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Abstract. Hashing methods have been widely used for applications of
large-scale image retrieval and classification. Non-deep hashing meth-
ods using handcrafted features have been significantly outperformed by
deep hashing methods due to their better feature representation and end-
to-end learning framework. However, the most striking successes in deep
hashing have mostly involved discriminative models, which require labels.
In this paper, we propose a novel unsupervised deep hashing method,
named Deep Discrete Hashing (DDH), for large-scale image retrieval and
classification. In the proposed framework, we address two main prob-
lems: (1) how to directly learn discrete binary codes? (2) how to equip
the binary representation with the ability of accurate image retrieval
and classification in an unsupervised way? We resolve these problems
by introducing an intermediate variable and a loss function steering the
learning process, which is based on the neighborhood structure in the
original space. Experimental results on standard datasets (CIFAR-10,
NUS-WIDE, and Oxford-17) demonstrate that our DDH significantly
outperforms existing hashing methods by large margin in terms of mAP
for image retrieval and object recognition. Code is available at https://
github.com/htconquer/ddh.

1 Introduction

Due to the popularity of capturing devices and the high speed of network trans-
formation, we are witnessing the explosive growth of images, which attracts great
attention in computer vision to facilitate the development of multimedia search
[35,42], object segmentation [22,34], object detection [26], image understand-
ing [4,33] etc. Without a doubt, the ever growing abundance of images brings
an urgent need for more advanced large-scale image retrieval technologies. To
date, high-dimensional real-valued features descriptors (e.g., deep Convolutional
Neural Networks (CNN) [30,37,39] and SIFT descriptors) demonstrate supe-
rior discriminability, and bridge the gap between low-level pixels and high-level
semantic information. But they are less efficient for large-scale retrieval due to
their high dimensionality.

Therefore, it is necessary to transform these high-dimensional features into
compact binary codes which enable machines to run retrieval in real-time and
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with low memory. Existing hashing methods can be classified into two cate-
gories: data-independent and data-dependent. For the first category, hash codes
are generated by randomly projecting samples into a feature space and then
performing binarization, which is independent of any training samples. On the
other hand, data-dependent hashing methods learn hash functions by exploring
the distribution of the training data and therefore, they are also called learn-
ing to hashing methods (L2H) [43]. A lot of L2H methods have been proposed,
such as Spectral hashing (SpeH) [45], iterative quantization (ITQ) [9], Multiple
Feature Hashing (MFH) [36], Quantization-based Hashing (QBH) [32], K-means
Hashing (KMH) [12], DH [24], DPSH [20], DeepBit [23], etc. Actually, those
methods can be further divided into two categories: supervised methods and
unsupervised methods. The difference between them is whether to use super-
vision information, e.g., classification labels. Some representative unsupervised
methods include ITQ, Isotropic hashing [16], and DeepBit which achieves promis-
ing results, but are usually outperformed by supervised methods. By contrast,
the supervised methods take full advantage of the supervision information. One
representative is DPSH [20], which is the first method that can perform simul-
taneous feature learning and hash codes learning with pairwise labels. However,
the information that can be used for supervision is also typically scarce.

To date, hand-craft floating-point descriptors such as SIFT, Speeded-up
Robust Features (SURF) [2], DAISY [41], Multisupport Region Order-Based
Gradient Histogram (MROGH) [8], the Multisupport Region Rotation and
Intensity Monotonic Invariant Descriptor (MRRID) [8] etc., are widely utilized to
support image retrieval since they are distinctive and invariant to a range of com-
mon image transformations. In [29], they propose a content similarity based fast
reference frame selection algorithm for reducing the computational complexity of
the multiple reference frames based inter-frame prediction. In [40], they develop
a so-called correlation component manifold space learning (CCMSL) to learn a
common feature space by capturing the correlations between the heterogeneous
databases. Many attempts [21,25] were focusing on compacting such high quality
floating-point descriptors for reducing computation time and memory usage as
well as improving the matching efficiency. In those methods, the floating-point
descriptor construction procedure is independent of the hash codes learning and
still costs a massive amounts of time-consuming computation. Moreover, such
hand-crafted feature may not be optimally compatible with hash codes learning.
Therefore, these existing approaches might not achieve satisfactory performance
in practice.

