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Abstract. Spectral dimensionality reduction algorithms are widely used
in numerous domains, including for recognition, segmentation, tracking
and visualization. However, despite their popularity, these algorithms
suffer from a major limitation known as the “repeated eigen-directions”
phenomenon. That is, many of the embedding coordinates they produce
typically capture the same direction along the data manifold. This leads
to redundant and inefficient representations that do not reveal the true
intrinsic dimensionality of the data. In this paper, we propose a general
method for avoiding redundancy in spectral algorithms. Our approach
relies on replacing the orthogonality constraints underlying those meth-
ods by unpredictability constraints. Specifically, we require that each
embedding coordinate be unpredictable (in the statistical sense) from all
previous ones. We prove that these constraints necessarily prevent redun-
dancy, and provide a simple technique to incorporate them into existing
methods. As we illustrate on challenging high-dimensional scenarios, our
approach produces significantly more informative and compact represen-
tations, which improve visualization and classification tasks.

1 Introduction

The goal in nonlinear dimensionality reduction is to construct compact repre-
sentations of high dimensional data, which preserve as much of the variability
in the data as possible. Such techniques play a key role in diverse applications,
including recognition and classification [3,12,18], tracking [24,25,38], image and
video segmentation [21,28], pose estimation [11,29], age estimation [15], spatial
and temporal super-resolution [7,28], medical image and video analysis [5,34]
and data visualization [26,37,40].

Many of the dimensionality reduction methods developed in the last two
decades are based on spectral decomposition of some data-dependent (kernel)
matrix. These include, e.g., Locally Linear Embedding (LLE) [30], Laplacian
Eigenmaps (LEM) [2], Isomap [35], Hessian Eigenmaps (HLLE) [9], Local
Tangent Space Alignment (LTSA) [41], Diffusion Maps (DFM) [8], and Kernel
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Fig. 1. The first two projections of data points lying on a Swiss roll manifold, as
obtained with the original LLE, HLLE and LTSA algorithms and with our non-
redundant versions of those algorithms. Top rows: the points colored by the projections.
The original algorithms redundantly capture progression along the angular direction
twice. In contrast, with our modifications, the second projection captures the vertical
direction. Bottom row: scatter plot of the 2nd projection vs. the 1st. In the original
algorithms, the 2nd projection is a function of the 1st, while in our algorithms it is
not. (Color figure online)

Principal Component Analysis (KPCA) [32]. Methods in this family differ in
how they construct the kernel matrix, but in all of them the eigenvectors of the
kernel serve as the low-dimensional embedding of the data points [4,17,36].

A significant shortcoming of spectral dimensionality reduction algorithms
is the “repeated eigen-directions” phenomenon [10,13,14]. That is, successive
eigenvectors tend to represent directions along the data manifold which were
already captured by previous ones. This leads to redundant representations that
are unnecessarily larger than the intrinsic dimensionality of the data. To illus-
trate this effect, Fig. 1 visualizes the two dimensional embeddings of a Swiss
roll, as obtained by several popular algorithms. In all the examined methods,
the second dimension of the embedding carries no additional information with
respect to the first. Specifically, although the first dimension already completely
characterizes the position along the long axis (angular direction) of the manifold,
the second dimension is also a function of this axis. Progression along the short
axis (vertical direction) is captured only by the third eigenvector in this case
(not shown). Therefore, the two dimensional representation we obtain is 50%
redundant: Its second feature is a deterministic function of the first.

In fact, the redundancy of spectral methods can be arbitrarily high. To see
this, consider for example the embedding obtained by the LEM method, whose
kernel approximates the Laplace-Beltrami operator on the manifold. The Swiss-
roll corresponds to a two dimensional strip with edge lengths L1 and L2. Thus,
the eigenfunctions and eigenvalues (with Neumann boundary conditions) are
given in this case by
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Fig. 2. A 2D strip with edge lengths (a) L1 = 1.5L2, (b) L1 = 2.5L2 and (c) L1 =
3.5L2, colored according to the first few coordinates of the Laplacian Eigenmaps embed-
ding. Coordinates 2, . . . , �L1/L2� are redundant as they are all functions of only x1,
which is already fully represented by the first coordinate. (Color figure online)
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for k1, k2 = 0, 1, 2, . . ., where x1 and x2 are the coordinates along the strip. Ignor-
ing the trivial function φ0,0(x1, x2) = 1, it can be seen that the first �L1/L2�
eigenfunctions (corresponding to the smallest eigenvalues) are functions of only
x1 and not x2 (see Fig. 2). Thus, at least �L1/L2�+1 projections are required to
capture the two dimensions of the manifold, which leads to a very inefficient rep-
resentation when L1 is much larger than L2. Projections 2, . . . , �L1/L2� are all
functions of projection 1, and are thus redundant. For example, when L1 > 2L2,
the first two eigenfunctions are φ1,0(x1, x2) = cos(πx1/L1) and φ2,0(x1, x2) =
cos(2πx1/L1), which clearly satisfy φ2,0(x1, x2) = 2φ2

