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Abstract. Graph vertices are often associated with attributes. For
example, in addition to their connection relations, people in friendship
networks have personal attributes, such as interests, age, and residence.
Such graphs (networks) are called attributed graphs. The detection of
clusters in attributed graphs is of great practical relevance, e.g., tar-
geting ads. Attributes and edges often provide complementary informa-
tion. The effective use of both types of information promises meaning-
ful results. In this work, we propose a method called UNCut (for Uni-
modal Normalized Cut) to detect cohesive clusters in attributed graphs.
A cohesive cluster is a subgraph that has densely connected edges and
has as many homogeneous (unimodal) attributes as possible. We adopt
the normalized cut to assess the density of edges in a graph cluster. To
evaluate the unimodality of attributes, we propose a measure called umni-
modality compactness which exploits Hartigans’ dip test. Our method
UNCut integrates the normalized cut and unimodality compactness in
one framework such that the detected clusters have low normalized cut
and unimodality compactness values. Extensive experiments on various
synthetic and real-world data verify the effectiveness and efficiency of
our method UNCut compared with state-of-the-art approaches. Code
and data related to this chapter are available at: https://www.dropbox.
com/sh/xz2ndx65jai6num/AACIRI5SPqQoYoxrelt W83PrLa?dl=0.

1 Introduction

Real-world graphs (networks) tend to have attributes associated with vertices.
For example, in social networks such as Facebook, Google+ and Twitter, users
have their personal information, e.g., interests, ages, living places, and etc., in
addition to their friendship relationships. Proteins in a protein-protein inter-
nation network may be associated with gene expressions in addition to their
interaction relations. Such graphs are referred to as attributed graphs in which
vertices represent entities, edges represent their relations and attributes describe
their own characteristics. Often the attributes and edges provide complementary
information [11]. Neither can we infer vertex relationships from their attributes
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Fig. 1. An example social network. (Color figure online)

nor vice versa. Nevertheless, both types of information can be valuable for the
detection of clusters in attributed graphs. Traditional methods for attributed
graph clustering consider all attributes to compute the similarity. However, some
attributes may be irrelevant to the edge structure and thus clusters only exist
in the subsets (subspaces) of attributes. Currently, several methods have been
proposed to detect subspace clusters in attributed graphs, such as CoPaM [11]
and SSCG [3]. CoPaM uses various pruning strategies to find maximal cohesive
patterns in the subspaces of attributes. One major problem with CoPaM is that
it outputs a large number of clusters which have few vertices or attributes and
which overwhelm data analysts. As for SSCG, it needs to eigen-decompose the
graph Laplacian matrix and to update the subspace dependent weight matrix in
every iteration, which is not scalable for large-scale graphs. How to effectively
find clusters in attributed graphs remains a big challenge.

In this work, we develop an effective and efficient method to find cohesive
clusters in attributed graphs. A cohesive cluster is a subgraph that has densely
connected edges and has as many homogeneous (unimodal) attributes as possi-
ble. Why do we prefer to find cohesive clusters? One proper answer is that the
more cohesive a graph cluster is, the more information it can reveal. For exam-
ple, in social networks, if social networking advertisers know more characteristics
of the people, they can do targeting ads more precisely. Figure 1 demonstrates
an example social network with three attributes (age, sport time per week, and
studying time per week) associated to each vertex. The task is to divide the
network into two distinet parts which have as many homogenerous (unimodal)
attributes as possible. In this example social network, we have two candidate par-
titions, i.e., by the orange dashed line and by the blue dashed line. The orange
dashed line divides the network into two cohesive clusters C; = {0, 1,2, 3,4,5,6}
that is cohesive on the attribute studying time and Cy = {7,8,9} that is cohesive
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on all the attributes. The blue dashed line divides the network into another two
cohesive clusters C3 = {0,1,2,3,4} which is cohesive on all the attributes and
Cs = {5,6,7,8,9} which is cohesive on the attributes age and sport time. Com-
pared with clusters C; and Cs, clusters C3 and C4 are more cohesive. Although the
normalized cut value increases a little bit from 0.536 to 0.559, the unimodality
compactness (see Sect.3) value of attributes dramatically decreases from 3.289
to 1.230. The unimodal normalized cut (see Sect. 3) value of the partition by the
blue dashed line is 0.895 and that of the partition by the orange dashed line is
1.913. Thus, we prefer clusters C3 and C4 to clusters C; and Cs.
Our contributions can be summarized as follows,

