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Abstract. We propose k2-means, a new clustering method which effi-
ciently copes with large numbers of clusters and achieves low energy solu-
tions. k2-means builds upon the standard k-means (Lloyd’s algorithm)
and combines a new strategy to accelerate the convergence with a new
low time complexity divisive initialization. The accelerated convergence
is achieved through only looking at kn nearest clusters and using triangle
inequality bounds in the assignment step while the divisive initialization
employs an optimal 2-clustering along a direction. The worst-case time
complexity per iteration of our k2-means is O(nknd + k2d), where d is the
dimension of the n data points and k is the number of clusters and usually
n � k � kn. Compared to k-means’ O(nkd) complexity, our k2-means
complexity is significantly lower, at the expense of slightly increasing the
memory complexity by O(nkn + k2). In our extensive experiments k2-
means is order(s) of magnitude faster than standard methods in comput-
ing accurate clusterings on several standard datasets and settings with
hundreds of clusters and high dimensional data. Moreover, the proposed
divisive initialization generally leads to clustering energies comparable to
those achieved with the standard k-means++ initialization, while being
significantly faster.

1 Introduction

The k-means algorithm in its standard form (Lloyd’s algorithm) employs two
steps to cluster n data points of d dimensions and k initial cluster centers [19].
The expectation or assignment step assigns each point to its nearest cluster while
the maximization or update step updates the k cluster centers with the mean
of the points belonging to each cluster. The k-means algorithm repeats the two
steps until convergence, that is the assignments no longer change in an iteration i.

k-means is one of the most widely used clustering algorithms, being included
in a list of top 10 data mining algorithms [27]. Its simplicity and general applica-
bility vouch for its broad adoption. Unfortunately, its O(ndki) time complexity
depends on the product between number of points n, number of dimensions d,
number of clusters k, and number of iterations i. Thus, for large such values even
a single iteration of the algorithm is very slow.
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Table 1. Notations

n Number of data points to cluster

k Number of clusters

kn Number of nearest clusters

d Number of dimensions of the data points

X The data (xi)
n
i=1, xi ∈ R

d

C Cluster centers C = (cj)
k
j=1, cj ∈ R

d

a Cluster assignments {1, · · · , n} → {1, · · · , k}
a(xi) Cluster assignment of xi, i.e. a(i)

a(X ′) Cluster assignment of some set of points X ′

Xj Points assigned to cluster j, (xi ∈ X|a(i) = j)

μ(Xj) The mean of Xj :
1

|Xj |
∑

x∈Xj
x

‖x‖ l2 norm of x ∈ R
d

φ(Xj) Energy of Xj :
∑

x∈Xj
‖x − μ(Xj)‖2

Nkn(cl) kn nearest neighbours of cl in C (including cl)

The simplest way to handle larger datasets is parallelization [28,29], however
this requires more computation power as well. Another way is to process the
data online in batches as done by the MiniBatch algorithm of Sculley [23], a
variant of the Lloyd algorithm that trades off quality (i.e. the converged energy)
for speed.

To improve both the speed and the quality of the clustering results, Arthur
and Vassilvitskii [1] proposed the k-means++ initialization method. The initial-
ization typically results in a higher quality clustering and fewer iterations for
k-means, than when using the default random initialization. Furthermore, the
expected value of the clustering energy is within a 8(ln k + 2) factor of the opti-
mal solution. However, the time complexity of the method is O(ndk), i.e. the
same as a single iteration of the Lloyd algorithm - which can be too expensive in
a large scale setting. Since k-means++ is sequential in nature, Bahman et al. [2]
introduced a parallel version k-means|| of k-means++, but did not reduce the
time complexity of the method.