1,0(x1, x2) − 1. Notice that
this redundancy appears despite the fact that the functions {φk1k2} are orthog-
onal. This highlights the fact that orthogonality does not imply non-redundancy.

The above analysis is not unique to the LEM method. Indeed, as shown
in [14], spectral methods produce redundant representations whenever the vari-
ances of the data points along different manifold directions vary significantly.
This observation, however, cannot serve to solve the problem as in most cases
the underlying manifold is not known a-priori.

In this paper, we propose a general framework for eliminating the redun-
dancy caused by repeated eigen-directions. Our approach applies to all spectral
dimensionality reduction algorithms, and is based on replacing the orthogonal-
ity constraints underlying those methods, by unpredictability ones. Namely, we
restrict subsequent projections to be unpredictable (in the statistical sense) from
all previous ones. As we show, these constraints guarantee that the projections
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Fig. 3. A 10-dimensional representation of 15K MNIST handwritten digits [23] was
learned with LEM and our non-redundant LEM. The bar plots show the normalized
errors attained in regressing each projection against all previous ones, indicating to
what extent the projection is redundant (higher is less redundant) [10].

be non-redundant. Therefore, once a manifold dimension is fully represented by
a set of projections in our method, the following projections must capture a new
direction along the manifold. As we demonstrate on several high-dimensional
data-sets, the embeddings produced by our algorithm are significantly more
informative than those learned by conventional spectral methods.

2 Related Work

Very few works suggested ways to battle the repeated eigen-directions phe-
nomenon. Perhaps the simplest approach is to identify the redundant projec-
tions in a post-processing manner [10]. In this method, one begins by computing
a large set of projections. Each projection is then regressed against all previous
ones (via nonparametric regression). Projections with low regression errors (i.e.
which can be accurately predicted from the preceding ones) are discarded. This
approach is quite efficient but usually works well only in simple situations. Its key
limitation is that it is restricted to choose the projections from a given finite set
of functions, which may not necessarily contain a “good” subset. Indeed, as we
demonstrate in Fig. 3, in real-world high-dimensional settings all the projections
tend to be partially predictable from previous ones. Yet, there usually does not
exist any single projection which can be considered fully redundant. Therefore,
despite the obvious dependencies, almost no projection is practically discarded
in this approach. In contrast, our algorithm produces projections which cannot
be predicted from the previous ones (with normalized regression errors ∼100%).
Therefore, we are able to preserve more information about the data.

Another simple approach is to compute the projections sequentially, by elim-
inating the variations in the data which can be attributed to the projections
that have already been computed. A naive way of doing so, would be to subtract
from the data points their reconstructions based on all the previous projections.
However, perhaps counter-intuitively, this sequential regression process does not
necessarily prevent redundancy. This is because the data points may fall off the
manifold during the iterations, as demonstrated in Fig. 4(b).
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Fig. 4. (a) The first three projections of points lying on a ring manifold, obtained
with the original LEM algorithm. The projections correspond to cos(θ), sin(θ) and
sin(2θ + c), where θ is the outer angle of the ring. In this case, Projection 2 is not
a function of Projection 1 and is thus non-redundant. But Projection 3 is a function
of Projections 1 and 2, and is thus redundant. (b) The projections obtained with the
naive sequential regression approach (Sect. 2). Here, Projection 3 is still redundant.
The right column shows the points after subtracting their prediction from previous
projections, which causes them to fall off the manifold. (c) The projections obtained
with the algorithm of [13]. Here, the algorithm halts after one projection. The right
column shows the points after the advection process along the manifold, which results in
two clusters forming an unconnected graph. (d) The projections obtained with our non-
redundant version of LEM. Our algorithm extracts a non-redundant third projection,
which captures progression along the inner angle of the ring.