— We introduce the univariate statistic hypothesis test called Harti-
gans’ dip test [4] to the problem of attributed graph clustering.

— We achieve the cohesive cluster detection by developing an objec-
tive function which integrates the proposed measure unimodality
compactness with the normalized cut. The unimodality compactness
takes advantage of Hartigans’ dip test to measure the degree of the uni-
modality of attributes in a graph cluster.

— We show the effectiveness and efficiency of our method UNCut
by conducting extensive experiments on synthetic and real-world
graphs.

The paper is organized as follows: We continue in Sect.2 with a review of
preliminaries. Section 3 covers the core ideas and theory behind our approach
UNCut, including the unimodality compactness and algorithmic details. Using
synthetic and real-world data, Sect.4 compares UNCut to related techniques.
Section 5 discusses the related work and Sect. 6 gives concluding remarks.

2 Preliminaries

2.1 Notation

In this work, we use lower-case Roman letters (e.g. a,b) to denote scalars. We
denote vectors (column) by boldface lower case letters (e.g. x). Matrices are
denoted by boldface upper case letters (e.g. X). We denote entries in a matrix
by non-bold lower case letters, such as x;;. Row ¢ of matrix X is denoted by the
vector x;., column j by the vector x.;. A set is denoted by calligraphic capital
letters (e.g. §). An undirected attributed graph is denoted by G = (V,&,F),
where V is a set of graph vertices with number n = |V| of vertices, £ is a set
of graph edges with number m = |€| of edges and F € R"*? is a data matrix
of attributes associated to vertices, where d is the number of attributes. An
adjacency matrix of vertices is denoted by A € R"*™ with a;; = 1 if the vertices
v; and v; are connected, and a;; = 0 otherwise. The degree matrix D is a diagonal
matrix associated with A with d;; = > ; Gij- The random walk transition matrix
W is defined as D~'A. The Laplacian matrix is denoted as L = I — W, where I
is an identity matrix. A graph cluster is a subset of vertices S € V. The indicator
function is denoted by 1(x).
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2.2 Normalized Cut

The definition of the widely used normalized cut [16] objective function is:

_cut(S,S)
NCut(S) = vol(S) (1)
where cut(S,S) = Zuies,vjeg a;; and vol(S) = Zvies,vjev aij.

Equation 1 can be equivalently rewritten as (for a more detailed explanation,
please refer to [18]):

NCut(S) = uTLu, s.t. u"Du = vol(G), Du L 1. (2)

where u is the cluster indicator vector and uTLu is the cost of the cut and 1 is
a constant vector whose entries are all 1. Note that finding the optimal solution
is known to be NP-hard [19] when the values of u are constrained to {1, —1}.
But if we relax the objective function to allow it take values in R, a near optimal
partition of the graph G can be derived from the second smallest eigenvector of
L. More generally, k eigenvectors with the k& smallest eigenvalues partition the
graph into k subgraphs with near optimal normalized cut value.

