11 are under development)
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– Block 5 is a subsystem for accumulating and processing the search information; this
is one of the main subsystems – the amount of search information for time-consuming
optimization problems may appear to be quite large on the one hand, but, on the other
hand, the efficiency of the global optimization methods depends to a great extent on
how completely all of the available search data is utilized.

– Block 6 contains the dimensional reduction procedures based on the Peano evol-
vents; this block also provides interaction between the optimization blocks and the
initial multidimensional optimization problem.

– Block 7 organizes the choice of parallel computation schemes in the Globalizer
system subject to the computing system architecture employed (the numbers of
cores in the processors, the availability of shared and distributed memory, the
availability of accelerators for computations, etc.) and the global optimization
methods applied.

– Block 8 is responsible for managing the parallel processes when performing the
global search (determining the optimal configuration of parallel processes, dis-
tributing the processes between computing elements, etc.).

– Block 9 is a management subsystem, which fully controls the whole computational
process when solving global optimization problems.

– Block 10 is responsible for organizing the dialog interaction with users for stating
the optimization problem, adjusting system parameters (if necessary), and visual-
izing and presenting the global search results.

– Block 11 is a set of tools for visualizing and presenting the global search results; the
availability of tools for visually presenting the computational results enables the
user to provide efficient control over the global optimization process.

4 Globalizer Approach for Solving the Global Optimization
Problems

4.1 Methods of Dimension Reduction

Globalizer implements a block multistage scheme of dimension reduction [18], which
reduces the solving of initial multidimensional optimization problem (1) – (2) to the
solving of a sequence of «nested» problems of less dimensionality.

Thus, initial vector y is represented as a vector of the «aggregated» macro-variables

y ¼ y1; y2; . . .; yNð Þ ¼ u1; u2; . . .; uMð Þ ð4Þ

where the i-th macro-variable ui is a vector of the dimensionality Ni from the com-
ponents of vector y taken sequentially i.e.

u1 ¼ y1; y2; . . .; yN1ð Þ;
u2 ¼ yN1 þ 1; yN1 þ 2; . . .; yN1 þN2ð Þ; . . .

ui ¼ ypþ 1; . . .; ypþNi

� �
where p ¼ Pi�1

k¼1 Nk; . . .
ð5Þ

at that,
PM

k¼1 Nk ¼ N:
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Using the macro-variables, the main relation of the well-known multistage scheme
can be rewritten in the form

min
y2D

u yð Þ ¼ min
u12D1

min
u22D2

. . . min
uM2DM

u yð Þ; ð6Þ

where the subdomains Di; 1� i�M, are the projections of the initial search domain D
onto the subspaces corresponding to the macro-variables ui; 1� i�M.

The fact, that the nested subproblems

ui u1; . . .; uið Þ ¼ min
uiþ 12Diþ 1

uiþ 1 u1; . . .; ui; uiþ 1ð Þ; 1� i�M; ð7Þ

are the multidimensional ones in the block multistage scheme is the principal difference
from the initial scheme. Thus, this approach can be combined with the reduction of the
domain D (for example, with the evolvent based on Peano curve) for the possibility to
use the efficient methods of solving the one-dimensional problems of the multiextremal
optimization [19].

The Peano curve y xð Þ lets map the interval of the real axis [0,1] onto the domain D
uniquely:

y 2 D � RN� � ¼ y xð Þ : 0� x� 1f g: ð8Þ

The evolvent is the approximation to the Peano curve with the accuracy of the order
2�m where m is the density of the evolvent.

Application the mappings of this kind allows reducing multidimensional problem
(1) – (2) to a one-dimensional one

u y�ð Þ ¼ u y x�ð Þð Þ ¼ min u y xð Þð Þ : x 2 0; 1½ �f g: ð9Þ

4.2 Method for Solving the Reduced Global Optimization Problems

The information-statistical theory of global search formulated in [14, 16] has served as
a basis for the development of a large number of efficient multiextremal optimization
methods – see, for example, [20–23], [24–27], etc. Within the framework of
information-statistical theory, a general approach to parallelization computations when
solving global optimization problems has been proposed – the parallelism of compu-
tations is provided by means of simultaneously computing the values of the minimized
function u yð Þ at several different points within the search domain D – see, for example,
[15, 16]. This approach provides parallelization for the most costly part of computa-
tions in the global search process.

Let us consider the general computation scheme of Parallel Multidimensional
Algorithm of Global Search that is implemented in Globalizer.

Let us introduce a simpler notation for the problem being solved
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f xð Þ ¼ u y xð Þð Þ : x 2 0; 1½ �: ð10Þ

Let us assume k[ 1 iterations of the methods to be completed (the point of the first
trial x1 can be an arbitrary point of the interval [a; b] – for example, the middle of the
interval). Then, at the kþ 1ð Þ-th iteration, the next trial point is selected according to
the following rules.

Rule 1. To renumber the points of the preceding trials x1; . . .; xn (including the
boundary points of the interval [a; b]) by the lover indices in the order of increasing
values of the coordinates,

0 ¼ x0\x1\. . .\xi\. . .\xk\xkþ 1 ¼ 1 ð11Þ

The function values zi ¼ u xið Þ have been calculated in all points xi; i ¼ 1; ::k. In
the points x0 ¼ 0 and xkþ 1 ¼ 1 the function values has not been computed (these
points are used for convenience of further explanation).

Rule 2. To compute the values:

l ¼ max
1� i� k

zi � zi�1j j
Di

;M ¼ rl; l[ 0;
1; l ¼ 0;

�
ð12Þ

where r[ 1 is the reliability parameter of the method, Di ¼ xi � xi�1.
Rule 3. To compute the characteristics for all intervals xi�1; xið Þ; 1\i\kþ 1,

according to the formulae:

R 1ð Þ ¼ 2D1 � 4
z1
M

; R kþ 1ð Þ ¼ 2Dkþ 1 � 4
zk
M

;

R ið Þ ¼ Di þ ðzi � zi�1Þ2
M2Di

� 2
zi þ zi�1

M
; 1\i\kþ 1:

ð13Þ

Rule 4. To arrange the characteristics of the intervals obtained according to (13) in
decreasing order

R t1ð Þ�R t2ð Þ� . . .�R tkð Þ�R tkþ 1ð Þ ð14Þ

and to select p intervals with the highest values of characteristics (p is the number of
processors/cores used for the parallel computations).

Rule 5. To execute new trials at the points

xkþ j ¼
xtj þ xtj�1

2 ; tj 2 1; kþ 1f g;
xt þ xtj�1

2 � sign ztj � ztj�1
� �

1
2r

ztj�ztj�1j j
M

� 	N
; 1\tj\kþ 1:

8><
>: ð15Þ
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4.3 Implementation of Parallel Algorithm of Global Optimization

Let us consider a parallel implementation of the block multistage dimension reduction
scheme described in Subsection 4.1.

For the description of the parallelism in the multistage scheme, let us introduce a
vector of parallelization degrees

p ¼ p1; p2; . . .; pMð Þ; ð16Þ

where pi; 1� i�M; is the number of the subproblems of the iþ 1ð Þ-th nesting level
being solved in parallel, arising as a result of execution of the parallel iterations at the i-th
level. For the macro-variable ui, the number pi means the number of parallel trials in the
course of minimization of the function uM u1; . . .; uMð Þ ¼ u y1; . . .; yNð Þ with respect to
ui at fixed values of u1; u2; . . .; ui�1, i.e. the number of the values of the objective
function u yð Þ computed in parallel.

In the general case, the quantities pi; 1� i�M can depend on various parameters
and can vary in the course of optimization, but we will limit ourselves to the case when
all components of the vector p are constant.

Thus, a tree of MPI-processes is built in the course of solving the problem. At every
nesting level (every level of the tree) PMAGS is used. Let us remind that the paral-
lelization is implemented by selection not a single point for the next trial (as in the
serial version) but p points, which are placed into p intervals with the highest char-
acteristics. Therefore, if p processors are available, p trials can be executed in these
points in parallel. At that, the solving of the problem at the i-th level of the tree
generates the subproblems for the iþ 1ð Þ-th level. This approach corresponds to such a
method of organization of the parallel computations as a «master-slave» scheme.

When launching the software, the user specifies:

• A number of levels of subdivision of the initial problem (in other words, the number
of levels in the tree of processes) M;

• A number of variables (dimensions) at each level (
PM

k¼1 Nk ¼ N where N is the
dimensionality of the problem);

• A number of the MPI-processes and the distribution of these ones among the levels
(p ¼ p1; p2; . . .; pMð Þ).
Let us consider an example:

N ¼ 10;M ¼ 3;N1 ¼ 3;N2 ¼ 4;N3 ¼ 3; p ¼ 2; 3; 0ð Þ:

Therefore, we have 9 MPI-processes, which are arranged into a tree (Fig. 2: at
every function ui varied parameters are shown only, the fixed values are not shown in
the figure). According to N1;N2;N3 we have the following macro-variables: u1 ¼
y1; y2; y3ð Þ; u2 ¼ y4; y5; y6; y7ð Þ; u3 ¼ y8; y9; y10ð Þ: Each node solves a problem from
relation (10). The root (level #0) solves the problem with respect to the first N1

variables of the initial N-dimensional problem. The iteration generates a problem of the
next level at any point. The nodes of level #1 solve the problems with respect to N2

variables with the fixed values of the first N1 variables, etc.
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5 Numerical Results

5.1 Test Problems Solving

The computational experiments were conducted using the Lobachevsky supercomputer
at the State University of Nizhny Novgorod (http://hpc-education.unn.ru/en/ resources).
The problems generated by the GKLS-generator [21] were selected for the test
problems.

The results of the numerical experiments with Globalizer on an Intel Xeon Phi are
provided in Table 1. The computations were performed using the Simple and Hard
function classes with the dimensions equal to 4 and 5.

In the first series of experiments, serial computations using MAGS were executed.
The average number of iterations performed by the method for solving a series of
problems for each of these classes is shown in row I. The symbol “>” reflects the

)

)))
)

)))
)

Fig. 2. Scheme of organization of parallel computations

Table 1. Average number of iterations

p N = 4 N = 5
Simple Hard Simple Hard

I Serial computations
Average number
of iterations

1 11953 25263 15920 >148342(4)

II Parallel computations on CPU
Speedup

2 2.51 2.26 1.19 1.36
4 5.04 4.23 3.06 2.86
8 8.58 8.79 4.22 6.56

III Parallel computations on Xeon Phi
Speedup

60 8.13 7.32 9.87 6.55
120 16.33 15.82 15.15 17.31
240 33.07 27.79 38.80 59.31
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situation where not all problems of a given class were solved by a given method. It
means that the algorithm was stopped once the maximum allowable number of itera-
tions Kmax was achieved. In this case, the Kmax value was used for calculating the
average number of iterations corresponding to the lower estimate of this average value.
The number of unsolved problems is specified in brackets.

In the second series of experiments, parallel computations were executed on a CPU.
The relative “speedup” in iterations achieved is shown in row II; the speedup of parallel
computations was measured in relation to the serial computations (p = 1).

The final series of experiments was executed using a Xeon Phi. The results of these
computations are shown in row III; in this case, the speedup factor is calculated in
relation to the PMAGS results on a CPU using eight cores (p = 8).

5.2 The Problem of Optimal Vibration Isolation
for the Multi-Degree-of-Freedom System

Consider the vibration isolation problem for a multidegree-of-freedom system con-
sisting of a base and elastic body to be isolated modeled by two material points
connected each other by elastic and damping elements [28]. This mechanical system is
described by the equations

€n1 ¼ �b _n1 � _n2

 �

� n1 þ n2 þ uþ v;

€n2 ¼ �b _n2 � _n1

 �

� n2 þ n1 þ v;

n1 0ð Þ ¼ n2 0ð Þ ¼ 0; _n1 0ð Þ ¼ _n2 0ð Þ ¼ 0:

ð17Þ

where n1 and n2 are coordinates of the material points, v is the base acceleration up to
sign (the external excitation), u is the control force, b is a positive damping parameter.
Rewrite the Eq. (26) in the standard form

_x1 ¼ x3;
_x2 ¼ x4;
_x3 ¼ �x1 þ x2 � bx3 þ bx4 þ vþ u;
_x4 ¼ x1 � x2 þ bx3 � bx4 þ v;
x1 0ð Þ ¼ x2 0ð Þ ¼ x3 0ð Þ ¼ x4 0ð Þ ¼ 0:

ð18Þ

This model can describe the typical situations of vibration isolation for devices,
apparatuses and humans located on moving vehicles.

Choose two criteria for this system to characterize the process of vibration isolation

J1 uð Þ ¼ sup
v�L2

supt� 0 x1 tð Þj j
vk k2

; J2 uð Þ ¼ sup
v�L2

supt� 0 x2 tð Þ � x1 tð Þj j
vk k2

: ð19Þ

The first criterion characterizes the maximal displacement of the body to be isolated
with respect to the base, while the second one the maximal deformation of the elastic
body. Consider two-objective control problem for state-feedback case. The Pareto
optimal front computed by Globalizer is presented on Fig. 3.
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6 Conclusion

In this paper, the Globalizer global optimization software system was presented for
implementing a general scheme for the parallel solution of globally optimized decision
making. The work is devoted to the investigation of the possibility to speedup the
process of searching the global optimum when solving the multidimensional multi-
extremal optimization problems using the approach based on the application of the
parallel block multistage scheme of the dimension reduction.

The architecture of Globalizer system has been considered. The usage of Globalizer
has been demonstrated by solving the applied problem of control theory.

Acknowledgements. This research was supported by the Russian Science Foundation, project
No 16-11-10150 “Novel efficient methods and software tools for the time consuming decision
making problems with using supercomputers of superior performance”.
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Abstract. In the present paper, an efficient method is proposed for parallel
solving of the multicriterial optimization problems with non-convex constraints,
where the optimality criteria could be the multiextremal ones and computing the
values of the criteria and constraints could require a large amount of computa-
tions. The developed approach is based on the reduction of the multicriterial
problems to the nonlinear programming ones by means of the minimax convo-
lution of the partial criteria, on the dimensionality reduction with the use of Peano
space-filling curves, and on the application of efficient information-statistical
global optimization methods with a novel index scheme of the constraints han-
dling instead of the penalty functions applied usually. When performing the
parallel computations, the maximum utilization of the whole search information
obtained in the course of the search process is provided. The results of the
computational experiments have demonstrated such an approach to allow
reducing the computational costs of solving the multicriterial optimization
problems essentially – tens and hundred times.

Keywords: Decision making � Multicriterial optimization � Global
optimization with Non-convex constraints � High performance computations �
Dimensionality reduction � Criteria convolution � Global search algorithms �
Computational complexity

1 Introduction

The multicriterial optimization (MCO) problems are among the most general problem
statements for the decision-making problems – the statement of MCO problems covers
many classes of optimization problems, including unconstrained optimization, non-
linear programming, global optimization, etc. The opportunity to specify several cri-
teria is very useful in formulating the complex decision-making problems, and is used
in the applications widely. The practical importance has caused a high research activity
in the field of the MCO problems. As a result of intensive research, a plenty of efficient
methods for solving the MCO problems have been proposed, and many practically
important problems have been solved - see, for example, the monographs [1–3, 19] and
reviews of scientific and practical results [4, 5, 7, 20, 32, 33].

Among key features of the multicriterial optimization problems is a potential
contradiction between the partial efficiency criteria. This makes impossible to achieve
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the optimum (the best) values with respect to all partial criteria simultaneously. Con-
sequently, the finding of some compromised (effective, non-dominated) decisions,
when the achieved values of particular partial criteria are consistent with each other is
understood as a solution of a MCO problem usually. It is important to note that the
viewpoint on an expedient compromise can be changed in the course of computations
that could require finding several different compromised decisions.

Among the developed approaches for solving the MCO problems, one can outline
the methods of lexicographic optimization, when some arrangement of the criteria
according to the importance of these ones is made, and the optimization of the partial
criteria is performed successively according to the decreasing of their importance – see,
for example, [3]. Another approach is represented by the iterative methods [4, 17],
when the researcher (the decision-maker) takes an active part in the process of selecting
the decisions. One more direction developed extensively consists in the development of
the evolutionary algorithms based on the simulation of some natural phenomena and
the application of these ones to solving the MCO problems [17, 18, 22, 23]. The
scalarization, when some methods for the convolution of the partial criteria into a single
criterion are applied, is an approach used widely – see, for example, [2, 6].

The present work is devoted to the solving of the MCO problems, which are used
for formulating the decision-making problems in the computer-aided design of the
complex technical objects and systems. In these applications, the partial criteria can
have a multiextremal form, and the domain of feasible decisions can be defined by
non-convex constraints. The presence of constraints can result in a partial com-
putability, when the computations of some criteria and constraints are impossible if
even one constraint is not satisfied. Also, it was supposed that the computations of the
values of criteria and constraints could require a large amount of computations. In these
conditions, the finding of even one compromised decision requires a considerable
amount of computations whereas the finding of several effective decisions (or of the
complete set of these ones) becomes a problem of a huge computational complexity.

The properties of the considered class of the MCO problems listed above determine
the key feature of these ones – a high computational complexity. One of the promising
directions of the search for the methods of solving such problems consists in the use of
the model-based approach, when after a small number of computations of the values of
the computation-costly criteria and constraints, the fast-computed approximation
functions are constructed [25, 26]. Such an approach is efficient enough, however, the
construction of good approximations is difficult at the essentially multiextremal
behavior of the optimized criteria and constraints.

The approach to solving the computational-costly class of the MCO problems pro-
posed in the present paper is based on the following key statements. First of all, the
scalarization of the vector criterion is used that allows reducing the solving of a MCO
problem to the solving of a series of global optimization problems [2, 6]. Next, an efficient
global search algorithm developed in the framework of the information-statistical theory
of the multiextremal optimization [9, 10] is applied for solving the constrained global
optimization (CGO) problems with the non-convex constraints. The parallelization
methods developed for this algorithm provide high indicators of efficiency of the parallel
computations allowing full utilization of the great computational potential of modern
supercomputer systems. Finally, the whole search information obtained in the course of

122 V. Gergel and E. Kozinov



solving a MCO problem is utilized in full amount when performing all necessary com-
putations. In general, the developed approach allows reducing the amount of computa-
tions performed for the searching of the next efficient decisions essentially – down to the
execution of several iterations only.

Further structure of the paper is as follows. In Sect. 2, the statement of a multi-
criterial optimization problem with non-convex constraints is given. In Sect. 3, the
basics of the developed approach are presented. In Sect. 4, the global search algorithm
for solving the reduced scalar nonlinear programming problems is described. In Sect. 5,
the issues of the parallel computations with the reuse of the search information obtained
in the course of computations are discussed. Section 6 presents the results of numerical
experiments. In Conclusion, the obtained results are discussed and main directions of
further investigations are outlined.

2 Problem Statement

A problem of multicriterial optimization with non-convex constraints can be stated in
the following form:

f yð Þ ¼ f1 yð Þ; f2 yð Þ; . . .; fs yð Þð Þ ! min; y 2 Q;

Q ¼ y 2 D : gi yð Þ� 0; 1� i�mf g;
D ¼ y 2 RN : ai � yi � bi; 1� i�N

� � ð1Þ

where

– y ¼ y1; y2; . . .; yNð Þ is the vector of varied parameters,
– N is the dimensionality of the multicriterial optimization problem being solved,
– f yð Þ ¼ f1 yð Þ; f2 yð Þ; . . .; fs yð Þð Þ is the vector criterion of efficiency,
– g yð Þ ¼ g1 yð Þ; g2 yð Þ; . . .; gs yð Þð Þ is the vector function of the constraints,
– Q is the domain of feasible solutions, D is the search domain and a, b 2 RN are

given constant vectors.

In further consideration, the following notations will be used also:

gmþ 1 yð Þ ¼ f1 yð Þ; gmþ 2 yð Þ ¼ f2 yð Þ; . . .; gmþ s yð Þ ¼ fs yð Þ;M ¼ sþm:

Without any loss in generality, the partial criteria values in the problem (1) are
supposed to be non-negative, and the decrease of these ones corresponds to increasing
efficiency of the considered decisions y 2 D.

Usually, the partial criteria of the MCO problem (1) contradict to each other, and
there is no decision y 2 D, which would provide the optimal (minimal) values for all
criteria simultaneously. In such cases, the decisions y� 2 D, where the values of par-
ticular partial criteria cannot be improved without worsening the efficiency values with
respect to other criteria, are considered as the solutions of the MCO problem. Such
unimprovable decisions are called the effective or Pareto-optimal ones. Any effective
decision can be considered as a partial solution, and the set of all unimprovable
decisions represent a complete solution of the MCO problem.
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As it has been already mentioned above, in the present paper, the problem (1) will
be considered in application to the most complex decision-making problems where the
partial criteria fi yð Þ, 1� i� s could be multiextremal, the constraints could be
non-convex, and obtaining the values of the criteria and constraints at the points of the
search domain y 2 D could require a large amount of computations. Let us suppose
also the partial criteria fi yð Þ, 1� i� s and the constraints gi yð Þ, 1� i�m to satisfy the
Lipschitz condition

giðy0Þ � giðy00Þj j � Li y0 � y00k k; y0; y00 2 D; 1� i�M; ð2Þ

where Li are the Lipschitz constants for the functions gi yð Þ, 1� i�M and �k k denotes
the Euclidean norm in RN .

3 The Basics of the Approach

3.1 The Reduction of the MCO Problems to the Global Optimization
Problems with the Non-convex Constraints

The approach applied in the present work is based on the scalarization of the vector
criterion by means of the minimax convolution scheme that allows reducing the solving
of the problem (1) to solving a nonlinear programming problem

min½Fðk; yÞ ¼ max kifiðyÞ; 1� i� sð Þ�; y 2 Q;

k 2 K � Rs :
Xs

i¼1
ki ¼ 1; ki � 0; 1� i� s:

ð3Þ

The necessity and sufficiency of this approach for solving the MCO problem is a
key property of the minimax convolution scheme: the result of the minimization of
F k; yð Þ leads to the obtaining of an effective decision1 for the MCO problem and, vise
versa, any effective decision of the MCO problem can be obtained as a result of the
minimization of F k; yð Þ at the corresponding values of the convolution coefficients ki,
1� i� s – see, for example, [4].

The coefficients ki, 1� i� s in (3) can be understood as the indicators of impor-
tance of the partial criteria – the larger the value of the coefficient ki of a particular
partial criterion, the more the contribution of this partial criterion in the scalar criterion
F k; yð Þ. As a result, a method of solving the MCO problems can be formulated in a
step-by-step manner. At every step, the decision maker chooses the desired values of
the coefficients ki, 1� i� s. Then, the solving of the formed problem (3) is performed.
Afterwards, the decision maker analyzes the obtained effective decisions and corrects
the chosen coefficients ki, 1� i� s if necessary. Such a multistep method corresponds
to the practice of the choice of the compromised decision in the complex
decision-making problems to much extent. And the possibility to determine several

1 More exactly, the minimization of F k; yð Þ can lead to the obtaining of the weakly – effective
decisions (the set of the weakly effective decisions includes the Pareto domain).
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effective decisions (or the whole set of these ones) at reasonable computational costs
becomes a key problem in solving the complex multicriterial optimization problems.

It is worth noting that the scalar criterionF k; yð Þ satisfies the Lipschitz condition also:

Fðk; y0Þ � Fðk; y00Þj j � L y0 � y00k k; y0; y00 2 D: ð4Þ

3.2 The Dimensionality Reduction for the Multidimensional Global
Optimization Problems

The use of the global search algorithms developed within the framework of the
information-statistical theory of global optimization [8–11] for solving the multiex-
tremal optimization problems (3) is one more key statement of the approach developed
in the present work. This theory has served as the basis for the development of a large
number of optimization algorithms, which have been substantiated mathematically and
have demonstrated a high efficiency, and have allowed solving many complex opti-
mization problems in various fields of application [11, 28–31, 34].

The reduction of the dimensionality of the problems being solved with the use of
Peano space-filling curves or evolvents y xð Þ mapping the interval 0; 1½ � onto an N-
dimensional hypercube D unambiguously is a distinctive feature of the
information-statistical global optimization algorithms – see, for example, [9–11]. As a
result of such reduction, the initial multidimensional global optimization problem (3) is
reduced to a one-dimensional problem:

F k; y x�ð Þð Þ ¼ min F k; y xð Þð Þ : gi y xð Þð Þ� 0; 1� i�m; x 2 0; 1½ �f g: ð5Þ

It is important to note that the one-dimensional functions obtained as a result of the
reduction satisfy the uniform Hölder condition (see [9, 10]) i.e.

F k; y x0ð Þð Þ � F k; y x00ð Þð Þj j �H x0 � x00j j1N ; x0; x00 2 0; 1½ �;
gi y

0ð Þ � gi y
00ð Þj j �Hi x

0 � x00j j; x0; x00 2 0; 1½ �; 1� i�m
ð6Þ

where the Hölder constant H (Hi) is defined by the relation H ¼ 4L
ffiffiffiffi
N

p
(Hi ¼ 4Li

ffiffiffiffi
N

p
),

1� i�m, L Lið Þ is the Lipschitz constant from (2) and (4) and N is the dimensionality
of the optimization problem (1).

4 An Efficient Method for Solving the Global Optimization
Problems with the Non-convex Constraints

The basics of the approach presented in Sect. 3 allow reducing the solving of the MCO
problem (1) to the solving of a series of the reduced multiextremal problems with the
constraints (5). And, thus, the global search algorithms can be applied for solving the
MCO problems [8, 12–16].

It is worth noting that the presence of the non-convex constraints complicates
solving the global optimization problems considerably – the obtained solutions should
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belong to the feasible domain Q. The situation becomes even more complicated in the
case of the partial computability, when the computing of some criteria and constraints
is impossible if there is even one unsatisfied constraint. Often, for solving the con-
strained optimization problems, more simple cases are selected – for example, the
problems with the linear or quadratic constraints are considered. Various methods of
approximation of the complex constraints using the constraints of simpler forms (linear,
convex, etc.) are applied as well. However, the most often applied method is the
penalty function method. The approach used in the present work is based on a novel
method of the constraint handling. This approach was developed within the framework
of the information-statistical theory of global search [10]. The idea of the approach
consists in the construction of a scalar unconstrained objective function, the solving of
which leads to the solving of the initial problem (5) – more detailed description of the
approach is given below.

Within the framework of this approach, the algorithm of constrained global search
(ACGS) for the multiextremal optimization problems with the non-convex constraints2

makes the basis of the developed optimization methods. The general computational
scheme of the algorithm can be represented in the following form [9, 10].

Let us introduce a simpler notation for the one-dimensional problems (5) as

min u xð Þ : gi y xð Þð Þ� 0; 1� i�m; x 2 0; 1½ �f g;
u xð Þ ¼ gmþ 1 xð Þ ¼ F k; y xð Þð Þ: ð7Þ

The problem (7) can be considered in the partial computability form, when each
function gj, 1� j�mþ 1 is defined and computable in the corresponding subdomain
Dj � 0; 1½ � only, where

D1 ¼ 0; 1½ �;Djþ 1 ¼ x 2 Dj : gj y xð Þð Þ� 0
� �

; 1� j�m: ð8Þ

Taking into account the condition (8), the initial problem (7) can be represented as
follows

u x�ð Þ ¼ min gmþ 1 y xð Þð Þ : x 2 Dmþ 1f g: ð9Þ

This form of the problem (7) allows defining an index m ¼ mðxÞ for the points x from
the search domain 0; 1½ � where m� 1 is the number of constraints, which are satisfied at
this point. The index m is defined by the conditions

gm y xð Þð Þ[ 0; gj y xð Þð Þ� 0; 1� j� m� 1; 1� m ¼ m xð Þ�mþ 1: ð10Þ

where the last inequality is insufficient if m ¼ mþ 1 Computing the index m can be
provided by the sequential computation of the values gj y xð Þð Þ, 1� j� m ¼ m xð Þ, i.e. the
next value gjþ 1 xð Þ is computed in the case, when gj xð Þ� 0 only. The process of
computations is terminated either as a result of the fulfillment of the inequality

2 This algorithm is known also as the index method - see [10].
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gj xð Þ[ 0 or as a result of the achievement of the value m xð Þ ¼ mþ 1 (this procedure is
called hereafter a trial).

The main idea of such index scheme consists in the reduction of the constrained
problem (7) to an unconstrained problem

U x�ð Þ ¼ min U xð Þ : x 2 0; 1½ �f g; ð11Þ

where

UðxÞ ¼ gmðyðxÞÞ=Hm; m\mþ 1;
ðgmþ 1ðyðxÞÞ � g�mþ 1Þ=Hmþ 1; m ¼ mþ 1:

�

It is worth noting that the values of the Lipschitz constants Lv, 1� m\mþ 1 and the
value g�mþ 1 are unknown. However, when performing the computations, one can use
the adaptive estimates of these values obtained in the course of solving the optimization
problem (see the description of the algorithm below) instead.

The general computational scheme of the ACGS method consists in the following.
The first trial is performed at an arbitrary point x1 2 0; 1ð Þ. The choice of the point

xkþ 1, k� 1 of any next trial is determined by the following rules.
Rule 1. Renumber the points of preceding trials x1; . . .; xk by the lower indices in

the order of increasing of the coordinate values i.e.

0 ¼ x0\x1\. . .\xi\. . .\xk\xkþ 1 ¼ 1; ð12Þ

and juxtapose these ones to the values zi ¼ gv xið Þ, m ¼ m xið Þ, 1� i� k from (10)
computed at these points. The points x0 ¼ 0 and xkþ 1 ¼ 1 are introduced additionally
for convenience of further notations (the values z0 and zkþ 1 are undefined).

Rule 2. Subdivide the indices i, 1� i� k of the points from (12) with respect to the
number of constraints of the problem fulfilled at these points by constructing the sets

Iv ¼ i : 1� i� k; m ¼ m xið Þf g; 1� m�mþ 1 ð13Þ

containing the indices of all points xi, 1� i� k having the indices equal to the same
value m. The boundary points x0 ¼ 0 and xkþ 1 ¼ 1 are interpreted as the ones having
the zero indices, and are juxtaposed to an auxiliary set I0 ¼ 0; kþ 1f g.

Determine the maximum value of the index

M ¼ max m ¼ m xið Þ; 1� i� kf g: ð14Þ

Rule 3. Compute the current estimates

lv ¼ max zi � zj
�� ��= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xj
� �

N
q

; i; j 2 Im; i[ j

� 	
ð15Þ

for the Hölder constants Hm of the functions gm, 1� m�mþ 1 from (6). If the set Im
contains less than two elements or if lm from (15) appears to equal zero, then accept
lm ¼ 1.
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Rule 4. Compute the estimates z�m , 1� m�M for all nonempty sets Im, 1� �mþ 1
from (13),

z�m ¼
0; m\M;
minfgmðxiÞ : i 2 Img; m ¼ M:

�
ð16Þ

Rule 5. Compute the characteristics R ið Þ for each interval xi�1; xið Þ, 1� i� kþ 1
where

RðiÞ ¼
qi þ zi�zi�1ð Þ2

r2m l
2
m qi

� 2
zi þ zi�1�2z�mð Þ

rm lm
; m ¼ mðxi�1Þ ¼ mðxiÞ;

2qi � 4 ðzi�z�m Þ
rm lm

; m ¼ mðxi � 1Þ\mðxiÞ;
2qi � 4 ðzi�1�z�mÞ

rm lm
; m ¼ mðxi�1Þ[ mðxiÞ;

8>>><
>>>:

qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xi�1ÞN

p
; 1� j� kþ 1

ð17Þ

where z�m , 1� v�M from (16), M from (14).
The values rv [ 1, 1� v�mþ 1 are the parameters of the algorithm. The appro-

priate values rv allows using the products rvlv as the estimates of the Hölder constants
Hv, 1� v�mþ 1.

Rule 6. Determine the interval xt�1; xtð Þ with the maximum characteristic:

R tð Þ ¼ max R ið Þ : 1� i� kþ 1f g: ð18Þ

Rule 7. Execute the next trial at the point of the interval xkþ 1 2 xt�1; xtð Þ deter-
mined according to the expression

xkþ 1 ¼
xt þ xt�1

2 ; tðxt�1Þ 6¼ tðxt�1Þ;
xt þ xt�1

2 þ signðzt � zt�1Þ 1
2rm

zt�zt�1j j
lm

h iN
; t ¼ tðxt�1Þ ¼ tðxt�1Þ:

(
ð19Þ

The iterations of the algorithm are terminated if the stopping condition is satisfied

qt � e; ð20Þ

where t is from (18), and e > 0 is the predefined accuracy.
Various modifications of this algorithm and the corresponding theory of conver-

gence are presented in [9, 10].

5 Parallel Computations for the Time-Consuming
Multicriterial Constrained Optimization Problems

The proposed approach for parallel computations when solving the computation-costly
multicriterial optimization problems is based on the simultaneous computing of the
values of partial criteria and constraints of the initial problem (1) at several different
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points of the search domain D. Such an approach provides the parallelization of the
most time-consuming part of the global search, and is a general one – it can be applied
for many global search methods for various global optimization problems. Besides, an
essential speedup of the computations can be provided by means of full utilization of
the whole search information obtained in the course of optimization.

5.1 The Reuse of the Search Information for Accelerating
the Computations

The numerical solving of the optimization problems consists in the sequential com-
putation of the values of the partial criteria f i ¼ f yið Þ and constraints gi ¼ g yið Þ at the
points yi; 1� i� k of the search domain D. The search information obtained can be
represented in the form of the search information set (SIS):

Xk ¼ yi; f i; gi
� �T

: 1� i� k
n o

: ð21Þ

The availability of SIS allows reducing the results of previous computations to the
values of any next optimization problem (11) being solved without any
time-consuming computations of the values of partial criteria and constraints of the
initial problem (1) at any new values of the convolution coefficients k 2 K.

And, thus, all search information can be utilized for continuing the computations in
full amount. In general, the reuse of the search information will require less and less
amount of computations for solving every next optimization problem downto per-
forming several iterations only to find the next effective decision (see Sect. 6 for the
results of the numerical experiments).

As a result of the dimensionality reduction, the search information Xk from (21) can
be transformed into the matrix of search state (MSS)

Ak ¼ xi; zi; mi; lið ÞT : 1� i� k
� �

; ð22Þ

where xi, 1� i� k are the reduced trial points of the executed global search iterations,
zi, 1� i� k are the values of scalar criterion of current reduced optimization problem
(11) being solved, mi, 1� i� k are the indices of the scalar criterion values, and li,
1� i� k are the indices of the global search iterations, where the points xi, 1� i� k
have been computed.

The ACGS algorithm improved by the possibility to use the search information Ak

from (22) will be called hereafter the Algorithm of Multicriterial Constrained Global
Search (AMCGS).

5.2 Parallel Algorithm of the Multicriterial Global Search

The choice of the points in the search domain D for the simultaneous execution of
several trials (computing the values of the criteria and constraints of initial MCO
problem (1)) can be provided by means of the following parallel generalization of the
ACGS method – see, for example, [10, 34].
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Let p be the number of employed parallel computing nodes (processors or cores) of
the computational system with shared memory. The rules of the parallel algorithm
correspond to the computational scheme of the ACGS method except the steps of
computing the points of the next global search iteration. The modified rules for the
parallel algorithm can be presented as follows.

Rule 6 (updated). Arrange the characteristics of the intervals xi�1; xið Þ, 1� i� kþ 1
obtained in (17) in the decreasing order

Rðt1Þ�Rðt2Þ� . . .�Rðtk�1Þ�RðtkÞ ð23Þ

and select p intervals with the indices tj, 1� j� p having the maximum values of the
characteristics.

Rule 7 (updated). Perform new trials at the points xkþ j, 1� j� p placed into the
intervals with the maximum characteristics from (23) according the expression (19).

The stopping condition (20) of the parallel algorithm, which terminates the trials,
should be checked for all intervals, where the scheduled trials are performed, i.e.

qtj � e; 1� tj � p:

The ACGS algorithm updated by the opportunity of the parallel computations for
the computing nodes with shared memory will be named hereafter the Parallel Algo-
rithm of Multicriterial Constrained Global Search (PAMCGS).

6 Results of Numerical Experiments

The numerical experiments have been carried out using the Lobachevsky supercom-
puter at State University of Nizhni Novgorod (the operating system – CentOS 6.4, the
supercomputer management system – SLURM). Each supercomputer node had 2 Intel
Sandy Bridge E5-2660 2.2 GHz, 64 Gb RAM processors. The central processor units
(CPUs) had 8 cores (i.e., total 16 CPU cores were available per a node).

First, let us consider the results of the comparison of the developed PAMCGS
algorithm with several other multicriterial optimization algorithms. A bi-criterial test
problem proposed in [21]:

f1 yð Þ ¼ y1 � 1ð Þy22 þ 1; f2 yð Þ ¼ y2; 0� y1; y2 � 1: ð24Þ

was used for this experiment. The construction of a numerical approximation of Pareto
domain was understood as the solution of the problem (24). To evaluate the quality of
approximation, the completeness and uniformity of coverage of the Pareto domain were
evaluated with the use of the following two indices [21, 24]:

• The hypervolume index (HV). This index features the completeness of approxi-
mation of the Pareto domain (a larger value corresponds to a denser coverage of the
Pareto domain).
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• The distribution uniformity index (DU). This index features the uniformity of
coverage of the Pareto domain (a lower value corresponds to more uniform cov-
erage of the Pareto domain).

Within the framework of this experiment, five multicriterial optimization algo-
rithms were compared: the Monte-Carlo (MC) method, the genetic algorithm SEMO
from the PISA library [20, 24], the Non-Uniform Coverage (NUC) method [21], the
Bi-objective Lipschitz Optimization (BLO) method proposed in [24], and the serial
variant of the PAMCGS algorithm proposed in the present paper. The results of solving
the problem (24) for all methods listed above were obtained in [24].

For the AGCS method, 50 problems (3) have been solved at various values of the
convolution coefficients k distributed in K uniformly. The results of performed
experiments are presented in Table 1.

The results of the performed experiments have demonstrated that the ACGS
algorithm have a considerable advantage as compared to the considered multicriteria
optimization methods even when solving the relatively simple MCO problems.

In the second series of the numerical experiments, the solving of the bi-criterial
two-dimensional MCO problems with two constraints i.e. N = 2, s = 2, m = 2 has been
performed. The multiextremal functions obtained with the use of the GKLS generator
[27] were used as the problem criteria. In the course of experiments, the solving of 100
multicriterial problems of this class has been performed. In every problem, the search
of the Pareto-optimal decisions for 50 convolution coefficients k from (3) distributed in
K uniformly has been performed. The obtained results were averaged over the number
of solved MCO problems. In Fig. 1 an example of two criteria as well as the result of
convolution of the criteria and the feasible domain are presented.

The numerical experiments have been performed with stopping upon achievement
the method accuracy. For the checking, the points of the solution found by the method
have been compared to the points of the Pareto domain approximation computed taking
into account the selected convolution coefficients k. The accuracy of method e ¼ 0:02
and the reliability parameter r ¼ 5:6 were used when solving the series of problems.
The results of the numerical experiments are presented in Table 2.

In the first column of Table 2, the number of computing cores employed for solving
the problems from the considered series of experiments is given. In the second and
fourth columns, the averaged number of iterations executed by the PAMCGS algorithm

Table 1. Comparison of the efficiency of the multicriterial optimization algorithms

Method MC SEMO NUC BLO ACGS

Iterations 500 500 515 498 370
Number of points
in the Pareto domain
approximation

67 104 29 68 100

HV index 0.300 0.312 0.306 0.308 0.316
DU index 1.277 1.116 0.210 0.175 0.101
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for the solving of the optimization problem are presented. The third and fifth columns
contain the percentage of the solved problems at given parameters of the method. The
last two columns contain the information on the obtained speedup. The column (S1)
shows the effect of the reuse of the accumulated search information. The column (S2)
contains the information on the total speedup achieved as compared to the initial
algorithm without the use of the search information.

The obtained results of experiments (Table 2) demonstrate that the reuse of the
search information to allow reducing the total amount of computations by the factor of
18.4 without employing any additional computational resources. When using 25
computer cores, the maximum speedup reaches 295.6 times.

In the third series of the numerical experiments, the solving of the three-criterial
four-dimensional MCO problems with five constraints (i.e. N = 4, s = 3, m = 5) has
been performed. The criteria and constraints of the MCO problems to be solved were
generated with the use of the GKLS generator [27] as in the previous experiment.
When solving the problem series, the accuracy of the method e ¼ 0:01 and the relia-
bility parameter r ¼ 5:6 were used. The results of the numerical are presented in
Table 3. As it can be noted, for example, the speedup achieved when using 25 com-
puting cores was 244.6 times.

(a) (b) (c)

Fig. 1. Contour plots of two criteria obtained with the use of the GKLS generator (a, b); the
problem to be solved obtained by the convolution of the criteria k ¼ 0:5; 0:5f g (c). The feasible
domain is highlighted by green

Table 2. The results of the series of experiments on solving the two-dimensional bi-criterial
constrained MCO problems

Number of
computing

cores

Search information S1 S2

Not used Used
Number of
iterations

Problems
solved

Number of
iterations

Problems
solved

1 26191.8 88% 1420.5 93% 18.4 18.4
2 12146.1 85% 653.3 90% 18.6 40.1
5 5019.3 85% 285.7 91% 17.6 91.7
10 2141.5 85% 152.5 93% 14.0 171.8
25 1022.4 88% 88.6 94% 11.5 295.6
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7 Conclusion

In the present paper, an efficient parallel method is proposed for solving complex
multicriterial optimization problems with non-convex constraints, where the criteria of
optimality could be the multiextremal ones, and the computing of the criteria values
could require a large amount of computations. The proposed approach is based on the
reduction of the multicriterial problems to the nonlinear programming ones by means
of the minimax convolution of the partial criteria, on the dimensionality reduction with
the use Peano space-filling curves, and of application of the efficient information-
statistical global optimization methods with a novel index scheme of the constraints
handling instead of the penalty functions applied usually.

The key aspect of the developed approach is the overcoming of a large computa-
tional complexity of the global search of the set of effective decisions when solving the
multicriterial optimization problems. A considerable increase in the efficiency and an
essential reduction of the amount of computations was provided by means of the
maximum possible use of the search information obtained in the course of computa-
tions. To do so, it was necessary to provide the possibilities of storing large amounts of
the search information, of its efficient processing, and of using the search data in the
course of solving the multicriterial optimization problems. Within the framework of the
developed approach, the methods for converting all available search information to the
values of current scalar problem of nonlinear programming being solved have been
proposed. The search information transformed to current optimization problem was
used by the applied optimization methods for the adaptive planning of the global search
iterations performed. The availability of the search information allows also executing
the parallel computation efficiently providing the choice of the most promising points
of the search domain when searching the effective decisions for the MCO problems.

The results of the numerical experiments have demonstrated the developed
approach to allow reducing the computational costs of solving the multicriterial opti-
mization problems with the non-convex constraints essentially – tens and hundreds
times.

Table 3. The results of the series of experiments on solving the four-dimensional three-criterial
constrained MCO problems

Number of
computing cores

Search information S1 S2

Not used Used
Number of
iterations

Problems
solved

Number of
iterations

Problems
solved

1 49 988 246.5 91% 6 153 261.0 90% 8.1 8.1
2 20 369 550.2 90% 2 400 575.1 89% 8.5 20.8
5 8 228 684.5 90% 709 672.4 92% 11.6 70.4
10 5 582 125.8 92% 702 522.4 91% 7.9 71.2
25 1 704 359.8 91% 204 342.8 90% 8.3 244.6

An Approach for Parallel Solving 133



As a conclusion, one can note that the developed approach is a promising one and
needs continuing the investigations further. First of all, it is necessary to continue
carrying out the numerical experiments on solving the multicriterial optimization
problems with larger number of partial criteria and constraints for lager dimensional-
ities of the optimization problems to be solved. Also, a possibility of parallel com-
putations for the high-performance systems with distributed memory should be
explored.

Acknowledgements. This research was supported by the Russian Science Foundation, project
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Abstract. The quantum trajectory method is the most popular and
widely used algorithm to simulate the evolution of an open N -
dimensional quantum system. The key idea is to unravel Markovian
equation describing evolution of the system density operator (a N × N
Hermitian matrix) into a set of independent stochastic realizations
obtained by propagating system wave function (a complex N vector).
Since the method decreases the scaling of the computational problem
from N2 to N , it is especially efficient for the systems of large dimensions.
Intrinsic parallelism that is characteristic to all Monte Carlo schemes
allows for efficient implementations of quantum trajectories on a high-
performance computational cluster. One of the core mathematical oper-
ations involved into the method is the matrix-vector multiplication. We
propose to improve the algorithm by grouping trajectories into matri-
ces and substituting a set of matrix-vector multiplications with a sin-
gle matrix-matrix multiplication. By using a testbed model with 1024
states, we demonstrate that, even in the presence of intrinsic asynchrony
between different trajectories, this step leads to a 17-fold acceleration on
the 4-socket 96-core Intel Broadwell CPU.

Keywords: Open quantum systems · Quantum trajectory method ·
High-performance computing · Supercomputing technologies · Parallel
computing · Performance analysis and optimization

1 Introduction

Physics of open quantum systems attracts a lot of attention during the last
decade. This is because it considers quantum systems in their natural habitats,
i.e., when the former interact with their environments [1]. The growing interest to
open systems was initiated by the rise of quantum technologies and is maintained
by ever-increasing number of real-life applications of quantum systems that a
decade ago existed on paper only. It is evident that in order to blueprint a
realistic quantum device, effects of its interaction with environment should be
taken into account.
c© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 136–150, 2017.
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The most elaborated, both from mathematical and physical point views,
approach to model open quantum system is the Lindblad formalism, which is
based on the idea of quantum dynamical semi-groups and culminates into the
Lindblad equation [2]. This approach is very popular in such fields as quan-
tum optics, optomechanics, cavity quantum electrodynamics, and cold atom
physics [3]. Straightforward numerical solution of the Lindblad equation (and
thus obtaining the asymptotic state of the model of interest) is not feasible
when the model dimension N – that is the dimension of the Hilbert space the
model lives in – is larger than 500. When the model Hamiltonian is explicitly
time-periodic, i.e., the system is additionally modulated in time [4], evaluation
of the system non-equilibrium asymptotic state involves numerical integration
of the Lindblad equation in time. It is hardly doable even when N � 400.

Model with N = 400 states may still be too small to describe real-life quan-
tum systems. It is possible to go beyond this limit by unraveling the Lindblad
equation into a set of stochastic realizations, called “quantum trajectories” [3,5].
This method allows transform the problem of the numerical solution of the Lind-
blad equation into a task of statistical sampling over quantum trajectories, with
every trajectory specified by a complex vector of the size N . The price to pay for
the reduction from N2 to N is that one now has to sample over many realizations.

In our work [6] we presented an implementation of the quantum trajectory
method that allowed us to resolve non-equilibrium asymptotic states (which we
called “quantum attractors”) of a periodically modulated quantum model. We
demonstrated that a regular high-performance cluster (with up to 512 compu-
tational cores) is enough to sample such attractors with high accuracy for the
model of the dimension N ≈ 2000. The aim of this paper is to investigate the
potential for the further optimization of the implementation and improvement
of its performance.

Like in a number of other numerical software, a substantial advance can
be potentially reached by increasing parallelism on each level of computing
(processes, threads, SIMD, instruction level parallelism), as well as by improving
memory usage efficiency. Since the quantum trajectory method belongs to the
Monte Carlo family, it should possess high intrinsic parallelism. Note that due
to the nature of the method, intrinsic stochastic steps – quantum jumps – can
occur at different random times for different trajectories, and their number (for
a fixed time interval) can vary too. Nevertheless, numerical experiments indicate
the absence of a substantial variation, which together with the opportunity of
merging a set of trajectories into a single computational task for parallel com-
puting, leads to a small imbalance of computational load, order 5% only. At the
same time, an empiric choice of the ratio between the number of the employed
processes and threads of the hybrid MPI + OpenMP parallelization scheme,
on the contrary, significantly affects the total computation time. The next level
of parallelism is related with vectorization of computing and effective usage of
wide vector registries and AVX2-instructions in modern processors. It is essential
that the main computational core of the method that consumes > 95% of the
total time is the dense matrix-vector multiplication, which can be vectorized.
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In that respect, our code makes use of the high performance implementation
of the matrix-vector multiplication from the Intel Math Kernel Library (MKL).
Summarizing the above, there is a considerable room for exploiting parallelism
in quantum trajectory method.

Improving performance of computations here could be achieved by reducing
the number of calls to the main memory and by a more efficient usage of the
cache. The most straightforward idea along these lines would be a substitution of
the groups of matrix-vector multiplications to single matrix-matrix multiplica-
tions. In [7] it was demonstrated, that such optimization can substantially reduce
computational cost, at least for the addressed class of problems. There, merging
was achieved by substituting propagation of separate vectors with propagation
of a matrix composed of them. In the case of quantum trajectories, there is an
asynchrony between different trajectories in times of jumps and such merging is
not so straightforward. Here we propose a solution to the problem that allows to
attain the same results but at a smaller time, as a rule. We will demonstrate the
way to organize computing, focusing on a matrix multiplication, where appro-
priate.

The paper is organized as follows. In Sect. 2 we give a mathematical model –
a system of indistinguishable interacting bosons hopping between the sites of a
periodically rocked dimer. In Sect. 3 the description of the quantum trajectory
method is given. In Sect. 4 we present the optimized method. Numerical results
and performance analysis are given in Sect. 5. Section 6 concludes the paper.

2 Model

The Lindblad equation is described by its generator L, which has a universal
structure [2]:

�̇ = L(�) = −i[H(t), �] +
K∑

k=1

γk(t) · Dk(�),

Dk(�) = Ak�V †
k − 1

2
{A†

kAk, �}. (1)

Here � is the system density matrix, while the set of quantum jump operators,
Ak, k = 1, ...,K, captures the action of the environment on the system. Namely,
it acts through K ‘channels’ with time-dependent (in general) rates γk. Finally,
[., .] and {., .} denote commutator and anti-commutator, respectively.

As a testbed model we use a system of N − 1 indistinguishable interacting
bosons hopping over a periodically rocked dimer [8]. The system Hamiltonian is

H(t) = − J
(
b†
1b2 + b†

2b1

)
+

U

2(N − 1)

∑

g=1,2

ng (ng − 1)

+ ε(t) (n2 − n1) (2)

where J is the tunneling amplitude, U is the interaction strength, and ε(t)
presents the modulation of the on-site potential difference. In particular, we
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choose ε(t) = ε(t + T ) = μ0 + μ1θ(ωt), where μ0 and μ1 are static and dynamic
energy offsets between the two sites, respectively, and θ(x) is a step-like periodic
function of period one. Here, bg and b†

g are the annihilation and creation operators
on site g ∈ {1, 2}, while ng = b†

gbg is the particle number operator. The system
Hilbert space has dimension N and can be spanned with the Fock basis vectors,
labeled by the number of boson on the first site t, {|t + 1〉}, t = 0, ..., N − 1.
So, the model has N states and its size is controlled by the total number of
bosons. Hamiltonian (2) has been used for theoretical studies and was already
implemented in experiments [8]. On top, this is a nicely scalable model; its
dimension N can be incremented by simply adding one boson.

We use a single jump operator [9,10],

A = (b†
1 + b†

2)(b1 − b2), (3)

which tries to ‘synchronize’ the dynamics on the sites by constantly recycling
anti-symmetric out-phase modes into the symmetric in-phase ones. The coupling
constant γ = (N − 1)γ0 is assumed to be time-independent.

3 Quantum Trajectory Method

3.1 Base Algorithm

Solution to the Lindblad equation (1) for the density matrix of an open system
can be unraveled into an ensemble of quantum trajectories, which are governed
by the equation

|ψ̇〉 = −iH̃|ψ〉, (4)

where |ψ〉 is the state vector of dimension N , and H̃ = H − i
2

∑
k γkA∗

kAk is the
non-Hermitian Hamiltonian, constructed from the original system Hamiltonian
and jump operators.

The method is implemented as follows (see Algorithm 1). Initially, the code
loads the model and method parameters: system size N , number of quantum
trajectories for sampling L, end time Tmax, the matrices for exponential oper-
ators expM (lines 12). Initial conditions |ψ0〉 are chosen such that the norm of
the vector equals 1; this corresponds to the initial condition �0 = |ψ0〉〈ψ0| for
the original Lindblad equation (1). The main computational cycle (lines 312)
contains numerical propagation of L vectors {|ψl(t)〉; l = 1, .., L} in time within
the interval [0;Tmax].

The details of propagation follow (lines 411).

1. Choose a random number η from the uniform distribution on [0, 1] (line 5).
2. Perform propagation in time τ (lines 69), until the following is satisfied:

‖|ψ(t)〉‖2 = η. Reaching it is ensured by the special form of the Hamiltonian
H̃ that monotonously decreases the norm.

3. Make quantum jump (line 10).

3.1 Normalize the state vector again |ψ(t)〉 = |ψ(t)〉
‖|ψ(t)〉‖ .
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Algorithm 1. Quantum trajectory method
1: load the system and method parameters (N, L, Tmax, ExpM)
2: for l = 1 to L do
3: for t = 0 to Tmax do
4: generate η = U [0, 1]
5: while ‖|ψ(t)〉‖2 > η do
6: calculate tnext

7: propagate |ψ(t)〉 on [tcur, tnext]
8: end while
9: makes quantum jump

10: end for
11: end for
12: calculate the final density matrix
13: release memory

3.2 Calculate probabilities of selecting quantum jump channels [p1, .., pK ],
pk = γk‖Ak|ψ(t)〉‖2

∑K
i=1 γi‖Ak|ψ(t)〉‖2 . Therefore, we split a unit interval in K parts of

the lengths p1, .., pK , respectively.
3.3 Choose random ξ from a uniform distribution on [0, 1]. Determine the

corresponding m-th quantum channel such that ξ ∈ pm, and complete
the quantum jump according to: |ψ(t)〉 = Am|ψ(t)〉

‖Am|ψ(t)〉‖ .

As a result, we obtain an ensemble of quantum trajectories {|ψl(t)〉; t ∈
[0, Tmax]; l = 1, .., L}. The density matrix, approximating an exact solution to
Eq.(1) at an arbitrary time t ∈ [0;Tmax], can be unraveled by averaging over the
trajectories:

ρ̃L(t) =
1
L

L∑

l=1

|ψl(t)〉〈ψl(t)|
‖|ψl(t)〉‖2 (5)

It is proved that limL→∞ ρ̃L(t) = ρ(t) [2].

3.2 Exponential Operators

The most computationally intensive part of the described algorithm is propa-
gating a vector |ψ(t)〉 until the condition of a jump is met (line 8). This step
can be substantially accelerated, taking into account that H̃ is constant between
switching of θ(t). There, propagation is explicitly described by an exponential
operator [6]:

B(Δt) = e−iH̃Δt,

which does not depend on a particular state |ψ(t)〉, and therefore allows for
calculating evolution of an arbitrary vector over time Δt. To implement a high-
precision approach to resolution of the jump moments, one can pre-calculate a
set of exponential operators, for different time steps. The maximal time step
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should be chosen to be in an integer ratio to the time interval T , where the
Hamiltonian H̃ is constant: T = kΔt1, k ∈ Z. For finer timescales one defines:

{B(Δti)|Δti = 2Δti+1 : i = 1,m − 1}

The particular value of Δt1 should be chosen as to decrease the computation
time between quantum jumps, and so it is model and parameter dependent. In
our experience, a “rule of thumb” defines the best value of Δt1 as that makes
‖|ψ(t)〉‖ decreasing by 30−60% under action of B(Δt1). The depth of timescale
hierarchy, m, should be chosen with regard to the required precision for the
resolution of jump moments, which is ≤ Δtm.

Propagation of the trajectory untill the next jump implements bisection
method (Algorithm 2). It is initialized with the a current time t, state vec-
tor |ψ(t)〉 and random η. The first step takes s = 1, δt = Δt1 (line 1), next steps
take values of s and δt, obtained in the end of the preceding step. The moment
of jump is found as follows:

1. The main cycle of the algorithm (lines 2–13) implements propagation with a
given time step until quantum jump conditions are fulfilled, ‖|ψ(t)〉‖2 ≤ η.

2. The value of the state vector at t + δt is calculated (line 3).
3. If |ψ(t+δt)〉 fulfills the jump condition, the time of the jump is resolved with

higher precision. This is achieved by taking a smaller time step (line 5), if
the minimal one, tm, has not been reached yet. Otherwise, the time of the
jump is determined with the maximal possible precision.

4. If the jump condition is not fulfilled, or its moment is found with maximal
precision, then the current time and state vector values are renewed (lines
7–8). Then, the maximal time step, Δts, to be used for the next iteration of
the algorithm (lines 9–11), is chosen such that the time to the next switch
of the Hamiltonian is the multiple of Δts.

4 Optimized Algorithm

Algorithm 2 that propagates the state vector |ψ(t)〉 to the next time moment
t + δt, involves the multiplication of the vector with the matrix of the expo-
nential operator. Our idea of accelerating the algorithm is to cluster (group)
the trajectories so that multiple independent matrix-vector multiplications are
substituted with a single matrix-matrix multiplication, which, for example, for
matrix dimension of the order of 103 reduces computational time by several-fold.
The main challenge lies in clustering of the vectors in groups; that is because
moments of next quantum jumps for the trajectories are different and inde-
pendent. It should also be noted that while Hamiltonian matrices for quantum
dynamics are often sparse, the matrices for exponential operators are not.

Below we present the detailed description of our solution. The task is for-
mulated as the propagation of the group of vectors |ψl(t)〉, l = 1, .., L′ over the
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Algorithm 2. Finding the moment of a quantum jump with the set of expo-
nential operators
1: δt = Δt1
2: s = 1
3: while ‖|ψ(t)〉‖2 > η do
4: |μ〉 = B(ts)|ψ(t)〉
5: if ‖|μ〉‖2 ≤ η & s < m then
6: s = s + 1
7: else
8: |ψ(t)〉 = |μ〉
9: t = t + δt

10: while s > 1 & δt = k ∗ Δts−1, k ∈ Z
+ do

11: s = s − 1
12: δt = Δts
13: end while
14: end if
15: end while

time interval [tH̃ , tH̃ + TH̃ ], where the Hamiltonian H̃ is constant. As a result,
all vectors have to be propagated to the end of the specified time interval.

For simplicity of description and without loss of generality, we consider the
set of operators {B(Δti)|kΔt1 = TH̃ , k ∈ Z;Δti = 2Δti+1 : i = 1,m − 1}. The
group of vectors is stored in the matrix form V ∈ CL′×N , where each vector
is given by a separate row. Here L′ is the number of vectors in a group, N is
the dimension (number of states) of the model quantum system, V [l] is the l-th
state vector, and ‖V [l]‖ is its norm.

Each l-th vector is given additional characteristics.

– η[l], a random number from a uniform distribution, U [0, 1], which determines
the value of the norm, when a quantum jump occurs.

– d[l] is an integer number that sets a current time within the propagation
interval, when Hamiltonian remains constant, [tH̃ , tH̃ + TH̃ ]. d[l] = 0 corre-
sponds to the beginning of the interval. Increasing d[l] by 1 corresponds to
increasing current time by Δtm. d[l] = k ∗2m−1 corresponds to the end of the
time interval, tH̃ + TH̃ .

Matrix V has a specific structure (Table 1) and contains 4 blocks of rows
of distinct classes. In course of the run, vectors are moved from one block to
another (change their class), and the sizes of blocks change.

Start of the propagation from the left boundary of the interval [tH̃ , tH̃ + TH̃ ]
is accompanied by the following initialization.

– All vectors belong to class A.
– If tH̃ = 0, then for all vectors the values η[l] = U [0, 1] are calculated. Other-

wise η[l] is brought forward from the previous time interval.
– For all vectors d[l] = 0 is set.
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Table 1. The structure of the matrix

Class/Block Description

V A, rows
(1) − (A)

Vectors, which could experience a jump
until the right boundary of the interval is reached [tH̃ , tH̃+TH̃ ],
but an estimate of the time of jump is missing

V B, rows
(A + 1) − (A + B)

Vectors, which will experience a jump
during the time interval Δt1.

V C, rows
(A + B + 1)−
(A + B + C)

Vectors, which cannot experience a jump
before the right boundary of the time interval is reached
[tH̃ , tH̃ + TH̃ ]

V D, rows
(A + B + C + 1)−
(A+B+C+D = L′)

Vectors, propagated to the right
boundary of the time interval [tH̃ , tH̃ + TH̃ ]

Propagation is performed in the forward step (Algorithm 3) and backward
step (Algorithm 4). The forward step is repeated until there remain trajectories
from V A class. Otherwise, the backward step is performed once.

The forward step of the algorithm finds the next moment for the quantum
jump for all vectors of class A. It is specified in Algorithm 3.

1. The first part of the algorithm (lines 1–17) propagates each vector V A by a
maximally possible number of steps Δt1, which does not lead to the quantum
jump yet. For that a vector is sequentially multiplied by B1, but before it is
renewed, one of the following is checked.

1.1 Next product produces the quantum jump condition. Then, the vector is
moved to block V B (lines 4–6).

1.2 Next product does not lead to quantum jump and will not allow the cur-
rent time to reach the right boundary of the interval [tH̃ , tH̃ +TH̃ ]. Then,
the value of the vector should be renewed, and propagation continued
(rows 7–9).

1.3 Next product does not lead to quantum jumps condition, but the current
time becomes equal to the right boundary of the interval [tH̃ , tH̃ + TH̃ ].
In that case, the vector should be renewed and moved to block V D (lines
10–12).

1.4 Next product does not lead to quantum jump, but the current time
becomes greater then the right boundary of the interval [tH̃ , tH̃ + TH̃ ].
Then, the vector should be moved to block V C (rows 13–15).
On completion of the first part of the algorithm block A becomes empty.

2. The second part of the algorithm (rows 18–34) searches for the quantum jump
times for vectors from block V B, provided that it occurs within [tH̃ , tH̃ +TH̃ ].
Namely, each vector from V B is multiplied by the matrices of the exponential
operators, Bi, i = 2..m, one by one. Processing the result V Bnext[l] of the
multiplication of each vector by each matrix is determined by the following.
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Algorithm 3. Forward step of the algorithm
1: while A > 0 do
2: V Anext = B1 × V A
3: for l = 1; l < A; l = l + 1 do
4: if ‖V Anext[l]‖2 < η[l] then move V A[l] to V B
5: end if
6: if ‖V Anext[l]‖2 ≥ η[l] & d[l] + 2m−1 < k ∗ 2m−1 then
7: V A[l] = V Anext[l]d[l] = d[l] + 2m−1;
8: end if
9: if ‖V Anext[l]‖2 ≥ η[l] & d[l] + 2m−1 == k ∗ 2m−1 then

10: V A[l] = V Anext[l]; d[l] = 0;
11: move V A[l] to V D
12: end if
13: if ‖V Anext[l]‖2 ≥ η[l] & d[l] + 2m−1 > k ∗ 2m−1 then
14: move V A[l] to V C
15: end if
16: end for
17: end while
18: for i = 2; i ≤ m; i = i + 1 do
19: V Bnext = Bi × V B
20: for l = 1; l ≤ B; l = l + 1 do
21: if ‖V Bnext[l]‖2 < η[l] & d[l] + 2m−i < k ∗ 2m−1 then
22: V B[l] = V B[l];
23: end if
24: if ‖V Bnext[l]‖2 ≥ η[l] & d[l] + 2m−i < k ∗ 2m−1 then
25: V B[l] = V Bnext[l]; d[l] = d[l] + 2m−i

26: end if
27: if ‖V Bnext[l]‖2 ≥ η[l] & d[l] + 2m−i == k ∗ 2m−1 then
28: V B[l] = V Bnext[l]; d[l] = 0; move V B[l] to V D
29: end if
30: if ‖V Bnext[l]‖2 ≥ η[l] & d[l] + 2m−i > k ∗ 2m−1 then
31: move V B[l] to V C
32: end if
33: end for
34: end for
35: V B = Bm × V B
36: Make quantum jump for all vectors in V B
37: for l = 1; l ≤ B; l = l + 1 do
38: generate η[l] = U [0, 1]
39: d[l] = d[l] + 1
40: if d[l] == k ∗ 2m−1 then
41: d[l] = 0; move V B[l] to V D
42: else
43: move V B[l] to V A
44: end if
45: end for
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2.1 If a quantum jump occurs for V Bnext[l], the result is not saved (lines
21–23). In this case, we can either find a moment for the quantum jump
to a higher precision or make the last move towards time Δtm in the third
part of the algorithm.

2.2 If the quantum jump condition is not fulfilled for V Bnext[l], and the time
has not reached the end of the interval [tH̃ , tH̃+TH̃ ], then the vector V B[l]
is renewed, together with its current time d[l] (lines 24–26).

2.3 If the quantum jump condition is not fulfilled for V Bnext[l], but the
right boundary of the interval [tH̃ , tH̃ + TH̃ ] is reached, then the result is
saved, the vector is moved to block V D (lines 27–29). Propagation step
is finished.

2.4 In the quantum jump condition is not fulfilled for V Bnext[l], and the
current time has gone beyond the interval [tH̃ , tH̃ + TH̃ ], then the result
is not saved, and the vector is moved to block V C (lines 30–32).
On completion of the second part of the algorithm, block V B contains
only those vectors, for which quantum jump occurs only after propagation
to the time Δtm.

3. In the third part of the algorithm (lines 35–45), vectors from block V B are
multiplied by matrix Bm, and undergo quantum jumps (lines 35–36). Then
for each vectors from block V B, there is a new value of η[l] is generated, the
current time d[l] is renewed, and the vector is moved to V A or V D (lines
37–45).

The backward step of the algorithm brings all vectors from V C to the right
end of the interval [tH̃ , tH̃ + TH̃ ]. It is implemented in the case, when the class
V A becomes empty after an iteration of the forward step. The backward step is
organized as follows (Algorithm 4).

1. Vectors from block V C are propagated to the right boundary of the time
interval [tH̃ , tH̃ +TH̃ ]. Block V C is multiplied by exponential operator matri-
ces Bi, i = m, .., 2, one by one (lines 1–11). Processing of the result of the
multiplication of each vector of the block by a matrix, V Cnext[l], is deter-
mined by the following.
– In propagation over Δti is required to reach an exact boundary of the

time interval, [tH̃ , tH̃ + TH̃ ], then both the current time and vector are
renewed (lines 4–6).

– If after propagation over time Δti we reach the right end of the interval
[tH̃ , tH̃ + TH̃ ], then the current time and vector are renewed, the vector
is moved in block V D (lines 7–9).

2. All vectors from V D move to V A (line 12).

5 Numerical Results

5.1 Computational Infrastructure

We used a node of the Intel Endeavor cluster with 4 high-end 24-core Intel
Xeon E7-8890v4 CPUs (2.2 GHz, codename Broadwell). We employed the Intel
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Algorithm 4. Backward step of the algorithm
1: for i = m; i ≥ 2 & C > 0; i = i − 1 do
2: V Cnext = Bi × V C
3: for l = 1; l ≤ C; l = l + 1 do
4: if d[l] & 2m−i = 1 /* & means bitwise AND here */ then
5: V C[l] = V Cnext[l]; d[l] = d[l] + 2m−i

6: end if
7: if d[l] == k ∗ 2m−1 then
8: d[l] = 0; move V C[l] to V D
9: end if

10: end for
11: end for
12: move all vectors from V D to V A

Math Kernel Library, Intel MPI, and Intel C++ Compiler from the Intel Parallel
Studio XE Cluster Edition 2017.

5.2 Methodology

The Goal of the Experiments and the Model Problem. The main scien-
tific contribution of this paper is the algorithmic optimization of the quantum
trajectory method described in the previous section. In this section we empiri-
cally show the advantages of the optimized algorithm compared to the baseline
implementation. We also identify the most promising run modes by means of
trying different combinations of MPI processes, OpenMP threads, and MKL
threads. The quantum dimer with N = 1024 states described in Sect. 2 is chosen
as a testbed problem. For this number of states the run time of the baseline
algorithm is acceptable and so we can run and analyze extensive performance
tests. Besides, this system size is big enough to highlight the advantage of the
optimized algorithm.

Correctness Tests. First, we check the correctness of the optimized implemen-
tation. Note that since in both cases we are dealing with stochastic algorithms,
the results will not be exactly the same. Given that the correctness of the base-
line implementation has been verified in our earlier work [6], we take its results as
a basis for further comparison. Correctness evaluation of the optimized version
consisted of two stages. At the first stage, we generated a sequence of pseudo-
random numbers and used it for both algorithms. Then we compared the result-
ing density matrices. For the time periods considered, the relative difference did
not exceed 10−14, which can be explained by the different order of floating-point
operations. At the second stage we used the time intervals and numbers of tra-
jectories sufficient to reach the attractor, which is of great interest for researchers
of this kind of problems. We found that the results of the optimized algorithm
were in the 95% confidence interval computed for the baseline version. Thus,
our experiments demonstrate that the results of the optimized code match the
expectations.
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Performance Evaluation. A straightforward choice of the performance met-
ric is to compare the run time to reach the attractor with the given accuracy.
However, the problem considered is computationally intensive and testing many
configurations is somewhat wasteful in terms of CPU-hours consumed. Therefore,
we employ the number of trajectories processed per second, while propagating
the system for one time period, as the performance metric. Since our performance
evaluation experiments are done for a single period, the metric corresponds to
simply trajectories per second.

The plan for performance evaluation takes into account the following fea-
tures. The hotspot of the baseline implementation is the dense matrix-vector
multiplication routine. On the contrary, the optimized version spends most time
on dense matrix-matrix multiplication. Workload imbalance is under 5% even
for small numbers of trajectories.

The baseline implementation employs MPI + OpenMP parallelism on the
level of trajectories with sequential MKL matrix-vector multiplication. Parallel
matrix-vector multiplication is not beneficial because of a small workload per
invocation combined with good balancing on MPI + OpenMP level. The opti-
mized version uses the same MPI + OpenMP scheme, but we additionally study
efficiency of internal parallelism in MKL matrix-matrix multiplication.

Based on the above-mentioned considerations, we fixed the integration time
to be equal to one period and varied the number of processes P , the number
of threads T and, for the optimized version, the number of MKL threads M .
For both versions the total number of threads in each configuration was equal
to the number of cores (96). Previously we have checked that using all 96 cores
indeed yields better performance (in terms of the metric used) compared to
smaller numbers of cores. All experiments were performed on a single node of
the Endeavor system, since the scaling efficiency on distributed memory is close
to linear due to a small workload imbalance and virtually absent communications
between nodes.

5.3 Results and Discussion

First, we found the empirically best combination of processes and threads for the
baseline version (Table 2). The value of the performance metric varies between
0.8 and 1.69 trajectories per second, with the optimal configuration being 4
processes with 24 threads per process. In this mode each process is run on a
separate 24-core CPU with an affinity mask used to pin OpenMP threads to
cores.

The next series of experiments concerns the optimized version with varying
numbers of MPI processes, OpenMP threads and MKL threads. The results
are presented at Table 3. Same as for the baseline version, the configurations
with external parallelism and sequential MKL routines are superior. The best
configuration is again 4 processes with 24 threads per process, scoring 29.09
trajectories per second. In this configuration the optimized version outperforms
the baseline version by a factor of 17.21, which proves efficacy of the proposed
approach to optimization. Increasing the problem size will likely further increase
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Table 2. Comparison of MPI + OpenMP configurations for the baseline version.

# processes # threads Trajectories per second

1 96 0.80

2 48 0.63

4 24 1.69

8 12 1.49

12 8 1.44

24 4 1.39

48 2 1.36

96 1 1.35

Table 3. Comparison of MPI, OpenMP and MKL configurations for the optimized
version.

# processes # OpenMP threads # MKL threads Trajectories per second

1 1 96 5.57

1 96 1 27.60

2 1 48 11.69

2 48 1 28.07

4 1 24 21.58

4 24 1 29.09

8 1 12 16.32

8 12 1 25.75

12 1 8 27.03

12 8 1 21.02

24 1 4 27.33

24 4 1 18.48

48 1 2 13.99

48 2 1 16.87

96 1 1 13.78

the speedup due to the growing advantage of matrix-matrix multiplication over
a set of matrix-vector multiplications.

To assess the hardware usage efficiency we apply the Roofline model [11].
Presented several years ago, this method of analysis is widely used to compare
the achieved and theoretically attainable performance on specific computing sys-
tems. The main advantage of this model is a visual representation of the achieved
performance and its theoretical upper bounds. In our experiments we collected
the data traffic through L1 cache and arithmetic intensity (AI) using the Roofline
Analysis of Intel Advisor. The baseline and optimized implementations were run
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Fig. 1. Roofline model for the baseline and optimized algorithms

using the best combination of MPI processes and OpenMP threads. The resulted
Roofline model is presented below as a log-log plot (Fig. 1). The arithmetic inten-
sity, computed as the number of floating point operations related to the data
traffic through L1 cache, is shown on the horizontal axis. The vertical axis cor-
responds to the achieved and attainable floating-point performance in double
precision. Four dotted sloping lines show the peak performance as a function of
arithmetic intensity with fixed memory bandwidth of L1, L2, L3, and DRAM.
Three horizontal dotted lines show peak performance for double precision float-
ing point computations in the scalar, vector and vector fused multiply-add (vec-
tor FMA) modes, respectively. The collected performance data is presented as
follows. The red triangle represents the overall baseline version performance
184.69 GFLOPS with AI = 0.239 FLOP/Byte. The green triangle represents
the overall optimized version performance 2211.92 GFLOPS with AI = 0.37
FLOP/Byte. The red and green circles correspond to the main hotspots of both
implementations. Thus, the largest red circle corresponds to the MKL dense
matrix multiplication routine. It achieved 3128.504 GFLOPS that is very close
to the peak hardware performance. Overall, the optimized version achieved 68%
of the 4-socket 96-core Intel Broadwell CPU peak performance which is quite
well for state-of-the-art scientific applications.

6 Conclusions

We proposed and validated the optimized version of the quantum trajectory
method, which allows to find asymptotic states of open quantum systems. The
central idea is the clustering (grouping) of trajectories into matrices and substi-
tution of multiple matrix-vector multiplication operations with a single matrix-
matrix multiplication. This modification significantly increases efficiency of the
multi-level hierarchic memory usage due to the potential of re-using the data,
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previously loaded in the different level cache memory. The original algorithm
[6] did not allow for an automatic merging of trajectories due to the different
times of quantum jumps on every trajectory. It required a substantial rewrit-
ing of the code, which proved to be completely justified. Computational results
showed more than 17-fold acceleration with the testbed quantum model of the
dimension N = 1024, which demonstrated a possibility of substantial economy of
computational resources or/and time of calculations. The obtained results open
the door to studying systems of even greater dimension. We expect our approach
to be applicable to many models, actual and timely in different fields of modern
quantum physics.
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Abstract. The novel docking algorithm is presented and it is applied to the
docking problem with flexible ligand and moveable protein atoms. The energy of
the protein-ligand complex is calculated in the frame of the MMFF94 force field
in vacuum. The conformation space of the system coordinates is formed by trans‐
lations and rotations of the ligand as a whole, by the ligand torsions and also by
Cartesian coordinates of the selected target protein atoms. The algorithm is real‐
ized in the novel parallel docking SOL-P program and results of its performance
for a set of 30 protein-ligand complexes are presented. It is shown that mobility
of the protein atoms improves docking positioning accuracy. The SOL-P program
is able to perform docking of a flexible ligand into the active site of the target
protein with several dozen of protein moveable atoms – up to 157 degrees of
freedom.

Keywords: Docking · Tensor train · Protein-ligand complex · Protein moveable
atoms · Flexible ligand · Drug design

1 Introduction

Search of molecules-inhibitors of a given target protein is the key stage of the new drug
development. Inhibitors block the active site of the protein associated with a disease and
the disease is cured. Molecular modeling on the base of supercomputer simulation by
docking and molecular dynamics programs should increase effectiveness of new inhib‐
itors development [1, 2]. On the base of such calculations it is possible to predict inhib‐
ition activity of new compounds. The reliable prediction is defined by the accuracy of
these programs. Docking programs perform positioning of a compound (a ligand) in the
active site of the target protein. Computed poses of the ligand are used for the calculation
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of the protein-ligand binding free energy which is directly connected with the inhibition
constant. Compounds with higher binding energy are better inhibitors because the same
inhibition effect can be reached with smaller concentration of the compound. The accu‐
racy of binding energy calculations should be better than 1 kcal/mol [3] for the reliable
prediction of the inhibitory activity. However, the accuracy of binding energy calcula‐
tions for arbitrary target proteins and ligands is too bad now. This accuracy depends on
many factors and simplifications: the force field choice for modeling intra- and inter-
molecular interactions instead of the use of quantum chemical methods, the solvent
model, target protein and ligand models, the docking algorithm, the free energy calcu‐
lation method, respective approximations and computer resources required for docking
of one ligand. Main simplifications of many existing docking programs, e.g. the SOL
[4] program, is the rigid protein approximation and the use of the grid of preliminary
calculated potentials of ligand probe atoms interactions with the protein (the grid
approximation) which restrict strongly performance of docking programs and make
worse the docking accuracy. However proteins are flexible and some protein atoms near
the ligand binding pose relax from their initial positions in the process of protein-ligand
binding – a difference between bound and unbound protein’s structures is often observed
[5]. In this study we describe the novel docking algorithm which makes it possible to
reject the rigid protein as well as the grid approximations, to take into account many
proteins’ degrees of freedom and to increase the docking accuracy.

The protein-ligand binding free energy 𝛥Gbind can be calculated as the difference
between the free energy of the protein-ligand complex GPL and the sum of free energies
of the unbound protein GP and the unbound ligand GL:

𝛥Gbind = GPL − GP − GL (1)

Free energies of the protein, the ligand and their complex are described by respective
energy landscapes and they can be calculated through the configuration integrals over
the respective phase space. In the thermodynamic equilibrium the molecular system
occupies its low energy minima. The configuration integral will come to the sum of
configuration integrals over the separate low energy minima if these minima are sepa‐
rated by sufficiently high energy barriers [6, 7]. So, the docking accuracy is defined by
the completeness of the low energy minima finding and by the accuracy of the config‐
uration integral calculation in each of these minima.

Docking without the preliminary calculated energy grid requires much more compu‐
tational resources because the protein-ligand energy has to be computed in the frame of
the whole given force field for each system conformation appearing in the minima search
algorithm. Such docking programs, FLM [7] and SOL-T [8], have been developed for
the rigid target protein and the flexible ligand. The parallel FLM program can perform
the comprehensive minima search either in vacuum or with the rigorous implicit solvent
model [7] but at the expense of too large supercomputer resources – about 20000 CPU*h
per one complex. The parallel SOL-T program employs the novel tensor train global
(TT) optimization algorithm and it requires much less supercomputer resources than
FLM. The docking positioning accuracy of FLM and SOL-T in vacuum for the rigid
protein are comparable with one another at least for some test complexes [8]. Also it is
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demonstrated [7] that the ligand positioning accuracy is much better when the recent
quantum chemical semiempirical methods, PM7 [9] and PM6 [10], are used instead of
classical force fields and water solvent is taken into account.

Algorithms of most modern docking programs are based on the docking paradigm
[7–9]. This paradigm assumes that the ligand binding pose in the active site of the target
protein corresponds to the global minimum of the protein-ligand energy or is near it and
the docking problem is reduced to the global optimization problem on the multi-dimen‐
sional protein-ligand energy surface. The dimensionality of this surface (d) is defined
by the number of protein-ligand system degrees of freedom and commonly used docking
algorithms, e.g. the genetic algorithm, are not able to perform docking for d ≥ 25.
Therefore docking of a flexible ligand into a flexible target protein requires more effec‐
tive global optimization algorithms. The present study demonstrates that it is possible
to perform successfully such docking employing the novel tensor train global optimi‐
zation algorithm [8, 11]. We describe here main features of this novel algorithm, the
respective program SOL-P for docking flexible ligands into target proteins with move‐
able atoms [12, 13] and the results of validation of the ligand positioning accuracy for
a test set of 30 protein-ligand complexes [8].

2 Materials and Methods

For the realization of the novel docking algorithm we use the MMFF94 force field [14]
in vacuum. The results will be much better, if either MMFF94 is used with the solvent
model or PM7 is used with the solvent model [7, 9]. While looking for low-energy
minima, ligands are considered to be fully flexible and some of protein atoms are move‐
able. The force field determines energy of the protein-ligand complex for its every
conformation. The MMFF94 force field combines sufficiently good parameterization
based on ab initio quantum-chemical calculations of a broad spectrum of organic mole‐
cules and the well-defined procedure of atom typification applicable to an arbitrary
organic compound. MMFF94 is implemented in the SOL docking program [4] used
successfully for new inhibitors development, e.g. see [15].

2.1 TT-docking

The novel docking algorithm (TT-docking) [8, 11] utilizes the TT global optimization
method. It is based on the novel methods of tensor computations.

If d is the number of degrees of freedom of the protein-ligand complex, then we can
introduce a grid in the configuration space with ni nodes in each direction i = 1, 2… d.
If the grid is fine enough, then the solutions of continuous and discrete problems are
expected to be close.

The basis of this consideration is the Tensor Train (TT) decomposition [16, 17] of
a tensor A ∈ ℝ

n1×…×nd in the form:

A
(
i1,… , id

)
≈

r1 ,…,rd∑

𝛼1=1,…,𝛼d−1=1
G1

(
i1, 𝛼1

)
G2

(
𝛼1, i2, 𝛼2

)
…Gd−1

(
𝛼d−2, id−1, 𝛼d−1

)
Gd

(
𝛼d−1, id

)
(2)
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The numbers r1,… , rd−1 are called TT-ranks of the tensor; for convenience, dummy
ranks r0 ≡ rd ≡ 1 are also introduced. The 3-dimensional tensors Gi ∈ ℝ

ri−1×ni×ri are
called cores or carriages of the tensor train. If TT-ranks are reasonably small, then the
TT decomposition possesses several very useful properties [16, 17]. However, we cannot
afford computing or storing all the elements for large tensors. Therefore, it becomes
crucial to have for tensors a fast approximation method utilizing only a small number
of their elements. Such a method was proposed and called the TT-Cross method [18].
It heavily exploits the matrix cross interpolation [19–23] algorithm applied cleverly,
although heuristically, to selected submatrices in the unfolding matrices of the given
tensor. The matrix Ak ∈ ℝ

nk×nd−k, Ak

(
i1 … ik, ik+1 … id

)
= A

(
i1, i2,… , id

)
 is called the k-

th unfolding matrix of the tensor A. Such matrices are intrinsically linked with the TT-
decomposition, TT-rank rk is just the rank of the matrix Ak.

To explain the idea of the global optimization method consider a rank-1 matrix
A = uvT ∈ ℝ

m×n. It is evident that the largest magnitude element of the matrix could be
easily found in m + n operations: if i and j are positions of the largest magnitude element
in vectors u and v, respectively, then the required element is Aij. Moreover even if factors
u and v are unknown, such element could be found in m + n evaluations of matrix
elements. For this purpose, select any nonzero column of the matrix and find its largest
magnitude element. Then select the row containing that element. The largest magnitude
element of the matrix is the largest magnitude element of that row.

It was noticed, that latter strategy finds the largest magnitude element of the matrix
with high probability even if matrix is not a rank-one matrix (though in this case more
than m + n elements should be evaluated, the search continues until the element is of
the largest magnitude in both its row and column). Of course, this is evident if matrix
is very close to a rank-one matrix. But such a strategy works with high probability even
if the error in the optimal rank-one approximation of the matrix is quite large (as is
proved by A. Osinsky, a good approximation exists if the error is even 1∕8 of the matrix
Frobenius norm).

Moreover, consider a rank-2 matrix, for which a rank-one approximation is not very
accurate. Apply the above strategy to the original matrix, perform the Gauss elimination
with the selected element as a pivot and then apply the search strategy again. The largest
in magnitude element with high probability is within evaluated elements of the matrix.

This is just how the matrix cross approximation method [20, 21] works. This method
performs the search of the largest in magnitude matrix element, uses the found element
to perform the Gauss elimination (constructing its factors but not performing elimination
for all matrix elements) and repeats operations with the obtained matrix until the stop‐
ping criteria is met. Great advantage of the method is that it does not evaluate all matrix
elements but only O((m + n)r) of them, where r is the approximation rank. Also it has
low complexity: O

(
(m + n)r2

)
 arithmetic operations. Moreover, the approximation

obtained by this method is quasioptimal, i.e. its accuracy is close (by a not very large
factor) to the accuracy of the optimal rank-r approximation, especially when the rank is
small.

So, the matrix cross interpolation method could be used as a simple global optimi‐
zation method as it finds the largest in magnitude element among all evaluated elements.
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More sophisticated variants of such optimization method use the local optimization of
interpolation points because these points with high probability are near to local optima
with large values. Such methods find in practice a global optimum with the ranks much
less than those which are needed for a good approximation. Usually the parameter rmax

limiting the rank from above is introduced to reduce the number of operations.
Complexity of the global optimization is O((m + n)r) function evaluations, O

(
(m + n)r2

)

arithmetic operations and O(r) local optimizations.
The TT-Cross approximation method applies to tensors (multi-dimensional arrays)

[18]. It uses the matrix cross approximation method and pursues the same goal, which
is to construct the approximation of a tensor in such a way that only small number of its
elements are picked up. For tensors this is even by far more important than for matrices
because the number of elements of many practical tensors is so huge that it cannot be
computed or stored in any memory we may have at our disposal. If approximation ranks
are reasonably low, the method evaluates only the logarithmic number of the total
amount of tensor elements.

The idea of TT-cross approximation method is based on the following fact. Let a set
I consist of r row indicies of A and a set J contain r column indicies, and let A(I, J) be
a submatrix of volume (modulus of the determinant) that is close to the maximal one
among all submatrices of order r. Then a sufficiently good approximation is as follows:

A ≈ A(:, J)A(I, J)−1A(I, :) (3)

Here A(:, J) means the matrix consisting of columns of the A matrix with indicies
from J, similarly A(I, :) means the matrix consisting of rows of the A matrix with indices
from I.