Another direction is to speed up the actual k-means iterations. Elkan [8],
Hamerly [11] and Drake and Hamerly [7] go in this direction and use the triangle
inequality to avoid unnecessary distance computation between cluster centers
and the data points. However, these methods still require a full Lloyd iteration in
the beginning to then gradually reduce the computation of progressive iterations.
The recent Yinyang k-means method of Ding et al. [6] is a similar method, that
also leverages bounds to avoid redundant distance calculations. While typically
performing 2–3× faster than Elkan method, it also requires a full Lloyd iteration
to start with.



k2-means for Fast and Accurate Large Scale Clustering 777

Philbin et al. [22] introduce an approximate k-means (AKM) method based
on kd-trees to speed up the assignment step, reducing the complexity of each
k-means iteration from O(nkd) to O(nmd), where m < k. In this case m, the dis-
tance computations performed per each iteration, controls the trade-off between
a fast and an accurate (i.e. low energy) clustering. Wang et al. [26] use cluster
closures for further 2.5× speedups.

Mazzeo et al. [20] introduce a centroid-based method that combines divisive
and agglomerative clustering, obtaining quickly high quality clusters as measured
by the CH-index [5].

In this paper we propose k2-means, a method aiming at both fast and accu-
rate clustering. Following the observation that usually the clusters change gradu-
ally and affect only local neighborhoods, in the assignment step we only consider
the kn nearest neighbours of a center as the candidates for the clusters members.
Furthermore we employ the triangle inequality bounds idea as introduced by
Elkan [8] to reduce the number of operations per each iteration. For initializing
k2-means, we propose a divisive initialization method, which we experimentally
prove to be more efficient than k-means++.

Our k2-means gives a significant algorithmic speedup, i.e. reducing the com-
plexity to O(nknd) per iteration, while still maintaining a high accuracy com-
parable to methods such as k-means++ for a chosen kn < k. Similar to m in
AKM, kn also controls a trade-off between speed and accuracy. However, our
experiments show that we can use a significantly lower kn when aiming for a
high accuracy.

The paper is structured as follows. In Table 1 we summarize the notations
used in this paper. In Sect. 2 we introduce our proposed k2-means method and
our divisive initialization. In Sect. 3 we describe the experimental benchmark
and discuss the results obtained, while in Sect. 4 we draw conclusions.

2 Proposed k2-means

In this section we introduce our k2-means method and motivate the design deci-
sions. The pseudocode of the method is given in Algorithm1.

Given some data X = (xi)ni=1, xi ∈ R
d, the k-means clustering objective

is to find cluster centers C = (cj)kj=1, cj ∈ R
d and cluster assignments a :

{1, · · · , n} → {1, · · · , k}, such that the cluster energy

k∑

j=1

∑

x∈Xj

‖x − cj‖2 (1)

is minimized, where Xj := (xi ∈ X|a(i) = j) denotes the points assigned to
a cluster j. For a data point xi, we sometimes write a(xi) instead of a(i) for
the cluster assignment. Similarly, for a subset X ′ of the data, a(X ′) denotes the
cluster assignments of the corresponding points.



778 E. Agustsson et al.

Algorithm 1. k2-means
1: Given: k, data X, neighbourhood size kn

2: Initialize centers C
3: Initialize assignments a : {1 · · · n} → {1, · · · , k} .
4: while Not converged do
5: Build kn-NN graph of C:
6: Nkn : C → {1 · · · k}kn

7: for x ∈ X do
8: Get current center for x:
9: l ← a(x)

10: Assign x to nearest candidate center:
11: a(x) ← arg minl′∈Nkn (cl)

‖x − cl′‖
12: end for
13: for j ∈ {1 · · · k} do
14: cj ← μ(Xj) {Update center}
15: end for
16: end while
17: return C, a

Standard Lloyd obtains an approximate solution by repeating the following
until convergence: (i) In the assignment step, each x is assigned to the nearest
center in C. (ii) For the update step, each center is recomputed as the mean of
its members.

The assignment step requires O(nk) distance computations, i.e. O(nkd) oper-
ations, and dominates the time complexity of each iteration. The update step
requires only O(nd) operations for mean computations.