To overcome the limitation of existing hand-crafted feature based methods,
some deep feature learning based deep hashing methods [7,10,11,20,46,47] have
recently been proposed to perform simultaneous feature learning and hash-code
learning with deep neural networks, which have shown better performance than
traditional hashing methods with hand-crafted features. Most of these deep hash-
ing methods are supervised whose supervision information is given as triplet or
pairwise labels. An example is the deep supervised hashing method by Li et al.
[20], which can simultaneously learn features and hash codes. Another example
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is Supervised Recurrent Hashing (SRH) [10] for generating hash codes of videos.
Cao et al. [3] proposed a continuous method to learn binary codes, which can
avoid the relaxation of binary constraints [10] by first learning continuous rep-
resentations and then thresholding them to get the hash codes. They also added
weight to data for balancing similar and dissimilar pairs.

In the real world, however, the vast majority of training data do not have
labels, especially for scalable dataset. To the best of our knowledge, DeepBit [23]
is the first to propose a deep neural network to learn binary descriptors in an
unsupervised manner, by enforcing three criteria on binary codes. It achieves
the state-of-art performance for image retrieval, but DeepBit does not consider
the data distribution in the original image space. Therefore, DeepBit misses a
lot of useful unsupervised information.

So can we obtain the pairwise information by exploring the data distribution,
and then use this information to guide the learning of hash codes? Motivated
by this, in this paper, we propose a Deep Discrete Hashing (DDH) with pseudo
pairwise labels which makes use the self-generated labels of the training data
as supervision information to improve the effectiveness of the hash codes. It is
worth highlighting the following contributions:

1. We propose a general end-to-end learning framework to learn discrete hashing
code in an unsupervised way to improve the effectiveness of hashing meth-
ods. The discrete binary codes are directly optimized from the training data.
We solve the discrete hash, which is hard to optimize, by introducing an
intermediate variable.

2. To explore the data distribution of the training images, we learn on the train-
ing dataset and generate the pairwise information. We then train our model
by using this pairwise information in a self-supervised way.

3. Experiments on real datasets show that DDH achieves significantly better
performance than the state-of-the-art unsupervised deep hashing methods in
image retrieval applications and object recognition.

2 Our Method

Given N images, I = {Ii}N
i=1 without labels, our goal is to learn their compact

binary codes B such that: (a) the binary codes can preserve the data distribu-
tion in the original space, and (b) the discrete binary codes could be computed
directly.

As shown in Fig. 1, our DDH consists of two key components: construction of
pairwise labels, and hashing loss definition. For training, we first construct the
neighborhood structure of images and then train the network. For testing, we
obtain the binary codes of an image by taking it as an input. In the remainder
of this section, we first describe the process of constructing the neighborhood
structure, and then introduce our loss function and the process of learning the
parameters.
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2.1 Construction of Pairwise Labels

In our unsupervised approach, we propose to exploit the neighborhood struc-
ture of the images in a feature space as information source steering the process
of hash learning. Specifically, we propose a method based on the K-Nearest
Neighbor (KNN) concept to create a neighborhood matrix S. Based on [13], we
extract 2,048-dimensional features from the pool5-layer, which is last layer of
ResNet [13]. This results in the set X = {xi}N

i=1 where xi is the feature vector
of image Ii.

Fig. 1. The structure of our end-to-end framework. It has two components, construc-
tion of pairwise labels, and hashing loss definition. We first construct the neighborhood
structure of images and then train the network based on the define loss function. We
utilize the deep neural network to extract the features of the images.

For the representation of the neighboring structure, our task is to construct
a matrix S = (sij)N

i,j=1, whose elements indicate the similarity (sij = 1) or
dissimilarity (sij = −1) of any two images i and j in terms of their features xi

and xj .
We compare images using cosine similarity of the feature vectors. For each

image, we select K1 images with the highest cosine similarity as its neighbors.
Then we can construct an initial similarity matrix S1:

(S1)ij =
{

1, if xj is K1-NN of xi

0, otherwise (1)

Here we use L1,L2, . . . ,LN to denote the ranking lists of points I1,I2,. . . ,IN

by K1-NN. The precision-recall curve in Fig. 2 indicates the quality of the con-
structed neighborhood for different values of K1. Due to the rapidly decreasing
precision with the increase of K1, creating a large-enough neighborhood by sim-
ply increasing K1 is not the best option. In order to find a better approach, we
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borrow the ideas from the domain of graph modeling. In an undirected graph, if
a node v is connected to a node u and if u is connected to a node w, we can infer
that v is also connected to w. Inspired by this, if we treat every training image
as a node in an undirected graph, we can expand the neighborhood of an image
i by exploring the neighbors of its neighbors. Specifically, if xi connects to xj

and xj connects to xk, we can infer that xi has the potential to be connected to
xk as well.
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Fig. 2. Precision of constructed labels on cifar-10 dataset with different K, and different
methods.