2.3 The Dip Test

In this paper, we apply a univariate statistic hypothesis test for unimodality
called Hartigans’ dip test [4] on the vertex attributes to measure the degree
of the unimodality of a graph cluster. The dip test has been successfully used
in detecting clusters in a sea of noise [10]. The dip measures the departure of a
distribution from unimodality. Before introducing the concept of the dip test, let
us first introduce the concepts of the greatest convex minorant (g.c.m) and the
least concave majorant (l.c.m.). The g.c.m of F(z) in (—oo, ] is sup G(z) for
2 < x;, where the sup is taken over all functions G that are convex in (—o0, z;]
and nowhere greater than F'(z). The l.cm. of F(x) in [z,,00) is inf L(z) for
x > Xy, where the inf is taken over all functions L that are concave in [z, 00)
and nowhere less than F(z). Let U be the set of all unimodal distributions, the
dip test of the distribution function F(z) is computed as follows,
D(F) = jnf sup|F(x) ~ H(z) (3)
The dip test is the infimum among the supremum computed between the
cumulative distribution function (CDF) of F' and the CDF of H from the set
of unimodal distributions. The computation of the dip test is: Let F'(x) be an
empirical distribution function for the sorted samples z1,...,z,. There are n -
(n — 1)/2 candidate modal intervals. Compute for each candidate [z;,z;],i <
Jj < n the g.cm. of F(x) in (—oo,z;] and the L.e.m. of F(z) in [z}, 00) and let
d;; be the maximum distance of F' to these computed curves (g.c.m. and l.c.m.).
Finally, it selects the modal interval with the maximum distance which is the
twice of the dip test. For more details, please refer to [4,6].
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As pointed out in [4], the class of uniform distributions U is the most suitable
for the null hypothesis, because their dip test values are stochastically larger
than those of other unimodal distributions. The p-value for the unimodality
test is then computed by comparing D(F') with D(U") b times, each time with a
different n observations from U, and the proportion >, .,.., 1(D(F) < D(U"))/b
is the p-value. If the p-value is greater than a significance level a, say 0.05, the
null hypothesis that F' is unimodal is accepted.

3 Unimodal Normalized Cut

Our objective is to detect cohesive graph clusters which have densely connected
edges (low normalized cut value) and have as many homogeneous (unimodal)
attributes as possible (low unimodality compactness value). To achieve the goal,
we need to take both the edge structure and attribute information into account.
If we eigen-decompose the Laplacian matrix associated with the edge structure
to generate n eigenvectors, the k eigenvectors associated with the & smallest
eigenvalues near optimally partition the graph into k subgraphs. However, the
procedure does not consider the attribute information. Since each eigenvector
bisects the graph into two clusters, our idea is to develop a measure to simulta-
neously evaluate the density of the edge structure and the homogeneity of vertex
attributes of a graph cluster derived from the eigenvector. To this end, we first
propose a measure called unimodality compactness to assess the homogeneity of
attributes of a graph cluster. Then we integrate it with the normalized cut and
call the combination unimodal normalized cut. We select k eigenvectors associ-
ated with the k£ smallest unimodal normalized cut values to partition the graph.
In the following, we describe our idea in detail. But first let us give the definitions
as follows,

Definition 1. A unimodal graph cluster is defined as a set of vertices with
at least one attribute following unimodal distributions.

To compute the degree of the unimodality of a graph cluster, we devise a
measure called unimodality compactness using the dip test on each attribute of
the cluster.

Definition 2. Given a cluster of vertices S with number ¢ > 0 of unimodal
attributes, the unimodality compactness is defined as,

d 1<
UC(S) =logy - + — Z; D(Fy). (4)
1=
where d is the number of attributes, F; is the empirical distribution function of

the i-th unimodal attribute of S and D(F;) is the dip test of F;.

The first summand measures the number of unimodal attributes of a cluster. The
second summand measures the average dip test of these unimodal attributes.
This measure prefers the cluster that has more unimodal attributes with lower
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average dip test. Note that the multimodal (irrelevant) attributes are not con-
sidered in the computation. If a graph cluster only has one unimodal attribute,
its unimodality compactness is close to log, d because the second summand in
Eq. 4 is very low. If there is no unimodal attribute in a cluster, we simply set its
unimodality compactness to 2log, d. When d is large and ¢ = 1, the value of %
is also large. To reduce the effect of ¢, we introduce log, in the definition. We
do not use the sigmoid function S(z) = m here because its resolution is

not good, for example S(#) = 0.9997 and S(§) = 0.9820. Also note that a graph
cluster will be more cohesive if it has more unimodal attributes.
A cohesive graph cluster is defined as follows,

Definition 3. A cohesive graph cluster is a subgraph that has densely con-
nected edges and has as many homogeneous (unimodal) attributes as possible.
The density of edges is measured by the normalized cut, and the homogeneity of
attributes is measured by the unimodality compactness.