To facilitate explanation, let us introduce some special matrices associated with
tensors. For the tensor T ∈ ℝ

n1×⋯×nd the matrix Tk ∈ ℝ
n1⋯nk×nk+1⋯nd is k-th unfolding

matrix of this tensor if its elements are just reordered elements of the given tensor:

Tk

(
i1 … ik, ik+1 … id

)
= T

(
i1,… , id

)
(4)

Let us consider a T1 matrix. If we know r1 rows I1 and columns J1 for which T1
(
I1, J1

)

has large enough volume then using (3) we obtain:

T1 ≈ T1
(
:, J1

)
T1
(
I1, J1

)−1
T1
(
I1, :

)
, (5)

Denote T1
(
:, J1

)
T1
(
I1, J1

)−1 as a matrix G1 of size n1 × r1 and rewrite Eq. (5) element‐
wise taking in account that elements of matrices T1, T2 and tensor T  are the same:

T
(
i1,… , id

)
≈
∑r1

𝛼1=1 G1
(
i1, 𝛼1

)
T
(
𝛼1, i2,… , id

)
=
∑r1

𝛼1=1 G1
(
i1, 𝛼1

)
T2
(
I1
(
𝛼1
)
i2, i3 … , id

)
(6)

Note that T2
(
I1
(
𝛼1
)
i2, i3 … , id

)
 are elements of the T2 submatrix with rows selected

in a special way. Denote this submatrix by T̃2. Assuming good enough sets of rows I2
and columns J2 of size r2, for this matrix we can obtain:
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T̃2 ≈ T̃1
(
:, J2

)
T̃2
(
I2, J2

)−1
T̃2
(
I2, :

)
(7)

Denote by G2 ∈ ℝ
r1×n2×r2 the tensor for which the matrix T̃1

(
:, J2

)
T̃2
(
I2, J2

)−1 is the
first unfolding matrix and substitute (7) to (6) using those elements of matrices T̃2, T3
which are elements of tensor T:

T
(
i1,… , id

)
≈

r1 ,r2∑

𝛼1=1,𝛼2=1

G1
(
i1, 𝛼1

)
G2

(
𝛼1, i2, 𝛼2

)
T2
(
I2
(
𝛼2
)
, i3 … id

)

=

r1 ,r2∑

𝛼1=1,𝛼2=1

G1
(
i1, 𝛼1

)
G2

(
𝛼1, i2, 𝛼2

)
T3
(
I2
(
𝛼2
)
, i3, i4, … , id

)
.

(8)

Now T3
(
I2
(
𝛼2
)
, i3, i4, … , id

)
 are elements of the submatrix of the T3 matrix with rows

selected in a special way. Denote it by T̃3 and continue the procedure.
After repeating the procedure described above for T̃3, … T̃d−1 and denoting T̃d by Gd

the approximation of the tensor in the TT format is obtained:

T
(
i1,… , id

)
≈

r1 ,…,rd∑

𝛼1=1,…,𝛼d−1=1
G1

(
i1, 𝛼1

)
G2

(
𝛼1, i2, 𝛼2

)
…Gd−1

(
𝛼d−2, id−1, 𝛼d−1

)
Gd

(
𝛼d−1, id

)
(9)

Note that the approximation error may grow exponentially with d, but in practice it
is not large even for d of several hundreds.

The problem of the procedure described above is that matrices T1, T̃k have a lot of
columns, especially those considered first. So, finding a submatrix of the large volume
in this matrix is a nontrivial task. But, if some small sets of columns which contain the
large volume are known (at the start such columns could be selected by some mathe‐
matical assumptions or randomly), then a submatrix of large volume could be found in
a fast way by the matrix cross approximation method. When the whole procedure is
completed, we obtain a tensor approximation in the TT-format (may be not good enough)
and rows containing submatrices of large enough volume. Next we can start this proce‐
dure in the reversed order (or, equivalently, for the tensor with the reversed order of
indicies). After the completion of this procedure the new approximation of the tensor
and columns containing large volume submatrices are obtained. Such iterations could
be repeated, for example, until the difference between two consequent approximations
(fast calculation of this difference is possible in the TT format) becomes sufficiently
small.

The TT-Cross method is transformed into a global optimization strategy by the same
way as it is done for the matrix cross approximation method, in the result the largest in
magnitude evaluated element is close to the largest in magnitude element of tensor. More
fast convergence could be obtained using the local optimization of pivots obtained by
the matrix cross method. To reduce the number of evaluations, the maximal rank is
bounded by rmax. After the rank limitation iterations could possibly never converge and
the maximal iterations number parameter is introduced.
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Note that such a global optimization strategy allows us to find only the largest in
magnitude element. For other optimization problems, e.g. for the docking problem
which is the global minimization problem, the problem should be transformed into an
equivalent problem of the largest magnitude search. It could be easily done by some
monotonic continuous function. Selection of such a function is a nontrivial task as this
function must separate optimums as good as possible. For the docking problem it is
convenient to apply the TT magnitude maximization to the functional
f
(
x, E∗

)
= exp

{
100arccot

[
E(x) − E∗

]}
, where E(x) is the dimensionless MMFF94

energy for the given configuration x of the protein-ligand complex, E∗ is the global
minimum found on the previous iteration.

For continuous problems, such as the docking problem, at first the grid must be
introduced to obtain a tensor. For such problems, some additional artificial tensorisation
might be very useful: instead of applying the method to the d-dimensional tensor with
size n in each direction, the D = md-dimensional tensor with the size of 2 in every
dimension is used. In this case, since the method complexity depends linearly on the
tensor dimensionality and the size in each direction, the complexity grows logarithmi‐
cally with the grid size and it is possible to use very fine grids. Note that artificial
tensorisation may increase values of parameters of the TT-optimization method (rmax

and the maximal iterations number) which are needed to find optimum robustly.
However in practice for most of global optimization problems these parameters stay
almost the same.
The TT-docking iteratively performs the following steps:

1. Generation of submatrices of unfolding matrices using sets of tensor elements.
2. Interpolation of submatrices using TT-Cross method with the rank ≤ r_max.
3. A set of interpolation points for each submatrix contains elements with large values

in modulus.
4. Rough local optimization of interpolation points (protein-ligand poses) by the

simplex method, addition of optimized point projections to the tensor and to the
interpolation point sets.

5. Updating of each set of interpolation points of the unfolding matrix by merging the
interpolation points of the previous unfolding matrix and ones of the subsequent
unfolding matrix.

6. Addition of the best points (protein-ligand poses) to the interpolation point set of the
unfolding matrix, and transition to step 1 using the obtained point set as the tensor
elements.

The complexity of the TT global optimization method is O(dnr2
max

) functional eval‐
uations, O(drmax) local optimizations and O(dnr3

max
) arithmetic operations.

2.2 SOL-P Docking Program

The parallel SOL-P docking program is constructed on the base of the TT-docking
algorithm (see above). The SOL-P program is developed for finding the low energy local
minima spectrum of protein-ligand complexes, proteins or ligands including the
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respective global energy minimum. The energy of each molecule conformation is calcu‐
lated directly in the frame of the MMFF94 force field [14] in vacuum without any
simplification or fitting parameters. The conformation space of the system coordinates
is formed by translations and rotations of the ligand as a whole, by the ligand torsions
and also by Cartesian coordinates of the selected target protein atoms. The parallel MPI
(message passing interface) based SOL-P program is written on C++ with usage of
BLAS and LAPACK libraries. Main SOL-P parameters are: the maximal rank rmax of
the TT-Cross approximation method, the power m of the discretization degree of the
search space (there are n = 2m nodes along one dimension) and the number of iterations
of the TT global optimization algorithm.

As it is mentioned in the previous section there is a rough local energy optimization
in the TT-docking algorithm by the Nelder-Mead simplex method [24] within the
Subplex algorithm [25] implemented as Sbplx program in NLOpt library [26].

2.3 Moveable Atoms

In the present consideration a protein atom is moveable when it is close to at least one
of reference ligand poses. The protein atom is close to a ligand pose when the distance
between this protein atom and at least one ligand atom is less than a given threshold. In
the present work we took three ligand poses as reference ones: the ligand pose corre‐
sponding to the global protein-ligand energy minimum found by the FLM program [8]
for the rigid protein, the locally optimized native ligand pose and the nonoptimized
native ligand pose. Such choice of the reference ligand poses is taken here only for the
uniformity of the consideration of all different proteins and ligands of the test set. Deter‐
mination of moveable protein atoms is carried out by the specially written our original
program Mark-PMA (Mark Protein Moveable Atoms) with the MLT (Moveable Layer
Thickness) parameter defining the threshold distance. The MLT parameter is taken up
to 3 Å in the present investigation.

2.4 Docking Procedure

The molecular data of the ligand and the protein with the marked moveable atoms are the
input of the SOL-P program (shown in I stage in Fig. 1). The SOL-P program uses a cube
centered in the geometrical center of the native ligand position in the crystallized protein-
ligand complex as the spatial region for the low-energy minima search: all found ligand
positions have their geometrical centers inside this cube (the docking cube). Each of
moveable protein atoms can move inside its own small cube centered in the initial atom
position taken from the crystallized protein-ligand complex. In this work we set the
docking cube edge equal to 10 Å and the small cube edge equal to 1 Å. The SOL-P
program performs MPI-parallelized search for the low-energy minima of protein-ligand
complexes by TT-docking algorithm containing the rough local optimization by the
simplex method. The ligand has six rotational-translational degrees of freedom as a whole
rigid body plus torsional degrees of freedom for each single non-cyclic bond; each of the
protein moveable atoms has three degrees of freedom – its Cartesian coordinates. Data
about all found low-energy minima including protein-ligand configurations is too large
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to be saved in the molecular data format. These configurations are saved as the binary
data (shown in Fig. 1 as “Binary data of all non-optimized minima”).

Fig. 1. Flowgraph of the program complex for low energy local minima search with flexible
ligand and moveable target protein atoms. I stage: the data preparation and TT global energy
minima search with the SOL-P program. II stage: the analysis of binary data with the “non-
optimized minima” obtained from the SOL-P program and preparation of the table with the results
and the final minima set.

2.5 Analysis of Local Minima

Docking of a flexible ligand into the target protein with moveable protein atoms differs
strongly for docking into the rigid protein. In the former case we obtain after docking
much larger volume of information about low energy minima than in the latter case.
Different minima found in docking with moveable protein atoms are described by
different protein-ligand conformations containing different ligand poses as well as
different protein conformations. When docking is performed with a large number of
degrees of freedom, e.g. with a flexible ligand and moveable protein atoms, the local
energy optimization is too laborious and it is performed in the TT-docking not very
precisely by the simplex method. All these peculiarities of the docking with a large
number of degrees of freedom lead to importance of post-docking processing (post-
processing): elimination of equivalent minima, more accurate local energy optimization
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and elimination of equivalent minima again. All these operations are performed at the
stage II (see Fig. 1).

At the stage II in Fig. 1 the post-processing of low energy configurations stored in
the binary data is performed with the Sorter program. The Sorter program sorts the
“nonoptimized minima” by their MMFF94 energies in vacuum and excludes minima
with equal ligand positions – only one minimum with the lowest energy is being kept.
Two ligand positions are considered equal if RMSD between them is less than a given
threshold (0.1 Å), where RMSD is calculated atom-to-atom without chemical symmetry
accounting. Thus, all the remaining low-energy configurations (“unique non-optimized
minima” in Fig. 1) have different ligand positions. Then, the Unpacker program performs
exporting all unique low-energy configurations from the binary file to the file with the
MOL2 molecular format. The post-processing of low energy protein-ligand configura‐
tions consists of performance of two programs: OptmX and Unique (Fig. 1). The OptmX
program locally optimizes all of the “unique non-optimized minima”. For these
purposes, the OptmX program uses L-BFGS algorithm [27, 28] applied to the local
optimization of the MMFF94 energy function in vacuum with variations of Cartesian
coordinates of all ligand atoms and moveable protein atoms. Each local optimization
stopped when the energy change at several steps was less than 10−8 kcal/mol. Optimi‐
zation of different minima is MPI-parallelized. After this optimization, the “all opti‐
mized minima” (Fig. 1) set is obtained. But many of these minima may become equal
again. Therefore, we need to re-exclude similar minima. The Unique program excludes
equal minima from the “all optimized minima” set as follows. Among several equal
configurations only the minimum with the lowest energy is being kept as it is made in
the binary data file post-processing by the Sorter program. However, in contrast to the
Sorter program the protein moveable atoms are also taken into account in RMSD calcu‐
lation, and the RMSD is calculated with chemical symmetry analysis. The decrease of
the number of minima at the post-processing stage can be very large comparing with
the number of minima found at the docking stage. For example, after the processing
with the Sorter program there are 30365 and 28166 minima for the protein-ligand
complexes with PDB ID 1MRW (with 30 moveable atoms) and 5BT3 (with 27 moveable
atoms), respectively; however, after the precise local energy optimization with the
OPTM-X program and filtering the obtained minima with the Unique program the
numbers of different local energy minima decrease down to 7580 and 5891 minima for
1MRW and 5BT3, respectively.

Analysis of the local minima remaining after post-processing is carried out by the
RMSD-PP program which calculates RMSD (with respect to all ligand atoms) between
the ligand pose in a certain energy minimum of the protein-ligand complex and the ligand
pose in the energy minimum corresponding to the native ligand position obtained after
the local optimization from its configuration in the crystallized complex. The RMSD
here is calculated taking into account the approximate chemical symmetry analysis [13]
and it is a good metric to estimate geometrical difference between two configurations
of a protein-ligand complex; it can correctly discard geometrical pseudo-differences
such as phenyl residue flip, comparing to the native atom-to-atom RMSD calculation.

As a result the RMSD-PP program creates in its output (Fig. 1) the resulting table
containing: the minimum index, the minimum energy, RMSD from the optimized native
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configuration and the distance from the ligand geometric center in the given minimum
to the ligand geometric center in the optimized native configuration. The energy minima
are sorted by their energy in the ascending order; that is, every minimum gets its own
index equal to its number in this sorted list of minima. The lowest energy minimum has
the index equal to 1.

Some minima from the list might be close in space to the optimized native ligand
position. We designate the index of the minimum having RMSD from the optimized
native ligand position less than 2 Å as “Index of the minimum Near Optimized Native”
or “INON.” If there are several such minima which are close to the optimized native
ligand position, we will choose the minimum with the lowest energy (with the lowest
index) as “INON”. When INON = 1 the docking paradigm is satisfied: the global
minimum of the protein-ligand energy is near the native configuration. If there are no
minima with the ligand pose near the optimized native configuration among all minima
found by the SOL-P program, we use notation INON = inf.

In the present consideration we compare the energy minima found by the SOL-P
program with ones obtained by the FLM program [7] with the same target function –
energy in the frame of the MMFF94 force field in vacuum, for the same test set of 30
protein-ligand complexes [8] which are taken from the Protein Data Bank [29].

2.6 Parallel Performance of SOL-P

In docking problem (and many others) the evaluation of any tensor element has almost
the same complexity. So, the parallelization is considered for this case. The parallel
implementation of the matrix cross method is available [30] for such case. However,
matrices which are used by TT global optimization strategy are relatively small, espe‐
cially in the case when the additional artificial tensorisation is used. So, this parallel
resource is very limited.

But for the TT global optimization and even for TT-cross approximation methods
submatrices of different unfolding matrices are not necessary to be considered conse‐
quently and rows or columns used for the approximation are not necessary to be nested.
In the case of the approximation this will lead to some additional (but independent for
all unfolding matrices with the single communication between unfoldings number k and
k + 1 prior) computations for the construction the tensor approximation. In the global
optimization strategy the approximation of the tensor is not constructed explicitly, so
such additional computations are not needed.

To balance computations, all submatrices of unfolding matrices are selected of the
same size (maximal amongst all original submatrices) and the approximation is
performed till the same rank. As a positive side effect this leads to faster convergence
and better robustness. Moreover, in the case of the global optimization, especially when
the additional tensorisation is used, original sizes of these submatrices are very close to
each other due to the rank limitation and to the equal size of each dimension.

Finally, in the parallel algorithm such operations are done for every unfolding
submatrix independently at every iteration:

Tensor Train Global Optimization 161



1. From the set of tensor elements Pk, which are obtained on the previous iteration,
construct the set of unfolding matrix columns and rows. Rows are constructed in the
same way as in the TT-cross procedure in the normal order, columns – as in the
reversed order. The number of rows and columns will be approximately n times
larger than the number of elements in Pk.

2. Using random rows and columns extend their number to 7nrmax each.
3. Perform the parallel matrix cross interpolation of the unfolding matrix submatrix of

the order 7nrmax with the rank bounded by rmax.
4. Perform in parallel a small number of local optimization steps for obtained pivots

and project them back to tensor elements.
5. Every unfolding has approximately 2rmax tensor elements now – matrix cross pivots

and elements obtained by the projection of locally optimized points. Send positions
of these elements to unfoldings number k − 1 and k + 1 and receive positions from
them. Also, by the parallel reduction find rmax points with the best functional values
amongst all unfoldings. After these operations each unfolding has about 7rmax

elements which are used at the next iteration.

Note, that only steps 3 and 4 have high computational cost.
Parallel efficiency of such algorithm is highly dependent on the number of unfoldings

(denote it as K) and the number of processors (p). If p is less than K then the parallel
efficiency is the best when K is divisible by p. In the other case, the parallel efficiency
is higher when p is divisible by K and it is even more better when additionally Krmax or
7Knrmax is divisible by p. The maximal number of processors which is reasonable to use
is 7Knrmax.

The multi-processor performance of SOL-P is investigated at the Lomonosov-2
supercomputer [31]. The results of SOL-P performance for the first set of TT-docking
parameters (rmax = 4, n = 216 and the number of iterations equal to 15) are demonstrated
in Fig. 2 for the 1SQO complex with 6 protein moveable atoms, the ligand consisting
of 34 atoms (4 torsions) and with different numbers of cores. We see the non-monotonic
behavior of the parallel efficiency (T14 × 14)∕

(
TN × N

)
 on the number of cores which

are used for the calculations (at the nodes containing 14 cores per node). The detailed
plots are different for different complexes but their general behavior is the same. For
example, for the 1SQO complex K = 435 unfolding matrices were considered for
constructed tensor. It is easy to see, that efficiency is maximal when the number of used
cores p is close to the number which is divisible by K (for numbers of cores larger than
K) or when the fractional part of K∕p is close to zero.
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Fig. 2. Parallel efficiency of the SOL-P program for different numbers of core of the
Lomonosov-2 supercomputer [31] for the 1SQO test complex with 6 protein moveable atoms, the
ligand consisting of 34 atoms (4 torsions).

3 Results

Performance of SOL-P is investigated for different values of the maximal rank
rmax = {4, 8, 16}, the initial grid size n =

{
28, 212, 216

}
 and the number of iterations.

Results of this testing demonstrate that for the higher initial grid size even the lowest
tested maximal rank rmax = 4 is enough to find the optimum reliably and precisely.
However, the increase of the initial grid size leads to slower convergence of the method
and the iteration number must be larger (for n = 216 from 10 to 15 iterations are needed).
The high grid size n = 216 for ranks 8 and 16 makes computations significantly slower,
thus the initial grid size of n = 212 is used for ranks 8 and 16. For such initial grid size
the computation time is reduced by 1.5 times and the number of iterations decreases.
SOL-P with three parameter sets: 

{
rmax = 16, n = 212

}
, 
{

rmax = 8, n = 212
}
 and

{
rmax = 4, n = 216

}
 demonstrates similar ability to find the global energy minimum near

the optimized native ligand position for several test complexes but the fastest perform‐
ance is observed for 

{
rmax = 4, n = 216

}
, and we choose the latter set with 15 iterations

as the optimal parameters for the present investigation.
It is found that for some complexes (e.g. 1SQO: 4 ligand internal torsions and 34

ligand atoms) the docking paradigm is satisfied for the rigid protein as well as for the
protein up to 35 moveable atoms. For some complexes (e.g. 3CEN: 7 torsions and 50
ligand atoms) the docking paradigm is satisfied only for sufficiently large number (13,
26, 48) of protein moveable atoms when INON is equal to 1 or 2. SOL-P finds the global
energy minimum for this complex when 48 protein atoms are moveable and the dimen‐
sionality of the energy surface is equal to 157 = 144 (protein) + 13 (ligand). For such
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docking SOL-P uses about 9 h at 512 core of the Lomonosov supercomputer [31, 32].
For other complexes (e.g. 4FT9: 5 torsions and 32 ligand atoms) the MMFF94 force
field energy in vacuum is not adequate and the energy surface is so complicated that for
the too large number of protein moveable atoms (42) SOL-P is not able to find minima
near the native configuration.

The validation shows that SOL-P finds either the global minimum or one of low
energy minima corresponding to the ligand pose being near the optimized native ligand
pose for the rigid protein and/or for the protein with moveable atoms for more than two
thirds of the whole test set of protein-ligand complexes (for 22 out 30) for these 22
complexes INON = 1 or INON ≤ 25 and the docking paradigm is fulfilled for them in
the frame of the MMFF94 force field in vacuum. The test complexes are collected in
groups in respect with values of their INON index in Fig. 3.

Fig. 3. Numbers of complexes with different values of INON index. PMA indicates the range
of protein moveable atoms for the SOL-P program. INON is the index of the minimum having
RMSD from the optimized native ligand position less than 2 Å; if there are several such minima,
the minimum with the lowest energy (with the lowest index) should be taken.

Protein atoms mobility is crucial for 4 complexes (1J01, 1K1J, 1MQ6 and 3CEN)
out of 30 ones: SOL-P does not find any minima near the optimized native ligand pose
for docking into the rigid protein (INON = inf) but, when mobility of protein atoms is
taken into account, docking finds near the optimized native ligand pose either the global
minimum (INON = 1) or one of the lowest energy minima (INON ≤ 25). On the other
hand, for rigid proteins SOL-P and FLM cannot find such minima (INON = inf) for 6
and 5 complexes, respectively. It is worth to note that SOL-P is able to find the minimum
near the optimized native ligand pose for all 5 complexes where FLM is not able to do
this. In tote, we can say that SOL-P, with and without protein moveable atoms, works
not worse than the FLM program and much faster than the latter.
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Our observation that neither SOL-P nor FLM can find any minimum near the opti‐
mized native ligand pose for 11 complexes (out of 30) is connected with inadequacy of
the energy target function calculated in the frame of the MMFF94 force field in vacuum.
It has been previously demonstrated [7] that protein-ligand energy calculation in the
frame of the MMFF94 force field in solvent (with an implicit model) improves docking
performance of the FLM program for the rigid proteins and with such target energy
function SOL-P should also work better.

4 Conclusions

The novel algorithm is realized in the supercomputer SOL-P docking program where
protein and ligand atoms mobility is taken into account simultaneously and equally.
Energies of low-energy minima found in the docking procedure and respective ligand
poses are carefully analyzed.

It is shown that the program is able to perform docking of a flexible ligand into the
active site of the target protein taking mobility of assigned protein atoms into account:
up to 157 degrees of freedom in the conformation space using about 9 h at 512 cores of
the Lomonosov supercomputer [31, 32]. This is the first time when the docking program
is able to perform successfully the global energy minimum search in the conformational
space with such a large dimensionality. This result is achieved due to the novel docking
algorithms (TT-docking) which is based on the so-called tensor train decomposition of
multi-dimensional arrays and the TT global optimization method [8, 11].

The SOL-P docking performance is comparable with one of the FLM program [7]
which executes the massive parallel local energy minima for rigid target proteins due to
employment of much larger computing resources.

It is demonstrated that the docking paradigm is fulfilled for the target energy function
calculated in the frame of the MMFF94 force field in vacuum for a flexible ligand and
for a target proteins with 25–35 moveable atoms for two thirds of the whole test set of
protein-ligand complexes. Interaction with solvent should increase this number. It is
demonstrated that in some cases docking results are being improved even when small
movements of protein atoms is taken into account in the docking procedure.

The present investigations became possible due to computing resources of
M.V. Lomonosov Moscow State University supercomputer Lomonosov [32].
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Abstract. We consider different parallel versions of the least squares
methods in the Krylov subspaces which are based on computing vari-
ous basis vectors. These algorithms are used for solving very large real,
non-symmetric, in gerenal, sparse systems of linear algebraic equations
(SLAEs) which arise in grid approximations of multi-dimensional bound-
ary value problems. In particular, the Chebyshev acceleration approach,
steepest descent and minimal residual, conjugate gradient and conjugate
residual are applied as preliminary iterative processes. The resulting min-
imization of residuals is provided by the block, or implicit, orthogonaliza-
tion procedures. The properties of the Krylov approaches proposed are
analysed in the “pure form”, i.e. without preconditioning. The main crite-
ria of parallelezation are estimated. The convergence rate and stability of
the algorithms are demonstated on the results of numerical experiments
for the model SLAEs which present the exponential fitting approxima-
tion of diffusion-convection equations on the meshes with various steps
and with different coefficients.

Keywords: Large sparse systems of linear algebraic equations ·
Non-symmetric matrices · Block implicit least squares methods · Krylov
subspaces · Parallel technologies · Numerical experiments

1 Introduction

The mathematical modeling in real extremal interdisciplinary problems includes
the solution of the multi-dimensional direct and inverse tasks, linear and non-
linear, stationary and non-stationary, which are approximated by various order
numerical schemes on the non-structured grids in the complicated computational
domains. In any case, at a low level of these procedures, the multi-fold solution
to the systems of linear algebraic equations (SLAEs) is required. The practical
high resolution demands very large degrees of freedom (dof). So, the solution of
the corresponding ill-conditioned SLAEs is the bottle-neck of the general numer-
ical process, because necessary computational resources grow nonlinearly at this
stage if the dimension of the system increases (for example, 1010 and higher).
c© Springer International Publishing AG 2017
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In this case the road map to provide a high performance consists in parallel
implementation of modern multi-preconditioned iterative processes in the Krylov
subspaces based on the domain decomposition methods (DDM) (see [1,2] and
the references therein). The main achivements are based on the combination of
efficient mathematical discoveries and scalable parallel technologies on the multi-
processor systems (MPS) with distributed and hierarchical shared memory.

This paper deals with just one particular side of the general problem. Namely,
we consider the possibility of parallel “implicit” construction of the iterative
methods in the Krylov subspace “in the pure form”, i.e. without preconditioning,
which is supposed to be a separate problem.

Let us consider the solution of the SLAE

Au =
{ ∑

l′∈ωl

al,l′ul′
}

= f, A = {al,l′} ∈ RN,N ,

u = {ul}, f = {fl} ∈ RN

(1)

with a large real sparse matrix resulting from grid approximations of multi-
dimensional boundary value problems by finite element, finite volume, or other
methods. In general, this matrix is non-symmetric and ill-conditioned. In Eq. (1),
ω� denotes a set of indices of nonzero entries in the �-th row of the matrix
A, whose number N� is assumed to be much smaller than N . The algorithms
considered below can easily be extended to the case of complex SLAEs.

In [3], the authors have offered special procedures for accelerating the conver-
gence of the Jacobi method as an “efficient alternative” to the classical Krylov
methods. In order to solve a linear system, they have used the Anderson acceler-
ation, which had been originally proposed in [4] for solving systems of nonlinear
algebraic equations, A comparative experimental analysis presented in [3] has
demonstrated a considerable superiority of the original alternating Anderson-
Jacobi (AAJ) method over the popular generalized minimal residual method
(GMRES) as concerns the solution time. The idea of the AAJ method con-
sists in periodical (after a prescribed number of stationary iterations) use of
an acceleration method based on solving an auxilary least squares problem not
involving successive orthogonalization of the direction vectors, which is typical
of the Krylov variational type methods.

The present paper aims at generalization and experimental study of the sim-
ilar approaches. We apply several non-stationary iterative algorithms as a pre-
liminary tool for constructing some basis vectors in the Krylov subspaces and
further minimization of the residual vector norm by means of the least squares
method. In this context, parallel implementation of the approaches proposed is
considered.

This paper is organized as follows. In Sect. 2, we present the idea of implicit,
or block, least squares method in the Krylov subspaces which uses a preliminary
construction of the basis vectors. Section 3 is devoted to analyzing the efficiency
of parallel versions of the iterative algorithms considered in comparison with
the classical variational method of semi-conjugate residuals in the Krylov sub-
spaces. Section 4 discusses the results of numerical experiments obtained for the
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algorithms offered on a series of the test SLAEs, resulting from the grid approxi-
mation of two-dimensional boundary value problems for the convection-diffusion
equation. In conclusion, we observe the efficiency of the algorithms presented and
discuss some plans for future studies.

2 Versions of the Least Squares Methods in the Krylov
Subspaces

The wide class of iterative processes for solving SLAE (1) can be written in the
form

un+1 = un + αnpn = u0 + α0p
0 + ... + αnpn,

rn+1 = rn − αnApn = r0 + α0Ap0 + ... + αnApn.
(2)

Here u0 and r0 = f −Au0 are the initial guess and the corresponding residual
vector, and pn, αn are some direction vectors (usually p0 = r0) and the iterative
parameters which are defined from the additional conditions in the different
approaches.

If A is a symmetric positive definite (spd) matrix, then the following conju-
gate direction (CD) methods [1,5]:

pn+1 = rn+1 + β(s)
n pn,

α
(s)
n =

(Asrn, rn)
(Apn, Aspn)

, β
(s)
n =

(Asrn+1, rn+1)
(Asrn, Asrn)

,
(3)

for s = 0, 1 present the classical conjugate gradient (CG) and conjugate resid-
ual (CR) algorithms, respectively, which minimize the functionals Φ(s)

n (r0) =
(A−srn+1, rn+1) in the Krylov subspaces

Kn(r0, A) = span (r0, Ar0, ..., Anr0). (4)

The residual and direction vectors in these approaches for all k, n satisfy the
orthogonal properties

(Asrk, rn) = (Asrn, rn)δk,n, (Aspk, Apn) = (Aspn, Apn)δk,n (5)

where δk,n is the Kronecker symbol.
However, if A is a non-symmetric matrix, then these methods have no such

variational and orthogonal properties. In such cases, the global minimization of
the functionals Φ(s)

n is provided by the general minimized residual type (GMRES)
approaches or by the equivalent, in some sense, semi-conjugate direction (SCD)
methods [6]

pn+1 = rn+1 −
n∑

k=0

β
(s)
n,kpk, β

(s)
n,k = (Apk, Asrn+1)/(Apn, Aspn). (6)

Let us remark that the formulas (6) realize the orthogonal properties (5) by
Gram–Schmidt procedure. It fact, this procedure should be changed by more
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stable modified Gram–Schmidt (MGS) orthogonalization [7]. If α
(s)
n are defined

by (3) then for s = 0, 1 from (6) we provide the extremum conditions

∂Φ(s)
n /∂αn = 0, Φ(s)

n = (rn+1, As−1rn+1), (7)

and for s = 1 the functional Φ(s)
n has the minimum in the Krylov subspace (4).

In this case the resulting residual vectors are not conjugate, but semi-
conjugate only, i.e.,

(Asrn, rk) =
{

0, k < n,
σn, k = n,

and for s = 0, 1 we have a semi-conjugate gradient and a semi-conjugate residual
(SCG and SCR) methods, respectively.

Let us remark, that for spd - matrix A, the CD methods (both CG and CR),
as well as SCD approaches (SCG and SCR) have the same theoretical number
of iterations, see [1,5]:

n(ε) ≈ 0.5|�n(ε/2)|(condA)−1/2,

where condA is the condition number of A and Φ(s)
n ≤ ε2Φ(s)

n−1, 0 < ε � 1.
But if A is non-symmetric, the same estimate is valid for SCD but not for CD
methods.

In the general case, to compute the vectors un and rn using (2)–(6), it is nec-
essary to store all the vectors pn, pn−1, ..., p0 and Apn, Apn−1, ..., Ap0. In practice,
these methods are realized with periodic restarts every m iteration. This means
that the residual vector is computed from the original equation

rml = f − Auml, � = 0, 1, ..., (8)

rather than using (2), and the subsequent approximations are computed “from
the beginning”, i.e., for n > m one should change n for n = ml in the formulas.
Here, it is necessary to store only the last m + 1 vectors pn, pn−1, ..., pn−m,
and Apn, Apn−1, ..., Apn−m. The restarted versions of SCD methods, similar to
restarted GMRES, have lower convergence rate, but this is the cost for the
memory saved.

The most expensive stage of the SCD methods consists in successive com-
putations of the direction vectors pn+1 by means of long recursions (6). In
accord with the Anderson acceleration approach, we can simplify (6) and use
in the sum the last direction vector pn only (but save the vectors pn, ..., pn−m

and Apn, ..., Apn−m). In these cases, the minimization of the residual norm
||rn+1||2 = (rn+1, rn+1)1/2 in the Krylov subspace

Kn,m(rn, A) = span (rn, Arn, ..., Amrn) (9)

can be provided by the following least squares method:

rn+m = rn − Wn,mγ̄n,m ≈ 0, Wn,m = (wnwn+1 ... wn+m) ∈ RN,m+1,
wn+k = Akpn, γ̄n,m = (γn, γn+1, ..., γn+m)T ∈ Rm+1.

(10)
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The coefficient vector γ̄n,m can be computed from the over-determined SLAE

Wn,mγ̄n,m = rn, (11)

which can be solved, for example, by means of the singular value decomposi-
tion (SVD) or an other approach (see [7]). In particular, the left-hand Gauss
transformation procedure

Bn,mγ̄n,m = gn,m, Bn,m = WT
n,mWn,m ∈ Rm+1,m+1, gn,m = Wn,mrn ∈ Rm+1

(12)
can be here efficiently applied.

In fact, the computing vectors pk, Apk in such algorithms can be realized by
formulas (2), (3), and we call them CD-LSM-� (CG-LSM-� and CR-LSM-� for
s = 0, 1, respectively) where the integer � = 1, 2 corresponds to application of
formulas (11) or (12).

If the coefficient vector γ̄n,m is known, the improved numerical solution can
be computed by the formulae

un+m = un + γnpn + ... + γn+mpn+m. (13)

The considered algorithms can be simplified even to a greater extent if we
use instead CG or CR method, the two-terms formulas of the steapest descent
(SD) or the minimal residual (MR) method, which can be formaly described (for
s = 0, 1 respectively) as follows, see [1,5]:

α(s)
n = (Asrn, rn)/(Arn, Asrn), βn = 0, pn = rn. (14)

For the spd-matrices, these approaches provide the local variational proper-
ties only, i.e. for just one iteration, but minimization of the functional Φ(s)

n,m =
(As−1rn+m, rn+m) in the Krylov subspaces Kn,m(rn, A) can be achieved by the
LSM-� approaches (11) or (12). Such methods will be called SD-LSM-� and
MR-LSM-�, � = 1, 2. Of course, for SD and MR methods with local variational
properties, the convergence rates of iterations are worse as compared to the pre-
vious algorithms (n(ε) ∼ condA only ), but let us remind that it is just the way
to obtain the basis vector for LSM optimization.

In all the approaches considered above, we use the least squares methods,
based on the direction vectors pn with weak orthogonal, or variational, prop-
erties. Instead of this, we can construct the basis vectors by application of the
some spectral iterative process. If the matrix A has real positive eigenvalues
λ ∈ [0 < λ1, λN ], then the optimal convergence rate of iterations is provided by
the Chebyshev acceleration [1,5,8]. Such approaches can be implemented in dif-
ferent forms, and we use the two-terms recurrent representation, which consists
of the following relations:

p0 = r0 = f − Au0,
un = un−1 + αn−1p

n−1,
rn = rn−1 − αn−1Apn−1,
pn = rn + βnpn−1.

(15)
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Here we use the restarted procedures which also suppose applying the LSM
approaches by (11) or (12) after each m iteration. The coefficients in (15) are
defined via three terms description of the Chebyshev acceleration presented in [8]:

u1 = u0 + τ r0, τ = 2/(λ1 + λN ), rn = f − Aun,
un+1 = un + τnτ rn + (τn − 1)(un − un−1), τ0 = 2,
τn = 4(4 − τn−1γ)2) − 1, γ = (1 − c)/(1 + c), c = λ1/λN .

(16)

The values of αn, βn from (15) provide the equivalence to reccurences (16)
by the formulas

α0 = τ, αn = τnτ, βn = (τn − 1)αn−1/αn. (17)

After each m iterations by formulas (15)–(17) we can apply the acceleration
procedures according to (10)–(13). The corresponding algorithms we will call
the Chebyshev least squares methods (CHEB-LSM-1 and CHEB-LSM-2). We
conclude this section with the following two remarks. First, it is easy to check
that from theoretical viewpoint, LSM-1 and LSM-2 coincide because, in exact
arithmetic, by solving Eqs. (11) and (12) one obtains one and the same vector
γ̄n,m. Second, an approach similar to the one considered above was applied by
P.L. Montgomery in [9] (see [10] also) in solving special systems of linear algebraic
equations over a finite field and was referred to as the block Lanczos method.

3 Properties of Parallel Implementation

As is seen, the implementation of the optimal SCR method includes at each
iteration the following main stages:

• one matrix-vector multiplications (MV-operations);
• 2m+3 vector-vector (VV) operations, i.e. linear combinations of the vectors;
• computing the m + 2 inner vector products.

It is important that all these operations are fulfilled successively. The idea
of parallel implementation of the methods proposed with LSM-2 approaches
consists in the simultaneous computation of the entries of the matrix

Bn,m = {b
(n,m)
k,� = (wk, w�); k, � = n, ..., n − m}.

And for m � N , we can neglect the costs for solving SLAEs (12) and compute
the vector γ̄n,m by formula (13) on the all processor units simultaneously.

Now we compare parallel realizations of a cycle of m iterations in the methods
LSM and SCR. This will suffice for a qualitative comparison of the performances
of the algorithms in question because they minimize the same functional in
the same Krylov subspace and, consequently, are theoretically equivalent with
respect to the convergence rate. Concerning the methods considered, we assume
that they are applied to a block system of linear equations of the form (1), and
the block rows Ak = {Ak,�, � = 1, .., P} ∈ RNk,N , Nk

∼= N/P, N1+...+Np = N
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of the coefficient matrix A are distributed in the memory of the corresponding
MPI processes used for the first level of parallelizing the algorithms, as is done
in the domain decomposition methods (where every block row corresponds to
a subdomain, see [11]). Note that in fact to different MPI processes different
computer processors correspond (though this is not formally necessary). In the
SCR method, the direction vectors pn, pn−1, ..., pn−m and also the current vectors
un and rn are partitioned into subvectors of lengths Nk, each being stored in
the corresponding k-th MPI process. As the iterations proceed, data exchanges
among processes are needed, and their volumes should be minimized. When
arithmetic operations are performed in the k-th MPI process using a multicore
processor, “inner” parallelization (of the second level) can be effected based on
multi-thread computations (here, we omit the details). A similar distributed data
structure is formed in the least squares methods, in which case the block partition
is used for the vectors wk, k = 1, ...,m. We assume that in all the algorithms
the standard double-precision computer arithmetics is used. For a comparative
analysis of the performances of the methods considered, we estimate the time TP

of performing a cycle of m iterations on P MPI processes based on the following
simple model of the computation process:

TP = T a
P + T c

P ≈ τaNa + (τ0 + τcVc)Nc. (18)

Here, T a
P and T c

P are the times for performing arithmetic and communication
operations, respectively;; τa is the average time of a single arithmetic operation,
and Na is the number of such operations (for one processor); Nc is the total
number of data transmittings; τ0 is the delay (tuning) time of a single transac-
tion; τc is the average time of transmitting a real number, and Vc is the average
volume of one package of data transmitted. Note that in view of the relations
τ0 � τc � τa, it is natural to attempt to minimize not only the total volume of
information to be transmitted but also the number of exchanges. This is impor-
tant not only from the viewpoint of the time of data transmissions but also in
view of high energy costs of communication operations.

It is easy to check that in CG-LSM-2 or CR-LSM-2 for n �= m we need to
compute by formulas (2), (3) just 2 inner products and 3 VV-operations. And
if we use SD or MR approaches by (2), (14) with local variational properties,
then we must perform 2 inner products and 2 vector linear combination, i.e. the
difference is not significant as compared with CG or CR methods.

Let us now consider the combination of the Chebyshev acceleration (15)–(17)
and the LSM approach. These algorithms do possess orthogonal or variational
properties, but have the same optimal estimation of n(ε). And what is important:
the spectral iterations do not need computation of inner products!

The last circumstance is highly valuable in terms of the implementation of
the iterative process at the MPS, because these operations obviously need data
communications. But this approach demands the knowledge of the spectrum
boundaries of the matrix. Of course, this is too strong requirement, but in many
practical problems the necessary estimations can be obtained.

It should be remarked that the implementation of the LSM with different pre-
liminary iterative approaches does not need the computation of the vectors un,
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because at the end of any algorithms considered, the resulting vector is realized
by (13). Of course, this operation can also be parallelized efficiently.

4 Discussion of Numerical Experiments

Let us consider the Dirichlet problem [8] for the convection-diffusion equation

−∂2u

∂x2
− ∂2u

∂y2
+ p

∂u

∂x
+ q

∂u

∂y
= f(x, y), (x, y) ∈ Ω, u|Γ = g(x, y), (19)

in a square computational domain Ω = (0, 1)2 with the boundary Γ and the
convection coefficients p, q, which for simplicity are assumed to be constant.
This boundary value problem is approximated on a square grid with the step
size h = 1/(L + 1) and the total number of interior nodes N = L2,

xi = ih, yj = jh, i, j = 0, 1, ..., L + 1, (20)

using the five-point finite-volume monotone approximations of exponential
type [12]

(Au)l = al,lul + al,l−1ul−1 + al,l+1ul+1 + al,l−Lul−L + al,l+Lul+L = fl, (21)

having the second order of accuracy. Here, � is the “global” number of a grid
node in the natural node ordering, � = i+(j−1)L. Generally speaking, formulas
for the coefficients in equations (20) may be different, and we use the following
ones:

al,l±1 = e±ph/2/h, al,l±L = e±qh/2/h,
al,l = al,l−1 + al,l−L + al,l+1 + al,l+L.

(22)

Equations (21) are written for the interior nodes of the grid, but for the near-
boundary nodes with the subscripts i = 1, L or j = 1, L the values of the solution
on the boundary should be substituted into the system of equations and moved
to the right-hand side; here, the corresponding coefficients of the left-hand side
can be formally set to zero. In our experiments, we have actually solved the
normalized equations, which are obtained by the following transformations with
the diagonal matrix D = diag {a�, �}:

D−1/2AD−1/2D1/2u = D−1/2f,
Āū = f̄ , Ā = D−1/2AD−1/2, ū = D1/2u, f̄ = D−1/2f.

(23)

The numerical experiments have been carried out using the standard double-
precision arithmetic for computing the values of the functions f(x, y) = 0 and
g(x, y) = 1 corresponding to the exact solution u(x, y) = 1 of problem (19). Since
the convergence rate of iterations depends on the initial error u−u0, its influence
has been analyzed by comparing the results for the initial guesses u0 = 0 and
u0 = P2(x, y) = x2 + y2. The stopping criterion used has been of the from
(rn, rn) ≤ ε2(f, f), with ε = 10−7. The computations have been carried out on
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grids with N = 72, 152, 312, 632, and 1272 nodes and for the restart parameter
m = 8, 16, 32, 64, and 128. In the tables below, we present the results obtained
in solving problem (19) with the convection coefficients p = q = 0 and p =
q = 4 on the grids with N = 72, 152, 312, 632, 1272 nodes and for different initial
guesses. The algorithms applied differ in the method of forming the auxiliary
linear system for finding the coefficient vector of correction (to be exact, the
systems obtained in LSM-1 and LSM-2 have been solved using the SVD program
(the singular value decomposition algorithm) from LAPACK, included into the
program library MKL Intel [13]). Let us remark that the matrix Bn,m from
SLAE (12), which corresponds to LSM-2, has a bigger condition number, as
compared to the matrix Wn,m from (11). So, LSM-1 is more preferable, from
the stability point of view. But in our experiments, the resulting errors are
approximately equal as for LSM-1 and LSM-2. So, in the following tables we
present the numerical results for LSM-2 only.

The main goal of our experimental research consists not in demonstration
of the high performance of algorithms for very large SLAEs, but in study of
the stability and convergence rate of LSM approaches with preliminary cheap
iterative processes. All the calculations have been carried out on the Siberian
Super Computing Center cluster (http://www2.sscc.ru).

In the each cell of the following tables we present two values: the upper
is the number of iterations, and the lower is the resulting maximal error δ =
max

i,j
{|1 − un

i,j |}. In our experiments the results are approximately the same for

different initial guesses, and we present data for u0 = x2 + y2 only.
In the Tables 1 and 2 we give the results for CHEB-LSM-2 algorithm for

symmetric and non-symmetric SLAEs. In both cases the boundaries λ1, λN of
matrix spectrum in formylas (16), (17) were taken for p = q = 0, but the
presented results are close to each other enough. The columns with m = ∞
correspond to “pure” Chebyshev acceleration without LSM. It is evident from
these tables, that in all cases considered there is an optimal value m.

The Tables 3 and 4 demonstrate the similar results for CR-LSM-2 algorithm.
The symmetric case (p = q = 0) show that conjugate residual is optimal for such
SLAEs, and least squares approach is not reasonable here. But for non-symmetric
algebraic systems the application of LSM gives the considerable improvement of
the iterative process. Let us remark, that the resulting numbers of iteration and
errors δ are approximatelly the same in CR and CHEB.

In the Tables 5 and 6, we present the results for CG-LSM, which confirm
that the efficiency of conjugate residual method, in combination with the least
squares approach is approximately the same that of CR algorithm.

At last, in the Table 7 we give the similar results for the minimal residual
method with local variational properties. This approach presents a big disadvan-
tage in efficiency, as compared to the previous algorithms, even with application
of the least squares methods. The close effect is demonstrated for steepest decent
(SD) method, both for symmetric and non-symmetric matrices.

http://www2.sscc.ru


On the Parallel Least Square Approaches in the Krylov Subspaces 177

Table 1. CHEB-LSM-2, p = q = 0, u0 = x2 + y2

N \ m 8 16 32 64 128 ∞
72 34 29 32 41 41 41

2.4 · 10−7 7.8 · 10−8 9.9 · 10−16 1.3 · 10−7 1.3 · 10−7 1.3 · 10−7

152 90 75 63 64 82 82

1.2 · 10−6 5.3 · 10−7 5.3 · 10−8 5.9 · 10−9 2.0 · 10−7 2.0 · 10−7

312 281 197 140 127 128 163

3.6 · 10−6 3.5 · 10−6 1.3 · 10−6 1.6 · 10−7 3.1 · 10−8 3.0 · 10−7

632 960 586 390 267 251 327

1.0 · 10−5 1.0 · 10−5 9.6 · 10−6 6.8 · 10−6 2.3 · 10−6 3.1 · 10−7

1272 3429 1991 1148 734 528 653

2.9 · 10−5 2.9 · 10−5 2.9 · 10−5 2.7 · 10−5 2.2 · 10−5 3.5 · 10−7

Table 2. CHEB-LSM-2, p = q = 4, u0 = x2 + y2

N \ m 8 16 32 64 128 ∞
72 34 31 32 45 45 45

7.5 · 10−8 2.6 · 10−8 4.6 · 10−15 8.2 · 10−8 8.2 · 10−8 8.2 · 10−8

152 67 75 71 64 91 91

5.0 · 10−7 2.6 · 10−7 3.4 · 10−7 9.8 · 10−9 1.6 · 10−7 1.6 · 10−7

312 210 158 142 149 128 184

2.9 · 10−6 3.4 · 10−7 1.3 · 10−6 8.6 · 10−7 4.3 · 10−8 2.2 · 10−7

632 740 421 348 285 271 363

7.9 · 10−6 6.6 · 10−6 3.7 · 10−6 3.6 · 10−6 2.7 · 10−6 1.8 · 10−7

1272 2654 1531 884 662 543 719

2.4 · 10−5 2.3 · 10−5 2.1 · 10−5 1.8 · 10−6 7.6 · 10−6 1.7 · 10−7

Table 3. CR-LSM-2, p = q = 4

N \ m 8 16 32 64 128

72 34 31 63 127 255

1.3 · 10−7 7.9 · 10−8 1.6 · 10−9 4.6 · 10−12 5.1 · 10−13

152 74 64 94 127 255

8.8 · 10−7 9.7 · 10−7 2.2 · 10−7 3.1 · 10−9 3.9 · 10−12

312 236 149 129 190 255

2.9 · 10−6 2.0 · 10−6 8.1 · 10−7 3.0 · 10−8 7.3 · 10−7

632 592 472 305 331 382

8.1 · 10−6 8.0 · 10−6 4.3 · 10−6 4.6 · 10−6 1.9 · 10−7

1272 2612 1347 897 539 659

2.4 · 10−5 2.3 · 10−5 2.1 · 10−5 1.3 · 10−5 1.2 · 10−5
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Table 4. CR-LSM-2, p = q = 0, u0 = x2 + y2

N \ m 8 16 32 64 128

72 37 20 20 20 20

2.7 · 10−7 4.2 · 10−8 5.4 · 10−9 5.4 · 10−9 5.4 · 10−9

152 99 75 42 40 40

6.9 · 10−7 8.3 · 10−7 3.1 · 10−7 8.8 · 10−8 8.8 · 10−8

312 314 199 145 83 83

3.6 · 10−6 304 · 10−6 2.6 · 10−6 1.2 · 10−6 2.4 · 10−7

632 1084 626 390 283 160

1.0 · 10−5 1.0 · 10−5 9.2 · 10−6 8.4 · 10−6 2.6 · 10−6

1272 3860 2119 1185 746 538

2.9 · 10−5 2.9 · 10−5 2.8 · 10−5 2.8 · 10−5 2.1 · 10−5

Table 5. CG-LSM-2, p = q = 0, u0 = x2 + y2

N \ m 8 16 32 64 128

72 38 20 20 20 20

1.8 · 10−7 4.7 · 10−8 5.4 · 10−9 5.4 · 10−9 5.4 · 10−9

152 99 76 43 41 41

5.4 · 10−7 5.5 · 10−7 1.5 · 10−7 2.6 · 10−8 2.6 · 10−8

312 316 211 156 86 81

3.0 · 10−6 1.3 · 10−6 9.9 · 10−7 5.7 · 10−7 1.7 · 10−7

632 1086 631 404 316 167

9.8 · 10−6 8.6 · 10−6 5.1 · 10−6 2.3 · 10−6 1.2 · 10−6

1272 3865 2131 1210 757 614

2.9 · 10−5 2.7 · 10−5 2.1 · 10−5 2.2 · 10−5 3.6 · 10−6

Table 6. CG-LSM-2, p = q = 4, u0 = x2 + y2

N \ m 8 16 32 64 128

72 34 31 63 127 255

1.5 · 10−7 1.6 · 10−8 2.5 · 10−10 3.8 · 10−12 2.1 · 10−13

152 78 69 94 127 455

1.3 · 10−7 2.2 · 10−7 2.2 · 10−8 1.1 · 10−9 6.6 · 10−11

312 239 151 156 190 255

2.1 · 10−6 1.5 · 10−6 7.5 · 10−7 1.9 · 10−8 5.2 · 10−8

632 596 481 311 337 382

7.8 · 10−6 5.8 · 10−6 1.7 · 10−6 7.1 · 10−7 9.9 · 10−8

1272 2612 1351 900 568 736

2.4 · 10−5 1.9 · 10−5 1.9 · 10−5 2.9 · 10−6 3.9 · 10−6
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Table 7. MR-LSM-2, p = q = 0, u0 = x2 + y2

N \ m 8 16 32 64 128 ∞
72 37 21 32 64 128 185

2.7 · 10−7 5.5 · 10−8 7.0 · 10−9 2.8 · 10−9 2.8 · 10−9 4.8 · 10−7

152 99 76 67 82 128 703

5.4 · 10−7 5.5 · 10−7 4.3 · 10−7 2.1 · 10−7 2.6 · 10−8 1.3 · 10−6

312 316 202 187 253 267 2614

3.0 · 10−6 3.1 · 10−6 1.3 · 10−6 1.9 · 10−7 1.4 · 10−6 3.7 · 10−6

632 1086 631 559 505 636 9622

9.8 · 10−6 8.6 · 10−6 6.1 · 10−6 2.1 · 10−6 4.8 · 10−6 1.0 · 10−5

1272 3860 2123 1427 1702 1906 35050

2.9 · 10−5 2.9 · 10−5 2.6 · 10−5 2.2 · 10−5 1.7 · 10−5 2.9 · 10−5

5 Conclusion

We consider the generalization of Anderson acceleration, for parallel solving
non-symmetric large SLAEs with sparse matrices, on the base of least squares
methods applied to some preliminary “cheap” iterative process, which is used
just for computing basis vectors for implicit, or block, implementation of the
Krylov type algorithms with periodically minimization of the residual vector
before restarts. The comparative experimental analysis of the variational con-
jugate gradient and conjugate residual methods, as well as spectral Chebyshev
acceleration demonstrates reasonable stability and convergence rate of the iter-
ations the methods proposed. The idea of increasing parallelism consists in the
simultaneous computations of big number of inner products, in contrast to suc-
cessive computations in the conventional Krykov algorithms. The performance
of the proposed approaches at the real multi-processor systems with distributed
and hierarchical shared memory is the topic of further research.

This work was supported by the Russian Science Foundation (project N 14-
11-00485) and the Russian Foundation for Basic Research (project N 16-29-
15122).
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Abstract. In order to simulate the interaction of seismic waves with
cavernous/fractured reservoirs, a finite-difference technique based on
locally refined time-and-space grids is used. The need to use these grids
is due primarily to the differing scale of heterogeneities in the reference
medium and the reservoir. Domain Decomposition methods allow for the
separation of the target area into subdomains containing the reference
medium (coarse grid) and reservoir (fine grid). Computations for each
subdomain can be carried out in parallel. The data exchange between
each subdomain within a group is done using MPI through nonblocking
iSend/iReceive commands. The data exchange between the two groups
is done simultaneously by coupling the coarse and fine grids.

The results of a numerical simulation of a carbonate reservoir are
presented and discussed.

Keywords: Finite-difference schemes · Local grid refinement · Domain
decomposition · MPI · Group of processor units · Master processor unit

1 Introduction and Motivation

One of the key challenges in modern seismic processing is to use the surface
and/or borehole data to restore the microstructure of the hydrocarbon reservoir.
This microstructure can have a significant impact on oil and gas production. In
particular, in many cases the carbonate reservoir’s matrix porosity contains the
oil but the permeability is mainly through the fracture corridors. In some carbon-
ate reservoirs the in-place oil is contained in karstic caves. Because of this, the
ability to locate these microstructures precisely and to characterize their prop-
erties is of a great importance. Recently various techniques have been developed
to perform this analysis with the help of scattered seismic waves. Among them,

c© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 183–193, 2017.
https://doi.org/10.1007/978-3-319-71255-0_14
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the scattering index presented by Willis et al. ([8]) or a variety of the imaging
techniques recently developed under the generic name of interferometry (see e.g.
book of G. Schuster [7]).

The first step in the development of any inversion/imaging procedure is to
simulate accurately the wave field scattered by fractures and caves. The numeri-
cal and computer constraints even on very large clusters place limitations on the
resolution of the model described. Really, a reservoir beds typically at a depth of
2000÷4000 m, which is about 50÷70 dominant wavelength. The current practice
for the finite-difference simulation of seismic waves propagation at such distances
is to use grid cells of 0.05–0.1 of a dominant wavelength, usually between 5–10 m.
So, one needs to upscale heterogeneities associated with fracturing on a smaller
scale (0.01–1 m) and to transform them to an equivalent/effective medium. This
effective medium will help reproduce variations in the travel-times and an aver-
age change of reflection coefficients but absolutely cancels the scattered waves
that are a subject of the above mentioned methods for characterizing fracture
distributions.

Thus, the main challenge with a full scale simulation of cavernous/fractured
(carbonate) reservoirs in a realistic environment is that one should take into
account both the macro- and microstructures. A straightforward implementation
of finite difference techniques provides a highly detailed reference model. From
the computational point of view, this means a huge amount of memory required
for the simulation and, therefore, extremely high computer cost. In particular,
a simulated model of dimension 10 km × 10 km × 10 km, which is common for
seismic explorations, with a cell size of 0.5 m claims 8 × 1012 cells and needs in
≈ 350Tb of RAM.

The popular approach to overcome these troubles is to refine a grid in space
only and there are many publications dealing with its implementation (see [6]
for a detailed review), but it has at least two drawbacks:

– To ensure stability of the finite-difference scheme the time step must be very
small everywhere in the computational domain;

– Unreasonably small Courant ratio in the area with a coarse spatial grid leads
to a noticeable increase in numerical dispersion.

Our solution to this issue is to use a mutually agreed local grid refinement in
time and space: spatial and time steps are refined by the same factor.

2 Numerical and Parallel Implementation

In our considerations propagation of seismic waves is simulated with help of an
explicit finite-difference scheme (FDS) on staggered grids approximating elastic
wave equations (velocity-stress formulation):

�
∂u

∂t
− A

∂σ

∂x
− B

∂σ

∂y
− C

∂σ

∂z
= 0;

D
∂σ

∂t
− AT ∂u

∂x
− BT ∂u

∂y
− CT ∂u

∂z
= f ;
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written for vectors of the velocity u = (ux, uy, uz)T and the stress σ =
(σxx, σyy, σzz, σxz, σyz, σxy).

Staggered grid finite difference scheme updates values of unknown vectors in
two steps:

1. from velocities at t to stresses at t + Δt/2;
2. from stresses at t + Δt/2 to velocities at t + Δt.

In view of the local spatial distribution of the stencil used in this finite difference
scheme to update the vector at some point M and time (t+Δt/2), the previous
time level (t) corresponding values should be known in a neighborhood of this
point.

Parallel implementation of this FDS is based on the decomposition of the
computational domain to elementary subdomains, being assigned to its individ-
ual Processor Unit (PU) (Fig. 1). Update unknown vectors while moving from
a time layer to the next one requires two adjacent PU to exchange unknown
vectors values in the grid nodes along the interface. Necessity of this exchange
negatively impacts scalability of the method. However, the impact is less visible
on 3D Domain Decomposition (DD) than in one- and two-dimensional ones (see
theoretical estimates of acceleration for different versions of DD in Fig. 2)). In
our implementation we choose 3D Domain Decomposition, moreover, in order
to reduce the idle time, the asynchronous computations based on nonblocking
MPI procedures iSend/iReceive are used.

Fig. 1. Domain decomposition. From top to bottom: 1D, 2D, 3D.

In order to carry out the numerical simulation of seismic waves propagation
through a multiscale medium we represent it as a superposition of the reference
medium given on a coarse grid and the reservoir on a fine grid (see Fig. 3). Each
of these grids is again decomposed to elementary subdomains being assigned to
individual PU. Now these PU are combined into two groups for coarse and fine
grids, and special efforts should be applied in order to couple these groups.
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Fig. 2. Theoretical estimation of acceleration for different implementations of Domain
Decomposition (top down): 3D, 2D and 1D (see Fig. 1).

Fig. 3. Two groups of Processor Units.

2.1 Coupling of Coarse and Fine Grids

First of all, let us explain how a coarse and a fine grids are coupled to each other.
The necessary properties of the finite difference method based on a local grid
refinement should be its stability and an acceptable level of artificial reflections.
Scattered waves we are interested in have an amplitude of about 1% of the
incident wave. Artifacts should be at least 10 times less, that is about 0.1% of the
incident wave. If we refine the grid at once in time and space stability of the FDS
on this way (see [1,2]) can be provided via coupling coarse and fine grids on the
base of energy conservation, which leads to an unacceptable level (more than 1%)
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of artificial reflections (see [3,4]). We modify the approach so that the grid is
refined by turn in time and space on two different surfaces surrounding the
target area with microstructure. This allows decoupling temporal and spatial
grid refinement and to implement them independently and to provide the desired
level of artifacts.

Refinement in Time. Refinement in time with a fixed 1D spatial discretization
is clearly seen in Fig. 4 and does not need any explanations. Its modification for
2D and 3D media is straightforward (see [3,4] for more detail).

Refinement in Space. In order to change spatial grids, the Fast Fourier Trans-
form (FFT) based interpolation is used. Let us explain this procedure for a 2D
problem. The mutual disposition of a coarse and a fine spatial grids is presented
in Fig. 4b, which corresponds to updating the stresses by velocities (updating
stresses by velocities is implemented in the same manner). As can be seen, to
update the stresses on a fine grid it is necessary to know the displacement at the
points marked with small (red) triangles, which do not exist on the given coarse
grid. Using the fact that all of them are on the same line (on the same plane for
3D statement), we seek the values of missing nodes by FFT based interpolation.
Its main advantages are an extremely high performance and exponential accu-
racy. It is this accuracy allows us to provide the required low level of artifacts
(about 0.001 with respect to the incident wave) generated on the interface of
these two grids. For 3D statement we again perform the FFT based interpola-
tion but this time 2D.

a)

j=0 j=1j=-1

n

n+1/2

n+1

j=0 j=1j=-1

b)

Fig. 4. From a coarse to a fine grid: (a) refinement in time (left - displacement, right -
stresses) (b) refinement in space. (Color figure online)

2.2 Implementation of Parallel Computations

Our objective is to analyze the impact of cavernous-fractured reservoirs in the
seismic waves for realistic 3D heterogeneous media. Therefore, parallel compu-
tations are necessary both in the reference medium, described by a coarse mesh,
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and in the reservoir itself, determined on a fine grid. The simultaneous use of
a coarse and a fine grids and the need for interaction between them makes it
difficult to ensure a uniform load of Processor Units under parallelization of com-
putations based on Domain Decomposition. Besides, the user should be allowed
to locate the reservoir anywhere in the background.

This problem is resolved through the implementation of parallel computa-
tions on two groups of Processor Units. One of them is fully placed 3D hetero-
geneous referent environment on a coarse grid, while the fine mesh describing
the reservoir is distributed among the PU in the second group (Fig. 3). Thus,
there is a need for both exchanges between processors within each group and
between the groups as well. The data exchange within a group is done via faces
of the adjacent Processor Units by non-blocking iSend/iReceive MPI procedures.
Interaction between the groups is much more complicated. It is carried out not
so much for data sending/receiving only, but for coupling a coarse and a fine
grids as well. Let us consider the data exchange from the first group (a coarse
grid) of PU to the second (a fine grid) and backwards.

From coarse to fine. First are found Processor Units in the first group which
cover the target area, and are grouped along each of the faces being in contact
with the fine grid. At each of the faces there is allocated the Master Processor
(MP), which gathers the computed current values of stresses/displacements and
sends them to the relevant MP on a fine grid (see Fig. 5). All the subsequent
data processing providing the coupling of a coarse and a fine grids by the FFT
based interpolation is performed by the relevant Master Processor in the second
group (a fine grid). Later this MP sends interpolated data to each processor in
its subgroup.

Interpolation performed by the MP of the second group essentially decreases
the amount of sent/received data and, hence, the idle time of PU.

Fig. 5. Processor Units for a coarse (left) and a fine (right) grids. Relevant MP from
different groups have the same color. (Color figure online)
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From fine to coarse. As in the previous case, primarily there are identified PU
from the second group which perform computations on the faces covering the
target area. Next, again for each face Master Processor is identified. This MP as
its partner from the coarse grid collects data from the relevant face and performs
their preprocessing before sending to the first group of PU (a coarse grid). Now
we do not need all data in order to move to the next time, but only those of
them which fit the coarse grid. Formally, these data could be thinned out, but
our experiments have proved that this way generates significant artifacts due to
the loss of smoothness. Therefore for this direction (from fine to coarse) we also
use the FFT based interpolation implemented by the relevant MP of the second
group (a fine grid). The data obtained are sent to the first group.

3 Reservoir Simulation

3.1 2D Statement: Karstic Layer

In order to estimate the accuracy of the method, we first consider a 2D statement
for a thin layered reservoir with karst intrusions presented in Fig. 6(a). In order
to describe the microstructure of karstic intrusions we should use a grid with
hx = hz = 0.5 m, while for the reference medium the dispersion analysis gives
hx = hz = 2.5 m. In Fig. 6a one can see an area with the fivefold grid refinement
in time and space. Let us compare now the results of simulation for a uniform
fine grid and a grid with the local refinement in time and space. In Fig. 6b,
one can see a free surface seismogram (horizontal displacement) generated by
the vertical point force with a Ricker pulse of a dominant frequency 25 Hz and
simulated on the uniform fine grid. Figure 7 represents a comparison of synthetic
traces computed on a uniform fine grid and a grid with local refinement in time
and space. As can be seen, there is an excellent coincidence of scattered PP-waves
and rather good agreement of PS ones.

a) b)

Fig. 6. (a) Karstic layer (b) Surface seismogram (horizontal component). 1 - direct
P-wave, 2 - direct S-wave coupled with surface Rayleigh wave, 3 and 4 - reflected PP-
and PS-waves, 5 - scattered PP- and PS-waves, 6 - reflected SP-wave.
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a) b)

Fig. 7. Traces computed on a uniform fine grid (a) and on a grid with local refinement
in time and space.

3.2 3D Statement: Fracture Corridors

Now we present the results of numerical simulation for some realistic model of
a carbonate reservoir with fracture corridors. The reservoir is embedded into a
homogeneous background with elastic properties equivalent to an average car-
bonate rock:

Vp = 4500m/s, Vs = 2500m/s, density � = 2500 kg/m3

The reservoir is treated as a horizontal layer 200 m thick and corresponds to a
slightly softer rock with the elastic waves propagation velocities Vp = 4400 m/s,
Vs = 2400 m/s and the density � = 2200 kg/m3 and contains two fractured layers
30 m thick each. The fracturation is of a corridor type, that is, we have included
into each layer a set of randomly distributed parallel fracture corridors. The
fracture density varies from 0 in the non-fractured facies to 0.3 as a maximum.
Finally, the fracture density was transformed to elastic parameters using the
second order Hudson theory following [5]. Since fractures were filled with gas, the
velocity diminishes down to 3600 m/s the lowermost as compared to 4400 m/s in
the matrix. The fracture corridors were then randomly distributed into fractured
layers until the desired fracture density was obtained. The final distribution of
fracture corridors can be seen in Fig. 8 (two side views).

3.3 Synthetic Seismograms

The developed parallel software was used for simulation of scattered waves for
the reservoir model introduced in the previous section. The acquisition system
can be seen in Fig. 9. Three-component seismograms are presented in Fig. 10.
There is a visible difference between the seismograms along the parallel and the
perpendicular lines with respect to fracture corridors.
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Fig. 8. Side view of fracture corridors within reservoir: orthogonal (top) and parallel
(bottom) to the corridor direction

Fig. 9. Acquisition system. The source is at the intersection of Line 1 and Line 2.
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Fig. 10. 3C seismograms along Line 2 (top) and Line 1 (bottom). From left to right:
X, Y and Z-displacements.

4 Conclusion

A finite difference method based on the use of grids with local space-time
refinement is proposed, developed and verified. Implementing its parallel soft-
ware opens up a fundamentally new opportunity to study the processes of
formation and propagation of waves scattered by a microstructure of the cav-
ernous/fractured reservoir for a realistic geological environment. The very first
simulations carried out using this software, allow the following conclusions:

– Modeling techniques make possible to simulate the impact of fine-scale het-
erogeneities within a realistic 3D environment in an accurate manner;

– Scattered waves have a significant energy and can be acquired by the field
observations, hence there should be a possibility not only to reveal cavities
and fractures in the reservoir but to predict their orientation as well.
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Abstract. The article submits the results of 3D computational modeling of the
adiabatic interaction between a shock wave and molecular clouds, central impact
and glancing collision between them, in the case of counter movement. According
to the problem set in the first case, two spherical clouds with pre-established
density fields interact with the post-shock medium of supernova blast remnants.
It is demonstrated that the collision give rise to the supersonic turbulence in a
cloud mixing zone, the formation of cone-like filamentous structures, the signif‐
icant stratification of gas density and the disruption of clouds. Problems of vortex
filaments origination in clouds wakes are analyzed after simulation of supersonic
forward and glancing collision of two molecular clouds.

Keywords: Parallel computing · Supersonic turbulence · Shock waves · Small
molecular clouds

1 Introduction

Giant molecular clouds (GMC) are a huge accumulation of interstellar gas and dust,
composed mostly of molecular hydrogen. They are the coolest and densest portions of
the interstellar medium (ISM). MCs are generated from this matter, a part of which falls
under strong shock wave compression in extended filaments and globules that eventually
collapse. Filaments formations are wide spread in the universe. Swellings of filaments
and clumps occurring inside MCs are results of shock strong compression and cloud’s
self-gravitation, magnetic hydrodynamics after-effect [1, 2]. Molecular clouds may
evolve to structure of interlacing and connecting filaments. This web of spatial voids,
highly compressed gas fibers or enclosures, depends on the external influence on the
interstellar medium, and has an indirect action on the condensation of cores formed into
more massive intersected filament clumps that later could become protocores – embryos
of future stars [3, 4].

One of possible scenarios of filament structuring initiation is a collision of MCs with
strong shock waves (SW) of another gas formations propagated in the space. Others
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cases are initiated in different collisions between MCs of different mass with originating
shock wave multiformity in mixing zones.

The shock wave interaction generated by proliferation of supernova explosion
remnants and the molecular clouds leads to supersonic turbulence of gas in MCs, deep
density stratification and their destruction followed by formation of filamentous struc‐
tures. The shock wave impact accompanied by intense dynamic interaction of filaments
with each other leads to the significant redistribution of gas density in MCs.

The present simulation has been performed to study vortex structuring in the molec‐
ular clouds formations disbalanced after collisions with a strong shock wave and
between two MCs in different cases of collision, and associated with turbulization and
filaments formation during these processes. The occurring filament formations governed
by the vortex slipstream flow after MCs and a shock wave interact with each other and
develop in the gradient regions of the gas density fields. It is shown that at specified
points of time there occur ultra-dense regions, with the density contrast being an order
of magnitude higher than the initial contrast in clouds. Evolution of such objects, running
from the formation of filament rudiments to the moment, they reach the stellar densities,
covers a vast range of spatial and time scales.

Main of numerical methods used in astrophysical hydrodynamics can be divided into
classical continuum approach and Smoothed Particle Hydrodynamics (SPH) methods.
A significant part of continuum solvers uses a high resolution regular or AMR grids.
The most of them work on parallel HPC. SPH methods are challenges due to several
benefits over traditional grid-based techniques (flexible parallel computing realization,
multiphase fluid simulation, etc.). This method, however, has essential limitation, for
example, particles leaved a domain with high gradient parameters (velocity, pressure)
will be compensated, and this leads to loss of computational accuracy. Recent related
publications using last approach can be found in [5–9].

Author’s code used is a continual. The article submits the results of 3D computational
modeling of the adiabatic interaction between a shock wave and molecular clouds,
central impact and glancing collision between them. The article analyses the density
fragmentation, investigates the process of filament formation and gas density stratifica‐
tion as a result of SW/MCs or MC/MC collision. Applying HPC technologies we have
realized a numerical simulation of complicated gas dynamics task using calculation grids
with more than two billion nodes.

2 Problem Definition

2.1 Initial Conditions and Parameters

We study three scenarios of MCs collision in ISM. Case I: strong shock wave and SW/
MCs interaction in a configuration where a plane of shock frontal of supernova remnant
gas runs onto systems of two clouds of spherical form. Case II: a central concussion of
two molecular clouds (MC/MC) of initially spherical form moving in opposite direction.
Case III: a glancing collision of MC to the side of another one, in reverse moving.

The schema of simulated collisions is shown in Fig. 1. Two MCs have different radial
distribution of density (illustrated by different diagrams on schema).
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Fig. 1. Computation schemes for three case of simulation.

In the case I, at the moment of collision a shock wave contacts with outer MCs boun‐
daries. Special rule of density radial distribution is used to represent more realistically the
density smoothing profile on the border between the clouds and the outer medium. Appro‐
priate functions were taken according to recommendations given in [10–12].

The density radial distribution formulas for clouds C1 and C2 are the following:

𝜌(r) = 𝜌ism +
𝜌cl − 𝜌ism

1 +
(
r∕Rcl

)2.7128 , (1)

𝜌(r) = 𝜌ism

(
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𝛼

𝛼 + 1
(1 − 𝜒)

)
, where𝜒 = ρcl∕ρism− density contrast. (2)

Form factor α in (2) can be calculated by formula
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)]}

Several parameters in these formulas controlling the steepness of clouds border were
changed to improve density smoothing.

The key physical parameters and assumptions of the present tasks were correlated
by data from [17]. The interstellar medium consists of relatively warm matter with
Tism = 104 K, the temperature of colder MC gas Tcl = 102 K. The ambient gas density
of the outer cloud medium ρism = 2.15 10−25 g·cm−3, the gas density in the undisturbed
cloud centers ρcl = 1.075 10−22 g·cm−3.

In the case I, characteristic (conventionally diffused) radius of each cloud Rcl is equal
roughly to 0.1 pc. For system of two clouds (C1, C2), the mass of each is (approximately,
considering fuzzy boundary) equal to 0.005 M⊙ or 0.01 M⊙ respectively, in solar mass
fractions. The initial density contrast between the MCs centers and the interstellar
medium is χ = 500.

Mach number Msw of incident shock wave is equal to seven, post-shock plasma
density ρsw = 8.6 × 10−25 g·cm−3, temperature Tsw = 1.5 × 105 K, velocity of shock wave
Usw = 104 km·s−1. The thickness of post-shock wave front is ~ 2–5 pc, which is much
greater than the radius of a cloud. The period of time the shock wave propagates the
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upper cloud diameter is about 2000 years. This value is used as a scale for non-dimen‐
sional time.

In the case II, III the mass of each cloud C1, C2 is equal to 0.32 M⊙ or 1.05 M⊙
respectively. The velocity of each MC is 5 km·s−1, the oncoming velocity is equal
10 km·s−1. In the case of the glancing strike centers of MCs are displaced, linear shift is
0.2Rcl. The initial density contrast between the MCs centers and the interstellar medium
is χ = 500 and 100 accordingly.

2.2 Equations and Numerical Realization

Gas movement is described with a set of Euler equations which are conservation laws
for mass, momentum, and energy

𝜕U

𝜕t
+ ∇ ⋅ T = 0, U =

⎛
⎜
⎜
⎝
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⎠

T

, e =
p

𝛾 − 1
+

|u|2

2
, (3)

ρ denote the gas density, u = (u, v, w) is the velocity vector. The total energy density
e and gas pressure p are related through the ideal gas closure, where adiabatic index -
γ = cp/cv is equal to 5/3.

Accuracy of numerical solution of multivariable problems in supersonic gas dynamics
is eminently important in astrophysics phenomenon simulation. High-order accurate differ‐
ence schemes have guaranteed monotonicity preservation of conservation laws. They are
based on Godunov approach [18] to proof linear, first-order upwind schemes. The
nonlinear, second-order accurate total variation diminishing (TVD) approach provides high
resolution capturing of shocks and prevents unphysical oscillations, therefore it describes
the local discontinuity preserving hyperbolic conservation laws [19, 20]. The TVD main‐
tains a nonlinear stability condition. The total variation of a discrete solution defined as a
measure of the overall amount oscillation in velocity u is

TV
(
ut
)
= 2

(∑
umax −

∑
umin

)
(4)

The flux assignment scheme with condition TV
(
ut+Δt

)
≤ TV (ut) can guarantee that

the amount of total oscillations will have a limit. Different TVD limiters are used:
minmod, superbee, vanleer. The vanleer limiter proves to be preferential in our solution.
TVD scheme is an approbated and robust method to solve systems of Euler equations.
Such an approach and a sampling of physical coordinates [22] have enables us to take
an appropriate parallelization and accelerate computing.

Numerical experiment is performed using different spatial resolution of physical
description of SW/MCs collision in space. Grid sizes from 512 × 512 × 512 (case II and
III) to 2048 × 1024 × 1024 (case I) units were used in systematic calculations. Minimal
spherical clouds radius corresponds to 128 grid nodes. Last number exceeds the spatial
resolution level, which is necessary to resolve correctly density and velocity turbulence
fluctuations over energy high gradient gas layers and shock waves. The level of zonal

Computational Modeling of Turbulent Structuring 197



discretization is more that used in [14–16]. The computing areas used for problem under
consideration are parallelepipeds with dimensions 1.6 × 0.8 × 0.8 pc for the case using
high resolution mesh, and 1.6 × 1.6 × 1.6 pc for MC/MC collisions. The lateral and
outlet computational domain edges are determined as open boundary conditions for
primitive variables.

We use author’s parallel code allowing computations to be done with OpenMP. The
setting of a code performance is done with Intel VTune Amplifier XE. Some computa‐
tions are done with graphics accelerators NVIDIA K40 and CUDA for PGI Fortran. To
compute with graphical accelerators the computation program has been retargeted so
that some subprograms should be directed to GPU and the others - to CPU.

The numerical simulation procedure and peculiarities of 3D hydro code were detailed
in [22, 23]. The wide set of CFD utilities and postprocessing systems were used to
analyze a big data output after a numerical experiment. Simulated filamentous structures
and fragmentation process observed are analyzed using computer visualization tech‐
nique of author’s program - HDVIS.

3 Analysis of SW/MCs and MC/MC Collision

Numerical simulation has been performed to study the morphology and vortex coherent
structures in the molecular cloud formations disbalanced after collisions with a shock
wave, shift and wake reformation in the situation with MCs forward and glancing impact.

The computations have shown that the formation of filaments and gas density strat‐
ification depend significantly on several factors, but the primary one is a shock wave
compression of clouds matter near the sheet (inners and outers) layers of gas mixed.

3.1 SW/MCs Interaction

In first case of SW/MSs collision the density gas fragmentation is associated with super‐
sonic turbulization during these processes. The evolution of transient coherent structures
in MCs after passing a shock wave goes through three representative stages. At initial
time, when a bow shock wave rounds clouds, a wave is formed behind its front. It moves

Fig. 2. Initial compression in SW/MCs interaction (t = 40, 60). (Color figure online)
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towards the flow and forms vortical structures, as it is shown in Fig. 2. Iso-surfaces of
density contrast χ = 10 and 2000 and twisting pathlines are given in green and red colors.

At the next stage a SW continues to extend and initiates the Richtmyer-Meshkov
instability (RMI) - disturbance of gas at outer boundaries of clouds. There occur convec‐
tive acceleration of flow and whirling of the boundary layers of the conventional border
between MCs and a surrounding matter, in zones with large and small gas density. The
Kelvin–Helmholtz instability (KHI) can increase here additionally.

At the third stage of cloud transformation, the conical-like sheets commence to
stretch. The flow streams accelerate in high gradient density layers and can initiate
whirling of layers at the conventional MCs/ISM borders. Filament rudiments look like
the elongated conical folded sheets (Figs. 3 and 4). The global circulation of a gas flow
in the mixing zone begins to appear after cloud C1 being rounded by a shock wave and
finds its source in two vortex lines born inside the cloud at the back side. The flow swirl
occurs in accordance with the scheme of spatial twin vortex.

Fig. 3. Gas density stratification and vortical structure of MCs at t = 330.

Vortex sheets start to deflect and twist and become filamented practically after orig‐
ination of instability. The observable vortices are illustrated in Fig. 3 by showing of
vorticity magnitude |ω| = 30 distribution. In the evolution process, the vortex lines
elongate, kink, take the form of hairpins, and expand in a bend region. The visualization
inset shows the formation of a hairpin structure near the outer gas layer that precedes
the long streaks. Transition happens via streaky and misshapen structures behind shock
layers on the leeward side of MCs. Hairpin vortices observed are similar to those found
in plasma flows for high Mach boundary layers in supersonic transition, investigated in
experiment.

Q-criterion - the second invariant of a velocity gradient tensor being used to identify
the regions of non-uniformly scaled vortex concentrations and to differentiate peculiar‐
ities of the flow structure. Vortices have smaller distribution density within the mixing
region, at the boundaries and surfaces of elongated filamentous film rudiments the vortex
distribution densities are significantly higher and show a local velocity slope in different
cloud regions. Figure 3 shows typical vortex formation: with elongated loops and helical
deformations inside MCs at the moment of shell forming.
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To reinforce the role of density interleaving and turbulent supersonic transfer in
analyzing of MCs stratification the denstrophy characterization is used. The local dens‐
trophy is defined as a value: Ω1∕2 =

1
2
|||∇ ×

(
𝜌1∕2

u

) |||
2
, which is an indicator of compres‐

sible turbulent velocity fluctuation [24]. A view of iso-surface of denstrophy Ω1/2 = 1000
at t = 300 is shown on Fig. 4.

Scanning of denstrophy distribution iso-surface one can emphasize the fractal recur‐
rence of cone-like filament envelopes. Supersonic flow perturbation leads to a consid‐
erable grow of the denstrophy over filament in stripping phase of MCs transformation.
Compressed gas sheets assume funneled form. The low-density gas is removed to center
zone of cloud, and occupy low-pressure regions previously created by rarefaction waves.
Stochastic void swelling is typical for shock-induced MCs. Generated vortices grow
over time, slip and roll through the newly-formed sheets, eventually to be expelled
outside.

One of the extreme forms of gas stratification in MCs is conventionally hollow
filament. Envelopes of such formation are shown in Fig. 5 using selected display of iso-
surfaces for contrast density χ = 1 (opaque red-green-yellow), 5 (translucent rose).
The map of local denstrophy is distributed along the surface of χ = 1. Denstrophy color
legend conforms to 100 < Ω1/2 < 10000. One can see that separate zones are practically

Fig. 4. Denstrophy distribution and vortex structure of MCs.
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eddy-free; they have the close to ISM density of gas. Hollow channels and caverns with
low denstrophy and turbulent pulsation are intrinsic for giant molecular clouds.

Fig. 5. Iso-surfaces χ = 1, 5 with denstrophy contours at t = 300. (Color figure online)

Supersonic turbulence drives the fragmentation of dense cores and multiformity of
pro-filamentary structures taking the original shell-like and clump forms. It is possible
to establish some relationship between energy and density gradients strips on shell edges
which is high-correlated. Gas currents near edges are accelerated by oblique collisions
of secondary shock fronts that can arise from the initial supersonic shock fluctuations,
either over the cloud recirculation zone or inside it, or behind the shock wave (primary
or secondary) intersection lines and discs.

3.2 MC/MC Collisions

Collision of SMCs or molecular clumps in GMC can be realized in different ways.
Outcomes of impact depend on initial parameters: velocities, mass ratio, impulse direc‐
tion, matter inhomogeneity and another thing. In our study results of central and shifted
collision have been explored as first. The parameters and initial conditions for formu‐
lated tasks assigned in Sect. 2.1.
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Central impact between two molecular clouds studied with oncoming velocity of
objects equal 10 km·s−1. The mass ratio Mc1/Mc2 in this collision is much less of three.
Under such conditions the collision is accompanied by density fragmentation and gas
scattering from the center to periphery outside. Time sequence of collision compressing
is shown on Fig. 6.

Fig. 6. Central impact of two MCs, time sequence t = 5, 10, 15, 20, 25. Iso-surfaces χ = 10, 50,
500, 800 and density contrast profile on the central line.

Arising from forward compression a density “splash” is similar to concave lens of
asymmetrical form. Substance of cloud C2, of smaller diameter having much larger mass
penetrates into cloud C1 – lightweight, of a greater diameter.

Density contrast diagram, shown on Fig. 6 indicates a fast (relatively to space time
scale) spatial intermittency of supersonic flow, accompanied amplified KH instability
and disturbance of gas at outer boundaries of clouds. During cloud deformation two-
three compressed density lens-like clumps and rolled rings arise here (Figs. 6 and 7).
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Fig. 7. Density contrast fields χ = 1, 5, 40, 100 in time evolution for central impact of MCs. Iso-
surfaces of χ = 100 and schlierens in the middle plane. Time sequence from t = 10 to t = 25.

The impulse does not lead to appearance of angular momentum. In work [7], using
SPH modeling, a small rotation around central axis of clumps was discovered. Possibly

Fig. 8. Rolled filament layers of density contrast χ = 4, wake vortices, indicated by Q = 3, and
helix pathlines for case of MC/MC glancing collision at time t = 15.
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it is due by mathematical setup to initial conditions in smooth particle approach and
initial perturbation in solution.

The hot gas of colliding MCs is cooling rapidly. It can significantly affect the possible
collapse of cool and heavily compressed protocores after collision. On figures given
above one can see that from time moment t = 15 mutable density clumps began to break
up leading to density fragmentation. Results of simulation are correlated well with
observed data [11, 12].

In the case of glancing collision more heave molecular cloud penetrates into more
light and friable side of another one. MC2 cuts gas “hollow” in side of MC1, boundary
layers and conditional edges of which begin to roll. Time evolution of MCs separation
process is shown in Figs. 8 and 9.

Fig. 9. Envelope layers of density contrast χ = 5, 10, 50 and vortex indicator Q = 5 for case of
glancing collision of MCs. Origination of vortex tubes over filament sheet edges is shown.

Bound of mixing zone becomes film-like with curvilinear profile of their outer
surfaces. Initially closed edges of cutting concavity become twisted and stretch. System
of wake vortex tubes after simultaneous multidirectional passing of molecular clouds
fairly stable on time scales examined in simulation.
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Lens-like and cone-like clumps can be fragmented and ablated. Strong shock waves,
dynamical supersonic collisions and local high compression zones shaking can be
amplified by self-gravitation and MHD deformation of filaments originated in MCs.

The simulation SW/MCs/MC collisions taking into account self-gravitation process
and magnetic condensation requires sharp increase of solution exposure, maybe even
ten times over. To clarify possible developments of formed structures with more real
time and spatial scales, it is necessary to carry out the numerical research using more
power HPC systems.

4 Conclusions

1. Filaments forming and molecular clouds crushing were simulated using the HPC
numerical modeling with high spatial resolution grids and parallelization codes
developed.

2. The MCs dynamical transformation for different scenario of molecular clouds colli‐
sion - between shock wave and MCs and impact between them - were analyzed in
terms of supersonic perturbations over shocked sheets as the outcome of local strong
shock compression.

3. The research has shown the ways the shock interaction initiates supersonic turbu‐
lence in mixed clouds, its effect on the filament origin and stratification of gas
density, as well as on the transformation of emerging structures.

Acknowledgements. The work has been funded by the Russian Foundation for Basic Research
grants No. 16-29-15099, 17-07-00569.
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Abstract. The article describes the combinatorial modelling approach to the
research of energy sector development. The idea of the approach is to model a
system development in the form of a directed graph which nodes correspond to
the possible states of a system at certain moments of time and arcs characterize
the possibility of transitions from one state to another. The combinatorial model‐
ling is a visual representation of dynamic discrete alternatives and permits to
simulate the long-term process of system development at various possible
external and internal conditions, to determine an optimal development strategy
of the system under study. The formation and analysis procedures of energy
development options are implemented in the Corrective software package. The
heterogeneous distributed computing environment is needed to compute an
energy sector development graph. In 2015 Institute of Energy Science of
Vietnamese Academy of Science and Technology performed the study of
Vietnam sustainable energy development from 2015 to 2030. Based on data of
this study the combinatorial modelling methods are applied to the formation and
analysis of Vietnam energy development options taking into account energy
security requirements. The created Vietnam energy sector development graph
consists of 531442 nodes. It is computed on the cluster located at Institute for
System Dynamics and Control Theory of Siberian Branch of Russian Academy
of Science (Irkutsk) under control of the Orlando Tools software package. The
found optimal path of Vietnam sustainable energy development provides the
minimum costs of energy sector development and operation.

Keywords: Combinatorial modelling · Energy sector · Decision support ·
Distributed computing environment

1 Introduction

The study of long-term energy development with regard to uncertainty (ambiguity) of
the initial information and development conditions [1] should be conducted on the basis
of general energy research approaches [2, 3] with the use of special methods, models,
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databases and software. The models should consider rather long time period (30-40
years) and distinguish several stages in the development and operation of energy
systems. Also models should explicitly consider discreteness of the energy facilities
development options. Tools to generate and analyse energy development options must
be well-founded and flexible. They should be established on some general organizing
research, algorithms to create and choose energy development options.