Based on the above observations, we construct S1 using the deep CNN fea-
tures. If we only use the constructed labels by S1, each image has too few pos-
itive labels with high precision. So we increase the number of neighbors based
on S1 to obtain more positive labels. Specifically, we calculate the similarity of
two images by comparing the two ranking lists of K1-NN using the expression

1
||Li−Lj ||2 . Actually, if two images have the same labels, they should have a lot
of intersection points based on K1-NN, i.e., they have similar K1-NN ranking
list. Then we again construct a ranking list of K2 neighbors, based on which we
generate the second similarity matrix S2 as:

(S2)ij =
{

1, if Lj is K2-NN of Li

0, otherwise (2)

Finally, we construct the neighborhood structure by combining the direct and
indirect similarities from the two matrices together. This results in the final
similarity matrix S:

Sij =
{

1, if (S2)ik = 1 and j in Lk

0, otherwise (3)
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where the Lk is the ranking list after K1-NN. The whole algorithm is shown
in Algorithm 1. After the two steps KNN, the constructed label precision is
shown in Fig. 2. We note that we could have also omitted this preprocessing
step and construct the neighborhood structure directly during the learning of
our neural network. We found, however, that the construction of neighborhood
structure is time-consuming, and that updating of this structure based on the
updating of image features in each epoch does not have significant impact on
the performance. Therefore, we chose to obtain this neighborhood structure as
described above and fix it for the rest of the process.

Algorithm 1. Construction of neighborhood structure
Input: Images X = {xi}N

i=1, the number of neighbors K1, the number of neighbors
K2 for the neighbors expansion;

Output: Neighborhood matrix S = {sij};
1: First ranking: Use cosine similarity to generate the index of K1-NN of each image

L1, L2, . . . , LN ;
2: Neighborhood expansion:
3: for i=1,. . . ,N do
4: Initialize num ← ∅;
5: for j = 1, . . . N do
6: numj ← the size of Li ∩ Lj ;
7: end for
8: Sort num by descending order and keep the top K2 {Lj};
9: Set new L′

i ← union of the top K2 {Lj};
10: end for
11: for j=1,. . . ,N do
12: Construct S with new L′

j base on Eq. 3;
13: end for
14: return S;

2.2 Architecture of Our Network

We introduce an unsupervised deep framework, dubbed Deep Discrete Hashing
(DDH), to learn compact yet discriminative binary descriptors. The framework
includes two main modules, feature learning part and hash codes learning part,
as shown in Fig. 1. More specifically, for the feature learning, we use a similar
network as in [48], which has seven layers and the details are shown in Table 1.
In the experiment, we can easily replace the CNN-F network with other deep
networks such as [13,18,38]. Our framework has two branches with the shared
weights and both of them have the same weights and same network structure.

We discard the last softmax layer and replace it with a hashing layer, which
consists of a fully connected layer and a sgn activation layer to generate compact
codes. Specifically, the output of the full7 is firstly mapped to a L-dimensional
real-value code, and then a binary hash code is learned directly, by converting
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the L-dimensional representation to a binary hash code b taking values of either
+1 or −1. This binarization process can only be performed by taking the sign
function b = sgn(u) as the activation function on top of the hash layer.

b = sgn(u) =
{

+1, if u ≥ 0
−1, otherwise (4)

Table 1. The configuration of our framework

Layer Configure

conv1 filter 64 × 11 × 11, stride 4 × 4, pad 0, LRN, pool 2 × 2

conv2 filter 256 × 5 × 5, stride 1 × 1, pad 2, LRN, pool 2 × 2

conv3 filter 256 × 3 × 3, stride 1 × 1, pad 1

conv4 filter 256 × 3 × 3, stride 1 × 1, pad 1

conv5 filter 256 × 3 × 3, stride 1 × 1, pad 1, pool 2 × 2

full6 4096

full7 4096

hash layer L

2.3 Objective Function

Suppose we denote the binary codes as B = {bi}N
i=1 for all the images. The

neighborhood structure loss models the loss in the similarity structure in data,
as revealed in the set of neighbors obtained for an image by applying the hash
code of that image. We define the loss function as below:

min J1 =
1
2

∑
sij∈S

(
1
L
bi

Tbj − sij

)2

(5)

where L is the length of hashing code and sij ∈ {−1, 1} indicates the similarity
of image i and j. The goal of optimizing for this loss function is clearly to bring
the binary codes of similar images as close to each other as possible.