To detect cohesive graph clusters, our objective function integrates the nor-
malized cut and unimodality compactness in one framework which is given as
follows,

UNCut(S) = (1 —w) - NCut(S) + w - UC(S). (5)

where w(0 < w < 1) is a weight parameter to adjust the importance between the
unimodality compactness value and the normalized cut value of a graph cluster.

As said above, we can first eigen-decompose L to get some eigenvectors. Then,
for each eigenvector, we apply 2-means (k-means with the input number of clus-
ters two) to bisect the graph into two clusters and compute our objective function
(Eq.5). Finally, we select the k eigenvectors associated with the k smallest uni-
modal normalized cut values. However, the time complexity to eigen-decompose
L is O(n?) which is impractical for large-scale attributed graphs. Instead, in this
work, we use the power iteration method [8] to compute a number, say 10 - &,
of pseudo-eigenvectors (approximate eigenvectors) and then choose k pseudo-
eigenvectors associated with the k smallest unimodal normalized cut values.

The power iteration is a fast method to compute the dominant eigenvector
of a matrix. Note that the k largest eigenvectors of W are also the k smallest
eigenvectors of L. The power iteration method starts with a randomly generated
vector v? and iteratively updates as follows,

th,1
t
vt = ) 6
Wy, ©
Suppose W has eigenvectors U = [uj;ug;--- ;u,] with eigenvalues A =

[A1, A2, -+, Ay], where A\ = 1 and u; is constant. We have WU = AU and in
general WU = A'U. When ignoring renormalization, Eq. (6) can be written as

Vt — th—l — Wzvt—z - .= WtVO
= Wt (clul —+ CoUs9 —+ 4 cnun)
= Wiy + eoWhuy + -+ - + ¢, Wtu,,

t t t
= 61>\1U1 + CQ)\QUQ + -4 Cn/\nun-

(7)
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where v can be denoted by ¢;u; +coug+- - -+c,u,, which is a linear combination
of all the original eigenvectors. By generating different starting vectors, we can
get diverse linear combinations. If we let the power iteration method run enough
time, it will converge to the dominant eigenvector u; which is of little use in
clustering. We define the velocity at ¢ to be the vector ' = vt —v*~! and define
the acceleration at ¢ to be the vector € = 8" —§°~! and stop the power iteration
when ||€"||,nqz is below a threshold é.

Algorithm 1 gives the pseudo-code to find k clusters with the smallest k
unimodal normalized cut values.

Algorithm 1. UNCut

Input: Adjacency matrix A, data matrix F and the cluster number k
Output: Cluster indicator c

1w« 0.5, € < 0.001;

2 compute the random walk transition matrix W;

3 iter «— 100, K <+ 10 - k;

4 for i< 1to K do

5 t «— 0,v{ « randn (1,n); /x v € RYX™ %/

/* power iteration */
6 repeat
Wt

4 Vit e

s || et e g

9 t—t+1;
10 until |87 — 8 ||max < € or t > iter;
11 S; «—2-means (v!);
12 UNCut(S;) « (1 —w) - NCut(S;) + w - UC(S,);

13 select k pseudo-eigenvectors associated with the k smallest unimodal normalized
cut values;

14 use k-means on the selected k pseudo-eigenvectors to get the cluster indicator c;

15 return c;