A more sophisticated approach, suggested by Gerber et al. [13], is to collapse
the data points along the manifold in the direction of the gradient of the previous
projection. In this approach, the points always remain on the manifold. However,
this method fails whenever a projection is a non-monotonic function of some
coordinate along the manifold. This happens, for example, in the ring manifold
of Fig. 4. In this case, the first projection extracted by LEM corresponds to
cos(θ), where θ is the outer angle of the ring. Therefore, before computing the
second projection, the advection process moves the points along the θ coordinate
towards the locations at which cos(θ) attains its mean value, which is 0. This
causes the points with θ ∈ (0, π) to collapse to θ = π/2, and the points with θ ∈
(π, 2π) to collapse to θ = 3π/2. The two resulting clusters form an unconnected
graph, so that LEM cannot be applied once more. An additional drawback of
this method is that it requires a-priori knowledge of the manifold dimension.
Furthermore, it is very computationally intensive and thus impractical for high-
dimensional big data applications.

In this paper, we propose a different approach. Similarly to the methods
described above, our algorithm is sequential. However, rather than heuristically
modifying the data points in each stage, we propose to directly incorporate
constraints which guarantee that the projections are not redundant.
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3 Eliminating Redundancy

Nonlinear dimensionality reduction algorithms seek a set of non-linear projec-
tions fi : RD → R, i = 1, · · · , d which map D-dimensional data points xn ∈ R

D

into a d-dimensional feature space (d < D).

Definition 1. We call a sequence of projections {fi} non-redundant if none
of them can be expressed as a function of the preceding ones. That is, for every i,

fi(x) �= g(fi−1(x), · · · , f1(x)) (3)

for every function g : Ri−1 → R.

Let us see why existing spectral dimensionality reduction algorithms do not
necessarily yield non-redundant projections. Spectral algorithms obtain the ith
projection of all the data points, denoted by f i = (fi(x1), · · · , fi(xN ))T , as the
solution to the optimization problem1

max
f i

fT
i Kf i

s.t. 1Tf i = 0

fT
i f i = 1

fT
i f j = 0, ∀j < i.

(4)

Here, K is an N × N algorithm-specific positive definite (kernel) matrix
constructed from the data points [14,36], and 1 is an N × 1 vector of ones.
The first constraint in (4) ensures that the projections have zero means. The
last two constraints restrict the projections to be orthonormal. The solution to
Problem (4) is given by the d top eigenvectors of the centered kernel matrix
(I − 1

N 11T )K(I − 1
N 11T ). When K is a stochastic matrix (e.g. LLE, LEM),

the solution is simply eigenvectors 2, . . . , d + 1 of K (without centering).
The orthogonality constraints in (4) guarantee that the projections be lin-

early independent. However, they do not guarantee non-redundancy. To see this,
it is insightful to interpret them in statistical terms. Assume that the data
points {xn} correspond to independent realizations of some random vector X.
Then orthogonality corresponds to zero statistical correlation, as

E [fi(X)fj(X)] ≈ 1
N

∑
n

fi(xn)fj(xn) = 1
N fT

i f j = 0. (5)

Therefore, in particular, the constraints in (4) guarantee that each projection be
uncorrelated with any linear combination of the preceding projections, so that

1 Note that LEM and DFM rather use weighted orthogonality constraints, but they
can also be brought into the form of (4) (see supplementary material). Also, note
that some methods (e.g. LEM, LLE) rather minimize the objective in (4). These
problems can be cast as (4) with the kernel Ǩ = λmaxI − K [4,17].
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fi(X) cannot be a linear function of the previous projections {fj(X)}j<i. How-
ever, these constraints do not prevent fi(X) from being a nonlinear function of
the previous projections, which would lead to redundancy, as in Figs. 1, 2 and 4.

To enforce non-redundancy, i.e. that each projection is not a function of the
previous ones, we propose to use the following observation.