We also want to minimize the quantization loss between the learned binary
vectors B and the original real-valued vectors Z. It is defined as:

min J2 =
1
2

N∑
i=1

‖zi − bi‖2 (6)

where zi and bi are the real-valued representation and binary codes of the i-th
image in the hashing layer. Then we can obtain our final objective function as:

min J = J1 + λ1J2, bi ∈ {−1, 1}L
, ∀i = 1, 2, 3, . . .N (7)

where λ1 is the parameter to balance these two terms.
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Obviously, the problem in (7) is a discrete optimization problem, which is
hard to solve. LFH [48] solves it by directly relaxing bi from discrete to con-
tinuous, which might not achieve satisfactory performance [15]. In this paper,
we design a novel strategy which can solve the problem 5 by introducing an
intermediate variable. First, we reformulate the problem in 5 as the following
equivalent one:

min J =
1
2

∑
sij∈S

(
1
L
bi

Tbj − sij

)2

+
λ1

2

N∑
i=1

‖zi − bi‖2

s.t ui = bi,∀i = 1, 2, 3, . . .N

ui ∈ R
L×1,∀i = 1, 2, 3, . . . N

bi ∈ {−1, 1}L
,∀i = 1, 2, 3, . . . N

(8)

where ui is an intermediate variable and bi = sgn(ui). To optimize the problem
in 8, we can optimize the following regularized problem by moving the equality
constraints in 8 to the regularization terms:

min J =
1
2

∑
sij∈S

(
1
L
ui

Tuj − sij

)2

+
λ1

2

N∑
i=1

‖zi − bi‖2 +
λ2

2

N∑
i=1

‖bi − ui‖2

s.t ui ∈ R
L×1,∀i = 1, 2, 3, . . . N

bi ∈ {−1, 1}L
,∀i = 1, 2, 3, . . . N

(9)
where λ2 is the hyper-parameter for the regularization term. Actually, introduc-
ing an intermediate variable u is equivalent to adding another full-connected
layer between z and b in the hashing layer. To reduce the complexity of our
model, we let z = u, and then we can have a simplified objective function as:

min J =
1
2

∑
sij∈S

(
1
K

zi
T zj − sij

)2

+
λ1

2

N∑
i=1

‖zi − bi‖2

s.t bi ∈ {−1, 1}L
,∀i = 1, 2, 3, . . . N

(10)

Equation 10 is not discrete and zi is derivable, so we can use back-propagation
(BP) to optimize it.

2.4 Learning

To learning DDH Model, we need to obtain the parameters of neural networks.
We set

zi = WT φ (xi; θ) + c

bi = sgn(zi) = sgn(WT φ (xi; θ) + c)
(11)

where θ denotes all the parameters of CNN-F network for learning the features.
φ (xi; θ) denotes the output of the full7 layer associated with image xi. W ∈
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R
4096×L denotes hash layer weights matrix, and C ∈ R

L×1 is a bias vector. We
add regularization terms on the parameters and change the loss function with
10 constrains as:

min J = 1
2

∑
sij∈S

(
1
LΘij − sij

)2

+λ1
2

N∑
i=1

∥∥bi − (WT φ (xi; θ) + c)
∥∥2

+λ2
2 (‖W‖2F + ‖c‖2F )2

(12)

where Θij = zi
T zj , λ1 and λ2 are two parameters to balance the effect of different

terms. Stochastic gradient descent (SGD) is used to learn the parameters. We use
CNN-F network trained on ImageNet to initialize our network. In particular, in
each iteration we sample a mini-batch of points from the whole training set and
use back-propagation (BP) to optimize the whole network. Here, we compute
the derivatives of the loss function as follows:

∂J

∂zi
=

1
L2

(zi
T zj)zj − 1

L
sijzj + λ1(zi − bi) (13)

2.5 Out-of-Sample Extension

After the network has been trained, we still need to obtain the hashing codes of
the images which are not in the training data. For a novel image, we obtain its
binary code by inputing it into the DDH network and make a forward propaga-
tion as below:

bi = sgn(zi) = sgn(WT φ (xi; θ) + c)

3 Experiment

Our experiment PC is configured with an Intel(R) Xeon(R) CPU E5–2650 v3 @
2.30 GHz with 40 cores and the the RAM is 128.0 GB and the GPU is GeForce
GTX TITAN X with 12 GB.