Complexity analysis. Lines 5-10 in Algorithm 1 use the power iteration
method to compute one pseudo-eigenvector, whose time complexity is O(m)
[9], where m is the number of graph edges. Line 11 uses 2-means on each
pseudo-eigenvector, whose time complexity is O(n). At line 12, we compute
the unimodal normalized cut which is dominated by the complexity of comput-
ing the unimodality compactness of clusters. We first need to sort each attribute
before computing the dip test, which costs O (n - log(n)). The computation of dip
test on each attribute costs O(n) [4]. Thus, the time complexity of lines 4-12
is O((m+n-log(n)-d)-k). Line 13 uses k-means on the selected k pseudo-
eigenvector, whose time complexity is O(n - k?). The total time complexity of
Algorithm 1 is O (m ‘k+mn-log(n)-d-k+n- kz)7 which is superlinear in the
number of vertices n, linear in the numbers of edges m and attributes d, and
quadratic in the number of clusters k.



608 W. Ye et al.

4 Experimental Evaluation

In this section, we compare our method UNCut with state-of-the-art methods
from the attributed graph clustering field. As pointed out in [3], the comparison
with the overlapping clustering approaches [2,11] would always be biased to
one of the paradigms due to their completely different objective from those of
paititioning clustering approaches. Thus, following [3] we compare UNCut with
the partitioning clustering methods SA-cluster [21], SSCG [3] and NNM [17]. We
use the synthetic and real-world data to evaluate the clustering performance. All
the experiments are run on the same machine with an Intel Core Quad i7-3770
with 3.4 GHz and 32 GB RAM. We set w = 0.5 for our method UNCut on all
the synthetic and real-world data. The parameters for the competitors are set
according to their original papers. For every method, we use the same number
of cluster on each dataset. For the evaluation of clustering on synthetic data,
we use the Normalized Mutual Information (NMI) and Adjusted Rand Index
(ARI) [5] as clustering quality measures. The higher these clustering measures
are, the better the clustering is. Because we do not have the ground truth for
the real-world data, we use the normalized cut and our unimodality compactness
to evaluate the clustering performance and interprete the results. The code and
all the synthetic and real-world data are publicly available at the website’.

4.1 Synthetic Data

Cluster Quality. We generate synthetic graphs with varying number of ver-
tices n and attributes d. For the case of varying n, we fix the attribute dimen-
sion d = 20. For the case of varying d, we fix the number of vertices n = 2000.
All the graphs are generated based on a benchmark graph generator [7], which
makes the degree and cluster size follow power law distributions that reflect
the real properties of vertices and clusters found in real networks. To add vertex
attributes, for each graph cluster, we choose 20% attributes as relevant attributes
and generate their values according to a Gaussian distribution with mean value
of each attribute randomly sampled from the range [0,100] and variance value
of each attribute randomly sampled from the range (0,0.1). To render the other
attributes of clusters irrelevant to the edge structure, we randomly permute the
cluster labels and generate each cluster’s irrelevant attribute values according to
a Gaussian distribution with mean 0 and variance 1. For each experiment, we test
all the methods on the generated ten attributed graphs differing in the edge struc-
ture and attribute values and report the average performance of each method.
Figures 2(a) and 3(a) show the performance of all the methods when varying
the number of attributes, where we can see that UNCut is superior to its com-
petitors. Compared with SA-cluster and NNM, both UNCut and SSCG exceed
them with large margins. UNCut and SSCG are subspace clustering methods,
while SA-cluster and NNM are full-space clustering methods which are easily

! https://www.dropbox.com/sh/xz2ndx65jai6num /A ACIRI5PqQoYoxrelt W83PrLa?
dl1=0.
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Fig. 3. Quality evaluation (ARI).

deceived by “the curse of dimensionality”. Figures2(b) and 3(b) present the
performance of all the methods when varying the number of graph vertices.
SSCG has a comparable performance when the number of vertices is 1000. How-
ever, our method UNCut beats SSCG when increasing the vertex number. Note
that subspace clustering methods UNCut and SSCG are still better than the
full-space clustering methods SA-cluster and NNM.

