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Abstract. Unstructured data from diverse sources, such as social media
and aerial imagery, can provide valuable up-to-date information for intel-
ligent situation assessment. Mining these different information sources
could bring major benefits to applications such as situation awareness
in disaster zones and mapping the spread of diseases. Such applications
depend on classifying the situation across a region of interest, which can
be depicted as a spatial “heatmap”. Annotating unstructured data using
crowdsourcing or automated classifiers produces individual classifications
at sparse locations that typically contain many errors. We propose a novel
Bayesian approach that models the relevance, error rates and bias of each
information source, enabling us to learn a spatial Gaussian Process clas-
sifier by aggregating data from multiple sources with varying reliabil-
ity and relevance. Our method does not require gold-labelled data and
can make predictions at any location in an area of interest given only
sparse observations. We show empirically that our approach can handle
noisy and biased data sources, and that simultaneously inferring reliabil-
ity and transferring information between neighbouring reports leads to
more accurate predictions. We demonstrate our method on two real-world
problems from disaster response, showing how our approach reduces the
amount of crowdsourced data required and can be used to generate valu-
able heatmap visualisations from SMS messages and satellite images.

1 Introduction

Social media enables members of the public to post real-time text messages,
videos and photographs describing events taking place close to them. While
many posts may be extraneous or misleading, social media nonetheless provides
streams of up-to-date information across a wide area. For example, after the Haiti
2010 earthquake, Ushahidi gathered thousands of text messages that provided
valuable first-hand information about the disaster situation [14]. An effective
way to extract information from large unstructured datasets such as these is
to employ crowds of non-expert annotators, as demonstrated by Galaxy Zoo
[10]. Besides social media, crowdsourcing provides a means to obtain geo-tagged
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annotations from other unstructured data sources such as imagery from satellites
or unmanned aerial vehicles (UAV).

In scenarios such as disaster response, we wish to infer the situation across a
region of interest by combining annotations from multiple information sources.
For example, we may wish to determine which areas are currently flooded, the
level of damage to buildings in an earthquake zone, or the type of terrain in a spe-
cific area from a combination of SMS reports and satellite imagery. The situation
across an area of interest can be visualised using a heatmap (e.g. Google Maps
heatmap layer1), which overlays colours onto a map to indicate the intensity or
probability of phenomena of interest. Probabilistic methods have been used to
generate heatmaps from observations at sparse, point locations [1,8,9], using a
Bayesian treatment of Poisson process models. However, these approaches model
the rate of occurrence of events, so are not suitable for classification problems.
Instead, a Gaussian process (GP) classifier can be used to model a class label
that varies smoothly over space or time. This uses a latent function over input
coordinates, which is mapped through a sigmoid function to obtain probabilities
[16]. However, standard GP classifiers are unsuitable for heterogeneous, crowd-
sourced data since they do not account for the differing relevance, error rates
and bias of individual information sources and annotators.

A key challenge in exploiting crowdsourced information is to account for its
unreliability and combine it with trusted data as it becomes available, such
as reports from experienced first responders in a disaster zone. For regres-
sion problems, differing levels of accuracy can be handled using sensor fusion
approaches such as [12,25]. The approach of [25] uses heteroskedastic GPs to
produce heatmaps that account for sensor accuracy through variance scaling.
This method could be applied to spatial classification by mapping GPs through
a softmax function. However, such an approach cannot handle label bias or
accuracy that depends on the true class. Recently, [11], proposed learning a GP
classifier from crowdsourced annotations, but their method uses a coin-flipping
noise model that would suffer from the same drawbacks as adapting [25]. Further-
more they train the model using a maximum likelihood (ML) approach, which
may incorrectly estimate reliability when data for some workers is insufficient
[7,17,20].

For classification problems, each information source can be modelled by a
confusion matrix [3], which quantifies the likelihood of observing a particular
annotation from an information source given the true class label. This approach
naturally accounts for bias toward a particular answer and varying accuracy
depending on the true class, and has been shown to outperform techniques such
as majority voting and weighted sums [7,17,20]. Recent extensions following the
Bayesian treatment of [7] can further improve results: by identifying clusters
of crowd workers with shared confusion matrices [13,23]; accounting for the
time each worker takes to complete a task [24]; additionally modelling language
features in text classification tasks [4,21]. However, these methods depend on

1 https://developers.google.com/maps/documentation/javascript/examples/layer-hea
tmap.

https://developers.google.com/maps/documentation/javascript/examples/layer-heatmap
https://developers.google.com/maps/documentation/javascript/examples/layer-heatmap
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receiving multiple labels from different workers for the same data points, or,
in the case of [4,21], on correlations between text features and target classes.
None of the existing confusion matrix-based approaches can model the spatial
distribution of each class, and therefore, when reports are sparsely distributed
over an area of interest, they cannot compensate for the lack of data at each
location.