It is impossible to describe and test all distinctive combination of external conditions
and energy development options within frames of an energy sector model taking into
account uncertainty, energy security threats and other factors. It leads to a huge number
of possible energy sector states and takes a lot of time to generate and analyse using
usual methods of research. To deal with this issue the combinatorial modelling approach
is used. The combinatorial modelling is a visual representation of dynamic discrete
alternatives and permits to simulate the long-term process of system development at
various possible external and internal conditions, to determine an optimal development
strategy of the system under study.

This article describes the software that implements some combinatorial modelling
approach procedures and considers their application to study some problems of sustain‐
able energy development of Vietnam.

2 The Energy Sector Model

The balance economic-mathematical model [4] evaluates the energy sector state at a
certain time period with regard to energy security (ES) requirements [5–7]. The model
possibilities are quite close to MARKAL [8], MESSAGE [9], EFOM-ENV [10], TIMES
[11], Balmorel [12] and others. The model allows:

• Considering a whole energy sector from the production of energy resources to final
consumption in the various economic sectors including all stages of energy trans‐
formation;

• Investigating energy technological and territorial structure development.

The energy sector model is the following linear programming problem:

AX −

∑T

t=1
Yt

= 0, (1)

0 ≤ X ≤ D, (2)

0 ≤ Yt
≤ Rt, (3)

where t is a category of consumers; X – the decision vector whose components represent
the intensity of energy facilities usage (storage, production, transformation and trans‐
mission of energy resources); Yt – the decision vector whose components characterize
the energy resource consumption for different categories t; A – the matrix of facilities
technology factors (production, transformation) and transmission of energy resources;
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D – the vector that determines technically possible capacities of production, transfor‐
mation and transmission facilities; Rt – the vector that defines energy resources demands
of the category t.

The objective function is as follows:

(C, X) +

∑T

t=1

(
rt, gt

)
→ min (4)

The first component of this objective function reflects the operation costs of the
energy sector. The vector C contains unit functioning costs for the existing, recon‐
structed, upgraded and newly built production, transformation and transmission facili‐
ties.

The second component represents the losses due to the energy resources deficit for
the different consumer categories. The energy resources deficit gt of the category t is
equal to the difference between Rt and Yt. Vector rt consists of the components called
“specific losses” for consumer of category t.

3 The Combinatorial Modelling Approach

The procedures of formation and analysis of energy development options are based on
the representation of components belong to an investigated system in the form of a
directed graph. The graph nodes correspond to the possible states of components in the
certain moments or cuts of time. The graph arcs define the admissibility of transitions
between states. The research of the whole system development is performed by
analyzing various combinations of states and transitions of particular components. This
approach is known as combinatorial modelling [13].

A component is a structural unit of the system under research. It may be a factory,
power plant, set of the similar energy sources or a consumer category. The degree of
aggregation of the energy production or consumption facilities depends mostly on the
goals of study and data base possibilities.

The first step of the combinatorial modelling approach is to describe the basic
scenario of energy development to investigate as a graph with one node for each cut of
time (see Fig. 1). These nodes contain the essential information to create new possible
states of the energy sector.

0 1 2 

0 1 2

T

Fig. 1. Basic scenario of energy sector development

At second step the infrastructure of energy sector is separated into several compo‐
nents by territorial or industrial criteria. For the each component a development graph
is built. It contains changes of energy facility parameters at the considered time period.
The development graphs of two energy facilities are shown on Fig. 2. The source nodes
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corresponding to time 0 do not have numbers because they will not participate the next
generation of the energy sector graph.

0 

9 

7 8 

10 

0 1 2

T

0 

5 

3 4 

6 

Fig. 2. Development graphs of 2 energy facilities

The third step is combining data of reference graph with information of different
component graphs belonged to the same moment in time. This results in the set of
possible states of energy sector for each moment in time. The created states (nodes) are
linked by transitions (arcs) to form an energy sector development graph.

An energy sector development graph shown on Fig. 3 is created by means of combi‐
nation of nodes and edges of the graphs on Figs. 1 and 2. The number of generated
possible energy sector state is shown inside circle on Fig. 3. The numbers above a circle
are combination of the graph nodes on Figs. 1 and 2. The beginning of all paths in the
generated energy sector development graph is common initial node at moment 0.
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3, 7, 1 4, 8, 2

3, 9, 1 4, 10, 2

5, 7, 1 6, 8, 2

5, 9, 1 6, 10, 2

0 1 2

T

Fig. 3. Energy sector development graph

The forth step is to check the validity of nodes and arcs of the energy sector devel‐
opment graph since not all possible energy sector states and transitions can be valid.
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For this purpose, there are system-wide constraints in the combinatorial modeling.
Among them it can be distinguished two types:

1. Logical conditions. Some development alternatives of a component can depend on
the implementation of certain development variants of other components.

2. Balance and other design constraints. These are restrictions on the available raw
resources and products at every cut of time and transition. They can be defined in
the form of balance equations or inequalities.

Lists of pairs of incompatible nodes are used to implement logical conditions. A
couple of incompatible nodes is a pair of nodes of the different component graphs and
their combination in a possible system state is not possible or does not make sense for
some reasons.

The model of energy sector described above is of the second type of system-wide
constraints. The admissibility of an energy sector state depends on the correctness of
the decision results.

If ES requirements exist then ES status of a possible energy sector state is estimated
by means of ES indicators. ES indicator value is calculated on the basis of the economic-
mathematical model of energy sector decision results. The ES status is determined by
comparison of ES indicators values and thresholds.

The energy sector development graph shown on Fig. 3 has four nodes that did not
pass the validity check (see Fig. 4).

0 

13 

11 12 

14 

17 

15 16 

18 

0 1 2

T
Invalid energy sector state 

Fig. 4. The validity check of energy sector states

The fifth stage is to build a graph containing valid states and transitions. States and
transitions that are unreachable from the initial state are determined during the passage
from the initial node to the end nodes. After that blind states and transitions are deter‐
mined during the reverse passage. It is impossible to build a path from the initial node
to the nodes at last time moment with blind states and transitions. The invalid, unreach‐
able and blind states and transitions are removed from the graph which contains possible
energy sector states and transitions.
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At the last stage a set of optimal and close to optimal paths is determined by finding
shortest paths from the initial node to end nodes with a criterion.

The graph which consists of valid energy sector states and transition is shown on
Fig. 5. It was made from the graph shown on Fig. 4 where an optimal way to ensure
minimum costs of energy sector development and operation is presented by the bold
lines.

0 

12 

14 

17 

15 

0 1 2

T
The optimal way of energy sector development  

Fig. 5. The development graph with valid energy sector states and transitions

The main issue of the combinatorial modeling implementation is to deal with large
number of the simulated system states and transitions. It grows exponentially with the
increasing number of system components and their states. That is why the combinatorial
modeling approach is usually used with distributed computation technologies [14].

4 The Software Package Corrective

The above procedure of formation and analysis of energy sector development are imple‐
mented in the software package Corrective. It consists of the following modules:

1. module m1 to design basic scenario of energy sector development to study,
2. module m2 to create energy sector development graph,
3. module m3 to check the validity of a possible energy sector state (node of develop‐

ment graph),
4. module m4 to support expert analysis of energy sector development paths.

The scheme of information and logical links between modules of software package
Corrective is shown on Fig. 6 in the form of bipartite directed graph where modules m1,
m2, m3, m4 are black ovals.
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Fig. 6. The logical scheme of software package Corrective

5 Making Scalable Computations with the Software Package
Orlando Tools

The Corrective software works in a heterogeneous distributed computing environment
(HDCE) by means of the software package Orlando Tools [15]. It is a set of tools to
create scalable applications. The architecture of Orlando Tools consists of the next main
components: the user interface, the model designer, the knowledge base, the executive
subsystem and the computations database (see Fig. 7).

The interface is implemented as a Web application and provides access to other
components. The aim of the model constructor is to make the declarative specification
of computational knowledge about modules of an application that solves the domain
specific tasks, the knowledge of modular structure of a domain specific model and algo‐
rithms, the knowledge to support the decision making to choose the optimal computa‐
tional algorithms depending on the HDCE conditions as well as the software and hard‐
ware parameters and administrative characteristics of the HDCE nodes. The model
constructor provides the textual (as an XML document) and graphical (as diagrams)
notations of the domain specific model. The model is stored in the knowledge base.

The executive subsystem includes an interpreter of the schemes to solve the domain
specific tasks and a scheduler. The interpreter processes the control structures and
executes the schemes to solve the domain specific tasks. The scheduler performs the
schemes decomposition for the better HDCE communication optimization and load
balancing. The decomposition can be made before the computation starts or immediately
during the computation process. The initial data and the solution are stored in the
computations database.

The parameters and operations of the Corrective package domain area as well as
their interrelationships are shown on Fig. 8. The rounded rectangles are modules m2, m3,
m4. The ovals inside a rectangle are the module input and output parameters. The folder
parameter is a temporary folder to keep the intermediate data. Square brackets in the
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name denote that the operations with this parameter or module can be done in parallel.
The output of the module m4 is a result archive file.

Fig. 8. The Orlando Tools model constructor with the Corrective package domain scheme
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Fig. 7. The architecture of Orlando Tools
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6 Modelling Sustainable Development of Vietnam Energy Sector

The Vietnam energy sector model was developed from 2011 to 2015 on the basis of the
energy sector model presented above during the joint research conducted by the Melen‐
tiev Energy Systems Institute of Siberian Branch of the Russian Academy of Science
(ESI SB RAS) and the Institute of Energy Science of Vietnamese Academy of Science
and Technology (IES VAST) [16].

In order to analyse the characteristics of the key socio-economic regions the Vietnam
energy sector structure and some other related issues the supply and demand balance
are calculated according to eight regions: Red River Delta, Northeast, Northwest, North
Central, South Central Coast, Highlands, Southeast and Mekong Delta. Input data
includes energy supply (costs and value of production, import and export), conversion
and transportation of energy, energy consumption by types of energy - fuel including
coal, oil and gas and power system. Specifically, the regional parameters of production
capacity, costs of production, transport capacity, transport costs are built on the basis of
data from the individual production and transportation facilities. The data on regional
energy consumption is extracted and calculated on energy consumption of five key
economic sectors: industry, agriculture, transportation, commerce- service and residen‐
tial.

In 2015 IES VAST with the help of module m1 [17] investigated the sustainable
energy development of Vietnam from 2015 to 2030 with regard to the energy security
requirements. The energy development scenarios are assessed on energy security and
sustainable development criteria. These scenarios should meet the national energy
demand for the socio-economic development; apply the suitable and efficient energy
technology, minimize the environmental impacts from the energy system, and achieve
the cost effective energy system development.

The different energy development scenarios for the period 2020-2030 were built on
the basis of capacity fluctuation of the following energy facilities: domestic coal produc‐
tion capacity (baseline, increase by 10%, decrease by 10%), domestic natural gas
production capacity (baseline, increase by 10%, decrease by 10%) and domestic hydro‐
power generation capacity (baseline, increase by 10%, decrease by 10%).

In the optimal way, natural gas capacity increases by 2020 to meet the national energy
demand than follows the base scenario by 2025 and 2030. Hydropower capacity remains
stable for the whole period 2020–2030, while the coal capacity reduces by 10% by 2020.

Below the algorithms for combinatorial modeling were applied using the same
assumptions and data for the formation and analysis of Vietnam energy development
[18, 19].

At the first stage, the basic energy sector development graph was created. At the
second stage the component development graphs were built for the pairs of industries
and regions of Vietnam which marked with “+” in the Table 1. A typical component
development graph is shown on Fig. 9 where the component capacity fluctuation is
shown in the circles.
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Table 1. Energy industries and regions of Vietnam

Region Domestic coal
production

Domestic natural gas
production

Domestic hydropower
generation

Red River Delta +
North East + +
North West +
North Central Coast + +
South Central Coast +
Central Highland +

10 10

0

-10 -10

2015 2020 2030

T

0 0

10

0

-10

2025

Fig. 9. A typical development graph of Vietnam energy industry

At the third stage, an energy sector development graph that consists of 531442 nodes
is created. At the next stage, the computational experiment on the new energy develop‐
ment graph is performed with HDCE which includes nodes of the high-performance
cluster Academician V.M. Matrosov [20]. The cluster is located at Institute for System
Dynamics and Control Theory of Siberian Branch of Russian Academy of Science
(Irkutsk) and includes 60 computational nodes T-Blade V205S. Each computational
node contains two AMD Opteron 6276 «Interlagos» processors with 16 cores.

At the fifth stage, the optimal path is found with minimum costs of development and
operation criterion where the natural gas production increases and the coal production
reduces for all time moments.

The creation of the energy sector development graph and its computation on 40 cores
took 7 h 4 min. The computational time of one possible energy sector state was about
0.0365 s.

7 Conclusions

Traditionally while comparing development options by multiple-criteria decision anal‐
ysis such as the analytic-hierarchical approach used by IES VAST experts the
researchers usually compare the rather small number of options. Usually a choice
depends on intuition and experience of the researchers. However, such a limited choice
always reflects some subjectivity which reduces the evidence level of the obtained
results.
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The advantages of the combinatorial modelling are the clarity and compactness of
representation of a modelled system development options in the form of a directed graph.
A graph clearly illustrates as differences of various system development paths as their
common states and transitions.

By the advantages are achievable with the completeness of their description. The
traditional approaches to compare the development options based on the multi-criteria
methods usually permit a researcher to choose a few options only. A choice depends on
the researcher’s intuition and experience. Such a choice even if it is right always reflects
certain subjectivity and thus depreciates the level of result proof.

A result set of the admissible system development paths can be used in many fore‐
casting tasks where, for example, it’s necessary to take into account the uncertainty issue.
Among the admissible system paths one can choose not only the best way but also paths
close to it according to specified criteria.

Acknowledgments. The research was partially supported by Russian Foundation of Basic
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Abstract. The paper is devoted to an extension of the parallel platform
INMOST by finite element and meshing libraries of the Ani3D software
package. The extension allows us to develop parallel finite element solvers
of boundary value problems and, in particular, hydrodynamic problems.
The Ani3D package allows one to build, refine, locally adapt and improve
the quality of tetrahedral meshes, perform finite element discretizations
of partial differential equations for various types of finite elements, solve
the appearing algebraic systems, and visualize the discrete solutions. The
INMOST software platform provides tools for creating and storing dis-
tributed general conformal grids with arbitrary polyhedral cells, parallel
assembling and parallel solution of arising distributed linear systems. We
present the integration of two libraries from Ani3D into INMOST plat-
form and demonstrate the functionality of the joint software on the solu-
tion of two model hydrodynamic problems on multiprocessor systems.

Keywords: Parallel computing · Finite element method · Parallel
solvers · Hydrodynamic problems

1 Introduction

We consider an extension of the parallel platform INMOST by finite element and
meshing libraries of the Ani3D software package. The extension provides a tool
for developing parallel finite element solvers of boundary value problems and, in
particular, hydrodynamic problems. The Ani3D package [1] offers advanced finite
element discretizations on tetrahedral meshes and various options of tetrahedral
mesh generation, refinement, and adaptation. The parallel platform INMOST
[2] provides tools for creating and storing distributed general conformal grids
with arbitrary polyhedral cells, parallel assembling and parallel solution of aris-
ing distributed linear systems. Integration of two libraries from Ani3D into
the INMOST platform offers a new technology of parallel solution of boundary
c© Springer International Publishing AG 2017
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value problems. Functionality of the joint software is demonstrated on the solu-
tion of two model hydrodynamic problems on multiprocessor systems.

The paper is organized as follows. Sections 2 and 3 contain brief descrip-
tions of Ani3D and INMOST packages, respectively. Section 4 provides technical
details of merging the packages. Section 5 demonstrates the parallel solution of
two model hydrodynamic problems.

2 Ani3D Package

The package Ani3D [1] is developed for generation of unstructured tetrahedral
meshes, adaptation of these meshes isotropically or anisotropically, discretization
of PDE systems, solution of linear and nonlinear systems, visualization of meshes
and associated solutions. It consists of a set of independent libraries oriented to
the solution of the specific tasks. All these libraries allow a user to operate with
data in sequential mode only. We consider the Ani3D-extension of the INMOST
platform by two Ani3D libraries, Ani3D-MBA and Ani3D-FEM.

The main purpose of the Ani3D-MBA library is generation of conformal
tetrahedral meshes which are quasi-uniform in a given metric. Additionally, the
library provides tools to read/write a tetrahedral mesh from/to the disk in a
specific Ani3D format and to perform its uniform mesh refinement by splitting
each tetrahedron into 8 sub-tetrahedra.

The Ani3D-FEM library provides a flexible interface to generate a local finite
element discretization (local matrix and right-hand side vector) on a mesh tetra-
hedron and to assemble the local discretizations into a global system of grid
equations. Importantly, the local discretization may involve different types of
finite elements: for instance, the local matrix for the Stokes problem may exploit
quadratic basis functions for velocity and linear basis functions for pressure
unknowns. Our finite element extension of the INMOST platform uses a user-
defined subroutine FEM3Dext where the local finite element matrix is generated.
The library Ani3D-FEM is equipped with a great number of examples of this
subroutine for various applications. The rules for creation of the subroutine
FEM3Dext and respective examples can be found in Ani3D documentation [1]. In
particular, the user should specify explicitly the order of cell elements collocating
the user’s finite element basis functions. For instance, quadratic basis functions
have four degrees of freedom collocated at the vertices of the tetrahedron and six
degrees of freedom collocated at the mid-edges of the tetrahedron. Also, the user
may transfer user data to the subroutine FEM3Dext with the help of special work-
ing arrays. This feature can be used for acquiring the solution from the previous
time step which is inevitable for unsteady time stepping implementations.

3 INMOST Platform

The INMOST software platform [2] is instrumented for creating and storing dis-
tributed general conformal grids with arbitrary polyhedral cells, parallel assem-
bling of systems of grid equations and their parallel solution. However, INMOST
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does not provide software for generation and assembling of local finite element
discretizations. In order to add to INMOST the finite element environment from
Ani3D-FEM, we take advantage of Mesh class, Solver class, and Sparse::Matrix
class of INMOST.

The Mesh class is designed for storing distributed grids. It contains a number
of cells consisting of nodes, faces, edges. In parallel mode each processor has a sets
of “owned” and “shared” elements and a set of “ghost” elements. Each “ghost”
element in fact is the copy of an element owned by another processor and marked
as “shared” there. These elements are used for the construction of overlapping
communication layers between processors. We note that some cell can be “ghost”
for Processor A, but its node/edge/face can be owned by Processor B.

The important data structure of INMOST is Tag which is used to connect
any data with a mesh element, i.e. cell, face, edge, or node. The simplest case
of tagged data is a real or integer array associated with every mesh element
of particular type (e.g. every edge). The main function of Tag is to provide
automatic exchanges of tagged data between neighboring processors.

The important feature of Sparse::Matrix class is that it stores the matrix
by rows in parallel regime. Processor B cannot add entries to a row owned by
Processor A. In order to assemble local matrices in parallel, one has to use special
numbering of rows.

No special features of Solver class will be used for our purposes. By this
reason, any of five inner linear solvers or five external linear solvers from PETSc,
Trilinos, and SuperLU can be exploited in the same interface.

The detailed description of INMOST software platform can be found in [3–5].

4 Parallelization Technology

In this section we present technological details of integration of the Ani3D uni-
form mesh refinement and the Ani3D local finite element matrix generation into
the INMOST platform.

The first part of the Ani3D–INMOST technology allows us to generate huge
meshes on multi-processor systems. The major steps are reading the initial
mesh, its partitioning, refinement, and merging the refined submeshes into a
global distributed mesh. Reading the mesh is performed by a standard Ani3D-
MBA library routine on the root processor. The result of the reading, the object
INMOST::Mesh, is processed by one of INMOST partitioning algorithms (e.g.,
ParMETIS [6] partitioning) and redistributed among available processors. Each
submesh is refined independently. Parallel multilevel mesh refinement requires
mesh conformity control. The uniform refinement function in Ani3D guaranties
this property provided that the initial (coarse) submeshes form a conformal
global mesh and the number of refinement levels is the same on all processors.
Merging the fine submeshes removes duplicate nodes, edges, and faces in the
global fine mesh. Once the fine submeshes are generated and processed to con-
stitute the global conformal mesh, we construct an additional layer of “ghost”
cells. This layer is needed for correct assembling of the global finite element
matrix.
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The second part of the integrated Ani3D–INMOST software initializes the
INMOST tags and data which will be used in assembling of local finite element
matrices generated by Ani3D-FEM library. First, all mesh elements involved
in the discretization are numbered within the global mesh. INMOST func-
tion AssignGlobaID numbers the respective elements (cells and/or faces, edges,
nodes) marked by appropriate mask. Second, for all globally numbered elements
a special tag is created, the size of the tag in each cell being equal to the num-
ber of finite element degrees of freedom associated to the mesh element. Finally,
the tags are synchronized between processors. Global numbering and synchro-
nized tags provide easy recovering of the global matrix order as well as the order
of matrices owned by processors. Importantly, flexibility for numbering degrees
of freedom within INMOST allows the user to generate distributed matrices
with desirable ordering. The proper ordering may improve the performance of
INMOST linear solvers.

The third part of the Ani3D–INMOST technology assembles the local matri-
ces generated on each tetrahedral cell by the user-defined Ani3D-FEM routine
FEM3Dext. On each processor, INMOST-based assembling selects rows of each
local matrix which correspond to owned (by the processor) mesh elements, and
writes the respective entries to the global matrix and the right-hand side vector.

Once the global system is assembled, any INMOST parallel linear solver can
be applied to the solution of the distributed global linear system.

5 Parallel Solution of Model Hydrodynamic Problems

5.1 Stokes Problem

We consider the finite element solution of the Stokes problem in a rectangular
3D channel with a backward step. We impose the non-homogeneous Dirichlet
boundary condition (Poiseuille’s profile) at the inflow boundary, the homoge-
neous Neumann boundary condition at the outflow boundary, and the homo-
geneous Dirichlet boundary condition (no-slip, no-penetration) on the channel
walls. A sequence of three quasi-uniform tetrahedral meshes is considered. The
coarsest mesh S0 with 25113 cells (see Fig. 1) is uniformly refined to get more
finer meshes S1 and S2 with 200904 and 1607232 cells, respectively.

The minimal order Taylor–Hood finite elements are used for the discretization
of the Stokes problem. The pressure p is approximated by continuous piecewise
linear functions with nodal degrees of freedom, the velocity v is approximated by
continuous piecewise quadratic functions with degrees of freedom collocated at
nodes and mid-edges of the mesh (see Fig. 2). The discretization method results
in a symmetric saddle-point matrix with zero diagonal pressure block:

vedge ∗ × ×
vnode × ∗ ×
pnode × × 0
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Fig. 1. The coarsest mesh S0

Fig. 2. Unknowns p and v associated with the vertices and edges of the tetrahedral
cell for P1-P2 finite element

The numerical experiments were performed on the INM RAS cluster [7] in
the x10core segment:

– Compute Node Arbyte Alkazar+ R2Q50;
– 20 cores (two 10-cores processors Intel Xeon E5-2670v2@2.50GHz);
– 64 GB RAM;
– SUSE Linux Enterprise Server 11 SP3 (x86 64).

Table 1 presents statistics for all three finite element problems.
To solve the linear system with the saddle-point matrix, we used the

BiCGstab iterative solver preconditioned by the first order BIILU method [8,9].
In order to avoid zero pivots during ILU factorization, on each processor pres-
sure unknowns are enumerated last so that the zero pressure block be the last
diagonal block [10]. Parameters of the BIILU method are as follows: the thresh-
old parameter for the conventional incomplete factorization ILU(τ) τ = 0.001
and the number of overlap levels q = 2. The use of the conventional first order
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Table 1. The Stokes problems parameters

Problem name S0 S1 S2

Number of nodes 5187 36824 279903

Number of edges 31637 243079 1908542

Number of tetrahedra 25113 200904 1607232

Matrix size 115659 876533 6845238

Number of nonzeros 10751851 84374191 668849086

incomplete factorization is more beneficial compared to the more robust second
order incomplete factorization ILU2(τ1, τ2) due to very large average number of
nonzero elements per matrix row (about 100, see Table 1). The stopping criterion
for the iterations is 1012-fold reduction of the initial residual.

The results of numerical experiments for problems S0, S1, and S2 are pre-
sented in Tables 2, 3, and 4, respectively. In these tables p denotes the number
of processors used, Tini, Tass, Tprec, and Titer are the times for the preliminary
data initialization, assembling of the linear system, preconditioner construction,
and performing iterations by the BiCGStab method, respectively, Niter stands
for the number of BiCGstab iterations, Dens specifies the preconditioner density
with respect to that of the original matrix of the system, PM is the number of
pivot modifications, Tsol = Tprec + Titer is the total linear system solution time,
while S = Tsol(1)/Tsol(p) is the actual speedup relative to the solution time on
one (Tables 2 and 3) or four (Table 4) processors. Table 4 does not contain data
for runs on 1 and 2 processors due to memory restrictions.

Table 2. The solution of S0 problem on p = 1, ..., 32 processors

p Tini Tass Tprec Titer Niter Dens PM Tsol S

1 0.06 8.77 3.30 4.26 102 0.81 0 7.56 1.00

2 0.04 5.72 2.27 3.27 132 0.96 0 5.54 1.36

4 0.03 3.95 1.57 2.34 152 1.18 0 3.91 1.93

8 0.02 2.25 1.19 1.81 172 1.53 5 3.00 2.52

16 0.02 1.63 1.20 1.40 182 2.01 3 2.83 2.67

32 0.02 1.49 1.50 1.33 182 2.80 10 2.83 2.67

We do not observe a slowdown even for the solution of system with the
smallest matrix S0 on 32 processors when approximately 5000 matrix rows are
associated with each processor. For the moderate size matrix S1 the maximal
speedup is 7.64, while for the largest matrix S2 the speedup is 5.15 when the
number of processors increases from 4 to 32.
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Table 3. The solution of S1 problem on p = 1, ..., 32 processors

p Tini Tass Tprec Titer Niter Dens PM Tsol S

1 0.38 69.07 31.41 97.20 242 0.85 0 128.61 1.00

2 0.28 40.97 20.30 76.88 322 0.93 0 97.18 1.32

4 0.21 25.31 12.76 47.88 332 1.03 0 60.64 2.12

8 0.14 13.76 7.83 28.68 332 1.15 1 36.51 3.52

16 0.10 8.37 4.77 18.46 362 1.37 3 23.23 5.53

32 0.06 5.09 4.12 12.70 402 1.65 8 16.82 7.64

Table 4. The solution of S2 problem on p = 4, ..., 32 processors

p Tini Tass Tprec Titer Niter Dens PM Tsol S

4 1.48 181.05 142.29 1484.02 722 0.97 0 1626.31 1.00

8 0.90 94.03 76.01 847.62 802 1.03 0 923.63 1.76

16 0.58 52.03 72.70 481.50 802 1.10 2 554.20 2.93

32 0.37 29.23 26.88 288.73 802 1.21 2 315.61 5.15

5.2 Unsteady Convection-Diffusion Problem

In the second test we consider the finite element solution of an unsteady
convection–diffusion problem in a cubic domain. We impose homogeneous Dirich-
let boundary conditions on all boundaries of the cube, except a patch centered
at one cube face. In the patch the concentration is set to one. The diffusion
coefficient is D = 10−4, the convection field is the constant vector v = (1, 0, 0).
The problem coefficients imply tongue-type propagation of the concentration in
time and space (see Fig. 3). The initial quasi-uniform tetrahedral mesh L0 with
13952 cells is uniformly refined one and two times to produce meshes L1 and L2,
respectively. The unknown concentration is approximated by continuous piece-
wise linear basis functions with nodal degrees of freedom. The finite element
discretization of the convection operator is stabilized by the Streamline Upwind
Petrov–Galerkin (SUPG) method. The second order implicit backward differen-
tiation formula (BDF) scheme is used for time stepping. The problem is solved
for the time period [0; 0.5] with time step Δt = 0.015.

The numerical experiments were performed on the same computational sys-
tem with the same computational method as in the previous test. Table 5 presents
statistics for all three finite element problems on meshes L0, L1, and L2.

The time measurements for the solution of problems L0, L1, and L2 are
presented in Tables 6, 7, and 8, respectively. In these tables p denotes the number
of processors used, Tini, Tass, and Tsol, are the times for the preliminary data
initialization, cumulative time of assembling the linear systems for all time steps,
and cumulative time of the solution of all linear systems, respectively. In addition,
TΣ is the total problem solution time for all time steps and
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S =
Tsol(1) + Tass(1) + Tini(1)
Tsol(p) + Tass(p) + Tini(p)

(1)

is the actual speedup relative to the solution time on one processor.

Fig. 3. The concentration at time t = 0.5

Table 5. The problems parameters

Problem name L0 L1 L2

Number of nodes 20417 155905 1218561

Number of tetrahedra 111616 892928 7143424

Matrix size 20417 155905 1218561

Number of nonzeros 291393 2281217 18053121

Table 6. The solution of problem on mesh L0 on p = 1, ..., 32 processors

p Tini Tass Tsol TΣ S

1 2.87 62.68 3.27 68.82 1.00

2 1.93 40.45 2.05 44.43 1.54

4 1.29 26.94 1.24 29.47 2.33

8 0.82 16.76 0.76 18.34 3.75

16 0.58 11.91 0.53 13.02 5.28

32 0.45 8.89 0.55 9.89 6.95

Similarly to the solution of the Stokes problem, we do not observe a slowdown
even for the smallest matrix L0 on 32 processors (when less than 700 matrix rows
are associated to a processor). For the moderate size matrix L1 the maximal
speedup is 11.77, while for the largest matrix L2 the speedup is 19.24. This
test shows good scalability of the Ani3D-extension of the INMOST platform for
unsteady problems.



Ani3D-Extension of Parallel Platform 227

Table 7. The solution of problem on mesh L1 on p = 1, ..., 32 processors

p Tini Tass Tsol TΣ S

1 26.16 552.87 33.86 612.89 1.00

2 16.48 327.93 21.31 365.72 1.67

4 9.83 197.89 12.19 219.91 2.78

8 5.75 114.81 7.28 127.84 4.79

16 3.56 73.57 4.03 81.16 7.55

32 2.31 47.28 2.45 52.04 11.77

Table 8. The solution of problem on mesh L2 on p = 1, ..., 32 processors

p Tini Tass Tsol TΣ S

1 436.82 5692.31 723.23 6852.36 1.00

2 169.17 2628.09 258.71 3055.97 2.24

4 94.33 1461.24 147.30 1702.87 4.02

8 53.62 874.21 91.24 1019.07 6.72

16 31.52 522.99 53.28 607.79 11.27

32 17.60 308.84 29.61 356.05 19.24

6 Conclusion

We presented the Ani3D-extension of the parallel platform INMOST. The exten-
sion widens the functionality of INMOST by the finite element and meshing
libraries of the Ani3D software package. Two numerical examples demonstrated
the efficiency of the presented approach for the parallel solution of two model
hydrodynamic problems.
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Abstract. Laser beam propagation through and absorption in compos-
ite and anisotropic media is simulated by solving numerically Maxwell’s
equations with the FDTD method. Laser treatment of materials, light
beam transformation in micron-sized optical fiber systems and liquid
crystalline materials, generation of optical vortices (beams with non-
zero orbital angular momentum) due to interaction with liquid crystal
disclinations are considered. Typical grids used for simulations consist of
tens and hundreds of millions of cells. The numerical code is parallelized
using geometrical domain decomposition and the MPI library for data
transfer between nodes of a computational cluster.

Keywords: Computational electromagnetism · FDTD scheme · Laser
treatment of materials · Metamaterials · Soft matter · Liquid crystals

1 Introduction

The development of coherent sources of optical radiation is often referred to
as “optical revolution”. Lasers have had a deep impact on telecommunications,
industry, medicine, science and everyday life. Today we are witness to a new
great progress in optical technologies which is resulted from a substantial body
of pure and applied research in material science and soft matter physics. Optical
properties of some soft matter materials (such as liquid crystals) can be substan-
tially altered by weak external electromagnetic fields or thermal and mechanical
stresses that opens unique opportunities for dynamic control of light propaga-
tion. Optical metamaterials, i.e. structured materials engineered to have optical
properties that cannot be found in nature, enable us to manipulate radiation by
blocking, absorbing, enhancing, or bending electromagnetic waves and achieve
benefits that go far beyond what is possible with conventional materials.
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Numerical simulation is of great importance for better understanding of com-
plex phenomena connected with light propagation through non-homogeneous,
anisotropic and structured media as well as for development of new optical tech-
nologies. With the advent of modern supercomputers, numerical simulation of
quite complicated optical systems and devices based on direct solving Maxwell’s
equations has become feasible. In the present paper we describe some examples of
numerical simulations of problems connected with laser processing of materials,
development of fiber-coupled liquid crystal systems and generation of “optical
vortices”, i.e. light beams with non-zero orbital angular moment, using liquid
crystals.

2 Numerical Method and Its Computer Implementation

Maxwell’s equations in an anisotropic inhomogeneous medium can be written as

∂D
∂t

= − (J + σeE) + ∇ × H, D = ¯̄εE, (1)

∂B
∂t

= − (M + σmH) − ∇ × E, B = ¯̄μH. (2)

Here t is time, r = (x, y, z) is the vector of spatial coordinates, ∇ ≡ ∂/∂r,
E and H are the electric and magnetic fields, D and B are the densities of
electric and magnetic fluxes, J and M are the densities of external electric and
magnetic currents, ¯̄ε and ¯̄μ are the tensors of electrical permittivity and magnetic
permeability, σe and σm are the electric and magnetic conductivities. In our
simulations we consider nonmagnetic materials so that ¯̄μ is the identity tensor
and B ≡ H. The magnetic conductivity σm does not vanish only in a buffer zone
surrounding the computational domain (see below). The electric conductivity σe

and the positive definite symmetric tensor ¯̄ε are assumed to be functions of r.
Equations (1, 2) are solved numerically with the FDTD (Finite-Difference

Time-Domain) method [1,2]. The FDTD is a simple but smartly devised and
efficient second-order scheme that utilizes a computational grid staggered both in
space and time so that electrical and magnetic fields are calculated in alternating
time moments and all field components are determined in different points of the
computational stencil — see Fig. 1. The FDTD scheme for x-components of
Eqs. (1, 2) reads as
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Fig. 1. FDTD computational stencil

Here j′ = j +1/2, j′′ = j +1, j′′′ = j +3/2 and similarly for other subscripts.
Numerical approximations of remaining Maxwell’s equations can be obtained
from (3, 4) by a cyclic permutation of x, y, z and the corresponding change in
subscripts.

The distributions of J and M are specified in such a way as to generate
the incident electromagnetic wave or beam interacting with a material medium
within the computational domain. In order to avoid or minimize false numerical
reflections of scattered waves from boundaries of the computational domain, the
perfectly matched layer (PML) technique [3,4] is employed. The computational
domain is surrounded by a buffer zone filled with an artificial uniaxial anisotropic
(with diagonal tensors ¯̄ε and ¯̄μ) medium whose electric and magnetic conductiv-
ities grow rapidly with the distance from the computational domain boundary
so that electromagnetic waves are absorbed virtually with no reflection.

In all cases considered below the medium is either anisotropic with a non-
diagonal tensor ¯̄ε but non-conductive or conductive but isotropic. So the FDTD
scheme is only diagonally implicit and the solution on a new time level can
be calculated non-iteratively. If the tensor ¯̄ε is non-diagonal then, in order to
calculate the electrical field E, all three components of D should be known in
the same point that is not the case with the FDTD staggered grid. Thus, two
missing components are determined by averaging over 4 neighboring grid nodes.
More details about the FDTD method for anisotropic media can be found in [5].

Numerical simulations have been performed on the computational cluster
of Novosibirsk State University. The code is written in Fortran-90 and paral-
lelized using MPI. The computational domain is divided into rectangular blocks
by planes parallel to the coordinate planes. Each block is assigned to one com-
putational core. The domain decomposition in all three dimensions allows one
to decrease the data transfer between processors in comparison with 1D or 2D
decomposition. Tests performed on a grid containing 8 · 106 cells have shown
that the computation with 16 cores is approximately 11 times faster than with
a single core so that the efficiency of parallelization is close to 70%, see Fig. 2.
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Fig. 2. Numerical speed-up

In different simulations presented below, spatial resolution was from 10 up
30 grid cells per a wavelength. Typically, a grid block assigned to each processor
core consisted of 1503 = 3.375 · 106 cells. The largest grid used contained 6·108

cells, 180 cores were employed to perform numerical simulation on this grid.

3 Laser Drilling

Today lasers are successfully applied for cutting, welding and drilling of materials
[6,7]. Nevertheless, the problem of prediction of laser energy distribution over the
cut surface is still of current interest because of the appearance of new materials
and sources of laser radiation as well as growing requirements to the quality of
laser treatment of materials.

Usually this problem is solved using geometrical optics approximation: the
laser beam is represented as a set of single light rays, which are reflected and
refracted on the metal surface according to Fresnel’s laws [8,9]. However, in
many cases it is not correct because small features of the treated surface can
be comparable in size with the radiation wavelength. Below we compare results
obtained using wave and geometrical optics approaches.

The problem under consideration is illustrated in Fig. 3a. A Gaussian beam
of circularly polarized electromagnetic radiation propagates along the z axis. A
cavity in a metal model is aligned coaxially with the beam. The cavity surface
shape is specified analytically. The problem formulation corresponds to an ini-
tial stage of a laser drilling process. It is required to determine electromagnetic
fields and calculate the volumetric density of absorbed radiation w in the metal
surrounding the cavity surface. This density is equal to the time-averaged value
of the divergence of the Poynting vector (with the opposite sign):

w = − 〈∇ · P〉 = −∇ · 〈E × H〉 . (5)

Further, the dependence of absorbed energy on the cavity depth can be calcu-
lated as an integral of the volumetric density over the azimuthal angle and the
distance from the axis.
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)b)a

Fig. 3. Schematic of laser drilling problem (a) and distribution of the absorbed power
(b): I — FDTD simulations, II — ray optics calculations

The FDTD simulations were performed on the computational grid containing
16 · 106 cells with 10 Gb of RAM and 16 processors used.

Figure 3b demonstrates a substantial qualitative difference of results obtained
by solving Maxwell’s equations and with geometrical optics approximation in a
situation when the channel sizes are comparable with the wavelength. Addition-
ally, the results of FDTD simulations point out that one possible reason for
deterioration of laser drilling quality is a annular corrugation of the cavity bot-
tom caused by nonuniform heating or vortex formation in the gas stream flowing
over the region of melting.

More details about the results of numerical simulations of the laser drilling
process can be found in [10].

4 Fiber-Coupled Liquid Crystal System

Liquid crystals (LC) is one of well-known examples of soft matter materials.
Their unique optical properties are widely used in many devices. Along with
other remarkable properties, they also have anomalously high values of nonlinear
susceptibilities. In particular, the light-induced quadratic optical nonlinearity
with a susceptibility index is several orders of magnitude higher than in solid
crystals was observed in LCs experimentally [11].

The utilization of LCs as an active element of laser systems was reviewed
in [12]. A very high efficiency allows LCs to be used in microscopic volumes for
conversion and control of coherent radiation [13].

Recently a research team from Institute of Laser Physics (Novosibirsk,
Russia), Novosibirsk State University and Aston Institute of Photon Technolo-
gies (UK) proposed to use a microscopic (2–8 μm) LC system placed inside the
optical fiber as an optical trigger and a converter of electromagnetic radiation
[14,15].
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)b)a

Fig. 4. Two configurations of fiber-coupled LC system: with cylindrical cavity filled
with LC (a) and with plane layer of LC (b)

In the present paper the proposed integrated optical system is simulated
numerically and the effects of cavity shape on light propagation are investigated.
We simulate the interaction of a Gaussian laser beam propagating in the optical
fiber with a nematic LC which fills a cavity whose size is comparable with the
laser radiation wavelength. The laser beam is plane polarized.

Numerical simulations are performed for two different configurations of the
proposed system (see Fig. 4). In the first case, the cavity is a cylindrical hole
drilled across the optical fiber core. In the second case, the fiber is cut across
and a plane layer of LC fills the gap formed. The first configuration is close to that
was investigated in the experiment [14], the second — in the experiment [15]. The
direction of preferred orientation of molecules at any point of LC is represented
by a unit vector n, the director. In both the cases it is supposed that the director
distribution is radially aligned and contains a linear singularity, the disclination
of strength +1 [16], in the center. In the first case, the disclination coincides with
the axis of the cylindrical hole, in the second case — with the axis of the optical
fiber. In the experiments, the director alignment is forced using specially treated
solid walls bounding the LC volume or by imposing an external heat flux.

The dielectric permittivity tensor for a LC medium is

¯̄ε = {εαβ} = ε⊥δαβ +
(

ε‖ − ε⊥
)

nαnβ , (6)

where ε‖ = 2.82 and ε⊥ = 2.28 are the permittivities parallel and perpendicular
to the director, δαβ is the Kronecker delta.
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)b)a

Fig. 5. Energy density of electromagnetic field: isosurface (a) and surface distributions
in 5 successive cross-sections (b)

Numerical simulations for the first configuration (Fig. 4a) were performed
on the grid of 27 · 107 cells using 80 processors and 80 Gb of RAM in total.
They allows us to study how the intensity and directivity of laser beam change
as a result of interaction with the transverse cylindrical cavity filled with a LC.
Figure 5 shows the spatial distribution of energy density of electromagnetic field.
It can be concluded that this configuration has serious drawbacks: the radiation
is focused behind the cavity so that the optical fiber can burn out at high powers
of the laser pulse, in addition a significant portion of the radiation is scattered
outside the fiber core.

Numerical simulations for the second configuration when the laser beam
passes through a layer of the LC filling a gap in a optical fiber (Fig. 4b) were
performed on the grid of 48.5 · 107 cells using 144 processors and 145 Gb of
RAM in total. A series of simulations with different values of the gap width h
were conducted. In contrast to the first configuration, no significant scattering
of radiation was observed (Fig. 6). The dependence of the reflection coefficient
(the portion of energy reflected backwards) on the gap width is not monotonous
having maximums and minimums at certain values of h. It can be explained by
interference: the system behaves similar to a resonator with losses.

Thus, the configuration in which the laser beam passes through a plane layer
of a LC material is preferable in comparison with that include a transverse
cylindrical hole.
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Fig. 6. Distributions of z-component of energy flux density in three different cross-
sections

It is worth noting that in the present paper we neglect the influence of elec-
tromagnetic radiation on the properties of the medium so that the main subject
of investigation is transformation of a laser beam in a non-homogeneous and
anisotropic medium. A similar approach was used in many works on computa-
tional photonics, in particular devoted to electrodynamics of metamaterials —
see, e.g., the recent paper [17] whose main subject is close to that of our inves-
tigation. It is clear that such approach is correct if the intensity of radiation is
not very high so that one can neglect nonlinear effects.

5 Generation of Twisted Optical Beams

Generation, investigation and utilization of “optical vortices”, i.e. light beams
with helical dislocations of the wave front, is one of most rapidly developing
area of modern optics [18]. Such “twisted” beams have not only the spin angu-
lar moment of photons but also an orbital angular momentum. Optical vortices
find applications in many areas, from microscopy and manipulation of micro-
scopic objects up to improvement of communication bandwidth and processing
of images of astronomical objects [19,20].

Optical vortices can be effectively generated at the interaction of light with
LCs. The advantage of this approach is the possibility to change the parameters
of the output beam dynamically using weak external electromagnetic fields or
mechanical and thermal stresses applied to the LC [21].

We performed numerical simulations of generation of optical vortices at prop-
agation of a laser beam through a plane layer of nematic LC located in a gap
between two ends of an optical fiber (Fig. 7). The laser beam propagating in
the optical fiber represented the eigenmode HE11. There was a disclination in
the director distribution within the LC, which coincided with the fiber axis.
The influence of the disclnation strength s and the gap width Δh on the angu-
lar moment of the transmitted beam was been investigated. The computational
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Fig. 7. Optical vortex generation at interaction of laser beam with LC. The disclination
strength s = 2

domain was meshed with a grid containing 6 · 108 cells, 180 processors and 185
Gb of RAM were used for the computation.

A general view of laser beam transformation is shown in Fig. 7 where iso-
surfaces of the maximum intensity of electric field are displayed. In the region
ahead of the nematic LC layer the isosurfaces are corrugated because of the
interference of incident and reflected beams. The interaction with a birefringent
non-homogeneous medium leads to an extension of the beam and transferred an
additional angular momentum to it.

The efficiency of angular momentum transfer can be characterized by the
ratio of angular momentum of the transmitted beam (calculated with respect to
the beam axis) to the energy flux:

LPz(z) =

+∞∫∫

−∞
[xPy(x, y, z) − yPx(x, y, z)] dxdy

/

λ

+∞∫∫

−∞
Pz(x, y, z)dxdy. (7)

Here Px, Py, Pz are the components of the time-averaged Poynting vector, λ is
the wavelength of incoming radiation.

The dependence of LPz on the gap width for different strengths of the discli-
nation is shown in Fig. 8. The non-monotonic, quasi-periodic behavior of LPz(z)
deserves special attention: the beam is twisted and untwisted periodically. At
the first glance, if light is twisted in a thin LC layer then an increase in the layer
thickness should increase the twist. However, computations show that such con-
clusion is erroneous and the transferred angular momentum varies periodically
with the gap width.
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Fig. 8. Dependence of LPz on the gap width at different disclination strengths

6 Conclusion

Numerical simulations of the interaction of electromagnetic radiation with a
number of composite and anisotropic media were performed using supercom-
puters. The processes of laser treatment of materials such as laser drilling were
simulated. It was demonstrated that, in many practical cases, the geometrical
optics approximation (ray optics) is not sufficient for correct evaluation of the
absorbed energy distribution, the latter can be achieved only by solving the full
Maxwell’s equations.

A fiber-coupled LC systems, which can be recently proposed for employing as
an optical trigger and a converter of electromagnetic radiation, were simulated
in two different configurations. It was shown that one of these configurations,
containing a transverse cylindrical hole filled with a nematic LC, is impractical
because of scattering of a significant portion of radiation outside the fiber core
and focusing of another portion that can cause damage to the fiber. At the same
time, the second configuration, in which the light beam passes through a LC
layer, enable us to preserve most of radiation inside the fiber core and, thus,
appears more suitable for a practical use.

The generation of light beams possessing an orbital angular momentum at
propagation of laser radiation through a layer of a nematic LC containing discli-
nations of different strengths in the director field distribution was investigated
numerically. It was found that the generated angular momentum grows as the
disclination strength increases. A periodic dependence of the generated angular
momentum on the layer thickness was observed that can be used to determine
the optimal parameters for generation of such “twisted” beams.
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Abstract. When developing regional ocean circulation model, the problem
arises of providing the model with boundary conditions. An algorithm for one-
way nesting (inclusion with boundary conditions) for a local model of an arbitrary
ocean region in the model of the global ocean is proposed. Two problems are
solved: (1) generation of a rectangular grid of the local model; (2) receive infor‐
mation. The nesting algorithm is developed within the framework of the CMF3.0
(Compact Modeling Framework) computing platform for massively parallel
computers. Local and global models work as components of a coupled system
running CMF3.0. Data nesting functions work as a CMF3.0 software service.

Keywords: Earth system modeling · Ocean modeling · Nesting · Coupler

1 Introduction

When modeling the World Ocean, it sometimes becomes necessary to obtain an accurate
prediction only for a particular region, for example, a certain sea. At the same time,
numerical integration of the entire high-resolution World Ocean dynamics model (0.1°
and more) is a computationally expensive task that sometimes requires several thousand
processor cores [9]. To optimize the computational costs, it is reasonable to model the
area under study using a high spatial-temporal resolution model (hereinafter, the local
model), and to provide the model with the boundary and initial conditions for modeling
the rest of the ocean using the World Ocean model of a more coarse resolution (global
model). An important point that has a significant impact on the quality of the results is
the way in which the boundary conditions are set in the local model. In real applications,
several approaches are currently used.

One of these is nesting, a computational approach in which data is exchanged
between global and local models. In this case, the global model usually has low reso‐
lution (for example, 1°), and local - high or ultra-high resolution (0.1° or more). This
formulation of the problem requires considerable computational resources, since the
global and local models sometimes use several hundred computing cores. But at the
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same time, this approach is more optimal from the point of view of computational costs
than the modeling of the entire World Ocean with a high resolution, while the quality
of the model forecast in the region under study with a correct formulation of the boundary
conditions remains high.

The relevance of using the nesting method has previously been examined with
examples of climate modeling in winter in South America [6], modeling the north‐
western Caribbean and the Scottish shelf in the northwestern Atlantic Ocean [4]. There
is also an active research in the field of nesting algorithms [4, 5, 7].

The purpose of this work is to implement the nesting algorithm as a software service
NST (abbr.NeSTing) of the CMF 3.0 computing platform for use in high spatial reso‐
lution models on massively parallel computers with distributed memory. This work
continues a series of studies of authors published earlier in [2, 8] and devoted to the
development of tools for modeling the Earth system on computers with distributed
memory based on the compact modeling framework CMF 3.0.

2 Compact Modeling Framework CMF 3.0 and NST Service

Despite the fact that the logic of the operation of the coupler interpolation procedures
in CMF 3.0 remained the same as in CMF 2.0 [3], the PGAS abstraction made it possible
to greatly simplify the code. Now all the data necessary for the process from neighbors
is obtained using the Communicator class.

The disadvantage of this approach is the performance degradation associated with
the inability to use deferred MPI operations and the availability of GA own costs.
However, the results of CMF 2.0 showed that we can sacrifice some of the performance
to select a simpler (and possibly less efficient) abstraction to simplify communication
algorithms [2]. Because, first, although the pure MPI-approach to communications has
a high speed, it requires explicit work with data buffers, which greatly complicates the
development and improvement of PCM. Secondly, the development of regional sub-
models of the seas embedded in the grid of the global model, became rather complicated
when using only MPI-procedures. On the other hand, this solution has made it possible
to simplify the connection of new models, as well as to expand the functionality of the
joint simulation system by adding new software services.

2.1 PGAS-Communicator

CMF3.0 contains the Communicator class, which encapsulates the logic of working with
the Global Arrays library (GA) [6] and provides only an interface for put/get operations
of parts of global data of model components. The GA library implements the PGAS
(Partitioned Global Address Space) paradigm and allows working with distributed
memory as a shared memory.
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All exchanges between parts of the system are implemented using the Communicator
class. It contains a hash table for storing all information about arrays, including their
state and metadata. Each array of the component involved in exchanges contains a
distributed copy, stored as a virtual global array GA. When a process needs to send data,
it fills this copy with its current data. Due to the fact that the distribution of the global
array completely repeats the decomposition of the component, this operation takes place
locally.

2.2 The Architecture of the Coupling Model

Due to the growing complexity of the coupling system, a more convenient way of
combining components - SOA (Service-Oriented Architecture) was used.

In CMF 3.0, all models send their general requests to a single message queue (Fig. 1).
Service components take from this queue only messages that can process, take data from
virtual global arrays, and perform appropriate actions. The architecture allows mini‐
mizing the connections between physical and service components and greatly simplifying
the development. Moreover, since all services inherit the common base class Service,
adding a new service is not difficult. Now CMF 3.0 contains the following independent

Fig. 1. The architecture of the compact framework CMF 3.0. There are four components in this
example: ocean model (OCN), ice model (ICE), atmosphere model (ATM) and sea model (SEA).
They send requests to the common message queue, where they are retrieved by coupler (CPL),
data assimilation (DAS), input and output data (IOD), nesting (NST) services. The data itself is
transferred through the mechanism of global arrays, which are also used for interprocessor
communication in the components and services
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parallel services: CPL (mapping operations), IOS/IOF (I/O Fast, I/O Slow - fast and slow
file devices, DAS (Data Assimilation System) [8].

Service CPL is a CMF 2.0 coupler, which now deals exclusively with operations
related to interpolation. It receives data using Communicator, performs interpolation,
and places the data in the virtual global array of the recipient.

In CMF 3.0, a separate I/O service responsible for all I/O operations was allocated.
It is interesting that one service solves only half of the problem, because, for example,
a simultaneous request to write a large amount of information (a system check point)
and a small model diagnostics will also take place sequentially. Therefore, the service
was divided into a fast and slow recording device (thanks to the abstraction this division
is performed by several lines of code). This mechanism provides a flexible and asyn‐
chronous mechanism for working with the file system.

3 Description of the NST Service

3.1 Mathematical Formulation One-Way Nesting Problem

We are interested in representing as accurately as possible the local ocean model in a
domain Ωloc. The circulation is supposed to be described on a time period [0, T] by a
model which can be written symbolically

Lloculoc = floc in Ωloc × [0, T] (1)

with convenient initial conditions at t = 0. Lloc is a partial differential operator, uloc is
the state variable, and floc the model forcing. The conditions at the solid boundaries will
never be mentioned in this note, since they do not interfere with our subject.

Since Ωloc is not closed, a portion of its boundary does not correspond to a solid wall,
and has no physical reality. This artificial interface, also called open boundary (OB), is
denoted Γ. The local solution uloc is thus in interaction with the external ocean through
Γ, and the difficulty consists in adequately representing this interaction in order to get a
good approximation of uloc in Ωloc × [0, T].

We also assume that we have at our disposal a (probably less accurate) representation
of the global ocean, either under the form of some data uglob or of a global model

Lglobuglob = fglob in Ωglob × [0, T] (2)

where Ωglob is an global oceanic domain. Note that, in our notations, Ωloc and Ωglob do
not overlap (Fig. 2).
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Fig. 2. A schematic view of nesting problem

The solution Uglob of an external model cover an area Ωglob U Ωloc larger than loc is
available. Therefore tis larger scale solution can be used to force the local model along
Г. The formulation of the problem which is solved in that approach is (3).

Lglobuglob = fglob inΩglob ∪ Ωloc × [0, T]

{
Lloculoc = floc inΩloc × [0, T]

Buloc = Buglob onΓ × [0, T]
(3)

where B denotes an open boundary operator (in particular cases are Dirichlet and
Neumann conditions).

This interaction between the two models can be perfomed on-line using features
CMF 3.0.

3.2 Description of the Algorithm

Suppose we have a global model with a rough spatial resolution (Fig. 3a), a local high-
resolution model (Fig. 3b). The mutual arrangement of the local and global models is
as follows (Fig. 3c). Let the decomposition between the processors local and global
models differ as well (Fig. 3d and e). The global model needs to send the boundary cells
of the area that covers the local model (Fig. 3f) to the nesting service. The nesting service
interpolates the data received from the global model on the grid of the local model and
then sends it to the boundary cells of the local model (Fig. 3g).
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Fig. 3. Graphical description of the nesting algorithm: (a) global model grid; (b) local model
grid; (c) the combination of the calculated grids of the global and local models; (d) processor
decomposition of the global model area (shown in white bars); (e) processor decomposition of
the region of the local model (shown in white bars); (f) white cells are highlighted in the global
grid required for the nesting; (g) the cells of the local grid are highlighted in white, in which the
boundary conditions are set by the nesting

3.3 Features of Parallel Implementation of the Service

Like any service of the CMF3.0 software complex, the nesting service is performed on
separate computing cores. This approach allows us to obtain a transparent structure of
the joint model, where each component is engaged in the solution of its task. At the same
time, neither the global nor the local models practically participate in the nesting, only
mesh and model masks are used, on the basis of which the nesting service builds the
matrix of interpolation scales. Moreover, in the NST service, in addition to specifying
the classical Neumann or Dirichlet conditions, the logic can be encapsulated to generate
conditions for the sum of the flows (heat, salt, etc.) to be zero across the boundaries of
the region under investigation or their correspondence to certain integral characteristics.
The data from the global to the local model go without access to the file system, using
the cluster interconnect through the GA library, which positively affects the performance
of the system as a whole.

Problems and reasons for making a nesting in a separate service:

1. Global and local models have different resolutions and are calculated on a different
number of cores.
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2. The NST service can be used for other Earth system models (for example, the
atmosphere model), which is also successfully used in conjunction with the CMF
complex [10].

3. Interpolation matrices occupy a significant amount of memory, and the logic of
calculating them can be very difficult, especially in the case of setting complex
boundary conditions. Therefore, it is more advantageous to store them on separate
computational cores from model components.

General algorithm of the local and global model using the NST service

• The initial values in the global and local models are initialized
• The NST service receives from the global and local models the configuration of grids,

masks, dimensionality of models, decomposition of processors for each model, steps
in time.

• Based on the received data, the NST service calculates the position of the local model
relative to the global model.

• Based on the position of the local model, the NST service computes the elements of
the arrays that need to be transferred from the global model to the local model.

• Based on the given boundary conditions for the local model and the obtained infor‐
mation about the model masks and grids, the matrices of the interpolation weights
are calculated.

• When the transmission time is reached, the global model sends only the necessary
parts of the model arrays to the NST service.

• The NST service interpolates the data from the global to the local grid using the
previously obtained matrix of weights.

• The NST service sends the resulting boundary conditions to the local model.

3.4 Testing the NST Service

To test the computational efficiency of the parallel nesting algorithm using the GA soft‐
ware library, a global test model with a resolution of 0.25° (1440 × 720 grid) and a local
model with a resolution of 0.1° (400 × 400 grid) were specified, in both 49 vertical z-
levels. The global model used two-dimensional decomposition of the computational
domain into 64 processor cores, and the local model used 32 cores, and the NST service
was allocated from 1 to 8 cores. From the global to the local model, boundary conditions
of the Dirichlet type were transmitted for model fields of temperature, salinity, and
velocity [5]. The matrix of the interpolation weights was constructed by the method of
bilinear interpolation, taking into account the land mask for the global and local models.
The scalability of the parallel Nesting algorithm within the NST service is shown in the
calculation of the boundary condition for 4 (the number of model fields) * 1600 (the
extent of the local domain boundary) * 49 (the number of z-levels) ~ O (105) points in
the local model. When constructing the parallel efficiency graph, the sum of the time
spent on transferring data from the global model to the NST service, the time of parallel
calculation of the boundary conditions by the NST service cores, and the time of data
transfer to the local model (4) (Fig. 4).
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Fig. 4. Scalability of the parallel nesting method within the NST service for obtaining boundary
conditions for O (105) points on the MVS-10P supercomputer. On the X axis, the number of
processor cores per NST service. On the Y-axis, the parallel nesting method is speeded up based
on Tnesting time measurements. The global test model used a two-dimensional decomposition of
the computational domain into 64 processor cores, and the local one - to 32 cores

Tnesting = Tocn_to_nst + Tnst + Tnst_to_sea (4)

4 Example of Use

(Figure 5) shows the temperature field in the test region for the local model-the Barents
Sea with a resolution of 0.1° (Fig. 5a) and a global model of the World Ocean [1] with
a resolution of 0.5° (Fig. 5b). The size of the spatial grids for the World Ocean and the
Sea is 720 × 360 and 300 × 220, in each 49 levels vertically. The model of the ocean
uses 64 processor cores in calculations, and the Barents Sea model has 12 cores, 2
processor cores are allocated to the NST service for nesting boundary conditions.

248 A. Koromyslov et al.



Fig. 5. Use of nesting technology for modeling the dynamics of the Barents Sea. (a) the surface
temperature field in the Barents Sea model with a spatial resolution of 0.1o; (b) the surface
temperature field in the World Ocean model with a resolution of 0.5o for specifying the boundary
conditions in the sea model. The Barents Sea model uses a two-dimensional processor
decomposition of the calculated region into 12 processor cores, and a global one - into 64 cores

5 Conclusion

In this paper, a parallel implementation of nesting technology as a software service NST
of the compact computing platform CMF3.0 is presented [2]. A parallel nesting algo‐
rithm is described in detail, an example of using the developed technology is given.

For the first time in Russia, a parallel technology for transferring boundary conditions
(nesting) through a cluster interconnect (without the use of a file system) between ocean
and sea dynamics models using CMF 3.0 was implemented. This implementation
allowed the ocean and sea models to function as a single coupling model on massively
parallel computers with distributed memory. The advantages of this approach include
computing efficiency and speed, which will allow further use of this technology for
operational forecast of the state of the ocean.

Nesting technology is implemented in other most advanced frameworks for Earth
system modeling - CESM [11] and OASIS [12]. The nesting service (NST service) based
on CMF 3.0, which is described in this article demonstrates similar results of computing
efficiency.

Acknowledgements. To test the performance of the nesting service and the compact computing
platform CMF 3.0, tests were conducted on the supercomputers Lomonosov and MVS-10P, which
confirmed the numerical efficiency of the proposed software product.
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Abstract. The most important factors of successful trading strategy are the
decisions to sell or buy. We propose multi-classifier system for decision making
in algorithmic trading, whose training is carried out in three stages. At the first
stage, features set is calculated based on historical data. These can be oscillators
and moments that used in technical analysis, other characteristics of time series,
market indexes, etc. At the second stage, base classifiers are trained using
genetic algorithms, and optimal feature set for each of them is selected. At the
third stage, a voting ensemble is designed, weights of base classifiers are
selected also using genetic algorithms. However, the usage of genetic algorithms
requires considerable time for computing, so the proposed system is imple-
mented in a parallel environment. Testing on real data confirmed that the pro-
posed approach allows to build a decision-making system, the results of which
significantly exceed the trading strategies based on indicators of technical
analysis and other techniques of machine learning.

Keywords: Algorithmic trading, trading strategy � Multi-classifier system �
Genetic algorithm

1 Introduction

Algorithmic Trading (AT) refers to any form of trading using sophisticated algorithms
and programmed systems to automate all or some part of the trade cycle [1, 2]. The
trade cycle and components of AT system are described in [1, 2]. The key stages in AT
are the pre-trade analysis, signal generation, trade execution, post-trade analysis, risk
management, and asset allocation.

The key factors of a successful trading strategy are the decisions to “buy” or “sell”.
These solutions are based on the alpha model, which is the mathematical model
designed to predict the future behavior of the financial instruments that the algorithmic
system is intended to trade [2]. A large number of studies related to the design of alpha
models are known, including using machine learning methods. In this paper, we pro-
pose a method for designing the alpha model, based on multi-classifier system, whose
training is carried out in three stages. At the first stage, features set is calculated based
on historical data. At the second stage, base classifiers are trained using genetic
algorithms, and optimal feature set for each of them is selected. At the third stage, a
voting ensemble is designed, weights of base classifiers are selected also using genetic
algorithms.
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To build an alpha model based on a multi-classifier system, the following actions
should be performed: obtain and clean data that will drive AT; select base classifiers
that mutually complementary; select architecture of their ensemble. Therefore, an
organization of paper is following: after literature review in the second section, process
of feature engineering is described. In next sections techniques of features wrapping
and classifiers combination in ensemble are discussed. All proposed techniques are
illustrated by practical examples. Obtained results are compared with other methods. In
last section, parallel implementation of proposed algorithm is discussed.

2 Related Works

There are two financial instrument prediction methodologies:

• Fundamental Analysis is concerned more with the company and its
macro-economic environment rather than the actual asset. The decisions are made
based on the past performance of the company, the forecast of earning etc.

• Technical Analysis deals with the determination of the asset price based on the past
patterns of the stock using time-series analysis.

When applying Machine Learning to stock data, Technical Analysis is the more
applicable methodology, because it can learn the underlying patterns in the financial
time series. The search of patterns is carried out in two main ways, the first is the
identification of graphic figures that are formed by price charts, the second is the
calculation of various indicators, the dynamics of which allows predicting asset price
behaviour [3, 4]. Developers of alpha models based on machine learning usually use
technical indicators. For example, Zhang and Ren [5] presented a trading strategy
model that utilizes different technical indicators such as Moving Average (MA),
Moving Average Convergence Divergence (MACD), Relative Strength Index (RSI),
Slow Stochastic etc.

At the same time, various models of machine learning are used. A major difficulty
in dealing with financial time series representing asset prices is their non-stationary
behavior (or concept drift), i.e. the fact that the underlying data generating mechanism
keeps changing over time. Therefore, in real-time forecasting and trading applications
one is often interested in on-line learning, a situation where the prediction function is
updated following the arrival of each new sample [6]. Various approaches for incre-
mental learning have been proposed in the literature, for both classification [7] and
regression problems [6, 8].

One of the most popular tools are artificial neural networks (ANNs) [9], which are
often used together with evolutionary techniques, such as genetic algorithms (GA),
because the combination of two or more techniques offers a better result [10, 11].
Scabar and Cloette [12] developed a hybrid prediction model based on an ANN and
GA, which gives evidence that financial time series are not entirely random, and that—
contrary to the predictions of the efficient markets hypothesis—a trading strategy based
solely on historical price data can be used to achieve returns better than those achieved
using a buy-and-hold strategy. Butler [13] developed an Evolutionary ANN (EANN)
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that makes future predictions based on macro-economic data. Tsai & Chiou [14] used
technique that combines ANN with decision trees.

Peters [15, 16] proved that time series of stock prices are produced by systems with
memory, he also determined cycles for different industries and stock markets. There-
fore, the predictive tools that can model the memory effect, for example, recurrent
neural networks, are of considerable interest. For example, feedforward networks and
recurrent networks (Elman network) that can build “memory” in the evolution of
neurons are reviewed in [17] with application to finance.

As follows from this brief survey, the use of statistical characteristics of time series
and indicators of technical analysis is a widespread practice in AT. Researchers choose
different techniques of machine learning and their combinations. At the same time,
comparatively little attention has been paid to researching the possibilities of combi-
nations of simple classifiers, such as k Nearest Neighbors (kNN), Logistic Regression
(LR), Naive Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM). This
paper intends to fill this gap.

3 Problems of Trading Strategy Design

As it was stated above, we suggest use an ensemble of heterogeneous classifiers. When
creating an effective method for design the AT system, several problems must be
solved.

The first problem concerns the feature engineering and selection. A feature is a
piece of information that might be useful for prediction (wikipedia.org). It can be
structured attribute, combination of attributes and any unstructured information that
relevant to the context. Feature engineering is the process of using domain knowledge
to create features that make model works. Feature selection problem deals with
selection of an optimal and relevant set of features that are necessary for the recognition
and prediction [18, 19]. It helps reduce the dimensionality of the measurement space
and facilitates the use of easily computable algorithms for efficient classification.

The second problem concerns hybrid multi classifier system (MCS) design [20]. It
is: system topology (how to interconnect individual classifiers), ensemble design (how
to drive the generation and selection of a pool of valuable classifiers) and fuser design
(how to build a decision combination function).

We use parallel architecture because most MCS’s reported in the literature are
structured in a parallel topology [20, 21]. In this architecture, each classifier is feed the
same input data, so that the final decision of the MCS is based on the individual
classifiers outputs obtained independently. We use voting ensemble with majority
voting rule. In that case MCS output is formed as the weighed sum of individual
classifiers responses.

The design of hybrid ensemble should support involving of mutually comple-
mentary individual classifiers that provide high diversity and accuracy [21], but it is
impossible to predict what classifiers can be complementary. Therefore, we suggest
using the combination of several approaches: random sampling, features selection for
each individual classifier on base of the GA; determination of each classifier weight in
ensemble also through GA. Thus, the method proposed here includes three stages
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(Fig. 1). The first one generates a set of features that can be used for forecasting; on the
second one, the relevant set of features is selected using genetic algorithms for each
individual classifier; on the third one, the weights of the voting ensemble are deter-
mined also using genetic algorithms.

4 Features Engineering

4.1 Target Variable

A time series describing the dynamics of a financial instrument (for example, shares of
a company) that can be downloaded from http://finance.yahoo.com includes the fol-
lowing variables: opening and closing prices, maximum and minimum prices, trading
volume. The service finance.yahoo.com also provides a value of Adjusted Closing
Price (ACP), which is a stock’s closing price on any given day of trading that has been
amended to include any distributions and corporate actions that occurred at any time
prior to the next day’s open. The ACP is often used when examining historical returns
or performing a detailed analysis on historical returns.

Since we view trading strategy as a classification problem solved with the help of
supervised learning, it is necessary to set the target variable. We define it as follows:

target tð Þ ¼ 1; p tð Þ=p tþ 1ð Þ\1
�1; p tð Þ=p tþ 1ð Þ� 1

�
ð1Þ

where target tð Þ is target variable (trading signal) in the time t, p tð Þ and p tþ 1ð Þ are the
ACP’s in current tð Þ and next tþ 1ð Þ trading intervals respectively.

This means that if the asset price in the next period increases, our strategy should
generate a buy signal (1). If a financial instrument has already been acquired, it is
necessary to retain it. If the price decreases in the next period, then the strategy should

Fig. 1. Three stages of MCS training.
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give a sell signal (–1) if the asset is already acquired. If the asset is not bought by this
time, you should refrain from buying. In other words, our system has an ambitious goal
- to predict based on historical data whether the price in the next period will increase or
decrease.

We will assume that the initial capital of the investor is x 0ð Þ. If the ‘buy’ signal is
received, he buys the maximum possible number of shares d tð Þ ¼ v tð Þp tð Þ, where v tð Þ
is the amount of acquired assets, which is restricted by condition d tð Þ� x tð Þ. If a ‘sell’
signal is received, he sells shares at the current price and his capital becomes
x tð Þ ¼ x t � 1ð Þþ v tð Þp tð Þ. Thus, the goal of the strategy is to maximize the sum
x tð Þþ d tð Þ, therefore, its effectiveness can be estimated as e ¼ x nð Þþ d nð Þ½ �=x 0ð Þ,
where n is the number of trading periods.

Also, we use several assumptions that are typical for research of this kind:

• the volume of sales and purchases is quite small and does not affect the behavior of
the market;

• Transaction costs for operations are zero.

4.2 Features Set

We suggest including in feature set most popular indicators of technical analysis:
Moving Average (MA), Moving Average Convergence Divergence (MACD), Relative
Strength Index (RSI), Stochastic and signals of trading strategies based on these
indicators [3, 4].

Trading signals based on MA are generated as follows:

SMA tð Þ ¼ �1; MAn1 t � 1ð Þ[MAn2 t � 1ð Þ ^MAn1 tð Þ\MAn2 tð Þ
1; MAn1 t � 1ð Þ\MAn2 t � 1ð Þ ^MAn1 tð Þ[MAn2 tð Þ

�
; ð2Þ

where MAn tð Þ is mean average in time t, n is widows size. Usually, n1 ¼ 9 and
n2 ¼ 50, these values were determined empirically.

Trading signals based on MA are calculated as follows:

SRSI tð Þ ¼ �1; RSI tð Þ[UB
1; RSI tð Þ\LB

�
; ð3Þ

where RSI tð Þ ¼ 100 1� 1
1þRS tð Þ

h i
, RS tð Þ ¼ max

n
AG=min

n
AL, AG is average gain, AL is

average loss, n is number of periods, UB and LB upper and lower limits respectively.
Usually, in technical analysis n ¼ 14, UB ¼ 70, LB ¼ 30.

Trading signals based on MACD are calculated as follows:

SMACD tð Þ ¼ �1; F t � 1ð Þ[ S t � 1ð Þ ^ F tð Þ S tð Þ ^ F tð Þh i0 ^ S tð Þ[ 0
1; F t � 1ð Þ\S t � 1ð Þ ^ F tð Þ[ S tð Þ ^ F tð Þ\0 ^ S tð Þ\0

�
; ð4Þ

where F tð Þ ¼ EMAn1 tð Þ � EMAn2 tð Þ is fast MACD line, S tð Þ ¼ EMAn3 F tð Þð Þ is slow
MACD line, EMAn is exponential mean average with window size n. Typically,
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n1 ¼ 13, n2 ¼ 26, and n3 ¼ 9. Useful information also can be extracted from MACD
histogram: Hist tð Þ ¼ S tð Þ � F tð Þ.

Stochastic signals are calculated as follows:

Sstoch tð Þ ¼ �1; %K tð Þ[UB ^%D tð Þ[UB
1; %K tð Þ\LB ^%D tð Þ\LB

;

�
ð5Þ

where %K tð Þ ¼ 100½p tð Þ �min
n1

p tð Þ =� ½max
n1

p tð Þ �min
n1

p tð Þ�, and %D tð Þ ¼ MAn2

%K tð Þð Þ. Usually, n1 ¼ 14, n2 ¼ 3, UB ¼ 70, LB ¼ 30. Sometimes also parameter
‘slow D’ is used D tð Þ ¼ MAn3 %D tð Þð Þ with n3 ¼ 3.

4.3 R/S Analysis

The first algorithm runs, performed on the historical data of Alphabet Inc. (ticker
GOOG), showed that the above indicators are not enough to build an effective trading
strategy. Therefore, to search for relevant characteristics, an R/S analysis of this time
series was conducted using the methodology described by Peters [15, 16].

R/S analysis helps to determine the nature of price series by measuring its speed of
diffusion. The speed of diffusion can be characterized by the variance [22]:

z tþ sð Þ � z tð Þj j2
D E

� s2H ; ð6Þ

where z tð Þ ¼ log p tð Þ is the log prices (ACP) at the time t, s is the arbitrary time lag,
and 〈���〉 is average over all s’s. The * means that this relationship turns into equality
with some proportionality constant, is the Hurst exponent. For a price series exhibiting
geometric random walk, H = 0.5, for a mean reverting series, H < 0.5, and for a
trending series H > 0.5. In last case, a future data point is likely to be like a data point
preceding it, i.e. logarithms log p tð Þ=p t � 1ð Þ½ � and log p tþ 1ð Þ=p tð Þ½ � likely will have
the same signs. So, value of Hurst exponent is very valuable domain knowledge that
can help to design effective algorithm.

According to Peters [15, 16] Hurst exponent, H, is calculated as asymptotic
approximation of the rescaled range as a function of the time span of a time series as
follows

E
R nð Þ
S nð Þ

� �
¼ CnHas n ! 1; ð7Þ

where R nð Þ is the rescaled range of first n values of z tð Þ, S nð Þ is their standard devi-
ation, E �½ � is the expected value, n is the number of data points in time series, and C is a
constant. Therefore, to find H, it is enough to find a regression log R nð Þ=S nð Þ½ � ¼
log CþH log n.

The results of the Hurst exponent estimation for a series of daily closing prices
(ACP) of Alphabet Inc. for 10 years (2007–2016) are shown in Fig. 2a, the dependence
of its values on period length is shown in the Fig. 2b. As already mentioned, the value
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H = 0.597 > 0.5 means that the logarithms of successive price changes are likely to
have the same sign.

Figure 3a shows the dependence of log p tþ 1ð Þ=p tð Þ½ � on log p tþ 1ð Þ=p t � 1ð Þ½ �, a
significant part of the points is concentrated in areas II and IV. These values do not
change sign. Figure 3b shows the probability of changing the sign of the logarithm of
the price increment, depending on the duration of the period:

P sð Þ ¼ P log
p tþ sð Þ
p tð Þ = log

p tð Þ
p t � 1ð Þ\0

� �
ð8Þ

It follows from the Fig. 3b that this probability does not never reach the value 0.5,
corresponding to complete uncertainty. Thus, the investigated price range is not
entirely random. Moreover, for a one day period we have

Pðlog p tþ 1ð Þ
p tð Þ = log p tð Þ

p t�1ð Þ\0Þ ¼ 0:25, i.e. the probability that the sign of logarithm of the

price ratio in the next day will not change is 0.75. It is very important domain
knowledge, so we must include sign of log p tð Þ=p t � 1ð Þ½ � in feature set.

(a) (b)

log n

log [R(n)/S(n)]

H=0.597

Length of period n

H
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st
 e
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t

Fig. 2. Hurst exponent for the GOOG ACP time series.

Fig. 3. Probability of sign of logarithm of price ratio change.
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Other useful information may be extracted form market indices, as well as loga-
rithms of their changes. Therefore, we will also include them in the features set.

As result 41 features where selected for algorithm training including:

• Values of price series (open, close, min and max prices, volume and ACP);
• Technical indicators described in Sect. 4.2: MA9 tð Þ, MA50 tð Þ, RSI tð Þ, F tð Þ, S tð Þ,

Hist tð Þ, %K tð Þ, %D tð Þ, D tð Þ;
• Trading signals described in Sect. 4.2: SMA tð Þ, SMACD tð Þ, SRSI tð Þ, Sstoch tð Þ;
• Sign of log p tð Þ=p t � 1ð Þ½ �;
• Dow-Jones (ticker ^DJI), NASDAQ (^NDX) and S&P500 (^GSPC) indexes and

signs of logarithms of their ratios.

To train algorithm we used two-year (2015 and 2016) daily prices of Alphabet Inc.
(ticker GOOG). This training set contains 504 samples of 41 features. Test set contains
61 samples of daily data from January to March 2017.

5 Features Selection for Individual Classifiers

We use wrapping method based on genetic algorithm for features selection. The pro-
gram code was developed on the Python language and based on machine learning
library scikit-learn [23]. Therefore, only the classifiers available in this library
were used as basic (kNN, NB, LR, DT and SVM).

Each classifier is coded by an array G with length N, which describes features set
used for its training (N – quantity of features in the researched dataset). Array elements
can take values 0 or 1. If the element is equal to 0, the corresponding feature is
excluded from training set. Value 1 is assigned to all elements of a genotype G of
individuals when initial population is generated. Thereby training of each classifier
begins with full range of features.

The best individual in population is always copied in new population without any
changes (the principle of elitism). Selection of other individuals is rank-based. Muta-
tion operation is applied with probability pm to randomly selected G-genotype element
of selected individual, with its value replaced by opposite, i.e. 0 becomes 1, and 1
becomes 0. Crossover operation is applied with probability of pc, it is implemented as
exchange of randomly selected substring between two individuals.

Fitness is calculated as average classification accuracy value:

accuracy ¼ TPþ TN
TPþFPþ TN þFN

ð9Þ

where TP is true positives, FP is false positives (negatives classified as positives), TN is
true negatives, and FN is false negatives (positives classified as negatives).

On this stage of training the researcher determines a set of classifiers types which
will be used for ensemble design (denote the number of types by M). The classifier of
each type is trained according to the algorithm described above. The set of the trained
classifiers is transferred to the following stage.
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Results of individual classifiers training are given in Table 1. For all classifiers, the
following parameters were used: the population size 40, number of generations 20,
pm ¼ 0:5, pc ¼ 0:5. Accuracy before training is calculated before start of a genetic
algorithm (the features set includes all 41 features). Widely known models kNN, LR,
NB, DT and SVM are used as the basic classifiers with the default parameters of
scikit-learn library. The average accuracy and subsequent confidence interval after
training are given in the column with caption “Accuracy after wrapping”. Also, Table 1
lists the number of selected features and precision/recall values.

As it follows from Table 1, features wrapping improves performance of classifiers,
but their accuracy remains low, slightly bigger than 0.5.

6 Multi-classifier System Training

At the third stage ensemble with majority voting rule is designed from the set of the
classifiers trained at the previous stage. The GA is used again. The ensemble is coded
by an array w of M real numbers, wi � 0. They set value of weight coefficient to
corresponding classifier. During creation of initial population, the elements wi are
initialized as random numbers with the normality condition

P
wi ¼ 1.

Selection rules are the same as at the previous stage: elitism and rank selection.
Mutation operation is applied to all elements wi of the selected individual, their values
are randomly changed by the uniformly distributed number (–0.1; 0.1). If negative wi is
received as the result, it is replaced by 0. At the same time the normality condition isn’t
satisfied. These parameters were determined during experimental launches of the
algorithm. Crossover operation is like the crossover at the first stage. Ensemble fitness
is calculated as the accuracy. Object class CE is calculated as the weighed sum of
outcomes ci of individual classifiers CE ¼ P

i2M wici.
If the sign of CE matches the object type (CE [ 0 means that next price will

growth, CE\0 means that this price will go down), then an object is considered as
recognized correctly. Absolute value CEj j corresponds with confidence of
classification.

Table 1. Results of base classifiers training.

Classifier Accuracy Number of selected
features

Precision/recall
Before wrapping
(N = 41)

After
wrapping

KNN 0.526 0.558 ± 0.100 21 0.581/0.632
LR 0.536 0.585 ± 0.061 14 0.589/0.624
NB 0.542 0.577 ± 0.020 16 0.598/0.614
DT 0.530 0.530 ± 0.050 17 0.565/0.543
SVM 0.552 0.552 ± 0.059 18 0.595/0.612
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After training, ensemble with accuracy 0.744, precision 0.698, and recall 0.880 was
received. This accuracy value notably outperforms the accuracy of individual
classifiers.

7 Trading Strategy Results

The results of back testing of generated strategy on daily prices of Alphabet Inc. shares
(ticker GOOG) in two-year period 2015–2016 is presented on Fig. 4a. Proposed
algorithm gives the return e ¼ x nð Þþ d nð Þ½ �=x 0ð Þ ¼ 1:781, this result outperforms
market growth, which is 1.48. To check real possibility of proposed strategy to generate
profit, another test was conducted on test set (Fig. 4b), return is e = 1.104.

To check prediction performance of proposed method, few other well-known
ensemble methods were tested on the same training and test set (Table 2). We tested
five Bagging algorithms (on base DT, kNN, NB, LR, and SVC), three Adaptive
Boosting algorithms (on base DT, SVC, and NB) and three other methods (Gradient
Boosting, Random Forest, and ExtraTrees).

As follows from Table 2, some techniques outperform proposed method on training
set, but it shows better results on the test set. It means that proposed method more
effectively avoids overfitting. Better results on test set are shown by Bagging on base
NB and Adaboosting on base SVC. Comparison of trading strategies based on these
two techniques and proposed algorithm is presented on Fig. 5. Presented data show that
proposed algorithm provides better results (return of Bagging + NB is 1.071, return of
AdaBoost + SVC is 1.057, return of proposed method is 1.104).

To check capability of proposed algorithm to generate profit for assets of different
companies and industries, test on securities of other companies was carried. We used
two-years (2015–2016) daily data of 10 companies from 5 industries for training and
three months’ data (January–March 2017) for testing. Results are presented in Table 3,
including accuracy of ensemble on train and test sets, stock prices changes p nð Þ=p 0ð Þ,
where n is the length of price series, and return e as it define above.

Fig. 4. Tests of generated trading strategy.
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The obtained results confirm that the presented algorithm ensures successful trade
irrespective of the type of industry both in the growing and falling markets. This means
that it can be used as the alpha model in the Portfolio Construction Model [1, 2].

Table 2. Comparison of different ensemble techniques.

Method Training set Test set
Accuracy Precision Recall Accuracy Precision Recall

BAGGING
DT 0.988 0.985 0.992 0.508 0.643 0.474
kNN 0.687 0.676 0.744 0.377 0.500 0.316
NB 0.575 0.585 0.585 0.590 0.651 0.737
LR 0.563 0.565 0.643 0.574 0.667 0.632
SVC 0.575 0.585 0.589 0.492 0.667 0.368
ADABOOST
DT 1.000 1.000 1.000 0.459 0.609 0.368
SVC 0.512 0.512 1.000 0.623 0.623 1.000
NB 0.569 0.575 0.609 0.541 0.625 0.658
OTHER TECHNIQUES
Gradient Boosting 0.978 0.981 0.977 0.459 0.619 0.342
Random Forest 0.980 0.992 0.969 0.492 0.684 0.342
ExtraTrees 1.000 1.000 1.000 0.443 0.577 0.395
Proposed Method 0.744 0.698 0.880 0.590 0.633 0.816

Fig. 5. Comparison of three trading strategies.
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8 Parallel Implementation

The proposed algorithm provides good results on daily data, it also can be used on data
of shorter periods. In its essence, the proposed algorithm identifies the trading orders
through reverse engineering of observed quotes. It is so called market microstructure
trading, and many authors suggest that typical holding period for such kind of strategies
should not exceed 10 min [24]. Moreover, return of discussed AT strategy can be
improved, first, by including additional basic classifiers (e.g. different models of ANN),
and second, by increasing the size of the population and the number of generations on
training stages. But time of calculations with presented parameters on 2-core 1.5 GHz
CPU is approximately 20 min, it should be extremely reduced to work on shorter
trading intervals with extra types of base classifiers and larger populations.

As it was noted above, algorithm was realized on Python programming language,
because there are lot of tools of machine learning around it. It helps to reduce time for
algorithm design and testing, but as Python code does not compiled to native CPU
code, there are possible performance problems.

The most applicable approach without code rewriting is usage of parallel capa-
bilities of ipython library [25] and multi-core system. Several tests with different
number of CPU cores were executed, to determine if it is possible to reach the required
performance within the ipython framework. Figure 6 presents a test environment,
which includes server with eight 3,5 GHz CPU cores and client computer, both con-
nected to trusted network.

Table 3. Performance of proposed method on different assets.

Company Industry Ensemble
accuracy

Back testing (train
set)

Real testing (test
set)

Test
set

Train
set

Price
change

Return Price
change

Return

Alphabet ITC 0.744 0.590 1.502 1.781 1.055 1.104
Amgen Pharma 0.785 0.519 0.969 2.491 1.096 1.109
Apple ITC 0.709 0.607 1.133 11.173 1.242 1.246
Exxon
Mobile

Oil 0.714 0.541 0.932 8.300 0.799 1.168

General
Electric

Manuf. 0.750 0.507 1.371 2.194 0.948 1.003

Gilead
Sciences

Pharma 0.881 0.516 0.766 11.436 0.923 1.001

HSBC Finance 0.889 0.508 0.997 7.296 1.024 1.042
JPMorgan
Chase

Finance 0.775 0.514 1.497 10.453 1.013 1.040

Shell Oil 0.765 0.581 0.981 2.913 0.972 1.013
United
Techn.

Manuf. 0.877 0.505 1.019 1.970 1.018 1.027

262 Y. Zelenkov



On remote multi-core computer, several instances of IPyton engine were started,
according with number of CPU cores used in test. The IPython engine is a regular
Python interpreter that handles incoming and outgoing Python objects sent over a
network connection. All program modules required for computation were located on
local disks of server. IPython controller and client interface were ran on client
computer.

As it follows from Fig. 1 there are a few opportunities to parallelize program code.
First, it is possible to parallelize individual classifiers training, because they are trained
independently. Second, there is possibility to parallelize genetic algorithms where they

Fig. 6. Test environment to evaluate algorithm performance

Fig. 7. Reduction in computation time as a function of the number of CPU cores
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used. Both features were used on base of IPython engine direct interface that provides
the possibility directly manage computation on each engine (without automatic load
balancing), because it required a small correction of the source code.

Results of tests performed on 8-core system are presented on Fig. 7, which shows
relative computational time (time of computation on one CPU core is 1). It is evident
that the system with 4 cores provides the performance that satisfies the requirements of
market microstructure trading (computational time is less than 10 min [24]).

However, from Fig. 7 it also follows that further possibilities for increasing per-
formance with this approach are exhausted. To compute in shorter time intervals (1 min
and less), it is necessary to implement the algorithm in the programming language that
allows more efficient use of computer resources.

9 Conclusion

The presented results show that the proposed algorithm allows to build a trading
strategy that stably generates positive return regardless of the behavior of the stock
market (growth or decline). This can be explained by the two reasons. The first is the
domain knowledge, which was used for features engineering. The second is the use of
the multi-classifier system, which combines enough simple classifiers, it helps notable
improve the prediction of price behavior.