Lemma 1. A sequence of non-trivial zero-mean projections {fi} is non-
redundant if each of them is unpredictable from the preceding ones, namely

E [fi(X)|fi−1(X), · · · , f1(X)] = 0. (6)

Proof. Assume (6) holds and suppose to the contrary that the ith projection
is non-trivial and redundant, so that fi(X) = h(fi−1(X), . . . , f1(X)) for some
function h. From the orthogonality property of the conditional expectation,

E[(fi(X) − E[fi(X)|fi−1(X), · · · , f1(X)]) g(fi−1(X), · · · , f1(X))] = 0 (7)

for every function g. Substituting (6), this property implies that

E [fi(X) g(fi−1(X), · · · , f1(X))] = 0, ∀g. (8)

Therefore, in particular, for g ≡ h we get that E[f2
i (X)] = 0, contradicting our

assumption that fi(X) is non-trivial. ��
Notice that by enforcing unpredictability, we in fact restrict each projec-

tion to be uncorrelated with any function of the previous projections (see (8)).
This constraint is stronger than the original zero correlation constraint (5),
yet less restrictive than statistical independence. Specifically, two random vari-
ables Y,Z are independent if and only if E [g(Y )h(Z)] = E [g(Y )]E [h(Z)] , ∀g, h,
whereas for Y to be unpredictable from Z it is only required that E [Y h(Z)] =
E [Y ]E [h(Z)] , ∀h (corresponding to (8) in the case of zero-mean variables).

4 Algorithm

The unpredictability condition (6) is in fact an infinite set (a continuum) of
constraints, as it restricts the conditional expectation of fi(X) to be zero, given
every possible value that the previous projections {fj(X)}j<i may take. How-
ever, in practice, spectral methods compute the projections only at the sample
points. Therefore, to obtain a practical method, we propose to enforce these
restrictions only at the sample embedding points, leading to a discrete set of N
constraints

E [fi(X)|{fj(X) = fj(xn)}j<i] = 0, n = 1, . . . , N. (9)

These N conditional expectations can be approximated using a kernel smoother
matrix P i ∈ R

N×N for regressing f i against f i−1, . . . ,f1, so that the nth entry
of the vector P if i approximates the nth conditional expectation in (9),

[P if i]n ≈ E [fi(X)|{fj(X) = fj(xn)}j<i] . (10)
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Fig. 5. Top 100 of 15K singular values of the
matrix P 2 in the MNIST experiment of Fig. 3.
The matrix is very close to being low-rank:
0.1% of its singular values account for over
99.9% of its Frobenius norm.

When using the Nadaraya-
Watson estimator [27,39], the accu-
racy of this approximation is
O(N−4/(i+3)). We therefore pro-
pose to replace the zero-correlation
constraints fT

i f j = 0 in (4),
by the unpredictability restric-
tions P if i = 0. Our proposed
redundancy-avoiding version of the
spectral dimensionality reduction
problem (4) is thus

max
f i

fT
i Kf i

s.t. 1Tf i = 0

fT
i f i = 1

P if i = 0, ∀i > 1.

(11)

In the continuous domain, the conditional expectation operator has a non-
empty null space. However, this property is usually not maintained by non-
parametric sample approximations, like kernel regressors. As a result, the matrix
P i will typically be only approximately low-rank. Figure 5 shows a representa-
tive example, where 0.1% of the singular values account for over 99.9% of the
Frobenius norm. To ensure that P i is strictly low-rank (so that P if i = 0 is not
an empty set), we truncate its negligible singular values.

The solution to problem (11) is no longer given by the spectral decomposition
of K. However, it can be brought into a convenient form by using the following
lemma2 (see proof in AppendixA).

Lemma 2. Denote the compact SVD of P i by U iDiV
T
i . Then the vectors

f1, . . . ,fd which optimize Problem (11), also optimize

max
f i

fT
i K̃if i

s.t. 1Tf i = 0

fT
i f i = 1,

(12)

where K̃i = (I − V iV
T
i )K(I − V iV

T
i ) and V 1 = 0.

From this lemma, it becomes clear that f i is precisely the top eigenvector of K̃i.
This implies that we can determine the non-redundant projections sequentially.
In the ith step, we first modify the kernel K according to the previous projec-
tions f i−1, . . . ,f1 to obtain K̃i. Then, we compute its top eigenvector to obtain
projection f i. This is summarized in Algorithm 1, where for concreteness, we
chose P i to be the Nadaraya-Watson smoother with a Gaussian-kernel.
2 Note that this lemma holds true only for maximization problems.
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Algorithm 1. Non-redundant dimensionality reduction.
Input: High-dimensional data points xn ∈ R

D.
Output: Embeddings f i = (fi(x1), · · · , fi(xN ))T .
1: Construct the kernel matrix K as in the original algorithm (e.g. LLE, LEM,

Isomap, etc.).
2: If the original algorithm minimizes the objective of (4) (e.g. LLE, LEM), then set

K ← λmaxI − K .
3: Assign the top (non-trivial) eigen-vector of K to f 1.
4: for i = 2, . . . , d do
5: Construct smoothing matrix

[P i]j,k ← exp
{

− 1
2h2

∑i−1
�=1 (f� (xj) − f� (xk))2

}
, [P i]j,k ← [P i]j,k∑N

n=1 [P i]j,n

.