In this paper, we propose a novel Bayesian approach to aggregating sparse,
geo-tagged reports from sources of varying reliability, which combines indepen-
dent Bayesian classifier combination (IBCC) [7] with a GP classifier to infer dis-
crete state values across an area of interest. Our model, HeatmapBCC, assumes
that states at neighbouring locations are correlated, allowing us to fuse neigh-
bouring reports and interpolate between them to predict the state at locations
with no reports. HeatmapBCC uses confusion matrices to model the error rates,
relevance and bias of each information source, permitting the use of non-expert
crowds providing heterogeneous annotations. The GP handles the uncertainty
that arises from sparse spatial data in a principled Bayesian manner, allowing
us to incorporate prior information, such as physical models of disaster events
such as earthquakes, and visualise the resulting posterior distribution as a spa-
tial heatmap. We derive a variational inference method that is able to learn the
reliability model for each information source without the need for ground truth
training data. This method learns full distributions over latent variables that can
be used to prioritise locations for further data gathering using an active learn-
ing approach. The next section presents in detail the HeatmapBCC model, and
provides details of our efficient approximate inference algorithm. The following
section then provides an empirical evaluation of our method on both synthetic
and real-world problems, showing that HeatmapBCC can outperform rival meth-
ods. We make our code publicly available at https://github.com/OxfordML/
heatmap expts.

2 The HeatmapBCC Model

Our goal is to classify locations of interest, e.g. to identify them as “flooded” or
“not flooded”. We can then choose locations in a grid over an area of interest
and plot the classifications on a map as a spatial heatmap. The task is to infer a
vector t∗ ∈ {1, . . . , J}N∗

of target state values at N∗ locations X∗, where J is the
number of state values or classes. Each row xi of matrix X∗ is a coordinate vector
that specifies a point on the map. We observe a matrix of potentially unreliable
geo-tagged reports, c ∈ {1, . . . , L}N×S , with L possible discrete values, from S
different information sources at N training locations X.

HeatmapBCC assumes that each report label c
(s)
i , from information source s,

at location xi, is drawn from c
(s)
i |ti,π(s) ∼ Categorical(π(s)

ti ). The target state,
ti, selects the row, π

(s)
ti , of a confusion matrix [3,20], π(s), which describes the

errors and biases of s as a dependency between the report labels and the ground
truth state, ti. As per standard IBCC [7], the reports from each information
source are conditionally independent of one another given target ti, and each

https://github.com/OxfordML/heatmap_expts
https://github.com/OxfordML/heatmap_expts
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row of the confusion matrix is drawn from π
(s)
j |α(s)

0,j ∼ Dirichlet(α(s)
0,j). The

hyperparameters α
(s)
0,j encode the prior trust in s.

We assume that state ti at location xi is drawn from a categorical distribu-
tion, ti|ρi ∼ Categorical(ρi), where ρi,j = p(ti = j|ρi) ∈ [0, 1] is the probability
of state j at location xi. The generative process for state probabilities, ρ, is as
follows. First, draw latent functions for classes j ∈ {1, . . . , J} from a Gaussian
process prior: fj ∼ GP(mj , kj,θ/ςj), where mj is the prior mean function, kj

is the prior covariance function, θ are hyperparameters of the covariance func-
tion, and ςj is the inverse scale. Map latent function values fj(xi) ∈ R to state
probabilities: ρi = σ(f1(xi), . . . , fJ (xi)) ∈ [0, 1]J . Appropriate functions for σ
include the logistic sigmoid and probit functions for binary classification, and
softmax and multinomial probit for multi-class classification. We assume that
ςj is drawn from a conjugate gamma hyperprior, ςj ∼ G (a0, b0), where a0 is a
shape parameter and b0 is the inverse scale.

While the reports, c
(s)
i , are modelled in the same way as standard IBCC

[7], HeatmapBCC introduces a location-specific state probability, ρi, to replace
the global class proportions, κ, which IBCC [20] assumes are constant for all
locations. Using a Gaussian process prior means the state probability varies rea-
sonably smoothly between locations, thereby encoding correlations in the distri-
bution over states at neighbouring locations. The covariance function is chosen
to suit the scenario we wish to model and may be tailored to specific spatial
phenomena (the geo-spatial impact of an earthquake, for example). The hyper-
parameters, θ, typically include a length-scale, l, which controls the smoothness
of the function. Here, we assume a stationary covariance function of the form
kj,θ (x,x′) = kj (|x − x′|, l), where k is a function of the distance between two
points and the length-scale, l. The joint distribution for the complete model is:

p
(
c, t,f1, ...,fJ , ς1, ..., ςJ ,π(1), ...,π(S)|μ1, ...,μJ ,K1, ...,KJ ,α

(1)
0 , ...,α

(S)
0

)
=

N∏
i=1

{
ρi,ti

S∏
s=1

π
(s)

ti,c
(s)
i

}
J∏

j=1

{
p

(
f j |μj ,Kj/ςj

)
p (ςj |a0, b0)