To speed up the assignment step, an approximate nearest neighbour method
can be used, such as kd-trees [21,22] or locality sensitive hashing [13]. However,
these methods ignore the fact that the cluster centers are moving across itera-
tions and often this movement is slow, affecting a small neighborhood of points.
With this observation, we obtain a very simple fast nearest neighbour scheme:

Suppose at iteration i, a data point x was assigned to a nearby center, l =
a(x). After updating the centers, we still expect cl to be close to x. Therefore,
the centers nearby cl are likely candidates for the nearest center of x in iteration
i + 1. To speed up the assignment step, we thus only consider the kn nearest
neighbours of cl, Nkn

(cl), as candidate centers for the points x ∈ Xl. Since
for each point we only consider kn centers in the assignment step (in line 11
of Algorithm 1), the complexity is reduced to O(nknd). In practice, we can set
kn � k.

We also use inequalities as in [8] to avoid redundant distance computations in
the assignment step (in line 11 of Algorithm 1). We use the exact same triangle
inequalities as described in the Elkan paper [8], but only maintain the nkn lower
bounds, for the neighbourhood of each point, instead of nk for the Elkan method.
It is easy to see that this modification is valid as an exact speed up of the
assignment step within then neighbourhood. When a point is assigned to a new
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cluster, we however need to update the kn lower bounds of the point, since the
neighbourhood changes in this case. We refer to the original Elkan paper [8] for
a detailed discussion on triangle inequalities and bounds.

As for standard Lloyd, the total energy can only decrease in each iteration of
the algorithm. In the assignment step, points are only moved to closer centers,
reducing their contribution to the total energy. In the update step, the center z
of a cluster S is updated as the mean of its members, μ(S). As Lemma 1 shows,
this clearly reduces the energy of the cluster since the second right hand side
term is positive. Thus, the total energy is monotonically decreasing as a function
of iterations, which guarantees convergence.

As shown by Arthur and Vassilvitskii [1], a good initialization, such as k-
means++, often leads to a higher quality clustering compared to random sam-
pling. Since the O(ndk) complexity of k-means++ would negate the benefits of
the k2-means computation savings, we propose an alternative fast initialization
scheme, which also leads to high quality clustering solutions.

2.1 Greedy Divisive Initialization (GDI)

For the initialization of our k2-means, we propose a simple hierarchical clustering
method named Greedy Divisive Initialization (GDI), detailed in Algorithm2.
Similarly to other divisive clustering methods, such as [4,24], we start with a
single cluster and repeatedly split the highest energy cluster until we reach k
clusters.

To efficiently split each cluster, we use Projective Split (Algorithm3), a vari-
ant of k-means with k = 2, that is motivated by the following observation:
Suppose we have points X ′ and centers (c1, c2) in the k-means method. Let H
be the hyperplane with normal vector c2 − c1, going through μ(c1, c2) (see e.g.
the top left corner of Fig. 1). When we perform the standard k-means assignment
step, we greedily assign each point to its closest centroid to get a solution with
a lower energy, thus assigning the points on one side of H to c1, and the other
side of H to c2.

Although this is the best assignment choice for the current centers c1 and c2,
this may not be a good split of the data. Therefore, we depart from the standard
assignment step and consider instead all hyperplanes along the direction c2 − c1
(i.e. with normal vector c2 − c1). We project X ′ onto c2 − c1 and “scan” a
hyperplane through the data to find the split that gives the lowest energy (lines
4–8 in Algorithm 3). To efficiently recompute the energy of the cluster splits as
the hyperplane is scanned, we use the following Lemma:

Lemma 1 [14, Lemma 2.1]. Let S be a set of points with mean μ(S). Then for
any point z ∈ R

d

∑

x∈S

‖x − z‖2 =
∑

x∈S

‖x − μ(S)‖2 + |S|‖z − μ(S)‖2 (2)
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Fig. 1. Example of two iterations of Projective Split and standard k-means with k = 2
using the same initialization. The dashed line shows the direction defined by two centers
(c2−c1). The solid line shows where the algorithms split the data in each iteration. The
splitting line of k-means always goes through the midpoint of the two centers, while
Projective Split picks the minimal energy split along the dashed line. Even though
the initial centers start in the same cluster, Projective Split can almost separate the
clusters in a single iteration.