Scalability. We still use the above attributed graph generation method to
generate synthetic graphs for the evaluation of the runtime of each method.
Figure 4(a) shows the runtime when varying the number of attributes (the num-
ber of vertices is fixed to 2000). We can see that NNM is the fastest method
and SSCG is the slowest method. SSCG needs to update its subspace depen-
dent weight matrix in every iteration, which is very time consuming. Figure 4(b)
demonstrates the runtime when varying the number of vertices (the number of
attributes is fixed to 20). NNM still performs the best and SSCG performs the
worst. Our method UNCut is the second. Because UNCut is linear in the num-
ber of edges, a drop in the runtime when increasing the number of vertices from
4000 to 6000 can be interpreted as caused by the drop in the number of edges.
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Stability. In this section, we study how the parameter w affects the cluster-
ing performance. Figure 5(a) gives the clustering performance of UNCut on the
synthetic graph with 100 attributes and 2000 vertices when varying w. And
Fig. 5(b) gives the clustering performance of UNCut on the synthetic graph with
20 attributes and 1000 vertices when varying w. From Fig. 5(a), we can see that
UNCut achieves the best result when the value of w is 0.5. From Fig. 5(b), we
can see that UNCut achieves the best result when the value of w is 0.1. For
different graphs with different edge structure and attribute values, the values of
the best w are different.

4.2 Real-World Data

In this section, we evaluate UNCut and its competitors on six real-world datasets
DisNEY [12], DFB [3], ARXIV [3], POLBLOGS [13], 4AREA [13] and PATENTS [3].
The statistics of the real-world data are given in Table 1. The normalized cut and
unimodality compactness values achieved by each algorithm are listed in Table 2.
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Table 1. Statistics of datasets.

Datasets | #vertices | #edges | #attributes | #clusters
DisNEY 124 333 28 9
DFB 100 1,106 5 14
ARXIV 856 2,660 30 19
PoLBLoGs 358 1,288 | 44,839 10
4AREA 26,144 | 108,550 4 50
PATENTS | 100,000 | 188,631 5 150

Table 2. Normalized cut and unimodality compactness values. (N/A means the results
are not available due to the runout of memory.)

Datasets | Normalized cut Unimodality compatness

UNCut | SSCG | SA-cluster | NNM | UNCut | SSCG | SA-cluster | NNM
DisNEY 2.702 | 2.646 |3.959 8.058 1.807 | 20.459 |10.709 77.266
DFB 10.596 | 13.161 | 13.116 13.026 | 11.541 | 20.507 | 60.692 43.082
ARXIV 1.889 | 17.940 | 10.606 18.017 | 26.621 | 176.911 | 45.940 148.378
PoLBroas | 7.429 |5.436 | 8.181 9.071 1.568 | 155.377 | 217.068 124.404
4AREA 30.120 | 41.314 | 10.813 N/A 184.000 |152.83 |37.075 N/A
PaTENTS |31.980 | N/A | N/A N/A [415.941 N/A N/A N/A

We can see from Table 2 that our method UNCut achieves the best results on
the datasets DISNEY, DFB and ARXIV in terms of both the normalized cut and
unimodality compactness values. On the dataset PoLBLOGS, SSCG achieves the
best normalized cut value. However, the unimodality compactness value achieved
by UNCut is much lower than those of its competitors. On the dataset 4AREA,
SA-cluster achieves the best results. Although SSCG is a method detecting sub-
space clusters, it is defeated by SA-cluster on the datasets DISNEY, ARXIV and
4AREA in terms of the unimodality compactness values. For the dataset PATENTS,
all the competitors fail due to their much consumption of the memory. Our
method UNCut is scalable for large-scale networks. To examine whether UNCut
can achieve differing results to those of its competitors, as did in [3], we com-
pute NMI between the results of UNCut and its competitors. A low NMI value
indicates that UNCut is able to detect novel cluster insights, without implying
that the results of the competitors are worse or meaningless. The NMI values
are given in Table 3. From Table 3, we can see that UNCut can find novel cluster
insights different from the competitors, especially on the 4AREA dataset. The
NMI values between the results of UNCut and its competitors are near 0, which
means totally different insights. For case studies, we interprete the detected clus-
ters of all the methods on the datasets DISNEY and POLBLOGS. The results are
plotted in Figs. 6 and 7 by the Python toolbox Networkz.
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Table 3. NMI between the results of UNCut and its competitors. (N/A means the
results are not available due to the runout of memory.)