S∏
s=1

p
(
π

(s)
j |α(s)

0,j

)}
,

where f j = [fj(x1), ..., fj(xN )], μj = [mj(x1), ...,mj(xN )], and Kj ∈ R
N×N

with elements Kj,n,n′ = kj,θ (xn,xn′).

3 Variational Inference for HeatmapBCC

We use variational Bayes (VB) to efficiently approximate the posterior distri-
bution over all latent variables, allowing us to handle streaming data reports
online by restarting the VB algorithm from the previous estimate as new reports
are received. To apply variational inference, we replace the exact posterior dis-
tribution with a variational approximation that factorises into separate latent
variables and parameters:

p(t,f , ς,π(1), ...,π(S)|c,μ,K,α
(1)
0 , ...,α

(S)
0 ) ≈ q(t)

J∏
j=1

{
q(f j)q(ςj)

S∏
s=1

q
(
π

(s)
j

)}
.
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We perform approximate inference by optimising the variational posterior
using Algorithm 1. In the remainder of this section we define the variational fac-
tors q(), expectation terms, variational lower bound and prediction step required
by the algorithm.

input : Hyperparameters α
(s)
0 ∀s, μj ∀j, K , a0, b0; observed report data c

Initialise q
(
f j

) ∀j, q
(
π

(s)
j

)
∀j ∀s, and q(ςj)∀j randomly

while variational lower bound not converged do

Calculate E [log ρ] and E

[
log π(s)

]
, ∀s given current factors q

(
f j

)
and

q
(
π

(s)
j

)

Update q(t) given E

[
log π(s)

]
, ∀s and E [log ρ]

Update q
(
π

(s)
j

)
, ∀j, ∀s given current estimate for q(t)

Update q
(
f j

)
, ∀j current estimates for q(t) and q(ςj), ∀j

Update q(ςj), ∀j given current estimate for q
(
f j

)

end
output: Use converged estimates to predict ρ∗ and t∗ at output points X∗

Algorithm 1. VB algorithm for HeatmapBCC

Variational Factor for Targets, t :

log q(t) =
N∑

i=1

{
E[log ρi,ti ] +

S∑
s=1

E

[
log π

(s)

ti,c
(s)
i

]}
+ const. (1)

The variational factor q(t) further factorises into individual data points, since the
target value, ti, at each input point, xi, is independent given the state probability
vector ρi, giving ri,j := q(ti = j) where q(ti = j) = q(ti = j, ci)/

∑
ι∈J q(ti =

ι, ci) and:

q(ti = j, ci) = exp

(
E [log ρi,j ] +

S∑
s=1

E

[
log π

(s)

j,c
(s)
i

])
. (2)

Missing reports in c can be handled simply by omitting the term E

[
log π

(s)

j,c
(s)
i

]

for information sources, s, that have not provided a report c
(s)
i .

Variational Factor for Confusion Matrix Rows, π
(s)
j :

log q
(
π

(s)
j

)
= Et

[
log p

(
π(s)|t, c

)]
=

L∑

l=1

N
(s)
j,l log π

(s)
j,l + log p

(
π

(s)
j |α(s)

0,j

)
+ const.,
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where N
(s)
j,l =

∑N
i=1 ri,jδl,c

(s)
i

are pseudo-counts and δ is the Kronecker delta.
Since we assumed a Dirichlet prior, the variational distribution is also a Dirichlet,
q(π(s)

j ) = D(π(s)
j |α(s)

j ), with parameters α
(s)
j = α

(s)
0,j + N

(s)
j , where N

(s)
j ={

N
(s)
j,l |l ∈ [1, ..., L]

}
. Using the digamma function, Ψ(), the expectation required

for Eq. 2 is therefore:

E

[
log π

(s)
j,l

]
= Ψ

(
α
(s)
j,l

)
− Ψ

(
L∑

ι=1

α
(s)
j,ι

)
. (3)

Variational Factor for Latent Function: The variational factor q(f) fac-
torises between target classes, since ti at each point is independent given ρ.
Using the fact that Eti [log Categorical([ti = j]|ρi,j)] = ri,j log σ(f)j,i, the factor
for each class is:

log q(f j) =
N∑

i=1

ri,j log σ(f)j,i + Eςj

[
log N (f j |μj ,Kj/ςj)