We can now compute

φ(S ∪ {y}) =
∑

x∈S∪{y}
‖x − μ(S ∪ {y})‖2 (3)

=
∑

x∈S

‖x − μ(S ∪ {y})‖2 + ‖y − μ(S ∪ {y})‖2 (4)

= φ(S) + |S|‖μ(S ∪ {y}) − μ(S)‖2 + ‖y − μ(S ∪ {y})‖2, (5)

where we used Lemma 1 in (4). Equipped with (5) we can efficiently update
energy terms in line 8 in Algorithm 3 as we scan the hyperplane through the data
Xj (after sorting it along ca−cb in line 5–6), using in total only O(|Xj |) distance
computations and mean updates. Note that μ(S ∪ {y}) is easily computed with
an add operation as (|S|μ(S) + y)/(|S| + 1).
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Algorithm 2. Greedy Divisive Initialization (GDI)
1: Given: k, data X
2: Assign all points to one cluster
3: C = {μ(X)}, a(X) = 1
4: while |C| < k do
5: Pick highest energy cluster:
6: j ← arg maxlφ(Xl)
7: Split the cluster:
8: Xa, ca, Xb, cb ← ProjectiveSplit(Xj)
9: cj ← ca

10: c|C|+1 ← cb
11: a(Xb) ← |C| + 1
12: C ← C ∪ {c|C|+1}
13: end while
14: return C, a

Algorithm 3. Projective Split
1: Given:data Xj = (xi)

nj

i=1

2: Pick two random samples ca, cb from Xj

3: while Not Converged do
4: Sort Xj along ca − cb:
5: Pj ← (xi · (ca − cb)|xi ∈ Xj)
6: X̃j ← Xj sorted by Pj

7: Find minimum-energy split:
8: lmin = arg minlφ((x̃i)

l
i=1) + φ((x̃i)

nj

i=l+1)

9: Xa ← (x̃i)
lmin
i=1

10: Xb ← (x̃i)
nj

i=lmin+1

11: ca, cb ← μ(Xa), μ(Xb)
12: end while
13: return Xa, ca, Xb, cb

Compared to standard k-means with k = 2, our Projective Split takes the
optimal split along the direction c2−c1 but greedily considers only this direction.
In Fig. 1 we show how this can lead to a faster convergence.

2.2 Time Complexity

Table 2 shows the time and memory complexity of Lloyd, Elkan, MiniBatch,
AKM, and our k2-means.

The time complexity of each k2-means iteration is dominated by two factors:
building the nearest neighbour graph of C (line 6), which costs O(k2) distance
computations, as well as computing distances between points and candidate
centers (line 11), which initially costs nkn distance computations. Elkan and k2-
means use the triangle inequality to avoid redundant distance calculations and
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Table 2. Time and memory complexity per iteration for Lloyd, Elkan, MiniBatch,
AKM and our k2-means.

Method Time complexity Memory complexity

Lloyd O(nkd) O((n + k)d)

Elkan [8] O(nkd + k2d) ∼ O(nd + k2d) O((n + k)d + nk + k2)

MiniBatch [23] O(bkd) O((b + k)d)

AKM [22] O(nmd) O((n + k)d)

k2-means (ours) O(nknd + k2d) ∼ O(nd + k2d) O((n + k)d + nkn + k2)

empirically we observe the O(nkd) and O(nknd) terms (respectively) gradually
reduce down to O(nd) at convergence.

In MiniBatch k-means processes only b samples per iteration (with b � n)
but needs more iterations for convergence. AKM limits the number of distance
computations to m per iteration, giving a complexity of O(nmd).