Note, that the ways to improve this algorithm are obvious. It is the inclusion of
additional classifier models in the ensemble, as well as an extension of the search space
when using the genetic algorithm.

Using the parallel capabilities of the ipython allows to reduce the computation time
to 10 min or less. However, further performance improvement will require a transition
to another programming language.
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Abstract. Parallel implementation features of self-gravitating gas
dynamics modeling on multiple GPUs are considered applying the
GPU-Direct technology. The parallel algorithm for solving of the self-
gravitating gas dynamics problem based on hybrid OpenMP-CUDA par-
allel programming model has been described in detail. The gas-dynamic
forces are calculated by the modified SPH-method (Smoothed Particle
Hydrodynamics) while the N-body problem gravitational interaction is
obtained by the direct method (so-called Particle-Particle algorithm).
The key factor in the SPH-method performance is creation of the neigh-
bor lists of the particles which contribute into the gas-dynamic forces
calculation. Our implementation is based on hierarchical grid sorting
method using a cascading algorithm for parallel computations of partial
sums at CUDA block. The parallelization efficiency of the algorithm for
various GPUs of the Nvidia Tesla line (K20, K40, K80) is studied in
the framework of galactic’ gaseous halos collisions models by the SPH-
method.

Keywords: Multi-GPU · OpenMP-CUDA · GPU-Direct · NVIDIA
TESLA · SPH-method · Self-gravitating gas dynamics · Numerical
simulation

1 Introduction

Research of astrophysical systems applies special demands on the properties
of computational fluid dynamics models. Supersonic and hypersonic flows with
the Mach number M ∼ 1000, turbulence including small-scale, and magnetic
fields self-consistent accounting are essential for the extragalactic astronomy,
cosmology or accreting relativistic objects.

To describe star formation we have to model a multicomponent system with
chemical transformations (accounting for tens or even hundreds of chemical reac-
tions) [8]. These processes occur in non-stationary and non-homogeneous gravita-
tional fields on small spatial scales [6]. We should provide long-time calculations
due to the problem rigidity taking into account fast processes and spatial small-
scale inhomogeneities, when the total evolution time may exceed 107 integration
time steps.
c© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 266–277, 2017.
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Let us particularly emphasize the presence of the dynamic boundaries
between matter and vacuum. The same problem appears in the case of the free
water surface modeling in reservoirs at Earth’s conditions [9].

All these and many other factors are important for modern numerical astro-
physical models.

The fast calculation methods’ usage for the gravitational force calculation
has disadvantages due to poorly controlled errors of the acceleration in the case
of approximate numerical methods (TreeCode, Fast Fourier Transform [18], Fast
Multipole Methods, etc.) that may require a large number of particles N .

We use the direct method (so-called Particle-Particle algorithm) for the grav-
itational force calculation. Due to the low prices on the new hardware based on
GPU technologies [5] the direct method looks promising especially in models
with a number of particles greater than 1 million.

All the features of parallel simulations are considered on the problem of gas
halos collision around galaxies. The new precise estimations of the intergalactic
gas density in observations makes problem relevant. These results are based on
the observations of X-ray coronas around both elliptical and disk galaxies [17].

Initially the Smoothed Particle Hydrodynamics (SPH) method was proposed
to simulate the astrophysical gas [3,12]. It has shown to be efficient for various
applications as well as in other fields of physics and technology. The SPH app-
roach occupies a significant market quota in astrophysical computational fluid
dynamics and engineering applications. It should be specially distinguished the
GASOLINE code [15], Weakly Compressible Smoothed Particle Hydrodynamics
for multi-GPUs systems [4] and gpuSPHASE for the engineering calculations
[16]. The aim of our research is the computational characteristics analysis of a
parallel program for galaxies’ gas self-gravitating subsystems modeling by the
SPH and direct N-body methods using GPU technology. An additional positive
aspect of GPUs usage is the visualization efficiency for such processors, which is
very important for multidimensional non-stationary multicomponent flows.

2 Mathematical and Numerical Models

2.1 Basic Equations

Let us consider the collision process of two galactic systems each of which
includes Ng/2 particles gas subsystem (SPH) and Nh/2 component (N-body)
collisionless dark halo. The dynamics of gas particles is described by a system
of differential equations:

dvi

dt
= −∇pi

ρi
+

N∑

j=1,j �=i

fij , (1)

dri

dt
= vi , (2)

dei

dt
= −pi

ρi
∇ · vi , (3)
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where N = Ng + Nh, the radius-vector ri(t) determines the position of the i-th
particle in space, ρi, pi, ei, vi are the mass density, gas pressure, specific internal
energy, and velocity vector of the i-th particle, respectively. The gravitational
interaction force between i-th and j-th particles is

fij = −G
mj (ri − rj)
|ri − rj + δ|3 , (4)

where G is the gravitational constant, mj is the mass of the particle, δ is the
gravitational softening length at very short distances.

We use the quasi-isothermal model for the initial density distribution of dark
matter in the halo and King model for the initial density profile in the bulge
[7,17]. The equation of an ideal gas state is used to close the system of equations
(1)–(3)

ei =
pi

(γ − 1)ρi
, (5)

where γ is the adiabatic index.

2.2 The Numerical Scheme

For the numerical integration of the hydrodynamics equations (1) and (3) the
spatial derivatives in these equations should be approximated. In accordance
with the SPH-approach [12] for a finite number of particles Ng any medium
characteristic A = {ρ, e,v} and its derivatives ∇A are replaced in the flow
region Ω by their smoothed values:

Â(r) =
Ng∑

j=1

mj

ρ(rj)
A(rj)W (|r − rj |, h) ,

∇Â(r) =
Ng∑

j=1

mj

ρ(rj)
A(rj)∇W (|r − rj |, h) ,

(6)

where W is the smoothing kernel function, h is the smoothing length. The fol-
lowing conditions are imposed on the kernel W :

– the kernel finiteness;

–
∫

Ω

W (|r − r′|, h) dr′ = 1 is the normalization condition;

– lim
h→0

W (|r − r′|, h) = δ(|r − r′|), δ is Dirac delta-function.

Different authors have used spline functions of different orders or Gaussian
distribution for the smoothing kernel W [1,12,14]. In current paper a cubic spline

ρi = ρ(ri) =
Ng∑

j=1

mj W (|ri − rj |, hij) (7)
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has been used to calculate mass-density of the i-th particle Monaghan:

W (ξ, h) =
1

πh3

⎧
⎪⎨

⎪⎩

1 − 3
2 ξ2 + 3

4 ξ3, 0 ≤ ξ ≤ 1;
1
4 (2 − ξ)3, 1 ≤ ξ ≤ 2;
0, ξ ≥ 2;

(8)

where ξ = |ri −rj | / h is the relative distance from the center of the i-th particle,
hij = (hi + hj)/2 is the effective smoothing length. The smoothing length value
for each particle depends on its mass and density as hi = σ (mi/ρi)

1/3, where σ
is a constant ∼ 1.2 ÷ 1.3 [10,13].

If a smoothing core (8) is used to calculate the gas-dynamic forces (pres-
sure gradient), then unphysical (numerical) particles clustering [1] will occur in
the high-pressure regions. The latter is caused by the interaction force weak-

ening between particles in the neighborhood of 0 < ξ <
2
3

(
lim
ξ→0

∂W

∂ξ
= 0

)
. A

smoothing kernel Wp presenting in the following form [14]:

Wp(ξ, h) =
15

64πh3

{
(2 − ξ)3, 0 ≤ ξ ≤ 2;
0, ξ ≥ 2;

(9)

eliminates clustering of particles and increases the stability of the numerical

algorithm. From equation (9) it follows that lim
ξ→0

∂Wp

∂ξ
= − 45

64πh4
.

Applying the SPH-approach (6)–(9) to equations (1) and (3) we finally get:

dvi

dt
= −

Ng∑

j=1,j �=i

mj Πij ∇Wp (|Δrij |, hij) +
N∑

j=1,j �=i

fij , (10)

dei

dt
=

1
2

Ng∑

j=1,j �=i

mj Πij Δvij · ∇Wp (|Δrij |, hij) , (11)

where Δrij = ri − rj , Δvij = vi − vj , ∇Wp(|Δrij |, hij) =
∂Wp

∂ξ

Δrij

|Δrij |
1

hij
,

Πij =
pi

ρ2i
+

pj

ρ2j
+νa

ij is the pressure force symmetric SPH-approximation ensuring

Newton’s third law fulfillment. The artificial viscosity νa
ij is expressed via

νa
ij =

μij (β μij − α cij)
ρij

, μij =

{
hij Δrij ·Δvij

|Δrij |2+η h2
ij

, Δrij · Δvij < 0;

0, else;

where ρij = (ρi + ρj)/2, cij =
(√

γpi/ρi +
√

γpj/ρj

)
/2 are the density and

sound velocity average values for i-th and j-th interacting particles, respectively.
The empirical constants α, β and η determine the intensity of artificial viscosity
(in our calculations their reference values are α = 0.5, β = 1 and η = 0.1).
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A second-order accuracy method of the predictor-corrector type (the so-called
leapfrog method) is used for the numerical integration of differential equations
(10), (11) and (2). The main steps of the leapfrog method for self-gravity SPH-
models are:

(I) The velocity vi and internal energy ei predictor calculations at time t+Δt:

ṽi(t + Δt) = vi(t) + ΔtQi[r(t),v(t), e(t)] , (12)

ẽi(t + Δt) = ei(t) + Δt Ei[r(t),v(t), e(t)] , (13)

where Δt is the time step, Qi and Ei are the right-hand side of equations (10)
and (11), respectively.

(II) particles’ spatial position calculation ri at time t + Δt:

ri(t + Δt) = ri(t) +
Δt

2
[ṽi(t + Δt) + v(t)] . (14)

After the particles’ new positions ri(t+Δt) to be defined the density ρ[ri(t+Δt)])
is refined according to equation (7).

(III) During the corrector step the velocity, vi, and internal energy, ei, values
are recalculated at time t + Δt:

vi(t + Δt) =
vi(t) + ṽi(t + Δt)

2
+

Δt

2
Qi[r(t + Δt), ṽ(t + Δt), ẽ(t + Δt)] , (15)

ei(t + Δt) =
ei(t) + ẽi(t + Δt)

2
+

Δt

2
Ei[r(t + Δt), ṽ(t + Δt), ẽ(t + Δt)] . (16)

In general, the right-hand sides in the predictor-corrector scheme (12)–(16)
are calculated twice at the same time layer. Since the gravitational interaction
of particles (4) depends only on the particles’ positions ri the calculation of the
force between the particles in this approach is performed once per integration
time step. The latter allows increasing of the calculations performance about 2
times keeping the same order of accuracy for the method.

To increase the stability of the numerical method during the modeling of
supersonic self-gravitating gas flows, we modified the standard SPH stability
condition [12] as follows:

Δt = CCFL min
i

⎡

⎣ smin
ij

cmax
ij (1 + 1.2α) + 1.2βμmax

ij +
√

smin
ij (|Qi| + |Ei|)

⎤

⎦ , (17)

where smin
ij = min

j
|ri −rj |, cmax

ij = max
j

cij , μmax
ij = max

j
μij . We added the third

term with the square root in the denominator of (17) and replaced hij → smin
ij in

the numerator. Using relation (17), a stable calculation can be performed with
larger Courant number (0.5 � CCFL < 1) and lower artificial viscosity value.
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3 Parallel Algorithm Design

A parallel implementation of the numerical algorithm (12)–(16) for multiple
GPUs has been performed using OpenMP-CUDA and GPU-Direct technolo-
gies. Figure 1a presents a two-level OpenMP-CUDA parallelization scheme for
k×GPUs, and Fig. 1b shows a data transfer scheme between GPUs based on
GPU-Direct technology for NVIDIA graphics processors.

Fig. 1. (a) The two-level scheme of parallelization with OpenMP–CUDA. (b) Archi-
tecture 2×CPU+6×GPU.

The two-level parallelization scheme OpenMP-CUDA (Fig. 1a) is more suit-
able for shared memory systems type CPU + k×GPU. Using OpenMP technol-
ogy to create k-threads on the CPU allows us to run CUDA kernels on k×GPUs
on each of which we calculate the dynamics of N/k particles [2]. GPU-Direct
technology provides the fast data exchange between GPUs via PCI-e bus. This
technology is only applicable to graphics processors that connect to PCI-e buses
under the control of one CPU (Fig. 1b).

The numerical algorithm consists of five major Global CUDA Kernels being
run from CPU on multiple GPUs using the OpenMP parallel programming
model:

– The Sorting Particles (SP) is a set of CUDA Kernels to determine the parti-
cles’ numbering and number of particles in three-dimensional grid cells. Fur-
ther this information is used to define the particles’ neighbor list during the
calculation of SPH sums in equations (7), (10) and (11). The computational
complexity of the kernel is ∼ O(N).

– The Density Computation (DC) is a CUDA Kernel for density calculation
using (7). It has the similar computational complexity ∼ O(N).

– The Hydrodynamics Force Computation (HFC) is a CUDA Kernel for the
hydrodynamic forces calculation in (10) and (11). The kernel has two states
{predictor, corrector} and its computational complexity is ∼ O(N · Npc),
where Npc is the average number of particles in the cells.
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– The Gravity Force Computation (GFC) is a CUDA Kernel for the gravi-
tational forces calculation using (4). The computational complexity of the
kernel is ∼ O(N2), because of the direct N-body method.

– The System Update (SU) is a CUDA Kernel for the particle characteristics
updating (ri,vi, ei) corresponding to equations (12)–(16). The kernel has two
states {predictor, corrector}, and its computational complexity is ∼ O(N).

The Global CUDA Kernels execution sequence corresponds to the predictor-
corrector scheme stages (12)–(16). It is shown at the diagram in Fig. 2. CUDA
kernels SP, DC and HFC are skipped in the case of a collisionless system.

Fig. 2. Flow diagram for the calculation module.

An important factor affecting the efficiency of the parallel implementation of
the SPH method is the sorting algorithm and building a particles neighbour list.

Let us consider the algorithm parallel implementation for the particles sorting
on CUDA Kernels SP in details. The computational domain is covered by a grid
Mx × My × Mz with the total number of cells M = MxMyMz. We use the
following auxiliary arrays to build particles neighbor list in the SPH method:

– CellSPH[M ] is a vector type array of int2, the components CellSPH[k].x and
CellSPH[k].y contain a number of particles at the k-cell and a number of all
the particles in the 0 to k cells, respectively;

– indexPC[N ] is a vector type array of int2, the component indexPC[i].x =
k comprises a cell number k, where the i-th particle is located, while
indexPC[j].y = i links the initial number of the i-th particle with the sequen-
tial numeration of j particles in the cells;

– indexCell[M ] is an integer type array specifying the current particle number
at the corresponding k-th cell;

– maxPBC[M/BlockSize] is an integer array containing the number of par-
ticles at the CUDA block, where the BlockSize and M/BlockSize are the
CUDA block number of threads and the CUDA grid number of CUDA blocks,
respectively;

– hmaxCell[M ] is a double type array comprising the smoothing length maxi-
mum value of the particle hi at the k-th cell.

The entire particle sorting stage contains 5 separate CUDA Kernels:

– the kernelSortingSPH0<<<M/BlockSize,BlockSize>>> is the NULL-
initialization of sorting arrays.
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– the kernelSortingSPH1<<<N/BlockSize,BlockSize>>> includes numbers
of cells where particles are located, a number of particles and maximum value
of smoothing length in cells (indexPC[i].x, CellSPH[k].x and hmaxCell[k],
where k = 0, ...,M − 1, i = 0, ..., N − 1.

– In the kernelSortingSPH2<<<M/BlockSize,BlockSize>>> the total num-
ber of particles in all the cells from k to k + BlockSize is defined for each
CUDA block using the cascading algorithm of parallel partial sums find-
ing. The latter is the analog of the sequential algorithm CellSPH[k].y =
CellSPH[k − 1].y+ CellSPH[k].x. The maxPBC[] is evaluated next.

– Based on the total number of particles computed in the previous kernel at
the CUDA block (maxPBC[]), in the kernelSortingSPH3<<<M/BlockSize,
BlockSize>>> the total number of particles in all cells from 0 to k is
specified.

– In the kernelSortingSPH4<<<N/BlockSize,BlockSize>>> the correspon-
dence between the original i-th particle number and the sequential number-
ing of j-th particles in cells is determined (the value of indexPC[j].x = i is
calculated).

The fragment of the sorting algorithm code is listed below.
The code for CUDA-core: kernelSortingSPH2

__global__ void kernelSortingSPH2(int2 *CellSPH, int *maxPBC){
__shared__ int sp[BlockSize], sp0[BlockSize];
int ss, i, k = threadIdx.x + blockIdx.x * blockDim.x;
sp[threadIdx.x] = CellSPH[k].x;
sp0[threadIdx.x] = sp[threadIdx.x]; __syncthreads();
for(i = 1; i < BlockSize; i*=2){

if (threadIdx.x + i < BlockSize)
sp[threadIdx.x+i] += sp0[threadIdx.x]; __syncthreads();
sp0[threadIdx.x] = sp[threadIdx.x]; __syncthreads();}

CellSPH[k].y = sp[threadIdx.x];
if(threadIdx.x == 0){

i = blockIdx.x; ss = sp[BlockSize - 1];
while(i < gridDim.x){atomicAdd(&(maxPBC[i]), ss); i++;}}

}

The code for CUDA-core: kernelSortingSPH3

__global__ void kernelSortingSPH3(int2 *CellSPH, int *maxPBC){
int k = threadIdx.x + blockIdx.x * blockDim.x;
if (blockIdx.x > 0) CellSPH[k].y += maxPBC[blockIdx.x - 1];

}

The code for CUDA-core: kernelSortingSPH4

__global__ void kernelSortingSPH4(int2 *indexPC, int2 *CellSPH,
int *indexCell){

int i = threadIdx.x + blockIdx.x * blockDim.x;
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int k = indexPC[i].x, j = (k>0) ? CellSPH[k - 1].y : 0;
int ibk = atomicAdd(&indexCell[k], 1), indexPC[j + ibk].y = i;

}

In the CUDA kernels, DC and HFC, arrays indexPC[], CellSPH[] and
hmaxCell[] are used to find the particles neighbor list upon SPH sums
calculation.

4 The Principal Results and Discussions

We have studied the parallelization efficiency of our algorithm solving the rele-
vant problem of galactic gaseous halos collisions modeling. The calculations have
been carried out on GPU Nvidia Tesla processors: K20 (1GPU), K40 (1GPU),
K80 (2GPU).

A different amount of gas Ng = N/2 and collisionless Nh = N/2 particles
has been used in the calculations. The total number of particles N = Ng + Nh

has been set in the range from 218 to 223.

Fig. 3. The execution time of CUDA kernels SPH (SP, DP, HFC, US) and GFC on
GPUs. The dependence of tgpu on (a) the number of the particles N ; (b) the GPU
type.

Figure 3 represents the computation time of the hydrodynamic and gravita-
tional interaction of the particles for different amount of N and GPUs types. For
CUDA kernel GFC the calculation time dependence on the number of particles
is almost quadratic which corresponds to the Particle-Particle algorithm com-
plexity O(N2). The SPH calculation time has almost a linear dependence on the
number of particles, which also corresponds to the kernel HFC CUDA algorithm
complexity ∼ O(N · Npc) (Npc � const, since h ∼ N−1/3). The parallelization
efficiency of the algorithm on two and four GPUs is 95% and 90%, respectively.

Table 1 shows some numerical values of the execution time of CUDA kernels
SPH and GFC on different GPUs as a function of the number of particles N .
Figure 3b and Table 1 show that the runtime of CUDA kernels SPH (SP + DC
+ HFC + US) on one K80 GPU is 1.7 times less than for the K40 GPU, but the
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Table 1. The execution time of CUDA kernels SPH and GFC on GPUs.

K20 (1GPU) K40 (1GPU)
1

2
×K80 (1GPU)

N × 1024 tSPH tGFC tSPH tGFC tSPH tGFC

256 2.54 4.13 2.02 3.51 1.20 4.10

512 5.04 16.50 3.99 13.72 2.30 16.37

1024 9.93 65.90 7.87 53.62 4.40 65.32

CUDA kernel GFC runs 1.2 times faster on the GPU K40. The SPH algorithm
uses only global GPU memory, and the calculation of forces between the i-th and
j-th particles in the CUDA kernel GFC is organized using shared memory of the
GPU. Therefore, the different speed of CUDA kernels SPH and GFC execution
on GPUs may be due to more efficient access to global memory on the K80.

Fig. 4. The contributions of the different stages of the SPH numerical scheme at given
time step.eps

Figure 4 demonstrates that the SP sorting time is borrowed only 0.2% of
the total SPH simulation time. The sorting algorithm parallel implementation
on GPUs proposed in current article requires less computational and memory
resources in comparison with tree-based and hash-tables algorithms [11]. Note
that the integration time step decreases (Δt ∼ h ∼ N−1/3) with an increase in
the particles number in accordance with the stability condition (17). Therefore,
the total time for modeling the self-consistent dynamics of particles of the gas
and collisionless subsystems has a stronger dependence on N than the one shown
in Fig. 3a: tall = tSPH + tGFC = O(N4/3) + O(N7/3) = O(N7/3).
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Fig. 5. The distribution of density (left) and internal energy (right) at different times.
The dotted line and circles indicate the trajectory of the dark halo.

The results of our simulation are presented in Fig. 5. In the process of collision
of galaxies, there is a mixing of matter of two galactic systems. An important
factor in the interaction of galaxies is the formation of nonstationary shock
waves in the collision of gas halos, leading to a substantial heating of the gas
in the halo. After the passage of the gas halos, some of their matter is emitted
into the surrounding space with the formation of clouds with a nonzero angular
momentum.
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Abstract. This paper presents the results obtained by the authors on applying
an integrated approach to solving geoseismics, astrophysics, and plasma physics
problems on high-performance computers. The concept of the integrated
approach in the context of mathematical modeling of physical processes is under‐
stood as constructing a physico-mathematical model of a phenomenon, a numer‐
ical method, a parallel algorithm and its software implementation with the effi‐
cient use of a supercomputer architecture. With this approach, it becomes relevant
to compare not only the methods of solving a problem but, also, physical and
mathematical statements of a problem aimed at creating the most effective imple‐
mentation of a chosen computing architecture. The scalability of algorithms is
investigated using the multi-agent system AGNES simulating the behavior of
computing nodes based on the current state of computer equipment characteris‐
tics. In addition, special attention in this paper is given to the energy efficiency
of algorithms.

Keywords: Integrated approach · Co-design · Agent simulation · Energy
efficiency of algorithms · Parallel algorithm · Supercomputers

1 Introduction

The modern stage of supercomputer development is characterized by the emergence of
many projects on creation of an exascale-class supercomputer. Thus far, developments
in the field of exascale supercomputers are conducted by different teams of developers
in the United States. The collaboration in this direction is carried out, for example, by
national laboratories of the US Department of Energy: Sandia and Oak Ridge. In Europe,
there are also similar programs; seven European countries have signed the declaration
of the Joint Project EuroHPC aimed at the creation of exascale supercomputers. In Japan
(the RIKEN institution), the development of a supercomputer has already begun in,
where it will be assembled and installed.

There are numerous international projects to develop the system and application
software for exascale-class supercomputers with the participation of the United States,
countries of the European Union, Japan, China, Russia (IESP, G8 EXASCALE,

© Springer International Publishing AG 2017
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CRESTA, etc.). In [1–3], a review and various approaches to exascale scientific software
design are given. In [4], the problems typical of exascale systems are listed, such as
insufficient concurrent work available to maintain high utilization of all resources, time-
distance delay intrinsic of parallel actions and resources on the critical execution path,
which is not necessary in a sequential version, delay due to the lack of availability of
oversubscribed shared resources. Also, in [4] various methods for overcoming the
above-mentioned problems are discussed.

It should be pointed out that numerical algorithms are being developed slower than
hardware. Therefore existing algorithms and programs for solving physical problems
will be applied at the first stage of using exascale-class supercomputers.

We have offered the integrated approach to the development of algorithms and soft‐
ware for petascale- and exascale-class supercomputers [5]. It contains the three stages.

The first stage is the co-design, which is based on the development of a parallel
computational technology, with allowance for all aspects of parallelism. The co-design
of parallel methods for solving large-scale problems is difficult to formalize. It is impos‐
sible to make a “collection of recipes” for the efficient solution of any problem. However,
some general approaches can be proposed. The co-design approach concept consists of
the following steps, with allowance for the target hardware/software platform:

(1) Formulation of the physical statement of the problem;
(2) Mathematical formulation of the physical problem;
(3) Development of the numerical methods;
(4) Selection of data structures and parallel algorithms;
(5) Consideration of a supercomputer architecture;
(6) Usage of code optimization tools.

We use the extended definition of the co-design, in contrast to the common concep‐
tion which consists in the joint development of software and hardware. In such an
approach, not only the comparison of the problem solution methods is becoming relevant
but also the comparison of the efficiency of using various physical and mathematical
statements [5].

The second stage is the anticipated development of algorithms and software for the
most promising exascale supercomputers. This stage is based on the simulation of the
algorithm behavior within a certain supercomputer architecture. For the simulation of
distributed systems it is best to use distributed simulation based on message passing.

The multi-agent approach [6] is used for the simulation of parallel programs run on
a large number of cores due to such properties as decentralization, self-organization,
and intelligent behavior [7]. Among many multi-agent simulation platforms the adapt‐
able distributed simulation system AGNES [8] was chosen. It was successfully used in
the scalability study of a series of parallel problems when executed on a large number
of cores [5, 9].

The third stage is estimating the energy efficiency of the algorithm with different
implementations for a single architecture or for different supercomputer architectures.
In this paper, the term «energy efficiency for scientific HPC applications» means the
most efficient use of each core, processor or computational accelerator; the minimization
of communications between computational nodes; a good workload balancing of the
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program. The minimization of communications enables a decrease in the idle standing
time for processors and accelerators. The good workload balancing enables a uniformly
load of a computational system. The most energy-efficient algorithm gives the best
FLOPS per Watts (Joules/sec) value.

The efficiency of this approach is illustrated on some examples of complex
computing problems in seismology, plasma physics and astrophysics.

2 Using the Integrated Approach to Solving an Elastodynamic
Problem

The numerical modeling of elastic wave propagation in heterogeneous 3D media with
complex subsurface geometries is a complex problem in terms of computation, thus
demanding the use of efficient methods of parallelization and scaling of algorithms.
Quite often the topography of various real geophysical objects does not allow one to
maintain an observational system. Therefore, constructing their 3D models requires
solving the inverse problem by solving a set of direct problems: for different values of
the elastic parameters of a heterogeneous medium; at various geometries of objects
composing a model. This complicates the problem in the context of computation.

We apply the above-discussed approach to solving the problem of seismic wave
propagation in a heterogeneous medium typical of magmatic volcanoes. Both active and
sleeping volcanoes are potentially dangerous to the environment due to the possibility
of sudden catastrophic eruptions. Using methods of the active vibroseismic monitoring
of magmatic structures will allow predicting a probable time of eruption.

For the purpose of the co-design, we have made a comparison of the developed
parallel implementations of solutions to the elastodynamic problem written in terms of
the velocities of displacement and stress and in terms of displacements for the compu‐
tational clusters, equipped with graphics cards. The simulation domain is considered to
be an isotropic 3D-inhomogeneous elastic structurally complex medium which is a
parallelepiped, one of whose sides is a free surface.

At the step of designing a numerical method, the most “flexible” and widespread
technique for solving a three-dimensional elastodynamic problem is a finite difference
method. Let us preliminarily notice that explicit finite difference schemes fit the archi‐
tecture of graphics accelerator, because they are directly mapped on the topology of
GPU architecture, and involve independent computations of values at each step and in
each cell of the computational domain. In order to numerically solve elastodynamics
equations in terms of the velocities of displacement and stress we apply the well-known
Verrier finite difference scheme on a staggered grid [10]. The calculation of its difference
coefficients is based on integral conservation laws. To solve the problem in terms of
displacements, we use a similar finite difference scheme [11].

We should note the main difference between the algorithms, which can be
constructed on the above-mentioned finite difference schemes. The calculation of the
velocities of displacement and stress requires a larger memory size (at least, 18 3D arrays
with the unknowns should be stored), but requires a smaller number of floating-point
operations in total (57 operations for calculating the values in a cell for one time step).
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The calculation of the displacements requires a smaller memory size (at least, 6 3D
arrays with unknowns), but a larger number of operations (98 operations for one time
step).

As software parallelizing tools we have chosen CUDA and MPI, which make
possible to simultaneously use the largest number of parallel processes and ultimately
to attain a maximum efficiency.

At the step of adaptation to a hybrid cluster equipped with GPU (for example,
NKS-30T+GPU, which was installed in the Siberian Supercomputer Center and consists
of 40 computational nodes, each one equipped with two six-core CPU Xeon X5670 and
three NVIDIA Tesla M2090 graphics cards) we have implemented the next operation
for the both statements implementations [11]. For carrying out the parallelization, we
decompose the computational domain to layers along one of the coordinate axes. Each
layer is calculated at a separate node, where, in turn, it is sub-divided into sub-layers
along another coordinate axis (to attain a better scaling) according to the number of
graphics accelerators at a node. In order to minimize the time of the data exchange, the
data are transferred among nodes using appropriate non-blocking asynchronous func‐
tions of MPI, and exploiting the asynchronous copy function of CUDA for exchanges
among the graphics cards. Let us note that the data for the exchange have an equal size
in both approaches.

The numerical experiments have shown that the time of the calculations of the
displacements and the time of the calculations of the velocities of displacement and
stress at an equal number of nodes is roughly the same in spite of the fact that displace‐
ments calculation is performed with a larger amount of floating point operations at the
each time step. Therewith the displacement calculations requires almost half as much
of the GPU memory size. Based on the results obtained we prefer using the approach
proposed to calculating the displacements.

Results of numerical simulation for the truncated model of the volcano Elbrus are
presented in Fig. 1. For numerical simulation, a spatial grid of 1360 × 701 × 2600 nodes

Fig. 1. Results of numerical simulation for the truncated model of the volcano Elbrus. In the
snapshots of the wave field, the component u of the displacement velocities vector is presented
in the plane Oxz at different time points.
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and 15000 time steps were used. The calculation was carried out on 20 hybrid nodes of
the NKS-30T+GPU cluster during 5 h. One can learn more about the geophysical model
of the volcano and the results of numerical experiments in [12].

3 Using the Integrated Approach to Solving Astrophysical
Problems

In this paper, we use a multi-component hydrodynamic model of galaxies considering
the chemodynamics of molecular hydrogen and cooling in the following form. A detailed
description of this model can be found in [13].

At the first stage of the co-design procedure, we define the main physical process of
a problem. In the case of astrophysics, this process is hydrodynamics. For the description
of hydrodynamics, the hyperbolic equations are used. There are many grid numerical
methods for solving the hyperbolic equations [13, 14]. Some of these methods can be
effectively realized by the computational domain decomposition. With adding the
subgrid physics (e.g., cooling/heating, chemodynamics, a magnetic field), the structure
of the equations remains hyperbolic. For the characterization of collisionless compo‐
nents, the first moments of the Boltzmann equation [14–16] can be used. In this case, a
uniform numerical method can be used for solving hydrodynamic and collisionless
components. It is possible to use the conjugate gradient method for the Poisson equation
solution, which is successfully adopted in the HERACLES code [17]. The use of
conformal mappings allows the construction of a moving mesh for solution detailing.

The numerical method of solving hydrodynamic equations is based on a combination
of the operator splitting approach, the Godunov method with a modification of the Roe
averaging, and a piecewise-parabolic method on a local stencil [18]. The redefined
system of equations is used to ensure a non-decrease of entropy and for speed correc‐
tions. The detailed description of the numerical method can be found in [19].

Our AstroPhi code is based on the methods in question. We have taken the Intel
Xeon Phi accelerator architecture into account for our code and controlled the scalability
using the Intel Vectorization Advisor software tool. We use the RSC PetaStream archi‐
tecture 8-node engineering prototype with 64x Intel Xeon Phi 7120D accelerators for
the simulation. Our tests show that 10% of the total simulation time is spent on MPI/
OpenMP send/receive operations. This value is suitable for massively parallel systems.

Figure 2 shows the expansion of two gas clouds after the galaxy collision. One of
the possible scenarios is realized: one galaxy flying through the other formatting two
gas clouds and H2 formation zone after the impact.
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Fig. 2. The galaxy collision AstroPhi test with chemodynamics: Initial stage (on the left),
Expansion of gas clouds after collision and H2 formation zone (on the right). In the numerical
simulation, cluster RSC PolyTechnik (32 Intel Xeon Phi 7150) with 10243 mesh during 48 h was
used.

4 Using the Integrated Approach to Solving the Plasma Physics
Problems

One of the most interesting problems in the fusion physics is the resonance interaction
of a powerful electron beam with plasma. This problem has many practical applications
such as studying the processes in the outer layers of the Sun, a fast ignition scheme in
inertial fusion and plasma heating in tokamaks.

Let us consider the required computational resources to run a 3D kinetic plasma
simulation that are necessary in the above-mentioned plasma physics problems. A rough
estimate is a mesh with 1003 nodes with 1000 particles each. A particle in a 3D case has
6 attributes: 3 double precision variables for 3 components of the coordinate vector and
for the impulse vector, finally, 48 bytes. Then this requires about 0.05 terabyte for 1
billion model particles.

The number of flops of Particle-In-Cell method consumes about 250 floating point
operations per particle (the number, of course, depends on the code details) during one
time step. This results in 2.5 TFLOPS per one time step. Usually, from 104 to 106 time
steps are required for a simulation, that is from 25 PFLOPS to 2500 PFLOPS total.

In the present paper, the following physical statement of the problem is used. The
3D computational domain has the shape of a cube with the following dimensions:

0 ≤ x ≤ LX, 0 ≤ y ≤ LY, 0 ≤ z ≤ LZ. (1)

Within this domain there is model plasma. The model plasma particles (superparti‐
cles) are uniformly distributed within the domain. The density of plasma is set by the
user as well as the electron temperature. The temperature of ions is considered to be
zero. Electrons of the beam are also uniformly distributed along the domain. Thus, the
beam is considered to be already present in the plasma, and the effects that occur while
the beam is entering the plasma, are beyond the scope of this study.

A 3D kinetic study of the relaxation processes caused by the propagation of an elec‐
tron beam in high-temperature plasma was carried out (Lotov et al., Phys.Plasmas, 2015)
using the Vlasov-Maxwell equation system.
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This problem has two different spatial scales: the Debye length of plasma and the
beam-plasma interaction wavelength, that is, some 10 or 100 times larger, thus one needs
high-performance computing to observe the two lengths at once. The numerical model
is built based on the Particle-in-Cell (PIC) method.

Figure 3 shows the heat flow of plasma electron after the beam relaxation (that is,
after beam electrons have given their energy to plasma and have mixed with plasma
electrons). The values in Fig. 3 are normed to the initial heat flow value. It is seen in the
picture that the resulting heat flow is one or two orders lower than the magnitude in
certain places in the computational domain as compared to the initial value. It principally
corresponds to the physics of the process.

Fig. 3. The heat flow in plasma after beam relaxation in the simulation. The plasma parameters
are typical of a magnetic mirror trap.

In the case under consideration the co-design begins at the stage of the physical
consideration of the problem. The absence of dramatic density modulations makes it
possible not to use the dynamic load balancing. The next stage is the numerical method
design. Here, the FDTD method was chosen to provide the memory locality. At the stage
of selecting a supercomputer architecture, the PIC method details are taken into account.
Particle data and field data are stored in the same place in RAM. At the stage of selecting
the software design tools the co-design is the following. For the PIC method, the use of
the CUDA technology is highly efficient. Other parallel technologies for hybrid super‐
computers such as OpenCL, OpenMP, OpenACC could also be used, but it is CUDA
that provides the possibility to employ the highest number of parallel processes and to
gain the highest performance. The last stage of the co-design is the adaptation of the
algorithm to the GPU architecture.

In order to attain the best scalability, the algorithm was parallelized by means of the
mixed Lagrange-Eulerian domain decomposition; the details can be found in (Snytnikov
A.V., Procedia Comp.Sci. 2009). The parallelization efficiency exceeds 90% for 500
nodes [5], the simulations were conducted with “Lomonosov” supercomputer in
Moscow State University, the mesh size in plasma simulations 100 × 4 × 4, 10 thousand
model particles in each cell.

Considering the energy efficiency, one must notice that GPUs are not just faster, but
they also consume less energy per Flops. In such a way, the Particle-In-Cell plasma
simulation with GPUs is at least one order of magnitude better in terms of the energy
efficiency. The algorithm was also implemented for GPU clusters. The particle push (the
most time-consuming part of the algorithm) is computed 160 times faster with Nvidia
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Kepler K40 and 4000 times faster with Nvidia P100 (Pascal) as compared to one core
of the Intel Xeon E5450 processor. The simulations with Kepler architecture were
conducted in the Siberian Supercomputer Center, the mesh size is 1003, 100 model
particles in each cell, and test runs with Pascal were conducted with Nvidia cluster.

The integrated approach applied to the plasma simulation results in more portable,
better scalable and energy efficient codes because of bearing in mind all the three issues
all the time when solving the problem.

5 The Results of Using the Integrated Approach

The development of power-efficient algorithms is one of important problems on the way
to exascale computations. The CPU power modeling [20, 21] and the code level power
efficiency optimizations [22] are well-studied issues. The results in [23] show that the
computation performance is unaffected by a decrease in the CPU frequency, i.e. the
execution time is independent of a change in the CPU frequency, but the power efficiency
has been significantly improved with each frequency step as the CPU frequency changes
from 2.67 to 1.60 GHz for the matrix multiplication algorithm on an ordinary Intel Core
i7 CPU. However, for GPU computing, the paradigm of power modeling research and
code optimization must change to incorporate such parameters as CPU efficiency, GPU
efficiency and Bus efficiency between GPU and CPU.

Taking into account the above features for the geophysics code, we have attained 9
GFLOPS/W and 12 GFLOPS/W energy efficiency for the displacement problem and
the stress problem tests, respectively, on Nvidia Tesla K40M GPU. We have also
achieved 4.3 GFLOPS/W and 4.5 GFLOPS/W energy efficiency for the same problems
on Nvidia Tesla 2090M GPU without changing the code. Figure 4 shows arithmetic and
logic unit (ALU) utilization as well as memory utilization for the displacement problem
solver of the geophysics code (on the left) and for the stress problem solver of the
geophysics code (on the right).

Fig. 4. The ALU and memory utilization for the geophysics code.
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For carrying out the simulation of execution of a parallel algorithm, let us present
the computational process as a set of threads that are executed in parallel at an individual
node and which interact with each other through the exchange of values (messages).
The main characteristic of threads is the execution time and the time of data exchange
with another computing node. For the simulation of execution of computational
processes on supercomputer a model of the interaction of certain process threads is
composed. In the model, the calculation and communication blocks are separated for
each thread.

Scalability is an important parameter with regard to the HPC-oriented algorithm
efficiency. Scalability criteria are algorithm-dependent, for grid-based numerical simu‐
lations it keeps the execution times being constant with a simultaneous increase both in
the number of node and simulation area size.

The thread interaction model is used for the multiagent simulation of the computa‐
tional process. Threads are grouped according to their common behavior: the compu‐
tations and the data exchange. For each thread group there is a class of software agents
simulating computation blocks execution and message passing, each with a corre‐
sponding number of instances. It is worth noting that the AGNES simulation system
allows any functional agents to exchange messages through a “yellow pages” service
[8], which supports any thread interaction topologies.

The scalability of the resulting algorithms has been tested using the AGNES simu‐
lation system. We have considered utilizing GPU-equipped supercomputers for solving
the elastodynamic problem, GPU and MIC architectures for solving the astrophysical
problem, and MPP and GPU architectures for the plasma physics problem.

The results of the research into the numerical simulation scalability of the elastic
wave propagation problem in complex media are presented in Fig. 5. Two algorithms
that solve this problem in two ways are studied. From the figures it is clear that the
scalability of the two approaches slightly differs, and both algorithms are suitable for
execution on a large number of cores.

Fig. 5. The scalability of numerical modeling of the elastic wave propagation problem in complex
media based on the AGNES simulation. The real calculations for verification were performed with
the Siberian Supercomputer Center.

The results of the research into the numerical simulation scalability of 3D gas objects
in a self-consistent gravitational field are shown in Fig. 6. The solution of this problem
is studied on various types of computing nodes. As can be seen from the graphs, the
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algorithm shows a fairly good scalability. A better scalability is attained in calculations
on nodes with accelerators from NVIDIA Kepler K40 and Intel Xeon Phi.

Fig. 6. The scalability of numerical modeling of 3D gas objects in a self-consistent gravitational
field based on the AGNES simulation. The real calculations for verification were performed with
“Polytechnic RSC PetaStream” supercomputer in St. Peterrsburg State Polytechnical University.

The results of the research into scalability of the numerical simulation of the inter‐
action of an electron beam with plasma are shown in Fig. 7. As a step of forming the
full matrix current density charge and the necessary exchange of values “all-with-all”,
it is noticeable that these exchanges significantly reduce the efficiency of the algorithm.
The solution to this problem is investigated on different types of computing nodes. As
can be seen a fairly good scalability is attained in calculations on nodes with accelerators
from NVIDIA Kepler K40.

Fig. 7. The scalability of numerical modeling of the interaction of an electron beam with plasma
based on the AGNES simulation. The real calculations for verification were performed with
“Lomonosov” supercomputer in Moscow State University.

6 Conclusion

In this paper we propose the integrated approach to the development of algorithms and
software for solving physical problems demanding a large amount of calculations. For
the purpose of the co-design, we have made a comparison of the developed parallel
implementations of solutions with the elastodynamic problem written in different terms
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for the hybrid clusters, equipped with graphics cards. The Godunov method with a
modification of the Roe averaging, and a piecewise-parabolic method on a local stencil,
has been chosen from several different approaches to solving the astrophysical problem.
A similar approach has been taken for the plasma physics problem. The scalability of
the resulting algorithms has been tested using the AGNES simulation system. In our
case, it is possible to determine carrying out the simulation the optimal number of cores
for a specific architecture. This allows investigating the algorithm scalability without
resorting to direct time-consuming computations. The energy efficiency of the algorithm
for the elastodynamic problem has been investigated on supercomputers equipped with
Tesla 2090M and K40M GPUs.

As a result, a suite of parallel programs for solving physics problems has been
developed based of the described approach. It is capable of carrying out 3D simulations
in acceptable time, provided the resources are sufficient.
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Abstract. The SL-AV global semi-Lagrangian atmosphere model is applied to
the operational medium-range weather forecast at Hydrometeorological center of
Russia. The works on increasing the code scalability and using future computer
architectures are described. The scalable parallel multigrid algorithm for solving
the linear algebraic equations systems is implemented. It is expected that the
multigrid algorithm will be used instead of direct algorithm based on fast Fourier
transforms requiring global communications. The results for convergence and
strong scalability of the multigrid method are given.

The parallel scalability of the low-resolution versions of the SL-AV model
for both seasonal and climate simulation has been evaluated at computer systems
based on Intel Xeon Phi 2 (Knights Landing) processors. The results show a
practical possibility to use these processors for the global atmosphere modelling
with the efficiency comparable to the classical cluster systems.

Keywords: Global atmosphere model · Numerical weather prediction · Climate
change modeling · Scalable algorithms for solving elliptic equations · Massively-
parallel implementation of the atmosphere model

1 Introduction

Numerical weather prediction (NWP) atmosphere models require huge computer
resources. The modern global NWP model has the resolution of about 10 km and about
100 vertical levels, thus the problem dimension is approaching 109. Operational appli‐
cation of an NWP model requires the 24-hour forecast be computed in 5–20 min. This
means that atmosphere model should use efficiently up to 105 processor cores.

SL-AV is the global atmosphere model developed at the Institute of Numerical
Mathematics, Russian Academy of Sciences (INM RAS) in cooperation with the Hydro‐
meteorological centre of Russia (HMCR) [1]. SL-AV is the model acronym (semi-
Lagrangian, based on Absolute-Vorticity equation). The SL-AV model is applied to the
operational medium-range weather forecast at Hydrometeorological center of Russia. It
is also used as a component of the long-range probabilistic forecast system. The
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dynamical core of this model applies the semi-implicit semi-Lagrangian approach
allowing time steps several times larger than in Eulerian methods [2]. The most part of
subgrid-scale parameterizations is adopted from ALADIN/LACE model [3, 4].

SL-AV model uses a combination of MPI and OpenMP technologies. Description
of the dynamical core and parallel implementation is given in [2]. Briefly, each MPI
process performs computations in the band of grid latitudes during the first phase of the
time-step. OpenMP threads are used to parallelize loops along longitude dividing the
latitude belt into a number of parts. The second phase of SL-AV time-step consists in
solving linear systems of equations using direct solvers in the space of Fourier coeffi‐
cients obtained after Fast Fourier Transforms in longitude. To apply these direct solvers,
the set of Fourier coefficients from all grid latitudes are gathered in the memory of
specific MPI-process using data transposition. Each MPI-process performs computa‐
tions for set of longitude Fourier coefficients from pole to pole. OpenMP parallelization
of loops in vertical is applied.

Currently, the SL-AV code runs at 3024 cores with 70% efficiency, at 4536 cores
with 63% efficiency, and at 9072 cores with 45% efficiency (while comparing with 512-
cores run). This is achieved for the grid of 3024 by 1513 points in longitude and latitude
respectively. This grid corresponds to 13 km resolution at the equator and has 51 levels
in vertical. The data transpositions before and after the solution of elliptic problems
require global communications between the processors. This will become a problem on
future massively parallel computers. Therefore, the work has started to implement scal‐
able iterative grid-point solvers. It is known that iterative solvers for elliptic problems
can scale up to tens of thousands processors [5]. The second part of the SL-AV dynamical
core is the semi-Lagrangian advection that is also known to scale up to 104 processors
[6]. The replacement of the direct solver for elliptic equations on the sphere based on
Fast Fourier Transforms with the multigrid solver is presented in Sect. 2 of this paper.

Recently, the application of relatively cheap massively parallel accelerators such as
GPU or Intel Xeon Phi in different areas of mathematical modelling gained increased
popularity in the world, especially in molecular dynamics, chemistry, electrodynamics,
astrophysics etc. This was due to growing demand for computer power, from one side,
and known limitations of growth for traditional cluster systems, from the other side.
However, the applications of such systems in atmosphere modelling so far have been
limited. The part of the problem is that the most part of the atmosphere models is written
in different dialects of Fortran language and have very complex code (typically,
hundreds of thousand lines) so they are not suited for GPUs. Contrary to computer
systems with GPU that do not reasonably support Fortran codes, Intel Xeon Phi systems
allow using Fortran. The previous generation of Intel Xeon Phi (codename Knights
Corner) was designed as a coprocessor so had certain limitations, for example, on
memory exchange between host and coprocessor. The recent introduction of cluster
systems based on standalone many-core Intel Xeon Phi 2 processors opened a possibility
to implement the existing parallel atmosphere model Fortran code directly, without any
change. So the second problem considered in this paper is a study on possibility to run
the existing SL-AV code at the Intel Xeon Phi processor systems. The first results avail‐
able today are presented in Sect. 3.
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2 Implementation of the Multigrid Solver in SL-AV Model

2.1 Problem Statement

The SLAV model uses semi-implicit semi-Lagrangian time integration scheme [7]
applied to dynamics equations formulated in terms of (vertical component of the)
vorticity- (horizontal) divergence [2]. After discretization in space, this approach leads
to the set of 2D elliptic equations for each vertical level to be solved at each time step.
First, Helmholtz equations are solved to obtain divergence field at the new time level:

(
K2 − ∇2)S = H (1)

K is the constant depending on vertical level, ∇2 is the horizontal Laplace operator
on the sphere, S is a vector variable related to the divergence at the new time level by
the linear equation D = VS, V being known matrix. Then the relative vorticity ω at the
new time level is calculated and Poisson equations are solved to obtain streamfunction
and velocity potential 𝜓 ,𝜒.

∇2𝜒 = D, (2)

∇2𝜓 = 𝜔. (3)

The horizontal wind velocities are then restored using relations

u = −
1
a

𝜕𝜓

𝜕𝜑
+

1
a cos𝜑

𝜕𝜒

𝜕𝜆
, (4)

v =
1

a cos𝜑
𝜕𝜓

𝜕𝜆
+

1
a

𝜕𝜒

𝜕𝜑
. (5)

Currently, the abovementioned equations are solved in the space of longitudinal
Fourier components in the SL-AV model. This means that all the derivatives in longitude
are replaced by multiplication by the corresponding coefficients. Compact fourth-order
differences are used to approximate the derivatives in latitude. Thus, a 2D equation on
the sphere is replaced by the set of 1D linear systems of equations solved by block-
tridiagonal version of Thomas algorithm. The parallel implementation of this approach
requires data transpositions (hence global communications between MPI processes)
before and after these solvers and is a principal obstacle in implementing 2D MPI domain
decomposition in this part of the model. The 1D domain decomposition currently used
in the SL-AV model code limits the number of the MPI processes by the number of grid
points in latitude.

We present here the results of implementing 2D finite-difference approximations for
Helmholtz and Poisson equations described above. The arising linear systems of equa‐
tions are solved with previously implemented multigrid parallel algorithm [8].
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2.2 Discretized Equations and the Algorithm

Geometric multigrid with V-cycle [9] is chosen as a base algorithm for the new solver.
Intergrid operators are bilinear interpolation and 8-point full weighting. Gauss-Seidel
method with red-black ordering is used as a smoother. At the bottom level of the V-
cycle, the matrix is inverted with BICGstab solver [10]. We use conditional semi-coars‐
ening approach [11] to account for the anisotropy of the regular latitude-longitude grid
near the poles.

Compact finite differences used in solvers in the current version of SL-AV code are
not well suited for parallel solver because they imply global dependence of the derivative
on values of the function. Thus they are replaced with the local second-order approxi‐
mation in the solvers. When applying conditional semicoarsening procedure [11], the
resolution in latitude becomes irregular. Let us define grid latitudes 𝜑j, j ∈

[
0, N𝜑

]
 with

arbitrary spacing and a constant mesh size in longitude h𝜆 =
2𝜋
N𝜆

 where Nλ, Nφ are grid

dimensions in longitude and latitude respectively. Let us denote

(6)

The second-order finite-volume approximation from [12] is used to discretize
Laplace operator. Except for the pole points, it is written as

(∇2𝜓)i,j =
1
Vj

(
dS𝜑,j

𝜓i+1,j − 2𝜓i,j + 𝜓i−1,j

h𝜆 cos𝜑j

+

(
𝜓i,j+1 − 𝜓i,j

h𝜑

dS𝜆,j+1∕2 −
𝜓i,j − 𝜓i,j−1

h𝜑

dS𝜆,j−1∕2

))
. (7)

For the pole grid points, the following formulae are used

(8)

(∇2𝜓)N = −
1

a2

(
1 − sin

𝜑N𝜑
+ 𝜑N𝜑−1

2

)
h𝜆

∑
i

𝜓N − 𝜓i,N𝜑−1

h𝜑

dS𝜆,N𝜑−1∕2 (9)

In order to reconstruct the horizontal velocity field, the standard fourth-order finite
difference formulae are used to approximate derivatives in longitude and in latitude,
except for latitudinal derivatives near the poles where third-order formulae are used.

2.3 Convergence and Scalability

Convergence of the implemented multigrid solver for equations described in Sect. 2.1
is studied for different grid resolutions between 128 × 64 and 2048 × 1024, and different
number of iterations for smoothing operator. There is practically no convergence
dependence on the problem size when using two iterations of pre- and post- smoothing.
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The algorithm scalability is studied at MVS10P cluster system installed at Joint
Supercomputer Center (Moscow, Russia). This system is based on two-processor nodes
with Intel Xeon E5-2690 8-core processors. The strong scalability for problems with
grid sizes 512 × 256 × 28 and 2048 × 1024 × 51 is studied. These grids approximately
correspond for different version of the SL-AV model. Parallel speedup with respect to
16 processor cores is presented in Fig. 1. One can see that the problem with the size of
512 × 256 × 28 scales up to 256 cores with the efficiency more than 50%. The problem
with the size of 2048 × 1024 × 51 scales efficiently up to at least 1024 processor cores.

Fig. 1. Strong scalability of the multigrid solver.

2.4 Implementation in the SL-AV Model

The discretization and the algorithm described above are implemented in the SL-AV
model. To test the accuracy of the new algorithm, a series of 31 numerical weather 72-
hour forecasts starting with initial data of each day of January 2014 at 12 h UTC is
calculated. The model version with the resolution 0.9° in longitude, 0.72° in latitude and
28 vertical levels is used. The grid dimension is 400 × 251 × 28. The averaged over
series root mean squared errors for forecast of geopotential heights at 850, 500 and
250 hPa are depicted in Fig. 2 for forecast lead times of 24, 48 and 72 h. The errors are
averaged over Northern extratropics (20–90 N). One can see that the new solver
presented above slightly reduces forecast errors of the SL-AV model as compared with
the ‘standard’ direct solver. Similar results are obtained for other regions. Also, the tests
have revealed that it is sufficient to reduce the norm of the residual by 104 times that
corresponds to 1 to 3 V-cycle iterations.
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Fig. 2. Root-mean squared geopotential errors averaged over 31 forecasts and Nortern
extratropics for the standard SL-AV version (red) and the SL-AV model with multigrid solvers
(blue). Green boxes mean that the results are statistically significant. (Color figure online)

3 Testing SL-AV Model Code at Intel Xeon Phi 2 Systems

3.1 Model Configurations and System Description

Based on growing requirements for computer resources related to the ongoing devel‐
opment of the climate version of the SL-AV model, we have studied possibility to run
the existing SL-AV code at the Intel Xeon Phi many-core processor systems. It is essen‐
tial that no changes were made to the parallel program complex working at ‘traditional’
x86-based clusters. The two model versions having different resolution are tested. The
first version has the horizontal resolution 0.9° in longitude, 0.72° in latitude and 28
vertical levels. The horizontal resolution of the second version is 0.56° in longitude,
0.45° in latitude, 50 vertical levels. The problem dimensions are thus 400 × 251 × 28
and 640 × 401 × 50 respectively.

The cluster system based on Intel Xeon Phi 2 processors is used. Each node contains
processor 7250 (codename Knights Landing or KNL) with 68 cores allowing up to 272
hyperthreads. There are 16 Gbytes of fast MCDRAM memory and 48 Gbytes of DDR4
memory, Intel Omnipath interconnect allowing up to 100 Gbytes per second transfer
rate. The peak node performance is about 3.04 Tflops. At the time of writing this paper,
only three-node cluster was available for tests. Currently, more nodes with such
processors are being installed at Joint Supercomputer Center RAS in Moscow, so such
tests allow preparing for a proper use of these resources.

3.2 Results and Conclusions

The elapsed times for the SL-AV model time step as a function of hyperthreads number
are depicted in Fig. 3 for 400 × 251 × 28 version and in Fig. 4 for 640 × 401 × 50
version. The model time step here comprises one time step calling solar and longwave
radiation computations and three time steps without radiation computations. The number
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of hyperthreads is the product of the MPI processes number by OpenMP threads number.
Red dots correspond to one 68-core processor, blue dots correspond to two processors,
and green ones correspond to the use of three processors. The comparison with the results
obtained with RSC Tornado Intel Xeon E2690 cluster installed at Roshydromet’s Main
Computing Center is presented at the same plots in black lines. Vast variety of dots
illustrates a strong dependence of the elapsed time on chosen combination of MPI
processes and OpenMP threads. The optimum configurations are marked with solid
lines. The black dashed line corresponds to linear scalability. The following conclusions
can be made upon inspecting Figs. 3 and 4.

Fig. 3. Scalability of SL-AV model code with 400 × 251 × 28 grid for different combinations of
MPI processes and OpenMP threads. See text for details.

The SL-AV model code for tested versions scales at KNL processor systems similar
to classical x86-based systems if an optimum combination of MPI processes and
OpenMP threads is used. The absence of significant jumps in the scalability curve when
increasing the number of KNL processors shows sufficient interconnect exchange rate.

The efficient use KNL requires good code vectorization. One can see from Figs. 3
and 4 that increasing the number of hyperthreads at single KNL processor slows down
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the execution of 28-level version while 50-level version continues to accelerate. The
last result can be explained by the specifics of SL-AV parallel code. Indeed, 1D MPI
decomposition in latitude is supplemented with OpenMP parallelization along longi‐
tude. The innermost vectorizable loops in many computationally demanding model
blocks are in longitude or in the vertical and increasing both dimensions improves
vectorization.

The results demonstrate the possibility to use Intel Xeon Phi 2 processors and cluster
systems based on these processors for SL-AV model computations. Important points
needed to achieve good performance are the choice of proper combination of numbers
of MPI processes and OpenMP threads and good code vectorization.
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Abstract. As a result of a large amount of computational experiments on a
number of supercomputer resources quantum-chemical and molecular dynamic
modeling of various nanocomposite components of Li-ion power sources was
performed. Various aspects of transport, structural and energy processes inside
LPS during numerous cycles of charging and discharge were simulated. By tools
of molecular dynamics estimated influence of various external conditions on
structure of nanocomposites and characteristics of above-stated processes.

Keywords: Computer simulation · Silicon-carbon nanocomposites · Solid
electrolytes · Li-ion power sources · VASP applied package · Quantum chemistry ·
Molecular dynamic

1 Introduction

In this article the main results of works on the project “Computer simulation of absorp‐
tion and transport properties of solid electrolytes and nanostructured electrodes based
on carbon and silicon in Li-ion power sources” are summed up. The aim of this project
is the supercomputer simulation of quantum-chemistry and molecular dynamics of new
nanocomposite materials (based on silicon and carbon) and solid electrolytes with high
ionic conductivity, as well as non-reactive electrode materials during operation of a
current source. Also, transports, structural and energetic processes occurring in the
modeled nanostructures and at the “interface” between them have been simulated.

Li–ion power sources (LPS) are currently the most promising and common types of
power sources and batteries. LPS are based on the transport of Li-ions through a liquid
or solid electrolyte from cathode to anode (and back when charging). The design of new
types of LPS is needed to improve their efficiency parameters, such as energy capacity,
number of charge-discharge cycles, resistance to external conditions (temperatures),
safety of their production and utilization from an environmental point of view, and cost
(prime cost of materials in main components).

Here is a brief description of the operating principle of Li-ion power sources (Fig. 1).
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Fig. 1. Schematic diagram of a Li-ion power source

The following reactions occur in a Li-ion power source during charge:

The reverse reactions occur when discharging. Therefore, the modeling of lithiation
processes (saturation of the anode by lithium == discharge process) and delithiation
(lithium ions return to electrolyte and cathode == charging process) is basic for a
comprehension of processes of functioning of LIA in general, estimation of the limiting
factors and prediction of the most perspective nanocomposite materials.

Simulated materials should be the basis for the design and creation of new types of
electrochemical and ecologically safe Li-ion power sources (LPS). These power sources
will be able to operate at low and medium temperatures, provide significantly higher
energy densities, and improve operational and cost characteristics.

The synthesis of new nanocomposite materials, the study of their properties and
predictable applications are only possible as a result of a detailed computer modeling
of crystalline composite structures, elementary processes and different mechanisms of
chemical reactions and transport processes at molecular level.

Experimental studies of factors having a major influence on the solution of the issues
listed above are complex, expensive, not always possible, and in most cases, do not give
clear answers to the following questions: mechanisms of ongoing physical and chemical
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processes, reasons for their differences depending on the composition of the system and
external conditions, possible directions of reactions, etc.

The experimental (analogue) simulation of the influence of various factors on the
properties of the constituent components of Li-ion power sources and the processes
occurring in them poses labor-intensive and costly tasks.

Since experiments give only initial and final information about processes, it is quite
difficult to build a genuine analytical model. Such tasks can be solved partially in labo‐
ratory conditions, where analytic experiments give incomplete or indirect information
about mechanisms and structures of experiment components. However, modern numer‐
ical methods of quantum-chemistry and molecular-dynamics simulation can provide
substantial assistance in determining the characteristics of processes and assessing the
impact of individual factors with a high degree of accuracy. These methods allow
obtaining new theoretical data on the structure and properties of both nanostructured
cathode-anode systems and ion-conducting solid electrolytes, making it possible to
subsequently develop new highly effective materials for electrochemical devices.

A detailed simulation of elementary processes as well as mechanisms of lithiation/
delithiation and ion-transport processes in Li-ion power sources at the micro level leads
to a better control over chemical reactions occurring in them, allowing to design the
most appropriate anode materials in terms of efficiency of electricity generation, lithia‐
tion processes, stability of materials during numerous charge-discharge cycles, cost of
LPS constructive materials and environmental recycling processes.

Also, the created models can be reviewed for adequacy by comparing them (and the
properties of materials modeled on their basis) against observable analytical, experi‐
mental and theoretical data published in specialized literature references.

For this task, the authors carried out a detailed quantum-chemical and molecular
dynamic simulation of various nanosystems based on carbon and silicon, as well as solid
electrolytes with high ionic conductivity, both in cluster approximation and for periodic
boundary conditions with projector-augmented wave (PAW), using VASP, CPMD and
Gaussian application packages on a number of high-performance computing resources
[1–3].

The objects of the computer simulation are composites based on carbon and silicon,
which have the ability to repeatedly absorb Li without damage and are promising mate‐
rials for Li-ion power sources (nanoclusters, nanotubes, nanowires, nanopapers and
active crystal surfaces). Also objects of this computer simulation are solid electrolytes
with high ion conductivity based on glasses, salts and polymer composites that do not
react with the electrode material during operation of a current source.

Some simulation experiments were conducted using authors’ computer system based
on up-to-date software packages for quantum-chemistry and molecular dynamics,
“hybrid” computing technologies, web services, data storage, visualization of results,
etc. Using high-performance resources (supercomputers, problem-oriented clusters and
hybrid systems) would greatly improve the details and the quality of the created models
of nano-objects and those of the processes accompanying them, and would also allow
to solve tasks previously inaccessible due to their computational complexity.
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2 Simulation Methods

The models of nanocomposite materials and processes occurring in them were
constructed by methods of quantum chemistry computer simulation on the clusters of
the Computation Center at the Institute of Problems of Chemical Physics (IPCP) and at
the Supercomputer Center of Moscow State University “Lomonosov” [4], using the
applied software packages VASP (Vienna Ab initio Simulation Package, https://
www.vasp.at) and CPMD (Car-Parinello Molecular Dynamics, http://www.cpmd.org)
for the calculation of complex nanostructures and the dynamics of their behavior
depending on time and temperature.

The VASP applied package has been used by the authors during a long time for
modeling materials and components of complex electrochemical objects. This package
is applied to the simulation of various processes both in the volume and on the surface
of solids (first of all, catalysis and ionic conductivity) within the non-empirical
approaches based on the use of density functional theory with periodic boundary condi‐
tions and a plane wave basis set. VASP allows to optimize the structures and to model
processes within a molecular dynamics framework.

VASP implements effective schemes of iterative matrix diagonalization and the
highly efficient Broyden–Pulay electronic charge density mixing. In addition, the MSP
processes convergence procedure (self-consistent field) and optimization are signifi‐
cantly improved, which greatly increases the efficiency of calculations. This package
provides a good accuracy of description for structural and energy characteristics of
systems containing up to several hundred atoms. First of all, we conducted a full opti‐
mization of the geometric and energy parameters of molecules under consideration
within the established basis and method of calculation.

In this paper, we applied an approach based on density functional theory (DFT) with
periodic boundary conditions to simulate learning systems. We applied the projector-
augmented wave (PAW) with the corresponding PAW pseudopotentials and PBE func‐
tional (Perdew–Burke–Ernzerhof). The limit of energy (Ec) defining the completeness
of the basis set was established at 400 eV. When simulating two-dimensional plates, the
vacuum layer between them was not less than 10 Ǻ. To simulate the Li10GeP2S12 elec‐
trolyte volume, we used a canned double cell Li20Ge2P4S24 involving 50 atoms; for the
simulation of the surface, four such cells (200 atoms) were used.

To solve the problem of interaction of the surfaces between electrodes and electro‐
lytes, we modeled (with full optimization of geometric parameters) a structure contin‐
uously propagating in two directions, solid electrolyte fragments (propagated
Li80Ge8P16S96-fragment), a silicon-carbon paper (propagated Si32C38-fragment) and the
result of their interaction (propagated [Si32C38]*[Li80Ge8P16S96]-fragment).

In the case of polymer electrolytes, we modeled (with full optimization of geometric
parameters) the structure of infinite nanowires of LiNafion*nDMSO (n = 0,1,8,16), and
also spatially propagated fragments of Li(C15O5F29S)*n(H6C2OS) and
[Li(C15O5F29S)*n(H6C2OS)]2 of 51 to 262 atoms.

For the optimization, we applied the Methfessel–Paxton method of electronic state
(with blur parameter (σ) 0.2 and energy approximation of the value σ = 0). This approach
allows for the automatic detection of system’s multiplicity. The estimate of energy
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stability of combined systems was determined according to De/n(Li), computed as the
difference between the calculated energy of the system and the total energy of isolated
lithium atoms divided by the number of atoms of adsorbed lithium, for example, De/
n(Li) = -[E((SiC)kSimLin) - E((SiC)kSim) - nE(Li)]/n.

We used two approaches for the simulation of transport processes in the framework
of an ab initio non-empirical molecular dynamics with periodic boundary conditions:
CPMD (Car-Parrinello approximation), in which the calculated wave function for the
starting configuration is approximated by a set of classically-moving low-mass particles,
and a more accurate but slower approximation, namely MD-VASP (MD/PBE/PAW),
which uses the same algorithms as normal optimization structures, but with rougher
calculation criteria.

Generally, the use of MD-VASP allows a substantially faster simulation than CPMD.
MD-VASP requires about 6 to 8 times less computation steps to achieve the same pene‐
tration depth.

3 Computational Complexity and Efficiency of Calculations

In earlier times, similar computer simulations were hindered by a catastrophic lack of
computing resources, since calculating the behavior of small atomic clusters of the
Si7-126 type, even in a simplified form, required months, and modeling systems as a whole
(containing thousands of atoms) required approximately n·106 CPU-hours per year.

Only in recent times, the same simulation became feasible using high-performance
supercomputing centers and grid polygons. Currently, the use of computing resources
with speeds of the order of teraflops and petaflops allows to make sufficiently detailed
simulations of geometrical and energy characteristics of modeled nanostructures. It is
also possible to study the effects of various factors and processes occurring in these
nanostructures for a variety of conditions determining the efficiency of the created LPS.

Let us summarize the computational complexity and use efficiency of computing
resources in the process of quantum-chemical simulation of learnt structures. We used
the IPCP cluster (15 teraflops: 176 dual-node HP Proliant, making a total of 1472 cores
based on 4- and 6-core Intel Xeon processors 5450 and 5670 3 GHz, 8 and 12 GB of
RAM per node; InfiniBand DDR communication network, transport and network
management – Gigabit Ethernet; hard drives – no less than 36 GB per node), and the
SCC of MSU supercomputing installations “Lomonosov-1,2” having various pools of
processors (8 to 128 CPU) with obligatory presence of local drives and no less than 2 GB
of RAM per core.

A sufficient effective acceleration of the VASP package for this type of tasks was
observed for 40 to 48 CPU. The further growth of the efficiency of task parallelization
is limited (or even reduced) by the rate of data exchange due to a significant increase in
the amount of data being transferred between nodes. Thus, increasing the number of
CPU over 48 (at least for this task variant) is meaningless for the moment. If the number
of processors is more than 64, the dependence of the acceleration on the number of
processors is practically absent or even falls [1].

The Supercomputer Simulation of Nanocomposite Components 303



The average effective time for calculation of Sin clusters (n = 2÷350) and CnSim
nanofibers increases as the dimension of the silicon-carbon fragment increases, taking
up to 4 days (78 h on a pool based on 4-core Intel Xeon 5450 3 GHz processors) and
even more (due to complications of the structure). The calculation time of lithiated large
mesostructures of silicon and aggregates reinforced with nanotubes or nanowires took
tens of days to complete.

The most critical calculation parameter is the amount of RAM per core, with an
effect of acceleration of calculations with a decrease in the number of allocated cores
by increasing the amount of RAM per core. For MD calculations, we used 14 000 steps
per calculation (for example, heating up to 400 K for 2000 steps, holding at 400 K for
10 000 steps, cooling down to 10 K for 2000 steps, and optimizing the structure in
standard mode; the time step model was 1 femtosecond). The calculation of complex
structures, such as those described in Sect. 4.6, requires up to 80 000 CPU-hours.

In the latest versions of VASP, starting with version 5.4.1 (February 2015), the
application package supports CUDA technology for the calculation method of standard
and hybrid DFT (Hartree–Fock equation). For most tasks, using DFT on Tesla C2075
accelerators at the IPCP, we achieved (comparing VASP versions with support and
without support of GPU acceleration on hybrid workstations with combination – 1 GPU
with 2x6 cores CPU) 1.6- to 6-fold accelerations depending on the dimension of the
problem and its type. This gives the prospect of a significant acceleration for VASP
calculations on “hybrid” computing nodes (following VASP upgrade to versions above
5.4), including existing CPU-GPU pools on the SC “Lomonosov-1.2” and hybrid IPCP
stations (in experiments we use combination 1 GPU Nvidia Tesla C2075 plus 2x6 CPU
3.46 GHz Intel® Xeon® X5675, 48 Gb RAM). In addition to upgrading VASP, it is
necessary to do a further reconfiguration of VASP settings files, and update CUDA
library to version 7.5 (current version: 8.0).

The total number of computing experiments performed at all stages of the work reached
more than 2000. If to speak about use of computing resources, then it is estimated as
follows: SC “Lomonosov-1” (+”Chebyshev”) – about 40-45% of experiments, IPCP
cluster – 50%, IPCP and IEM workstations with GPU Nvidia support – 2-3%, MVS-100 –
single experiments.

4 Simulation Results

The results of the multi-step simulation have been described in detail in a number of
publications by the authors of the present work [5–10]. Here is a brief description of the
most representative results of the computer simulation of nanostructures and processes
occurring in them.

4.1 Computer Simulation of Various Types of Porous Nanocomposite Materials
Based on Carbon and Silicon

Computer models of the following types of Si–C nanocomposites have been constructed
by the authors [1, 5, 6]:
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1. pure silicon aggregates with different morphologies (clusters of “snowballs”, “core/
shell”, etc., size up to 3 nm), and a number of silicon atoms ranging from 2 to 350;

2. silicon clusters with silicon carbide core (rod-shaped), 1.2 to 2.8 nm in diameter,
and nanofibers of SinCm type, n/m = 1÷3;

3. carbon nanotubes (CNT) with dimension (6,6) and 0.8 nm in diameter, surrounded
by a layer of silicon clusters of various dimensions;

4. silicon nanowires with a rod on the basis of silicon carbide and silicon shell;
5. infinite carbon nanofibers coated with silicon nanoclusters;
6. silicon-carbon “nanopapers”.

A conclusion following from our research is that the use of different types of simu‐
lated nanocomposites may be a promising opportunity in the construction of new types
of electrodes for LPS. Examples of the simulated nanostructures are shown in Fig. 2.

a b

Fig. 2. Examples of nanocomposites based on Si–C: a) mesoclusters Sin (n = 56÷308); b) carbon
nanotub with silicon atoms around Si288/C120. The models have been derived from the authors’
computer simulation using the VASP package (PBE/PAW level of calculation).

4.2 Quantum-Chemical Simulation of Transport Processes of Lithium Ions in
Nanocomposite Materials Based on Carbon and Silicon

On the basis of the constructed models of nanocomposites (see above), we made [7–9]
a quantum-chemical simulation of various processes occurring during charge-discharge
cycles of LPS (i.e. processes of lithiation and delithiation on electrodes based on the
above-described nanostructures). A majority of characteristics of these processes have
been established, including:

1. Li-ion transport processes and processes of lithium consistent implementation in Si–
C nanostructures of various types and dimensions;

2. structural and energetic changes of nano-objects in processes of absorption of lithium
atoms;
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3. possible paths and migration barriers for lithium atoms in the process of nanoparticle
saturation;

4. construction of models of sequential removal of lithium atoms from lithiated nano‐
particles and determination of structural and energetic changes identified in this
process;

5. determination of the limits of resistance to fracture for nanoparticles during deli‐
thiation processes.

4.3 Computer Models of Aggregation Processes of Initial and Lithiated
Nanoparticles

In LPS operation, there are aggregation processes of small nanostructures into larger
ones and vice versa, affecting greatly the characteristics of components and the whole
LPS. We have obtained computer models of aggregation processes of original and lithi‐
ated nanoparticles [8, 9], including:

1. formation of a mesostructure based on original silicon-carbon nanoparticles;
2. formation of a mesostructure based on lithiated (saturated lithium atoms) silicon-

carbon nanocomposite structures.

4.4 Quantum-Chemical and Molecular Dynamics Simulation of Highly
Conductive Solid Electrolytes

This work presents the results of the computer quantum-chemistry and molecular
dynamics simulation [10] of highly conductive solid electrolytes based on Li10GeP2S12
systems and polymer electrolytes based on LiNafion™ * dimethylsulfoxide (LiNafion *
8DMSO) with an ionic conductivity that is higher than that of liquid electrolytes.

We modeled the structures and the contact surface of superionic solid electrolytes.
In this connection, the ionic conductivity mechanism was determined during simulation.
We also defined the types of surface structure and the nature of the Li10GeP2S12 elec‐
trolyte contacts with anode nanocomposite materials (carbon fibers coated with SinCm
silicon nanoclusters and silicon-carbon “nanopaper”).

We modeled the contact surfaces of superionic solid electrolytes with different Si-
C nanocomposites. It was shown that a layer of liquid or plastic polymer electrolyte,
such as dimethylsulfoxide (hereinafter DMSO), can be used to enhance the contact
between solid surfaces. The simulated structure and its surface are shown in Fig. 3.

We constructed a computer model of interaction of solid and polymer lithium-based
electrolytes with composites based on carbon fibers and silicon nanoclusters.

Lithium transition across the interface “electrode–electrolyte”, as well as the deter‐
mination of the migration channels and the potential barrier were modeled taking as
example the interaction of solid and polymer lithium electrolytes with composites based
on carbon fibers and silicon nanoclusters.
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4.5 Simulation of Lithium Ions Migration in Non-aqueous Polymer Electrolytes

Using methods of quantum chemistry and molecular dynamics, we modeled [2, 3, 10]
various aspects of the migration of lithium ions in a complex electrolyte (LiNafion *
nDMSO, n = 0÷18) as well as the structure, stability and electronic properties of
membranes based on the electrolyte, including the effect of various parameters, such as
the degree of swelling of the electrolyte and a number of physico-chemical properties
of the plasticizer containing the molar volume, the viscosity and the coordination
number.

On the basis of the transport models, we made some conclusions on the possible
paths of lithium migration and energy parameters: (1) four-coordinated lithium transi‐
tion through three-coordinated state to the next position surrounded by four DMSO
molecules, and (2) movement of the Li(DMSO)4+ tetrasolvate complex.

4.6 Computer Simulations of Repeated Lithiation/Delithiation Cycles Depending
on the Degree of Lithium Saturation and Temperature Conditions

Along with the simulation of individual LPS components (electrodes, electrolytes) and
processes occurring at the interfaces between them during operation of the battery, a
great importance for the creation of new types of power sources is ascribed to the stability
of these elements over time in case of multiple “charge-discharge” cycles, depending
on the power capacity of the system (amount of lithium) and temperature conditions.

The molecular dynamics simulation is performed to assess the feasibility of the
composite mesostructure return to its original state after repeated lithiation/delithiation
cycles depending on the degree of lithium saturation and temperature conditions. MD-
VASP (MD/PBE/PAW) approximation is used. For MD calculations, we used 14 000
steps per calculation (for example, heating up to 400 K for 2000 steps, holding at 400 K
for 10 000 steps, cooling down to 10 K for 2000 steps, and optimizing the structure in
standard mode; the time step model was 1 femtosecond). We took as initial model the

Fig. 3. Simulated structure (a) and (b) two types of modeled surfaces (001) and (100)
Li10GeP2S12 solid electrolyte crystal
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nanocomposite models obtained in the first stages. The models are intended to illustrate
the reorganization of the Li/Si layer structure during gradual recovery of lithium from
the surface (i.e. discharge): the effect exerted by heating and subsequent cooling on the
structure of silicon-carbon delithiated nanosystems and their possible return to the initial
state according to the degree of heating of lithium and the saturation level.

The simulation has allowed to determine the most stable mesostructures for electrode
materials, the optimal ratio of Li:Si in the Si–C nanocomposites saturation with lithium,
and the best energy parameters of charge-discharge cycles. It has been demonstrated
that the introduction of lithium into silicon is energetically more favorable than the
formation of a metal layer on its surface, but increasing lithium concentrations leads to
a reduction of energy difference, i.e. the implementation is less advantageous, the mesh
of silicon atoms is broken into smaller pieces, the thickness of the absorbing layer is
significantly increased, and its structure becomes amorphous. It is important to note that
the energy in the modeled systems does not lead after cooling to stabilization to the
substantial structural rearrangement that makes LPS components more resistant.

4.7 Computer Model of Ionic Transport in Lithium-ion Batteries

We constructed computer models of ion transport using different combinations of the
three main components of LPS, namely anode, cathode and membrane (electrolyte).
These models allowed defining the basic characteristics of the energy system and eval‐
uating the properties of the target battery based on calculations of the structure and
transport properties of the electrode and electrolyte at molecular level. Comparing the
results of different simulation options, we could identify the most promising areas of
construction of lithium-ion batteries of new type and their characteristics during lithia‐
tion/delithiation.

Examples of the simulated complicate complexes “electrolyte–SinCm” of different
dimensions are shown in Fig. 4.

4.8 Estimation of Adequacy of Created Models

The assessment of adequacy, reliability and accuracy of the constructed computer
models of nanocomposite materials and processes with their participation requires
carrying out a number of tests of models by various methods.

In the model there should be no obvious contradictions to the observed physical and
chemical effects in the evolution of real simulated systems (for example, during heating-
cooling cycles) and the absence in the model of inconsistencies in the physical and
chemical state of the simulated substances (for example, the formation of metallic
lithium or the decomposition of electrolytes).

The program of tests of model includes the following methods:

1. comparison of the data obtained in the simulation with independent external data
(analytical, experimental, theoretical, reference) by comparison of the received
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parameters, for example, the average bond energy of atoms in a crystal, the param‐
eters of a crystal cell, photoelectronic absorption spectra, etc.) with earlier known
from literature or reference sources;

2. comparison of simulation data of model operation received during the work of model
in general to the data obtained earlier at model operation of separate components or
processes with their participation;

3. check of a correctness and stability of work of model when using a wide range of
various combinations of the simulated substances – nanocomposite electrodes and
solid/polymeric electrolytes at various external parameters and in the conditions of
multiple cycles of a lithiation/delithiation;

4. assessment of a correctness and independence of work of model when carrying out
computing experiments on various high-performance resources with different
versions of the computer equipment (random access and disk memory, quantity of
computed nodes, versions of the applied application packages)

The main test method is carrying out mass computing experiments on various
computing resources on the basis of the created computer model with use of a wide range
of input parameters with the subsequent analysis of the received results and selection of
data for comparison. Further, the analysis of consistency of the received results from
the point of view of physical and chemical criteria, correctness of the received results

Fig. 4. Structure models of solid electrolyte complexes Li80Ge8P16S96 (a) and polymer electrolyte
[LiNafion*8DMSO (b) with layers of Si32C38 silicon-carbon “nanopaper”
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and their comparison to independent external data or to the array of previously obtained
results of model operation which are carried out for separate components of model is
carried out. For calculated quantitative parameters, a fairly accurate numerical estimate
of the level of compliance with the directly observable data is possible.

It allows to estimate both the common adequacy of model to the simulated processes,
and a correctness of use of the received results for analytical and expected conclusions
regarding nanocomposite electrodes on the basis of carbon-silicon and solid/polymeric
electrolytes for creation of new types of LPS.

The Gaussian software package (http://gaussian.com) was used for comparison and
estimation of the accuracy of the simulation of some nano-objects at DFT/B3LYP level.
By comparing different levels of calculation, we noted that the calculated values used
in VASP and Gaussian software for average bond energies and distances of identical
objects give consistent results with accuracy of 0.02 to 0.04 eV and 0.005 to 0.01 Å,
respectively.

It should be noted that the difference of calculation results at B3LYP/6-31G (d, p),
PBE/6-31G (d, p) and PBE/PAW levels does not exceed 0–2% for distances and 1–13%
for energies. The chosen calculation level provides the following calculation accuracy
in computer models: the Si crystal lattice calculated parameters a = b = c are 5.48 Ǻ
(experimental: 5.43 Ǻ), the Si–Si distance is 2.37 Ǻ (experimental: 2.34 Ǻ), and the
energy of the crystal is 4.44 eV (experimental: 4.52 eV).

The adequacy of the computer models was also evaluated by comparing the values
calculated on the basis of their physical and chemical characteristics (optical and X-ray
spectra, thermodynamic measurements, energy parameters) with those observed in
physical experiments. For example, the calculated structural parameters for crystal elec‐
trolytes (a = b = 8.79 Å and c = 12.80) are in good agreement with X-ray experiments
(a = b = 8.72 Å and c = 12.63 Å).

5 Conclusion

Thus, on the basis of a large number (more 2000) of numerical experiments regarding
computer quantum chemistry and molecular dynamics simulation, we calculated the
structures and surfaces of solid and polymeric electrolytes of a new type for LPS, their
interaction with various nano-objects based on carbon and silicon with different
morphologies, spatial rigidity, power characteristics, saturation potential with lithium
ions. We also calculated transport processes of lithium ions (delithiation-lithiation) in
nanocomposites, including structural energy characteristics and structures evolving over
time (depending on the number of cycles of lithiation).

The model structures calculated, as well as the characteristics of electrolyte and
anode materials for LPS and their interaction during charge and discharge were used to
simulate a whole picture of lithiation and delithiation processes in Li-ion cells, the
interaction of lithium ions with the surfaces of carbon and silicon nanomaterials, the
determination of the “container” received by the anode materials, and also to model both
components and new LPS types in general.
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The simulation results will be used to determine the optimal conditions for the
synthesis and production of the most energetically favorable and industrially suitable
electrolyte and anode materials for new types of Li-ion power sources.

During the project are received the Certificate on the state registration of the database
“Database on Structures and Physical and Chemical Properties Silicon and Silicon-
Carbon Anodes for Lithium-Ion Accumulators” for No. 2016620100 and the Certificate
on the state registration of the computer program No. 2017610081 “System of visuali‐
zation of results of quantum and chemical modeling”.

For the development of the “Database on the structures and physical and chemical
properties of silicon and silicon-carbon anodes for lithium-ion batteries,” received a
diploma and a silver medal at the Moscow International Salon of Inventions and Inno‐
vative Technologies “Archimedes-2016”.

For development “The database on structures and physical and chemical properties
silicon and silicon-carbon anodes for lithium-ion accumulators” the author’s team
gained the diploma and a silver medal on the 19th Moscow International Salon of
inventions and innovative technologies “Arkhimed-2016”.
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Abstract. The direct simulation Monte Carlo method was used to numerically
simulate processes in the shock wave front in vibrationally excited hydrogen
flowing in the shock tube. The cases of partially and completely excited
hydrogen were considered. Equilibrium hydrogen was applied as a pusher gas,
but its concentration was 50 times higher than the hydrogen concentration in the
low-pressure channel. In addition, the strength of the shock wave was varied by
heating the pusher gas. Number of employed processor was equal to 274. The
modeling domain was split into 274 sub-domains, in each of which the evolu-
tion of the system was simulated with a single processor. The parameters of the
wave in the case of physical detonation become dependent on the
vibrational-to-thermal energy conversion and independent of the way of its
initiation. This served as a criterion for the appearance of the physical detonation
in the numerical experiment. It turned out that this phenomenon occurs until the
degree of pre-excited hydrogen is not less than 85% in the low pressure channel.
And the vibrational temperature is not less than 2800 K.

Keywords: Supercomputer � Simulation � Block decomposition � Vibrational
excitation � Shock tube

1 Introduction

The detonation of gas mixtures is an interesting and complex phenomenon that has been
systematically studied for more than a century [1]. The question arises as to whether
physical, rather than chemical, energy concentrated on internal degrees of freedom of,
say, vibrationally excitedmolecules may cause detonation under certain conditions. If so,
this detonation can be called physical detonation [2]. Vibrationally preexcited hydrogen
is the most appropriate gas for checking the feasibility of physical detonation [3].

Gas detonation and flow in a shock tube are very special gasdynamic processes.
Parameters of the flow change drastically in a very narrow zone with the local char-
acteristic size, L, comparable with the local mean free molecular path, k, i.e. k � L. At
the same time the local mean free molecular path is much less than the local charac-
teristic size of other parts of the flow. However, the processes that take place in the
narrow zone influence the whole flowfield. And they should be considered at the
molecular level. Generally speaking, in other parts of the flow one can restrict
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consideration by the hydrodynamic approach, but the problem of “cross-linking” dif-
ferent solution methods appears in this case. Of course, it is more correct to use a
method that makes it possible to consider all problems at the molecular level. At the
modern state of computation techniques, this can be made by the Monte Carlo
non-stationary method of statistical simulation, also known as direct simulation Monte
Carlo (DSMC). The idea of the method was proposed by Bird [4]. The method gives a
result without solving the Boltzmann equation and automatically takes into account all
details of mass and heat transfer.

Conditions of realization of the physical detonation in a shock tube have been
numerically obtained in [5]. It has been shown that the phenomenon took place in a
fully vibrationally preexcited hydrogen placed in the low-pressure channel (LPC) of a
shock tube. The cases of completely and partially excited hydrogen were considered.
The initial vibrational temperature (TV) was equal to 3000 K. It has been shown in [5]
that, if the prestored vibrational energy is weakly converted to translational energy, the
shock wave slows down over time. If the energy conversion is sufficiently intense,
when the pusher gas is warm and only completely vibrationally excited hydrogen is in
the low-pressure channel, the wave gains velocity over time (its velocity increases
roughly by a factor of 1.5). This causes physical detonation, in which case the
parameters of the wave become dependent on the vibrational-to-thermal energy con-
version and independent of the way of its initiation. The latter has been shown in [5] by
heating the hydrogen in the high-pressure chamber (HPC) to different temperatures
(TH) (439 and 585 K) that resulted in waves of varying intensity.

Below we present results which complement the results of work [5]. Namely, cases
of partially preexcited hydrogen and of lower temperatures of vibrational preexcitation
were considered.

2 Statement of the Problem

At the beginning, the LPC of a shock tube is filled with two portions of hydrogen. The
first portion is vibrationally preexcited hydrogen The rotational and translational
temperatures were assumed to be equal to room temperature T1 = 292 K. The second
portion consisted of totally equilibrium hydrogen with T1. In other words, it was
assumed that only part the hydrogen was excited (for example, by electrical discharge).
A HPC was initially filled with hydrogen as pusher gas at a much higher pressure. The
strength of the shock wave (SV) was varied by heating the pusher gas. Then the
numerical simulation of the process in the shock tube started.