]
+ const. (4)

This variational factor cannot be computed analytically, but can itself be approx-
imated using a variational method based on the extended Kalman filter (EKF)
[18,22] that is amenable to inclusion in our overall VB algorithm. Here, we
present a multi-class variant of this method that applies ideas from [5]. We
approximate the likelihood p(ti = j|ρi,j) = ρi,j with a Gaussian distribution,
using E[log N ([ti = j]|σ(f)j,i, vi,j)] = log N (ri,j |σ(f)j,i, vi,j) to replace Eq. 4
with the following:

log q(f j) ≈
N∑

i=1

log N (ri,j |σ(f )j,i, vi,j) + Eςj [log N (
f j |μj , Kj/ςj

)
] + const, (5)

where vi,j = ρi,j(1 − ρi,j) is the variance of the binary indicator variable [ti = j]
given by the Bernoulli distribution. We approximate Eq. 5 by linearising σ()
using a Taylor series expansion to obtain a multivariate Gaussian distribution
q(f j) ≈ N

(
f j |f̂ j ,Σj

)
. Consequently, we estimate q

(
f j

)
using EKF-like equa-

tions [18,22]:

f̂ j = μj + W
(
r.,j − σ(f̂)j + G(f̂ j − μj)

)
(6)

Σj = K̂j − WGjK̂j (7)

where K̂
−1

j = K−1
j E[ςj ] and W = K̂jG

T
j

(
GjK̂jG

T
j + Qj

)−1

is the Kalman
gain, r.,j = [r1,j , rN,j ] is the vector of probabilities of target state j computed
using Eq. 2 for the input points, Gj ∈ R

N×N is the diagonal sigmoid Jacobian
matrix and Qj ∈ R

N×N is a diagonal observation noise variance matrix. The

diagonal elements of G are Gj,i,i = σ(f̂ .,i)j(1−σ(f̂ .,i)j), where f̂ =
[
f̂1, ..., f̂J

]

is the matrix of mean values for all classes.
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The diagonal elements of the noise covariance matrix are Qj,i,i = vi,j , which
we approximate as follows. Since the observations are Bernoulli distributed with
an uncertain parameter ρi,j , the conjugate prior over ρi,j is a beta distribution
with parameters

∑J
j′=1 ν0,j′ and ν0,j . This can be updated to a posterior Beta

distribution p (ρi,j |ri,j ,ν0) = B (ρi,j |ν¬j , νj), where ν¬j =
∑J

j′=1 ν0,j′ − ν0,j +
1 − ri,j and νj = ν0,j + ri,j . We now estimate the expected variance:

vi,j ≈ v̂i,j =
∫ (

ρi,j − ρ2i,j
)B (ρi,j |ν¬j , νj) dρi,j = E[ρi,j ] − E

[
ρ2i,j

]
(8)

E[ρi,j ] =
νj

νj + ν¬j
E

[
ρ2i,j

]
= E[ρi,j ]2 +

νjν¬j

(νj + ν¬j)2(νj + ν¬j + 1)
. (9)

We determine values for the prior beta parameters, ν0,j , by moment match-
ing with the prior mean ρ̂i,j and variance ui,j of ρi,j , found using numeri-
cal integration. According to Jensen’s inequality, the convex function ϕ(Q) =(
GjKjG

T
j + Q

)−1

is a lower bound on E[ϕ(Q)] = E

[
(GjKjG

T
j + Q)−1

]
.

Thus our approximation provides a tractable estimate of the expected value
of W .

The calculation of Gj requires evaluating the latent function at the input
points f̂ j . Further, Eq. 6 requires Gj to approximate f̂ j , causing a circular
dependency. Although we can fold our expressions for Gj and f̂ j directly into
the VB cycle and update each variable in turn, we found solving for Gj and
f̂ j each VB iteration facilitated faster inference. We use the following iterative
procedure to estimate Gj and f̂ j :

1. Initialise σ(f̂ .,i) ≈ E[ρi] using Eq. 9.
2. Estimate Gj using the current estimate of σ(f̂j,i).
3. Update the mean f̂ j using Eq. 6, inserting the current estimate of G.
4. Repeat from step 2 until f̂ j and Gj converge.

The latent means, f̂ , are then used to estimate the terms log ρi,j for Eq. 2:

E[log ρi,j ] = f̂j,i − E

⎡
⎣log

J∑
j′=1

exp(fj′,i)

⎤
⎦ . (10)

When inserted into Eq. 2, the second term in Eq. 10 cancels with the denomina-
tor, so need not be computed.