6: Compute V i ∈ R
N×r, the top r right singular vectors of P i accounting for all

non-negligible singular values.
7: Form the modified kernel matrix

K̃ i ←
(
I − V iV

T
i

)
K

(
I − V iV

T
i

)
.

8: Assign the top eigen-vector of K̃ i to f i.
9: end for

Efficient Implementation. We use the fast method of [16] to compute the top
eigenvector of K̃i (step 8). Each iteration of [16] involves multiplication by K̃i,
which can be broken into efficient multiplications by V i and V T

i which are N ×r
and r × N with r 
 N , and by K which is usually sparse by construction (e.g.
in LEM, LLE, LTSA). Thus, we never explicitly form the matrix K̃i (step 7).

When memory resources are restrictive, we construct a sparse smoothing
matrix P i (step 5) by using only the k nearest neighbors of each sample. To
minimize the degradation in the representation quality we use the maximal k
such that P i fits in memory.

4.1 Relation to Independent Component Analysis (ICA)

Our method may seem similar to ICA [19,22], however, they are quite distinct.
First, the ICA objective is independence (without preservation of geometrical
structure), while in our method the objective is to preserve geometric struc-
ture subject to a statistical constraint on the embedding coordinates. Second,
non-linear ICA is an under-determined problem, making it necessary to impose
assumptions or to restrict the class of non-linear functions [20,33]. Finally, inde-
pendence is a stronger constraint than unpredictability, and would thus narrow
the set of possible solutions. This is while, as we saw, unpredictability is enough
for avoiding redundancy.
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5 Experiments

We tested our non-redundant algorithm on three high-dimensional data sets.
In all our experiments, we report results with the Nadaraya-Watson smoother
[27,39], as specified in Algorithm 1. We also experimented with a locally linear
smoother and did not observe a significant difference. The kernel smoother band-
width h was set adaptively: for computing P i, we took h = α(

∑i−1
j=1

1
N ‖f j‖2)1/2,

where the parameter α ∈ [0.1, 0.6] was chosen using a tune set in the classifica-
tion task and manually in the visualization tasks. Singular vectors corresponding
to singular values smaller than 3% of the largest singular value were truncated.
We used the largest number of nearest neighbors such that P i could still be
stored in memory (10K in our case). A hyper-parameter analysis is included in
the supplementary material.

5.1 Artificial Head Images

The artificial head image dataset [35] is a popular test bed for manifold learning
techniques. It contains 64 × 64 computer-rendered images of a head, with vary-
ing vertical and horizontal camera positions (denoted by θ and φ) and lighting
directions (denoted by ψ). Linear methods (e.g. PCA, ICA) fail to detect these
underlying parameters [35]. However, most (non-linear) spectral methods man-
age to non-redundantly extract those parameters with the first three projections,
since each of the parameters (θ, φ, ψ) varies significantly across this data set.

Here, to make the representation learning task more challenging, we chose
a 257 subset of the original data set, corresponding to the reduced parameter
range θ ∈ [−75◦, 75◦], φ ∈ [−8◦, 8◦], ψ ∈ [105◦, 175◦]. Figures 6(a), (c) visualize
the projections extracted by LEM and LTSA in this case. As can be seen, both
algorithms produce redundant representations, as their second projection is a
deterministic function of the first. When incorporating our unpredictability con-
straints, we are able to avoid this repetition and to reveal additional information
with the second projection, as evident from Figs. 6(b), (d). We quantify this by
reconstructing the images from their two-dimensional embeddings using leave-
one-out prediction with a non-parametric regressor (Nadaraya-Watson [27,39]).
The average reconstruction peak signal to noise ratio (PSNR) is 18.0/18.2 for
the original LEM/LTSA and 19.2/19.9 with our non-redundant LEM/LTSA.