3.1 Datasets

We conduct experiments on three challenging datasets, the Oxford 17 Category
Flower Dataset, the CIFAR-10 color images, and the NUS-WIDE. We test our
binary descriptor on various tasks, including image retrieval and image classifi-
cation.

1. CIFAR-10 Dataset [17] contains 10 object categories and each class consists
of 6,000 images, resulting in a total of 60,000 images. The dataset is split into
training and test sets, with 50,000 and 10,000 images respectively.

2. NUS-WIDE dataset [5] has nearly 270,000 images collected from the web.
It is a multi-label dataset in which each image is annotated with one or
multiple class labels from 81 classes. Following [19], we only use the images
associated with the 21 most frequent classes. For these classes, the number
of images of each class is at least 5000. We use 4,000 for training and 1,000
for testing.
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3. The Oxford 17 Category Flower Dataset [27] contains 17 categories
and each class consists of 80 images, resulting in a total of 1,360 images. The
dataset is split into the training (40 images per class), validation (20 images
per class), and test (20 images per class) sets.

3.2 Results on Image Retrieval

To evaluate the performance of the proposed DDH, we test our method on the
task of image retrieval. We compare DDH with other hashing methods, such as
LSH [1], ITQ [9], HS [31], Spectral hashing (SpeH) [45], Spherical hashing (SphH)
[14], KMH [12], Deep Hashing (DH) [24] and DeepBit [23], Semi-supervised
PCAH [44] on the CIFAR-10 dataset and NUS-WIDE. We set the K1 = 15 and
K2 = 6 to construct labels, and the learning rate as 0.001, λ1 = 15, λ2 = 0.00001
and batch-size = 128. Table 2 shows the CIFAR-10 retrieval results based on the
mean Average Precision (mAP) of the top 1,000 returned images with respect to
different bit lengths, while Table 3 shows the mAP value of NUS-WIDE dataset
calculated based on the top 5,000 returned neighbors. The precision/recall in
CIFAR-10 dataset is shown in Fig. 3.

Table 2. Performance comparison (mAP) of different unsupervised hashing algorithms
on the CIFAR-10 dataset. The mean Average Precision (mAP) are calculated based
on the top 1,000 returned images with respect to different number of hash bits.

Method 16 bit 32 bit 64 bit

Method 16 bit 32 bit 64 bit

KMH 0.136 0.139 0.145

SphH 0.145 0.146 0.154

SH 0.130 0.141 0.139

PCAH 0.129 0.126 0.121

LSH 0.126 0.138 0.157

PCA-ITQ 0.157 0.162 0.166

DH 0.162 0.166 0.170

DeepBit 0.194 0.249 0.277

DDH 0.447 0.486 0.535

From these results, we have the following observations:

(1) Our method significantly outperforms the other deep or non-deep hash-
ing methods in all datasets. In CIFAR-10, the improvement of DDH over
the other methods is more significant, compared with that in NUS-WIDE
dataset. Specifically, it outperforms the best counterpart (DeepBit) by
25.3%, 23.7% and 25.8% for 16, 32 and 64-bit hash codes. One possible reason
is that CIFAR-10 contains simple images, and the constructed neighborhood
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Table 3. Performance comparison (mAP) of different unsupervised hashing algorithms
on the NUS-WIDE dataset. The mAP is calculated based on the top 5,000 returned
neighbors for NUS-WIDE dataset.

Method 12 bit 24 bit 32 bit 48 bit

CNNH 0.611 0.618 0.625 0.608

FastH 0.621 0.650 0.665 0.685

SDH 0.568 0.600 0.608 0.637

KSH 0.556 0.572 0.581 0.588

LFH 0.571 0.568 0.568 0.585

ITQ 0.452 0.468 0.472 0.477

SH 0.454 0.406 0.405 0.400

DDH 0.675 0.680 0.701 0.712

structure is more accurate than the other two datasets. DDH improves the
state-of-the-arts by 5.4%, 3.0%, 3.6% and 2.7% in NUS-WIDE dataset.

(2) Table 2 shows that DeepBit and FashH are strong competitors in terms of
mAP in CIFAR-10 and NUS-WIDE dataset. But the performance gap of
DeepBit and our DDH is still very large, which is probably due to that
DeepBit uses only 3 fully connected layers to extract the features. Figure 3
shows that most of the hashing methods can achieve a high recall for small
number of retrieved samples (or recall). But obviously, our DDH significantly
outperforms the others.