Variational Factor for Inverse Function Scale: The inverse covariance
scale, ςj , can also be inferred using VB by taking expectations with respect
to f :

log q (ςj) = Eρ [log p(ςj |f j)] = Ef j
[log N (f j |μi,Kj/ςj)] + log p(ςj |a0, b0) + const
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which is a gamma distribution with shape a = a0 + N
2 and inverse scale b =

b0 + 1
2Tr

(
K−1

j

(
Σj + f̂ j f̂

T

j − 2μj,if̂
T

j − μj,iμ
T
j,i

))
. We use these parameters

to compute the expected latent model precision, E[ςj ] = a/b in Eq. 7, and for
the lower bound described in the next section we also require Eq[log(ςj)] =
Ψ(a) − log(b).

Variational Lower Bound: Due to the approximations described above, we are
unable to guarantee an increased variational lower bound for each cycle of the VB
algorithm. We test for convergence of the variational approximation efficiently
by comparing the variational lower bound L(q) on the model evidence calculated
at successive iterations. The lower bound for HeatmapBCC is given by:

L(q) = Eq

[
log p

(
c|t, π(1), ..., π(S)

)]
+ Eq

[
log

p(t|ρ)

q(t)

]
+

J∑

j=1

{

(11)

Eq

[

log
p

(
f j |μj , Kj/ςj

)

q(f j)

]

+ Eq

[
log

p(ςj |a0, b0)

q(ςj)

]
+

S∑

s=1

Eq

⎡

⎣log
p

(
π

(s)
j |α(s)

0,j

)

q
(
π

(s)
j

)

⎤

⎦

⎫
⎬

⎭
.

Predictions: Once the algorithm has converged, we predict target states, t∗

and probabilities ρ∗ at output points X∗ by estimating their expected values.
For a heatmap visualisation, X∗ is a set of evenly-spaced points on a grid placed
over the region of interest. We cannot compute the posterior distribution over
ρ∗ analytically due to the non-linear sigmoid function. We therefore estimate
the expected values E[ρ∗

j ] by sampling f∗
j from its posterior and mapping the

samples through the sigmoid function. The multivariate Gaussian posterior of
f∗

j has latent mean f̂
∗

and covariance Σ∗:

f̂
∗
j = μ∗

j + W ∗
j

(
rj − σ(f̂ j) + G(f̂ j − μj)

)
(12)

Σ∗
j = K̂

∗∗
j − W ∗

jGjK̂
∗
j , (13)

where μ∗
j is the prior mean at the output points, K̂

∗∗
j is the covariance matrix

of the output points, K̂
∗
j is the covariance matrix between the input and the

output points, and W ∗
j = K̂

∗
jGj

T
(
GjK̂jGj

T + Qj

)−1

is the Kalman gain.

The predictions for output states t∗ are the expected probabilities E
[
t∗i,j

]
=

r∗
i,j ∝ q(ti = j, c) of each state j at each output point xi ∈ X∗, computed using

Eq. 2. In a multi-class setting, the predictions for each class could be plotted as
separate heatmaps.

4 Experiments

We compare the efficacy of our approach with alternative methods on synthetic
data and two real datasets. In the first real-world application we combine crowd-
sourced annotations of images in the aftermath of a disaster, while in the second



Bayesian Heatmaps: Probabilistic Classification 117

we aggregate crowdsourced labels assigned to geo-tagged text messages to pre-
dict emergencies in the aftermath of an Earthquake. All experiments are binary
classification tasks where reports may be negative (recorded as c

(s)
i = 1) or pos-

itive (c(s)i = 2). In all experiments, we examine the effect of data sparsity using
an incremental train/test procedure:

1. Train all methods on a random subset of reports (initially a small subset)
2. Predict states t∗ at grid points in an area of interest. For HeatmapBCC, we

use the predictions E[t∗i,j ] described in Sect. 3
3. Evaluate predictions using the area under the ROC curve (AUC) or cross

entropy classification error
4. Increment subset of training labels at random and repeat from step 1.

Specific details vary in each experiment and are described below. We evalu-
ate HeatmapBCC against the following alternatives: a Kernel density estimator
(KDE) [15,19], which is a non-parametric technique that places a Gaussian ker-
nel at each observation point, then normalises the sum of Gaussians over all
observations; a GP classifier [18], which applies a Bayesian non-parametric app-
roach but assumes reports are equally reliable; IBCC with VB [20], which per-
forms no interpolation between spatial points, but is a state-of-the-art method
for combining unreliable crowdsourced classifications; and an ad-hoc combina-
tion of IBCC and the GP classifier (IBCC+GP), in which the output classifica-
tions of IBCC are used as training labels for the GP classifier. This last method
illustrates whether the single VB learning approach of HeatmapBCC is benefi-
cial, for example, by transferring information between neighbouring data points
when learning confusion matrices. For the first real dataset, we include addi-
tional baselines: SVM with radial basis function kernel; a K-nearest neighbours
classifier with nneighbours = 5 (NN ); and majority voting (MV ), which defaults
to the most frequent class label (negative) in locations with no labels.