To analyze what the projections capture, we plot in Fig. 6(e)–(h) each of the
embedding coordinates vs. the horizontal and vertical camera positions. From
Figs. 6(e), (g) we see that in the original algorithms, Projections 1 and 2 are
both correlated only with the horizontal angle θ. In our approach, on the other
hand, Projection 1 captures the horizontal angle θ while Projection 2 reveals the
vertical angle φ (see Figs. 6(f), (h)).

5.2 Image Patch Representation

To visualize the effect of non-redundancy in low-level vision tasks, we extracted
all 7×7 patches with 3 pixel overlap from an image (taken from [31]), and learned
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Fig. 6. Two-dimensional embeddings of computer rendered head images with varying
pose and lighting directions. (a) The original LEM method. (b) Our non-redundant
LEM. (c) The original LTSA method. (d) Our non-redundant LTSA. In the original
algorithms, the second coordinate is a function of the first. In our method, the second
coordinate clearly carries additional information w.r.t. first, and is thus non-redundant.
(e)–(h) The first two projections of the head images vs. the horizontal and vertical
angles (θ, φ) of the heads. The two projections extracted by the original algorithms are
both correlated only with the horizontal angle θ. In our non-redundant algorithms, on
the other hand, the second projection is correlated with the vertical angle φ.

a three dimensional representation using Isomap and using our non-redundant
version of Isomap. Figure 7 visualizes the first three projections by coloring each
pixel according to the embedding value of its surrounding patch. Observe that in
the original algorithm, the first two projections redundantly capture brightness
attributes, and the third captures mainly vertical edges with some brightness
attributes still remaining (e.g. the sky, the left poolside). In contrast, in our
algorithm, the second and third projections capture the vertical and horizontal
edges (without redundantly capturing brightness multiple times), thus providing
additional information. The redundancy of the 2nd Isomap projection can be
seen in the scatter plot of the 2nd projection vs. the 1st. With our non-redundant
algorithm, the 2nd projection is clearly not a function of the 1st, and thus
captures new informative features. To quantify the amount of redundancy, we
reconstruct the patches from their three-dimensional embeddings using leave-
one-out prediction with the Nadaraya-Watson regressor, and then form an image
by averaging overlapping patches (Fig. 8). The reconstruction PSNR is 32.9 using
Isomap and 33.2 using our non-redundant Isomap.

Notice that the brightness and gradient features are linear functions of the
input patches. Thus, our extracted 3D manifold is in fact linear and would be also
correctly revealed by linear methods, such as PCA (not shown). Nevertheless,
Isomap which is a nonlinear method, fails to extract this linear manifold due to
redundancy (similarly to Fig. 2). In contrast, our non-redundant algorithm can
reveal the underlying manifold regardless of its complexity.
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Fig. 7. Three-dimensional embedding of all 7 × 7 patches with a 3 pixel overlap,
obtained with Isomap and with our non-redundant version of Isomap. Each pixel is
colored according to the projection of its surrounding patch. In both methods, the
first projection captures brightness. However, the original Isomap redundantly cap-
tures brightness-related features again with the second projection, and captures vertical
edges only with the third projection. In contrast, our non-redundant version captures
vertical and horizontal edges with the second and third projections. The scatter plot
reveals that in the original Isomap, the 2nd projection is a function of the 1st, while
in ours it is not. (Color figure online)

Isomap (PSNR = 32.9) Ours (PSNR = 33.2)Input image

Fig. 8. The image of Fig. 7 reconstructed from the 3-dimensional patch embeddings
obtained with Isomap and with our non-redundant Isomap. Note how horizontal edges
are not preserved by the Isomap projections, but are preserved by our method.

5.3 MNIST Handwritten Digits

In most applications, the “correct” parametrization of the data manifold is not
as obvious as in the head experiment. One example is the MNIST database [23],
which contains 28 × 28 images of handwritten digits. In such settings, determin-
ing the quality of a low-dimensional representation can be done by measuring
its impact on the performance in downstream tasks, like classification.

In the next experiment, we randomly chose a subset of 15K images from
the MNIST data set, based on which we learned low-dimensional represen-
tations with LEM and with three modifications of LEM: (i) the sequential
regression technique (Sect. 2), (ii) the algorithm of Dsilva et al. [10], and
(iii) our non-redundant method. We then split the data into 10K/2.5K/2.5K
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for training/tuning/testing and trained a third degree polynomial-kernel SVM
[6] to classify the digits based on their low-dimensional representations. The
SVM’s soft margin parameter c and kernel parameter γ were tuned based on
performance on the tune set (within the range c ∈ [1, 10], γ ∈ [0.1, 0.2]). Table 1
shows the classification error for various representation sizes. As can be seen, our
non-redundant representation leads to the largest and most consistent decrease
in the classification error. Notice that the linear PCA/ICA3 baselines are inferior
in this highly non-linear scenario.