3 Simulation Technique

Simulation was performed in a 1D coordinate space and a 3D velocity space using
DSMC method. The basics of shock and detonation wave simulation in a shock tube
with taking into account rotational and vibrational degrees of freedom of molecules
were presented elsewhere [6–8]. Below, we cite the simulation algorithm for the
reader’s convenience.
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A real medium (a medium to be simulated) was replaced by a set of model particles.
According to initial conditions, the particles at zero time have the given velocities and
are distributed over cells into which the coordinate space is split. It is assumed that
particle collisions are binary and may occur between the particles occupying the same
cell with a certain probability.

The evolution of the system over time interval Dt is divided into two stages: (i) the
movement of particles with constant velocities (stage A) and (ii) variation of the particle
velocities due to collisions. (stage B).

The ith model particle of species l denoted by AðiÞ
l was characterized by mass ml,

velocity c ið Þ
l ðuðiÞl ; vðiÞl ;wðiÞ

l Þ coordinate in the flow xðiÞl , and weighting factor ηl. This
weighting factor indicates the number of actual molecules represented by the given
model particle. Thus, the concentration of actual molecules in the jth cell of volume Vj

is defined as

nðjÞl ¼
X

gl=Vj

Simulation of stage A is very simple. As a result of this simulation, the new position

of model particle AðiÞ
l in the flow is given by

x ið Þ�
l ¼ xðiÞl þ uðiÞl Dt:

The impact parameter used here is the integrated cross section riklm of elastic scat-

tering between molecules AðiÞ
l and AðkÞ

m . Molecules were considered as a perfectly rigid
spheres.

We will henceforth use the following notation:

#lm ¼ maxfgl; gmg; hlm ¼ minfgl; gmg:

Here and below, the indices of numbers of particles and cells will be omitted for
simplicity whenever possible.

At stage B, the evolution of the system was simulated in several (k) steps. At each
of these steps, the interaction of pairs of particles in the cell under investigation
occurred during time period Dt* = Dt/k. Simulation of each such step was performed in
accordance with the ballot box scheme of testing. To this end, all pairs of particles in a
cell were divided into aggregates characterized by species of particles forming the pairs
(e.g., pairs of particles of species 1, pairs of particles of species 1 and 2, and so on). In
each aggregate, only one pair of particles (e.g., Al and Am) is chosen equiprobably. The
evolution of the state of the chosen pair of particles was simulated in accordance with
the scheme described below.

Step 1. The interaction of particles Al and Am was simulated with probability

Qlm ¼ Klm#lmrlmglmDt�=V
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Here, Klm is the number of pairs of particles in the aggregate under investigation.
Number k was chosen so that Qlm was slightly less than unity. If the result of the test is
negative, the next step for the given pair of particles was not made.

Step 2. Velocities of particles Al and Am were replaced by velocities after the collision
c�l and c

�
m with probabilities hlm/ηl and hlm/ηm, respectively. This is the so called

improved ballot box scheme of tests for simulating the collision stage.
This method was used to numerically simulate the problem of the shock wave front

in vibrationally excited hydrogen flowing in the shock tube. The cases of completely
and partially excited hydrogen were considered. It was supposed that unexcited H2 was
in full thermodynamic equilibrium. In the simulation, the rotational and vibrational
degrees of freedom of molecules were taken into account in the simplest terms [5, 7, 8].
An energy sink model (see Sect. 11.3 in [4]) was employed. It should be emphasized
that Monte Carlo (statistical) simulation considers the kinetic temperature as the mean
energy associated with the respective degrees of freedom of a molecule. In the case of
equilibrium over degrees of freedom, this temperature is the thermodynamic temper-
ature. Each time, at the beginning of the collision stage, the total (over all translational
degrees of freedom) kinetic translational temperature (T) was determined for the given
type of molecules in the cell. Then, at each collision adopted, the difference Di between
temperature T and the temperature of a given inner degree of freedom was determined.
Parameters Rij were set (i - is the component number, and j = 1 or 2 for rotational and
vibrational degrees of freedom, respectively). Then the internal temperature (and the
corresponding internal energy) changed in the product RijDi in the direction of
approximation to T. When the equilibrium internal energy was determined, it was
assumed that the specific heat of a molecule for the rotational and vibrational energies
equals k (k is the Boltzmann constant; in units used in the simulation, k = 0.5) and
Ri1 = 0.01. However, Ri2 depended on relative velocity g of colliding particles.
At g < 3.726 m/s, Ri2 = 0; at 3.726 � g � 9749 m/s, Ri2 = 0.00005; and, at
g � 9748 m/s, Ri2 = 0.01. The parameters of this model were selected so as to pro-
vide real values of vibrational relaxation time for H2 at different temperature. When the
post-collision velocities of a pair of particles were determined, it was assumed that the
change in the translational energy of this par of particles is equal in magnitude and
opposite in sigh to the change in the internal energy of these particles. It should be
noted that vibrational degrees of freedom of H2 are not excited when 292 К. Therefore,
the initial vibrational temperature and energy of the unexcited hydrogen in the LPC
were supposed equal to zero.

Equilibrium hydrogen was applied as a pusher gas in HPC, but its concentration
was 50 times higher than the hydrogen concentration in the LPC.

For linear size Dx of a spatial cell to be shorter than free path k of molecules in a
gas, the modeling domain in the HPC was first split into cells 20 times smaller than
those in the LPC. In the process of evolution of the system, size Dx in that part of the
LPC to which the gas is delivered from the HPC was also decreased by 20 times.

In addition, the strength of the shock wave was varied by heating the pusher gas in
HPC. Velocity D can be increased by raising the pressure drop between the HPC and
LPC. This can be done by increasing the concentration of molecules in the HPC. In this
case, however, Dx in the HPC decreases further. Correspondingly, the counting time
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increases and the number of processors exceeds a reasonable value. A more simpler
and more effective way is to raise the gas temperature in the HPC (with the number of
processors remaining the same) and upgrade the computational program to a minor
extent. The counting time will be change slightly. However, it should be noted that, if
D is too high, the temperature in the post shock flow may also rise to excess and the
change of vibrational energy will become minor again.

With the aim of using a reasonable number of model particles, the weight factor for
all particles of H2 in the HPC was taken to be equal to 5 and that for excited particles of
H2 in the LPC to 1. The weight factor for of the equilibrium unexcited hydrogen in the
LPC (ηuH) was determined from the equation:

guH ¼ 1=a� 1:

Here, a is the fraction of vibrationally excited hydrogen in the LPC.
The value of Dt was set equal to 0.04. Henceforth, t is normalized to k1/u, where k1

– k in the LPC at zero time and u = (2kT/m)0.5 is the most probable thermal velocity of
the particles in the gas medium ahead of the SW (m is the molecular mass of hydrogen).
The distance is normalized to k1. In the LPC, initially, Dx = 0.15. The linear dimen-
sions of the HPC and LPC were 4795.2 and 10873.2, respectively. The boundary
between LPC and HPC was placed at the point x = 0. At the beginning, the average
number of model particles of each sort in the cell equaled 90.

Particles are elastically reflected from the boundaries of the modeling domain.
A multiprocessor computer MBC100 K installed in the Joint Supercomputer Center

of RAS was used. Its peak performance is equal to 227.94 Teraflops. The supercom-
puter consists of 1275 computing module (10572 cores).

The block decomposition of the modeling domain was applied [6, 7]. The modeling
domain was split into 274 sub-domains, in each of which the evolution of the system
was simulated with a single processor (core). After each step of movements, infor-
mation about particles that leave sub-domains occupied by them at the beginning of the
given step and pass to neighboring sub-domains was transferred to the latter
sub-domains using the SEND and RECV procedures from the MPI library [9]. Thus, by
increasing the number of processors up to several thousand, one can extend the
modeling domain virtually without increasing the counting time (at a fixed time of the
system’s evolution), since data exchange takes place between neighboring
sub-domains. The transfer time for this information is almost independent of the
number of processors. Experience has shown [6, 7] that this organization of parallel
computation is the most reasonable.

4 Results of the Simulation

First, the simulations were carried out for cases when the fractions of vibrationally
preexcited hydrogen were equal to 0.85 and 0.75 at the vibrational temperature of
3000 K. It was shown that only the initial excitation of 85% H2 led to the physical
detonation. And it was absent for lesser degree of excitation. An increase in wave
velocity with time had occurred for a = 0.85 at TH 584, 657 and 730 K (see Fig. 1)
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Henceforth, D is normalized to u. The accuracy of determining of D values was
within ±0.05.

Figures 2 and 3 demonstrate simulation results obtained for the case when the HPC
was initially filled with completely equilibrium hydrogen heated to TH = 584 K,
a = 0.85. Simulation time t was equal to 4257.775. This time corresponds to the
moment when the front came very close to the left end of the simulation region. Profiles
of parameters in the post-shock flow (a region of a shock-heated gas in the LPC) are
shown in Fig. 2 for vibrationally preexcited H2. Figure 3 demonstrate profiles of
parameters of initially completely equilibrium hydrogen. Henceforth, concentration n is
normalized to initial concentration of vibrationally preexcited H2 in the LPC. Total

Fig. 1. Wave velocity D vs. simulation time t for TV = 3000 at different TH, a = 0.85.

Fig. 2. Profiles of concentration (n), temperature (T), velocity of the flow (v) and internal
vibrational energy of initially excited H2 (EV), TH = 584 K.
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kinetic translational temperature T is normalized to T1. Velocity of the flow v is nor-
malized to u. Normalized energy EV is given by equation

EV ¼ k TV=T1ð Þ;

where TV is the running vibrational temperature. The dimensionless initial vibrational
energy EV of the hydrogen equaled 5.14 for initial TV = 3000 K. It is necessary to
remind that k is the Boltzmann constant. In units used in the simulation, k is equal to 0.5.

Figures 4 and 5 show results obtained for the case when the HPC was initially filled
with completely equilibrium hydrogen heated to TH = 730 K, a = 0.85. Simulation
time t was equal to 3742.85. This time corresponds to the moment when the front came
very close to the left end of region of the simulation. As above, profiles of parameters
in the post-shock flow are presented in Fig. 4 for vibrationally preexcited H2. Figure 5
demonstrates profiles of parameters of initially completely equilibrium hydrogen.

Figures 3, 4 and 5 illustrate the flow picture when high wave velocity was already
installed. The profiles of flow parameters in the post-shock flow coincide with each
other with accuracy of statistical dispersion at TH 584 and 730, despite the varying
intensity of the initial shock waves. The profiles of parameters obtained at TH 675 K
give that kind of same picture. And they are not shown in the article. All these results
convincingly testifie to the achievement of the physical detonation.

Next, simulations were carried out for initial excitation of 85% H2 to the vibrational
temperatures 2900 and 2800 K. Figures 6 and 7 demonstrate the growth of wave
velocities over simulation time and achievement their stationary values. Figure 6 shows
the dependence of wave velocity on the simulation time at TH 584 and 675 K for
TV = 2900 K.

These results and the corresponding profiles of flow parameters in the post shock
flow at high D (for example at t more 4000) testifies to the achievement of the physical

Fig. 3. Profiles of n, T, v and EV of initially equilibrium H2, TH = 584 K.
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detonation. The correspondent profiles at TH 584 and 657 K are very similar to each
other as above (see Figs. 3, 4, 5 and 6). They are not given in the article due to lack of
space.

Figure 7 shows the dependence of wave velocity on the simulation time at TH 657
and 730 K for TV = 2800 K.

Figures 8 and 9 show results obtained for the case of TV 2800 K when the HPC was
initially filled with completely equilibrium hydrogen heated to TH = 730 K, a = 0.85.
Simulation time twas equal to 4095.425. This time corresponds to the moment when the

Fig. 5. Profiles of n, T, v and EV of initially equilibrium H2, TH = 730 K.

Fig. 4. Profiles of n, T, v and EV of initially excited H2, TH = 730 K.
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front came very close to the left end of region of the simulation. Profiles of parameters in
the post-shock flow are presented in Fig. 8 for vibrationally preexcited H2.

Figure 9 demonstrates profiles of parameters of initially completely equilibrium
hydrogen.

Figures 10 and 11 show results obtained for the case when the HPC was initially
filled with completely equilibrium hydrogen heated to TH = 730 K, a = 0.85. Simu-
lation time t was equal to 4058.875. This time corresponds to the moment when the

Fig. 6. Wave velocity D vs. simulation time t for TV = 2900 K at different TH, a = 0.85.

Fig. 7. Wave velocity D vs. simulation time t for TV = 2800 K at different TH, a = 0.85.
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front came very close to the left end of region of the simulation. Profiles of parameters
in the post-shock flow are presented in Fig. 10 for vibrationally preexcited H2.

Figure 11 demonstrates profiles of parameters of initially completely equilibrium
hydrogen.

Figures 8, 9, 10 and 11 illustrate the flow picture when high wave velocity was
already installed. The profiles of flow parameters in the post-shock flow coincide with
each other with accuracy of statistical dispersion at TH 657 and 730, despite the varying

Fig. 8. Profiles of n, T, v and EV of initially excited H2 for TV = 2800 K, TH = 657 K.

Fig. 9. Profiles of n, T, v and EV of initially equilibrium H2 for TV = 2800 K, TH = 657 K
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intensity of the initial shock waves. All these results convincingly testifie the
achievement of the physical detonation.

The profiles of parameters obtained at TV 2900 K give that kind of same picture.
And they are not shown in the article.

The normalized initial vibrational energy of hydrogen is consistent with 4.97 and
4.79 for the initial vibrational temperature 2800 and 2900 К. This information is
presented for the reader’s convenience.

Fig. 10. Profiles of n, T, v and EV of initially excited H2 for TV = 2800 K, TH = 730 K.

Fig. 11. Profiles of n, T, v and EV of initially equilibrium H2 for TV = 2800 K, TH = 730 K.
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5 Conclusions

A powerful computational program was created for the supercomputer. Simulation of
the flow of hydrogen in a shock tube was performed. The cases of the vibrationally
preexcited hydrogen were considered. The number of used processors (cores) was
equal to 274.

It was shown numerically that the physical detonation may take place at milder
conditions compared with the predicted in [5]. It turned out that this phenomenon
occurs until the degree of preexcited hydrogen is not less than 85% in the low pressure
channel. And the vibrational temperature is not less than 2800 K.

The simulation results obtained for a wider region of parameters confirmed the
conclusions given in the paper [5]. Indeed, as for a classical detonation wave, the
parameters of the physical detonation wave are independent of the way of detonation
initiation. When the shock wave evolves to a physical detonation wave, its velocity
markedly grows.

The obtained results can be useful for researchers in their experimental realization
of the physics detonation.

The authors are grateful to the Joint Supercomputer Center of RAS for providing
computing resources.
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Abstract. Authors consider the approaches to increase efficiency of cal-
culations in the problem of numerical modelling of electromagnetic wave
scattering. To solve such kind of problems authors develop innovative
variation of boundary integral equations method based on utilisation of
integral equation with hyper singular integrals which can be solved with
methods of piece-wise approximations and collocations. From numeri-
cal point of view the problem reduces to the solution of the system of
linear equations which coefficients present the influence of cells of mesh
on collocation points. The specialities of parallel algorithms for diffrac-
tion problems are described as for the straight solutions of the appearing
linear systems so as for the approach utilising mosaic-skeleton approxi-
mation method which allows to solve linear equation system calculating
only small part of matrix elements.

Keywords: Supercomputer modelling · Electromagnetic scattering ·
Integral equations · Fast matrix methods

1 Introduction

Mathematical modelling of electromagnetic wave scattering by surfaces with
complex shapes is actual problem for which solution there are various
approaches. If wave length is much less than typical sizes of reflecting objects
methods of physical optics and asymptotic methods work well. But in case of
wave length comparable to objects sizes it is critical to formulate and numer-
ically solve exterior boundary value problem for electromagnetic field in space
outside the bodies. Modern grid and finite-element methods based on discretiza-
tion of electromagnetic field in space allow to consider complex, including non-
homogeneous, structure of the environment and different physical effects [1].
c© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 325–336, 2017.
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326 A. Aparinov et al.

However, the significant problem here is that to fulfil boundary conditions on
infinity one have to use calculating domain many times exceeding size of bod-
ies. This leads to the great calculating difficulty of such methods. Herewith
the requirement of smallness of space discretization step in comparison to wave
length puts the limitation on utilisation of non-uniform meshes.

In case of modelling monochromatic wave processes in homogeneous environ-
ment the approach based on the method of boundary integral equations is very
efficient [2,3]. Here the solution of boundary problem is found from the inte-
gral representation with the integrals written for the boundary of the problem
solution domain (body surfaces). The whole problem reduces to integral equa-
tions written on this boundary. With this the boundary conditions on infinity
are fulfilled automatically and obtained solutions exactly satisfy the equations
in the problem solution domain. For the numerical solution the grid is needed
only on body surfaces. The problem of calculation efficiency remains actual here
and raises from the necessity to model diffraction on bodies with complex shapes
and the requirements to wide the diapason of investigated wave lengths.

Specific of methods of boundary integral equations is that in their discretiza-
tion appear systems of linear equations with filled matrices which rank is defined
by the number of cells in mesh. Here both problems of computation time reduc-
tion and element storage in operating memory are of great importance and
practice shows that in many cases the memory problem is leading.

In this article two approaches to the solution of high complexity problems
are described. First is the application of mosaic-skeleton approximations which
allows to approximately solve the linear system calculating only comparably
small number of its matrix elements [4]. This leads both to significant gain in
computation time and in memory utilisation. Second is parallel computing. The
implemented algorithms are based on a variation of numerical method for bound-
ary integral equations developed in [5,6]. This approach utilize integral equations
with strongly singular integrals which can be solved by methods of piece-wise
constant approximations and collocations. Authors describe the special aspects
of parallel algorithms as for the straight solution of linear equation system so
for approximate solution with mosaic-skeleton approximations.

2 Reduction of Problem to Integral Equation

Authors consider a 3D problem of scattering of a monochromatic electromagnetic
field by a body or a system of bodies. Each body can be either a solid object
bounded by a closed surface or a thin surface (a screen). The surfaces of the
bodies are assumed to be ideally conducting, and the ambient medium is assumed
to be homogeneous. The described below problem statement is classical [2,7].

Let Σ — total surface of bodies and screens which can be closed (surface of
ideally conducting body), opened (ideally conducting screen) or consists of sev-
eral components of such kind. Let us call Ω — space domain outside considered
bodies. The problem is to find the electric and magnetic field intensities, which
will be sought in the form Efull(x)e−iωt, Hfull(x)e−iωt, x ∈ Ω, where ω —
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circular frequency of electromagnetic field, t — time, x = (x1, x2, x3) ⊂ R3 —
points in space. It is assumed than full electromagnetic field is inducted by pri-
mary electromagnetic emission where electric and magnetic field intensities can
be represented as Eent(x)e−iωt and Hent(x)e−iωt, respectively. With this full
electric and magnetic field intensities we will find in form

Efull(x) = Eent(x) + E(x),Hfull(x) = Hent(x) + H(x), (1)

E ,H — unknown intensities of electric and magnetic fields which have to satisfy
Maxwell equations ([2], p.109):

rotE = iωμH, rotH = −iωεE. (2)

Here ε and μ — dielectric and magnetic conductivity of environment. Either
must be fulfilled Sommerfeld radiation conditions at infinity ([2], p.69, 116):

{
∂E
∂τ

+ ikE = o
(
|x|−1

)
,
∂H
∂τ

+ ikH = o
(
|x|−1

)
|x| → ∞, (3)

where ∂/∂τ — derivative in the direction of vector τ = x/ |x|, and the condition
|∇E| ⊂ Lloc

2 , |∇H| ⊂ Lloc
2 ([7], subsection 22).

On the surfaces of irradiated objects Σ the condition of equality to zero of
tangential component of full electric field must be fulfilled and it may be written
in form

n × E = f , (4)

where f = −n × Eent, where n — unit normal vector to the surface.
From now on we consider that on closed components of surface Σ vector n

has the direction outside the body, on each opened component it has violent
direction but to one side on all surface.

Unknown tension of secondary electric field we’ll find using known integral
representation ([2], p.110):

E(x) =
∫

Σ

e(j(y), x, y)dσy, x ∈ Σ, (5)

where j = j(x), x ∈ Σ — unknown tangential vector field on surface Σ (surface
currents),

e(j, x, y) = {gradxdivx[jΦ(x − y)] + k2jΦ(x − y)} where j ∈ C3, x, y ∈ Σ, x �= y,
(6)

k2 = ω2εμ,

Φ(x) =
eikr

4πr
, r = |x| .

Herewith Maxwell equations (2) and conditions on infinity (3) are fulfilled
automatically.
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As it shown in [5], for predefined surface field j = j(x), x ∈ Σ, when spe-
cial smoothness requirements of this field are completed, vector field E, defined
by (5), has boundary values on each side of surface on surface Σ and

n × E+ = n × E− = n × E,

where E — straight value, got from the expression (5) when placing in it point
x ∈ Σ. Herewith under integral expression, defined by formula (6) has singularity
of order O

(
|x − y|−3

)
and the integral should be understood as hyper singular in

the sense of the Hadamard finite value. Placing unknown field E(x) in boundary
value (4), we get boundary integral equation with hyper singular integral:

n(x) ×
∫
Σ

{gradxdivx[j(y)Φ(x − y)] + k2j(y)Φ(x − y)}dσy = f(x), x ∈ Σ. (7)

3 Numerical Scheme

For the numerical solution of integral Eq. (7) authors use the collocation method
with utilisation of rectangle type quadratures basing on values of unknown func-
tion in nodes coinciding with collocation points, developed in [5]. Total surface
Σ is approximated by set of cells σi, i = 1, ..., n. Authors use surface mesh which
is constructed by following method. Surface Σ is divided into modules, each of
which is approximated by spline surface and comes a mapping of a plane rec-
tangle to 3D space. Then this rectangle is divided to rectangular cells and this
partition arises on module of surface Σ some set of surface cells, where each
has 4 vertices (surface may have poles near which cells have triangle form but
considered as quadrangles with 2 coincided vertices).

In work [5] was developed the numerical method for approximation of integral
Eq. (7), which uses only information about cell vertices and doesn’t need any
other information about surface parametrization. On each cell the collocation
point is chosen xi as the weight center of cell vertices (in the assumption that
all vertices have equal masses), and normal ort is constructed ni as a vector
orthogonal to the diagonals of the cell. After that on each cell local orthonormal
coordinate system is constructed with vectors ei1 and ei2 = ni × ei1 in plane,
orthogonal to vector ni). Vector directions ei1 can be chosen violent in specified
plane.

Let ji — approximate value of function j(y) in point xi ∈ σi, i = 1, ..., n,

j∗i (y) = (ji × ni) × n(y), (8)

y ∈ σi — tangential vector field in cell σi, approximating on this cell function
j(x). Replacing in Eq. (7) on each cell σj function j(y) to function j∗j and writing
this equation in nodes xi, we get system of operator equations:

∑n

j=1
Aijjj = f(xi), i = 1, ..., n, (9)
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Aijjj = ni ×
∫

σj

e(j∗j (y), x, y)dσy. (10)

Equation system (9) we can rewrite in the form of system of linear algebraic
equations in respect to the vector coordinates ji, i = 1, ..., n, in local bases
constructed in grid cells:

jj = j1j e
1
j + j2j e

2
j . (11)

Placing vector jj in form (11) to Eq. (9) and multiplying each equation on
vectors el

i, l = 1, 2, we get system of linear algebraic equations:∑
j=1,...,n
l=1,2

aml
ij jl

j = fm
i , i = 1, ..., n,m = 1, 2, (12)

where fm
i = (fi, em

i ), i = 1, n , m = 1, 2, aml
ij = (Aijel

j , e
m
i ),m, l = 1, 2, i, j =

1, ..., n.
While calculating the coefficients of equation system (12) the integrals (10)

are calculated by formulas from work [5] based on extraction of main singularity
in explicit form. Herewith the integrals from dominant terms are calculated ana-
lytically. The remaining weakly singular integrals can be calculated numerically
by method of additional partition of each cell and utilisation of rectangular type
formulas with smoothing of singularity by multiplying on smoothing function.
The details of calculation of weakly singular integrals are described in works [6].

In the examples below problem of plane wave scattering by ideally conducted
bodies is considered. In this case primary field is written as:

Eent(x) = E0e
ikr,Hent(M) =

eikr

ωμ
k × E0, (13)

where k — wave vector (herewith k = |k|), r — radius vector of the point x, E0

— defined vector orthogonal to vector k (vector E0 defines wave polarization).
One of the purposes of solving scattering problem is to find directional pattern

of secondary field. There patterns characterize dependence of radar-cross section
σ (RCS) in the direction of pre-set unit vector τ defined by formula:

σ(τ) = lim
R→∞

4πR2 |E(Rτ)|2
|Eent|2

from vector direction τ . Directional patterns usually made in form of dependence
of values σ from some angle, which defines this vector.

If the tension of electric field is represented in form (5), then for value σ(τ)
the following formula is true:

σ(τ) =
4π

|Eent|2

∣∣∣∣∣∣
∫
Σ

k2

4π
e−ik(τ,y) (j(y) − τ (j(y), τ)) dσy

∣∣∣∣∣∣
2

.

In numerical solution the last integral is calculated numerically with rectangle
quadrature formula on the base of calculated approximate values ji, i = 1, ..., n
of function j(y) on the cells of surface mesh.
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4 Numerical Complexity of the Algorithm, Parallel
Algorithm

Main calculation costs in numerical implementation of the algorithm are related
to the solution of the system of linear equations (12), which consists of 2n com-
plex equations, where n — number of cells. As it was mentioned above the
number of cells is defined by the requirement of utilising small cells in compar-
ison to body sizes and to wave length. So the calculation difficulty grows with
increase of frequency of falling field.

In practice it is possible to save out following 2 classes of problems. First is
to investigate characteristics of electromagnetic field in space and to construct
directional pattern of secondary field for known primary field. Second class is
to calculate inverse RCS which characterize intensity of secondary field in the
direction back to the direction of falling field of predefined frequency, (with
condition that τ = −k), depending on the direction of vector k. In first case the
system (12) is solved single-fold and afterwards the result processing is done. In
second case the system (12) is solved many times with the same matrix (matrix
depends only on parameter k which is constant if frequency doesn’t change) and
different right-hand sides.

Authors have implemented three different algorithms of linear system solu-
tion: with LU decomposition, with GMRES iteration algorithm [8] and with
mosaic-skeleton matrix approximation [4] and GMRES algorithm.

In the first and second variants of algorithms parallel calculation of matrix
elements is done and all elements are stored in RAM memory (own block for each
processor) and afterwards the solution itself for one or several right-hand sides
is done. The solution is implemented using standard Scalapack procedures for
LU factorization or with GMRES iterative method. It is notable that GMRES
does not give any advantages in time or in memory in this case because of very
slow convergence (more than 1000 iterations) and implementations with restart
do not converge at all. Herewith authors didn’t find any preconditioners that are
able to achieve better convergence.

It was pointed out from practical calculations that problems of outstanding
interest usually require meshes with 50000 and more cells. So it becomes clear
that the main deficit resource is RAM and the algorithms of first interest are
those that allow to calculate and store only small part of matrix elements.

The software was tested on supercomputer “Chebyshev” in Lomonosov
Moscow State University supercomputer center and on INM RAS computer clus-
ter. In first case 150 processors and 225 Gb of RAM were used in second case 16
processors and 180 Gb of RAM were used. In both cases different problems with
grids up to 50 000 cells were successfully calculated. Significant increase of cell
number required the increase in operational memory (as predicted). So success-
ful calculations for the problem with 100000 cells were made on “Lomonosov”
supercomputer in Lomonosov Moscow State University supercomputer center.
About 400 Gb of RAM was used in calculations.

Further increase of cell number is limited by the lack of RAM memory to
store matrix elements. So authors used mosaic-skeleton method in combination
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with GMRES method to solve the linear system. Mosaic-skeleton method allows
to calculate and store about one percent of matrix elements and to use GMRES
for system solution. In spite of slow convergence of iteration method taking into
account significant memory economy for matrix storage this approach allows to
reduce significantly the required RAM size and to increase the size of initial
problem. Its implementation in described below.

5 Utilisation of Mosaic-Skeleton Approximations
to the Solution of Diffraction Problems

To increase the calculation efficiency of the algorithm for linear system (12)
solution the method of mosaic-skeleton approximations described in [4,9–12]
was implemented. The overview of recent methods of matrix compression can be
found in works [13,14]. The advantage of this method in comparison to others
is generality and automatic precision control (the iteration nature of mosaic-
skeleton approximations algorithm lead to precision increase on each step). The
lack is implementation difficulty comparing to multipole methods, for example.
Implementing this algorithm authors used great groundwork made in INM RAS.

Mosaic-skeleton approximation method is based on hierarchical decomposi-
tion of mesh cells into clusters basing on binary tree. Possessing a pair of cluster
trees corresponding to pair of meshes representing our discretization we decom-
pose matrix to a list of blocks of different sizes where each block represents
interaction of a group of points-emitters xj (in our case center of each cell) with
group of collocation points xi. Blocks that representing interaction of geomet-
rically distant clusters can be approximated with low-rank matrix (Fig. 1). On
Fig. 1 grey color marks dense blocks, those for which all their elements should be
calculated. Other blocks assumed to be low-rank. Using incomplete crest approx-
imation algorithm [4] such blocks can be presented in form B = U ·V T , where for
block B of size m×n matrices U and V have sizes m× r and n× r respectively,
r � min(m,n) — rank of block B. In such a way instead of storing O(mn) block
elements it is possible to store only O((m + n)r) complex numbers.

Mosaic-skeleton approximations allow to compress matrix. To solve the sys-
tem authors use GMRES [8] adapted to work with compressed matrices. This
algorithm is based on parallel procedure of matrix-vector multiplication, where
matrix is presented in skeleton format. No other operations are needed to solve
the system.

To use GMRES for linear systems with multiple right-hand sizes authors
made some modifications. Among right-hand sides let’s choose vector with resid-
ual with maximal norm. Let’s solve the system with GMRES method for this
right-hand side and construct bases of subspace where the residual minimizes.
Then we calculate the residual of remaining right-hand sides and again choose
vector with maximal residual and repeat GMRES for this right-hand side with
this widening the set of basic vectors. Using in such manner bases from previous
iterations for new right-hand side we do much less steps for this right-hand side.
So we solve the system for vectors from right-hand side until on the total base



332 A. Aparinov et al.

we got the maximal residual of remaining vectors is not achieved, which gives
us the solution of desired accuracy. Finally the number of sorted out right-hand
sides decreases in times.

The main time-consuming operation in matrix approximation is calculation
of block approximations. The advantage of mosaic-skeleton method in that each
block-approximation is independent from others and so can be paralleled into
multiple processors by distributing blocks on different processors. Each processor
has to calculate, construct and store approximations only for its own blocks.
Processor intercommunication occurs only during the system solution step while
matrix-vector multiplication is done. In iteration algorithm of system solution
each processor multiplies only its blocks on vector and the results from different
processors are summed.

Mosaic-skeleton method requires O((m + n)r) to approximate block m × n
of rank r. If r is known, then block number can be distributed to processors
before the block approximation itself. Calculating experiments made for different
integrands show that value r is equal to O(logγ(m + n)), where γ depends on
integrand. For integral equation used in the described problem the calculation
shows that γ is approximately equal to 3/2. Notable that 3/2 does not depend
on wave number.

Fig. 1. Domain partition on clusters, partition tree and matrix partition on blocks:
(a) 1 level; (b) 2 levels; (c) 3 levels; (d) 4 levels.

6 Numerical Results and Discussion

As an example calculation results and calculation costs are shown for the problem
of plane wave scattering by a circular cylinder of finite length. Calculations
were made on processors Intel Xeon E5-2670v3 2.30 GHz of INM RAS cluster
(http://cluster2.inm.ras.ru/). Intel Fortran Compiler 9.0 for Linux (9.0.033) and
OpenMPI Scalapack 2.0.2–4.3 was used.

http://cluster2.inm.ras.ru/
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Fig. 2. Geometry and grid of the object.

Fig. 3. 4 GHz (a) 13482 cells; (b) 21760 cells; (c) 45784 cells.

Figure 2 shows the cylinder form and an example of grid on its surface. Cal-
culations were made for frequencies 4 GHz (wave length λ = 7.5 cm = H/3.3),
8 GHz (λ = 3.75 cm = H/6.6) and 16 GHz (λ = 1.875 cm = H/13.2), where
H — cylinder height.

Table 1 shows required storage for matrix of linear equation system com-
pressed with accuracy 10−3 from the number of cells in mesh and emis-
sion frequency. Last column shows memory required to store full matrices.

Table 1. Required storage for matrix.

n 4 GHz 8 GHz 16 GHz Full matrix

21760 1.962 Gb (7.0%) 2.340 Gb (8.3%) 2.999 Gb (11%) 28.223 Gb

45784 4.457 Gb (3.6%) 5.369 Gb (4.3%) 6.927 Gb (5.6%) 124.920 Gb

273600 — — 48.998 Gb (4.39%) 1115.456 Gb

Table 2. Acceleration of matrix calculations for various number of processors. Number
of cells 273600. Frequency 16 GHz.

np 1 2 4 8 16 32 64 128

1.00 1.91 3.39 6.22 11.07 19.95 30.52 42.10
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Table 3. Acceleration of system solution for various number of processors. Number of
cells 273600. Frequency 16 GHz.

np 1 2 4 8 16 32 64 128

1.00 1.83 3.17 3.40 4.46 6.39 6.81 6.29

Fig. 4. 8 GHz (a) 13482 cells; (b) 21760 cells; (c) 45784 cells.

In brackets there is compression coefficient which is calculated as relation of
memory required to store compressed matrix to memory required to store full
matrix. Easy to mention that compression coefficient decreases with matrix size
growth and increases with frequency growth.

Tables 2 and 3 show parallel acceleration rate for matrix compress operation
and for linear system solution with GMRES method on multiple processors.
Parallel acceleration rate shows the relation of times required to make the same
calculations on one and np processors. Note that computation time on 64 proces-
sors needed for matrix compression was 5 min 55 s and for solving system of linear
equations was about 26 h.

Finally Figs. 3, 4 and 5 show RCS diagrams obtained from calculations. The
correspondence of RCS represented in decibels σ̃ = 10 log σ in the direction of
vector τ = −k from angle ϕ defining the direction of vector k – see Fig. 2.
Herewith considered vertical polarization of falling wave so vector E0 in the
expression (13) is orthogonal to plane Oxy. Calculation results (gray line) are
compared to experimental data (black line) received from ITAE RAS. It can be
seen that for frequency 4 GHz (λ = 7.5 cm) the mesh of 13482 cells (maximal size
of cell side is h = 0.375 cm) is enough for good agreement of calculation with
experiment. It was shown that for frequency 8 GHz (λ = 3.75 cm) the same
mesh is also more or less enough for calculations. Local runs on graphs with
calculation results disappear on mesh with 45784 cells (h = 0.2 cm). For the
frequency 16 GHz (λ = 1.875 cm) good agreement with experiment (without
parasite local runs on the curve) was achieved on the mesh with 273600 cells
(h = 0.1 cm). Note that all data were presented for vertical polarization because
in horizontal polarization (vector E0 in the expression (13) lies in plane Oxy)
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Fig. 5. 16 GHz (a) 13482 cells; (b) 21760 cells; (c) 45784 cells; (d) 273600 cells.

for all frequencies coarser meshes were enough to achieve good agreement with
experiment.

Hence, the calculation difficulty of the scattering problems grows with pri-
mary field frequency increase. This is caused by several reasons: the need to
cut the mesh in correspondence to wave length; wave number k growth leads to
increase of compress coefficient of matrix of linear equations system (12). Besides
that iteration method convergence speed falls with growth of wave number k. So
even for bodies with simple geometries parallel technologies are required when
wave length is less than body size by an order or more.

Acknowledgments. Authors appreciate much SCC MSU for provided opportunity
to use supercomputers “Chebychev” and “Lomonosov”. The work was supported by
the Russian Science Foundation, grant 14-11-00806.
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Parallel FDTD Solver with Optimal Topology
and Dynamic Balancing
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Abstract. Finite-difference time-domain method (FDTD) is widely
used for modeling of computational electrodynamics by numerically solv-
ing Maxwell’s equations and finding approximate solution at each time
step. The FDTD method was originally developed by K. Yee in 1966
and is still improving to fulfill the needs of researchers. Highly parallel
Maxwell’s equations solvers based on the FDTD method allow to model
sophisticated structures on large grids with acceptable performance and
required accuracy. This article describes parallel FDTD solver for differ-
ent dimensions with comparison method for virtual topologies of com-
putational nodes’ grid, which allows to choose the best virtual topology
for target architecture. Developed solver also incorporates dynamic bal-
ancing of computations between computational nodes. Measurements for
presented algorithms are provided for IBM Blue Gene/P supercomputer.
Further directions for optimizations are also discussed.

Keywords: Computational electrodynamics · FDTD · Parallel FDTD ·
MPI

1 Overview

The FDTD method is widely used in electrodynamics solvers as well as its differ-
ent parallelization techniques. After it had originated in 1966 [1], it had a long
road from sequential algorithm to implementations of high-performance parallel
versions. This happened along with development of new hardware and architec-
tures, giving engineers opportunities to develop and evolve FDTD algorithm.

Three commonly used parallelization technologies for the FDTD method are
MPI, OpenMP and Cuda. Each of them serves its own purpose: MPI is a stan-
dard for high-performance parallel computations on architectures with distrib-
uted memory, OpenMP is a standard for high-performance parallel computations
on architectures with shared memory, Cuda is a parallel computing platform and
API for parallel computations on Nvidia GPUs.

The most common trend in parallelization of FDTD algorithm is still a combi-
nation of MPI and OpenMP, however, interest in massive parallel computations
rapidly shifts towards GPUs and computations on them and FDTD algorithm
is no exception. Cuda FDTD solvers give engineers opportunities to perform
c© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 337–348, 2017.
https://doi.org/10.1007/978-3-319-71255-0_27
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electrodynamic modeling on systems varying from personal computers equipped
with Nvidia GPUs to GPU clusters. But FDTD solvers developed for heteroge-
neous architectures with support of MPI, OpenMP and Cuda present the most
interest [2–4].

Load balancing in parallel FDTD algorithms allows to achieve the best perfor-
mance possible for current parameters of computation and characteristics of the
computational system. In general, load balancing couldn’t be done without char-
acteristics of the system, on which computations are performed [5]. However, for
homogeneous architectures load balancing could be performed statically before
computations in some cases.

In this article, parallel FDTD solver with optimal topology and dynamic
balancing is introduced [6], which incorporates algorithm of choosing of optimal
virtual topologies for computational nodes’ grid for homogeneous systems and
dynamic balancing of computations between computational nodes. Solver has
UPML and TF/SF support and supports both complex and real values with dif-
ferent precision. Besides, solver supports Cuda and could perform computations
on GPUs. Combination of MPI and Cuda, which could be enabled separately,
allows to achieve significant speed up on a wide range of target architectures
and high portability of developed solver. In case of heterogeneous architectures,
dynamic balancing could also be applied. Two other possible solutions for het-
erogeneous architectures are also discussed.

2 Parallel Algorithm Description

Electrodynamics modeling could be performed in different dimensions, i.e. one-
dimensional modeling (1D), two-dimensional (2D) and three-dimensional (3D).
For all dimensions Cartesian computational grid is introduced: to be specific,
Ox axis is defined in case of 1D mode, Ox and Oy axes in case of 2D mode,
Ox,Oy and Oz axes in case of 3D mode. Yee grid [7] for field components is
then set, and all points of Yee grid are spread between all computational nodes.
In case of sequential solver, all points of Yee grid remain on the one and only
computational node. Thus, each point of Yee grid is assigned to one or another
computational node.

In parallel FDTD algorithm, described here, points of Yee grid are spread
between computational nodes in a very natural way: Yee grid is divided in rec-
tangular chunks and each chunk is assigned to computational node. Besides, each
computational node has buffer points on its borders in order to store data from
neighboring computational nodes. This computational nodes’ grid maps directly
on MPI virtual topology, where each MPI process is launched on different com-
putational node and virtual topologies are simply MPI virtual topologies.

Share operations between computational nodes are performed at each time
step, so overall computational time is sum of computational time and share time
for each time step. Note that only maximum sum of computational time and
share time for each time step is taken into account, i.e. if one computational
node performs its computations much slower than other nodes, all other nodes
would have to wait for it to finish.
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Each computational node performs computations on chunk of Yee grid points
assigned to it and then performs share operations with all its neighboring com-
putational nodes. Computations are the same as for sequential algorithm and
could be performed either on CPU, or on GPU if computational node has one.

Share operations consist of the next steps. All directions in which share oper-
ations could be performed are considered one after another, and each computa-
tional node sends data in this directions, and also receives data from the opposite
directions at the same time. In case of send operation, data in border points of
node’s chunk is send, in case of receive, received data is stored in buffers.

For example, for 2D mode there are 8 directions — same as number of neigh-
bors of computational node: 1 direction — positive by Ox axis, 2 — positive
by Ox and Oy axes (diagonal), 3 — positive by Oy axis, 4 — negative by Ox
and positive by Oy axis (diagonal), 5 — negative by Ox axis, 6 — negative by
Ox and Oy axes (diagonal), 7 — negative by Oy axis, 8 — positive by Ox and
negative by Oy axis (diagonal). Figure 1 on the left shows for computational
node marked with number 0 all 8 possible send directions, Fig. 1 on the right
shows send procedure in direction 1 for 9 computational nodes. Arrows show
direction in which data is sent, so each computational node receives data from
the opposite direction (in case it has such neighbor).

Fig. 1. 8 possible send directions for computational node marked 0 for 2D mode (on
the left) and send procedure for 9 computational nodes for 2D mode (on the right). For
a single computational node arrows show direction where data is sent, data is received
from the opposite direction.

Division of Yee grid in rectangular chunks could be done in different ways.
For 1D mode there is only one way — to divide Ox axis in chunks. In this case
computational nodes would perform share operation only along Ox axis. Let’s
call this division of Yee grid 1D-X virtual topology. Oy and Oz axes could be
divided the same way. Combining different axes divisions one can yield that for
2D mode there are 3 options: 2D-X, 2D-Y, 2D-XY virtual topologies, and for 3D
mode there are 7 options: 3D-X, 3D-Y, 3D-Z, 3D-XY, 3D-YZ, 3D-XZ, 3D-XYZ
virtual topologies. Figures 2, 3 and 4 show three kinds of virtual topologies for
2D mode. On the left full Yee grid is shown divided in chunks with data shown
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Fig. 2. 2D-XY virtual topology with full Yee grid divided in 9 chunks on the left and
chunks assigned to 9 computational nodes (light gray) with required buffers (dark gray)
on the right.

Fig. 3. 2D-X virtual topology with full Yee grid divided in 3 chunks on the left and
chunks assigned to 3 computational nodes (light gray) with required buffers (dark gray)
on the right.

Fig. 4. 2D-Y virtual topology with full Yee grid divided in 3 chunks on the left and
chunks assigned to 3 computational nodes (light gray) with required buffers (dark gray)
on the right.

in light gray and on the right data assigned to each computational node is shown
separately with required buffers shown in dark gray.

There are two main cases for computational nodes and communicational net-
work: all computational nodes are the same by performance and share time for
all nodes is the same (homogeneous computing system), computational nodes
are not the same by performance or share time for nodes is not the same (het-
erogeneous computing system).
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Let N be the number of computational nodes used in computations. Let’s
consider it being determined somehow for now (e.g. by user of the solver).

First, let’s consider case of homogeneous computing system for 2D and 3D
modes (for 1D mode there is only one kind of virtual topology).

2.1 2D Mode for Homogeneous Computing System

Let a > 0 be the size of Yee grid by Ox axis and b > 0 be the size of Yee grid
by Oy axis. Goal is to identify virtual topology to use for computations so that
the overall computational time is minimal.

Let virtual topology have size of n > 0 computational nodes by Ox axis and
m > 0 computational nodes by Oy axis, N = n ∗ m. 2D-X virtual topology will
be used in case n = N and m = 1, 2D-Y topology in case n = 1 and m = N ,
otherwise 2D-XY virtual topology will be used, where n �= 1 and m �= 1.

Then, single computational node will have a1 = �a/n� grid points by Ox axis
in the chunk assigned to it and b1 = �b/m� grid points by Oy axis. Total size
of chunk assigned to computational node is a1 ∗ b1 = �a/n� ∗ �b/m� grid points.
Let’s consider only cases where a mod n = 0 and b mod m = 0, which leads to
the size of chunk being equal to

a1 ∗ b1 =
a

n
∗ b

m
=

a ∗ b

N
(1)

Computational time on single time step is proportional to number of Yee grid
points in chunk of computational node a1∗b1 and share time on a single time step
is proportional to the surface area of chunk a1+b1. Number of Yee grid points in
chunk is the same for all computational nodes, which means that computational
time should also be the same. This is accurate in case each computational node
performs same amount of computations, for example, this is not accurate if there
is a point wave source with sophisticated wave function calculated only on one
computational node and not calculated on others. In cases when nodes perform
different amounts of computations on the same amount of grid points, dynamic
information could be used and methods of solving such tasks are the same as for
heterogeneous systems and are discussed later.

Thus, the minimal overall computational time could be achieved by minimiz-
ing share time on a single time step:

a1 + b1 =
a

n
+

b

m
=

a

n
+

b ∗ n

N
= f(n) (2)

Function f(n) has only one extremum for n > 0 — global minimum:

n0 =

√
a ∗ N

b
(3)

m0 =
N

n0
=

N√
a∗N
b

=

√
b ∗ N

a
(4)



342 G. Balykov

However, obtained values n0 and m0 might not be integer or might not be
dividers of N , and a and b correspondingly. Values of n and m, which satisfy
this conditions, have to be found.

First, all pairs of n and m which satisfy next conditions have to be found:
n and m are dividers of N , and a and b correspondingly, and N = n ∗ m.
These pairs define set, which contains possible optimal values of n and m. In
order to find these pairs, n has to be set equal to all dividers of GCD(a,N),
including 1 and GCD(a,N) itself, and only those pairs have to be chosen for
which corresponding m = N/n is divider of b.

After that, two pairs (n′
0,m

′
0) and (n′′

0 ,m
′′
0) have to be found, for which for

n the next conditions are satisfied: n′
0 < n0 and n′′

0 ≥ n0, and there are no pairs
in the range (n′

0;n
′′
0) (i.e., values n′

0 and n′′
0 are the closest possible to n0 from

different directions). From two pairs (n′
0,m

′
0) and (n′′

0 ,m
′′
0) one has to be chosen,

for which the value of f(n) is smaller. Chosen pair describes the optimal virtual
topology.

So, algorithm for choosing optimal virtual topology for homogeneous com-
putational system for defined a, b, N consists of the next steps:

– Identify all pairs (n,m), for which n is divider of a, m is divider of b, n∗m = N .
– Find n0 using relation (3).
– Choose from the pairs found on the first step two (n′

0,m
′
0) and (n′′

0 ,m
′′
0), for

which n′
0 < n0 and n′′

0 ≥ n0, and there are no pairs in the range (n′
0;n

′′
0).

From this two pairs one has to be chosen as optimal, for which the value of
f(n) is smaller.

There could be a case, when no appropriate pair is found (e.g., Yee grid could
not be divided in chunks for N computational nodes). In this case N should
be increased or decreased. Cases when a mod n �= 0 or b mod m �= 0 are not
discussed here because they require dynamic information about computational
system.

2.2 3D Mode for Homogeneous Computing System

Let a > 0 be the size of Yee grid by Ox axis, b > 0 be the size of Yee grid by Oy
axis and c > 0 be the size of Yee grid by Oz axis.

Let virtual topology have size of n > 0 computational nodes by Ox axis,
m > 0 computational nodes by Oy axis, k > 0 computational nodes by Oz axis,
N = n ∗ m ∗ k. For example, 3D-X virtual topology will be used in case n = N ,
m = 1, k = 1.

Similarly to 2D mode, number of grid points in chunk assigned to compu-
tational node a1 ∗ b1 ∗ c1 is constant (in case a mod n = 0, b mod m = 0 and
c mod k = 0). In order to minimize overall computational time, the next function
f(n,m) has to be minimized (share time on a single time step is proportional to
f(n,m)):

f(n,m) =
a ∗ b

n ∗ m
+

b ∗ c ∗ n

N
+

a ∗ c ∗ m

N
+ 4 ∗ (

a

n
+

b

m
+

c ∗ n ∗ m

N
) (5)
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Again, all triples of (n,m, k) have to be identified, for which n is divider of
a, m is divider of b, k is divider of c, n∗m∗k = N . One of these triples describes
the optimal virtual topology. In order to find these triples n has to be set equal
to all dividers of GCD(a,N), including 1 and GCD(a,N) itself, then m has to
be set equal to all dividers of GCD(b,N), including 1 and GCD(b,N) itself, and
only those triples have to be chosen for which corresponding k = N/(n ∗m) will
be a divider of c.

Then for all m from found triples the minimum of function f(n,m) has to
be found. This leads to the next formulas for chosen m:

n0(m) =

√
a ∗ N

m ∗ c
(6)

k0(m) =
N

n0(m) ∗ m
(7)

Similarly to 2D mode, obtained values n0 and k0 might not be integer or
might not be dividers of N , and a and c correspondingly. n and k, which satisfy
this conditions, have to be found. Two triples (n′

0,m, k′
0) and (n′′

0 ,m, k′′
0 ) have

to be found, for which for n the next conditions are satisfied: n′
0 < n0 and

n′′
0 ≥ n0, and there are no triples in the range (n′

0;n
′′
0) (i.e., values n′

0 and n′′
0 are

the closest possible to n0 from different directions). From two triples (n′
0,m, k′

0)
and (n′′

0 ,m, k′′
0 ) one has to be chosen, for which the value of f(n,m) is smaller.

Chosen triple describes the optimal virtual topology for specified m. After all
values of m are handled, triples, found for each m, have to be compared and one
triple with smallest f(n,m) has to be chosen as the optimal virtual topology.

So, algorithm for choosing optimal virtual topology for homogeneous com-
putational system for defined a, b, c, N consists of the next steps:

– Identify all triples (n,m, k), for which n is divider of a, m is divider of b, k is
divider of c, n ∗ m ∗ k = N .

– For all allowed values for m find n0(m) using (6).
– Choose from the triples found on the first step two (n′

0,m
′
0, k

′
0) and

(n′′
0 ,m

′′
0 , k

′′
0 ), for which n′

0 < n0 and n′′
0 ≥ n0, and there are no triples in

the range (n′
0;n

′′
0). From two triples one has to be chosen as optimal for

specified m, for which the value of f(n,m) is smaller.
– Virtual topologies found for each m have to be compared and one triple with

smallest f(n,m) has to be chosen as the optimal virtual topology.

2.3 Non-specified Number of Computational Nodes
for Homogeneous Computing System

In case when number of computational nodes N is not specified, there are two
possible directions for optimization. First is to optimize by memory, i.e. choose
the smallest number of computational nodes, memory of which is capable to
store Yee grid. Second is to optimize by performance, i.e. choose the number
of computational nodes in such a way that time of computations is minimal.
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The second problem requires dynamic information and methods of solving such
tasks are the same as for heterogeneous systems and are discussed later.

Let’s consider the first problem with optimization by memory for 2D mode.
Problem is to choose N so that for specified a and b the number of Yee grid
points per node ab

N is maximal.
First the size of memory of a single computational node S has to be identified.

The amount of memory occupied on a single computational node is F (a, b,N):

F (a, b, n,m) = k1 ∗ (
a ∗ b

n ∗ m
) + k2 ∗ (

a

n
+

b

m
) + k3 (8)

where s is number of Yee grid points and k1, k2, k3 — constants, which are
defined by parameters of computation statically (during compilation of solver).
Let’s perform transformation in order to remove dependency on virtual topology.

k1 ∗ (
a ∗ b

n ∗ m
) + k2 ∗ (

a

n
+

b

m
) + k3 < k1 ∗ (

a ∗ b

n ∗ m
) + k2 ∗ (a + b) + k3 (9)

Let’s consider F1(a, b,N):

F1(a, b,N) = k1 ∗ (
a ∗ b

N
) + k2 ∗ (a + b) + k3 (10)

Ns has to be found, for which F1(a, b,N) is equal to S for specified a and b:

Ns =
k1 ∗ a ∗ b

S − k3 − k2 ∗ (a + b)
(11)

An answer N0 is the first divider of a ∗ b in ascending order, which will be
greater or equal to Ns: N0 ≥ Ns and F1(a, b,N0) ≤ F1(a, b,Ns). Different choices
of virtual topology will not affect the found answer, because it was taken into
account. For 3D mode N0 could be obtained in a similar way.

2.4 Heterogeneous Computing System

In case of heterogeneous systems, the algorithms described above couldn’t be
applied because either computational time on different computational nodes is
proportional to number of grid points in chunk with different proportional coeffi-
cient, or share time has different proportional coefficients for different computa-
tional nodes. In such cases more sophisticated methods should be applied. Each
one of the methods described below could give results, but the best option would
be to use their combination.

Dynamic Balancing (Dynamic Redistribution). Dynamic redistribution
of Yee grid points between computational nodes will allow to assign chunks of
different sizes for a single computational node during computations (opposed
to previously described distribution before computations). This process could
be triggered based on some dynamic information, i.e. computation time and
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share time of each computational node. Thus, computational nodes, which have
higher performance, could be dynamically assigned larger chunks and compu-
tational nodes with less performance — smaller chunks. One drawback of this
method is that redistribution process takes time and will affect computational
time. However, benefit of this method is the ability to distribute Yee grid points
between computational nodes more efficiently without the need to identify opti-
mal virtual topology before computations.

In developed solver dynamic balancing was implemented for 1D-X, 2D-X,
2D-Y, 3D-X, 3D-Y and 3D-Z virtual topologies. Before start of computations
some virtual topology has to be chosen (machine learning or saved dynamic
profile could be used to choose initial virtual topology in future). Then after M
time steps, during which computational time T was gathered, redistribution is
performed. Let’s consider 2D-X case. Total size of grid is a ∗ b, chunk of grid
points, assigned to i (i ≥ 0, i < N) computational node has size Si = ai ∗ b and

∑
i

ai = a (12)

Performance of i computational node is calculated like this

perfi =
ai ∗ b ∗ M

Ti
(13)

where Ti is computational time of i computational node for M time steps. Then,
new a′

i is calculated

a′
i =

[ a ∗ perfi∑
i perfi

]
(14)

In case a′ = a−∑
i a

′
i > 0, a′ is spread between all computational nodes. After

this procedure computational nodes will have chunks with new sizes, and distri-
bution of computations between computational nodes will be better in terms of
reduction of total computational time. This procedure could be repeated later
to further improve distribution of computations.

Saving the Profiling Data. During first computation on the computational
system profiling data could be saved for each computational node as a recom-
mendation for virtual topology chooser. On the second launch, this saved data
could be used to identify optimal virtual topology. Drawback of this method is
the need to perform first computation with gathering of dynamic information in
order to save it later. This process takes time and will affect computational time.
However, starting from the second computation launch virtual topology will be
chosen more optimally. Besides, even the second computation launch could also
gather dynamic information and update the saved one. So, the benefit of this
method is that after K computation launches with profiling K + 1 computation
launch will use the most optimal virtual topology from all, which could be cho-
sen according to saved dynamic information. Besides, K+1 computation launch
could be performed without profiling, thus, without performance degradation.
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Some modification of this method is to perform benchmarking of compu-
tational system before computations, when profiling data is gathered not on
some random computations but on one which is optimized to save more relevant
dynamic data. Such a benchmark then has to be found. This method is to be
discussed in detail in further work.

Machine Learning. Neural network could be used in this method, trained on
characteristics of different computational systems and optimal virtual topolo-
gies. Then, before computation on some computational system optimal virtual
topology will be found using trained neural network. Benefit of this method is
the lack of need to do additional activities during computations because optimal
virtual topology is identified before first computation on the system. However,
drawback is that identified virtual topology could be not the most optimal even

Table 1. Measurements for 2D mode for 4 computational nodes for Yee grid with size
a = 256 and b = 256 and 10000 time steps.

Virtual topology Value of f(n) Execution time, seconds

2D-X with n = 4,m = 1 320 3015.16

2D-XY with n = 2,m = 2 256 3001.69

Table 2. Measurements for 2D mode for 4 computational nodes for Yee grid with size
a = 8192 and b = 8 and 10000 time steps.

Virtual topology Value of f(n) Execution time, seconds

2D-X with n = 4,m = 1 2056 2605.45

2D-XY with n = 2,m = 2 4100 3192.83

Table 3. Measurements for 3D mode for 8 computational nodes for Yee grid with size
a = 64, b = 64 and c = 64 and 1000 time steps.

Virtual topology Value of f(n,m) Execution time, seconds

3D-X with n = 8,m = 1, k = 1 5664 2106.54

3D-XY with n = 4,m = 2, k = 1 4032 2090.29

3D-XYZ with n = 8,m = 1, k = 1 3456 2069.23

Table 4. Measurements for 3D mode for 8 computational nodes for Yee grid with size
a = 4096, b = 8 and c = 8 and 1000 time steps.

Virtual topology Value of f(n,m) Execution time, seconds

3D-X with n = 8,m = 1, k = 1 10368 1587.31

3D-XY with n = 4,m = 2, k = 1 16464 1815.29

3D-XYZ with n = 2,m = 2, k = 2 24624 2069.98
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for well trained neural network. This method is to be discussed in detail in
further work.

3 Measurements

All measurements were performed on IBM Blue Gene/P supercomputer for dif-
ferent virtual topologies. IBM Blue Gene/P is a massively parallel computational
system. It contains 8192 calculation cores (2048 calculation nodes, 4 core each)
with peak performance at 27.9 tflops. It supports both MPI and OpenMP tech-
nologies. Single calculation core is a PowerPC 450 with frequency at 850 MHz
having 4 GB of RAM. Communicational network is a three-dimensional torus
and unites all the nodes. Single node has 6 bidirectional connections with 6
neighbors and throughput of each of these 12 connections is 425 MB/s. Blue
Gene/P has GCC 4.2 compiler.

Basic FDTD computation was chosen as a benchmark (no PML, no TF/SF,
point wave source for each computational node). In each computation virtual
topology was mapped on computational nodes of Blue Gene/P in such a way
that virtual topology matches physical topology, so, computational nodes, which
are neighbors in virtual topology, will be neighbors in physical topology too, and
no additional share expenses arise.

As Tables 1, 2, 3 and 4 show, the smallest computational time is achieved
with the virtual topology that is optimal for current grid size, and variation of
computational times for different virtual topologies could be significant, varying
from 0.5% to 18.4% for 2D mode and from 1.8% to 23.3% for 3D mode for
different Yee grid sizes, which could be significant for long running tasks. These
results depend on the size of Yee grid and variation could be even higher for
larger grids. Besides, obtained results depend heavily on the target architecture,
and for architectures where share operations are heavy in terms of time, results
could be even more significant.

Measurements for dynamic balancing for two computational nodes for 2D
mode and 2D-X virtual topology for Yee grid with size a = 1000 and b = 1000
were performed for two cases: 0 computational node has point wave source,
nodes don’t have point wave sources, i.e. the difference between two cases is
the calculation of wave function for 0 node. After some execution time Yee grid
appeared to be divided in chunks in the next way. In the first case, 0 node
had chunk with size of 47% of total Yee grid size and 1 node had chunk with
size of 53% of total Yee grid size. In the second case computational nodes had
chunks of the same size. This proves that dynamic balancing allows to spread
computations optimally even for homogeneous architectures, if each node has to
perform different amount of computations.

4 Conclusion

Developed FDTD solver provides features for optimal computations distribu-
tion between computational nodes. Measurements prove described algorithm of
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choosing of optimal virtual topology for homogeneous architectures and that
there is no one “silver bullet” virtual topology to choose for different Yee
grid sizes. This allows solver to be more efficient in terms of computational
time. Besides, dynamic balancing was shown to spread computations optimally
through all computational nodes for homogeneous target architectures in case of
different amount of computations on each computational node. In further work
dynamic balancing would be improved for both homogeneous and heterogeneous
target architectures and other dynamic methods would be described in detail.
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Abstract. Earth remote sensing has always been a source of “big”
data. Satellite data have inspired the development of “array” DBMS. An
array DBMS processes N -dimensional (N -d) arrays utilizing a declara-
tive query style to simplify raster data management and processing. How-
ever, raster data are traditionally stored in files, not in databases. Respec-
tive command line tools have long been developed to process these files.
Most tools are feature-rich and free but optimized for a single machine.
The approach of partially delegating in situ raster data processing to
such tools has been recently proposed. The approach includes a new
formal N -d array data model to abstract from the files and the tools
as well as new distributed algorithms based on the model. This paper
extends the approach with a new algorithm for the reshaping (tiling)
of N -d arrays. The algorithm physically reorganizes the storage layout
of N -d arrays to obtain an order of magnitude speedup. The extended
approach outperforms SciDB up to 28× on retrospective Landsat data –
one of the most typical and popular kind of satellite imagery. SciDB is
the only freely available distributed array DBMS to date. Experiments
were carried out on an 8-node cluster in Microsoft Azure Cloud.

Keywords: ChronosServer · SciDB · Raster Data · Cloud computing ·
Remote sensing · Array DBMS · Command Line Tools · Landsat

1 Introduction

Earth remote sensing is increasingly becoming a data-rich, practically impor-
tant and commercially attractive domain. The most prominent example is the
Landsat Program – the longest continuous space-based record of Earth’s land
in existence. The Program lasts from 1972 onwards and has accumulated over
6.8 × 106 scenes mostly in GeoTIFF files (≈ 6 PB in total) [8]. Landsat data
are so popular that Amazon and Google provide Landsat scenes via commercial
clouds [5]. The number of practical Landsat applications is rapidly growing [7].
A retrospective time series of Landsat scenes for a particular area is of great
importance since it makes it possible to track area changes that were happening
over the past decades.

The file-centric model of raster data storage resulted in a broad set of highly
optimized raster file formats. For example, GeoTIFF represents an effort by over
c© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 351–362, 2017.
https://doi.org/10.1007/978-3-319-71255-0_28
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160 different companies and organizations to establish interchange format for
georeferenced raster imagery [6]. Decades of development and feedback resulted
in numerous feature-rich, elaborate, free and quality-assured tools for processing
raster files. For example, NCO (NetCDF Operators) are are under development
since about 1995 [10], GDAL (Geospatial Data Abstraction Library) has over
one million lines of code made by hundreds contributors [4].

An array DBMS is one of the tools to streamline raster data processing. The
idea of partially delegating raster data processing to existing command line tools
was first presented and proved to outperform SciDB on NetCDF data 3× to 193×
on a single machine [16] and up to 1000× running both SciDB and ChronosServer
on a computer cluster (Microsoft Azure Cloud) [17]. ChronosServer is the system
into which the delegation ability is being integrated [15].

The formal array model and formal distributed algorithms are given in [17].
The new two-level data model was designed to uniformly represent diverse raster
data types and formats, take into account the distributed context, and be inde-
pendent of the underlying raster file formats at the same time [17].

The main goal of this paper is to advance the proposed delegation app-
roach and to show its exceptional suitability for satellite data processing.
ChronosServer outperforms SciDB on raw Landsat scenes. To obtain an order
of magnitude speedup, a physical reorganization of the storage layout of 2-d
Landsat scenes is carried out by cutting and joining them into 3-d arrays. This
case is generalized and a generic reshaping algorithm is proposed to transform
a set of N -d arrays with arbitrary shapes to a set of M -d arrays with a fixed
shape, where N −M ∈ Z. The new algorithm is useful on a “data cooking” stage
to spend some time to prepare data and make further algorithms to run much
faster.

In summary, the major contributions of this paper are (i) the generic N -d
reshaping algorithm and (ii) an experimental evaluation of ChronosServer and
SciDB on retrospective Landsat 8 data in the Cloud.

The rest of the paper is organized as follows. For the sake of completeness,
Sect. 2 describes the array model, dataset model, and ChronosServer architec-
ture [17]. Section 3 gives generic distributed algorithms for in situ processing
of arbitrary N -d arrays. The algorithms are refined in order to treat NetCDF
and GeoTIFF formats and delegate portions of work to NCO and GDAL tools.
Section 4 presents the N -d reshaping algorithm. Section 5 gives the performance
evaluation. Section 6 reviews the related work. Section 7 concludes the paper.

2 ChronosServer

2.1 ChronosServer Multidimensional Array Model

In this paper, an N -dimensional array (N -d array) is the mapping A : D1×D2×
· · · × DN �→ T, where N > 0, Di = [0, li) ⊂ Z, 0 < li is a finite integer, and T is
a numeric type (to be specific about value ranges, size in bytes, precision, etc.,
a C++ type according to ISO/IEC 14882 can be taken). li is said to be the size
or length of ith dimension (in this paper, i ∈ [1, N ] ⊂ Z).
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Let us denote the N -d array by

A〈l1, l2, . . . , lN 〉 : T (1)

By l1 × l2 ×· · ·× lN denote the shape of A, by |A| denote the size of A such that
|A| =

∏
i li. A cell or element value of A with integer indexes (x1, x2, . . . , xN ) is

referred to as A[x1, x2, . . . , xN ], where xi ∈ Di. Each cell value of A is of type T.
The array may be initialized after its definition by enumerating the values of the
cells. For example, the following defines and initializes a 2-d array of integers:
A〈2, 2〉 : int = {{1, 2}, {3, 4}}. In this example, A[0, 0] = 1, A[1, 0] = 3, |A| = 4,
and the shape of A is 2 × 2.

Indexes xi are optionally mapped to specific values of ith dimension by coor-
dinate arrays A.di〈li〉 : Ti, where Ti is a totally ordered set, and di[j] < di[j +1]
for all j ∈ Di. In this case, A is defined as

A(d1, d2, . . . , dN ) : T (2)

A hyperslab A′ 	 A is an N -d subarray of A. The hyperslab A′ is defined by
the notation

A[b1 : e1, . . . , bN : eN ] = A′(d′
1, . . . , d

′
N ) (3)

where bi, ei ∈ Z, 0 � bi � ei < li, d′
i = di[bi : ei], |d′

i| = ei − bi + 1, and for all
yi ∈ [0, ei − bi] the following holds

A′[y1, . . . , yN ] = A[y1 + b1, . . . , yN + bN ] (4a)
d′
i[yi] = di[yi + bi] (4b)

Equations (4a) and (4b) state that A and A′ have a common coordinate subspace
over which cell values of A and A′ coincide.

2.2 ChronosServer Datasets

A dataset D = (A,M,P ) contains a user - or higher-level array A(d1, . . . , dN ) : T
and the set of system- or lower-level arrays P = {(Ak, Bk, Ek,Mk, nodek)},
where Ak 	 A, k ∈ N, nodek is an identifier of the cluster node storing array
Ak, Mk is metadata for Ak, B〈N〉 : int = {b1, b2, . . . , bN}, E〈N〉 : int =
{e1, e2, . . . , eN} such that Ak = A[b1 : e1, . . . , bN : eN ]. A user-level array is
never materialized and stored explicitly: an operation with A is mapped to a
sequence of operations with respective arrays Ak. Let us call a user-level array
and a system-level array an array and a subarray respectively for short. A
dataset also contains metadata M = {(key, val)}, where key is a string and
val is a string or a number. Dataset metadata includes two types of informa-
tion: general dataset properties (name, description, contacts, etc.) and meta-
data valid for all p ∈ P (array data type T, storage format, etc.). For example,
M = {(name = “Landsat 8 Band 1”), (type = int16), (format = GeoTIFF)}.
Let us refer to an element in a tuple p = (Ak, Bk, . . . ) ∈ P as p.A for Ak, p.B for
Bk, etc. Example of a subarray metadata p.M = {(key, val)} is p.M = {(date =
“2016-Aug-08”, bounding box = “WKT(. . . )”, projection = “EPSG:32637”)}.
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2.3 ChronosServer Architecture

ChronosServer runs on a computer cluster of commodity hardware. Files are
distributed among cluster nodes without changing their names and formats. A
file is always stored entirely on a node in contrast to parallel or distributed file
systems. Workers run on each node and are responsible for data processing. One
Gate at a dedicated node receives client queries and coordinates workers. A file
may be replicated on several nodes for fault tolerance and load balancing.

Gate stores metadata for all datasets and subarrays. Consider a dataset D =
(A,M,P ). Arrays A.di and elements of ∀p ∈ P except p.A are stored on Gate. In
practice, array axes usually have coordinates such that A.di[j] = start+j×step,
where j ∈ [0, |A.di|) ⊂ N, start, step ∈ R. Only |A.di|, start, and step values
have to be usually stored. ChronosServer array model merit is that it has been
designed to be generic as much as possible but allowing to establish 1:1 mapping
of a p ∈ P to a physical dataset file at the same time.

Upon startup workers connect to Gate and receive a list of all available
datasets and file naming rules. Workers scan their local filesystems to discover
datasets and create p.M , p.B, p.E by parsing file names or reading file metadata.
Workers transmit to Gate the described information.

A user-level array may have a virtual dimension. Values for virtual dimensions
are taken from the subarrays metadata. For example, Landsat files are 2-d arrays
A(lat, lon) without a temporal axis. Virtual axis “time” in A(time, lat, lon) may
contain scenes acquisition dates extracted from the file names. This makes it
possible to treat a set of Landsat scenes as a 3-d array.

3 Array Operations

3.1 Aggregation

The aggregate of an N -d array A(d1, d2, . . . , dN ) :T over axis d1 is the (N − 1)-
d array Aaggr(d2, . . . , dN ) : T such that Aaggr[x2, . . . , xN ] = faggr(cells(A[0 :
|d1| − 1, x2, . . . , xN ])), where x2, . . . , xN are valid integer indexes, faggr : T �→ w
is an aggregation function, T is a multiset of values from T, w ∈ T, cells : A′ �→ T
is the multiset of all cell values of an array A′ 	 A.

Algorithm 1 performs aggregation of system-level arrays.
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The generic aggregation Algorithm 1 is based on the dataset model from
Sect. 2.2 and takes into account that system-level arrays may overlap and cover
the N -d space irregularly (e.g., scenes following a riverbed). Also, Landsat scenes
for the same path and row may be shifted relatively to each other (it is hard to
capture precisely the same area each time).

Algorithm 1 is designed for faggr ∈ {max,min, sum}. The basic idea is that
workers aggregate in parallel all subarrays residing locally into one subarray and
send it to a worker calculating the final result. Calculating mean is reduced to
calculating the sum and dividing the result onto the number of participating
subarrays. The Gate is responsible for calculating this number and sending it to
the worker performing final aggregation (not shown in the algorithm).

In Sect. 5, we always set wid to the largest possible. Array p′ on Line 2 may
grow large in volume and require splitting. We leave this case for future work.
Line 2 is highlighted with light gray to accent the work being delegated to an
external tool: gdal calc.py for GeoTIFF format and an NCO tool (ncra, ncwa,
or ncap2 depending on file structure) for NetCDF format.

3.2 Chunking

Chunking is the process of partitioning original array onto a set of smaller sub-
arrays called chunks. Chunks are autonomous, possibly compressed subarrays
(hyperslabs) with contiguous storage layout. Given chunk shape c1×· · ·×cN and
an N -d array A(d1, . . . , dN ) : T, the exact chunking operation reorganizes cells in
array A such that all cells of A with coordinates (x1, . . . , xN ) and (y1, . . . , yN )
belong to the same chunk if xi div ci = yi div ci for all i. Due to space con-
straints, please, find the illustration and benefits of chunking in [16].

The exact chunking of an array may lead to data movement between files
and cluster nodes. However, in practice the condition ci � |A.di| usually holds.
This translates to ci � |p.A.di| for ∀p ∈ P (in practice, raster data are already
shipped in wisely cut files satisfying this condition). For example, in climate
modeling it is common to split a time series with hourly time step onto files
storing yearly or monthly data.

A good practical approach is to do inexact user-level array chunking and
exact independent chunking of its subarrays. More chunks will smaller shapes
than the given one will appear. However, the fraction of such small chunks will
be negligible and they will not influence significantly the I/O performance. Note
that if |A.di| mod ci �= 0, then even the exact chunking of a user-level array is
not possible leading to a certain amount of chunks with smaller shapes.

In practice, inexact chunking is even more desirable in many cases: it is
much faster and more consistent than the exact chunking. Recall that files under
ChronosServer control are directly accessible by a user and any other software.
Consider the climate modeling example given above. In this case, it is incon-
sistent to have a perfectly chunked file named “2015.nc” and supposed to store
data for year 2015 but with extra grids from the next and/or previous years.

Chunking is delegated to gdal translate (GDAL) and ncks (NCO) for Geo-
TIFF and NetCDF file formats respectively.
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4 Generic Reshaping Algorithm

This section presents an algorithm to reshape system-level arrays. The algorithm
is useful on a “data cooking” stage to spend some time to reshape the subarrays
to speedup further raster operations.

It is costly to aggregate and/or hyperslab large number of files. For example,
aggregating a time series of 2-d scenes makes the hidden asymptotic constants
quite noticeable. Changing position of a virtual axis during reshaping requires
complex data moves between files (reshaping operation is defined in [17]). Chunk-
ing along a virtual axis A.vi could be implemented as co-locating p1, p2 ∈ P on
a single machine such that p1.vi[x] and p2.vi[y] are in the same chunk. This
“virtual” chunking will not speedup the I/O as chunking of a single physical file.

The reshaping algorithm overcomes these limitations. For example, initial
shape of raw Landsat files (system-level arrays) is 1×L1 ×L2 (time× lat× lon),
where L1 ≈ L2 ≈ 8000. Reshaping subarrays, say, to 5 × L1/4 × L2/4 will
accelerate aggregation and hyperslabbing (hyperslabbing is defined in [17]). In
this case, virtual time dimension will become a regular physical dimension and
will explicitly present in dataset files. This will make it possible to delegate
dimension permutation of Landsat 8 scenes (please, refer to [17] for details on
dimension permutation) as well as chunking (Sect. 3.2) to an external tool.

Algorithm 2 takes as input a set of N -d subarrays P with arbitrary shapes
and produces a set of subarrays P ′ such that ∀p′ ∈ P ′ has shape s1×s2×· · ·×sN
(except border cases) and sides of p′ are parallel to the coordinate axes.

Given M �= N , Algorithm 2 reshapes subarrays from N -d to M -d form
using virtual axes supported by ChronosServer data model. A virtual axis can
be made a physical one to get subarrays with greater physical dimensionality
M > N (the case with Landsat scenes described above). An axis can be made
virtual and deleted from the files if the axis has a unit length in all resulting
subarrays.
This will produce subarrays with lower physical dimensionality, i.e. M < N .

The basic idea is to cut each p ∈ P onto smaller pieces P ′ = {p′ : p′ 	 p},
assign each piece a key, and merge all pieces with the same key into a single,
new system-level array. For x ∈ N, lag(x) is defined below.

lag(x) =

{
0, if x = 0
x − 1, if x � 1

(5)

The Reshape function of Algorithm 2 implements the idea outlined above.
Each subarray is cut independently by Cut-One procedure, line 3. Set K collects
N -tuples which are N -d keys of cut pieces collected in C. Pieces with the same
key are merged into a single subarray on lines 4–7. Line 6 is highlighted with
light gray since merging of files is possible to delegate to an external tool.

Algorithm 2 is best illustrated on a 2-d case. Consider a 2-d array A(lat, lon),
Fig. 1a. Array A has shape 10×15 and consists of 6 subarrays separated by thick
blue lines. The reshaping produces 2-d subarrays with shape 3 × 3, s1 = s2 = 3.
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Resulting subarrays P ′ are separated with dashed red lines. The hatched area
marks one of the resulting subarrays A[3 :5, 3:5].

Subarray A[5 :9, 5:9] will be cut on 9 pieces separated by the red lines: A[5, 5],
A[5, 6 : 8], A[5, 9] and so on. Each of them will be assigned a 2-d key. Resulting
subarray A[3 : 5, 3 : 5] will be assembled from 4 pieces cut from A[5 : 9, 0 : 4],
A[5 : 9, 5 : 9], A[0 : 4, 0 : 4], and A[0 : 4, 5 : 9]. These 4 pieces are A[5, 5], A[5, 3 : 4],
A[3 :4, 3:4], and A[3 :4, 5]. All 4 pieces will have key (1, 1).
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Fig. 1. Reshaping system-level arrays. (Color figure online)

Algorithm 2 accepts a shift μi for the ith axis in order to start cutting with
an “indent”, Fig. 1b. Resulting subarrays containing a cell with a zero coordinate
will have shape s′

1 × s′
2 × · · · × s′

N , where s′
i = μi if μi �= 0; s′

i = si otherwise.
Lines 2–6 of the Cut-One procedure calculate ηi which is a “local indent”

within the current subarray p along the ith axis: ηi cells from p along the ith
axis must go to the resulting subarray contained in p and other source subarrays
bordering with p. Then, xi is found which is the number of pieces to be cut along
the ith axis. Thus,

∏
i xi is the total number of pieces to be cut from p. Loop on

lines 11–23 cuts one piece at a time. Lines 12–13 find indexes within p to cut a
piece on line 14 by the delegation to an external tool. The piece is assigned the
key which is an N -d 0-based index of the resulting subarray to which the piece
belongs. The ith tuple element of an N -d key is the index along the ith axis.

5 Performance Evaluation

Microsoft Azure Cloud was taken for the experiments. Azure cluster creation,
scaling up and down with given network parameters, number of virtual machines,
etc. was fully automated using Java Azure SDK [17]. The latest version of
Ubuntu Linux on which SciDB 16.9 runs is 14.04 LTS. We rented standard
D2 v2 machines with 2 CPU cores (Intel Xeon E5-2673 v3 (Haswell) 2.4 GHz),
7 GB RAM, 100 GB local SSD drive (4 virtual data disks), max 4 × 500 IOPS.
Although Azure states the disk to be SSD, after the creation of such a disk Azure
displays the disk to be a standard HDD disk backed by a magnetic drive.

We selected band 1 from nine Landsat 8 scenes for path 190 and row 31
(≈585 MB in total) such that the cloud cover percent for the majority of scenes is
less than 20%. We evaluated the latest SciDB version 16.9 released in November,
2016. We have written a Java program that converts GeoTIFF files to CSV files
to feed the latter to SciDB. To date, this is the only way to import an external
file into SciDB 16.9. We aligned all scenes in UTM coordinates since they are
slightly shifted relatively to each other and imported the scenes into a SciDB
array with shape 9×7971×7941. We filled the cells with NULL values for areas in



Retrospective Satellite Data in the Cloud: An Array DBMS Approach 359

some scenes that appeared in the result of extension of that scenes during their
alignment. Import time of one Landsat 8 scene into SciDB takes about 40 min
on a cloud node, not local machine. Therefore, we imported all 9 scenes on a local
computer, exported the resulting SciDB array into a file of proprietary SciDB
binary format, and copied that file in the Cloud when needed (SciDB imports
data from its proprietary format much faster).

Cluster in order to deploy it on a cluster. SciDB is mostly written in
C++, parameters used: 0 redundancy, 2 instances per machine, 5 execution and
prefetch threads, 1 prefetch queue size, 1 operator threads, 1024 MB array cache,
etc. ChronosServer has 100% Java code, ran one worker per node, OracleJDK
1.8.0 111 64 bit, max heap size 978 MB (-Xmx). We used NCO and GDAL tools
available from the standard Ubuntu 14.04 repository. NCO v4.4.2, last modified
2014/02/17. GDAL v1.10.1, released 2013/08/26.

We have evaluated cold query runs (a query is executed for the first time).
Every runtime reported is the average of 3 runtimes of the same query. Respective
OS commands were issued to free pagecache, dentries and inodes each time
before executing a cold query to prevent data caching at various OS levels.
ChronosServer benefits from native OS caching and is much faster during hot
runs when the same query is executed for the second time on the same data.
There is no significant runtime difference between cold and hot SciDB runs.

To increase the data volume and to avoid waiting for loading more scenes, we
attached SciDB array to itself to get the time dimension of size 18. We could not
attach the resulting array to itself again. We tried in many ways including array
import with different chunk shapes but SciDB had been always failing with not
enough memory error. As of 29-May-2017, we did not receive any feedback from
SciDB developers on this issue [11]. The same errors prevented us to measure
SciDB chunking performance (Sect. 3.2). Chunking is one of the slowest SciDB
queries even on small arrays [16]. We replicated 9 scenes to get 18 scenes and
placed them by 2–3 on each node for ChronosServer.

Table 1 summarizes ChronosServer performance on raw and preprocessed
Landsat scenes as well as SciDB performance with automatically chosen chunk
shape for the SciDB array. Given array A(time, lat, lon), “cut m × n” means
extracting a hyperslab A[0 : |time|−1, x1 : x1 +m,x2 : x2 +m], where x1, x2 are
random indexes for array A. Line “Time series” reports hyperslabbing a time
series for a single point A[0 : |time| − 1, x1, x2]. Hyperslabbing is an extraction
of a hyperslab from an array. “Chunk” lines report chunking of A (for raw data,
time is a virtual axis and its chunk size equals to 1).

Table 2 shows the time for “cooking” Landsat 8 scenes for further speedup
of the queries. Algorithm from Sect. 4 is implemented in a serial mode: all 18
scenes were processed on a single node. Future work includes assigning a set of
keys to a node which will merge all cut subarrays having the given keys.



360 R.A. Rodriges Zalipynis et al.

Table 1. Performance for 18 scenes, 8 cluster nodes

Operation Time, sec. Ratio,

ChronosServer
(raw data)

ChronosServer
(“cooked” data)

SciDB SciDB/Chronos

Average 38.36 8.12 230.74 6.02 28.42

Maximum 38.83 4.56 127.71 3.29 28.00

Minimum 38.98 4.63 125.70 3.22 27.15

Cut 512 × 512 1.79 1.01 1.98 1.11 1.96

Cut 1024 × 1024 3.34 2.14 3.41 1.02 1.59

Time series 0.53 0.31 0.84 1.58 2.71

Chunk 1 × 64 × 64 22.37 — — —

Chunk 1 × 128 × 128 22.49 — — —

Table 2. Preprocessing Landsat data (Sect. 4): 18 scenes, 1 cluster node

Target shape Time, sec. Target shape Time, sec.

4 × 512 × 512 410.25 9 × 1024 × 1024 216.62

9 × 512 × 512 376.32 4 × 4096 × 4096 56.87

4 × 1024 × 1024 187.41 9 × 4096 × 4096 55.45

6 Related Work

Numerous techniques exist for remote sensing data processing. This work is novel
because it is in the context of array DBMS research field. Four modern raster
data management trends are relevant to this paper: industrial raster data models,
formal array models and algebras, in situ data processing algorithms, and raster
(array) DBMS. Good survey of the algorithms is in [3]. A recent survey of array
DBMS and similar systems is in [16]. It is worth mentioning SciDB [18], Oracle
Spatial [12], ArcGIS IS [1], RasDaMan [14], Intel TileDB [19], and PostGIS [13].

A recent survey on the array models and algebras as well as industry standard
data models is in [17]. Work [17] outlines the peculiar features and merits of
ChronosServer data model. It is shown that the most popular array models and
algebras can be mapped to Array Algebra [2]. Industry data models are also
mappable to each other [9]. SciDB does not have a formal description of its data
model. SciDB neither allows array dimensions to be of temporal or spatial types
making it difficult or sometimes impossible to process many real-world datasets.

7 Conclusions

ChronosServer delegates portions of raster data processing to feature-rich and
highly optimized command line tools. This makes ChronosServer run much faster
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than SciDB. ChronosServer is up to 6× faster on raw Landsat 8 scenes than
SciDB on its native storage (the same Landsat 8 scenes imported into SciDB).
ChronosServer is up to 28× faster than SciDB after preprocessing the scenes
which takes 105× to 780× less time than SciDB import.

Future work includes designing a distributed version of the reshaping algo-
rithm proposed in this paper. It could be also beneficial to incorporate fault-
tolerance during the reshaping once it will be parallelized.
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Abstract. This paper is dedicated to the development of the architecture of
specialized GPU clusters that can be used as computing systems in medical ultra‐
sound tomographic facilities that are currently being developed. The inverse
problem of ultrasonic tomography is formulated as a coefficient inverse problem
for a hyperbolic equation. An approximate solution is constructed using an iter‐
ative process of minimizing the residual functional between the measured and
simulated wave fields. The algorithms used to solve the inverse problem are opti‐
mized for a GPU. The requirements for the architecture of a GPU cluster are
formulated. The proposed architecture accelerates the reconstruction of ultrasonic
tomographic images by 1000 times compared to what is achieved by a personal
computer.

Keywords: Ultrasonic tomography · Coefficient inverse problems · Finite-
difference time-domain (FDTD) method · GPU clusters · Medical imaging

1 Introduction

This paper focuses on using specialized supercomputers for medical ultrasonic tomog‐
raphy imaging. The primary application is the differential diagnosis of breast cancer. The
development of ultrasonic tomography devices is currently at the prototype stage [1–3].
One of the most difficult problems in designing ultrasonic tomographic scanners is that the
inverse problems of high-resolution wave tomography are nonlinear and have a very large
number of unknowns — up to 108. The experimental data gathered in one examination
amounts to approximately 5 GB. Solving such problems using precise mathematical
models that take into account the diffraction, refraction and absorption of ultrasonic waves
can be carried out only with the help of powerful modern supercomputers.

However, a general-purpose supercomputer cannot be included as a part of a tomo‐
graphic setup. The aim of this study is to develop the architecture of specialized super‐
computers for medical ultrasonic tomography. A specialized supercomputer should have
an energy consumption not exceeding 10–20 kW and should fit into a single rack. This
specialized supercomputer should be optimized for the most effective implementation
of the iterative gradient method developed in the authors’ previous works [4–8]. Prelimi‐
nary studies have shown that the optimal choice for this task is a GPU cluster. Using
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modern hardware, it is possible to design a specialized GPU cluster, which can be
included in an ultrasonic tomography facility.

2 Formulation of the Inverse Problem of Ultrasonic Tomography

A simple mathematical model that takes into account the ultrasound diffraction and
absorption effects is a scalar wave model based on a second-order hyperbolic equation.
In this model, the acoustic pressure u(r, t) satisfies the equation:

c(r)utt(r, t) + a(r)ut(r, t) − Δu(r, t) = 𝛿(r − q) ⋅ f (t), (1)

u(r, t = 0) = 0, ut(r, t = 0) = 0, 𝜕nu(r, t)| ST = p(r, t). (2)

Here, c(r) = 1/v2(r), where v(r) is the speed of sound in the medium, r ∈ 𝐑
3 is the

point in space, a(r) is the absorption coefficient, and Δ is the Laplace operator with
respect to r. The sounding pulse generated by the point source at q is described by the
function f (t); ∂nu(r, t)|ST is the derivative along the normal to the surface S of the domain
Ω, where (r, t) ∈ S × (0, T); the function p(r, t) is known. The conditions (2) represent
the boundary and initial conditions. It is assumed that v(r) = v0 = const, a(r) = 0 outside
of the studied object. This simple model of wave propagation (1) can be used to describe
ultrasonic waves in soft tissues.