Datasets | UNCut | SSCG | SA-cluster | NNM
DisNEY 1.000 |0.724 | 0.597 0.164
DFB 1.000 |0.298 | 0.246 0.272
ARXIV 1.000 |0.096 |0.387 0.131
PoLBLoags | 1.000 |0.488 |0.297 0.060
4AREA 1.000 |0.027 | 0.043 N/A

PaTENTS |1.000 |N/A |N/A N/A

(c) SA-cluster

Fig. 6. Clustering results on DISNEY. (Color figure online)

Disney. DISNEY is a subgraph of the Amazon copurchase network. Each movie
(vertex) is described by 28 attributes, such as “average vote”, “product group”,
“price” and etc. The green cluster has 14 movies, which is rated as PG (Parental
Guidance Suggested) and attributed as “Action & Adventure”. It contains
movies such as “Spy Kids”, “Inspector Gadget” and “Mighty Joe Young”. The
purple cluster includes 9 read-along movies, which is rated as G (General Audi-
ence) and attributed as “Kids & Family”. It has movies such as “Beauty and the
Beast”, “Lilo and Stitch”, “Toy Story 27, “The Little Mermaid”, and “Monsters,
Inc.”. The purple cluster has three multimodal attributes “review frequency”,
“rating of review with most votes”, and “rating of most helpful rating”. In other
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(c) SA-cluster

Fig. 7. Clustering results on PoLBLOGS. (Color figure online)

words, the movies in the purple cluster are similar in the subspace spanned by the
other attributes. The clusters found by our method UNCut are subspace clusters
which are cohesive on as many attributes as possible. SSCG splits our purple
cluster into two clusters and our green clusters into two clusters. SA-cluster splits
our green cluster into two clusters. NNM groups the most of the movies together
(yellow cluster), which leads to the highest unimodality compactness value as
shown in Table 2.

PolBlogs. POLBLOGS is the citation network among a collection of online blogs
that discuss political issues. Attributes are the keywords in their text. If a key-
word appears in the text, the attribute value is set to 1, otherwise 0. Thus, each
attribute only has binary values. The red cluster contains 70 blogs. The top
five frequent keywords of the red cluster are “London”, “Iraq”, “government”,
“work”, and “American”. The orange cluster contains 23 blogs. The top six fre-
quent keywords of the orange cluster are “act”, “bush”, “conservative”, “court”,
“Justice”, and “law”. The blue cluster includes 53 blogs. The top eight frequent
keywords of the blue cluster are “people”, “post”, “right”, “political”, “issue”,
“media”, “president”, and “public”. For SSCG and SA-cluster, the sizes of the
two main clusters are very big, i.e., the red and green clusters found by SSCG
totally have 312 vertices and the blue and green clusters found by SA-cluster
totally have 335 vertices. For NNM, the most of the blogs belong to the green



614 W. Ye et al.

cluster which has 306 vertices. Thus, the sizes of the most clusters detected by
the competitors are small, which leads to the high probability of having multi-
modal attributes as proved by the much higher unimodality compactness values
in Table 2.