(3) With the increase of code length, the performance of most hashing methods
is improved accordingly. An exception is PCAH, which has no improvement
with the increase of code length.
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Fig. 3. Precision/recall curves of different unsupervised hashing methods on the
CIFAR-10 dataset with respect to 16, 32 and 64 bits, respectively

To make fair comparison with the non-deep hashing methods, and validate
that our improvement is not only caused by the deep features, we conduct non-
deep hashing methods with deep features extracted by the CNN-F pre-trained
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on ImageNet. The results are reported in Table 4, where “ITQ+CNN” denotes
the ITQ method with deep features and other methods have similar notations.
When we run the non-deep hashing methods on deep features, the performance
is usually improved compared with the hand-crafted features.

Table 4. Performance comparison (mAP) of different hashing algorithms with deep
features on the CIFAR-10 dataset.

Method 12 bit 24 bit 32 bit 48 bit

ITQ + CNN 0.237 0.246 0.255 0.261

SH + CNN 0.183 0.164 0.161 0.161

SPLH + CNN 0.299 0.330 0.335 0.330

LFH + CNN 0.208 0.242 0.266 0.339

DDH 0.414 0.467 0.486 0.512

By constructing the neighborhood structure using the labels, our method can
be easily modified as a supervised hashing method. Therefore, we also compared
with supervised hashing methods, and show the mAP results on NUS-WIDE
dataset in Table 5. It is obvious that our DDH outperforms the state-of-the-art
deep and non-deep supervised hashing algorithms by a large margin, which are
5.7%, 5.8%, 7.8% and 8.1% for 12, 24, 32, and 48-bits hash codes. This indicates
that the performance improvement of DDH is not only due to the constructed
neighborhood structure, but also the other components.

Table 5. Results on NUS-WIDE. The table shows other deep network with supervised
pair-wise labels. The mAP value is calculated based on the top 5000 returned neighbors
for NUS-WIDE dataset.

Method 16 bit 24 bit 32 bit 48 bit

DRSCH 0.618 0.622 0.623 0.628

DSCH 0.592 0.597 0.611 0.609

DSRH 0.609 0.618 0.621 0.631

DDH 0.675 0.680 0.701 0.712

3.3 Results on Object Recognition

In the task of object recognition, the algorithm needs to recognize very similar
object (daisy, iris and pansy etc.). So it requires more discriminative binary codes
to represent images that look very similar. In this paper, we use the Oxford 17
Category Flower Dataset to evaluate our method on object recognition and we
compared with several real-valued descriptors such as HOG [6] and SIFT.
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Due to the variation of color distributions, pose deformations and shapes,
“Flower” recognition becomes more challenging. Besides, we need to consider
the computation cost while one wants to recognize the flowers in the wild using
mobile devices, which makes us generate very short and efficient binary codes to
discriminate flowers. Following the setting in [27], we train a multi-class SVM
classifier with our proposed binary descriptor. Table 6 compares the classification
accuracy of the 17 categories flowers using different descriptors proposed in [27],
[28], including low-level (Color, Shape, Texture), and high-level (SIFT and HOG)
features. Our proposed binary descriptor with 256 dimensionality improves pre-
vious best recognition accuracy by around 5.01% (80.11% vs. 75.1%). We also
test our proposed method with 64 bits, which still outperforms the state-of-art
result (76.35% vs. 75.1%). We also test the computational complexity during
SVM classifier training with only costing 0.3 s training on 256 bits and 0.17s on
64 bits. Compared with other descriptors, such as Color, Shape, Texture, HOG,
HSV and SIFT, DDH demonstrates its efficiency and effectiveness.

Table 6. The categorization accuracy (mean%) and training time for different features
on the Oxford 17 Category Flower Dataset

Descriptors Accuracy Time

Colour 60.9 3

Shape 70.2 4

Texture 63.7 3

HOG 58.5 4

HSV 61.3 3

SIFT-boundary 59.4 5

SIFT-internal 70.6 4

DeepBit (256bits) 75.1 0.07

DDH (64bits) 76.4 0.12

DDH(256bits) 80.5 0.30

4 Conclusion and Future Work

In this work, we address two central problems remaining largely unsolved for
image hashing: (1) how to directly generate binary codes without relaxation?
(2) how to equip the binary representation with the ability of accurate image
retrieval? We resolve these problems by introducing an intermediate variable and
a loss function steering the learning process, which is based on the neighborhood
structure in the original space. Experiments on real datasets show that our
method can outperform other unsupervised and supervised methods to achieve
the state-of-the-art performance in image retrieval and object recognition. In the
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future, it is necessary to improve the classification accuracy by incorporating a
classification layer at the end of this architecture.
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