Figure 1 shows a typical scheme of the tomographic experiment. The studied object
G is located inside the region Ω. For simplicity, we assume that the domain Ω is a cube
of height H. The free space L is filled with water with a known sound speed v0. The
sources are located on the boundary S of the domain Ω in several planes: h1, h2, h3. The
detectors can be located on the side and bottom faces of the cube Ω. In ultrasound
mammography applications, sources and detectors cannot be located on the upper side;
thus, this is an incomplete-data tomography problem [6].

Fig. 1. The scheme of the experiment. Fig. 2. Waveform of the sounding pulse.

Let us consider the inverse problem of reconstructing the unknown coefficients c(r)
and a(r) in Eq. (1), given that the acoustic pressure U(s, t) is measured at the points s of
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the boundary S for the time interval (0; T). The value of T is chosen to be large enough
(~250 μs) so that all the waves passing through and reflected from the object are regis‐
tered by the detectors. The measurements are performed for source positions q.
Figure 2 shows a typical waveform of sounding pulses f (t) emitted by the sources. For
low-frequency acoustic tomography in the 500 kHz band, the duration of the pulses is
3–10 μs. The low-frequency approach allows to use a much smaller number of sources
but requires precise measurements and a precise mathematical model [5].

The exact solution of the inverse problem includes the coefficients c(r), a(r), which,
when substituted into Eqs. (1)–(2), produce the wave field u(r, t) equal to the measured
wave field U(s, t) at the detector points s. Because the inverse problem is ill-posed, we
formulate it as a problem of minimizing the residual functional with respect to its argu‐
ment (c, a):

Φ (u(c, a)) =
1
2

T

∫
0

∫
S

(u(s, t) − U(s, t))2dsdt. (3)

Here, U(s, t) is the acoustic pressure measured on the boundary S for the time interval
(0, T); u(r, t) is the solution of the direct problem (1)–(2) for the given c(r) and a(r).

We use the gradient method to minimize the residual functional (3). Representations
of the gradient Φ′(u(c,a)) in various formulations were obtained in [7, 8]. In [9] and [10],
expressions for the gradient in the time-domain formulation were derived. The gradient
Φ′(u(c, a)) = {Φ′

c
(u),Φ′

a
(u)}, representing the linear part of the increment of the func‐

tional Φ(u(c,a)) (3) with respect to the variation of the sound speed and the absorption
coefficient {dc, da}, has the form:

Φ′
c
(u(c)) =

T

∫
0

wt(r, t)ut(r, t)dt, Φ′
a
(u(a)) =

T

∫
0

wt(r, t)u(r, t)dt. (4)

Here, u(r, t) is the solution of the main problem (1)–(2), and w(r, t) is the solution
of some “conjugate” problem for the given c(r), a(r) and u(r, t):

c(r)wtt(r, t) − a(r)wt(r, t) − Δw(r, t) = 0, (5)

w(r, t = T) = 0, wt(r, t = T) = 0, 𝜕nw| ST = u| ST − U. (6)

At the points of the boundary S where no measured data are present, the boundary
condition ∂nw|ST = 0 is applied. To calculate the gradient Φ′ = {Φ′

c
(u),Φ′

a
(u)} using

formula (4), it is necessary to solve the direct problem (1)–(2) and the “conjugate”
problem (5)–(6). With the calculated gradient, we can use various iterative algorithms
to minimize the residual functional (4).
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3 Numerical Algorithms for Solving Inverse Problems of Low-
Frequency Ultrasonic Tomography

We use the finite-difference time-domain (FDTD) method to solve problems (1)–(2) and
(5)–(6) numerically. Let us introduce a uniform discrete grid for the spatial coordinates
(x, y, z) at the time t: xi = ih, yj = jh, zl = lh, tk = kτ; i, j, l = 1,…,N, k = 1,…,M, where
h is the grid step, and τ is the time step. To approximate Eq. (1), we use the following
second-order finite-difference scheme:

cijl

uk+1
ijl

− 2uk
ijl
+ uk−1

ijl

𝜏2 + aijl

uk+1
ijl

− uk−1
ijl

𝜏
−

Δuk
ijl

h2 = 0. (7)

Here, uk
ijl

 are the values of u(r, t) at the point (i,j,l) at the time step k; cijl and aijl are
the values of c(r) and a(r) at the point (i,j,l). The first term in (7) approximates
c(r)utt(r, t), and the second term approximates a(r)ut(r, t). The discrete Laplacian is
denoted by Δuk

ijl
. It is computed using the formula:

Δuk

i0j0l0
=

i0+1∑
i=i0−1

j0+1∑
j=j0−1

l0+1∑
l=l0−1

bijlu
k

ijl
. (8)

The bijl coefficients were presented, for example, in [11]. The parameters h and τ for
the three-dimensional problem are connected by the Courant-Friedrichs-Lewy (CFL)
stability condition: 𝜏 < h∕

√
3c. Collecting the terms with uk+1

ijl
 in (7), we obtain an

explicit finite-difference scheme for the wave Eq. (1). A similar scheme is used for
Eq. (5). To solve the direct problem (1)–(2), non-reflecting boundary conditions [12]
are applied at the boundary of the computational domain.

The components of the gradient of the residual functional are computed using the
formulas:

(Φ′
c
)ijl =

M−2∑
k=2

uk+1
ijl

− uk
ijl

𝜏

wk+1
ijl

− wk
ijl

𝜏
𝜏, (Φ′

a
)ijl =

M−2∑
k=2

uk

ijl

wk+1
ijl

− wk−1
ijl

𝜏
𝜏, (9)

where M is the number of time steps.
The iterative gradient descent algorithm is used to minimize the residual functional.

As initial approximations for c(r) and a(r), we use c(0) = c0 = const, a(0) = 0. These values
correspond to the parameters of the environment. For water, c0 = 1500 m⋅s−1. The
following actions are performed at each iteration (m):

1. The initial pulse is computed.
2. The direct problem (1)–(2) is solved, given that c(r) = c(m), a(r) = a(m). The acoustic

pressure u(m)(r, t) is calculated using formula (7). The values of u(s, t) at the points
s, where the detectors are located, are stored in memory.

3. The residual functional Φ(m) = Φ(u(m)(r)) is computed using formula (3).
4. The “conjugate” problem (5)–(6) is solved to compute the wave field w(m)(r, t).
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5. The gradient Φ’(u(m)) is computed using formula (9). The stages 1–5 are repeated
for all the sources, and the values of Φ(m) и Φ’(u(m)) are summed for all the sources.

6. The current approximation is updated: c(m+1) = c(m) + 𝜆
(m)
𝛷

′
c
(u(m)(r)), a(m+1) =

a(m) + 𝜆
(m)
𝛷

′
a
(u(m)(r)). The process returns to stage 2.

The step of the gradient descent λ(m) is chosen using a priori considerations. During
the iterative process, the step is automatically corrected: λ(m) is decreased by 1.5 times
if Φ(m) > Φ(m−1); otherwise, it is increased by 25%. These rates are tuned for typical sound
speed variations in soft tissues (1400–1600 m⋅s−1).

4 GPU Implementation of Computations for the Direct and Inverse
Problems of 3D Ultrasound Tomography

4.1 Specific Features of Graphics Processors

Graphics processors have become the first widely available parallel architecture and are
already used in ultrasonic tomography applications [3].

The specific feature of the GPU memory hierarchy is a very high memory perform‐
ance combined with a slow communication channel. As in most modern systems, the
performance of arithmetic units is much higher than the memory performance.

Graphics processors are designed for data-parallel tasks, where each of the thread
blocks processes its own data area, for example, a part of the image that does not overlap
with other parts. Thus, an algorithm optimized for a GPU cluster must first divide the
problem into processes that require a relatively small amount of fast memory; second,
it must subdivide the task for each GPU into completely independent thread blocks.

4.2 Specific Features of the Problem and Optimization of the Algorithm

The inverse problem of low-frequency ultrasound tomography has some specific
features that allow optimizing the algorithm and reducing the computational complexity.

1. The main computational complexity of the algorithm lies in computing the gradient
of the residual functional using the formulas presented in (9), which includes
computing the wave fields u(r, t) and w(r, t). Functional (3) is the sum of the squared
differences ||U(s, t)−u(s, t)||2 for all the sources and detectors. It can be computed
for each source separately, and the results can be added together. The gradient (4)
can also be computed as the sum of partial gradients for each source.

In the proposed architecture of the GPU cluster, each computing node calculates the
gradient for one of the sources. A scheme for parallelizing the computations for sources
S1–S6 is shown in Fig. 3. The input data for all computing nodes are the same: c(m), a(m)

at the m-th iteration of the gradient descent method. The data transfers between the nodes
occur only when an iteration of the gradient method is completed and when the current
approximation is updated.
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Fig. 3. Parallelizing the computations for multiple sources.

The total value of the gradient is computed and broadcast to all the nodes using the
MPI_Allreduce operation. Then the new iterative approximation c(m+1), a(m+1) is
computed. Various parameters of the algorithm are synchronzed via MPI_Bcast
operations.

The amount of transferred data for a problem of size 4003 is approximately 256 MB
(400 × 400 × 400 × 4 bytes) for each node in each direction. Thus, the parallelization
of computations by sources proves to be very effective. The total overhead is a few
seconds per minute.

2. In medical diagnostic applications, the variance of the sound speed in soft tissues
does not exceed 10–15%. This allows us to estimate the volume V, in which the wave
propagates after being emitted from the source, in advance and to perform the
computations within only this volume. The volume V is a sphere of radius vmaxt,
where vmax is the maximum permissible sound speed in the model, and t is the current
simulation time. This optimization is easily accomplished using the GPU by
executing only the blocks for which r ≤ vmaxt. This optimization reduces the compu‐
tation time by 25%.

3. The gradient of residual functional (4) is an integral over time. This means that to
calculate the gradient, it is not necessary to store all the values of u(r, t) in the
X × Y × Z × T region, which would require a huge amount of memory. It is sufficient
to compute u(r, tk) sequentially at time steps tk. Thus, the required amount of memory
is proportional to N3, and the number of operations is proportional to N4, where N is
the number of grid points along one dimension.

Taking into account these features of the ultrasonic tomography problem, we propose
a two-stage method according to the scheme presented in Fig. 4. In the first stage
(“Forward-time computation”), the wave field u(r, t) generated by the source S in the
volume V is computed sequentially in time. An absorbing layer of width d and simple
non-reflecting boundary conditions [12] are used to cancel the reflected waves. A typical
value of d is 32 grid points.
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Fig. 4. The scheme of GPU computations performed in two stages.

To use the FDTD scheme (7), it is necessary to store u(r, t), u(r, t−1), u(r, t−2),
which amounts to 3·(N + 2d)3 32-bit words, and the coefficients c(r) and a(r) in the GPU
memory. The coefficients do not change over time; thus, we can use the image3d
structure, which enables texture caching, improving the performance by 10%.

Since the coefficients are unknown and determined only approximately, the 16-bit
half data type is sufficient for their representation. The error between the exact and
approximate solutions is ~2 m⋅s−1 for c(r), which is ~2% of |c(r)−c0|, and even worse
for a(r) [4]. This means that such variations of the coefficients do not noticeably affect
the simulated ultrasound wave. Thus, a rounding error not exceeding 0.2% is acceptable.

The values of u|ST at the boundary of the computational domain are stored for use in
the second stage. Fast access to these data is not needed; therefore, we place them in the
system RAM. The required RAM capacity is 6 N2·T, where T is the number of time steps.
It follows from the FDTD stability conditions that T ≈ 3 N, and the amount of memory
needed for the boundary values is 18 N3 32-bit words.

To compute the gradient using formula (4), we need the values of u(r, t) and w(r, t)
at the same points. To start computing w(r, t) from the last time step t = T, it is necessary
to compute u(r, t) for all t ≤ T first. In the second stage (“Reverse-time computation”),
we solve Eq. (1) for u(r, t) and problem (5)–(6) for w(r, t) simultaneously in reverse
time. The values of u(r, t) and w(r, t) are computed based on u(r, t + 1), w(r, t + 1),
u(r, t + 2) and w(r, t + 2). The boundary conditions for w(r, t) are determined from the
experimental data U(s, t) by using formula (6).

To fill in the missing values of u(r, t) at the boundary, we use the values of u|ST stored
in the memory in the first stage. The wave field u(r, t) obtained in this way is equal to
u(r, t) computed in the first stage. The recalculation of u(r, t) allows us to use a data
array of size X × Y × Z, not X × Y × Z × T. The numerical error introduced by the
recalculation does not exceed 10−5, making it negligible for practical measurements.
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The amount of data stored in the GPU memory in the second stage is 8 N3: u(r, t)
and w(r, t) for the three time steps (six 32-bit words), the gradient values Φ′

c
 and Φ′

a
 (one

word), which are updated, and the read-only coefficients c(r), a(r) (one word).
Since the gradient value is small compared to the coefficients c(r), a(r), the short

data type is sufficient for its representation. The use of a 16-bit integer type reduces
memory usage and computation time, while providing an acceptable level of precision
to accumulate the integrals (4). A scaling factor of 24000/max|Φ’| is applied to the
gradient Φ’ in order to limit the possible increase of the gradient at the next iteration
and to prevent the coefficients from exceeding the physically realistic range.

4.3 The Finite Difference Method

The finite difference method has been proven to be efficient for numerical simulations
of physical processes. The problem under consideration is no exception. Solving prob‐
lems (1)–(2) and (5)–(6) requires numerical simulation of the wave field with given
parameters. An explicit FDTD scheme is a naturally data-parallel algorithm because the
values at all the grid points are computed in the same way and do not depend on each
other. Such algorithms fit well in SIMD/SPMD-architectures.

To compute the 3D wave fields at each time step, the volume V is divided into blocks
that are processed by each thread block of the GPU. The blocks that are far from the
ultrasound source, where u(r, t) = 0 for the current simulation time t, are excluded. The
“Z-marching” method is used inside each block because the optimal number of parallel
threads in a typical GPU is several hundreds per multiprocessor (MP), and the dimension
of the problem is approximately 4003. The typical number of 3D blocks to be processed
is approximately 10000. The thread blocks are two-dimensional (x, y), and each thread
computes the data sequentially along the Z-axis.

The discrete Laplacian (8) can be reduced to scalar products of three-component
vectors by collecting the terms, because only four of the bijl coefficients have non-
repeating values:

Δu(i, j, z0) = b0 ⋅ u(z0) + b1 ⋅ (u(z0 − 1) + (u(z0 + 1)),
b0 = {b000, b100, b110}, b1 = {b100, b110, b111},
u(z) = {uij, ui j + 1 + ui + 1 j + ui j - 1 + ui - 1 j, ui + 1 j+1 + ui + 1 j - 1 + ui - 1 j + 1 + ui - 1 j - 1}.

To compute Δu sequentially along the Z-axis, we need to keep three vectors per
thread in the registers: u(z0), u(z0−1), and u(z0 + 1). At each step of the Z-marching
method, u(z0 + 1) becomes u(z0), the new u(z0 + 1) is computed, and the results for the
z = z0 plane are saved in the global memory. Small amount of data per thread and mostly
sequential memory access pattern allow for an efficient GPU implementation.

4.4 Profiling the Algorithm

For profiling, a test run of 6 iterations of the gradient method is carried out for a
320 × 320 × 320 problem using the NVidia GeForce GTX Titan graphics card. The
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OpenCL interface was used for GPU programming. Program profiling statistics are
shown in Table 1. The computational kernels that require less than 0.01% of the GPU
time were left out. The start and end times of each kernel run were obtained using
OpenCL profiling events, then the execution times and overlap times were computed.
The total time of all GPU operations corresponds to 100%.

Table 1. Execution time for computational kernels and data transfers.

Runs avg, μs min, μs max, μs Overlap, s Total time
s

% GPU Function

293216
306172
1375
306172
306172
293216
12331
293216
14671
8512

271
11184
911
1215
11645
14292
11076
28
2017
1100

252
112
385
1139
275
712
38
23
1247
1063

499
15842
3049
2041
16146
17981
16143
251
3615
1245

0
3423.1
0
0
0
0
0
0
0
0

79.47
3424.39
1.25
372.11
3565.55
4190.81
136.59
8.37
29.60
9.37

0.94
0.02
0.01
4.41
42.21
49.62
1.62
0.10
0.35
0.11

LoadBound
SaveBound
Initialize
FwdBoundCond
ForwardWave
BackwardWave
SaveExData
LoadExData
DisplayGL
ScalarMax

DATA TRANSFERS
306172
293216
293216
39767

251
32
33
76520

26
26
32
0

1506
51
65
47662

76.19
0
0
0

77.08
9.51
9.91
30.43

0.01
0.11
0.12
0.36

_LoadFromGPU
_SaveToGPU
_SaveExData
_BufferOp

The test shows that, as expected, almost all the time is spent on the calculation of
3D problems (1)–(2) and (5)–(6) (“ForwardWave” and “BackwardWave” functions).
The boundary conditions require approximately 6% of the time because the memory
access pattern is mostly random. The performance impact decreases as the problem size
N increases, because the boundary contains ~N2 elements, while the volume
contains ~N3 elements.

The data transfers between the GPU and the system memory require less than 1% of
the time. Some data transfers are performed in parallel with the calculations. The total
program execution time exceeded the total GPU time by 7.5%. This value shows the
overhead costs that are not parallel with the GPU computations, like summation and
data distribution via the MPI interface.

Further optimization of the algorithm includes choosing the size of the thread blocks,
which determines the optimal use of the GPU register files and memory access circuits.
Figure 5a shows the execution time for different block sizes on a GTX Titan device. The
optimal block size choice can provide up to 15% performance boost, and the size of
32 × 4 was found to be optimal for this problem on all of the tested devices.
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a)              b)

Fig. 5. Execution time: direct problem (bottom), “conjugate” problem (middle), other (top): (a)
for various block sizes, GTX Titan; (b) for various devices, 32 × 4 block size.

The algorithm was tested using a number of GPU devices: NVidia Tesla K40 s on
the “Lomonosov-2” supercomputer, NVidia Tesla X2070 on the “Lomonosov” super‐
computer of the Moscow State University Supercomputer Center [13], NVidia GeForce
GTX Titan and GTX 660 on personal computers.

Figure 5b shows the execution time for various devices. On the supercomputers, the
test run comprised executing 8 tasks in parallel on 8 devices and collecting the data using
the MPI interface, as shown on Fig. 3; on PCs, a single task was executed and the data
were saved to a disk. The MPI_Allreduce operation required less than 1% of the
total time (280 ms for 8 parallel tasks, 340 ms for 48 parallel tasks on the “Lomonosov”
supercomputer equipped with a 40 Gbit/s QDR Infiniband network).

The tests demonstrated a direct relationship between the performance and the
memory bandwidth of the device. The more expensive Tesla devices showed lower
performance, which means that the specific Tesla features are not relevant to this partic‐
ular problem. The parameters of the algorithm, such as caching in local memory vs.
automatic caching, were tuned for best performance on each device.

5 The Architecture of the Computing System for Solving Inverse
Problems of 3D Ultrasonic Tomography

The main problem in 3D wave tomography imaging is that in a typical problem of size
4003, the number of unknowns reaches 108. The number of ultrasound sources required
to collect enough data is approximately 20–40, and the total number of computed data
points reaches 1012. These computations have to be performed within a reasonable time.

The FDTD method is a data-intensive task, for which the memory performance is
of prime importance. Therefore, graphics processors are a natural choice. GPU
computing performance remains high as long as the data fits into the on-board memory
of the device.

Let us formulate the requirements for a computer system that can be used in a tomo‐
graphic complex. To determine these requirements, we ran a series of tests. Table 2
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shows the execution times and memory requirements for different problem sizes. These
tests were performed on an NVidia GeForce GTX Titan device.

Table 2. Memory requirements and execution times for various problem sizes.

3D problem size (N) 256 288 320 384 416 448 512
GPU memory used, GB 0.8 1.2 1.5 2.2 2.8 3.5 5.0
System RAM used, GB 1.5 2 3 5 6 8 12
Time per one iteration, s 11 16 23 48 63 92 160

The performance is a primary limiting factor here because the execution time is
proportional to N4, whereas the amount of memory is proportional to N3. This means
that there is an optimal amount of on-board GPU memory. Thus, using expensive devices
with large amounts of memory is impractical because of the greatly increased time
needed to process such amount of data.

Let us assume that a practically acceptable computation time is 1 h for 100 gradient
method iterations (36 s per iteration). Then, we can use one device with 3 GB of on-
board memory for each ultrasound source when the problem size is limited to 3603. To
tackle problems of sizes up to 4003, we can use two such devices per source, or a single
higher-end device. This setup requires 6 GB of system RAM and 3.5 GB of GPU memory
for each source. For example, the NVidia GeForce GTX 690 graphics card, which
contains two 2-GB GPU devices on a single board, can be used to this end. The proposed
algorithm theoretically allows splitting the processed volume between two GPUs across
the Z-axis. To balance the load, the partitions should include the same number of blocks,
which is known a priori. This is a standard approach to parallelizing 3D FDTD schemes.

Recently announced devices with High Bandwidth Memory architecture (HBM)
have approximately 3 times the performance compared to devices with GDDR5
memory. Using one such device per source, the problem size can be increased to 4803.
In this setup, the device should have 6 GB of on-board memory, and 10 GB of system
RAM per source is required. A problem size of 4803 is close to the practical requirements
for ultrasonic mammography applications. This grid size provides a resolution of 0.4 mm
over a 20 cm range.

Let us formulate the essential characteristics of the specialized GPU computer.
Graphics processors and RAM storage. Each computing node must contain at least

a sufficient number of GPU devices to compute the residual functional gradient for a
single source in a reasonable time. For problem sizes up to 3603 — one GPU device
(~250 GB/s memory bandwidth, 3 GB of on-board memory) and 4 GB of RAM storage
for each ultrasound source. For larger problems — two consumer-class GPU devices
(4–6 GB of total GPU memory), or one higher-end or HBM-class device, and 10–12 GB
of RAM storage per source. The total number of ultrasound sources is 20–30. The
number of GPU devices per node should be maximized in order to reduce the total
number of hardware components. Currently available mainboards can support up to 4
devices.

Central processors. The CPUs distribute data to the GPUs and between computing
nodes. The CPUs must meet the minimal requirements.
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Communication network. The network is used to combine the data from all the nodes
to compute the gradient and to distribute the next iterative approximation to all the nodes
(Fig. 3). These actions are carried out only once per iteration. Because only the all-reduce
and broadcast operations are needed, the optimal network topology is a star or a tree
topology. The minimal required bandwidth is ~200 MB/s.

Disk storage. The disk storage must meet the minimal requirements. The amount of
data to be stored is under 50 GB for one experiment.

These requirements can be met using common solutions that fit in a single rack and
have a power consumption of 10–20 kW. Modern graphics cards require 150–300 W
per unit, and this value steadily decreases as the technology improves. A mainboard with
CPU and RAM requires no more than 250 W; thus, a node containing a mainboard and
four GPU devices requires at most 1.5 kW.

Using widely available hardware components, we can build computing systems that
provide the medical image reconstruction using the 3D wave tomography technology.
The performance gain relative to a single-CPU personal computer is on the order of
1000 times. This estimation is based on a typical 30-fold difference between CPU and
GPU implementations of 3D FDTD methods [14], multiplied by an estimated number
of devices in the cluster of 32.

Graphics cards and GPU supercomputers continue to improve. There is no doubt
that in a few years, the performance of graphics processors will increase by several times,
while the energy footprint will decrease. All this speaks in favour of using GPU clusters
as specialized supercomputers for the new ultrasonic tomographic systems currently
being developed.

6 Conclusions and Discussion

The requirements for a GPU cluster that provides an efficient implementation of the
iterative gradient methods of the reconstruction of tomographic images are formulated.
The specialized GPU cluster can achieve a 1000-fold performance increase compared
to that of a single-CPU personal computer. The characteristics, such as the size, power
consumption, and cost, of a GPU cluster allow it to be used as a computing system in
the new medical ultrasonic tomographic complexes being developed.

There are other high-performance solutions that can be used for solving the inverse
problems of ultrasound imaging. Modern multicore systems, such as the Intel Xeon Phi,
have performances comparable to that of a GPU, but these systems are much more
expensive because they are much more complex devices designed for a wide range of
applications. CPU-based systems require a large number of memory access channels
and a large cache to be efficient for 3D imaging. According to the authors, GPU clusters
have the most promising architecture for high-performance 3D image reconstruction.
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Abstract. This paper includes the energy consumption analysis of the
testing mini-application that implements night time infrared remote
sensing algorithm Nightfire. On this stage of our project computa-
tional nodes with Intel Xeon E5 and Intel Xeon Phi processors were
tested.

The correlation analysis between the number of used MPI ranks -
OMP threads and total energy consumptions was performed for each of
tested computational nodes. The optimized benchmarking parameters
were used to compare energy efficiency of tested nodes.

Moreover, the analysis of mini-application statements blocks was car-
ried out for the following computation phases: I/O with HDF5 and ENVI
data; the data processing using Nelder-Mead method. The impact of each
computation phase to the total energy consumptions was determined so
it gives new insights to possible ways of further optimization.

Based on obtained results, the effectiveness of tested computational
architectures for multispectral satellite images processing was evaluated.

Keywords: Energy consumption · Energy efficiency · Satellite image
processing · Power-aware execution · Hybrid parallel programming

1 Introduction

Nowadays power-aware program executions are one of the most immediate
and pressing challenges facing software developers. The software energy-efficient
design and execution tuning are especially relevant to the reusable applications
that are executed regularly because, among other things, energy consumption
depends on the algorithmic structure and computation phases. Thereby, the
reasonable strategy of hardware usage by program application can result in sub-
stantial reduction of supercomputer operational costs. In that context, the power
consumption during the application runtime should be explored, and the most
power efficient execution configuration should be suggested before the productive
use of software.

c© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 376–387, 2017.
https://doi.org/10.1007/978-3-319-71255-0_30
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In this research we conducted the energy-efficiency analyses of Nightfire
algorithm for multispectral infrared satellite images (MISI) [1]. The multispectral
data for this algorithm are collected globally, each night, by the Visible Infrared
Imaging Radiometer Suite (VIIRS) [2] operated by Suomi National Polar Part-
nership (NPP) [3]. Thus, software implementing Nightfire algorithm is planned
to be used on a daily basis, and so it should be tuned with power concerns.

In our tests we used own mini-application implementing Nightfire algo-
rithm by so-called hybrid programming model that combines shared-memory
(OpenMP) and distributed-memory (MPI) programming models. The hybrid
programming model allows to use many- and multi-core processors in more effi-
cient way and provides opportunities for flexible application tuning against tar-
get architectures. Besides, the hybrid programming model can utilize all available
computing cores and RAM resources more efficiently than pure MPI model what
may cause a program to run faster [4].

On the other hand, due to the flexible nature of hybrid programming model
it is possible to optimize program runtime parameters - first of all, the numbers
of MPI processes and OMP threads - regarding not only to the execution time,
but also to the power consumption.

Finally, drawing up energy profiles along the critical path of program exe-
cution allows to identify those blocks of the studied algorithm that incur the
most energy consumption, which helps to determine further directions of code
optimization.

2 Related Work

Power-aware execution of parallel programs is now a primary concern in large-
scale HPC environments. Dong Li et al. [5] presented and evaluated solutions for
power-efficient execution of programs written in the hybrid program model tar-
geting large-scale distributed systems with multicore nodes. The authors used a
new power-aware performance prediction model of hybrid MPI/OpenMP appli-
cations to derive a novel algorithm for power-efficient execution of realistic appli-
cations.

Power-aware policies were the focus of many researchers. Typically, the stud-
ies proposes to expand the time-saving strategies with power-saving features. As
an example, Wenlei Bao et al. [6] proposed a novel power-aware WCET (Worst
Case Execution Time) analysis technique to improve system energy efficiency
and simultaneously validate real-time tasks. The Power-Aware Linear Program-
ming based Affinity Scheduling Policy was described in [7].

In this paper we studied energy efficiency of MISI processing on the
various Intel Xeon E5 and Intel Xeon Phi architectures. We carried out
cross-architectural research that includes computation phase analysis and
CPU/DRAM power consumption distribution. Our methodology agrees with
common profiling approach and can be used for wide range of software to give
recommendations for power-aware executions.
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3 Algorithm

For our energy consumption analysis we used own mini-application implementing
Nightfire algorithm for the multispectral infrared satellite images processing.
This algorithm detects and characterizes sub-pixel hot sources using multispec-
tral data collected for different infrared spectral ranges. Nightfire algorithm
relies on the approximation of direct composition of theoretical Planck curves
describing radiation of subpixel heat source(s) and sea/land surface temperature
background. The Nelder-Mead simplex algorithm is used for the unconstrained
nonlinear fit of a weighted mixture of the Planck curves to observed multispectral
radiances.

The method can be used to process the data from the last generation of
infrared sensors at the environmental satellites: VIIRS (solar synchronous Suomi
NPP and JPSS-1, NOAA/NASA), ABI (geostationary GOES-R, NOAA) [8],
Landsat 8 (low orbiting, USGS) [9], and AHI (geostationary Himawari 8-9,
JMA) [10].

The basic flowchart illustrating the structure of Nightfire algorithm is
shown on the Fig. 1.

Nightfire algorithm has the high scalability potential because it processes
images by applying Nelder-Mead optimization method [11] to individual image
pixels independently from each other. Moreover, the most computational inten-
sive part of Nelder-Mead optimization method, namely, the evaluation of target

Fig. 1. Nightfire Algorithm Flowchart
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function values, is also well suited for parallelization. Nevertheless, huge compu-
tational demands of this task stem from the necessity to process large number
of images with large number pixels during short time period.

We used the heterogeneous MPI + OMP parallelization scheme to effectively
utilize the multicore architectures. The manual and the compiler-supported code
vectorization for Intel architectures also were applied before the analysis stage.

4 Hardware

In the Table 1 codenames and specifications of studied testbeds are listed.

Table 1. Testbeds Specifications

Codename CPU # Cores Memory GB per Core

Haswell Intel Xeon
E5-2697 v3

2x 14 8x DRAM
Samsung 16GB
DDR4/2133MHz

4.57

Broadwell Intel Xeon
E5-2697A v4

2x 16 8x DRAM
Samsung 16GB
DDR4/2133MHz

4

KNL Intel Xeon Phi
7250

68 MCDRAM
Intel 16 GB +
6x DRAM
Micron 32GB
DDR4/2133MHz

2.8

5 Measurements

The energy consumption of the tested mini-application was studied using the
Intel Running Average Power Limit (RAPL) counters [13]. RAPL provides a way
to measure the power consumption on processor packages and DRAM. According
to the recent studies this software power model matches the actual power mea-
surements [14]. Further all results are given as averaged results of the multiple
executions.

PAPI performance application programming interface [15] was used to gather
RAPL data statistics. The distribution of total energy consumption for different
MPI/OMP numbers are shown on the Fig. 2.

We used the following execution parameters: 2/4/6/8/10 MPI processes and
1xN/2xN/3xN/4xN OMP threads (in total), where N is the number of cores per
one CPU. Consequently, due to the usage of Intel Hyper-Threading Technology
for Intel processors [12] the maximal number of OMP threads per CPU core
was 56 for Haswell (2 (CPUs per node) × 14 (Cores per CPU) × 2 (Hyper-
threading)); 64 for Broadwell (1 (CPU per node) × 14 (Cores per CPU) × 2
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Fig. 2. Estimated Energy Consumption for DRAM and CPU Packages on (a) Haswell,
(b) Broadwell, (c) KNL architectures

(Hyperthreading)) architectures, and 272 (2 (CPUs per node× 68 (Cores per
CPU) × 4 (Hyperthreading) for KNL architecture.

The bar graph on the Fig. 3 expresses the total execution time in seconds for
the tested mini-application.
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Fig. 3. Total Execution Time on (a) Haswell, (b) Broadwell, (c) KNL architectures

The minimal energy consumption results for the tested mini-application are
presented in Table 2.

Obtained results show that for all testbeds the most optimal processes/
threads configuration was 4 MPI/2 ×Numcores OMP threads per node, where
Numcores is the number of physical cores in a computational node (Fig. 3).

While there is some correlation between the execution time and the consumed
energy, it has complex noninear character. The values of energy (ETS) and time
(TTS) to solve test problem for all testbeds are presented in the Tables 3, 4
and 5.

For example, the most power-aware MPI/OMP execution configuration for
Haswell processor took 5.596 sec and 730 J. The most time-efficient (fast) result
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Table 2. Minimal energy consumption for the tested architectures, J

Application Haswell Broadwell KNL

DRAM 38.9043
(4 MPI 56 OMP)

184.749
(8 MPI 64 OMP)

27.071333
(8 MPI 272 OMP)

Processors 691.584
(4 MPI 56 OMP)

618.51
(4 MPI 64 OMP)

995.386667
(4 MPI 136 OMP)

Total 730.488
(4 MPI 56 OMP)

807.076
(4 MPI 64 OMP)

1027.73
(4 MPI 136 OMP)

Table 3. Energy (ETS, J) and time (TTS, sec) obtained for the test on Haswell testbed
with different MPI and OMP configurations

MPI Type 14 OMP 28 OMP 42 OMP 56 OMP

2 TTS 8.139 6.829 6.466 6.149

ETS 1077.12 927.882 796.54 737.235

4 TTS 6.055 5.726 5.619 5.596

ETS 850.526 753.846 737.405 730.488

6 TTS 6.276 5.935 5.762 5.706

ETS 898.315 823.753 802.762 797.944

8 TTS 5.814 5.558 5.624 5.514

ETS 847.626 800.677 818.487 796.684

10 TTS 6.151 5.904 5.879 5.738

ETS 945.801 906.363 901.844 882.429

Table 4. Energy (ETS, J) and time (TTS, sec) obtained for the test on Broadwell
testbed with different MPI and OMP configurations

MPI Type 16 OMP 32 OMP 48 OMP 64 OMP

2 TTS 7.993 6.674 6.375 6.1236

ETS 1150.2 1003.82 871.343 840.002

4 TTS 5.979 5.664 5.581 5.571

ETS 910.977 830.855 811.053 807.076

6 TTS 6.373 5.987 5.897 5.654

ETS 975.988 908.189 892.213 852.781

8 TTS 5.611 5.549 5.462 5.465

ETS 866.233 853.055 839.569 839.433

10 TTS 5.805 5.719 5.653 5.582

ETS 922.358 912.005 901.284 887.115
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Table 5. Energy (ETS, J) and time (TTS, sec) obtained for the test on KNL testbed
with different MPI and OMP configurations

MPI Type 68 OMP 136 OMP 204 OMP 272 OMP

2 TTS 12.441 11.417 10.935 11.838

ETS 1199.53 1121.73 1049.95 1118.04

4 TTS 11.045 10.626 10.841 10.788

ETS 1078.75 1027.73 1047.4 1037.99

6 TTS 10.921 10.716 12.300 10.732

ETS 1057.9 1044.61 1149.79 1050.69

8 TTS 10.518 10.794 12.257 10.598

ETS 1045.54 1069.55 1158.77 1049.24

10 TTS 10.724 11.491 10.600 11.281

ETS 1068.12 1118.9 1058.22 1100.22

was 5.514 sec, but the energy consumption for this configuration was 796 J, that
is 66 J more then the energy efficient one.

For Broadwell processor, the most energy efficient result was 5.571 sec for
runtime and 807 J for energy consumption.

It is worth noting that, while Haswell architecture demonstrated the best
total energy efficient result, the best results for CPU energy consumption were
yielded on Broadwell testbed (Fig. 4).
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Fig. 4. CPU Energy Consumption for (a) Haswell, (b) Broadwell, (c) KNL
architectures

However, the energy-efficiency of Broadwell processors was neglected by
DRAM consumption (Fig. 5). Broadwell architecture has demonstrated the high-
est rates of DRAM energy consumption, while KNL DRAM energy consumption
is the lowest one.

The difference in DRAM energy consumption between Haswell and Broadwell
architectures was even more remarkable because DRAM models for these nodes
were absolutely identical.
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Fig. 5. DRAM Energy Consumption for (a) Haswell, (b) Broadwell, (c) KNL
architectures

6 Computation Stages

6.1 Input/Output

For this work, the mini-example of satellite image was prepared in HDF5 data
format [16]. Input data contained 9830400 pixels, file size was 236 Mb. The
HDF5 I/O library supports parallel I/O, so we have used parallel data reading
operations.

However, the processors energy consumption increases steadily with the num-
ber of used MPI processes for all architectures (see Fig. 6):

– Haswell testbed – 179,5 J in average for 2 MPI executions, 265,75 J for 10
MPI executions;

– Broadwell testbed – 175 J in average for 2 MPI executions, 238 J for 10 MPI
executions;

– KNL testbed – 500,25 J in average for 2 MPI executions, 536 J for 10 MPI
executions.

DRAM energy consumption also increased with the growing number of MPI
ranks used (see Fig. 7).

The output data were prepared in ENVI format and took about 300 Mb of
disk space. While ENVI output weren’t parallelized, KNL energy consumption
was comparable to Haswell and Broadwell energy consumption for this phase of
algorithm and took about 250 J (vs 500 J for HDF5 input) (see Fig. 8). Con-
sequently, for Intel Xeon Phi architecture special attention should be drawn to
HDF5 input phase.

6.2 Image Processing

On the contrary to the input phase, for the image processing stage the test run
with 2 MPI ranks was the least successful case in energy consumption terms for
processors (see Fig. 9) as well as DRAM (Fig. 10).
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Fig. 6. CPU Energy Consumption during the Input Stage on (a) Haswell, (b) Broad-
well, (c) KNL architectures
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Fig. 7. DRAM Energy Consumption during the Input Stage on (a) Haswell, (b) Broad-
well, (c) KNL architectures
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Fig. 8. CPU Energy Consumption during the Output Stage on (a) Haswell, (b) Broad-
well, (c) KNL architectures
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Fig. 9. CPU Energy Consumption during the Image Processing Stage on (a) Haswell,
(b) Broadwell, (c) KNL architectures

2 4 6 8 10

14 OMP
28 OMP
42 OMP
56 OMP

Haswell: 2 PACKAGES

MPI

E
ne

rg
y,

 J

0
20

40
60

80
10

0
12

0

a)

2 4 6 8 10

16 OMP
32 OMP
48 OMP
64 OMP

Broadwell: 2 PACKAGES

MPI

E
ne

rg
y,

 J

0
20

40
60

80
10

0
12

0

b)

2 4 6 8 10

68 OMP
136 OMP
204 OMP
272 OMP

KNL

MPI

E
ne

rg
y,

 J

0
20

40
60

80
10

0
12

0

c)

Fig. 10. DRAM Energy Consumption during the Image Processing Stage on
(a) Haswell, (b) Broadwell, (c) KNL architectures

It is also worth noting that for this stage of algorithm the energy consumption
difference between test runs with different MPI ranks was significant, so the less
efficient configurations should be avoided.

The most power efficient MPI/OMP cases on the most computation demand-
ing stage (2 MPI 14 OMP for Haswell and 2 MPI 16 OMP for Broadwell respec-
tively) didn’t utilize all computation resources1, that leads to the execution time
and the total energy consumption increasing.
The energy effective MPI/OMP combinations can be proposed as follows:

– The best configurations for Haswell testbed include 8/10 MPI, 28/42/56 OMP
cases (The results varies in ranges 165-170 J per CPUs, 6.1-6.7 J per DRAM).

– The best configurations for Broadwell testbed include 8/10 MPI, 32/48/64
OMP cases (The results varies in ranges 120-126 J per CPUs, 22-23 J per
DRAM).

– The best possible options for KNL cover 6/8/10 MPI, 68/136/204/272 OMP
cases (The results varies in ranges 180-190 J per CPU, 11-15 J per DRAM).

1 If it be taken into account the hyperthreading technology.
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It is worth mention that for the input/output stages the energy consumption
was higher than for the image processing stage. This difference is particularly
notable for KNL testbed, so the major optimization efforts should be aimed to
the input/output phases before the processing of big amounts of data. We plan
in the future work to study the energy-efficiency of possible models of the usage
of HBM2 on KNL testbeds.

7 Conclusions

The results of our test runs have showed that the isolated CPU energy consump-
tion didn’t reflect a full picture. For example, for Broadwell testbed processors
have showed the most power-aware execution results, but DRAM energy con-
sumption was the substantial and the largest among the considered testbeds
share of the total energy consumption.

Our experimental studies have demonstrated the efficiency of simple energy
measurements to reveal energy consumption flaws. As given test results illus-
trate, the execution time could be slightly different for different runtime config-
urations, but the energy consumption for them might change considerably.

So it seems to be possible to tailor suitable TTS/ETS configurations for each
satellite processing algorithm in order to reduce the total energy consumption.
For Nightfire algorithm of MISI processing we can propose 4 MPI/2×Numcores

configurations as the most power-aware configurations.
In the future, we plan to continue these experiments with larger amounts of

real satellite data (up to 20–30 TB) and proof the scalability of our assumptions.
Currently, the VIIRS boat detector algorithm is developed for subsequent

study. It is an innovative method to robustly identify fishing boats at night using
visible and infrared images from the SNPP satellite. We are planning to study
the inter-node communications and larger amount of data using this algorithm
in the nearest future.
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and Technology Program grant 14.607.21.0165 Efficient co-design of massively parallel
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Abstract. In this paper we analyse how well compilers vectorize a well-
known benchmark ETSVC consisting of 151 loops. The compilers we
evaluated were Intel C/C++ 17.0, GCC C/C++ 6.3.0, LLVM/Clang
3.9.1 and PGI C/C++ 16.10. In our experiments we use dual CPU sys-
tem (NUMA server, 2 x Intel Xeon E5-2620 v4, Intel Broadwell microar-
chitecture) with the Intel Xeon Phi 3120A co-processor. We estimate
time, energy and speedup by running the loops in scalar and vector
modes for different data types (double, float, int, short int) and deter-
mine loop classes which the compilers fail to vectorize. The Running
Average Power Limit (RAPL) subsystem is used to obtain the energy
measurements. We analyzed and proposed transformations for the loops
that compilers failed to vectorize. After applying proposed transforma-
tions loops were successfully auto-vectorized by all compilers. The most
part of the transformations based on loop interchange, fission by name
and distribution.

Keywords: Loops · Compilers · Automatic vectorization · CPU energy
consumption · Intel Xeon · Intel Xeon Phi

1 Introduction

Modern high-performance computer systems are multiarchitectural systems and
implement several levels of parallelism: process level parallelism (PLP, message
passing), thread level parallelism (TLP), instruction level parallelism (ILP), and
data level parallelism (data processing by several vector arithmetic logic units).
Processor vendors pay great attention to the development of vector extensions
(Intel AVX, IBM AltiVec, ARM NEON SIMD). In particular, Fujitsu announced
in its future version of the exascale K Computer system a transition to proces-
sors with the ARMv8.2-A architecture, which implements scalable vector exten-
sions. And Intel extensively develops AVX-512 vector extension. That is why
problem definitions and works on automatic vectorizing compilers have given
c© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 388–399, 2017.
https://doi.org/10.1007/978-3-319-71255-0_31
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the new stage in development in recent decades: OpenMP and Cilk Plus SIMD
directives; Intel ISPC and Sierra language extensions; libraries: C++17 SIMD
Types, Boost.SIMD, gSIMD, Cyme.

In this work we studied time, energy and speedup by running the loops in
scalar and vector modes for different data types (double, float, int, short
int) and compilers (Intel C/C++ Compiler, GCC C/C++, LLVM/Clang, PGI
C/C++). The main goal is to determine loop classes which the compilers fail
to vectorize. The Running Average Power Limit (RAPL) subsystem is used to
obtain the energy measurements.

Since there was no information about vectorizing methods implemented in
the commercial compilers, the evaluation was implemented by the “black box”
method. We used the Extended Test Suite for Vectorizing Compilers [1–4] as a
benchmark for our experiments to estimate an evolution of vectorizers in modern
compilers comparing to an evaluation made in [1]. We determined classes of typ-
ical loops that the compilers used in this study failed to vectorize and evaluated
them.

The rest of this paper is organized as follows: Sect. 2 discusses the main issues
that explain effectiveness of vectorization; Sect. 3 describes the benchmark we
used; Sect. 4 presents results of our experiments; and finally Sect. 5 concludes.

2 Vector Instruction Sets

Instruction sets of almost all modern processor architectures include vector
extensions: MMX/SSE/AVX in the IA-32 and Intel 64 architectures, AltiVec
in the Power architecture, NEON SIMD in the ARM architecture family, MSA
in the MIPS. Processors implementing vector extensions contain one or several
vector arithmetic logic units (ALU) functioning in parallel and several vector
registers. Unlike vector systems of the 1990s, modern processors support execu-
tion of instructions with relatively short vectors (64–512 bits), loaded in advance
from the RAM to the vector registers (“register-register” vector systems).

The main application of the vector extensions consists in decreasing of time
of one-dimensional arrays processing. As a rule, a speedup achieved using the
vector extensions is primarily determined by the number of array elements that
can be loaded into a vector register. For example, each of 16 AVX vector registers
is 256-bit wide. This allows loading into them 16 elements of the short int type
(16 bits), 8 elements of the int or float type (32 bits) and 4 double elements
(64 bits). Thus, when using AVX the expected speedup is 16 times for operations
with short int elements, 8 times for int and float, and 4 for double.

The Intel Xeon Phi processors support AVX-512 vector extension and contain
32 512-bit wide vector registers. Each processor core with the Knights Corner
microarchitecture contains one 512-bit wide vector ALU, and processor cores
with the Knights Landing microarchitecture have two ALUs.

To achieve a maximum speedup during vector processing it is necessary to
consider the microarchitectural system parameters. One of the most important of
them is an alignment of array initial addresses (32-byte alignment for AVX and
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64-byte alignment for AVX-512). Reading from and writing to unaligned memory
addresses is executed slower. Effectiveness decreasing can also be caused by a
mixed usage of SSE and AVX vector extensions. In such a case during transition
from execution of one vector extension instructions to another one a processor
stores (during transition from AVX to SSE) or restores (in another case) highest
128 bits of YMM vector registers (AVX-SSE transition penalties) [5].

When vector instructions are used, the achieved speedup can exceed the
expected one. For example, after vectorization of the loop, which calculates an
elementwise sum of two arrays, the processor overhead decreases due to reducing
the number of add instruction loads from the memory and its decoding by the
processor; the number of memory accesses for operands of the add instruction;
the amount of calculations of loop end condition (the number of accesses to the
branch prediction unit of the processor).

Besides that, a parallel execution of vector instructions by several vector
ALUs can be a reason of additional speedup. Thus, an efficiently vectorized pro-
gram overloads subsystems of a superscalar pipelined processor in a less degree.
This is the reason of less processor energy consumption during execution of a
vectorized program as compared to its scalar version [6].

Application developers have different opportunities to use vector instructions:

– inline assembler – full control of vectorization usage, least portable approach;
– intrinsics – set of data types and internal compiler functions, directly mapping

to processor instructions (vector registers are allocated by compiler);
– SIMD directives of compilers, OpenMP and OpenACC standards;
– language extensions, such as Intel Array Notation, Intel ISPC, Apple Swift

SIMD and libraries: C++17 SIMD Types, Boost.SIMD, SIMD.js;
– automatic vectorizing compiler – ease of use, high code portability.

In this work, we study the last approach. Such vectorizing technique does
not require large code modification and provides its portability between different
processor architectures.

3 Related Works and Benchmarks

We used the Extended Test Suite for Vectorizing Compilers (ETSVC) [2] as a
benchmark containing main loop classes, typical for scientific applications in C
language. The original package version was developed in the late 1980s by the J.
Dongarra’s group and contained 122 loops in Fortran to test the analysis capa-
bilities of automatic vectorizing compilers for vector computer systems: Cray,
NEC, IBM, DEC, Fujitsu and Hitachi [3,4]. In 2011 the D. Padua’s group trans-
lated the TSVC suite into C and added to it new loops [1]. The extended version
of the package contains 151 loops. The loops are divided into categories: depen-
dence analysis (36 loops), vectorization (52 loops), idiom recognition (reductions,
recurrences, etc., 27 loops), language completeness (23 loops). Besides that, the
test suite contains 13 “control” loops, trivial loops that are expected to be vec-
torized by every vectorizing compiler.
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The loops operate on one- and two-dimensional 16-byte aligned global arrays.
The one-dimensional arrays contain 125 · 1024/sizeof(TYPE) elements of the
given type TYPE, and the two-dimensional ones contain 256 elements by each
dimension.

Each loop is contained in a separate function (see Listing 1). In the init
function (line 5) an array is initialized by individual for this test values before
loop execution. The outer loop (line 7) is used to increase the test execution time
(for statistics issues). A call to an empty dummy function (line 10) is used in each
iteration of the outer loop so that, in case where the inner loop is invariant with
respect to the outer loop, the compiler is still required to execute each iteration
rather than just recognizing that the calculation needs to be done only once [4].

After execution of the loop is complete, a checksum is computed by using
elements of the resulting array (check function, line 16).

4 Results of Experiments

4.1 Test Environment

We used two systems for our experiments. The first system was a server
based on two Intel Xeon E5-2620 v4 CPUs (Intel 64 architecture, Broadwell
microarchitecture, 8 cores, Hyper-Threading was on, AVX 2.0 support), 64 GB
RAM DDR4, GNU/Linux CentOS 7.3 x86-64 operating system (linux 3.10.0-
514.2.2.el7 kernel). The second system was Intel Xeon Phi 3120 A co-processor
(Knights Corner microarchitecture, 57 cores, AVX-512 support, 6 GB RAM,
MPSS 3.8) installed in the server.

The compilers evaluated in these experiments were Intel C/C++ Compiler
17.0; GCC C/C++ 6.3.0; LLVM/Clang 3.9.1; and PGI C/C++ 16.10. The vec-
torized version of the ETSVC benchmark was compiled with the command line
options shown in Table 1 (column 2). To generate the scalar version of the test
suite the optimization options were used with the disabled compilers vectorizer
(column 3, Table 1).

32-byte aligned global arrays were used for the Intel Xeon processor, and
64-byte aligned global arrays were used for the Intel Xeon Phi processor. We
used arrays with elements of double, float, int and short data types for our
evaluation.

4.2 Results for Intel 64 Architecture

The following results were obtained for the double data type on the Intel
64 architecture (Intel Xeon Broadwell processor). The Intel C/C++ Compiler
vectorized 95 loops in total, 7 from which were vectorized by it alone. For
GCC C/C++ the total amount of vectorized loops was 79. But herewith there
was no loop that was vectorized only by this compiler. The PGI C/C++ vector-
ized the largest number of loops, 100, 13 from them were vectorized by it alone.
The minimum number of loops was vectorized by the LLVM/Clang compiler,
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Table 1. Compilers options

Compiler Compilers options Disabling vectorizer

Intel C/C++ 17.0 -O3 -xHost -qopt-report3

-qopt-report-phase=vec,loop

-qopt-report-embed

-no-vec

GCC C/C++ 6.3.0 -O3 -ffast-math -fivopts

-march=native -fopt-info-vec

-fopt-info-vec-missed

-fno-tree-vectorize

LLVM/Clang 3.9.1 -O3 -ffast-math -fvectorize

-Rpass=loop-vectorize

-Rpass-missed=loop-vectorize

-Rpass-analysis=loop-vectorize

-fno-vectorize

PGI C/C++ 16.10 -O3 -Mvect -Minfo=loop,vect

-Mneginfo=loop,vect

-Mnovect

52, 4 from which were vectorized only by it. The number of loops unvectorized
by any compiler was equal to 28.

We compared the obtained results with the evaluation done in [1]. The com-
parison shows that the vectorizer of the GCC C/C++ compiler has been signif-
icantly improved: 52.3% of vectorized loops from ETSVC in 2017 versus 32% in
2011 (see Table 2).

Table 2. Comparison of results with previous evaluations of compilers

2011 (Padua et al. [1]) 2017 (our work)

Intel C/C++ 90 loops Intel C/C++ 95 loops

12.0 (59.6 %) 17.0 (62.9 %)

GCC C/C++ 59 loops GCC C/C++ 79 loops

4.7.0 (39 %) 6.3.0 (52.3 %)

The similar results were obtained for arrays with elements of the float and
int types by all compilers. The consistent results were obtained for the short
type when Intel C/C++ Compiler, GCC C/C++ and LLVM/Clang were used.
The exception to this rule was the PGI C/C++ compiler that vectorized no
loops processing data of this type.

Figure 1 shows the results of loop vectorization for the double data type
on the Intel 64 architecture. Abbreviated notations of the vectorization results
are shown in the table cells. They were obtained from vectorization reports of
compilers for all 151 loops. The full form of these notations is shown in Table 3.
The similar results were obtained for other data types.

In the “Dependence analysis” category 9 loops were not vectorized by any
compiler for the double data type. The compilers used in this study failed to
vectorize loops with linear dependences (1st order recurrences), induction vari-
ables together with conditional and unconditional (goto) branches, loop nesting
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Fig. 1. Results of loops vectorization (Intel 64 architecture, double data type)

and variable values of lower and/or upper loop bounds and/or iteration step.
In the last case, no compiler could determine whether a data dependence was
present and took a pessimistic decision that the dependence existed.

In the “Vectorization” category the compilers failed to vectorize 11 loops.
These loops required transformations as follows: loop fission, loop interchange,
node splitting (to avoid cycles in data dependence graphs and output and anti-
dependences [7]) and array expansions. Among causes of problems were interde-
pendence of iteration counts of nested loops; linear dependencies in a loop body
(1st order recurrences); conditional and unconditional branches in a loop body.

The following idioms (6 loops) from the “Idiom recognition” category were
not vectorized by the compilers used: 1st and 2nd order recurrences, array search-
ing, loop rerolling and reduction with function calls. The loops with recurrences
were not vectorized because of linear data dependence. In a loop with array
searching for the first element meeting a condition the unconditional branch
goto prevented vectorization.

Compilers execute rerolling for loops that were unrolled by hand before vec-
torization [8]. The compilers in this study decided that vectorization of such loops
was possible but inefficient. The reason was an indirect addressing in array ele-
ments access: X[Y[i]], where X is a one-dimensional array of the float type, Y
is a pointer to a one-dimensional array of integers, i is a loop iteration count.

The next challenging idiom was a reduction, namely sum of elements of a
one-dimensional array. In this case the idiom was not vectorized because of
test function calls. This function calculated sum of 4 array elements beginning
from the one passed as the function argument. The Intel C/C++ Compiler
reported that vectorization was possible but inefficient. Other compilers reported
a function call as a reason of vectorization failing.

The “Language completeness” category contain 2 loops unvectorized by any
compiler. The problem of both loops consisted in breaking loop computations
(exit in the first case and break in the second case). Compiler vectorizers could
not analyze control flow in these loops.

Total execution time of the benchmark (all loops) for each data type and
compiler is shown in Fig. 2. A median value and maximum speedups of vectorized
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Table 3. Abbreviated notations of vectorization results

V Loop is vectorized

PV Partial loop is vectorized (loop fission with succeeding vectorization of obtained
loops)

RV Remainder is not vectorized

IF Vectorization is possible but seems inefficient

D Vector dependence prevents vectorization (supposed linear or non-linear data
dependence in a loop)

M Loop is multiversioned (multiple loop versions are generated, unvectorized
version is selected in runtime)

BO Bad operation or unsupported loop bound (e.g., sinf or cosf function is used)

AP Complicated access pattern (e.g., value of iteration count is more than 1)

R Value that could not be identified as function is used outside the loop
(induction variables are present in a loop)

IL Inner-loop count not invariant (e.g., iteration count of inner loop depends on
iteration count of outer loop)

NI Number of iterations cannot be computed (lower and/or upper loop bounds are
set by function’s arguments)

CF Control flow cannot be substituted for a select (conditional branches inside
loop)

SS Loop is not suitable for scatter store (e.g., in case of packing a two-dimensional
array into a one-dimensional array)

ME Loop with multiple exits cannot be vectorized (break or exit are present inside
a loop)

FC Loop contains function calls or data references that cannot be analyzed

OL Value cannot be used outside the loop (scalar expansion or mixed usage of one-
and two-dimensional arrays in one loop)

UV Loop control flow is not understood by vectorizer (conditional branches inside a
loop)

SW Loop contains a switch statement

US Unsupported use in statement (scalar expansion, wraparound variables
recognition)

GS No grouped stores in basic block (unrolled scalar product)

loops are shown in Figs. 3 and 4. The maximum speedup obtained on the Intel
64 architecture by the Intel C/C++ was 6.96 for the double data type, 13.89
for the float data type, 12.39 for int and 25.21 for short int. The maximum
speedup obtained by GCC C/C++ was equal to 4.06, 8.1, 12.01 and 24.48 for
types double, float, int and short int, correspondingly. The LLVM/Clang
obtained results as follows: 5.12 (double), 10.22 (float), 4.55 (int) and 14.57
(short int). For PGI C/C++ these values were 14.6, 22.74, 34.0 and 68.0,
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correspondingly. The speedup is the ratio of the running time of the scalar code
over the running time of the vectorized code.

As our evaluation showed maximum speedups for Intel C/C++ Compiler,
GCC C/C++ and LLVM/Clang correspond to the loops executing reduction
operations (sum, product, minimum and maximum) with elements of one-
dimensional arrays of all data types. These loops belong to the “Idiom recogni-
tion” category in the ETSVC. For PGI C/C++ maximum speedup was achieved
for the loop calculating an identity matrix (“Vectorization” category) for the
double and float data types. And for int and short this value was obtained
in the loop calculating product reduction (“Idiom recognition” category).
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Fig. 4. Maximum speedup for vectorized loops on the Intel Xeon E5-2620 v4 CPU

However, the obtained speedup is not always a result of vectorization. For
the PGI C/C++ compiler the speedup value 68.0 for the short data type can be
explained by the fact that calculations in a loop are not executed at all because
of the compiler optimization.

4.3 Results for Intel Xeon Phi Architecture

On the Intel Xeon Phi architecture we studied vectorizing capabilities of the
Intel C/C++ Compiler 17.0. The -mmic command line option was used instead
of the -xHost during compilation. The results of the experiments for two data
types are shown in Fig. 5. The compiler could vectorize 99 loops processing data
of the double type and 102 of the float type. Supposed data dependencies (28
loops for the double type and 27 for the float type) were the main reason of
loop vectorization failing. 12 loops were partially vectorized for both data types.
Similar results were obtained for the int and short types.

In this case the maximum speedup for the double type was 13.7, for float –
19.43, int – 30.84, and short – 46.3. For float and short maximum speedups
were obtained for loops executing reduction operations for elements of one-
dimensional arrays. For the double data type sinf and cosf functions were
used in a loop. In the case with int it was a “control” loop vbor calculating a
scalar product of six one-dimensional arrays.

4.4 Effect of Vectorization on CPU Energy Consumption

We modified the ETSVC benchmark to measure the CPU (Intel Xeon E5-
2620v4) energy for each loop. The measurements were accomplished by using the
Intel RAPL (Running Average Power Limit) subsystem before and after each
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Fig. 5. Results of loops vectorization (Intel Xeon Phi architecture)

Table 4. Statistical characteristics for the decrease E of CPU energy consumption (for
successfully vectorized loops, execution time of which is less than execution time of
their scalar versions at least on 15%)

Compiler Data type Min, % Max, % Avg, % Median, %

Intel C/C++ 17.0 double 13 85 42 41

float 14 91 64 70

int 13 92 62 65

short 70 99 94 96

GCC C/C++ 6.3.0 double 17 75 52 60

float 16 99 71 73

int 13 91 67 70

short 13 96 80 85

LLVM/Clang 3.9.1 double 17 79 37 28

float 21 99 62 59

int 26 77 50 52

short 46 99 92 96

PGI C/C++ 16.10 double 11 93 48 39

float 15 96 60 58

int 10 96 52 54

short 52 99 92 96

loop execution. We requested information about total CPU energy consump-
tion (RAPL PKG domain) and DRAM controller energy consumption (RAPL
DRAM domain) from the RAPL subsystem.

For every loop we determined the decrease E of CPU energy consumption
(RAPL PKG domain) for vectorized loop execution against its scalar version
execution:

E = (Enovec − Evec)/Enovec · 100%, (1)

where Enovec is CPU energy for scalar loop execution ([Enovec] = J), Evec is
CPU energy for vectorized loop execution ([Evec] = J).
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In Table 4 we show the results for the decrease E of CPU energy consump-
tion only for successfully vectorized loops, execution time of which is less than
execution time of their scalar versions at least on 15%.

For arrays with elements of double type vectorized loops decreased the CPU
energy consumption by a mean of 45% as compared to their scalar versions. For
float, int and short int the CPU energy consumption decrease was 64%, 58%
and 90%, correspondingly.

It is apparent that for the ETSVC benchmark increasing the number of array
elements which can be loaded into a vector register (due to decreasing the size
of data type) results in decreasing the CPU energy consumption.

5 Conclusion

In this work we studied auto-vectorizing capabilities of modern optimizing com-
pilers Intel C/C++ Compiler, GCC C/C++, LLVM/Clang, PGI C/C++ on the
Intel 64 and Intel Xeon Phi architectures. Our study shows that the compilers
evaluated could vectorize 39–77 % of the total number of loops in the ETSVC
package. The best results were shown by the Intel C/C++ Compiler, and the
worst ones – by the LLVM/Clang compiler. The compilers failed to vectorize
loops containing conditional and unconditional branches, function calls, induc-
tion variables, variable loop bounds and iteration count, as well as such idioms
as 1st or 2nd order recurrences, search loops and loop rerolling. We analyzed
and proposed transformations for the loops that compilers failed to vectorize.
After applying proposed transformations loops was successfully auto-vectorized
by all compilers. The most part of the transformations based on loop interchange,
fission and distribution.

We estimated the CPU energy consumption for execution of vectorized loops
against their scalar versions. The experiments show that increasing the number
of array elements which can be loaded into a vector register (due to decreasing
the size of data type) results in decreasing the CPU energy consumption.

The future work will consist of evaluation and development of vectorizing
methods (polyhedral model) for the obtained class of challenging loops, applica-
bility analysis of JIT compilation [9] and profile-guided optimization.

Acknowledgement. This work is supported by Russian Foundation for Basic
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Abstract. Astrophysics is the branch of astronomy that employs the principles
of physics and chemistry “to ascertain the nature of the heavenly bodies, rather
than their positions or motions in space”. Numerical modeling plays a key role
in modern astrophysics. It is the main tool for the research of nonlinear processes
and provides communication between the theory and observational data. New
massive parallel supercomputers provide an opportunity to simulate these kinds
of problems in high details. Our astrophysics code AstroPhi was written for new
massive parallel supercomputers based Intel Xeon Phi architecture. The original
numerical method based on the combination of the Godunov method, operator
splitting approach and piecewise-parabolic method on local stencil was used for
numerical solution of the hyperbolic equations. The piecewise-parabolic method
on local stencil provides the high-precision order. After the transition of AstroPhi
to KNL architecture, we obtained abnormally low performance of solver on KNL
cores. In this paper, we will show the roofline analysis using Intel Advisor appli‐
cation and the results of the AstroPhi optimizations.

Keywords: Massively parallel supercomputers · Astrophysics · Roofline
analysis

1 Introduction

Numerical simulation in astrophysics allows to research many important problems such as
the collision and evolution of galaxies, chemical evolution of stars, identification of dark
matter and more. Modern supercomputers have given us the possibility of detailed astro‐
physics modeling that considers different physical effects such as magnetohydrody‐
namics, chemical kinetics, cooling/heating, and more. One of the most interesting devel‐
opments in supercomputer technology at this moment is massively parallel supercom‐
puters. The main concept of this technology is based on the possibility of massive usage
of computational cores of CPUs or GPUs. Recently the scientific community is widely
discussing the transition to exascale supercomputers. The main global challenge is the
development of algorithms that can consider the massive exascale level parallelism. One
of the problems is the difficulty of debugging and optimization of massively-parallel
codes. The difficulties of debugging of parallel code connect with the problem of a greater
propensity for race conditions, asynchronous events, and the general difficulty of trying to
understand N processes simultaneously executing. Modern parallel debugging tools such
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as Eclipse Parallel Tools Platform [1], Intel Debugger [2], Nvidia nsight [3] helps in this
problem. The difficulties of massively-parallel code optimizations are based on array
dependence analysis, pointer alias analysis, loop transformations, adaptive profile-directed
optimizations, and dynamic compilation [4]. Last years the roofline model [5] became a
very popular tool for application performance analysis and optimization. The Roofline
model is an intuitive visual performance model used to provide performance estimates of
a given compute kernel or application running on multicore, many-core, or accelerator
processor architectures, by showing inherent hardware limitations, and potential benefit and
priority of optimizations. By combining locality, bandwidth, and different parallelization
paradigms into a single performance figure, the model can be an effective alternative to
assess the quality of attained performance instead of using simple percent-of-peak esti‐
mates, as it provides insights on both the implementation and inherent performance limi‐
tations [6]. The main idea of roofline model based on visualizing of application perform‐
ance as a function of arithmetic intensity, where the application performance is the number
of floating point operations per second (FLOPS) and the arithmetic intensity is the ratio of
application performance to the memory traffic created by the application. Modern roofline
analysis tools such as Intel Advisor [7] shows this data for each loop in the application and
visualize the machine peak performance and machine peak memory bandwidth for target
CPU architecture. Figure 1 showing the typical roofline chart [8]. We can see in this figure
that some of the application’s loops using cache because the arithmetic intensity is higher
than DRAM peak bandwidth. Figure 2 helps to identify which kind of your application is:
memory-bound, memory/compute-bound or compute-bound application. After classifica‐
tion of application, this chart helps to build the strategy for optimization. Vectorization of
application will increase the performance of the compute-bound code. L1/L2 cache opti‐
mizations of code will increase the performance of the memory-bound code.

Fig. 1. Typical roofline chart with memory bandwidth and peak performance data of the target
architecture [8].
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2 Mathematical Model and Numerical Method

In our work, we use a multicomponent hydrodynamic model of galaxies considering the
chemodynamics of molecular hydrogen and cooling in the following form:

𝜕𝜌
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+ ∇ ⋅

(
𝜌u⃗

)
= 0,
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E = 𝜀 +
𝜌u⃗

2
,

p = (𝛾 − 1)𝜀,

where 𝜌 is density, 𝜌H is atomic hydrogen density, 𝜌H2
 is molecular hydrogen density, u⃗

is the velocity vector, 𝜀 is internal energy, p is pressure, E is total energy, 𝛾 is the ratio
of specific heats, Φ is gravity, G is the gravitational constant, S is the formation rate of
molecular hydrogen, and Q is a cooling function. A detailed description of this model
can be found in [9].

The formation of molecular hydrogen is described by an ordinary differential equa‐
tion [10]:

dnH2

dt
= Rgr(T)nH

(
nH + 2nH2

)
−
(
𝜉H + 𝜉diss

)
nH2

,

where nH is the concentration of atomic hydrogen, nH2
 is the concentration of molecular

hydrogen, and T  is temperature. Detailed descriptions of the H2 formation rate Rgr and
the photodissociation 𝜉H, 𝜉diss of molecular hydrogen, can be found in [11, 12]. Chemical
kinetics was don with using of CHEMPAK tool [13, 14].

The original numerical method based on the combination of the Godunov method,
operator splitting approach and piecewise-parabolic method on local stencil was used
for numerical solution of the hyperbolic equations [15]. The piecewise-parabolic method
on local stencil provides the high-precision order. The equation system is solved in two
stages: at the Eulerian stage, the equations are solved without advective terms and at the
Lagrangian stage, the advection transport is being performed. At the Eulerian stage, the
hydrodynamic equations for both components are written in the non-conservative form
and the advection terms are excluded. As the result, such a system has an analytical
solution on the two-cell interface. This analytical solution is used to evaluate the flux
through the two-cell interface. In order to improve the precision order, the piecewise-
parabolic method on the local stencil (PPML) is used. The method is the construction
of local parabolas inside the cells for each hydrodynamic quantity. The main difference
of the PPML from the classical PPM method is the use of the local stencil for compu‐
tation. It facilitates the parallel implementation by using only one layer for subdomain
overlapping. It simplifies the implementation of the boundary conditions and decreases
the number of communications thus improving the scalability. The detailed description
of this method can be found in [16]. The same approach is used for the Lagrangian stage.
Now the Poisson equation solution is based on Fast Fourier Transform method. This is
because the Poisson equation solution takes several percents of the total computation
time. After the Poisson equation solution, the hydrodynamic equation system solution
is corrected. It should be noticed here that the system is over defined. The correction is
performed by means of the original procedure for the full energy conservation and the
guaranteed entropy nondecrease. The procedure includes the renormalization of the
velocity vector length, its direction remaining the same (on boundary gas-vacuum) and
the entropy (or internal energy) and dispersion velocity tensor correction. Such a
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modification of the method keeps the detailed energy balance and guaranteed non-
decrease of entropy.

3 Roofline Analysis

Roofline analysis with using of Intel Advisor consists of 3 steps: survey collection, trip
count collection, visualization and/or extraction of the collected data into a report. Before
analysis, the application should be compiled in debug mode.

1. Survey collection by command line with advisor:
mpirun -n <number of KNL nodes> advixe-cl -collect
survey –-trace-mpi – ./<app_name>

2. Trip count collection by command line with advisor:
mpirun -n <number of KNL nodes> advixe-cl -collect trip-
counts -flops-and-masks –-trace-mpi – ./<app_name>

3. Extraction of the data in a report:
advixe-cl –report survey –show-all-columns –-
format=text -– report-output report.txt

In our research, we used RSC Tornado-F [17] experimental node with Intel Xeon
Phi 7250 (16 GB MCDRAM) processor. We used all 68 cores for the tests. Figure 3
shows roofline chart for AstroPhi application before optimizations. We can see that main
loop of the application has very low arithmetic intensity (less than 0.1 FLOP/byte) and
very low performance (less than 1 GFLOPS).

Fig. 3. Roofline chart for AstroPhi code before optimizations. The red dot is the main loop of
the application. (Color figure online)
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Intel Advisor proposed some optimizations for gaining performance. The main of
these optimizations are to remove the vector dependencies, to optimize memory access
patterns, to move source loop iterations from peeled/remainder loops to the loop body.

After the optimization roofline analysis was repeated on the same hardware with the
same analysis steps. Figure 4 shows roofline chart for AstroPhi application after opti‐
mizations. After all improvements in AstroPhi application, we achieved 190GFLOPS
performance and 0.3 FLOP/byte arithmetic intensity with 100% mask utilization and
573 GB/s memory bandwidth.

Fig. 4. Roofline chart for AstroPhi code after optimizations. The red dot is the main loop of the
application. (Color figure online)

4 Conclusion

Numerical modeling plays a key role in modern astrophysics. It is the main tool for
the research of nonlinear processes and provides communication between the theory
and observational data. Numerical simulation in astrophysics allows detailed inves‐
tigation of the collision and evolution of galaxies. Author’s astrophysics code was
written for new massive parallel supercomputers based Intel Xeon Phi architecture.
The original numerical method based on the combination of the Godunov method,
operator splitting approach and piecewise-parabolic method on local stencil was
used for numerical solution of the hyperbolic equations. The piecewise-parabolic
method on local stencil provides the high-precision order. After the transition of
AstroPhi to Intel Xeon Phi KNL architecture, we obtained abnormally low usage of
KNL’s cores. The roofline analysis of our code with using of Intel Advisor showed
that main loop has very low arithmetic intensity (less than 0.1 FLOP/byte) and very
low performance (less than 1 GFLOPS). Due to recommendations of Intel Advisor,
vector dependencies were removed, memory operations were optimized, and arrays
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sizes were adapted for KNL architecture. After these improvements, we achieved
190GFLOPS performance and 0.3 FLOP/byte arithmetic intensity with 100% mask
utilization and 573 GB/s memory bandwidth. This arithmetic intensity is standard
for this kind of algorithms.
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Federation for the support of young scientists number MK – 1445.2017.9, RFBR grant
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Abstract. Workflows is an important class of parallel applications that
consist of many tasks with logical or data dependencies. A multitude
of scheduling algorithms have been proposed to optimize the workflow
execution in heterogeneous computing systems. However, in order to be
efficiently applied in practice, these algorithms require accurate estimates
of task execution and communication times. In this paper two modifica-
tions of the well-known HEFT algorithm are investigated that use sim-
ulation instead of simple analytical models in order to better estimate
data transfer times. The results of experimental study show that the
proposed approach can improve makespan for data-intensive workflows
with high parallelism and communication-to-computation ratio.

Keywords: Workflow · Scheduling · Simulation · Heterogeneous
systems · Distributed computing

1 Introduction

Heterogeneous computing systems (HCSs) composed of different computational
units or standalone resources, which can be local or geographically distributed,
are widely used nowadays for executing parallel applications. Workflows [14] is
an important class of such applications that consist of many tasks with logical
or data dependencies which can be modeled as directed acyclic graphs (DAGs).

The efficiency of executing workflows in HCS critically depends on the meth-
ods used to schedule the workflow tasks, i.e. decide when and which resource
must execute the tasks of the workflow. The main objective is to minimize the
overall completion time or makespan subject to possible additional constraints
such as meeting a deadline or using a fixed budget. In comparison to homoge-
neous systems, the task scheduling problem in HCS is more complicated because
of the different execution rates of individual resources and different communica-
tion rates of links between these resources.

The DAG scheduling problem has been shown to be NP-complete [9], even
for the homogeneous case. This makes it practically impossible to obtain the
c© Springer International Publishing AG 2017
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optimal schedule even for the simplest formulations of practical interest. There-
fore the research effort in this field has been mainly to obtain low complexity
heuristics that produce good schedules. Since the late 1990s and until now, a mul-
titude of workflow scheduling algorithms [18] based on different heuristics and
metaheuristics have been proposed. However, in order to be efficiently applied
in practice, these algorithms require accurate estimates of task execution and
communication times.

In this paper we focus on the accuracy of models used for estimation of data
transfer times. The presented experimental results provide a strong evidence
against the widely used approach based on simple Hockney’s model [11] that
disregard network topology and bandwidth allocation. The schedules produced
by static algorithms using this model clearly demonstrate that even for the mod-
estly parallel workloads with sufficiently large data items the effect of competing
data transfers may lead to the drastic underestimation of the communication
time and the makespan degradation.

To address this issue we propose to incorporate simulation inside a work-
flow scheduling algorithm in order to improve the data transfer time estimates.
Simulation, involving computer modeling of the process of application execu-
tion in HCS, has been actively used in scheduling algorithm research. The main
advantage of simulation in comparison to the real-world experiments is the abil-
ity to perform a statistically significant number of experiments in a reasonable
amount of time while ensuring the reproducibility and having moderate hard-
ware resource requirements. However, while being widely used to evaluate the
scheduling algorithms, the simulation has been rarely used inside the algorithms.

In this paper we investigate the use of more accurate simulation models
instead of simple analytical models inside a workflow scheduling algorithm. Two
modifications of the well-known HEFT algorithm [15] are proposed that use
simulation in order to estimate data transfer times. The proposed modifications
are compared with original HEFT and other scheduling algorithms using the
developed simulation framework. The obtained experimental results show that
the proposed approach can improve the makespan for workflows with high par-
allelism and communication-to-computation ratio.

The paper is structured as follows. Section 2 describes the used system and
application models along with the used simulation framework. Section 3 provides
an overview of HEFT algorithm and presents the proposed algorithm modifica-
tions. Section 4 presents and discusses the results of simulation experiments.
Section 5 concludes and discusses future work.

2 Simulation Framework

To study the workflow scheduling algorithms in this paper we use simulation by
modeling the process of application execution in a distributed computing sys-
tem. In comparison with the full-scale experiments on real systems, simulation
allows to significantly reduce the time needed to run an experiment and to ensure
the reproducibility of produced results, while having moderate requirements to
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the used hardware resources. However, when using simulation it is important to
ensure the accuracy, i.e. minimal deviation from the results of real-world exper-
iments, and the scalability, i.e. the ability to conduct large-scale experiments, of
the used simulation model.

The simulation model used in this paper is implemented on the base of Sim-
Grid1 [6], a simulation toolkit for studying the behaviour of large-scale dis-
tributed systems. The toolkit provides the required fundamental abstractions
for the discrete-event simulation of parallel applications in distributed environ-
ments. The choice of SimGrid was motivated by the maturity of the toolkit,
the soundness and high level of verification of embedded models, and the active
support of developers. An important factor is also the versatility of the toolkit
that allows one to simulate grids, cloud infrastructures, peer-to-peer systems and
MPI applications.

Many studies also used WorkflowSim [7], an open source toolkit for simu-
lating scientific workflows based on CloudSim simulator. We avoided the use of
WorkflowSim as it has been shown that CloudSim among other simulators has
flaws in its network model [17].

The heterogeneous computing system is modeled as a set of hosts and net-
work links between them as depicted on Fig. 1. Each host is characterized by
its performance expressed in FLOPS. In this study it is assumed that each host
can process a single task at a time. The execution of any task is considered non-
preemptive. Network links are characterized by their bandwidth and latency.

root

end

task1

task2

task3

bytes

flops

Network
(LAN, WAN)

bandwidth
latencyperformance

(FLOPS)

master

Fig. 1. Workflow and heterogeneous computing system models.

While the simulation is widely used to assess scheduling algorithms, the
researchers often neglect the accuracy of the used models, especially network
ones. In particular, in many papers authors assume a contention-free network
model in which a network host can simultaneously send to or receive data from

1 http://simgrid.gforge.inria.fr/.

http://simgrid.gforge.inria.fr/
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as many hosts as possible without experiencing any performance degradation.
However, this model is not representative of real world networks. In this study
we use the bounded multiport model provided by SimGrid. In this model, a host
can communicate with several other hosts simultaneously, but each communica-
tion flow is limited by the bandwidth of the traversed route, and communications
using a common network link have to share bandwidth. This scheme corresponds
well to the behavior of TCP connections on a LAN. The validity of this network
model has been demonstrated in [16].

SimGrid supports simulation of various network topologies including hierar-
chies and combinations of autonomous systems with different internal routing
strategies. In this study we consider systems with a simple topology where each
host is connected to a central backbone via a dedicated link as depicted on Fig. 1,
and a route between any two hosts contains the two respective links. The back-
bone, which can correspond to the LAN switch or the WAN, doesn’t impose
additional latency or bandwidth constraints in this model. Therefore the rate of
communication between any pair of hosts is determined only by characteristics
of the corresponding pair of links.

The workflow application is modeled as a directed acyclic graph (DAG),
whose vertices correspond to individual tasks and directed edges represent the
data dependencies between tasks as depicted on Fig. 1. Each vertex is charac-
terized by its size, i.e. the amount of computations in flops associated with the
corresponding task. Similarly, each edge is characterized by the amount of com-
munication in bytes between the corresponding pair of tasks. The size of task
input data equals to the sum of sizes of incoming edges.

The two special tasks with zero size are introduced in order to model the
staging of workflow input and output data. The root task passes the input data
to the initial tasks, i.e. those that do not depend on other workflow tasks. The
end task receives the output data from the final tasks, i.e. those that do not pass
their data to other workflow tasks.

The root and end tasks are executed on a dedicated host called master, which
does not participate in computations. This host corresponds to the machine,
which stores the input data and where the output data should be placed after
the application execution. In practice, this host often performs submission and
management of the workflow.

While the SimGrid toolkit has been used previously for studying workflow
scheduling algorithms [2,12], to the best of our knowledge there are no published
open source implementations of such algorithms for SimGrid. Therefore we have
implemented a number of well-known static and dynamic algorithms, such as
HEFT [15], HCPT [10], Lookahead [5], PEFT [1], OLB [3], MCT [13], MinMin
[8,13], MaxMin [8,13] and Sufferage [13], following their original papers.

To simplify the implementation of scheduling algorithms for our experiments
we have developed a pysimgrid library2. This library implements a thin wrapper
around the native SimGrid API and provides a convenient interface for devel-
opment of scheduling algorithms in Python language. The library also includes

2 https://github.com/alexmnazarenko/pysimgrid.

https://github.com/alexmnazarenko/pysimgrid
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auxiliary tools for generation of synthetic systems and workflows, batch execu-
tion of simulation experiments and analysis of simulation results.

3 Modifications of HEFT Algorithm Using Simulation

3.1 HEFT Overview

Heterogeneous Earliest Finish Time (HEFT) [15] is probably the most cited
workflow scheduling algorithm. Being relatively simple and proved to be con-
sistently more efficient than other algorithms, HEFT is commonly used as a
reference for evaluation of new algorithms.

HEFT can be described as a variant of static list scheduling algorithms that
prioritize tasks having the most influence on the total workflow execution time
(makespan). Such algorithms operate in two phases. During the first phase the
algorithm computes the rank of each task according to some criterion that takes
into account the position of the task in the DAG, its dependencies, etc. The
output of the ranking phase is a list of tasks sorted by their rank. During the
second phase the algorithm iterates over the list and assigns each task to a host
that minimizes some criterion, for example task completion time.

The rank of a task Ti in HEFT is recursively defined by

rank(Ti) = EET (Ti) + max
Tj∈succ(Ti)

(
ECOMT (dataij) + rank(Tj)

)
, (1)

where EET (Ti) is the average execution time of the task across all hosts,
succ(Ti) is the set of immediate successors of the task, ECOMT (cij) is the
average communication time corresponding to the transfer of dataij bytes via
edge (i, j).

The EET (Ti) is computed by averaging the estimated execution time
EET (Ta,Hi) of a task on each host Hi which is assumed to be known before-
hand. In our model we compute accurate estimates using the task size and host
performance.

The ECOMT (dataij) is computed in HEFT using the Hockney’s
model [11] as

ECOMT (dataij) = L +
dataij

B
, (2)

where L is the average latency and B is the average bandwidth of communication
links between the hosts in the system.

The tasks in HEFT are scheduled in decreasing order of their rank. Each
task is scheduled to a host with a minimum estimated completion time

ECT (Ti,Hj) = EST (Ti,Hj) + EET (Ti,Hi), (3)

where EST (Ti,Hj) is the earliest start time of the task on a given host

EST (Ti,Hj)
= max {avail(Hj), max

Tk∈pred(Ti)
(ECT (Tk,Hk) + ECOMT (dataki,Hk,Hi))},

(4)
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where avail(Hj) is the earliest time the host is ready for task execution, pred(Ti)
is the set of immediate predecessors of the task.

Note the important feature of the rank function — it defines a valid topo-
logical order for the tasks. All tasks are scheduled after their parents, so it is
possible to compute the required estimates of parent tasks’ completion and com-
munication times.

The communication time between tasks Ti and Tj running on hosts Hi and
Hj respectively is computed as

ECOMT (dataij ,Hi,Hj) = Lij +
dataij
Bij

, (5)

where Lij and Bij are the latency and the bandwidth of the link between the
given hosts.

3.2 Modified HEFT Versions

The simple linear model used in HEFT to estimate communication times
doesn’t take into account network topology and bandwidth allocation. A shown
in Sect. 4, even for the modestly parallel workflows with sufficiently large
data dependencies the effect of competing data transfers may lead to the
drastic underestimation of the communication time and the degradation of
HEFT performance. This is due to the fact that the inaccurate estimates of
ECOMT (dataij ,Hi,Hj) lead to inaccurate estimates of ECT (Ti,Hj), and these
inaccuracies accumulate during the scheduling of subsequent tasks. The ranking
function also doesn’t take into account the bandwidth contention by using a
simple ECOMT (dataij) estimate.

To address this problem we modified HEFT to use simulation instead of
analytical models to improve the used estimates. The proposed HEFT modifica-
tion, hereinafter referred as SimHEFT, uses the same ranking phase as HEFT.
However, during the task assignment phase SimHEFT uses simulation instead
of analytical models to compute ECT (Ti,Hj). For each host Hj , the execution
of the workflow subgraph including already scheduled tasks and the current task
Ti assigned to Hj is simulated. Note that these simulations are independent
and, therefore, can be run in parallel. Then the task is scheduled to a host that
corresponds to a minimum task completion time observed in simulations.

We also have tried to change the criterion used for selection of hosts during
the task scheduling. Indeed, by optimizing the completion time of individual task
it is possible to significantly degrade the completion times of already scheduled
tasks due to the communication interference. The SimHEFT* variant schedules
each task on a host that minimizes the overall makespan of currently scheduled
subgraph instead of the task completion time. The intuition behind this variant
is to minimally degrade the overall makespan during the scheduling of individual
tasks.

The main advantage of the proposed approach is the minimal modification
of the original algorithm. However, it is not clear without the experimental
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evaluation whether it is sufficient to improve only the task assignment phase
while keeping the original ranking function and task scheduling order. Another
concern is the additional overhead of simulation that can significantly increase
the algorithm execution time. Note, however, that the proposed modifications
allow running multiple simulations in parallel during the task assignment phase.

4 Experimental Evaluation

In this section we present the results of simulation experiments that compare
the performance of proposed HEFT modifications with original HEFT and other
workflow scheduling algorithms for a range of workflow and system configurations
using the described simulation framework.

Besides HEFT we used two well-known dynamic algorithms - OLB and MCT.
Opportunistic Load Balancing (OLB), which is widely used in modern HCSs,
assigns available tasks to resources currently being idle without any a priori infor-
mation about tasks. Minimum Completion Time (MCT) assigns each available
task to a resource that is expected to finish the task the earliest.

We use the makespan, i.e. the measured total run time of a workflow in a given
system according to a schedule produced by an algorithm, as the basis for com-
parison of algorithm performance. For each simulated pair system-application
we run all algorithms and then normalize their makespans by the makespan
achieved by the simplest algorithm - OLB. Finally, to reduce the variance, we
compute the mean of normalized makespans across all simulations.

The experiments use a fixed set of workflows while varying the system char-
acteristics. The used workflows are based on real world scientific applications [4]:

– LIGO Inspiral: analyses and filters the time-frequency data from the Laser
Interferometer Gravitational Wave Observatory experiment (LIGO);

– Epigenomics: automates various genome sequencing operations (USC
Epigenome Center);

– Montage: stitches together multiple images of the sky to create large-scale
custom mosaics (NASA/IPAC);

– CyberShake: characterizes earthquake hazards in a region (SCEC).

The simulated systems have 5, 10 or 20 hosts with performance varying in a
range of 1 to 4 GFlops. The network links have identical characteristics selected
to be close to the Gigabit Ethernet network (bandwidth: 100 MBytes/sec,
latency: 100 µs). For each host count 100 distinct systems are randomly gener-
ated. The mean normalized makespans achieved by each algorithm in the exper-
iments are presented in Table 1.