4.1 Synthetic Data

We ran three experiments with synthetic data to illustrate the behaviour of
HeatmapBCC with different types of unreliable reporters. For each experiment,
we generated 25 binary ground truth datasets as follows: obtain coordinates at all
1600 points in a 40×40 grid; draw latent function values fx from a multivariate
Gaussian distribution with zero mean and Matérn 3

2 covariance with l = 20 and
inverse scale 1.2; apply sigmoid function to obtain state probabilities, ρx ; draw
target values, tx , at all locations.

Noisy reporters: The first experiment tests robustness to error-prone annota-
tors. For each of the 25 ground truth datasets, we generated three crowds of 20
reporters. In each crowd, we varied the number of reliable reporters between 5, 10
and 15, while the remainder were noisy reporters with high random error rates.
We simulated reliable reporters by drawing confusion matrices, π(s), from beta
distributions with parameter matrix set to α

(s)
jj = 10 along the diagonals and 1
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Fig. 1. Synthetic data, noisy reporters: median improvement of HeatmapBCC over
alternatives over 25 datasets, against number of crowdsourced labels. Shaded areas
show inter-quartile range. Top-left: AUC, 25% noisy reporters. Top-right: AUC, 50%
noisy reporters. Bottom-left: AUC, 75% noisy reporters. Bottom-right: NLPD of state
probabilities, ρ, with 50% noisy reporters.

elsewhere. For noisy workers, all parameters were set equally to α
(s)
jl = 5. For

each proportion of noisy reporters, we selected reporters and grid points at ran-
dom, and generated 2400 reports by drawing binary labels from the confusion
matrices π(1), ...,π(20). We ran the incremental train/test procedure for each
crowd with each of the 25 ground truth datasets. For HeatmapBCC, GP and
IBCC+GP the kernel hyperparameters were set as l = 20, a0 = 1, and b0 = 1.
For HeatmapBCC, IBCC and IBCC+GP, we set confusion matrix hyperparam-
eters to α

(s)
j,j = 2 along the diagonals and α

(s)
j,l = 1 elsewhere, assuming a weak

tendency toward correct labels. For IBCC we also set ν0 = [1, 1].
Figure 1 shows the median differences in AUC between HeatmapBCC and the

alternative methods for noisy reporters. Plotting the difference between methods
allows us to see consistent performance differences when AUC varies substan-
tially between runs. More reliable workers increase the AUC improvement of
HeatmapBCC. With all proportions of workers, the performance improvements
are smaller with very small numbers of labels, except against IBCC, as none of
the methods produce a confident model with very sparse data. As more labels
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are gathered, there are more locations with multiple reports, and IBCC is able to
make good predictions at those points, thereby reducing the difference in AUC
as the number of labels increases. However, for the other three methods, the
difference in AUC continues to increase, as they improve more slowly as more
labels are received. With more than 700 labels, using the GP to estimate the class
labels directly is less effective than using IBCC classifications at points where
we have received reports, hence the poorer performance of GP and IBCC+GP.

In Fig. 1 we also show the improvement in negative log probability density
(NLPD) of state probabilities, ρ. We compare HeatmapBCC only against the
methods that place a posterior distribution over their estimated state proba-
bilities. As more labels are received, the IBCC+GP method begins to improve
slightly, as it is begins to identify the noisy reporters in the crowd. The GP is
much slower to improve due to the presence of these noisy labels.

Fig. 2. Synthetic data, 50% biased reporters: median improvement of HeatmapBCC
compared to alternatives over 25 datasets, against number of crowdsourced labels.
Shaded areas showing the inter-quartile range. Left: AUC. Right: NLPD of state prob-
abilities, ρ.

Biased reporters: The second experiment simulates the scenario where some
reporters choose the negative class label overly frequently, e.g. because they fail
to observe the positive state when it is present. We repeated the procedure used
for noisy reporters but replaced the noisy reporters with biased reporters gener-
ated using the parameter matrix α(s) = [ 7 1

6 2 ]. We observe similar performance
improvements to the first experiment with noisy reporters, as shown in Fig. 2,
suggesting that HeatmapBCC is also better able to model biased reporters from
sparse data than rival approaches. Figure 3 shows an example of the posterior
distributions over tx produced by each method when trained on 1500 random
labels from a simulated crowd with 50% biased reporters. We can see that the
ground truth appears most similar to the HeatmapBCC estimates, while IBCC
is unable to perform any smoothing.