Table 3 shows the time and memory complexity of random, k-means++ and
our GDI initialization. For the GDI, the time complexity is dominated by calls
to Projective Split. If we limit Projective Split to maximum O(1) iterations (2
in our experiments) then a call to ProjectiveSplit(Xj) costs O(|Xj |) distance
computations and vector additions, O(|Xj |) inner products and O(|Xj | log |Xj |)
comparisons (for the sort), giving in total O(|Xj |(log |Xj |+d)) complexity. How-
ever, the resulting time complexity of GDI depends on the data.

Table 3. Time and memory complexity for initialization.

Initialization Time complexity Memory complexity

Random O(k) O(k)

k-means++ [1] O(nkd) O(n + k)

GDI (ours) O(n(log k)(d + log n)) ∼ O(nk(d + log n)) O(n + kd)

For pathological datasets, it could happen for each call to Projective
Split(X ′), that the minimum split is of the form {y},X ′ \ {y}, i.e. only one
point y is split off. In this case, for |X| = n, the total complexity will be
O(n(log n + d) + (n − 1)(log(n − 1) + d) + · · · + (n − k)(log(n − k) + d)) =
O(nk(d + log n)).1

A more reasonable case is when at each call ProjectiveSplit(X ′) splits each
cluster into two similarly large clusters, i.e. the minimum split is of the form
(X ′

a,X
′
b) where |Xa| ≈ |Xb|. In this case the worst case scenario is when in each

1 A simple example of such a pathological dataset is X = (xi)
n
i=1 ⊂ R where x1 = 0,

x2 = 1, x3 = φ(x1, x2), x4 = φ(x1, x2, x3) and xn = φ(x1, · · · , xn). The size of xn

grows extremely fast though, e.g. x10 ≈ 1581397605569 and x14 has 195 digits.
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split the highest energy cluster is the largest cluster (in no. of samples), resulting
a total complexity of O(n log k(d + log n)).2 Therefore the time complexity of
GDI is somewhere between O(n log k(d + log n)) ∼ O(n(d + log n)k).

In our experiments we count vector operations for simplicity (i.e. dropping
the O(d) factor), as detailed in the next section. To fairly account for the
O(|Xj | log |Xj |) complexity of the sorting step in ProjectiveSplit, we artificially
count it as |Xj | log2(|Xj |)/d vector operations.

3 Experiments

For a fair comparison between methods implemented in various programming
languages, we use the number of vector operations as a measure of complexity,
i.e. distances, inner products and additions. While the operations all share an
O(d) complexity, the distance computations are most expensive accounting for
the constant factor. However, since the runtime of all methods is dominated
by distance computations (i.e. more than 95% of the runtime), for simplicity we
count all vector operations equally and refer to them as “distance computations”,
using the terminology from [8].

3.1 Datasets

In our experiments we use datasets with 2414–150000 samples ranging from 50
to 32256 dimensions as listed in Table 5. The datasets are diverse in content and
feature representation.

To create cnnvoc we extract 4096-dimensional CNN features [16] for 15662
bounding boxes, each belonging to 20 object categories, from PASCAL VOC
2007 [9] dataset. covtype uses the first 150000 entries of the Covertype dataset
[3] of cartographic features. From the mnist database [17] of handwritten dig-
its we also generate mnist50 by random projection of the raw pixels to a
50-dimensional subspace. For tinygist10k we use the first 10000 images with
extracted gist features from the 80 million tiny images dataset [25]. cifar rep-
resents 50000 training images from the CIFAR [15] dataset. usps [12] has scans
of handwritten digits (raw pixels) from envelopes. yale contains cropped face
images from the Extended Yale B Database [10,18].

3.2 Methods

We compare our k2-means with relevant clustering methods: Lloyd (standard
k-means), Elkan [8] (accelerated Lloyd), MiniBatch [23] (web-scale online clus-
tering), and AKM [22] (efficient search structure).