Table 1. MNIST experiment classification errors [%].

15K examples
all labeled

# of
proj.

LEM
Dsilva
et. al.

Sequential
regression Ours PCA ICA

3 17.6 17.6 17.3 12.0 47.8 59.0
5 8.8 8.8 14.4 7.6 25.7 34.1
7 6.9 6.9 14.2 6.0 14.2 19.7
9 6.5 6.5 14.2 5.6 9.9 12.9
11 6.0 5.4 13.8 5.0 7.7 6.6

15K examples
300 labeled

# of
proj.

LEM Ours

5 12.6 10.3
16 8.4 6.6
24 7.2 7.2
35 7.8 8.1
50 8.8 8.8

To demonstrate the importance of compact representations, particularly in
the semi-supervised scenario, we repeated the experiment where only 300 of the
examples are labeled for the SVM training (right pan of Table 1). Notice that the
error reaches a minimum at 16/24 projections with our/LEM method, and then
begins to rise as the representation dimension increases. This illustrates that
unnecessarily large representations result in inferior performance in downstream
tasks. Our method, which is designed to construct compact representations,
achieves a lower minimal error (6.6% vs. 7.2%).

Run-time. Attaining the non-redundant projections comes at the expense of
increased run-time. For example, obtaining 11 projections of 15K MNIST exam-
ples takes 14 min on a 4-core Intel i5 desktop with 16 GB RAM, whereas obtain-
ing the original LEM projections takes 13 s.

6 Conclusions

We presented a general approach for overcoming the redundancy phenomenon
in spectral dimensionality reduction algorithms. As opposed to prior attempts,
which fail in complex high-dimensional situations, our approach provably pro-
duces non-redundant representations. This is achieved by replacing the orthogo-
nality constraints underlying spectral methods, by unpredictability constraints.
3 In ICA, the number of independent components is equal to the dimension of the data.

To obtain a low-dimensional embedding, we applied ICA on the low-dimensional
embedding produced by PCA [1].
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Our solution reduces to applying a sequence of spectral decompositions, where in
each step, the kernel matrix is modified according to the projections computed
so far. Our experiments illustrate the ability of our method to capture more
informative compact representations of high-dimensional data.

A A Proof of Lemma 2

We start by proving that any f i solving (12) necessarily satisfies P if i = 0.
First, note that this constraint is equivalent to V iV

T
i f i = 0, since Di, U i,

and V i have empty null spaces. Now, suppose that f i maximizes the objective
of (12) and satisfies the constraints ‖f i‖ = 1 and 1Tf i = 0, but does not satisfy
V iV

T
i f i = 0. Then define the alternative solution

f̃ i =
(I − V iV

T
i )f i

‖(I − V iV
T
i )f i‖

, (13)

which clearly satisfies the constraints ‖f̃ i‖ = 1 and 1T f̃ i = 0, but additionally
also satisfies V iV

T
i f i = 0. Notice that I − V iV

T
i is a projection matrix (as

V i is orthogonal), so that (I − V iV
T
i )2 = I − V iV

T
i and ‖(I − V iV

T
i )f i‖2 ≤

‖f i‖2 = 1. Therefore,

f̃ i

T
K̃if̃ i =

fT
i (I − V iV

T
i )2K(I − V iV

T
i )2f i

‖(I − V iV
T
i )f i‖2

≥ fT
i K̃if i, (14)

with equality only when V iV
T
i f i = 0. In other words, f̃ i achieves a higher objec-

tive value than f i, contradicting our assumption that f i is a solution to (12).
This proves that any f i that solves problem (12) necessarily also satisfies the
constraints of problem (11). Therefore, effectively, the solutions to (11) and (12)
satisfy the same constraints.

Next, observe that if f i satisfies the constraint V iV
T
i f i = 0 then the objec-

tives of (11) and (12) are equivalent, since

fT
i K̃if i = fT

i (I − V iV
T
i )K(I − V iV

T
i )f i = fT

i Kf i. (15)

Therefore, f i solves (12) if and only if it solves (11).
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