Continuous report locations: In the previous experiments we drew reports from
discrete grid points so that multiple reporters produced noisy labels for the
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Fig. 3. Synthetic data, 50% biased reporters: posterior distributions. Histogram of
reports shows the difference between positive and negative label frequencies at each
grid square.

same target, tx . The third experiment tests the behaviour of our model with
reports drawn from continuous locations, with 50% noisy reporters drawn as in
the first experiment. In this case, our model receives only one report for each
object tx at the input locations X. Figure 4 shows that the difference in AUC
between HeatmapBCC and other methods is significantly reduced, although still
positive. This may be because we are reliant on ρ to make classifications, since
we have not observed any reports for the exact test locations X∗. If ρx is close
to 0.5, the prediction for class label x is uncertain. However, the improvement in
NLPD of the state probabilities ρ is less affected by using continuous locations,
as seen by comparing Fig. 1 with Fig. 4, suggesting that HeatmapBCC remains
advantageous when there is only one report at each training location. In practice,
reports at neighbouring locations may be intended to refer to the same tx , so if
reports are treated as all relating to separate objects, they could bias the state
probabilities. Grouping reports into discrete grid squares avoids this problem
and means we obtain a state classification for each square in the heatmap. We
therefore continue to use discrete grid locations in our real-world experiments.

Fig. 4. Synthetic data, 50% noisy reporters, continuous report locations. Median
improvement of HeatmapBCC compared to alternatives over 25 datasets, against num-
ber of crowdsourced labels. Shaded areas showing the inter-quartile range. Left: AUC.
Right: NLPD of state probabilities, ρ.
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4.2 Crowdsourced Labels of Satellite Images

We obtained a set of 5,477 crowdsourced labels from a trial run of the
Zooniverse Planetary Response Network project2. In this application, volun-
teers labelled satellite images showing damage to Tacloban, Philippines, after
Typhoon Haiyan/Yolanda. The volunteers’ task was to mark features such as
damaged buildings, blocked roads and floods. For this experiment, we first
divided the area into a 132×92 grid. The goal was then to combine crowdsourced
labels to classify grid squares according to whether they contain buildings with
major damage or not. We treated cases where a user observed an image but
did not mark any features as a set of multiple negative labels, one for each
of the grid squares covered by the image. Our dataset contained 1,641 labels
marking buildings with major structural damage, and 1,245 negative labels.
Although this dataset does not contain ground truth annotations, it contains
enough crowdsourced annotations that we can confidently determine labels for
most of the region of interest using all data. The aim is to test whether our
approach can replicate these results using only a subset of crowdsourced labels,
thereby reducing the workload of the crowd by allowing for sparser annotations.
We therefore defined gold-standard labels by running IBCC on the complete set
of crowdsourced labels, and then extracting the IBCC posterior probabilities for
572 data points with ≥ 3 crowdsourced labels where the posterior of the most
probable class ≥ 0.9. The IBCC hyperparameters were set to α

(s)
0,j,j = 2 along

the diagonals, α
(s)
0,j,l = 1 elsewhere, and ν0 = [100, 100].

We ran our incremental train/test procedure 20 times with initial subsets
of 178 random labels. Each of these 20 repeats required approximately 45 min
runtime on an Intel i7 desktop computer. The length-scales l for HeatmapBCC,
GP and IBCC+GP were optimised at each iteration using maximum likelihood
II by maximising the variational lower bound on the log likelihood (Eq. 11), as
described in [16]. The inverse scale hyperparameters were set to a0 = 0.5 and
b0 = 5, and the other hyperparameters were set as for gold label generation.
We did not find a significant difference when varying diagonal confusion matrix
values α

(s)
j,j = 2 from 2 to 20.

In Fig. 5 (left) we can see how AUC varies as more labels are introduced,
with HeatmapBCC, GP and IBCC+GP converging close to our gold-standard
solution. HeatmapBCC performs best initially, potentially because it can learn
a more suitable length-scale with less data than GP and IBCC+GP. SVM out-
performs GP and IBCC+GP with 178 labels, but is outperformed when more
labels are provided. Majority voting, nearest neighbour and IBCC produce much
lower AUCs than the other approaches. The benefits of HeatmapBCC can be
more clearly seen in Fig. 5 (right), which shows a substantial reduction in cross
entropy classification error compared to alternative methods, indicating that
HeatmapBCC produces better probability estimates.

2 http://www.planetaryresponsenetwork.com/beta/.

http://www.planetaryresponsenetwork.com/beta/
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Fig. 5. Planetary response network, major structural damage data. Median values over
20 repeats against the number of randomly selected crowdsourced labels. Shaded areas
show the inter-quartile range. Left: AUC. Right: cross entropy error.