As it can be seen, HEFT outperforms the dynamic algorithms for the LIGO,
Epigenomics and Montage workflows. The maximum speedup achieved in com-
parison to OLB varies among the workflows due to the different amount of
inherent parallelism. However, for the CyberShake workflow both dynamic algo-
rithms show similar results and outperform HEFT. The analysis of this workflow
revealed that it has two distinguishing properties — high parallelism and high
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Table 1. Mean normalized makespan

Hosts count OLB MCT HEFT SimHEFT SimHEFT*

LIGO Inspiral, 100 tasks

5 1.0000 0.9839 0.9651 (0.9608) 0.9652 1.0229

10 1.0000 0.9182 0.8792 (0.8602) 0.8791 1.0338

20 1.0000 0.7885 0.6898 (0.6865) 0.6898 0.9384

Epigenomics, 100 tasks

5 1.0000 0.9753 0.9376 (0.9311) 0.9376 0.9368

10 1.0000 0.9014 0.8459 (0.8405) 0.8458 0.8437

20 1.0000 0.7942 0.7093 (0.6740) 0.7099 0.7067

Montage, 100 tasks

5 1.0000 0.9791 0.9769 (0.9683) 0.9766 0.9766

10 1.0000 0.9639 0.9635 (0.9478) 0.9629 0.9636

20 1.0000 0.9109 0.9165 (0.9023) 0.9156 0.9172

CyberShake, 100 tasks

5 1.0000 1.0104 1.0616 (0.5074) 1.0760 1.0395

10 1.0000 0.9972 1.0846 (0.3789) 1.1354 1.0325

20 1.0000 0.9845 1.1038 (0.2958) 1.3803 1.0244

communication-to-computation ratio (CCR). This could lead to a network con-
tention resulting in a significant mismatch between the simple network model
used in HEFT for estimation of ECOMT and the accurately modeled network
in the simulator.

To confirm this hypothesis, we obtained the estimated makespan from
the internal state of HEFT. These values, normalized to the simulated OLB
makespan, are presented in brackets after the simulated HEFT makespan in
Table 1. As it can be seen for the CyberShake workflow, HEFT expects to achieve
a drastically different makespan than the one produced after the simulation.
Ignoring the network contention effect resulted in more than 200% error in the
makespan estimation. This result emphasizes the importance of accurate esti-
mations of communication times during the workflow scheduling.

As for SimHEFT, it fails to improve the HEFT makespan for the Cybershake
workflow while having a similar performance for other workflows. Contrary to
expectations, SimHEFT behaves even worse than HEFT on Cybershake by show-
ing up to 25% makespan degradation. We hypothesize that by optimizing the
completion time of individual task it is possible to significantly degrade the com-
pletion times of already scheduled tasks due to the communication interference.

The SimHEFT* results confirm the above hypothesis. The results from
Table 1 show that SimHEFT* was able to improve the Cybershake makespan
by 2–7% in comparison to HEFT while having a similar performance for Epige-
nomics and Montage. However, SimHEFT* behaves significantly worse than
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HEFT and SimHEFT on the LIGO workflow. This can be explained by the
fact that this workflow has the lowest CCR ratio and therefore is less sensitive
to errors in estimated communication time. In this case the modified scheduling
criterion doesn’t bring any improvements over the original criterion and, as it
can be seen, can even worsen the schedule.

While improving the Cybershake makespan, SimHEFT* is still up to 4%
worse than dynamic MCT algorithm. This could indicate that it is not sufficient
to improve only the task assignment phase while keeping the original HEFT
ranking function and task scheduling order intact.

5 Conclusion and Future Work

In this paper we have investigated the use of simulation instead of simple analyt-
ical models inside a workflow scheduling algorithm to improve the estimation of
communication times. Two extensions of the well-known HEFT algorithm that
use simulation during the task assignment phase have been proposed. The exper-
imental study of proposed modifications showed that it is not sufficient to simply
plug simulation into the HEFT assignment phase (SimHEFT variant). However,
by modifying the host selection criterion it is possible to improve the makespan
for workflows with high parallelism and communication-to-computation ratio
(SimHEFT* variant). As was demonstrated, such workflows suffer the most from
inaccurate estimations of simple analytical models.

While it is demonstrated that the proposed approach have some potential,
there are remaining challenges and room for improvement. The SimHEFT*
variant is still behind simple dynamic algorithms for Cybershake and doesn’t
work well for workflows with low CCR ratio. The possible improvements here
include modifications of the ranking phase and adapting the algorithm behav-
iour depending on the CCR ratio. The use of simulation significantly (up to
two orders) increased the scheduling time. However, it is possible to decrease
this time, e.g. by running the simulations in parallel during the task assign-
ment phase. We plan to address the mentioned challenges in the future work
and to perform an extended experimental study across a wide range of synthetic
workflows.
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Abstract. A C++ framework for investigating numerical integration
methods for ordinary differential equations (ODE) is presented. The
paper discusses the design of the software, rather than the numerical
methods. The framework consists of header files defining a set of tem-
plate classes. Those classes represent key abstractions to be used for
constructing an ODE solver and to monitor its behavior. Several solvers
are implemented and work out-of-the-box. The framework is to be used
as a playground for those who need to design an appropriate numerical
integration method for the problem at hand. An example of usage is pro-
vided. The source code of the framework is available on GitHub under
the GNU GPL license.
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1 Introduction

In this paper we consider the numerical solution of the initial value problem for
a system of ordinary differential equation in the normal form:

ẋ = f(t,x), x
∣
∣
t=t0

= x0, (1)

where x = [x1, . . . , xn]T is the vector of n state variables of the system, t is the
time, dot denotes the time derivative, and f is the ODE right hand side vector.
Sometimes we also consider a more general case of ODE, namely

ẋ = f(t,x, φ), x
∣
∣
t=t0

= x0, φ
∣
∣
t=t0

= φ0, (2)

where φ = [φ1, . . . , φm]T is the vector of m discrete state variables. Each of the
variables φk may only change at discrete time instants identified by the relation

ek(t,x) = 0, k = 1, . . . , m; (3)

functions ek are called event indicators, and time instants satisfying (3) are called
events. How the variables φ change is determined by a state machine that has
c© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 418–429, 2017.
https://doi.org/10.1007/978-3-319-71255-0_34
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to be defined along with the ODE system and event functions. See [1] for more
information.

Of course, there is software, including open source software, implementing
numerical solvers of ODE initial value problem. For example, the SUNDIALS
software suite [2] is capable of solving problems (1) and (2), and also differential-
algebraic equations. The odeint library [3] from the boost project [4] provides
many solvers for problems (1). There are many more, written in different pro-
gramming languages. Nevertheless, we chose to create another piece of software
for solving ODE initial value problem, named ode num int1. While existing soft-
ware is focused on obtaining the numerical solution, the idea behind our frame-
work is different. Our goal is to provide user with flexible components to create
new solvers and to investigate how these solvers behave.

The ode num int framework currently covers single-step numerical integra-
tion schemes, including Runge–Kutta schemes [5]. It also provides a template
class for building solvers based on Richardson extrapolation [5, ch. II.9]. It con-
tains code to solve linear and nonlinear algebraic equations, so explicit and
implicit schemes are easily constructed. The framework is designed for systems
of medium scale, with n up to several thousands.

While the implementation of explicit ODE solvers is typically straightforward
and requires no special tuning to get them work, the implementation of implicit
solvers may require a lot of effort from a developer, especially if the goal is to have
an efficient solver in terms of CPU time consumed. The latter applies to fully
implicit schemes such as SDIRK [5, ch. II.7] and to linearly implicit methods of
Rosenbrock type [6], such as W-methods [7]. Notice that both classes of methods
require the Jacobian of ODE right hand side, J = Df/Dx, or an approximation
to it, which we denote as A. When a researcher starts applying such a method
to the problem at hand, he or she may face a number of difficulties listed below.

– The quality of solution obtained with a linearly implicit W-method may
depend on how close A is to J. It is therefore natural for a developer to
experiment with different strategies to update the A matrix. It should also
be noticed that keeping the same A for as many time steps as possible is what
can make a W-method outperform any other implicit method. Each time A
changes, and each time the step size h changes, the matrix W = I − hdA
(where I is the identity matrix and d is a parameter) has to be factorized,
which consumes CPU time.

– The ways of calculation of the Jacobian matrix J may be different. For some
ODE systems, it is easy to provide an explicit formula for J(t,x); for more
complicated systems, it may still be possible to compute J analytically with
an automatic differentiation tool like ADOL-C [8]; for complex systems, one
has to compute the Jacobian numerically using finite differences.

– The Jacobian may happen to be a sparse matrix, and taking its sparsity
structure into account during its numerical calculation and the solution of
linear system becomes crucial for overall performance of a solver, as soon

1
The source code of the framework is available at https://github.com/deadmorous/ode num int.

https://github.com/deadmorous/ode_num_int
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as n is not too small. In addition, sparse structure of the Jacobian imposes
certain constraints on the choice of algorithms to update its approximation A.

– The convergence and performance of Newton-type method [9] used to solve
nonlinear algebraic system at a time step may depend on several factors. It
might require too many iterations to converge if A is not updated frequently
enough; on the other hand, it may take too long time if we enforce A = J; it
also may fail to converge unless a specific regularization strategy is applied.
Last but not least, the number of iterations may strongly depend on the initial
guess to the solution.

The ode num int framework has been designed with the idea to equip devel-
opers with useful abstractions helping to build problem-specific solvers that best
fit the ODE system at hand. The construction of such a solver is often an investi-
gation and requires from a developer to try various combinations of components
and algorithms and to observe how the resulting solver works.

2 Software Design

The framework is written in C++11 and is a set of template classes. There are
also a few translation units that support the dynamic creation of instances and
implement some timing utilities. Other functionality is implemented in header
files. Subsections below outline framework components and actually explain how
an extensible system can be designed in C++.

2.1 Common Infrastructure

In this subsection, we describe how some general design patterns are employed
in the ode num int framework and how they help to build consistent easy-to-use
software.

Observers. In C++, functions are not really first-class citizens, like, e.g., in
JavaScript. However, C++ allows classes (so called functors) pretending to
be functions; moreover, C++11 allows to easily create functors using lambda
expressions. The Observers template class represents an array of such functors
with certain signature, which is the template parameter pack. User can add to
or remove from this array using corresponding methods. Besides, Observers
itself is a functor. When it is invoked, it in turn invokes all functors from the
array. This pattern exists in other programming languages and is similar to
Boost.Signals2, but our implementation is more lightweight.

Interfaces make use of the Observers template class by declaring public fields
where interface users can add arbitrary callbacks. Interface method implemen-
tations invoke the callbacks by “calling” those fields (they are functors).
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Property Holders. To hold a member variable, a C++ class can simply declare
it. However, it is a good practice to keep the field private and use getter and
setter methods to access the field; it is also sometimes desirable to notify any
interested party about member modification when the setter is called. Another
desirable thing is being able to hold similar members in different classes. An
elegant solution to this is to put member declaration, as well as getter and setter
code, into a separate class, and to inherit that class. This way we also follow
the single responsibility principle. Since there might be many different things to
be stored like this, the type of the member and the names of getter and setter
should be different in each certain case, we have come to the solution using a
preprocessor macro to declare such classes. We call such classes property holders.

Factories. Factory is a well-known design pattern used to provide a way to
create instances of classes that implement certain interface [10]. Implementations
do not need to be known when the factory is designed and even when their
instances are created: the exact type of the instance is identified, e.g., by a
number or a string.

In our framework, there are two template classes to support the pattern. We
have at most one factory per interface, therefore each interface for a dynami-
cally creatable entity inherits the Factory template class and gives it itself as
the template parameter. On the other hand, each creatable implementation of
the interface inherits the FactoryMixin template class instantiated with two
template parameters, class type and interface type. Finally, each creatable type
has to be registered in the factory, which can be done with a macro declaring a
static registrator variable, or in a number of different ways.

Optional Parameters. It is often necessary to provide parameter values for
object instances. Parameter types could be numbers (e.g., a tolerance), strings
(e.g., a file name), or typed objects (e.g., an ODE solver). When parameters are
specified directly from C++ code, there is no problem. However, it might be
necessary to read all parameters from a file and set all of them to appropriate
objects, and also to create objects by type identifiers found in the file. To sup-
port this, two classes have been designed, OptionalParameters and Value. The
former one is an interface declaring methods to read parameters from the object
and to set parameters. The latter one is for storing a single value of arbitrary
type; it is similar to the QVariant type from the Qt library [11], although it has
a feature providing interoperability with factories: if a value is a pointer to an
interface with a factory, assigning a string to it leads to the creation of appropri-
ate instance, followed by assigning the created instance to the value. The string
in this case is treated as a type identifier. As long as any type can be stored in a
Value, it is easy to have a tree of parameters and to organize its transformation
to any suitable format, e.g., XML, JSON, or plain text.

Timing Utilities. In software engineering, the standard tool used to identify
performance bottlenecks is a profiler. However, since the performance of an ODE
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solver and its parts is always an important issue for a developer, we included
a few lightweight tools to measure time intervals. The TickCounter class has
methods to count number of CPU cycles between method invocations. Its design
is similar to that of QTimer from Qt, but the measurement is much more precise
due to the use of the rdtsc instruction. On multi-core AMD CPUs, however, this
approach requires pinning threads to CPU cores. To convert CPU cycle counts
into milliseconds, the TimerCalibrator class can be used.

The TimingStats class is convenient to manage timing statistics for multiple
invocation of the same code. It counts the total time, the invocation count, and
can compute average time per one invocation.

The TickCounter and TimingStats classes can be used in combination with
Observers to easily measure the time spent in any part of solver code.

2.2 Linear Algebra

There are several implementations of linear algebra code (e.g., Intel MKL or
AMD ACML libraries). In order to simplify building from source code, the
ode num int framework does not depend on any of them and implements a
minimal set of linear algebra operations internally. At the same time the design
of template class for a vector allows interoperability with such implementations.

The VectorTemplate template class provides an interface to a column vector.
It defines linear operations, such as addition and multiplication by a number,
and provides their reference implementations. There is one template parameter,
VectorData, that determines how to access actual data in a vector, element
type, and how vector data is copied. Different instantiations of vector template
can be seamlessly assigned to each other, which improves code flexibility. The
ode num int framework provides an implementation of VectorData that stores
the data in std::vector. Other implementations are possible. Such design helps
to avoid data copying in some cases, e.g., when it is necessary to represent a part
of a vector (for example, its upper half) as another vector. To achieve this, we use
the VectorProxy::Block as an implementation of VectorData, thus employing
the proxy pattern [10]. Another similar example is when we need a scaled vec-
tor. To avoid immediate copying and multiplication, the VectorProxy::Scale
class is used in place of VectorData. Importantly, VectorData is a template
parameter for most of the template classes of the framework.

The SparseMatrixTemplate template class provides an interface to a sparse
matrix, as follows from its name. Its design is also split into the interface class
with the above name and its template parameter, MatrixData. Rectangular
blocks of sparse matrices can be represented as separate matrices without copy-
ing by using proxies similar to those for vectors. To actually store matrix data,
there are two implementations of MatrixData. One of them (call it D to be
short) allows dynamically changing the sparsity pattern and stores matrix ele-
ments in std::map. Matrix operations, like matrix-vector multiplication, require
iteration over an associative array, and are not really fast in this case. For fixed
matrix sparsity pattern, there is a faster solution (call it F), with matrix ele-
ments stored in std::vector. Like for vectors, different instantiations of sparse
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matrices can be seamlessly assigned to each other, which allows the following
usage pattern, e.g., to compute the Jacobian. If sparsity pattern is not known,
use SparseMatrixTemplate<D> to compute it, but don’t store the resulting
matrix; instead, store an instance of type SparseMatrixTemplate<F> and copy
the first matrix into it. Then perform operations on the second matrix. When
the Jacobian is computed next time and its sparsity pattern remains the same,
take it into account to compute the Jacobian (probably much faster [12]); do
not use D at all until the sparsity pattern changes.

The LUFactorizer template class is capable of solving sparse linear systems
using the LU factorization [13]. It has a method to specify a sparse matrix,
another method to update matrix with the same sparsity pattern (faster than
the first one because doesn’t require memory allocation and the calculation of
layout of matrices L and U), and a method to solve linear system with the
specified right hand side. The factorization is done when necessary. The class
automatically manages timing statistics for setting the matrix, decomposition,
and backward substitution using TimingStats fields.

2.3 Nonlinear Algebraic Newton-Type Solver

This section presents abstractions specific to the solution of systems of nonlinear
equations at a time step of an implicit ODE solver, as well as several implemen-
tations. The functionality is split into interchangeable components in order to
provide great flexibility in combining different algorithms. The components nat-
urally follow the single responsibility principle. Importantly, interfaces described
in this and next subsections provide relevant observers (not described here due
to size limitation) that can be exploited to pull all necessary information from
components and use it for understanding how they perform.

An iteration of a Newton-type solver for the equation f(x) = 0 with the
initial guess x(k) can be written as follows [9]:

x(k+1) = x(k) + α(k)d(k), Ad(k) = −f(x(k)), (4)

where A is an approximation to the Jacobian J = Df/Dx, d(k) is the search
direction, and α(k) is a number determined by a line search algorithm (see below).

Vector Mapping. To formulate the problem for a nonlinear solver, we use the
VectorMapping template class that defines an interface for a vector function of
a vector argument, f(x). Implementations provide actual mappings. A vector
mapping can be held in a property holder (see above).

Error Estimator. The interface declares methods to compute the norms of
absolute and relative error vectors of numerical solution obtained at an iteration
of a Newton-type method. It also declares iteration status codes and a method
returning such a code to instruct iteration performer (see below) what to do
next. The default implementation of error estimator has absolute and relative
tolerances and thresholds used to detect the divergence. Those are available
through the OptionalParameters interface.
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Jacobian Provider. The interface declares methods to compute the
Jacobian matrix J and to retrieve it as a sparse matrix of type
SparseMatrixTemplate<F> (see above), and also a method to inform the
instance about possible change in the sparsity pattern after an event. It is up to
the implementation how J is computed. Currently we have an implementation
that computes J numerically, taking its sparsity pattern into account. The lat-
ter means that for mappings f : Rn → R

n the number of f evaluations could be
much less than n+1, which is the case for dense J. See [12] for more information.

Jacobian Trimmer. One way to speed up the solution of the linear system
in (4) is to reduce the number of nonzero elements in A. This can be done
by applying a trimmer transforming J into a matrix with a smaller number of
nonzero elements by throwing away certain elements (for example, by limiting
the bandwidth of the matrix). On the other hand, the trimming might severely
impact the convergence of Newton iterations, hence much care must be taken
with the trimming.

Descent Direction. The interface defines a method to compute the search
direction d(k) by solving the second of equations (4). This procedure may also
involve an update of A according to certain strategy. Currently, a number of
implementations are available: (i) A = J; (ii) A is subject to Broyden’s update of
rank 1 [14]; (iii) A is subject to “fake Broyden’s update”, such that the sparsity
pattern of A is preserved by ignoring all elements of the update matrix that
do not have corresponding nonzero elements in A; (iv) Hart’s update directly
to the LU decomposition of A [15]; (v) constant A; some more. Importantly,
an implementation of the search direction interface may have an internal state
changing between iterations. Therefore, there is a method telling it to reset the
internal state and recompute the Jacobian next time.

Line Search. The interface provides a method to perform the search along
the direction d(k) and ensure |f(x(k+1))| < |f(x(k))| by picking a suitable
value of α(k). Currently we have one simple implementation that starts with
α(k) = 1 and divides it by two till the above condition is satisfied; if during this
process α(k) reaches a minimum threshold, the Newton iteration is considered
as divergent.

Iteration Performer. The interface provides methods to specify initial guess
to the solution, to perform a single iteration and to reset components. Most
important, the iteration performer is a placeholder for components implementing
the vector mapping specifying f(x), the error estimator, the descent direction
algorithm, and the line search algorithm.
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Regularization Tools. Unfortunately, Newton iterations may diverge. This
problem can be addressed by introducing some kind of regularization. For exam-
ple, instead of solving f(x) = 0, one could consider equations g(x, γ) = 0. The
regularization parameter γ could vary from 0 to 1, and g is such that, on the one
hand, g(x, 1) = f(x), and, on the other hand, Newton iterations converge better
as γ decreases. Then we could consider iterations with γ changing gradually from
0 to 1. There is a hope that this process converges because the leading iterations
give better initial guess to the problem with γ = 1. Notice that in the case of
ODE numerical integration, γ could be proportional to the step size, but other
choices are possible, too. The iteration performer described above can hold the
regularized mapping g and a regularization strategy object that decides how γ
should vary depending on iteration status.

Newton-Type Solver. The solver interface declares methods to specify the
initial guess and to run Newton iterations. It is a placeholder for iteration per-
former, so the logics of a single iteration is out of its responsibility. The imple-
mentation of the solver just runs a loop in which it performs an iteration, and
if there is no convergence so far, suggests regularization strategy to do some-
thing. When iteration count reaches certain limit (which is a parameter), the
solver makes one more try with the Jacobian computed from scratch (for this,
the solver instructs the iteration performer to reset any internal state of its
components).

2.4 ODE Solvers

All ODE solvers implemented in our framework are considered to be single-step
methods (though, the support for multistep methods is planned). Besides, we do
not currently support methods of variable order, e.g., based on the extrapola-
tion. The OdeSolver interface for a solver declares methods returning its order,
specifying initial state, specifying initial step size, retrieving current state, and
performing a single step (the latter is called doStep).

ODE Right Hand Side is specified by inheriting the OdeRhs interface. It is
similar to VectorMapping, but is better suited for evaluating f(t,x) rather than
f(x). In addition, keeping mechanical systems in mind, there is some support
for second-order equations. Namely, the vector of state variables is considered
to consist of coordinates u, speeds v (those are vectors of size n2), and first
order variables z (a vector of size n1): x = [uT ,vT , zT ]T , so the ODE right hand
side is then f(t,x) = [vT , fTu , fTv ]T . Therefore, the interface is augmented with a
method returning the number of coordinates; the total number of state variables
is n = 2n2 + n1. This kind of representation allows to reduce the size of linear
and nonlinear problems to be solved by an implicit solver at a step to n2 + n1,
because u is easily excluded.
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Explicit Solvers implemented in our framework can be formulated as Runge-
Kutta schemes (ERK), see [5, ch. II]. There are two general implementations
taking a Butcher tableau as the constructor parameter. One implementation
considers schemes without automatic step size control (our framework imple-
ments Euler and RK4). The other implementation considers embedded ERK
schemes with automatic step size control (currently the framework implements
the DOPRI45, DOPRI56, and DOPRI78 schemes). To implement an ERK solver,
one has to inherit the appropriate implementation and provide the Butcher
tableau.

The Gragg’s explicit solver is attractive as the reference solver for extrap-
olation due to its symmetry property [5, ch. II.8]. Originally, it is a two-step
method. Although it can be reformulated as an ERK scheme, there is no need
for that. Our implementation treats the solver as a single-step one, but inter-
nally it takes two steps of half size in its doStep method implementation. The
solver has an additional parameter instructing it to return smoothed current
state, which is the average of two last states. This allows to build the extrap-
olation Gragg–Bulirsch–Stoer scheme with smoothing, as described in [5]. Our
experience shows that in certain cases this solver gives better results than other
explicit schemes.

Extrapolation-Based Solver takes another ODE solver as the reference
solver. Each step boils down to splitting the step interval of size h into smaller
steps of sizes h/nk and making smaller steps with the reference solver. The
sequence of whole numbers nk may vary and is specified as extrapolator parame-
ter (we implemented the Romberg’s, the Bulirsch’s, and the harmonic sequences).
The index k runs from 1 to certain number of stages, N , which we currently con-
sider fixed. Finally, the Aitken–Neville’s algorithm is applied to find the extrap-
olated solution. The details of the method can be found in [5, ch. II.9]. The
extrapolation-based solver possesses great flexibility because an arbitrary ref-
erence solver and step sequence can be specified as its parameters. Another
parameter is a flag telling the extrapolator if the reference solver is symmetric.
In the same time, our implementation is not the most general one because the
order of the method does not adjust automatically at run time.

Step Size Controller interface declares a method that suggests the value of
step size to be used at the next step. The method requires current step size,
scheme order, and error norm as parameters. Therefore, the interface can be
used by embedded ERK schemes and by any other schemes that are capable of
computing the error norm at a step. Simpler schemes would have to estimate
error norm using an extrapolation-based approach. The implementation of the
interface has a number of parameters, which are the acceptable tolerance and
some more. Additional parameters of the step size controller may instruct it to
keep the step size constant if possible. This may be very important, e.g., for
W-methods, since a change in the step size also changes the matrix of linear
system to be solved at step.
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Event Controller interface declares two methods, one to be called in the begin-
ning of the step, and the other one to be called at the end. Those methods check
for events occurring within a step, find first of them according to (3), and change
discrete state variables φ in (2) according to the event occurred. Finally, the sec-
ond method reports the actual step size, probably truncated, and provides some
information about the event. The interpolation of ODE system state inside the
step is beyond the event controller responsibility; therefore, an interpolator has
to be specified as a parameter for the second method. To interpolate the state
vector, one can use the linear interpolator; however, if solver supports dense
output it can provide a better quality interpolator.

Linearly Implicit W-Methods. The idea behind W-methods is to replace the
system Jacobian J in Rosenbrock methods with its arbitrary approximation A
and still to have method order conditions satisfied. When A is close enough to J,
the scheme is expected to have certain stability properties. Refer to [7] for more
information. In our framework, two W-methods are currently implemented, the
SW2(4) method [7] and the W1 method (actually used as the reference solver
for extrapolator). Implementations of higher order W-methods are planned. The
implementations inherit a helper class that is capable of solving the linear system
at a step and to compute the A matrix. The same helper class can be used as a
base for new implementations.

SDIRK Solvers. Implicit solvers require the solution of a nonlinear system
of algebraic equations at a step. Therefore they use an instance of Newton-
type solver internally. The solver and its components can be set up through
the OptionalParameters interface. Currently the framework implements the
following method:

xk+1 = xk + h[(1 − α)f(tk,xk) + αf(tk + h,xk+1)], (5)

where the index k denotes the step number, h is the step size, and α is a parame-
ter of the scheme, such that it is the explicit Euler scheme at α = 0, the implicit
Euler scheme at α = 1, and the trapezoidal rule at α = 0.5. The implementation
handles the case n2 > 0 (variables of second order) such that the nonlinear sys-
tem solved at a step has size n2 + n1, and the coordinates u are excluded. The
initial guess can be specified using a predictor, which is another solver specified
as a parameter (e.g., explicit Euler). Other implementations are planned.

ODE Solver Output. For convenience, there are a number of components pro-
ducing some text output as an ODE solver proceeds. The StatisticsOutput
object reports time and count statistics for various parts of code (right hand
side evaluations, LU decompositions and backward substitutions, Jacobian cal-
culations, and more, depending on solver). The GeneralOutput object reports
current information during the solution (time, step size, error norm at step, event
information, error at a Newton iteration, when applicable). The SolutionOutput
object outputs solution vector at each step or after user-specified time intervals.
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ODE Solver Configuration. The object is merely a placeholder for parame-
ters that specify ODE solver, ODE right hand side, initial state, time interval,
and output options. It is convenient for supplying the entire description of a
numerical experiment from a text file.

3 Example of Application

The ode num int framework has emerged due to an attempt to design a numer-
ical solver for the problem of continuously variable transmission (CVT) dynam-
ics [16]. The models of CVT components developed so far are implemented in a
C++ software package. System state vector contains about 3600 variables that
are generalized coordinates, generalized speeds, and a few first order variables.
CVT components are modeled as deformable elastic bodies. There are many
contacts with friction between the bodies; in particular, torque transmission is
possible only due to the friction forces. For many years, the numerical solution of
the initial value problem has been done using the explicit RK4 scheme. Although
the scheme works well, it requires quite small step size due to stability require-
ments, such that the step size is about 10−7. As a result, numerical simulations
take too long time. Estimations and direct calculation show that the Jacobian
of the ODE right hand side has quite large eigenvalues, and they arise due to
the friction characteristic. The ODE system appears to be stiff. It is known that
for stiff systems implicit methods are preferable. For some of them, Rosenbrock
or W-methods work good; for others, including the model of CVT, they don’t.

As already said, the framework has been used for applying various solvers to
the ODE system of CVT dynamics. Since the ODE system is very complex, the
performance of solver should be as good as possible, which has suggested the
choice of C++ as the programming language for the framework.

The design of the ode num int framework has allowed to apply many different
numerical integration methods to a real-world application in quite a short period
of time. There is no final result so far because it is a work in progress, but still
we have found, e.g., that the trapezoidal rule at step size 10−5 is as good as RK4
at step size 10−8. Knowing it is important as a motivation for the development
of an optimized implementation of the scheme for CVT (in particular, it can
only outperform RK4 if the Jacobian is computed faster, which is possible but
requires tedious programming).

4 Conclusions and Future Work

The ode num int framework has been created to help developers find and tune
the appropriate solver for certain ODE system. It is very flexible in combining
various components together to build an ODE solver, so it can be used as a
playground. Much effort has been applied to decouple functionality in different
components, so each of them is responsible for one thing. That should make it
quite easy for a developer to implement any missing component rather quickly,
e.g., to check if some idea will work. When a suitable solver is found, it probably
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could be used as is; however, in many cases an optimized implementation will
give better performance.

Future plans for framework development include the implementation of more
components, like solvers, line search algorithms, and more. On the other hand,
it is planned to provide a number of tools working out-of-the-box, like stability
region generator, multi-parametric study organizer, and others.
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Abstract. Nowadays, the wide spectrum of Intel Xeon processors is
available. The new Zen CPU architecture developed by AMD has
extended the number of options for x86 64 HPC hardware. This large
number of options makes the optimal CPU choice for HPC systems not a
straightforward procedure. Such a co-design procedure should follow the
requests from the end-users community. Modern computational mate-
rials science studies are among the major consumers of HPC resources
worldwide. The VASP code is perhaps the most popular tool for these
research. In this work, we discuss the benchmark metric and results based
on a VASP test model that give us the possibility to compare different
CPUs and to select best options with respect to time-to-solution and
energy-to-solution criteria.

Keywords: Multicore · VASP · Memory wall · Broadwell · Zen

1 Introduction

Computational materials science provides an essential part of the deployment
time for high performance computing (HPC) resources worldwide. The VASP
code [1–4] is among the most popular programs for electronic structure cal-
culations that gives the possibility to calculate materials properties using the
non-empirical (so called ab initio) methods. According to the recent estimates,
VASP alone consumes up to 15–20% of the world’s supercomputing power [5,6].
Such unprecedented popularity justifies the special attention to the optimization
of VASP for both existing and novel computer architectures (e.g. see [7]). At the
same time, one can ask a question what type of processing units would be the
most efficient for VASP calculations.

A large part of HPC resources installed during the last decade is based on
Intel CPUs. Novel generations of Intel CPUs present the wide spectrum of mul-
ticore processors. The number Xeon CPU types for dual-socket systems is 26 for
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the Sandy Bridge family, 27 for Ivy Bridge, 22 for Haswell and 23 for Broadwell
families. In each family, the processors share the same core type but differ by
their frequency, core count, cache sizes, network-on-chip structure etc.

In March 2017, AMD released the first processors based on the novel x86 64
architecture called Zen. It is assumed that the efficiency of this architecture for
HPC applications would be comparable to the latest Intel architectures (Broad-
well and Skylake).

The diversity of CPU types complicates significantly the choice of the best
variant for a particular HPC system. The first criterion is certainly the time-to-
solution of a given computational task or a set of different tasks that represents
an envisaged workload of a system under development.

Another criterion is the energy efficiency of an HPC system. Energy efficiency
becomes one of the most important concerns for the HPC development today
and will remain in foreseeable future [8].

The need for clear guiding principles stimulates the development of models for
HPC systems performance prediction. However, the capabilities of the idealized
models are limited by the complexity of real-life applications. That is why the
empirical benchmarks of the real-life examples serve as a complimentary tool for
the co-design and optimization of software-hardware combinations.

In this work, we present the efficiency analysis of a limited but representative
list of modern Intel and AMD x86 64 CPUs using a typical VASP workload
example.

2 Related Work

HPC systems are notorious for operating at a small fraction of their peak per-
formance and the deployment of multi-core and multi-socket compute nodes
further complicates performance optimization. Many attempts have been made
to develop a more or less universal framework for algorithms optimization that
takes into account essential properties of the hardware (see e.g. [9,10]). The
recent work of Stanisic et al. [11] emphasizes many pitfalls encountered when
trying to characterize both the network and the memory performance of modern
machines.

The choice of the best option among several alternative GPU-systems for
running the GROMACS package is the subject of the paper of Kutzner et al. [12].
In that paper, several real life examples are considered as benchmarks of the
hardware efficiency. Our paper follows a similar path but for the VASP package.

The application of ab initio codes requires big supercomputers and the par-
allel scalability of the codes becomes, therefore, an important issue. The scala-
bility of the SIESTA code was considered in [13] for several Tier0 systems from
the PRACE infrastructure (although technically quite different, SIESTA shares
the same field of applications in materials science as VASP). In the previous
work [14], different HPC systems were compared with respect to their perfor-
mance for another electronic structure code CP2K.
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The increase of power consumption and heat generation of computing plat-
forms is a very significant problem. Measurement and presentation of the results
of performance tests of parallel computer systems become more and more often
evidence-based [15], including the measurement of energy consumption, which
is crucial for the development of exascale supercomputers [16].

The work of Calore et al. [17] discloses some aspects of relations between
power consumption and performance using small Nvidia Jetson TK1 minicom-
puter running the Lattice Boltzmann method algorithms. An energy-aware task
management mechanism for the MPDATA algorithms on multicore CPUs was
proposed by Rojek et al. [18].

Our previous results on energy consumption for minicomputers running clas-
sical MD benchmarks was published previously for Odroid C1 [19] and Nvidia
Jetson TK1 and TX1 [20,21].

3 Hardware and Software

In this work, we consider several Intel CPUs and the novel AMD Ryzen processor
and compare the results with the data [22] for the IBM Power 7. The features
of the systems considered are summarized in Table 1. We make use of the fact
that the Intel X99 chipset supports both consumer Core series and server Xeon
series Intel processors that share the same LGA 2011-3 socket. The Core i7-
6900K is similar to the Xeon E5-2620v4 but allows us to vary CPU and DRAM
frequencies.

Table 1. The main features of the systems considered

CPU type Ncores Nmem.ch. L3 (Mb) CPUfreq (GHz) DRAMfreq (MHz)

Single socket, Intel X99 chipset

Xeon E5-2620v4 8 4 20 2.1 2133

Core i7-6900K 8 4 20 2.1–3.2 2133 – 3200

Xeon E5-2660v4 14 4 35 2.0 2400

Single socket, AMD B350 chipset

Ryzen 1800X 8 2 16 3.6 2133–2400

Dual socket, Intel C602 chipset (the MVS10P cluster)

Xeon E5-2690 8 4 20 2.9 1600

Dual socket, Intel C612 chipset (the MVS1P5 cluster)

Xeon E5-2697v3 14 4 35 2.6 2133

Dual socket, Intel C612 chipset (the IRUS17 cluster)

Xeon E5-2698v4 20 4 50 2.2 2400

Quad socket, IBM Power 775 (the Boreasz cluster [22])

Power 7 8 4 32 3.83 1600
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Fig. 1. Parallel scalability of the GaAs test. In all cases, 8 cores per socket are used
that corresponds to 16 MPI ranks per a dual-socket node of the Xeon-based MVS10P,
MVS1P5 and IRUS17 clusters and 64 MPI ranks on a quad socket node of the Power-
based Boreasz cluster.

The single socket Intel Broadwell systems benchmarks are performed under
Ubuntu ver. 16.04 with Linux kernel ver. 4.4.0. The single socket AMD Ryzen
system is benchmarked under Ubuntu ver. 17.04 with Linux kernel ver. 4.10.0.

3.1 Test Model in VASP

VASP 5.4.1 is compiled for Intel systems using Intel Fortran, Intel MPI and
linked with Intel MKL for BLAS, LAPACK and FFT calls. For the AMD sys-
tem, gfortran ver.6.3 is used together with OpenMPI, OpenBLAS and FFTW
libraries.

Our test model in VASP is the same as used previously for the benchmarks
of the IBM 775 system [22]. The model represents a GaAs crystal consisting of
80 atoms in the supercell. The Perdew Burke Ernzerhof model for xc-functional
is used. The calculation protocol corresponds to the geometry optimization. We
use the time for the first iteration of electron density optimization τiter as a
target parameter of the performance metric. This parameter can serve as an
adequate measure of time consumption for molecular dynamics calculations as
well.
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Fig. 2. Top: the dependence of the time for the first iteration of the GaAs test on the
number of cores per socket. The presented time values for the single socket systems
(see Table 1) is divided by 2 for comparison with the dual socket systems data. Bottom:
the same data (and one point for IBM Power 7) in the reduced parameters Rpeakτiter
and Ncores/Nmem.ch. (here Rpeak is the total peak performance of the single or dual
socket node).
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The τiter values considered in this work are about 10–100 s and correspond
mainly to a single node of an HPC cluster. At the first glance, these are not very
long times to be accelerated. However, ab initio molecular dynamics requires
usually 104 − 105 time steps and each step consists of 3–5 such iterations.
That is why the decrease of τiter by several orders of magnitude is an actual
problem for modern HPC systems targeted at materials science computing.

The choice of a particular test model has a certain influence on the bench-
marking results. However, our preliminary tests of other VASP models show that
the main conclusions of this study do not depend significantly on a particular
model. In the future, a set of regression tests would be beneficial for similar
analysis.

3.2 Power Consumption Measurement

For the single socket systems considered, the power consumption measurements
are performed. We use APC Back-UPS Pro BR1500G-RS and the corresponding
apcupsd linux driver for digital sampling of power consumed during VASP runs.
In this way, we measure the total power consumption of the CPU, the memory,
the motherboard and PSU. For the evaluation of the total energy consumed for
one benchmark run, we multiply the average power value during the run by the
time of the first iteration τiter.

4 Results and Discussion

4.1 Where Is the Balance Between Cores, Memory Channels and
L3 Cache?

VASP 5.4.1 uses MPI for parallelization. Figure 1 illustrates the acceleration
of the GaAs test considered for 1–8 nodes of the MVS10P (FDR Infiniband),
MSV1P5 (FDR Infiniband) and IRUS17 (Omni-path) clusters. For the modest
number of nodes considered, the acceleration is very efficient. Here we do not
want to analyze the limits of parallel scalability but to show that the absolute
performance of the parallel code is proportional to the performance of single
cluster nodes (e.g. one can mention the similarity of the strong scaling data on
Fig. 1 for MVS10P and MVS1P5 that both use FDR Infiniband).

VASP is known to be both a memory-bound and a compute-bound code [7].
Modern Intel CPUs provide 4 memory channels per socket. That is why a priori
it is not obvious how VASP performance depends on the number of cores per
socket. Figure 2 shows the results of the GaAs test runs.

We see a pronounced dependence on the number of cores per socket. For
majority of systems, the time per iteration saturates at 4 cores per socket and
shows no significant decrease for higher core counts.

In order to understand the dependence on the number of memory channels,
we perform tests with E5-2620v4 CPU with only 2 or 1 memory channels acti-
vated (when only 2 DIMMs or 1 DIMM are installed into the motherboard). The
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Fig. 3. The dependence of the Rpeakτiter parameter on the L3 cache per core.

results confirm the crucial importance of the number of active memory channels
for the VASP performance (this fact is a manifestation of the “memory wall”
concept).

Performance comparison of different CPUs resembles usually a comparison
of “apples and oranges”. For comparison of CPUs with different frequencies and
different peak numbers of Flops/cycle, it is better to use the reduced parameter
of Rpeakτiter [14,20]. Another reduced parameter that characterizes the memory
subsystem is Ncores/Nmem.ch. (for simplicity we neglect here the variation of the
memory bandwidth per channel). The bottom plot of Fig. 2 presents the same
data as shown on the upper plot in the reduced coordinates. In this way, we have
eliminated the differences in floating point performance of different CPU core
and the difference in the number of memory channels.

In these reduced coordinates, the scatter of data points is much smaller, and
there is an evident common trend. The data point for the IBM Power 7 CPU is
located at the same trend that suggests the low sensitivity of the results to the
hardware and software differences between x86 64 and IBM Power systems.

The test model considered fixes the total number of arithmetic operations
(Flops) required for its solution. The increase of Rpeakτiter (that is proportional
to the number of CPU cycles) shows the increase of the overhead due to the
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limited memory bandwidth. More CPU cycles are required for the CPU cores
involved in computations to get data from DRAM.

The remaining scatter of data points at the bottom plot of Fig. 2 can
be partially attributed to different L3 cache sizes of the CPUs considered.
We select the data points from Fig. 2 that correspond to Ncores/Nmem.ch. = 1−2,
and plot the Rpeakτiter values as a function of the L3 cache size per core (Fig. 3).
There is a visible trend: the larger is the L3 cache size per core, the smaller is
the Rpeakτiter value. The precise analysis of the data structures used by VASP
and their caching is beyond the scope of this paper. However, it is evident that
the main VASP computational kernel (composed of the MKL routines) accesses
continuous blocks of data in DRAM, and L3 cache mechanism provides efficient
acceleration.

Remarkably, the point for the IBM Power 7 benchmark corresponds to this
trend very well. The rightmost point (that corresponds to the benchmark with
1 core of E5-2620v4 with 1 active memory channel) is not located at the main
trend, because in this combination, presumably, all available L3 cache can not
be utilized effectively.

4.2 Optimization of the Energy-to-Solution

For the single socket systems considered (see Table 1) the power consumption
measurements are performed together with the VASP model test runs. The
results are summarized in Fig. 4 that shows the average power and the total
consumed energy as functions of τiter.

The experiments with Core i7-6900K shows that

– increasing DRAM frequency from 2133 to 3200 MHz results in 10% higher
power draw but gives about 10% smaller times for iteration for 4 and 8 cores;

– decreasing CPU frequency from 3.2 to 2.1 GHz results in 20% smaller power
draw but gives only about 4% larger times for iteration for 8 cores.

Comparing E5-2620v4 (with 8 cores in total) and E5-2660v4 (with 14 cores
in total), we conclude that non-active cores do not contribute significantly to
the power draw during VASP test runs.

AMD Ryzen shows a competitive level of power consumption. However, the
increase of average power consumption after the transition from 1 to 2 cores for
AMD Ryzen is more pronounced than for Intel Broadwell CPUs considered. The
probable reason is the activation of both quad-core CPU-Complexes (CCX) of
the Ryzen 1800X CPU.

In most cases, there is a minimum in energy consumption for a given CPU.
This minimum is mainly connected with the reduction of τiter. Beyond this
minimum when more cores come into play, further acceleration is connected
with essentially higher power draw, or there is no acceleration at all.

The most power-efficient and energy-efficient case among the variants con-
sidered is the use of 4 cores of E5-2660v4, especially in the turbo boost mode.
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5 Conclusions

In this work, we have considered several Intel CPUs (from Sandy Bridge, Haswell
and Broadwell families), the novel AMD Ryzen CPU and used the data on
IBM Power 7 for comparison. In all the cases, we have used the test VASP
model of GaAs crystal as a benchmark tool. Complimentary power consumption
measurements have been carried out as well.

Additionally to the variation of the CPU types, we have considered the varia-
tions in the number of active memory channels, the CPU and DRAM frequencies.

For comparison of different cases, we have used three reduced parameters:
(1) the time for iteration normalized by the floating point peak performance
Rpeakτiter, (2) the number of CPU cores per memory channel Ncores/Nmem.ch.

and (3) the L3 cache size per core.
The benchmark results correlate with these reduced parameters quite well.

This fact allows us to make several conclusions on optimal VASP performance.
For VASP, the optimal number of cores per memory channel is 1–2. Using

more that 2 cores per channel provides no acceleration.
For Ncores/Nmem.ch. = 1− 2, VASP performance increases significantly with

the increase of the L3 cache per core. Each additional Mb of L3 cache per core
reduces the time-to-solution by 30–50%.

The increase of CPU frequency gives diminishing returns but increases sig-
nificantly the power draw. The increase of DRAM frequency results in the pro-
portional rise of the power draw and in the proportional acceleration.

Comparing different CPUs at the same level of performance, we conclude
that CPUs with larger L3 cache size need less power and consume less energy.
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Abstract. The paper covers problems of design of reconfigurable computer
systems with a liquid cooling system. Design principles of liquid cooling systems
of open and closed types are specified, and their comparative analysis is presented.
It is shown that open type liquid cooling systems are the most acceptable for high-
performance computer systems design. Architecture features of various immer‐
sion liquid cooling systems are analyzed; selection criteria of the main cooling
system components are given. The paper presents the results of modelling, proto‐
typing and experimental verification of the main technical solutions for our
energy-efficient computational module with liquid cooling. The design of the
computational module, designed on the base of the modern FPGAs of Xilinx
UltraScale series, is presented. It is shown that the developed solutions have
power reserve for design of advanced computer systems, based on the new Ultra‐
Scale+ FPGA family. For the UltraScale+ FPGAs it is necessary to perform some
modifications, concerning both the layout of the main computational circuit board
and the design of the computer unit and its cooling system. The upgraded design
of our advanced computer unit with liquid cooling is presented.

Keywords: Liquid cooling · Reconfigurable Computer Systems · FPGAs · High-
performance computer systems · Energy efficiency

1 Introduction

One of the most effective approaches, which provide high real performance of a
computer system is adaptation of its architecture to a structure of a solving task. In this
case a special-purpose computer device is created. It hardwarily implements all compu‐
tational operations of the information graph of the task with the minimum delays. Here,
we have a contradiction between the implementation of the special-purpose device and
its general-purpose use for solving tasks from various problem areas. It is possible to
eliminate these contradictions, combining creation of a special-purpose computer device
with a wide range of solving tasks, within a concept of reconfigurable computer systems
(RCS) based on FPGAs that are used as a principal computational resource [1].

RCS, which contain FPGA computational fields of large logic capacity, are used for
implementation of computationally laborious tasks from various domains of science and
technique [2–4], because they have a considerable advantage in their real performance
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and energetic efficiency in comparison with cluster-like multiprocessor computer
systems.

The leading Russian vendor of high-performance RCS is Scientific Research Centre
of Supercomputers and Neurocomputers (SRC SC & NC, Taganrog, Russia), which
produce a wide range of products: from completely stand-alone small-size reconfigur‐
able computers (the Caleano product line), desktop or rack computational modules
(Rigel, based on Xilinx Virtex-6 FPGAs, Taygeta, based on Xilinx Virtex-7 FPGAs) to
computer systems which consist of a set of computer racks, placed in a specially
equipped computer room (RCS-7).

The main distinctive feature of the RCS, produced in SRC SC & NC, is high board
density and high (not less than 90%) filling of FPGAs that, as a result, provide high
specific energetic efficiency of such systems [5].

Practical experience of maintenance of large computer complexes based on RCS
proves that air cooling systems have reached their heat limit. Continuous increasing of
the circuit complexity and the clock rate of each new FPGA family leads to considerable
growth of power consumption and to growth of the maximal operating temperature on
chip. So, for the XC6VLX240T-1FFG1759C FPGAs of a computational module (CM)
Rigel-2 the maximum overheat of FPGAs relative to the environment temperature of
25 °C in an operating mode and with the power of 1255 W, consumed by the CM, is
33.1 °C, i.e. the maximum temperature of the FPGA chip of the CM Rigel-2 is 58.1 °C.
For the XC7VX485T-1FFG1761C FPGAs of the CM Taygeta the maximum overheat
of FPGAs relative to the environment temperature of 25 °C in an operating mode and
with the power of 1661 W, consumed by the CM, is 47.9 °C, i.e. the maximum temper‐
ature of the FPGA of the CM Taygeta is 72.9 °C. If we take into account that the
permissible temperature of FPGA functioning, which provides high reliability of the
equipment during a long operation period, is 65…70 °C, then it is evident, that main‐
tenance of the CM Taygeta requires decrease of the environment temperature.

According to the obtained experimental data, conversion from the FPGA family
Virtex-6 to the next family Virtex-7 leads to growth of the FPGA maximum temperature
on 11…15 °C. Therefore further development of FPGA production technologies and
conversion to the next FPGA family Virtex Ultra Scale (power consumption up to 100 W
for each chip) will lead to additional growth of FPGA overheat on 10…15 °C. This will
shift the range of their operating temperature limit (80…85 °C), which means negative
influence on their reliability when chips are filled up to 85–95% of available hardware
resource. This circumstance requires a quite different cooling method which provides
keeping of performance growth rates of advanced RCS.

2 Liquid Cooling Systems for Reconfigurable Computer Systems

Development of computer technologies leads to design of computer technique which
provides higher performance, and hence, more heat. Dissipation of released heat is
provided by a system of electronic element cooling, that transfers heat from the more
heated object (the cooled object) to the less heated one (the cooling system). If the cooled
object is constantly heated, then the temperature of the cooling system grows and in
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some period of time will be equal to the temperature of the cooled object. So, heat transfer
stops and the cooled object will be overheated. The cooling system is protected from
overheat with the help of cooling medium (a heat-transfer agent). Cooling efficiency of
the heat-transfer agent is characterized by heat capacity and heat dissipation. As a rule,
heat transfer is based on principles of heat conduction, that require a physical contact
of the heat-transfer agent with the cooled object, or on principles of convective heat
exchange with the heat-transfer agent, that consists in physical transfer of the freely
circulating heat-transfer agent.

To organize heat transfer to the heat-transfer agent, it is necessary to provide heat
contact between the cooling system and the heat-transfer agent. Various heat-sinks –
facilities for heat dissipation in the heat-transfer agent are used for this purpose. Heat-
sinks are set on the most heated components of computer systems. To increase efficiency
of heat transfer from an electronic component to a heat-sink, a heat interface is set
between them. The heat interface is a layer of heat-conducing medium (usually multi‐
component) between the cooled surface and the heat dissipating facility, used for reduc‐
tion of heat resistance between two contacting surfaces. Modern processors and FPGAs
need cooling facilities with as low as possible heat resistance, because at present even
the most advanced heat-sinks and heat interfaces cannot provide necessary cooling if an
air cooling system is used.

Till 2013 air cooling systems were used quite successfully for cooling supercom‐
puters. But due to growth of performance and circuit complexity of microprocessors and
FGAs, used as components of supercomputer systems, air cooling systems have prac‐
tically reached their limits for designed perspective supercomputers, including hybrid
computer systems. Therefore the majority of vendors of computer technique consider
liquid cooling systems as an alternative decision of the cooling problem. Today liquid
cooling systems are the most promising design area for cooling modern high-loaded
electronic components of computer systems.

A considerable advantage of all liquid cooling systems is heat capacity of liquids
which is better than air capacity (from 1500 to 4000 times), and higher heat-transfer
coefficient (increasing up to 100 times). To cool one modern FPGA chip, 1 m3 of air or
0.00025 m3 (250 ml) of water per minute is required. Transfer of 250 ml of water requires
much less of electric energy, than transfer of 1 m3 of air. Heat flow, transferred by similar
surfaces with traditional velocity of the heat-transfer agent, is in 70 times more intensive
in the case of liquid cooling than in the case of air cooling. Additional advantage is use
of traditional, rather reliable and cheap components such as pumps, heat exchangers,
valves, control devices, etc. In fact, for corporations and companies, which deal with
equipment with high packing density of components operating at high temperatures,
liquid cooling is the only possible solution of the problem of cooling of modern computer
systems. Additional possibilities to increase liquid cooling efficiency are improvement
of the initial parameters of the heat transfer agent: increasing of velocity, decreasing of
temperature, providing of turbulent flow, increasing of heat capacity, reducing of
viscosity.

Heat transfer agent of liquid cooling systems of computer technique is liquid such
as water or any dielectric liquid. Heated electronic components transfer heat to the
permanently circulating heat transfer agent – liquid, which, after its cooling in the
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external heat exchanger, is used again for cooling of heated electronic components.
There are several types of liquid cooling systems. Closed loop liquid cooling systems
have no direct contact between liquid and electronic components of printed circuit
boards [6, 7]. In open loop cooling systems (liquid immersion cooling systems) elec‐
tronic components are immersed directly into the cooling liquid [8, 9]. Each type of
liquid cooling systems has its own advantages and disadvantages.

In closed loop liquid cooling systems all heat-generating elements of the printed
circuit board are closed by one or several flat plates with a channel for liquid pumping
[10, 11]. So, for example, cooling of a supercomputer SKIF-Avrora [12] is based on a
principle “one cooling plate for one printed circuit board”. The plate, of course, had a
complex surface relief to provide tight heat contact with each chip. Cooling of a super‐
computer IBM Aquasar is based on a principle “one cooling plate for one (heated) chip”.
In each case the channels of the plates are united by collectors into a single loop
connected to a common heat-sink (or another heat exchanger), usually placed outside
the computer case and/or rack or even the computer room. With the help of the pump
the heat transfer agent is pumped through the plates and dissipates heat, generated by
the computational elements, by means of the heat exchanger. In such system it is neces‐
sary to provide access of the heat transfer agent to each heat-generating element of the
calculator, what means a rather complex “piping system” and a large number of pressure-
tight connections. Besides, if it is necessary to provide maintenance of the printed circuit
boards without any serious demounting, then the cooling system must be equipped with
special liquid connectors which provide pressure-tight connections and simple
mounting/demounting of the system.

In closed loop liquid cooling systems it is possible to use water or glycol solutions
as the heat transfer agent. However, leak of the heat transfer agent can lead to possible
ingress of electrically conducting liquid to unprotected contacts of printed circuit boards
of the cooled computer, and this, in its turn, can be fatal for both separate electronic
components and the whole computer system. To eliminate failures the whole complex
must be stopped, and the power supply system must be tested and dried up. Control and
monitoring systems of such computers always contain multiple internal humidity and
leak sensors. To solve the leak problem a method, based on negative pressure of liquid
in the cooling system, is frequently used. According to this method, water is not pumped
in under pressure, it is pumped out, and this practically excludes leak of liquid. If air-
tightness of the cooling systems is damaged, then air ingresses the system but no leak
of liquid happens. Special sensors are used for detection of leaks, and modular design
allows maintenance without stopping of the whole system. However, all these capabil‐
ities considerably complicate design of hydraulic system.

Another problem of closed loop liquid cooling systems is a dew point problem. In
the section of data processing the air is in contact with the cooling plates. It means that
if any sections of these plates are too cold and the air in the section of data processing
is warmer and not very dry, then moisture can condense out of the air on the plates.
Consequences of this process are similar to leaks. This problem can be solved ether by
hot water cooling, which is not effective, or by control and keeping on the necessary
level the temperature and humidity parameters of the air in the section of data processing,
which is complicated and expensive.

Design of Advanced Reconfigurable Computer Systems 445



The design becomes even more complex, when it is necessary to cool several
components with a water flow proportionally to their heat generation. Besides branched
pipes, it is necessary to use complex control devices (simple T-branches and four-ways
are not enough). An alternative approach is use of an industrial device with flow control,
but in this case the user cannot considerably change configuration of cooled computa‐
tional modules.

Advantages of closed loop liquid cooling systems are:

– use water or water solutions as the heat transfer agent which are available, have
perfect thermotechnical properties (heat transfer capacity, heat capacity, viscosity),
simple and comparatively safe maintenance;

– the large number of unified mechanisms, nodes and details for water supply systems,
which can be used;

– great experience of maintenance of water cooling systems in industry.

However, closed loop liquid cooling systems have a number of significant disad‐
vantages, which restrict their widespread use:

– difficulties with detection of the point of water leakage;
– catastrophic consequences that are the result of leakages not detected in time;
– technological problems of leakage elimination (a required power-off of the whole

computer rack, that is not always possible and suitable);
– required support of microclimate in the computer room (a dew point problem);
– a problem of cooling of all the rest components of the printed circuit board of the

RCS computational module. Even slight modification of the RCS configuration
requires a new heat exchanger;

– a problem of galvanic corrosion of aluminum heat exchangers or a problem of mass
and dimensions restrictions for more resistant copper heat exchangers (aluminum is
three times as lighter than copper);

– air removal from the cooling system that is required before starting-up and adjust‐
ment, and during maintenance;

– complex placement of the computational modules in the rack with a large number of
fittings required for plug-in of every computational module;

– necessity of use of a specialized computer rack with significant mass and dimension
characteristics.

In open loop liquid cooling systems the heat transfer agent is the principal compo‐
nent, a dielectric liquid based, as a rule, on a white mineral oil that provides much higher
heat storage capacity of the heat transfer agent, than the one of the air in the same volume.
According to their design, such system is a bath filled with the heat transfer liquid (also
placed into a computer rack) and which contains printed circuit boards and servers of
computational equipment. The heat, generated by electronic components, is dissipated
by the heat transfer agent that circulates within the whole bath. Advantages of immersion
liquid cooling systems are simple design and capability of adaptation to changing geom‐
etry of printed circuit boards, simplicity of collectors and liquid connectors, no problems
with control of liquid flows, no dew point problem, high reliability and low cost of the
product.
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The main problem of open loop liquid cooling systems is chemical composition of
the used heat transfer liquid which must fulfil strict requirements of heat transfer
capacity, electrical conduction, viscosity, toxicity, fire safety, stability of the main
parameters and reasonable cost of the liquid.
Open loop liquid cooling systems have the following advantages:

– insensibility to leakages and their consequences, capability of operating even with
local leakages of the heat transfer agent;

– insensibility to climate characteristics of the computer room;
– solution of the problem of cooling of all RCS components, because the printed circuit

board of the computational module is immersed into the heat transfer agent;
– capability of modification of the configuration of the printed circuit board of the

computational module without modification of the cooling system;
– simplicity of hydraulic adjustment of the system owing to lack of complex system

of collectors;
– possibility of use of unified mechanisms, nodes and details, produced for hydraulic

systems of machine industry, and know-how of maintenance of electrical equipment
that uses dielectric oils;

– increasing of the total reliability of the liquid cooling system.

Disadvantages of open loop liquid cooling systems are the following:

– necessity of an additional pump and heat exchange equipment for improvement of
thermotechnical properties (heat transfer capacity, heat capacity, viscosity) of the
heat transfer agent. Here special dielectric organic liquids are used as the heat transfer
agent;

– necessity of training of maintenance staff and keeping increased safety precautions
for work with the heat transfer agent;

– necessity of more frequent cleaning of the computer room because of high permea‐
bility of the heat transfer agent, especially in the case of leakage;

– necessity of special equipment for scheduled and emergency maintenance operations
(mounting/demounting of the computational module, loading/unloading of the heat
transfer liquid, etc.);

– increasing of the maintenance cost because of necessity of regular changeout of the
heat transfer liquid when its service life is over and necessity of heat transfer agent
management (transporting, receipt, accounting, storing, distribution, recovery of the
heat transfer agent, etc.) in the corporation.

Estimating the given advantages and disadvantages of the two liquid cooling systems
we can note more weighty advantages of open loop cooling systems for electronic
components of computer systems. In this connection for advanced RCS it is reasonable
to use direct immersion of heat-generating system components into the mineral oil based
liquid heat transfer agent.

At present the technology of liquid cooling of servers and separate computational
modules is developed by many vendors and some of them have achieved success in this
direction [9–11]. However, these technologies are intended for cooling computational
modules which contain one or two microprocessors. All attempts of its adaptation to
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cooling computational modules which contain a large number of heat generating compo‐
nents (an FPGA field of 8 chips), have proved a number of shortcomings of liquid cooling
of RCS computational modules.
The main disadvantages of existing technologies of immersion liquid cooling [10–14]
for computational modules which contain FPGA computational fields are:

– poor adaptation of the cooling system for placement into standard computer racks;
– inefficiency of cooling of electronic component chips with considerable (over 50 W)

heat generation;
– the thermal paste between FPGA chips and heat-sinks is washed out during long-

term maintenance;
– the system of cooling liquid circulation inside the module is designed for one or two

chips, but not for an FPGA field, and this fact leads to considerable thermal gradients;
– In the systems, based on the IMMERS [9] technology, all cooling liquid is circulating

within a closed loop though the chiller, and this fact leads to some problems;
– necessity of computer complex maintenance stoppage for withdrawal separate

components and devices;
– necessity of use of a power specialized pump and hydraulic equipment adapted to

the cooling liquid;
– a complex system for control of cooling liquid circulation which causes periodic

failures;
– high cost of the cooling liquid which is produced by the only one manufacturer.

The presented disadvantages can be considered as an inseparable part of other
existing open loop liquid cooling systems because cooling of RCS computational
modules which contain not less than 8 FPGA chips has some specific features in
comparison with cooling of a single microprocessor.

The special feature of the RCS produced in Scientific Research Centre of Super‐
computers and Neurocomputers is the number of FPGAs, not less than 6–8 chips on one
printed circuit board and high packing density. This considerably increases the number
of heat generating components in comparison with microprocessor modules, compli‐
cates application of the technology of direct liquid cooling IMMERS along with other
end solutions of immersion systems, and requires additional technical and design solu‐
tions for effective cooling of RCS computational modules.

Use of open liquid cooling system is efficient owing to the heat-transfer agent char‐
acteristics and the design and specification of the used FPGA heat-sinks, pump equip‐
ment, heat-exchangers.

The heat-transfer agent must have the best electric strength, high heat transfer
capacity, the maximum possible heat capacity and low viscosity.

The heat-sink must provide the maximum possible surface of heat dissipation, must
allow circulation of the heat-transfer agent through itself, a turbulent heat-transfer agent
flow in itself, manufacturability. The specialists of SRC SC & NC have performed heat
engineering research and suggested a fundamentally new design of a heat-sink with
original solder pins, which create a local turbulent flow of the heat-transfer agent. The
used thermal interface cannot be deteriorated or washed out by the heat-transfer agent.
Its coefficient of heat conductivity must remain permanently high. The specialists of
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SRC SC & NC have created an effective thermal interface which fulfills all specified
requirements. Besides, the technology of its coating and removal was also perfected.

The pump equipment is also not the least of the components of the CM cooling
system. The principal criteria which must be taken into account are the following:

– provision of design operating parameters;
– outline dimension and coordinated placement of the input and the output fittings;
– the pump must be suitable for interaction with oil products with a specified viscosity

and chemical composition;
– continuous maintenance mode;
– minimal vibrations;
– the pump must have the minimal permissible positive suction head;
– the protection class of the pump electric motor must be not less than IP-55.

The heat-exchanger is also an important component of the cooling system. Its design
must be compact and must provide efficient heat exchange. Research, performed by the
scientific team of SRC SC & NC proved that the most suitable design of the heat-
exchanger is a plate-type one, designed for mineral oils cooling in hydraulic systems of
industrial equipment.

The liquid cooling system must have a control subsystem which contains sensors of
level, flow, temperature of the heat-transfer agent, and a temperature sensor for cooling
components.

3 Reconfigurable Computer System “SKAT” Based on Xilinx
Ultrascale FPGAS

Since 2013 the scientific team of SRC SC and NC has actively developed the domain
of creation of next-generation RCS on the base of their original liquid cooling system
for computational circuit boards with high packing density and the large number of heat
generating electronic components. The basis of design criteria of the computational
module (CM) of next-generation RCS with an open loop liquid cooling system are the
following principles:

– the RCS configuration is based on a computational module with the 3U height and
the 19” width and with self-contained circulation of the cooling liquid;

– one computational module can contain 12–16 computational circuit boards (CCB)
with FPGA chips;

– each CCB must contain up to 8 FPGAs with dissipating heat flow of about 100 W
from each FPGA;

– a standard water cooling system, based on industrial chillers, must be used for cooling
the liquid.

The principal element of modular implementation of an open loop immersion liquid
cooling system for electronic components of computer systems is a reconfigurable
computational module of a new generation (see the design in Fig. 1-a). The CM casing
of a new generation consists of a computational section and a heat exchange section. In

Design of Advanced Reconfigurable Computer Systems 449



the casing, which is the base of the computational section, a hermetic container with
dielectric cooling liquid and electronic components with elements that generate heat
during operating, is placed. The electronic components can be as follows: computational
modules (not less than 12–16), control boards, RAM, power supply blocks, storage
devices, daughter boards, etc. The computational section is closed with a cover.

(a) (b)

Fig. 1. The design of the computer system based on liquid cooling (a – the design of the new
generation CM, b – the design of the computer rack)

The computational section adjoins to the heat exchange section, which contains a
pump and a heat exchanger. The pump provides circulation of the heat transfer agent in
the CM through the closed loop: from the computational module the heated heat-transfer
agent passes into the heat exchanger and is cooled there. From the heat exchanger the
cooled heat-transfer agent again passes into the computational module and there cools
the heated electronic components. As a result of heat dissipation the agent becomes
heated and again passes into the heat exchanger, and so on. The heat exchanger is
connected to the external heat exchange loop via fittings and is intended for cooling the
heat-transfer agent with the help of the secondary cooling liquid. As a heat exchanger
it is possible to use a plate heat exchanger in which the first and the second loops are
separated. So, as the secondary cooling liquid it is possible to use water, cooled by an
industrial chiller. The chiller can be placed outside the server room and can be connected
with the reconfigurable computational modules by means of a stationary system of
engineering services. The design of the computer rack with placed CMs is shown in
Fig. 1-b.

The computational and the heat exchange sections are mechanically interconnected
into a single reconfigurable computational module. Maintenance of the reconfigurable
computational module requires its connection to the source of the secondary cooling
liquid (by means of valves), to the power supply or to the hub (by means of electrical
connectors).
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In the casing of the computer rack the CMs are placed one over another. Their number
is limited by the dimensions of the rack, by technical capabilities of the computer room
and by the engineering services.

Each CM of the computer rack is connected to the source of the secondary cooling
liquid with the help of supply return collectors through fittings (or balanced valves) and
flexible pipes; connection to the power supply and the hub is performed via electric
connectors.

Supply of cold secondary cooling liquid and extraction of the heated one into the
stationary system of engineering services connected to the rack, is performed via fittings
(or balanced valves).

For testing technical and technological solutions, and for determination of expected
technical and economical characteristics and service performance of the designed high-
performance reconfigurable computer system with liquid cooling, we designed a number
of models, experimental and technological prototypes. Figure 2-b shows the prototype
of a new generation CM “Skat”. For this CM a new design of a CCB with high packing
density was created.

Fig. 2. The prototype of the new generation CM

The CCB of the advanced computational module contains 8 Kintex UltraScale
XCKU095T FPGAs; each FPGA contains a specially designed thermal interface and a
low-height heatsink for heat dissipation.

We have designed an immersible power supply unit which provides DC/DC
380/12 V transducing with the power up to 4 kWatt for 4 CCB.

The computational section of the CM “SKAT” contains 12 CCB with the power up
to 800 W each, 3 power supply units. Besides, all boards are completely immersed into
an electrically neutral liquid heat-transfer agent.

For creation of an effective immersion cooling system a dielectric heat-transfer agent
was developed. This heat-transfer agent has the best electric strength, high heat transfer
capacity, the maximum possible heat capacity and low viscosity.

The heat exchange section contains pump components and the heat exchanger, which
provide the effective flow and cooling of the heat-transfer agent. The design height of
the CM is 3U.
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The performance of one next-generation CM “SKAT” is increased in 8.7 times in
comparison with the CM “Taygeta”. Such qualitative increasing of the system specific
performance is provided by more than triple increasing of the system packing density
owing to original design solutions, and increasing of the clock frequency and the FPGA
logic capacity.

Experimental results prove that the complex of the developed solutions concerning
the immersion liquid cooling system provide the temperature of the heat-transfer agent
not more than 30 °C, the power of 91 W for each FPGA (8736 W for the CM) in the
operating mode of the CM. At the same time, the maximum FPGA temperature during
heat experiments does not exceed 55 °C. This proves that the designed immersion liquid
cooling system has a reserve and can provide effective cooling for the designed RCS
based on the advanced Xilinx UltraScale+ FPGA family.

4 Advanced Reconfigurable Computer System “SKAT+” Based on
Xilinx Ultrascale+ FPGAS

Use of the UltraScale+ FPGAs, which have been implemented on the base of the 16-
nm technology 16FinFET Plus and produced by Xilinx since 2017, will provide up to
triple growth of the computational performance owing to the growth of clock frequency
and FPGA circuit complexity; the size of the computer system remains unchanged.
However, in spite of reduction of relative energetic consumption owing to new techno‐
logical standards of FPGAs manufacturing, and owing to a certain power reserve of the
designed liquid cooling system, it is possible to expect a new approach of FPGA oper‐
ating temperatures to their critical values.

Besides, the new FPGAs of the UltraScale+ family have larger geometric sizes. The
size of the FPGAs of the RCS “SKAT” is 42.5 × 42.5 mm. The size of the FPGAs, which
are going to be placed into the RCS “SKAT+”, is 45 × 45 mm. Due to this circumstance
it is impossible to use the existing design of the CCB, because the width of the printed
circuit board will become larger and therefore will not fit for the standard 19’’ rack.

In this connection it is necessary to modify the designed open liquid cooling system
and the CCB design that will lead to modification of the whole CM.

At present the scientific team of SRC of SC & NC is working on a design of an
advanced RCS based on the Xilinx UltraScale+ FPGAs. Owing to these works,
concerning modification of the cooling system, we are going to solve the following
problems:

1. Increase of effective surface of heat-exchange between FPGAs and the heat-transfer
agent.

2. Increase of the performance of the heat-transfer agent supply pump.
3. Increase of reliability of the liquid cooling system with the help of immersed pumps.
4. Experimental improvement of the heat-sink optimal design.
5. Experimental improvement of the technology of thermal interface coating.

We have designed a prototype of an advanced computational module with a modified
immersed cooling system (Fig. 3). The distinctive feature of the new design is immersed
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pumps and the considerable reliability growth of the CM owing to reduction of the
number of components and simplification of the cooling system. According to our plans,
the heat exchange section will contain only the heat exchanger. We are working on
experimental research of various pump equipment which can operate in the heat-
exchange agent.

Fig. 3. A prototype of a computational module with a modified immersed cooling system

During modification of the CCB design we have created a prototype of an advanced
board shown in Fig. 4. The CCB contains 8 UltraScale+ FPGAs of high circuit
complexity. To provide placement of a new CCB into a 19” rack possible, it is necessary
to exclude its CCB controller from its structure. The CCB controller was always imple‐
mented as a separate FPGA and provided access to FPGA computational resources of
the CCB, FPGA programming, condition monitoring of the CCB resources.

Fig. 4. The prototype of the CCB modified packing

Even if an FPGA is rather small, its resource grows permanently for each new family.
At the same time, the variety of functions of the CCB controller expands slightly. As a
result, at present, the resource required for implementation of all functions of the CCB
controller is only some percent from the logic capacity of the used FPGAs. In this
connection we assume further implementation of the CCB controller as a separate FPGA
unreasonable. One of FPGAs of the computation field will perform all functions of the
controller.
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So, owing to breakthrough technical solutions which we have got during design of
the RCS “SKAT” with the immersed liquid cooling system, we can develop this direc‐
tion of high-performance RCS design, and after some design improvements we can
create a computer system which provides a new level of computational performance.

5 Conclusion

Use of air cooling systems for the designed supercomputers has practically reached its
limit because of reduction of cooling effectiveness with growing of consumed and dissi‐
pated power, caused by growth of circuit complexity of microprocessors and other chips.
That is why use of liquid cooling in modern computer systems is a priority direction of
cooling systems perfection with wide perspectives of further development. Liquid
cooling of RCS computational modules which contain not less than 8 FPGAs of high
circuit complexity is specific in comparison with cooling of microprocessors and
requires development of a specialized immersion cooling system. The designed original
liquid cooling system for a new generation RCS computational module provides high
maintenance characteristics such as the maximum FPGA temperature not more than
55 °C and the temperature of the heat-transfer agent not more than 30 °C in the operating
mode. Owing to the obtained breakthrough solutions of the immersion liquid cooling
system it is possible to place not less than 12 CMs of the new generation with the total
performance over 1 PFlops within one 47U computer rack. Power reserve of the liquid
cooling system of the new generation CMs provides effective cooling of not only existing
but of the developed promising FPGA families Xilinx UltraScale+ and UltraScale 2.

Since FPGAs, as principal components of reconfigurable supercomputers, provide
stable, practically linear growth of RCS performance, it is possible to get specific
performance of RCS, based on Xilinx Virtex UltraScale FPGAs, similar to the one of
the world best cluster supercomputers, and to find new perspectives of design of super-
high performance supercomputers.
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Abstract. The automation capabilities and flexibility of computing resource
scaling in cloud environments require novel approaches to application design.
The microservice architectural style, which has been actively developing in recent
years, is an approach to design a single application as a suite of small services.
Continuous integration approach demands transition from manual testing
methods to fully automated methods. The mocking is one of the methods to
simplify development and testing of microservice applications. The mock service
can be considered as an extension of mock object concept. It simulates the
behavior of a web service based on a description of its interface. However, devel‐
opers need to spend additional efforts on development and support of these mock
services. We propose a method that would make it easier to generate mocks for
REST services by using RAML specifications of services. Using this approach,
we propose an implementation, which provides mock services generation and
deployment as Docker containers.

Keywords: Microservice · Testing · Docker · REST · RAML · Mocking
container

1 Introduction

The microservice model describes a cloud application as a suite of small independent
services, each running in its container and communicating with other services using
lightweight mechanisms. In [1], the following features of microservices are defined:

– Open Interface – microservice should provide an open description of interfaces and
communication messages format (either API or GUI).

– Specialization – each microservice provides support for an independent part of appli‐
cation’s business logic.

– Containerization – isolation from the execution environment and other microser‐
vices, based on a container virtualization approach. Technologies like OpenVZ,
Docker and Rocket [2] became de-facto standards for implementation of such an
approach.
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– Autonomy – microservices can be developed, tested, deployed, destroyed, moved and
duplicated independently and automatically. Continuous integration is the only
option to deal with such a development and deployment complexity.

The complex structure of microservice applications demands that microservices
should be independently deployable by fully automated machinery. Continuous inte‐
gration approach demands transition from manual testing methods to fully automated
methods. Newman in [3] describes following three levels of testing of microservice
applications:

– Unit tests that typically validate a single function or method call.
– Service tests that are designed to test individual capabilities of isolated services.
– End-to-End tests verify the correctness of an entire system in its integrity.

End-to-End tests cover production codes and provide confidence that the application
will behave correctly in the production environment. On the other hand, the feedback
time of End-to-End Tests is significant. Finally, when such a test fails, it can be hard to
determine which unit has broken.

To simplify and speed up the testing process, the developer must isolate the test of
an individual service from the entire system. On the other hand, service testing will not
be completed without testing its interaction with other services. To simulate the behavior
of the other services in controlled ways developers use the so-called «test doubles»,
namely mocks.

Test Double is a generic term for any case where one replaces a production object
for testing purposes. In [4], the following types of test doubles are defined:

– Dummy objects are objects without implemented functionality.
– Fake objects provide all the functionality needed by the consumer objects, but not

suitable for production implementations because of some limitations in speed or
effectiveness.

– Stubs provide canned answers to the method calls.
– Mocks are pre-programmed objects, which generate answers for method calls, corre‐

sponding with the interface specification.

Mock services can be used in the following cases [5]:

– Development – at the beginning of the development, we define protocols of the
communication between services. Mock services can imitate the behavior of services
that has not been implemented. This approach can provide a solution to such
a «Chicken or the egg» problem when we need to develop a service which is commu‐
nicating with such unimplemented services.

– Testing – mock services allow testing each service individually in isolation from
others. It reduces time and resources required for testing. Additionally, mock services
reduce the test coverage to one specific service. It helps developers to find broken
functionality faster.

REST [6] is one of the most common approaches for microservice interface imple‐
mentation. However, REST does not define a standard way for the interface documen‐
tation. It requires developers to provide additional information about all endpoints and
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call parameters using third party methods. There are two design patterns of REST inter‐
face specifications. Top-down specifications determine the behavior of the REST service
independently of its implementation. On the other hand, bottom-up specifications
describe the interface of the REST service based on its source code, and cannot be created
independently.

We highlight three popular methods for REST interface specifications description [7].

– SWAGGER [8] – is a format and framework for the definition of RESTful APIs. It is
used to generate server-side API code, client code, and API documentation.
SWAGGER is designed as the bottom-up specification.

– RAML (RESTful API Modeling Language) [9] – is a REST-oriented non-proprietary,
vendor-neutral open top-down specification language based on YAML. It focuses on
the description of resources, methods, parameters, responses, media types, and other
HTTP constructs. It has user-friendly syntax and is contributed by many companies,
like Cisco and VMware.

– API Blueprint [10] – is a top-down API specification language for web APIs, based
on the markdown [11] format. It requires third party server codes and specifically
focuses on C++.

The aim of this work is to describe the architecture and implementation of the system,
which would provide generation of mock services based on the RAML specification in
the form of deploy-ready Docker containers.

We choose the RAML language for several reasons:

– this specification format is human-readable because it based on YAML language;
– it has a big community;
– it is a top-down specification so that users can generate mock service before the

development of the real one.

2 Related Work

There are several systems that support the generation of mock services. Some of them
allow automatic mock services generation based on an interface specification, while
others use special types of “request-response” configuration to emulate service behavior.

Mountebank [12] is an open source tool, which provides cross-platform, multi-
protocol test doubles for network services. An application, which is supposed to be
tested, should point to the IP or URL of a Mountebank instance instead of the real
dependency. Mountebank supports HTTP, HTTPS, TCP and SMTP protocols. To define
the behavior of the network service, Mountebank requires a configuration, where all
request and response messages for the services are specified.

SoapUI [13] is an open-source web service testing application for service-oriented
architecture (SOA) and representational state transfer (REST) applications. SoapUI can
generate SOAP mock service based on WSDL specification, while REST mock services
must be configured by Groovy scripts.

API Designer [14] is an application that provides a web-based graphical environment
for design, documentation, and testing of APIs in a web browser. API Designer creates
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REST mock service using RAML specification. However, this service cannot be used
by Continuous Integration systems because the generated mock services disappear when
the user closes the application.

All solutions discussed above do not create deploy-ready mock services. These
applications make REST mock service creation easy, but they do not make this process
fully automated. Our approach generates the REST mock service based just on the
RAML specification file. Furthermore, our approach would support delivery of mock
services as Docker containers.

3 Mock Service Generator Requirements

The mock service generator has one functional and two nonfunctional requirements.
The functional requirement is the ability to generate mock services. Nonfunctional
requirements are the ability to get the file with RAML specification v0.8 as input and
return created microservices as Docker images.

Use case diagram is shown in Fig. 1.

Fig. 1. The mock service generation system Use Case diagram.

Docker [15] is a lightweight mechanism, allowing to run pre-configured system
images. Docker represents an implementation of container technology that is considered
as an alternative to complete virtualization approach, providing a well-defined applica‐
tion execution environment at the operating system level. Instead of starting a complete
operating system on top of a host system or a hypervisor, a container shares the kernel
with the host system, which largely eliminates overheads while maintaining isolation
between applications. Docker container wraps up a service inside isolated filesystem
together with all required system libraries.

The mock service, created by the mock service generator, must satisfy the following
functional requirements:

– process correctly GET, POST, PUT, and DELETE requests and return valid
responses based on RAML specification of the service;
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– return appropriate errors for all incorrect requests.

Furthermore, nonfunctional requirements for created mock services are:

– return responses based on response body examples or response body JSON schema;
– be packed inside a single Docker image.

4 System Architecture

Our system consists of two subsystems – the mock service generator and mock services.
The communications between them are shown in Fig. 2.

Fig. 2. Sequence diagram of mock service generation and usage.

Mock Service Generator processes user commands to generate mock services. The
user can be represented by a continuous integration system that uses the mock service
generator to implement testing procedures. The mock service generator processes the
createMock request with one argument – a link to an RAML file that describes the
interface of the service, endpoints, the format of valid requests, and expected responses
for these requests (see Fig. 3).

The generator validates this file and sends the user an error message if the RAML
file is incorrect. As a result, the mock service generator creates a Docker container that
contains a template of mock service with the received RAML specification file and sends
a link to this file to the user.

Mock Service is a service generated by the mock service generator. All mock services
have the same architecture, and its behavior depends only on the RAML specification
of the service. We define four components in the mock service architecture: Gateway,
Path resolver, Request validator, and Response generator (see Fig. 4).
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Fig. 4. The architecture of the Mock Service.

The Gateway implements the facade pattern and provides a single entry point for all
user requests to the mock service. The Gateway receives HTTP-requests sent by a user

Fig. 3. An example of REST service specification in an RAML format.
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and calls the Path resolver and Request validator to check the correctness of the received
query. Further, if the results of query analysis conducted by these components indicate
that the request corresponds to the RAML specification, the Gateway calls the Response
generator to generate a body of the response. Finally, the Gateway forms the HTTP
response and returns it to the client.

Path resolver. This component validates endpoints of requests based on the RAML-
based specification of the service. The Path resolver determinates the correctness of
requests endpoints.

The Request validator component responds for the validation of parameters of the
request, based on the RAML specification of the service. The component checks the
compliance of the received parameters with the limitations of the RAML specification.
The example of an RAML description of parameters is shown in Fig. 5.

Fig. 5. An example of the RAML definition of parameters of a request.

The Response generator component generates a body of the response for the request.
The RAML language provides two ways to describe the response body. The first way
is to declare an example of valid response in JSON format. The second way is to specify
a JSON Schema [16], a special format that allows defining the structure of JSON docu‐
ments. The body generation component to generate the response body by JSON Schema
if JSON Schema exists. Otherwise, the component returns an example of response
specified in the RAML file.

This component uses Elizabeth library [17] for generation dummy human-readable
data. Users can define “format” parameter for string and use one of following integrated
formats: ipv4/ipv6, email, URI, date, time, name, username, surname, word (Fig. 3).

5 System Implementation

5.1 Mock Service Generator

Mock service generator is a standalone command line application that creates Docker
images of mock services. It consists of Python script that generates containers, and
operates according to the following procedure:

– the user runs the generator with the following parameters: the link to RAML file, and
the name of resulting Docker container;

– mock service generator creates a temporary folder and copies the template mock
services files;
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– generator downloads the RAML specification file by the user’s link, and adds it to
the folder;

– the app generates a Docker file (see Fig. 6);

Fig. 6. The Docker file for mock service.

– the app runs Docker build command that creates the Docker container. This container
includes the Python interpreter, all required libraries and isolates the mock service
from the other system;

– mock service generator returns a link to the container to the user.

5.2 Mock Service

The mock service is a web service based on the Flask framework [18]. The processing
of user requests by the mock service is shown in Fig. 7.

Fig. 7. Mock service user interaction sequence diagram.

The source code of all mock services generated by the generator is identical. The
behavior of mock services depends only on RAML specification file loaded on startup.
The mock service uses ramlification [19] to parse RAML specification into Python
objects. Currently, mock services support RAML v0.8.
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At the startup of the service, the Gateway parses the RAML specification file and
bind all routers to one of four functions that will handle GET, POST, PUT, and DELETE
requests. The part of this code is shown in Fig. 8.

Fig. 8. Initialization of GET request handlers.

The request validator is implemented as a set of separated functions that validate
parameters. The example of a validation function is shown in Fig. 9.

Fig. 9. An example of validation function.

There are five main function implemented in the Gateway component: initialization
function and four functions that handle HTTP requests. The implementation of the GET
function is shown in Fig. 10.

Fig. 10. The implementation of GET requests handler.

To create a body of the response, the response generator parses the JSON Schema
in the RAML file into a tree and performs a direct traversal of all the nodes in the tree,
corresponding to the following procedure.

1. get_node function identifies the type of current node and call the special function
for this JSON type (for instance, it can be a get_array, get_object or
Pget_string function);

2. functions for generation objects and arrays calls get_node functions for the node
children to fill inner data (see Fig. 11);
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Fig. 11. The implementation of the get_array method.

3. the function generates the JSON data with the constraints imposed by the JSON
schema to the current node.

6 Testing

Testing of mock service is conducted using the unit and end-to-end tests. Unit tests are
developed using standard Python unit test framework. 40 Python unit tests have been
developed to check the source code of the project.

To provide integration testing, we developed a series of tests that create a mock
service by the RAML specification, and imitate mock service usage, sending a set of
REST requests, and comparing received responses with expected ones (see Fig. 12). The
example of the request and the response to it is shown in Fig. 13.

Fig. 12. Integration testing sequence diagram.

RAML-Based Mock Service Generator for Microservice Applications Testing 465



Fig. 13. An example of test request and response.

Finally, this system was integrated into continuous integration system of the Naumen
Service Desk project [20]. This project includes about 200 Selenium tests for the
Android application. During the process of testing, the mobile client sends a series of
REST requests to the server. All tests without mock service are completed within 60–
80 min in one node. After integrating the mock service, the time required for testing has
decreased by about 35%.

7 Conclusion

This article presents the design, architecture and implementation of the automatic mock
service generation system. It provides generation of mock services based on the RAML
specification in the form of deploy-ready Docker containers that considered as an alter‐
native to complete virtualization approach providing a lightweight application execution
environment. They share the kernel with the host system, which eliminates overheads
while maintaining isolation between applications. We define four components in the
mock service architecture: Gateway, Path resolver, Request validator, and Response
generator. We describe the mock service generator algorithm. The developed system is
tested with the unit and end-to-end tests. Services are verified for correct functioning in
a real project. The source code of our application is available on our GitHub page [21].
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Abstract. The Multiscale Modelling and Simulation approach is a pow-
erful methodological way to identify sub-models and classify their inter-
action. The execution order and interaction of computational modules
are described in the form of workflow. This workflow can be executed
as a single HPC cluster job if there is a middleware which schedule
modules execution on allocated resources. We present an architecture of
such middleware called Wrapper which provides internal module execu-
tion scheduling, interconnection functionality, module migration between
allocated resources and storing intermediate state of computations. This
middleware is compatible with CLAVIRE (CLoud Applications VIRtual
Environment) platform and acts as its execution mechanism.

Keywords: Supercomputing technologies · Parallel computing middle-
ware · High-performance computing · Multiscale modelling · CLAVIRE

1 Introduction

By the moment a great number of high-performance purpose-oriented software
has been developed to solve problems in different application fields. Most com-
putational modules are developed by applied specialists using various numerical
models, programming languages and parallel programming technologies. In most
cases only source code and binaries are available. Joint usage of such modules
requires integration of data formats, used technologies and platforms. First of all
it is necessary to determine principles of combined use of different models imple-
mented in such modules. However, the employment of such modules is rather
difficult even in cases when interaction with the code developer is possible.

One of the approaches progressing in the field of composite applications
description is Multiscale Modelling [1,2], presenting templates to combine com-
putational modules. Multiscale Modelling offers several standard methods apply-
ing some models of different time and spatial scales: Extreme Scale Computing
c© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 468–481, 2017.
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(ES), Hierarchical Multiscale Method of Computing (HMM), Replica Comput-
ing (RC) [3]. It defines the way to identify sub-models, classify the sub-model
interactions as full or partial overlap of scales and specify the relation between
the sub-models that could be represented as a task graph or workflow.

The development of the first multiscale modeling environments is carried
out in specific applied fields. Among such environments, one can single out the
Computational Materials Design Facility (CMDF) [4] that allows multi-scale
multi-paradigm simulations of complex materials phenomena. This framework
is based on a generic scripting environment, with the objective to enable sim-
ple setup of complex multi-scale simulation tasks. Interfaces between different
modules, along with a central data structure allow straightforward communica-
tion between different simulation engines. CMDF uses the Python programming
language to control the computational flow between disparate processing cores
written in compiled languages (C/C++/Fortran) that carry out physicochemical
calculations for multiscale/multiparadigm under a unified data model.