5 Related Work and Discussion

Compared with massive works on the plain graph clustering, there are relatively
less work on the attributed graph clustering. Differing from the plain graph clus-
tering that groups vertices only considering the edge structure, the attributed
graph clustering achieves grouping vertices with dense edge connectivity and
homogeneous attribute values into clusters. NNM [17] first develops a measure
called normalized network modularity and then proposes a spectral method that
combines the costs of clustering numerical vectors and normalized network modu-
larity into an eigen-decomposition problem. BAGC (Bayesian Attributed Graph
Clustering) [20] develops a Bayesian probabilistic model for attributed graphs,
which captures both structure and attribute aspects of a graph. Clustering is
accomplished by an efficient variational inference method. BAGC is only capa-
ble of categorical attributes. PICS [1] groups vertices into disjoint clusters sat-
isfying that vertices in the same cluster exhibit similar connectivity and feature
coherence. It exploits the Minimum Description Length (MDL) principle to auto-
matically select the parameters such as the cluster number. PICS is only capable
of graphs with binary feature vectors. SA-cluster [21] designs a unified neighbor-
hood random walk distance to measure the vertex similarity on an augmented
graph. It uses k-medoids to partition the graph into clusters with cohesive intra-
cluster structures and homogeneous attribute values.

However, the above methods which take all attributes into consideration
may fail because there may be attributes irrelevant to the edge structure. Now
more researches focus on detecting subspace clusters to which only subsets
of attributes are assigned. CoPaM [11] exploits various pruning strategies to
efficiently find maximal cohesive patterns in the subspace of feature vectors.
GAMer 2] determines sets of vertices which have high similarity in the subsets
of attributes and are densely connected as well by combining the paradigms of
subspace clustering and dense subgraph mining together. The twofold clusters
are optimized by exploiting various pruning strategies considering the density,
size and number of relevant attributes. CoPaM and GAMer exploit the notion of
quasi-cliques which poses strong restrictions on the feature range and diameter
of the clusters. CoPaM generates a huge number of redundant overlapping clus-
ters. To reduce the redundancy, GAMer introduces additional parameters which
are difficult to set for the real-world data. Differing from CoPaM and GAMer,
our partitioning method UNCut does not suffer from redundancy. SSCG [3]
presents a solution for an objective function called Minimum Normalized Sub-
space Cut, which integrates spectral clustering to the problem of subspace clus-
tering for attributed graphs. It detects an individual set of relevant features for
each cluster. Our method UNCut only considers the relevant attributes to the
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edge structure, i.e., irrelevant attributes are excluded from the computation of
the unimodality compactness. In other words, UNCut detects subspace clusters
with as many unimodal attributes as possible.

Recently, a new research trend is to detect community outliers in attributed
graphs. MAM (maximization of attribute-aware modularity) [14] develops
attribute compactness to quantify the relevance of the attributes, which is then
combined with the conventional modularity for the robust graph clustering with
respect to irrelevant attributes and outliers. ConSub (congruent subspace selec-
tion) [15] defines a measure to assess the degree of congruence between a set of
attributes and the edge structure, which is then used for the statistical selec-
tion of the congruent subspaces. FocusCO [13] defines a new graph clustering
problem which incorporates the user’s preference into graph mining. Given a
set of examplar nodes of user’s interest, FocusCO infers user’s preference by
applying a distance metric learning method. New nodes are carefully added to
the set of examplar nodes by checking the weighted conductance. Differing from
the conventional attributed graph clustering methods, FocusCO performs a local
clustering of interest to the user rather than the global partitioning of the entire
graph.

6 Conclusion

In this paper, we have proposed UNCut to detect cohesive clusters in attributed
graphs. To this end, we develop a measure called unimodality compactness, which
is then combined with the normalized cut to elegantly search for cohesive clus-
ters. Since the complexity of the eigen-decomposition of the graph Laplacian
matrix is high, we adopt the power iteration method to approximately com-
pute the eigenvectors. We have tested our method UNCut on various synthetic
and real-world data, which verifies that UNCut achieves better results than its
competitors. Since in social networks people may belong to multiple groups,
an interesting challenge for the future work is to develop a method to detect
overlapping cohesive clusters in attributed graphs.
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