4.3 Haiti Earthquake Text Messages

Here we aggregate text reports written by members of the public after the Haiti
2010 Earthquake. The dataset we use was collected and labelled by Ushahidi [14].
We have selected 2,723 geo-tagged reports that were sent mainly by SMS and
were categorised by Ushahidi volunteers. The category labels describe the type of
situation that is reported, such as “medical emergency” or “collapsed building”.
In this experiment, we aim to predict a binary class label, “emergency” or “no
emergency” by combining all reports. We model each category as a different
information source; if a category label is present for a particular message, we
observe a value of 1 from that information source at the message’s geo-location.
This application differs from the satellite labelling task because many of the
reports do not explicitly report emergencies and may be irrelevant. In the absence
of ground truth data, we establish a gold-standard test set by training IBCC on
all 2723 reports, placed into 675 discrete locations on a 100 × 100 grid. Each
grid square has approximately 4 reports. We set IBCC hyper-parameters to
α

(s)
0,j,j = 100 along the diagonals, α

(s)
0,j,l = 1 elsewhere, and ν0 = [2000, 1000].

Since the Ushahidi data set contains only reports of emergencies, and does
not contain reports stating that no emergency is taking place, we cannot learn
the length-scale l from this data, and must rely on background knowledge. We
therefore select another dataset from the Haiti 2010 Earthquake, which has gold
standard labels, namely the building damage assessment provided by UNOSAT
[2]. We expect this data to have a similar length-scale because the underlying
cause of both the building damages and medical emergencies was an earthquake
affecting built-up areas where people were present. We estimated l using maxi-
mum likelihood II optimisation, giving an optimal value of l = 16 grid squares.
We then transferred this point estimate to the model of the Ushahidi data.
Our experiment repeated the incremental train/test procedure 20 times with
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hyperparameters set to a0 = 1500, b0 = 1500, α
(s)
0,j,j = 100 along the diagonals,

α
(s)
0,j,l = 1 elsewhere, and ν0 = [2000, 1000].

Fig. 6. Haiti text messages. Left: cross entropy error against the number of randomly
selected crowdsourced labels. Lines show the median over 25 repeats, with shaded
areas showing the inter-quartile range. Gold standard defined by running IBCC with
675 labels using a 100 × 100 grid. Right: heatmap of emergencies for part of Port-
au-Prince after the 2010 Earthquake, showing high probability (dark orange) to low
probability (blue). (Color figure online)

Figure 6 shows that HeatmapBCC is able to achieve low error rates when the
reports are sparse. The IBCC and HeatmapBCC results do not quite converge
due to the effect of interpolation performed by HeatmapBCC, which can still
affect the results with several reports per grid square. The gold-standard predic-
tions from IBCC also contain some uncertainty, so cross entropy does not reach
zero, even with all labels. The GP alone is unable to determine the different reli-
ability levels of each report type, so while it is able to interpolate between sparse
reports, HeatmapBCC and IBCC detect the reliable data and produce different
predictions when more labels are supplied. In summary, HeatmapBCC produces
predictions with 439 labels (65%) that has an AUC within 0.1 of the gold stan-
dard predictions produced using all 675 labels, and reduces cross entropy to 0.1
bits with 400 labels (59%), showing that it is effective at predicting emergency
states with reduced numbers of Ushahidi reports. Using an Intel i7 laptop, the
HeatmapBCC inference over 675 labels required approximately one minute.

We use HeatmapBCC to visualise emergencies in Port-au-Prince, Haiti after
the 2010 earthquake, by plotting the posterior class probabilities as the heatmap
shown in Fig. 6. Our example shows how HeatmapBCC can combine reports from
trusted sources with crowdsourced information. The blue area shows a negative
report from a simulated first responder, with confusion matrix hyperparameters
set to α

(s)
0,j,j = 450 along the diagonals, so that the negative report was highly

trusted and had a stronger effect than the many surrounding positive reports.
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Uncertainty in the latent function fj can be used to identify regions where infor-
mation is lacking and further reconnaisance is necessary. Probabilistic heatmaps
therefore offer a powerful tool for situation awareness and planning in disaster
response.

5 Conclusions

In this paper we presented a novel Bayesian approach to aggregating unreliable
discrete observations from different sources to classify the state across a region
of space or time. We showed how this method can be used to combine noisy,
biased and sparse reports and interpolate between them to produce probabilistic
spatial heatmaps for applications such as situation awareness. Our experiments
demonstrated the advantages of integrating a confusion matrix model to cap-
ture the unreliability of different information sources with sharing information
between sparse report locations using Gaussian processes. In future work we
intend to improve scalability of the GP using stochastic variational inference [6]
and investigate clustering confusion matrices using a hierarchical prior, as per
[13,23], which may improve the ability to learn confusion matrices when data
for individual information sources is sparse.
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