Morpheus [5] is another example of multiscale modeling environment. It
allows the simulation and integration of cell-based models with ordinary dif-
ferential equations and reaction-diffusion systems. It allows rapid development
of multiscale models in biological terms and mathematical expressions rather
than programming code. Morpheus separates modeling from numerical imple-
mentation by using a declarative domain-specific markup language.

Also, note Multiphysics Software Environment (MUSE) [6] for multiscale
modeling in astrophysics. MUSE facilitates the coupling of existing codes written
in different languages by providing inter-language tools and by specifying an
interface between each module and the framework that represents a balance
between generality and computational efficiency. MUSE has layered architecture.
The top layer (flow control) is connected to the middle (interface layer) which
controls the command structure for the individual applications. These parts and
the underlying interfaces are written in Python, whereas the applications can
be written in any language. The only constraint that code must meet to be
wrapped as a module is that it is written in a programming language with a
foreign function (C/C++, Fortran, C#, Java, Haskel etc.).

Later, ideas are formulated about the need to develop a universal environment
that provides the possibility of carrying out a multiscale experiment, regard-
less of the specifics of the applied field. In this connection, the concept of a
multiscale model is formalized and their classification is introduced [7]. Based
on this classification the Multiscale Coupling Library and Environment (MUS-
CLE) [7] and its improved version MUSCLE 2 [8] are implemented. MUSCLE 2
is a component-based modeling tool inspired by the multiscale modeling and
simulation framework, with an easy-to-use API which supports Java, C++, C,
and Fortran. It assumes that a multiscale model is split into multiple coupled sin-
gle scale submodels [7]. As a result, each submodel has inputs and outputs that
can be coupled in a general way. Within one simulation, one submodel could for
instance use hundreds of cores on a supercomputer, whereas another may have
to make use of GPU-computing, and yet another needs high I/O performance.
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Each submodel is managed by its own instance controller. The controller is an
intermediary for any messages that a submodel sends or receives [8].

The proposed environment Wrapper is based on the same theoretical foun-
dations of multiscale modeling as MUSCLE 2 [8]. In contrast to MUSCLE 2 we
attempt to organize centralized submodels scheduling in accordance with sta-
tistics on its resource usage. To utilize computational resources efficiently one
need to analyze parameters and statistical data related to utilization of hardware
resources, execution of individual computational modules and composite appli-
cation taken as a whole. In case of specific modules the relatively simple algo-
rithms can be used [9,10], but provided huge computational facilities are imple-
mented and complex applications are executed we shall use the more compre-
hensive approaches, such as Knowledge-Based Resource Management [11]. The
middleware which we develop, is oriented to coupling with CLAVIRE (CLoud
Applications VIRtual Environment) [12] which allows building composite appli-
cations using domain specific software available within distributed environment.
CLAVIRE builds the workflow, reserve resources of high-performance computing
system and launches Wrapper middleware in allocated resources.

2 Purpose of Wrapper Middleware

Wrapper middleware is a MPI program. Wrapper is launched in computational
cluster by CLAVIRE scheduler, assumed as being executed in the node external
towards the computational cluster. CLAVIRE scheduler ensures the delivery
of input data to the cluster, the analysis of cluster resources and features of
workflow to be executed, job formation for the cluster management system,
launching Wrapper, as well as download the output data from the cluster.

Wrapper provides the following functionality.

– Collecting information about allocated resources of computational cluster.
– Dynamically assigning of computational modules to cluster nodes (with pos-

sibility of migration).
– Launching workflow execution.
– Data transmission between computational modules.
– Completing the workflow execution and release of computational cluster

resources.

Wrapper architecture makes possible to schedule the execution of compu-
tational modules within the allocated resources, however the scheduler is not
its subsystem. Scheduling algorithm implements by default static allocation of
computational modules on cluster nodes, but we are going to provide integration
with adapted version of CLAVIRE scheduler.

Figure 1 illustrates the structural diagram of subsystems interacting with
Wrapper middleware.
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Fig. 1. Interacting subsystems: structural diagram

3 The Workflow Model

3.1 Introduction to the Workflow Model

Wrapper is oriented to use execution patterns presented as a workflow. The
workflow contains information about composition of computational modules,
possible sets of input as well as output data. The input data of computational
module can be built based on output data of other modules or received from the
scheduler (such option is required to launch the workflow execution). Figure 2
shows the example of workflow, consisting of the scheduler (S), 3 computational
modules (CM-1, CM-2, CM-3) and description of relations between them. In this
example the computational module can be executed if all input data has been
received.

Fig. 2. Workflow: example. “S” is a scheduler. “CM-1”, “CM-2”, “CM-3” are computa-
tional modules. “F” and “In-1, In-2, In-3” are the sets of inputs of the module “CM-1”;
“Out-1, Out-2, Out-3” is a set of outputs of the module “CM-1”. “Size, Data” is a set
of inputs of the “CM-2”; “Data” is a set of outputs of the “CM-2”. “BigInputArray”
is a set of inputs of the “CM-3”; “Arr1, Arr2” is a set of outputs of the “CM-3”
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3.2 Concept “Set of Inputs/Outputs”

“The set of inputs” is a set of input data of computational module (hereafter –
CM), sufficient to launch the module execution. Each CM input can be included
only into one set. The description of all possible sets of inputs for each CM is
represented in the workflow. On each cluster node Wrapper collects input data
for computational module assigned to this node; once any full set of inputs is
collected it is transmitted to computational module (or CM is launched with the
prepared set).

“The set of inputs/outputs” is required to ensure the integrity of CM input
data structure as well as to support the concept of “launching output” (see
below). Here we shall point out that empty output and absence of output
are completely different situations because an empty output can be used (and
required) to form the set of inputs for another module.

The sets of inputs make it possible, using workflow, to describe the Mul-
tiscale Modelling templates including a number of integrated models (in time
and space); for example templates shown in Figs. 3 and 4 can be presented as
workflows on that figures.

Fig. 3. The Multiscale Modelling with 2 models and integration in space: calculation
scheme and workflow. “CM Model 1”, “CM Model 2” are computational modules
implementing “Model 1” and “Model 2” respectively. “F” and “Out-1, Out-2” are sets
of inputs and outputs of the Initialization module. “Start” and “CurrentIn” are sets
of inputs, “Final” and “CurrentOut” are sets of outputs of “CM Model 1” and “CM
Model 2”. “In-1, In-2” is a set of inputs of the “Results aggregation” module

In both cases the execution starts after the scheduler sends the set of data
including one “S” output to the input of initialization module “F”. For this
module one set of inputs is assigned containing only “F” input; that is why once
this input received the execution of the initialization module will start and the
outputs will be formed sufficient to launch CM models (two in the first case
and one in the second case). For example in the first case two outputs will be
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Fig. 4. The Multiscale Modelling with 2 models and integration in time: calculation
scheme and workflow. “CM Model 1”, “CM Model 2” are computational modules
implementing “Model 1” and “Model 2” respectively. “F” and “Start-Out” are sets of
inputs and outputs of the “Initialization” module. “Start” and “CurrentIn” are sets of
inputs, “Final” and “CurrentOut” are sets of outputs of “CM Model 1”. “CurrentIn”
and “CurrentOut” are sets of input and outputs of “CM Model 2”. “Final-In” is a set
of inputs of the “Results aggregation” module

formed launching CMs for models 1 and 2. Thereafter CM for models 1 and 2
will be executed in a parallel way, in each iteration sending each other input sets
sufficient for their next iteration. After the modeling is completed CMs form
resulting data and transmit them to the module of result aggregation, which
performs the final processing and completes the workflow execution.

Thus, workflow with sets of inputs can be implemented to organize the Mul-
tiscale computations based on Extreme Scale Computing (ES).

3.3 Workflow Modification. The “Module Instance” Concept

Usage of Multiscale computation template Hierarchical Multiscale Computing
(HMM) implies the execution of many launches for CM model of less scale in
one computation step of the model of larger scale. The number of launches for
CM model of less scale can be unknown in advance and vary from iteration to
iteration; and for efficient computations its necessary to parallel launch several
copies of less-scaled CM model on different cluster nodes.

To support the HMM pattern the concepts “launching set of outputs”, “mod-
ule instance”, “aggregating set of inputs” shall be introduced into workflow.

– “Module instance” is a computational module launched for processing one or
several sets of inputs. Each module is identified by the pair (module identifier,
instance identifier). Wrapper uses these pairs as CM addresses.

– “Launching set of outputs” (LSO) means that one or several module instances
which receive the input from this set can be launched. The number of
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instances is determined by the Wrapper scheduler which, at the moment of
transmission of regular output set, determines if the outputs included into the
set will be sent to the already launched CM instances or additional instances
will be launched and the data shall be sent to them. A unique identifier is
assigned to each LSO and it will be inherited by the output data of following
modules. LSO are sent in blocks of arbitrary size, thereby simultaneous send-
ing is not compulsory. As soon as the numbers of the first and last LSO in the
block are known they are sent to the corresponding modules with aggregating
set of input data.

– “Aggregating set of inputs” is used to collect several outputs of several
instances of one CM into one input of other CM. In the workflow “Aggregat-
ing set of inputs” is obviously linked with “Launching set of outputs” which
generates the parallel processing followed by aggregation. CM with “Launch-
ing set of outputs” for each block of outputs sent for processing shall obviously
transmit numbers of the first and the last sets (corresponding outputs and
inputs are automatically created in the sets of inputs/outputs) to all mod-
ules with aggregating input. The block of sets of inputs is transmitted to the
module only after receiving all sets according to the first and last numbers.

Figure 5 shows the workflow example using HMM template.

Fig. 5. Workflow for the Multiscale Modelling using Hierarchical Multiscale Computing
(HMM). “CM Model 1 (CM-1)”, “CM Model 2 (CM-2)” are computational modules.
“F” and “Start-Out” are sets of inputs and outputs of the “Initialization” module.
“Start” and “*In(CM-1, Out)” are sets of inputs of the “CM-1”. “Final” and “*Out”
are sets of outputs of “CM-1”. “MicroIn” and “MicroOut” are a sets of inputs and
outputs of the “CM-2”. “Final-In” is a set of inputs of “Finalization” module

“CM Model 1” has one launching set of outputs which includes “*Out” out-
put. Correspondingly, the arbitrary number of instances of “CM Model 2” can
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be launched. “CM Model 1” has also one aggregating set of inputs “*In(CM-
1,Out)”, where input data “In” are aggregated according to the blocks of outputs
generated by the “Out” output of the same “CM Model 1”.

4 Wrapper Architecture

First of all lets introduce the interconnection diagram of CM (Fig. 6).

Fig. 6. Wrapper and CMs interconnection diagram. Wrapper middleware is a MPI pro-
gram. Built-in scheduler is integrated into the Process with Rank 0. Another processes
provide launching of computational modules and their communication

Adaptation of computational modules to execution with Wrapper can be
performed by the following methods.

1. Integration between computational module and Wrapper at source code level:
CM compiled and linked with a set of Wrapper functions providing the trans-
mission of commands and data using mechanism of unnamed pipes (inte-
grated or built-in Wrapper proxy). The computational module is launched
one-time when the workflow execution starts, thereafter it is executed con-
stantly, receiving and transmitting messages through the unnamed pipes.

2. The computational module is developed using the set of Wrapper functions
which provide reading and parsing of input data and building the set of output
data. The computational module is launched every time when Wrapper builds
the full set of its input data (external Wrapper proxy). While launching the
module 3 parameters are transmitted to it via environment variables: input
file name, output file name, file name of the module state (the last parameter
is used if the module shall save some data between iterations).
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3. The computational module is compiled and operates independently receiving
and transmitting input/output data using the standard input/output (exter-
nal Wrapper proxy). The computational module is also launched one-time
when the workflow execution starts and executed constantly, receiving and
transmitting messages through the redirected standard input/output.

In the first mode Wrapper proxy requires to know the command lines in order
to launch and stop the computational module. The computational module uses
a provided specific interface for reading the input data and saving the output
data.

The second mode is available only for computational modules in C and C++
programming languages. To integrate proxy into the computational module the
following shall be done:

– design the computational module in a specific way;
– include the Wrapper proxy header files into CM source code;
– create a proxy object in the computational module;
– define the computation function to callback from proxy;
– launch proxy from the computational module.

The Wrapper structural diagram is shown in Fig. 7.

Fig. 7. The Wrapper middleware structure

Process contains components executed in MPI-process, Proxy contains com-
ponents executed in the built-in Proxy. Structural components has the following
purpose.
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– ProcessQueue, ProxyQueue are message queues through which the interaction
of other components is performed.

– InterprocessCommunicator provides the data transmissions between Wrapper
processes using MPI technology.

– ProcessCollector, ProxyCollector receive input data for the computational
modules and form the sets of inputs, distribute the sets of outputs and send
them to the receivers. Besides collectors receive information about module
migration. If collector does not prepare full set of inputs for module execution
then it transfers current set of inputs back to the message queue. After that,
InterprocessCommunicator sends data to the target computational module
which was migrated.

– ProcessMessageSender, ProcessMessageReceiver, ProxyMessageSender,
ProxyMessageReceiver provide data transmission between Wrapper and the
computational modules with integrated Proxy.

– Launcher implements the launching of the computational modules.
– ProcessController, ProxyController manages allocation/release of other com-

ponents.

5 The Results of Experiments

5.1 Computational Infrastructure

We used UNN Lobachevsky supercomputer. Nodes of the Linux segment we used
have 2x Intel Sandy Bridge E5-2660 2.2 GHz processors (8 cores), 64 GB RAM,
QDR InfiniBand network. We employed the Intel MPI and Intel C++ Compiler
from the Intel Parallel Studio XE Cluster Edition 2017.

5.2 The Test Workflow

To perform the tests the following computational diagram has been used (see
Fig. 8, hereafter “test workflow”).

Fig. 8. The test computational diagram

Modules 0–4 do not perform any computations, they only receive the input
data and send the output data. Module 0 sends the data block of the fixed size to
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Module 1, Module 1 sends the copies of this block to Modules 2 and 3, Modules
2 and 3 send an empty message to Module 0.

5.3 Results

The performance of the test workflow has been estimated in terms of data trans-
fer rate for two mechanism of data transmission to computational modules:

– using of external wrapper proxy and data transmission through the file;
– using proxy, integrated with the computational module.

During tests several iterations of workflow has been performed and average
time for one iteration has been calculated. Data blocks from 10 bytes to 1 billion
bytes has been used. Table 1 and Fig. 9 show the average execution time values
for one iteration using data transmission through the file.

Table 1. Test workflow iteration times for external Wrapper proxy

# Block size (B) Average iteration time (s)

1 10 0.13

2 100 0.14

3 1 000 0.13

4 10 000 0.16

5 100 000 0.14

6 1 000 000 0.29

7 10 000 000 0.76

8 100 000 000 17.98

9 1 000 000 000 196.02

Test results show that the overhead for single iteration is approximately
constant and makes up about 0.15 s. The transfer time starts to have a value
only when the block size exceeds 1MB.

Table 2 and Fig. 10 show the average execution time values for one iteration
using built-in Wrapper proxy and data transmission via unnamed pipes.

The overhead for one iteration is again constant and makes up about 0.05 s.
Switching from using an external proxy to a built-in one reduces the transfer time
of 1 GB data block from 196 s to 62 s. In general, the results of the experiment
show the advantage of using the built-in proxy, and acceptable performance.

6 Application of Wrapper Middleware for “Restenosis”
Modeling

Within our study we have adopted “Restenosis” application (computation of
barrier reconstruction in blood vessels) in order to use the Wrapper middleware.
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Fig. 9. The test workflow iteration times for external Wrapper proxy

Table 2. Test workflow iteration times for built-in Wrapper proxy

# Block size (B) Average iteration time (s)

1 10 0.054

2 100 0.053

3 1 000 0.05

4 10 000 0.06

5 100 000 0.05

6 1 000 000 0.06

7 10 000 000 0.12

8 100 000 000 6.39

9 1 000 000 000 61.92

Fig. 10. The test workflow iteration times for built-in Wrapper proxy
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Original version uses 8 computational modules and MUSCLE library, provid-
ing modules launch and data exchange between them. Adaptation includes the
following stages to do.

1. Analyze launching methods of the computational modules.
2. Analyze data transmission workflow between the modules.
3. Analyze principles and mechanisms for implementation of interactions

between modules using the MUSCLE library interface.
4. Develop “Restenosis” source code modifications which enable collecting and

saving the sets of inputs and outputs. Make test launches and save the data
sets (for further testing of adapted version).

5. Develop the set of Wrapper functions which implement reading and parsing of
inputs as well as building sets of Wrapper outputs in programming languages
used in the computational modules of “Restenosis” application (C, C++,
Java).

6. Exclude the MUSCLE library from source code of the computational modules.
Add Wrapper code.

7. Test the adapted computational modules.
8. Launch the adapted version of “Restenosis” using Wrapper middleware.

The adapted version of “Restenosis” on the test problem generates output
that coincides with the original version, and shows comparable performance.

7 Conclusion

The paper describes extensions to the workflow model which enables the exe-
cution of composite tasks based on the Multiscale Modelling templates. The
developed architecture of Wrapper middleware provides combined usage of the
computational modules developed with different programming languages and
technologies. Migration of the computational modules between cluster nodes
becomes possible as well. Performance tests show acceptable results. The use of
Wrapper in the modeling of “Restenosis” shows the possibility of using it for
solving applied problems. The authors continue to develop and plan further use
of Wrapper middleware.
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Abstract. In this work, a job-flow scheduling approach for grid virtual orga-
nizations (VOs) is proposed and studied. Users’ and resource providers’ pref-
erences, VOs internal policies, resources geographical distribution along with
local private utilization impose specific requirements for efficient scheduling
according to different, usually contradictive, criteria. With increasing level of
resources utilization, the set of available resources and corresponding decision
space are reduced. This further complicates the problem of efficient scheduling.
In order to improve overall scheduling efficiency, we propose an anticipation
scheduling approach based on a cyclic scheduling scheme. It generates a near
optimal but infeasible scheduling solution and includes a special replication
procedure for efficient and feasible resources allocation. Anticipation scheduling
is compared with the general cycle scheduling scheme and conservative back-
filling using such criteria as average jobs’ start and finish times as well as users’
and VO economic criteria: total execution time and cost.

Keywords: Scheduling � Grid � Resources � Utilization � Heuristic � Job
batch � Virtual organization � Cycle scheduling scheme � Anticipation �
Replication

1 Introduction and Related Works

In grids with non-dedicated resources the computational nodes are usually partly uti-
lized by local high-priority jobs coming from resource owners. Thus, the resources
available for use are represented with a set time intervals (slots) during which the
individual computational nodes are capable to execute parts of independent users’
parallel jobs. These slots generally have different start and finish times and a perfor-
mance difference. The presence of a set of slots impedes the problem of resources
allocation necessary to execute the job flow from VOs users. Resource fragmentation
also results in a decrease of the total level of computing environment utilization [1, 2].

Application-level scheduling [3], as a rule, does not imply any global resource
sharing or allocation policy. Applications try to control grid resources independently.
Job flow scheduling in VOs [4, 5] supposes uniform rules of resource sharing and
consumption, in particular based on economic models [2, 4–6]. Usually there are three
parties in these models: users, resource owners, and VO administrators. General
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interaction and resources or services provisioning between these parties is performed
by means of a certain currency. VO scheduling policy may offer optimization rules to
satisfy both users’ and VO common preferences (owners’ and administrators’ com-
bined). The VO scheduling problems may be formulated as follows: to optimize users’
criteria or utility function for selected jobs [6, 7], to keep resource overall load balance
[8, 9], to have job run in strict order or maintain job priorities [10], to optimize overall
scheduling performance by some custom criteria [11, 12], etc.

Users’ preferences and VO common preferences may conflict with each other.
Users are likely to be interested in the fastest possible running time for their jobs with
least possible costs whereas VO preferences are usually directed to balancing of
available resources load or node owners’ profit boosting. In fact, an economical model
of resource distribution per se reduces tendencies to cooperate [13]. Thus, VO eco-
nomic policies in general should respect all members to function properly and the most
important aspect of rules suggested by VO is their fairness. A number of works
understand fairness as it is defined in the theory of cooperative games [7], such as fair
job flow distribution [9], fair quotas [14, 15], fair user jobs prioritization [10], and
non-monetary distribution [16]. In many studies VO stakeholders’ preferences are
usually ensured only partially: either owners are competing for jobs optimizing only
users’ criteria [6, 17], or the main purpose is the efficient resources utilization not
considering users’ preferences [18].

The goal of the current study is to design a general job-flow scheduling approach
which will be able to find a tradeoff between VO stakeholders’ contradictory prefer-
ences based on the cyclic scheduling scheme (CSS). CSS [19, 20] has fair resource
share in a sense that every VO stakeholder has mechanisms to influence scheduling
results providing own preferences. Thus, we elaborate a problem of parallel jobs
scheduling in heterogeneous computing environment with non-dedicated resources
considering users’ individual preferences and goals.

The downside of a majority of centralized metascheduling approaches is that they
lose their efficiency and optimization features in distributed environments with a sig-
nificant workload. In such conditions of a limited resources supply overall job-flow
execution makespan and individual jobs’ finish time minimization become essential
scheduling criteria. For example in [2], a traditional backfilling algorithm provided
better scheduling outcome when compared to different optimization approaches in
resource domain with a minimal performance configuration.

Main contribution of this paper is a CSS-based heuristic anticipation approach
which retains scheduling efficiency and at the same time minimizes job-flow processing
time. Initially this heuristic generates a near optimal but infeasible (anticipated)
schedule. A special replication procedure is proposed and studied to ensure and pro-
vide a feasible scheduling solution.

The rest of the paper is organized as follows. Section 2 presents a general CSS fair
scheduling concept. The proposed heuristic-based scheduling technique is presented in
Sect. 3. Section 4 contains experiment setup and results for the proposed scheduling
approach and its comparison with backfilling. Finally, Sect. 5 summarizes the paper.
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2 Cyclic Alternative-Based Scheduling

Scheduling of a job flow using CSS is performed in time cycles known as scheduling
intervals, by job batches [19, 20]. The actual scheduling procedure consists of two main
steps. The first step involves a search for alternative scenarios of each job execution, or
simply alternatives [21]. During the second step the dynamic programming methods
[19, 20] are used to choose an optimal alternatives’ combination. One alternative is
selected for each job with respect to the given VO and user criteria. An example for a
user scheduling criterion may be a job runtime, finish time, an overall running cost, etc.
This criterion describes user’s preferences for that specific job execution and expresses
a type of an additional optimization to perform when searching for alternatives.
Alongside with time (T) and cost (C) properties each job execution alternative has a
user utility (U) value: user evaluation against the scheduling criterion. A common VO
optimization problem may be stated as either minimization or maximization of one of
the properties, having other fixed or limited, or involve Pareto-optimal strategy search
involving both kinds of properties [3, 20, 22].

We consider the following relative approach to represent the user utility U. A job
alternative with the minimum (best) user-defined criterion value Zmin corresponds to
the left interval boundary (U ¼ 0%) of all possible job scheduling outcomes. An
alternative with the worst possible criterion value Zmax corresponds to the right interval
boundary (U ¼ 100%). In the general case, for each alternative with value Z; U is set
depending on its position in Zmin; Zmax½ � interval as follows: U ¼ Z � Zmin

Zmax � Zmin
� 100%.

Thus, each alternative gets its utility in relation to the “best” and the “worst” opti-
mization criterion values user could expect according to the job’s priority. The more
some alternative corresponds to user’s preferences the smaller is the U value.

For a fair scheduling model the second step of the VO optimization problem could
be in form of: C ! max, lim U (maximize total job flow execution cost, while
respecting user’s preferences to some extent: U�Umax); U ! min, lim T (meet user’s
best interests, while ensuring some acceptable job flow execution time: T � Tmax) and
so on [19].

The launch of any job requires a co-allocation of a specified number of slots, as
well as in the classic backfilling variation. A single slot is a time span that can be
assigned to run a part of a parallel job. The target is to scan a list of available slots and
to select a window of parallel slots with a “length” of the required resource reservation
time. The user job requirements are arranged into a resource request containing a
resource reservation time, characteristics of computational nodes (clock speed, RAM
volume, disk space, operating system etc.), limitation on the selected window maxi-
mum cost.

ALP, AMP and AEP window search algorithms were discussed in [21]. The job
batch scheduling performs consecutive allocation of a multiple nonintersecting in terms
of slots alternatives for each job. Otherwise irresolvable collisions for resources may
occur if different jobs will share the same time-slots. Sequential alternatives search and
resources reservation procedures help to prevent such scenario. However in an extreme
case when resources are limited or over utilized only at most one alternative execution
could be reserved for each job. In this case alternatives-based scheduling result will be
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no different from First Fit resources allocation procedure [2]. First Fit resource selec-
tion algorithms [23] assign any job to the first set of slots matching the resource request
conditions without any optimization.

3 Cyclic Anticipation Scheduling

In order to address the scheduling optimization problem the following anticipation
heuristic for job batch scheduling is proposed. It consists of three main steps.

First, a set of all possible execution alternatives is found for each job not consid-
ering time slots intersections and without any resources reservation. The resulting
intersecting alternatives found for each job reflect a full range of different job execution
possibilities which user may expect on the current scheduling interval.

Second, CSS procedure [19, 20] is performed to select alternatives combination
(one alternative for each job of the batch) optimal according to VO policy. The
resulting alternatives combination most likely corresponds to an infeasible scheduling
solution as possible time slots intersection will cause collisions on resources allocation
stage. The main idea of this step is that obtained infeasible and anticipated solution will
provide some heuristic insights on how each job should be handled during the
scheduling. For example, if time-biased or cost-biased execution is preferred, how it
should correspond to user criterion and VO administration policy and so on.

Third, a feasible resources allocation is performed. The resulting solution is both
feasible and efficient as it reflects scheduling pattern obtained from a near-optimal
reference solution – a replication step. The base for this replication is an Algorithm
searching for Extreme Performance (AEP) described in details in [21]. AEP helps to
find and reserve feasible execution alternatives most similar to those selected in the
near-optimal infeasible solution.

We used AEP modification to allocate a diverse set of execution alternatives for
each job. Originally AEP scans through a whole list of available time slots and retrieves
one alternative execution satisfying user resource request and optimal according to the
user custom criterion. During this scan, we saved all intermediate AEP search results to
a dedicated list of possible alternatives.

For the replication purpose a new Execution Similarity criterion was introduced
which helps AEP to find a window with a minimum distance to a reference alternative.
Generally, we define a distance between two different alternatives (windows) as a
relative difference or error between their significant criteria values. For example if
reference alternative has Cref total cost, and some candidate alternative cost is Ccan, then

the relative cost error EC is calculated as EC ¼ Cref � Ccanj j
Cref

. If one needs to consider
several criteria the distance D between two alternatives may be calculated as a linear
sum of criteria errors: Dl ¼ EC þ ET þ :: þ EU , or as a geometric distance in a
parameters space: Dg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
C þ E2

T þ :: E2
U

p
.
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AEP modification with the Execution Similarity criterion is represented below.

In this algorithm an expanded window windowSlotList moves through a whole list
of all available slots slotList sorted by their start time in ascending order. At each step
any combination of job.nodesNeed slots inside windowSlotList can form a window that
meets all the requirements to run the job. The main difference from the original AEP is
that instead of searching for a window with a maximum single criterion value, we
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retrieve window with a minimum distance Dg or Dl to a reference execution alternative.
Generally, this distance can reflect job execution preferences in terms of multiple
criteria such as job execution cost, runtime, start time, finish time, etc.

4 Simulation Study

An experiment was prepared as follows using a custom distributed environment sim-
ulator [2, 19–21]. For our purpose, it implements a heterogeneous resource domain
model: nodes have different usage costs and performance levels. A space-shared
resources allocation policy simulates a local queuing system (like in GridSim or
CloudSim [24]) and, thus, each node can process only one task at any given simulation
time. The execution cost of each task depends on its execution time which is pro-
portional to the dedicated node’s performance level. The execution of a single job
requires parallel execution of all its tasks.

The simulation environment was configured with the following features. The
resource pool includes 80 heterogeneous computational nodes grouped in a single
resource domain. A specific cost of a node is an exponential function of its performance
value (base cost) with an added variable margin distributed normally as ±0.6 of a base
cost. The scheduling interval length is 800 time quanta. The initial resource load with
owner jobs is distributed hyper-geometrically resulting in 5% to 10% time quanta
excluded in total.

Jobs number in a batch is 75. Nodes quantity needed for a job is a whole number
distributed evenly on [2; 6]. Node reservation time is a whole number distributed
evenly on [100; 500]. Job budget varies in the way that some of jobs can pay as much
as 160% of base cost whereas some may require a discount. Every request contains a
specification of a custom user criterion which is one of the following: job execution
runtime or overall execution cost.

4.1 Replication Scheduling Accuracy

The first experiment is dedicated to a replication scheduling accuracy study. For this
matter we conducted and collected data from more than 1000 independent job batch
scheduling simulations. First, the general CSS was performed in each experiment for the
following job-flow execution cost maximization problem C ! max, lim Ua ¼ 10%. Ua

stands for the average user utility for one job, i.e. lim Ua ¼ 10% means that at average
resulting deviation from the best possible outcome for each user did not exceed 10%.
Next, linear and geometric replication algorithms were executed to replicate CSS
solution using linear Dl and geometric Dg distance criteria. In the current experiment we
used job execution cost error and processor time usage error to calculate distances.

In order to evaluate the resulting difference in scheduling outcomes, we additionally
performed CSS algorithm ensuring users’ individual preferences only (lim Ua ¼ 0%)
and ensuringVOpreferencebymaximizingoverall costwithout taking into account users’
criteria (lim Ua ¼ 100%). These additional problems reflect extreme boundaries for
scheduling results, which can be used to evaluate a relative replication error. Table 1
contains scheduling results for all these three problems and two replication algorithms.
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The results indicate that both linear and geometric replication algorithms provided
average scheduling parameters very close to the reference solution (indicated as bold in
Table 1), and especially close against job execution cost and processor time usage, i.e.
characteristics which were used for a replication distance calculation. For example,
borderline problems provided average job execution cost (main job-flow optimization
criterion) values 1283 and 1475 correspondingly. Reference intermediate solution
provided 1349. And both replication algorithms ensured average job execution cost
1353 with only 2% deviation from reference solution against [1283; 1475] interval of
possible scheduling outcomes. Although replication algorithms showed their efficiency
with respect to integral job flow processing parameters (such as average job execution
cost, runtime, finish time), individual user’s preferences were considered to a lesser
extent. It can be observed in the Table 1 that both replication algorithms provided
average user utility Ua almost twice as much as the reference problem.

4.2 Anticipation and Backfilling Scheduling Comparison

The second experiment setup reiterates work [2] and is intended to compare antici-
pation scheduling procedure with a traditional backfilling algorithm. Backfilling is able
to minimize the whole job-flow execution makespan as well as to generally follow the
initial jobs relative queue order. These features make backfilling scheduling solution a
good reference target for the anticipation scheduling scheme. The main criteria for
comparison include average jobs’ start and finish times as well as users’ and VO
economic criteria (such as execution time and cost). We used the following three
algorithms for the comparison:

• CSS – the original cycle scheduling scheme;
• ANT – the anticipation scheduling procedure;
• BF – the conservative backfilling algorithm.

In a single experiment CSS and ANT solved C ! max, lim Ua ¼ 10% problem.
Execution cost (C ! min) and processor time (T ! min) criteria were uniformly
distributed between 75 user jobs generated in each experiment.

Table 1. CSS replication average scheduling results

Job
execution
characteristic

C -> max,
lim
Ua ¼ 0%

C -> max,
lim
Ua ¼ 10%

Linear
replication

Geometric
replication

C -> max,
lim
Ua ¼ 100%

Cost 1283 1349 1353 1353 1475
Processor
time

191.6 191.2 190.6 190.5 202.3

Finish time 367.1 353.8 356.2 356.4 358.5
Ua, % 0 9.9 17.6 17.8 65
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Important addition was introduced for ANT scheduling. In contrast with experi-
ment series in Subsect. 4.1, job replication geometric distance Dg was calculated as

Dg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
C þE2

T þE2
S

p
, where additional element Es stands for job start time error. As a

reference start time value for each job we used start time obtained for a particular job
by a prior backfilling scheduling. Thus, when searching for a job execution window we
used infeasible solution for time and cost reference values, and a feasible backfilling
solution as a reference for an attainable start time values complying with a queue
priority.

To observe the behavior of the main scheduling parameters we conducted exper-
iments with a different number N of computing nodes available during the scheduling:
N 2 20; 25; 30; 40f g.

Average job’s start and finish times are presented in Figs. 1 and 2.

As can be seen in Figs. 1 and 2, backfilling provided better start and finish times for
a job-flow execution compared to CSS and this result is consistent with [2]. In the
current problem setup backfilling was able to finish the job flow execution almost twice
earlier then CSS. It can be explained by C ! max, lim U scheduling problem which
required CSS to allocate resources for job-flow execution cost maximization consid-
ering contradictory user preferences, not minimizing jobs’ completion times.

At the same time anticipation algorithm during each experiment solved the same
C ! max, lim U problem and provided jobs’ start and finish times only 10% behind
the backfilling scheduling outcome.

The details of anticipation scheduling can be examined in Figs. 3 and 4.
Figure 3 shows average job execution time provided by backfilling and anticipation

algorithm. Additionally ANT T and ANT C represent average execution times obtained
by anticipation scheduling for jobs with time minimization and cost minimization
criteria correspondingly. As it can be observed, ANT and BF generally provided
comparable execution times, which is not a direct optimization criterion for either of

Fig. 1. Average jobs’ start time in C ! max, lim U problem
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them. At the same time ANT applied completely different scheduling policies for jobs
with different private scheduling criteria. So that ANT T jobs used 25%–33% less
processor time then ANT C jobs and 15% less compared to BF solution.

A similar pattern can be observed in Fig. 4, where average jobs’ execution cost is
presented. ANT and BF provided comparable general job-flow execution cost value.
However ANT was able to consider user preferences and shared resources so that
ANT C jobs execution cost was 10–15% less then ANT T jobs and 6–9% less com-
pared to backfilling.

Summarizing the results, ANT is able to provide a general scheduling outcome
similar to backfilling (with at most 10% error on job’s start and finish times), and at the

Fig. 2. Average jobs’ finish time in C ! max, lim U problem

Fig. 3. Average jobs’ execution time in C ! max, lim U problem
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same time considers users’ and VO preferences by efficiently solving C ! max, lim U
problem. Thereby the available resources are distributed between user jobs according to
the predefined scheduling requirements (see Figs. 3 and 4). In our experiment set they
include individual jobs execution preferences (for example, certain job’s execution cost
minimization) and a common job-flow scheduling policy (total job-flow execution cost
maximization in our example).

Speaking of a whole job-flow scheduling policy it is worth noting that despite the
cost maximization performed by ANT, backfilling still provided higher total job-flow
execution cost (Fig. 4). This result may be explained by the need of ANT to addi-
tionally consider user preferences (lim Ua ¼ 10%), including user jobs with a cost
minimization criterion. For example, in C ! max, lim Ua ¼ 100% problem, which
performs cost maximization without taking into account user preferences, ANT pro-
vides 1–2% higher job-flow execution cost compared to backfilling, but does not reach
original CSS by 10%. In this case ANT was limited by a start time reference (obtained
from backfilling solution) and, thus, had fewer opportunities to use available resources
for a total cost maximization as opposed to CSS.

5 Conclusions and Future Work

In this paper, we study the problem of fair job batch scheduling with a relatively limited
resources supply. The main problem that arises is a scarce set of job execution alter-
natives which eliminates scheduling optimization efficiency.

We propose a heuristic anticipation scheduling which generates a near-optimal but
infeasible reference solution and then replicates it to allocate a feasible accessible
solution. The special replication procedure is proposed which provides 2–5% error
from the reference scheduling solution. The obtained results show that the new
heuristic approach provides flexible and efficient solutions for different fair scheduling

Fig. 4. Average jobs’ execution cost in C ! max, lim U problem
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scenarios. In case when computing environment with a limited set of resources is
considered the anticipation algorithm is still able to allocate resources according to VO
stakeholders’ preferences, generally complies with queue priorities and provides a
job-flow completion time up to 10% behind backfilling solution.

Future work will be focused on replication algorithm studies and its possible
application to fulfill complex user preferences expressed in a resource request. Ref-
erence parameters may be obtained from user expectations or transformed from dif-
ferent scheduling solutions. Different weights may be introduced for errors calculation
on different reference parameters.
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Abstract. High-performance computing (HPC) plays very important role in the
sphere of information technology as well as defines the strategic direction for
inter- and trans-disciplinary breakthroughs ensuring the essential influence on
local and global markets. The current status of HPC systems development in
different countries is analyzed in the paper. The constraints for an active involve‐
ment the HPC in many business processes of different industrial, academic and
research partners deal with low competence of the regular users and lack of the
HPC proficient personnel. Both the technical infrastructure development and
training the competent staff with wide range of the HPC related knowledge and
skills are the strategic tasks of the national level. The second task is principal for
stable development of the HPC ecosystems especially forwarding to the exascale
era. The features of curricula focused on education in the HPC area are considered.
The experience of implementation the education strategy of Kazan Federal
University in the HPC field based on skills-driven model and partnership with IT-
companies is discussed.

Keywords: High performance computing · Education · Trends · Sustainable
development

1 Introduction

The comprehensive informatization of the state-of-the-art society and the active intro‐
duction of information technology into the business processes of all sectors of the
economy determine the intensive development of hardware and software platforms and
the IT sphere in a whole.

Nowadays there is an expansion of the range and complexity of the tasks demanded
by the business community. Against this background, the demand of the labor market
in IT specialists of different levels and qualifications increases: from the project
managers of high level (leaders, architects, project managers, etc.) to rank-and-file
executors (programmer, tester, technician, etc.). The efficiency of IT companies in many
ways relays with the easiness of integration the university graduates into the processes
of hardware-software co-design and implementation the systems of automated data
processing in accordance with the requirements and specification of the customer.
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The reform of higher education in the Russian Federation is a consequence of the
economic transformation of society associated with the transition from industrial orien‐
tation to the market. In this regard, the training of a specialist for a specific sector of
industry gives way to a competence model of education, when theoretical knowledge is
backed by the technological skills and the ability to use it in practice according to
employers’ requests. The application of the concept of practice-oriented education into
the implementation of higher vocational study programs opens the possibility for
training IT professionals with a combination of competencies that are in demand on the
labor market and specified in the state and professional standards. In this case, univer‐
sities and the corresponding educational programs acquire competitive advantages,
providing greater appeal for entrants.

High-performance computing (HPC) plays very important role in the sphere of
information technology (IT) as well as defines the strategic direction for inter- and trans-
discipline breakthroughs ensuring the essential influence on local and global markets.
Many countries which pretend on the global leadership have developed and implement
national strategy for progress in the HPC and corresponding growing of industry, science
and economy [1]. The HPC is very specific and key area in the IT sphere with the
following distinctive features:

1. Complex infrastructure, which needs high quality specialists for use and support.
2. High direct and indirect cost on high-performance computer design, implementation,

use and maintenance.
3. The unique architecture depending on the class of tasks or even specific task which

should be solved. Each HPC system is designed for specific task.
4. Essential gap between hardware performance and available software possibilities.
5. Non-equal involvement of the HPC into interdisciplinary R&D.
6. A lot of skills and knowledge in different areas such as computer science, telecom‐

munications, program engineering, power supply and consumption, applied and
computational mathematics, management, etc., are required for efficient HPC user
and computational scientists.

The constraints for active involvement the HPC in many business processes of
different industrial, academic and research partners deal with low competence of the
regular users, the problem originators and the general IT specialists in the HPC topics.
The current situation can be changed by the complex modernization of the vocational
study programs emphasizing the wide range of HPC applications. The common trends
and experience of the Institute of Computational Mathematics and Information Tech‐
nologies at Kazan Federal University in education specialists for sustainable develop‐
ment of the high-performance computing ecosystem are considered in the paper.

The rest of the paper is organized as the following: Sect. 2 provides an introduction
into the HPC strategies of the main world players. The principal features of ACM
Curricula for the HPC and NSF/IEEE-TCPP Curriculum Initiative on Parallel and
Distributed Computing are considered in Sect. 3. Section 4 highlights the education
strategy of Kazan Federal University for sustainable development of the HPC
ecosystem. Final section ensures the concluding remarks.
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2 The HPC Strategies of Different Countries

The advantage in both the development and application of high performance computing
is a vital for countries’ economic competitiveness and innovation potential [2]. Accord‐
ingly, many countries have made significant investments and fulfilled holistic strategies
to position themselves at the forefront of the rivalry for the global HPC leadership. Many
countries have created national programs that are investing large sums of money to wide
use the existent HPC systems and develop exascale supercomputers. Mastering and
active use the HPC systems, tools and technologies open the ways forward to generation
of new significant technologies for overtaken the global grand challenges and improve
both the innovative character of national economy and supremacy on the global market.

The state-of-the-art high performance computers are very complex systems, efficient
exploiting of which requires a huge amount of financial, the power supply and human
resources. There are a limited set of countries that can be able to design, manufacture
and use the HPC systems. The influence and contribution of the high performance
computers into scientific progress, industrial competitiveness, national security, and
quality of life are significant. The open results of the world competitions for the HPC
leadership are provided twice per year in the Top 500 ranking. The dynamics of changing
the number of the most powerful supercomputers for some leading countries during the
last three editions in Top 500 is shown in Fig. 1 [1].

Fig. 1. The dynamic of changes the number of HPC systems in the leading countries at last three
TOP500 editions

According to the last 48th Top 500 edition two countries, China and USA, dominate
nowadays in both number and total performance of HPC systems (Table 1). The total
performance of all 500 computers on the list is now 672 petaflops. The USA holds the
narrowest of leads in the aggregate Linpack performance with 33.9% of the total and
China is the second with 33.3%. The retention and especially augmentation the number
of HPC systems in the list are very complex efforts for each country because all
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participants of Top 500 not stand still, but reinforce the processes to develop new systems
with orientation onto the exascale architectures. Such stable development in many ways
deals with strong progress in the integrated technologies [3], as well as the official state
policy in the area of HPC technologies, granted the state programs and investment by
government, industrial and business partners. The national strategies and financial
resources for realization are represented in Table 2.

Table 1. HPC specification for top 10 countries in the 48th edition of Top 500

Country Count System share (%) Rmax (GFlops) Rpeak (GFlops) Cores
USA 171 34,2 228,032,809 327,303,955 11,660,816
China 171 34,2 223,571,136 394,013,392 21,546,512
Germany 31 6,2 36,501,435 45,628,388 1,600,240
Japan 27 5,4 54,486,820 77,371,577 3,946,560
France 20 4 25,398,803 31,727,765 1,158,428
United
Kingdom

13 2,6 27,602,596 31,682,369 1,148,968

Poland 7 1,4 6,162,214 8,157,370 208,284
Italy 6 1,2 14,062,113 21,140,514 606,312
India 5 1 3,092,368 4,456,051 133,172
Russia 5 1 4,411,812 6,515,928 181,070

Table 2. Short specification of the national HPC strategies

Country HPC strategy/Program Investment, $
USA National Strategic Computing

Initiative (NSCI)
320 million/year

China 13th Five-Year Development Plan
(Develop Multiple Exascale Systems)

200 million/year (for next five
years)

European Union ETP4HPC; PRACE; ExaNeSt 1.1 in billion total allocated
through 2020

Japan Flagship2020 Program @$200 million/year (for next five
years)

India National Supercomputing Mission 140 million/year (for 2016-2020)
South Korea National Supercomputing Act 20 million/year (for 2016-2020)

China has made the HPC leadership a national priority. The leadership in high-
performance computing for China is central to the country’s goal of transitioning away
from reliance on foreign technology to using home-made technology. For in-stance, the
Sunway TaihuLight system placed the first place in the Top 500 list was developed by
Chinese National Research Center of Parallel Computer Engineering & Technology
using the state-of-the-art 260-core manycore processors ShenWei SW26010 designed
by the National High Performance Integrated Circuit Design Center in Shanghai.
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2.1 National Strategic Computing Initiative in USA

The National Strategic Computing Initiative (NSCI) was launched to advance the USA
leadership in the HPC [4]. The NSCI is a whole-of-nation effort designed to create a
cohesive, multi-agency strategic vision and Federal investment strategy, executed in
collaboration with industry and academia, to maximize the benefits of HPC for the
United States.

The NSCI seeks to accomplish five strategic objectives in the government collabo‐
ration with industry and academia [5]:

1. Accelerating delivery of a capable exascale computing system that integrates hard‐
ware and software capability to deliver approximately 100 times the performance of
current 10 petaflop systems across a range of applications representing government
needs.

2. Increasing coherence between the technology base used for modeling and simulation
and that used for data analytic computing.

3. Establishing, over the next 15 years, a viable path forward for future HPC systems
even after the limits of current semiconductor technology are reached (the “post-
Moore’s Law era”).

4. Increasing the capacity and capability of an enduring national HPC ecosystem by
employing a holistic approach that addresses relevant factors such as networking
technology, workflow, downward scaling, foundational algorithms and software,
accessibility, and workforce development.

5. Developing an enduring public-private collaboration to ensure that the benefits of
the research and development advances are, to the greatest extent, shared between
the United States Government and industrial and academic sectors.

The NSCI is supported and realized by many national agencies, which also have to
develop an ambitious workforce development plan to educate the current generation and
train the next generation of scientists and engineers to adopt HPC as an effective
approach to solving problems of societal importance.

National Science Foundation (NSF) plays a central role in scientific discovery
advances, the broader HPC ecosystem for scientific discovery, and workforce develop‐
ment. According to NSCI the NSF should [5]:

• Provide leadership in learning and workforce development to encompass support of
basic HPC training for a broad user community as well as support for career path
development for computational and data scientists;

• Increase engagement with industry and academia through existing programs;
• Support the broad deployment of NSCI technologies to increase the capacity and

capability of the HPC ecosystem, enabling fundamental understanding across fron‐
tiers consistent with NSF scientific and engineering priorities;

• Lead the development of domestic and international collaborations that will advance
transformative computational science and engineering with an integrated approach
to high-end computing, data, networking, facilities, software, and multidisciplinary
expertise, consistent with NSCI strategic objectives.
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2.2 European HPC Strategy

HPC is considered as a high strategic importance for European society, competitiveness
and innovation. The use of HPC has contributed significantly and increasingly to scien‐
tific progress, industrial competitiveness, national and regional security, and the quality
of human life. HPC-enabled simulation is widely recognized as the third branch of the
scientific method, complementing traditional theory and experimentation.

The European HPC strategy has three pillars [6]:

1. Developing the next generation of HPC technologies, applications and systems
towards exascale;

2. Providing access to the best supercomputing facilities and services for the industry
(including SMEs) and academia (Partnership for Advanced Computing in Europe –
PRACE);

3. Achieving excellence in HPC application delivery and use through establishment of
Centers of Excellence in HPC applications.

These pillars are complemented with awareness raising, training, education and skills
development in HPC.

The European Technology Platform for High Performance Computing (ETP4HPC)
is an industry-led think tank and advisory group of companies and research centers
involved in the HPC technology research in Europe, which was formed in 2011 with the
aim to build a world-class HPC Technology Supply Chain in Europe, increase the global
share of European HPC and HPC technology vendors as well as maximize the benefit
of HPC technology for the European HPC user community [7].

The PRACE ensures the wide availability of HPC resources on equal access terms,
in order to strengthen the position of European industry and academia in the use, devel‐
opment and manufacturing of advanced computing products, services and technologies.
The training an adequate number of professional personnel, including computational
scientists, programmers, system administrators, technologists, etc. is considered as one
of the key factor for successful development HPC ecosystem in the EU [8, 9].

The PRACE has an extensive education and training effort for effective use of the
research infrastructure through seasonal schools, workshops and scientific and industrial
seminars throughout Europe. Seasonal schools target broad HPC audiences, whereas
workshops are focused on particular technologies, tools or disciplines or research areas.

All EU state programs in the field of HPC are oriented onto strengthening the position
of European industry and academia in the use, development and manufacturing of
advanced computing products, services and technologies [8].

3 Features of the Curricula Focused on Education in HPC

The major part of national strategies oriented onto development HPC as the key tasks
defines generation and development of: (1) de-facto HPC systems emphasing in the
short- and middle-terms onto exascale architectures; (2) infrastructure accumulating the
public structures, private industry and business as well as academia involved into
complex processes of development, support, maintenance and use the HPC systems; (3)
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educational platform ensuring the training a huge number of required high qualified
personnel responsible for effective use of existent hardware and software tools as well
as generating a new knowledges and technologies in the HPC area, training the next
generation of scientists, designers, engineers, users and task managers.

The implementation of the third task requires development of new or adaptation of
existent curricula taking into accounts both the global tendencies of evolution the HPC
tools and technologies and the local demands of the state sector, industry and business.

According to exhaustive analysis the efficient training of HPC professionals should
be realized in the framework of computer science/computer engineering curricula by
including the new specialized courses [10]. End users represent academic, research and
industrial organizations and communities. Their applications in engineering, human,
social and natural sciences are typically compute and/or data intensive. In some of the
areas there are long traditions in using HPC, but in some areas computational science is
just entering the domain. Therefore, delivering the introductory basic courses on HPC
for master students especially in technical and technological fields in order to increase
general awareness and knowledges about HPC possibilities and prepare qualified task
managers is very important.

Many universities develop curricula on HPC based on ACM CS/CE Curricula [11,
12] and/or NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed
Computing [13]. The experience of different universities in adaptation and implemen‐
tation the curricula focused on HPC and parallel and distributed computing is actively
publicized and discussed [14–17].

3.1 ACM/IEEE-CS Joint Task Force: Computer Engineering and Computer
Science Curricula

Main focus on the HPC is localized through the parallel and distributed computing
techniques. The ACM/IEEE Computer Engineering curriculum [12] considers the
following main aspects of HPC: (1) Computer architecture and organization with
instruction-level and processor-level parallelism (multicore processor and multiproc‐
essor system); (2) Distributed system architectures, high performance computing and
networks, memory hierarchy architecture for single core and multicore systems; (3)
Parallel algorithms and multi-threading; (4) Introduction to High Performance
Computing, which covers the organization of high performance computer, design
methods of parallel programming, performance model of programs, performance eval‐
uation and optimization techniques, programming in MPI and OpenMP and algorithms
in high performance computing.

The latest ACM/IEEE-CS Joint Task Force: Computer Science Curricula [11]
proposal vastly upgraded the coverage of parallel thinking proposing topics such as: (1)
Parallel and Distributed Computing; (2) Parallelism Fundamentals; (3) Parallel Decom‐
position; (4) Parallel Algorithms, Analysis, and Programming; (5) Parallel Architecture;
(6) Parallel Performance; (7) Distributed Systems; and (8) Cloud Computing.

Parallel and distributed computing builds on foundations in many areas, including
an understanding of fundamental systems concepts such as concurrency and parallel
execution, consistency in state/memory manipulation, and latency. Communication and
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coordination among processes is rooted in the message-passing and shared-memory
models of computing and such algorithmic concepts as atomicity, consensus, and condi‐
tional waiting.

Special attention is paid to software engineering, which considers different technol‐
ogies, techniques and tools for software development with orientation on wide range of
systems, such as real time systems; client-server systems; distributed systems; parallel
systems; web-based systems; high integrity systems, etc. and specifics of parallel
programming vs. concurrent programming.

3.2 NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed
Computing

The draft of parallel and distributed computing (PDC) curricula was designed by IEEE
Computer Society Technical Committee on Parallel Processing (TCPP) with support of
National Science Foundation (NSF) [13]. This document provides guidance and support
for departments looking to expand the coverage of parallel and distributed topics in their
undergraduate programs. According to the recommendations the problems of parallel
and distributed computing fall into the following four knowledge areas:

(1) Architecture.
(2) Programming.
(3) Algorithms.
(4) Cross Cutting and Advanced Topics.

A primary goal of proposed curriculum is the definition for the computer science
(CS)/computer engineering (CE) students and their instructors to receive periodic guide‐
lines that identify aspects of PDC that are important to be covered, and suggest specific
core courses in which their coverage might find an appropriate context. The proposed
curriculum enables students to be fully prepared for their future careers in light of the
technological shifts and mass marketing of parallelism through multicores, GPUs, and
corresponding software environments, and to make a real impact with respect to all of
the stakeholders for PDC, including employers, authors, and educators.

4 Education Strategy of Kazan Federal University in the HPC Field

Kazan Federal University (KFU) founded in 1804 nowadays is the biggest research and
educational center in the Volga region federal district of Russia. The main priorities in
the R&D area as well as innovations are organized and developed in the form of the
following Strategic Academic Units (SAU): (1) 7P Translational Medicine; (2) Ecooil
– global energy and resources for the materials of the future; (3) Astrochallenge:
cosmology, monitoring, navigation, applications and (4) The quadrature of transforming
teacher education – 4T. There are more than 150 OpenLabs and research centers
involved in the state-of-the-art R&D projects as a part of SAU. The major part of research
works uses numerical simulation, intellectual data analysis based on data mining and
machine learning algorithms. The effective solution of many tasks may be obtained only
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using the up-to-date hardware and software tools oriented on parallel and distributed
computations. Each SAU implements several tens trans- and interdisciplinary research
works combining specialists from different scientific fields. IT professionals especially
with strong experience in the HPC area play vital important role in the research groups.

The Institute of Computational Mathematics and Information Technologies at KFU
(ICMIT) trains the IT specialists competent in the HPC technologies and tools on three
levels of study: bachelor programs, master programs and Ph.D. programs. All curricula
in the ICMIT are based on the ACM/IEEE CS Curriculum and NSF/IEEE-TCPP Curric‐
ulum Initiative on Parallel and Distributed Computing.

The educational process uses the practical skills-driven model. The professional
courses combine theoretical knowledge and practical skills. The laboratory works are
constructed in such way to master different technologies and tools of parallel and
distributed programming for SMP, NUMA, MPP and Cluster architectures, using
CUDA programming, OpenMP, OpenCL, MPI, threads programming, etc. The KFU
HPC cluster system is used in education process as well. The cluster has the hybrid
architecture and combines HPC subsystem, GPU-based cluster subsystem and Big Data
processing subsystem. The total peak performance of KFU cluster consists of 39
TFLOPS.

Access of students to real HPC systems plays important role at training specialists
adapted to real conditions and studying not only theory of parallel programming but also
rules and processes specific in the HPC and data centers.

Additional workshops and short courses delivered by well experienced professionals
from the partner’s IT companies are important part of training process. The ICMIT
regularly organizes such courses in partnership with Intel and NVidia, as well as some
academic organization in the framework of Computer Science Club initiative. The KFU
has close cooperation with the Supercomputing Consortium of Russian Universi‐
ties [18].

Bachelor degree students receive basic competences in parallel and distributed
computing. The master and Ph.D. students study advanced courses and combine training
with R&D. Such multilayer education system allows generating different specialists for
the local and global HPC ecosystems.

5 Conclusions

The global problems and tendencies in development of the HPC ecosystems were
discussed. The necessity for continued collaboration and innovative initiatives is
obvious and permanent grows. The number of required personnel competent in the HPC
system design, implementation and maintenance; parallel programming and application
development; numerical and computational modelling as well as task management is
increased regularly due to developing the HPC centers and wide using the HPC systems
by public organizations, private industry and business. The increased use of computa‐
tional and information technologies brings innovation and efficiency in many production
and business processes, generates products and services favoring the growing of
industry, science and economy. The preparation and implementation the professional
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courses to train the new generation of specialists with knowledge and skills in mathe‐
matical simulation and modelling, intellectual data analysis and HPC using, adminis‐
trating and management are very important tasks for future development the HPC
ecosystems. The experience of Kazan Federal University in training IT specialists on
three layers of study based on skills-driven model was described as well as concept of
trans- and interdisciplinary collaboration in the project of Strategic Academic Units.
The realization of introductory basic courses on the HPC for non-IT specialties can
provide conditions for active use the HPC systems and technologies at interdisciplinary
R&D in the short- and middle-terms.
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Abstract. The paper presents an experience in incorporating Big Data
technologies into introductory parallel and distributed computing courses
and building a service-oriented infrastructure to support practical exer-
cises involving these technologies. The presented approach helped to pro-
vide a smooth practical experience for students with different technical
background by enabling them to run and test their MapReduce and
Spark programs on a provided Hadoop cluster via convenient web inter-
faces. This approach also enabled automation of routine actions related
to submission of programs to a cluster and evaluation of programming
assignments.
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1 Introduction

The explosive growth of data observed in a variety of areas from research to
commerce, commonly referred to as the Big Data phenomenon, requires the use
of high-performance resources and efficient means for storing and processing
large amounts of data. During the last decade, the distributed data processing
models such as MapReduce [1] and technologies like Hadoop [2] and Spark [3] are
emerged. Modern HPC systems such as clusters are being increasingly used for
running data-intensive applications in science and technology. Therefore there is
a growing demand to incorporate relevant programming models and technologies
into a parallel and distributed computing (PDC) teaching curriculum.

The introduction of Big Data technologies in a PDC course brings a number
of challenges. First, these technologies are noticeably different from traditional
parallel programming technologies (e.g., MPI), by using other programming lan-
guages (e.g., Java, Scala or Python) and computing models (e.g., MapReduce or
Spark RDD). The Big Data applications are also quite different from the tradi-
tional HPC applications, which often motivates the development of specialized
courses. Second, currently it is not possible to easily collocate Big Data and
c© Springer International Publishing AG 2017
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HPC applications on a single computing cluster due to incompatible resource
managers and resource allocation policies. This necessitates the provision of
dedicated computing infrastructure for such applications, e.g., Hadoop cluster.
Third, the implementation of practical exercises is challenging due to the inher-
ent complexity of involved systems and user interfaces. This is particularly true
for undergraduate or non-technical students without prior Linux background.
While the similar problem exists for traditional HPC systems, Big Data systems
have specific interfaces that should be taken into account.

This paper reports an experience on solving the mentioned challenges while
teaching two introductory PDC courses at the Yandex School of Data Analysis
(YSDA) and the Higher School of Economics (HSE). The Parallel and Distrib-
uted Computing course at YSDA is an introductory PDC course for MSc stu-
dents that features the following topics: concurrency, parallel programming and
distributed data processing. The similar course in HSE is for BSc students from
the Faculty of Computer Science. Both courses consider distributed computing
models and platforms for processing of large data sets.

In particular, the paper describes the software infrastructure and high-level
web services implemented in order to support practical exercises involving Big
Data technologies. The presented service-based approach helped to provide a
smooth practical experience for students with different technical background by
enabling them to run and test their programs on a Hadoop cluster via convenient
web interfaces. This approach also enabled automation of routine actions related
to submission of programs to a cluster and evaluation of homework solutions.

The paper is structured as follows. Section 2 discusses related work. Section 3
provides an overview of the developed infrastructure. Section 4 describes the
computing infrastructure and how it was adapted to accommodate both HPC
and Big Data applications. Section 5 provides an overview of Everest, a web-
based distributed computing platform used for building the presented services.
Section 6 describes the generic services for running MapReduce and Spark pro-
grams and the problem-specific services for evaluating solutions of related pro-
gramming assignments. Section 7 concludes and discusses future work.

2 Related Work

The use of web technologies for building convenient interfaces to HPC systems
has been exploited since the emergence of the World Wide Web. For example,
in [4] authors describe several prototypes of web-based parallel programming
environments, including the Virtual Programming Laboratory (VPL) used for
teaching parallel programming. The emergence of grid computing and the web
portal technology enabled development of grid portals facilitating access to dis-
tributed computing facilities. For example, [5] describes an experience of building
a grid portal to support an undergraduate parallel programming course.

The web-based interfaces have also been exploited to support submission and
automated evaluation of programming assignments in PDC courses. For exam-
ple, in [6] authors describe a framework enabling implementation of web portals
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for automated testing of student programming assignments in distributed pro-
gramming courses. Among the recent works, [7] describes a web-based applica-
tion for automated assessment and evaluation of source code in the field of par-
allel programming. In [8] authors present a similar web-based system for running
and validating parallel programs written in different programming paradigms.

The web technologies are also being actively used nowadays for support-
ing Massive Open Online Courses (MOOC) with a large number of attendees.
For example, WebGPU is a web-based system developed to support GPU pro-
gramming assignments in the Heterogeneous Parallel Programming course [9].
In [10] authors describe the “Introduction to Parallel Computing” course that
is developed on the base of Moodle learning management system and supports
automatic evaluation of parallel programs.

While the previously mentioned systems support teaching traditional PDC
topics, currently there exists only a few web-based environments focused on
teaching Big Data technologies. The only similar project is the WebMapReduce
(WMR) [11], which provides a simplified web interface to Hadoop designed for
teaching the MapReduce computing model. The WMR portal allows students to
write mappers and reducers in a variety of languages. The programs are executed
on a Hadoop cluster or in a testing environment that mimics the behavior of
Hadoop while running within a single thread. In contrast to WMR, the presented
infrastructure is more generic by supporting other technologies and computing
models beyond MapReduce, e.g., Spark, and addressing additional challenges
such as automated evaluation of homework assignments.

In addition, a variety of open source and commercial systems are currently
emerging that provide convenient web interfaces for working with Big Data
technologies [12–14], including interactive notebooks and dashboards. While not
specifically designed for teaching, these systems can also be used in educational
activities. The presented infrastructure relies on one of such interfaces, namely
Hue [12], for browsing the data stored on a Hadoop cluster.

3 Infrastructure Overview

A high-level overview of the infrastructure used to support practical exercises in
the mentioned courses is presented on Fig. 1.

The computing infrastructure consists of a dedicated cluster with 20 nodes
which is split into two partitions for running HPC and Big Data workloads. The
students can optionally request a direct access to the cluster command line via
SSH. However, the default way to access the cluster is via a set of provided
web services that automate submission and execution of parallel programs on
the cluster. There are two main types of such services. The so called generic
services can be used to run arbitrary programs for some technology, e.g., MPI or
MapReduce. There are also problem-specific services that can be used for sub-
mission and evaluation of solutions for homework assignments. The services are
developed and deployed on Everest, a web-based distributed computing platform
[15,16] which supports integration with computing resources via special software
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Fig. 1. Architecture of supporting computing and software infrastructure

agents. These agents are deployed on the cluster and are used by the Everest
job manager for execution of programs submitted via the services.

The main advantage of the service-based approach is the ease of use and
ubiquity in comparison to the command line environment. Such environment and
queuing systems used on the cluster are unfamiliar and too low-level for many
students. The execution of programs of the cluster also implies manual copying
of required files that can be automated by the services, which is very convenient
for quick demonstrations in class. Another advantage of the presented approach
is the reduced administration overhead, since it does not require creation of
cluster accounts for each student. The management of students in Everest can be
automated by creating a dedicated user group and configuring a secret code for
self-registration by the students. Finally, the use of special services for evaluation
of homework assignments can provide an instant feedback for the students which
enhances the learning experience.



A Service-Oriented Infrastructure for Teaching Big Data Technologies 509

4 Computing Infrastructure

As was previously mentioned, Big Data and HPC technologies use different
resource managers and resource allocation policies. For example, while the exe-
cution of MPI applications on a cluster is usually managed by the batch system
such as SLURM or PBS, the execution of MapReduce programs is managed
by the YARN service, which is a part of Apache Hadoop platform. Also, while
MPI programs allocate and use a fixed subset of cluster resources, MapReduce
programs can dynamically allocate and release resources during their execution.
Therefore it is very hard to use a single resource manager for both types of
workloads.

To accommodate both HPC and Big Data applications the cluster was split
into two separate partitions. The first partition, managed by the SLURM batch
system and using the NFS file system, is dedicated for running HPC applications
such as MPI and OpenMP programs. The second partition, managed by the
YARN service and using the HDFS file system (also a part of Hadoop platform),
is dedicated for running Big Data applications such as Hadoop MapReduce and
Spark programs. The second partition also has a number of other Big Data
technologies installed such as Hive, HBase and Kafka.

Having two separate cluster partitions brought an issue of efficient cluster
utilization when one of the partitions is underutilized, for example when the
students study MPI programming and use only the HPC partition. Currently
the size of each partition can be changed by the administrator by manually
stopping and starting the SLURM and YARN daemons on the cluster nodes.
Given the known schedule of practical exercises by different courses using the
cluster, the manual tuning of partition sizes proved to be sufficient. However,
a more sophisticated automated tuning based on a current load can also be
implemented in the future.

Both partitions have configured limits of resource usage per program which
is essential in order to avoid the excessive use of cluster resources by inefficient
or misbehaving programs. The HPC partition imposes a limit on the wall clock
time used by a program. However, it is not possible to use a similar metric
for Big Data applications since their run time can depend on the current cluster
load. Therefore an alternative metric of consumed core-seconds was used to limit
the resource consumption for the second partition. Since Hadoop YARN doesn’t
support enforcement of resource usage limits, a special script was developed
that periodically checks the current resource consumption of running programs
and kills those that exceeded the configured limits. The preemption in YARN
scheduler is turned off in order to ensure stable execution and measurements,
especially for Spark programs.

5 Everest Overview

Everest [15] is a web-based distributed computing platform used for building
the services of the described infrastructure. In this section we provide a brief
overview of this platform.
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Everest provides users with tools to quickly publish and share computing
applications as web services. The platform also manages execution of applica-
tions on external computing resources attached by users. In contrast to tradi-
tional distributed computing platforms, Everest implements the PaaS model by
providing its functionality via remote web and programming interfaces. A single
instance of the platform can be accessed by many users in order to create, run
and share applications with each other. The platform is available online to all
interested users [16].

Everest supports development and execution of computing applications fol-
lowing a common model. An application has a number of inputs that constitute
a valid request to the application and a number of outputs that constitute a
result of computation corresponding to some request. Upon each request Ever-
est creates a new job consisting of one or more computational tasks generated
by the application according to the job inputs. The tasks are executed by the
platform on computing resources specified by a user.

To simplify creation of applications Everest provides a generic skeleton for
command-line applications that makes it possible to avoid programming while
adding an application. In addition to description of application inputs and out-
puts, the user should specify the command pattern parametrized by input values
and describe the mappings between inputs/outputs and files read/produced by
the application.

An application is automatically published as a RESTful web service with a
unified interface. This enables programmatic access to applications, integration
with third-party tools and composition of applications into workflows. The plat-
form’s web user interface also generates a web form for running the application
via web browser. The application owner can manage the list of users that are
allowed to run the application.

Instead of using a dedicated computing infrastructure, Everest performs exe-
cution of application tasks on external resources attached by users. The platform
implements integration with standalone machines and clusters through a devel-
oped program called agent. The agent runs on the resource and acts as a mediator
between it and Everest enabling the platform to submit and manage computa-
tions on the resource. Everest manages execution of tasks on remote resources
and performs routine actions related to staging of input files, submitting a task,
monitoring a task state and downloading task results.

6 Services

A number of web services have been developed using the Everest platform in
order to simplify and automate execution of various types of parallel programs
by the students on the cluster.

In order to create an application an instructor should specify via Everest
Web UI application’s metadata, input and output parameters, mapping of para-
meters to the executed command and files, etc. The core part of the application
is a wrapper that takes input parameters and manages execution of a paral-
lel program on the cluster. The wrapper can be written in any programming
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language since Everest runs it via command line. It usually performs program
compilation, preparing of execution environment, submitting the program via
queuing system, etc. The development of such wrapper is currently the most
difficult part of the process, however once implemented its parts can be reused
for other applications.

6.1 Generic Execution Services

The following generic services have been developed for execution of different
types of programs using Big Data technologies on the cluster. These services can
be used to run an arbitrary program of some specific type.

Two generic services were implemented for running Hadoop MapReduce pro-
grams. The first service supports programs written in Python using the Hadoop
Streaming interface, targeting students without Java skills. The submit form of
this service is presented on Fig. 2. The second service supports Java programs
using the Hadoop Java API. Both services allow specifying program files, com-
mand line arguments, input and output paths in HDFS file system, number of
reduce tasks and additional Hadoop options. The wrapper script performs sub-
mission of MapReduce job, monitors the job’s state and updates status infor-
mation displayed in Everest. When the job is running, a student is provided
with a link to the job status page in the Hadoop web interface. After the job is
completed the total resource usage in core-seconds is displayed along with a link
to the job history interface with task logs. This provides enough information to
troubleshoot failed programs or evaluate the program’s efficiency.

Two similar services were implemented for running Apache Spark programs
written in Python or Scala/Java on the cluster. In comparison to the MapReduce
services, the Spark services have more sophisticated runtime parameters such as
the number of executors, cores and memory per executor. It is also possible to
specify the minimum ratio of registered executors to wait for before starting
computations. This enables students to examine various trade-offs related to
using different values of runtime parameters. The corresponding wrapper script
is also more sophisticated. It allows to limit the maximum amount of physi-
cal resources requested by the program and the number of concurrent jobs per
user. The wrapper script also computes the effective resource usage for a Spark
program by excluding core-seconds spent while waiting for the executors.

Upon the program submission the student is redirected to the job page that
displays dynamically updated information about the job state. The job page also
includes sections containing general information about the job, inputs specified
by the student and outputs produced by the job. For teaching purposes the
services were configured to automatically share all jobs submitted by the students
with the instructors group, so that in case of a problem a student can just send
a link to a failed job to the instructor.

Due to the large size of input data and produced results, in addition to
running programs on Hadoop cluster it was essential to provide a way to easily
browse files stored in the HDFS file system without fully downloading them.
This was achieved by using Hue [12], a web interface for Hadoop which includes
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Fig. 2. The submit form of the service for running Hadoop MapReduce programs

a convenient HDFS file browser. Hue also provides a web interface for running
jobs, however it is more complicated and low level in comparison to the developed
services.

6.2 Services for Programming Assignments

The evaluation of programming assignments requires a significant effort and is
one of the key scalability bottlenecks in terms of a number of students. The
generic services described above can be used for quick demonstrations, practical
exercises and projects. However, they usually do not provide a feedback needed
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to validate solutions to programming assignments. For example, whether the
program produced a correct result or has a good performance. Such immediate
feedback is crucial for students since it helps to avoid manual validation and to
focus on the solution. This feedback can also help instructors to reduce the time
and effort needed to grade the solution.

A set of problem-specific services have been implemented for automated eval-
uation of homework assignments related to Big Data technologies. These services
are implemented on Everest using the same approach as the previously discussed
generic execution services. However, in this case the wrapper is replaced by a
test suite for the given assignment.

The first assignment is dedicated to the MapReduce programming model
and its implementation in Hadoop. The students should use MapReduce to
build inverted index of the contents of Wikipedia pages. The solution of this
assignment requires multiple MapReduce steps such as computing a list of fre-
quent words excluded from the index and building an index itself for English and
Russian versions of Wikipedia. Since it is difficult to implement an interface for
specifying and running all these steps, the provided service doesn’t perform the
execution of solutions and only checks the provided results. The student should
pass to the service the HDFS paths to the produced indexes. The service runs
a script that checks that the index conforms to all requirements specified in the
assignment. The students should include the link to test results in the homework
report along with the links to all program runs via generic MapReduce services
used to build the indexes. Instructors can view all programs created by a stu-
dent by following these links in Everest. The generic services and job history web
interfaces provide enough information to evaluate the efficiency of each program.

The second assignment is dedicated to using Apache Spark and its Resilient
Distributed Datasets (RDD) programming model. The students should compute
a number of results given a graph of follower relationships between Twitter users,
such as the average count of followers, the most popular users and the number
of users that can be reached by a tweet from popular users. The solution of this
assignment also requires multiple steps, however, in contrast to MapReduce,
these steps can be run as a single job in Spark. Nevertheless, to provide the
maximum flexibility, the similar approach was used as in the previous assignment
by implementing a service that only checks the produced results. This enabled
students to incrementally compute and check different results. Again the students
were asked to provide links to all submissions via generic services used to produce
all results.

7 Conclusion

The paper presented an experience in incorporating Big Data technologies into
introductory PDC courses and building a service-oriented infrastructure to sup-
port practical exercises involving these technologies. The presented approach
helped to provide a smooth practical experience for students with different tech-
nical background by enabling them to run and test their MapReduce and Spark
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programs on a provided Hadoop cluster via convenient web interfaces. This app-
roach also enabled automation of routine actions related to submission of pro-
grams to a cluster and evaluation of programming assignments.

Future work will focus on improving the presented infrastructure and pub-
lishing the service implementations to enable other educators to reproduce the
presented approach using the Everest platform.
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Abstract. The efficiency of computing resources utilization by user applications
can be analyzed in various ways. The JobDigest approach based on system moni‐
toring was developed in Moscow State University and is currently used in
everyday practice of the largest Russian supercomputing center of Moscow State
University. The approach features application behavior analysis for every job run
on HPC system providing: the set of dynamic application characteristics - time
series of values representing utilization of CPU, memory, network, storage, etc.
with diagrams and heat maps; the integral characteristics representing average
utilization rates; job tagging and categorization with means of informing system
administrators and managers on suspicious or abnormal applications. The paper
describes the approach principles and workflow, it also demonstrates JobDigest
use cases and positioning of the proposed techniques in the set of tools and
methods that are used in the MSU HPC Center to ensure its 24/7 efficient and
productive functioning.

Keywords: HPC · Supercomputing · Efficient computing · Resource
utilization · Job dynamics · Application efficiency · Parallel programming

1 Introduction

The JobDigest1 approach follows monitoring of HPC application performance principles
– one of the possible ways of resource utilization efficiency analysis for both applications
and supercomputers. Studying of the resource utilization type and rate, determining
bottlenecks in programs, hardware and/or their interplay are the typical usage scenarios
for such methods. The characteristics of the HPC system components state serve the
basis for these approaches. For example, various CPU load types, incoming and outgoing
network traffic on the node, number of floating point or integer operations, accelerator
usage, memory-related operations like number of load and store operations, misses in
the cache memory of different levels and so on, input/output activity, and many other
characteristics.

1 The JobDigest® is a registered trademark in Russian Federation. The application for an inven‐
tion of the JobDigest approach was filed.
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Most of available monitoring systems do not process the data at computing nodes to
reduce the impact on job execution [1–7]. At the same time there are uprising monitoring
systems that reasonably distribute the processing of data and secure low influence on
job execution [8, 9]. The key advantage of monitoring-based approaches is general
independence on the code, absence of necessity to make any changes to the program
source code or binary that is being analyzed. This allows reducing the influence on
program execution and at the same time expanding the range of jobs that can be analyzed.

Different approaches to job performance monitoring are known [10–17]. In this paper
the details of the JobDigest approach to supercomputer job analysis based on system
monitoring data is described. According to the approach principles, the special report
that gives all-round view over the job behavior built of diverse dynamic and integral
characteristics is generated for every job, even if it has not successfully finished.

2 Approach Principles

The JobDigest report represents the detailed information of job behavior starting from
basic job information to the precise info on computing, storage and network resource
utilization.

Fig. 1. General proposed workflow based on system monitoring data analysis.

The key feature of the proposed approach is the possibility of job behavior analysis
for any and every run with no code preparations by the user [18, 19].
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The JobDigest is built on the basis of system monitoring data and job details from
the resource manager [20]. As soon as the job is assigned to the set of nodes, it becomes
possible to bind the system monitoring data collected from the corresponding nodes to
form the profile of application execution (Fig. 1).

It is supposed that only one job at a time is allocated to the node. If a node can be
assigned to several jobs, such a situation can also be handled to some extent but only if
process to core pinning is enabled.

3 The JobDigest Report

The report consists of several blocks that focus on various scopes of analysis. Altogether
the blocks shape all-round basis for application behavior study (Fig. 2).

A. General job information. The table includes the general information on job and
its node allocation from the resource manager: job ID, user account, run command,
working directory, output file, partition, time limit, submit/start/end timestamps,
status, duration, number of allocated cores and nodes, core hours, list of allocated
nodes.

B. Dynamical job characteristics. Dynamic characteristics represent the rate of
corresponding resource utilization during the program execution. Originally the data
granularity can be rather high, up to 10 Hz, but for the most jobs it is not necessary
to have such detailed information, keeping in mind large volumes of data to be stored
in this case. For the most cases, granularity reduced to 5 min is enough to allow
having clear overall view of the application behavior. The DiMMon monitoring
system will allow dynamical reconfiguration of the granularity for selected jobs,
partitions, and so on.

Every dynamic characteristic is represented by five values for every time interval:
min, max, min_avg, max_avg, avg. With present settings node_min, node_max and
node_avg sensor values are aggregated for every 5 min time interval from each node.
Based on these three values, min(node_min), max(node_max) и avg(node_min),
avg(node_max), avg(node_avg) are calculated across all job nodes leading to five values
mentioned earlier.

The available set of dynamic characteristics can vary depending on analysis purposes
and system settings. There are over 20 different characteristics available for «Lomo‐
nosov» and «Lomonosov-2» systems at present: CPU user load, load average, free
memory, L1 cache misses, L2 cache misses, last level cache misses, MPI IB receive
data, MPI IB send data, MPI IB receive packets, MPI IB send packets, FS IB receive
data, FS IB send data, FS IB receive packets, FS IB send packets, instructions retired,
memory load, memory store, CPU nice load, CPU system load, CPU idle, CPU IO wait
load, CPU IRQ load, CPU soft IRQ load, etc.

There are three ways of studying dynamic characteristics supported by JobDigest at
present: diagrams, CSV tables for using with external analysis and visualization tools,
and heat maps. Heat maps are 2D charts. Horizontal axis corresponds to time, and
vertical axis corresponds to used nodes. The dot color represents dynamic characteristic
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value from minimum (red color) to maximum (green color) among all the values during
the job execution. An example of such heat map is shown in Fig. 8.

C. Integral job characteristics. The integral job characteristics represent average
resource utilization and are built on the base of dynamic job characteristics. Every

Fig. 2. JobDigest report blocks: A – general job information, B – dynamic job characteristics, C
– integral job characteristics, D – tags and job categories.
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integral characteristic is provided as a set of minimum, average, and maximum
levels during the whole job run. Every of these three values can be highlighted
according to preset and calculated thresholds.

In the same block there are also given some other characteristics built as derivatives
of averages. For example, the following average characteristics can be useful and are
available in the report: IB receive packet size for FS, IB receive packet size for MPI, IB
send packet size for FS, IB send packet size for MPI, and some memory-related char‐
acteristics like level 1 to level 3 cache miss ratio and memory load plus memory store
to level 1 cache miss ratio.

D. Job categories and tags. Based on calculated integral characteristics and general
job information every job is tagged after it is finished. The tags help to divide jobs
into categories, helping to find specific jobs later by category or categories inter‐
section. The tags mark the scale of the job, partition, duration, resource utilization
specifics, etc.

The examples of the report and its blocks are provided in the “Evaluation and Use
Cases” section of the paper.

4 Complementarity with Other HPC Tools

JobDigest interaction with other components of the toolkit mentioned in Figs. 1 and 3
is widely used every day in the MSU HPC Center [21]. All these components have been
developed in the Research Computing Center of Moscow State University.

Fig. 3. Main MSU toolkit components for HPC centers.
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DiMMon. This monitoring system is a promising scalable reconfigurable data collector
with elements of on-the-fly analysis. In comparison to other monitoring systems, it
allows performing much of data processing before saving source data to the database.
For example, it allows creating JobDigest reports and calculating averages for the
running jobs.

OctoScreen. Administrators and system managers can proceed to the more detailed
job JobDigest reports from specifically generated job lists provided by OctoScreen. Such
lists can be formed by various criteria, for example, by job owner, responsible organi‐
zation for the research project that the jobs belong to, geographical criteria, research
areas and so on [22].

OctoStat. Provided by Octostat analysis of daily statistics on queue structure and top
resource consuming projects, users and accounts can be successfully amplified having
the possibility to look at the details of any job owned by a specific account, user or
research project. This is especially valuable for suspicious jobs that are found according
to extremely low activity or suspicious node allocation.

OctoTron. The resilience system logs all problems with storage, network, compute
nodes and the interfaces [23]. If something goes wrong, it is possible to track the jobs
that could have been harmed by the issues with the known node set in the specified time
period and create the list of potentially affected job runs. One can see more details to
find out if there was really something wrong with the job proceeding to the JobDigest
reports of any of these jobs.

OctoShell. If the HPC system is not a dedicated one and there is a number of users and
research projects that should not be allowed to see the working results and activity details
of each other, it is essential to have a special system that would serve as a single entry
point for all or, at least, most of services. The OctoShell system is used in the MSU HPC
Center for such purposes [24, 25]. All the information on job runs is provided to users
through this system according to user access permissions and settings in the account
area on the website [26].

As shown above, JobDigest is highly integrated in the HPC center administration
and management workflow as a valuable analytical part of the used toolkit.

5 Implementation Details

The workflow of the current version of JobDigest is presented on Fig. 4. The numbers
in circles present the sequence of stages.

1. System monitoring data from agents of monitoring system on the nodes of HPC
system is sent to the aggregation service.

2. The aggregation service filters data and reduces granularity. Data is further saved
into the database. It is not pinned to jobs yet.
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3. As soon as job starts, prolog script of resource manager informs server-side appli‐
cation on the web server on job run. Server-side script writes the initial info into the
database.

4. When the job finishes, epilog script informs server-side application on the web server
on job end. Server-side script updates the job record in the database and initiates job
data processing in background mode: integral characteristics are being calculated
and written into the database. Job tagging is performed afterwards based on integral
characteristics and general job information, the tags assignment is written into the
database.

5. Special script gathers information on all run jobs and checks if all the jobs are repre‐
sented in the database. This is done once per day to tackle possible problems with
network during the job run and other issues that could have prevented the job info
getting processed.

6. External services and applications can access job information and monitoring data,
as well as daily statistics data in JSON format via HTTP protocol using special API.
For example, regular users access the JobDigest reports and get job run statistics via
OctoShell.

7. Administrators can access job info and corresponding monitoring data, job lists,
extended JobDigest reports, statistics and special visualization templates as HTML
pages by HTTP with authorization.

Fig. 4. JobDigest workflow stages.

At present the following software components are used:

– PostgreSQL, version 8.4.20;
– Flask web server, version 0.11.1;
– SLURM resource manager [27], «Lomonosov» HPC system – v.2.5.6, «Lomo‐

nosov – 2» system - v.15.0.8.1;
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– Modified ClustrXWatch agents are used now as the data source [28];
– Google Charts are used for diagrams in the JobDigest reports;
– Highcharts are used for heat map generation.

The latest versions of the JobDigest components are available at GihHub [29]. As
for now the custom installation is a bit tricky. As soon as the development of DiMMon
monitoring system allows, the out-of-the-box package will be available.

6 Evaluation and Use Cases

The first approach evaluation was achieved as a result of MSU team efforts under the
joint RU-EU HOPSA project [30].

The described approach is now widely used in the everyday practice of the Moscow
State University Supercomputer Center, the largest HPC collaborative facility in Russia
having «Lomonosov» and «Lomonosov-2» systems with a total of over 4 PFlops peak
performance at present, over 500 collaborative research projects and thousands of scien‐
tists using the computing facility in 24/7 mode. This results in processing of thousands
of supercomputer jobs per day [31], and the special JobDigest report generation is
provided for any and every of those. In this section we illustrate some examples of using
JobDigest report and its data.

6.1 Integral Job Characteristics

Every JobDigest report contains a block with integral job characteristics that represent
general resource utilization rate for the whole run. It is typically MIN, MAX and AVG
values for every dynamic characteristic available, see the description in subsection C of
Sect. 3 of the paper.

These integral characteristics are available not only from inside the report. Most of
them are provided together with the job list according to access permissions of the user
(own jobs for user, selected jobs for the experts, or all jobs for administrators). In many
cases the general average resource utilization rate is already can be sufficient for prelimi‐
nary analysis and/or job selection for detailed study.

Figure 5 shows the example of such a table with integral characteristics that can help
to find the hanged jobs among the currently run jobs according to extremely low
CPU_user.

Fig. 5. JobDigest list with suspicious jobs.
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The layout of such a job list can vary and can contain many integral characteristics
at a time.

One of the possible promising ways of using integral characteristics is application
scalability analysis that can be performed analyzing changing integral job characteristics
of sequence of runs [32].

6.2 Job Categories and Tags

Integral characteristics values can serve as the basis for job categorization and tagging
according to belonging to the specific job group or type [33]. For example (Fig. 6), if
no GPU usage is observed in GPU partition job, one can suspect a cheating - the regular
CPU job could have been intentionally put to GPU partition just because of the shorter
queue, blocking GPU resources for GPU oriented jobs.

Fig. 6. JobDigest list of “low_gpu_load” tagged categories.

Another promising way of job categorization and finding job anomalies bases on
data mining principles and processing of historical dynamic job characteristics, the first
results are described in [34].

As shown above, the job lists can be equipped with basic filtration tools by time,
account name, categories (tags), and can contain adjustable number of general and inte‐
gral job characteristics. In JobDigest, the job categories and tags are shown as described
in subsection D of Sect. 3.
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6.3 Dynamic Job Characteristics

The dynamics of execution and behavior of any job can be best observed by analyzing
the behavior of dynamic characteristics and their interplay. There are three general
modes of analysis available: CSV export for external tools, diagrams, and heat maps.

Figure 7 illustrates changing of dynamic job characteristics during the job execution
with over 200 processes used. The blue color lines (upper) correspond to maximum
values of all the processes, green lines correspond to averages. In the second part of job
execution it can be seen that the average values of all characteristics become very low
- almost drop to zero level. At the same time the maximum value still represents normal
activity. Knowing that the number of processes of the job was about several hundred,
such a behavior can be possibly explained by the activity of just a few processes while
the rest hundreds of processes are in a wait state. In any case, such a behavior found
using the JobDigest report is suspicious.

Fig. 7. JobDigest dynamic characteristic diagrams example. (Color figure online)
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The main goal of the JobDigest report is to detect bottlenecks and application
performance degradation for any job in whole job flow, and special tools are required
for further deep analysis to locate exact reasons in the program.

These diagrams are available in JobDigests as described in subsection B of Sect. 3
of the paper.

Heat maps. Another useful way of analyzing dynamic characteristics in the JobDigest
report is studying heat maps. Figure 8 represents the heat map for CPU_user of the
previous example. Only one node activity is clearly seen on the second stage of program
run by the max values heat map, and looking at average values heat map it can be
supposed that there was just one core used on that single node.

Fig. 8. JobDigest heat map for CPU_user dynamic characteristic. (Color figure online)

Interesting examples of JobDigest usage are found everyday by support team of MSU
supercomputer center. Some of those have been described in publications as a result of
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performed research on the reasons of performance degradation and specifics of resource
utilization by various program types and program models [35].

7 Conclusions

The practiced approach based on system monitoring data analysis features possibility
to have an in-depth view into every job launch without any changes to the program
source codes or binaries to detect application performance issues.

The developed JobDigest reports provide valuable all-round view over the applica‐
tion execution behavior and resource utilization profile and rate.

All the described tools are developed in Moscow State University and are currently
being used in the MSU HPC Center in 24/7 mode. The proposed system monitoring-
based approach has been also evaluated in Uppsala University (Sweden) and showed
promising results, Uppsala University team and SNIC support are hereby highly
acknowledged.

The developed tools are available as an open source software, contributions are
welcome.
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