Aside from our GDI initialization, we also use random initialization and
k-means++ [1] in our experiments. For k-means++ we use the provided Mat-
lab implementation. We Matlab implement MiniBatch k-means according to
2 If we split all clusters of approximately equal size simultaneously, we need O(log k)

passes and perform O(n(d + log n)) computations in each pass.
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Algorithm 1 in [23] and use the provided codes for Elkan and AKM. Lloyd++
and Elkan++ combine k-means++ initialization with Lloyd and Elkan, respec-
tively.

We run all methods, except MiniBatch, for a maximum of 100 iterations. For
MiniBatch k-means we use b = 100 samples per batch and t = n/2 iterations.
For the Projective Split, Algorithm3, we perform only 2 iterations.

3.3 Initializations

We compare k-means++, random and our GDI initialization by running 20 trials
of k-means (Lloyd) clustering with k ∈ {100, 200, 500} on the datasets. Table 4
reports minimum and average cluster energy as well as the average number of
distance computations, relative to k-means++, averaged over 20 seeds.

Our GDI gives a (slightly) better average and minimum convergence energy
than the other initializations, while its runtime complexity is an order of magni-
tude smaller than in the case of k-means++ initialization. Notably, the speedup
of GDI over k-means++ improves as k grows, and at k = 500 is typically more
than an order of magnitude. This makes GDI a good choice for the initialization
of k2-means.

Table 4. Comparison of energy and runtime complexity for random, k-means++, and
our GDI initialization. The results are displayed relative to k-means++, averaged over
20 seeds. Random initialization does not require distance computations. GDI is an
order of magnitude faster while giving comparable energies to k-means++.

Dataset k Average convergence energy Minimum convergence energy Average runtime complexity

Random k-means++ GDI Random k-means++ GDI k-means++ GDI

cnnvoc 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.16

200 1.00 1.00 0.99 1.00 1.00 0.99 1.00 0.09

500 1.00 1.00 0.99 1.00 1.00 0.99 1.00 0.04

covtype 100 1.51 1.00 0.99 1.47 1.00 0.99 1.00 0.19

200 1.58 1.00 0.98 1.38 1.00 0.99 1.00 0.11

500 1.43 1.00 0.99 1.30 1.00 0.99 1.00 0.05

mnist 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.15

200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.09

500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.04

mnist50 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.19

200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.11

500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.05

tinygist10k 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.16

200 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.09

500 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.04

usps 100 1.01 1.00 0.99 1.01 1.00 1.00 1.00 0.16

200 1.01 1.00 0.99 1.01 1.00 0.99 1.00 0.09

500 1.04 1.00 1.00 1.04 1.00 1.00 1.00 0.05

yale 100 1.01 1.00 1.00 1.00 1.00 0.99 1.00 0.16

200 1.02 1.00 1.00 1.02 1.00 1.00 1.00 0.10

500 1.05 1.00 1.03 1.05 1.00 1.02 1.00 0.05

Average 1.078 1.000 0.996 1.061 1.000 0.997 1.000 0.103
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Table 5. Algorithmic speedup in reaching an energy within 1% from the final Lloyd++
energy. (-) marks failure in reaching the target of 1% relative error. For each method,
the parameter(s) that gave the highest speedup at 1% error is used.

Dataset k AKM Elkan++ Elkan Lloyd++ Lloyd k2-means

cifar 50 1.0 2.6 3.7 1.0 1.0 9.5

n = 50000 200 1.9 3.0 4.6 1.0 1.1 26.2

d = 3072 1000 4.9 3.0 5.1 1.0 1.2 86.7

cnnvoc 50 13.8 2.1 2.9 1.0 1.4 9.0

n = 15662 200 22.6 2.0 2.8 1.0 1.2 19.2

d = 4096 1000 3.3 1.9 2.8 1.0 0.9 20.2

covtype 50 - 6.1 - 1.0 - 35.1

n = 150000 200 - 6.3 - 1.0 - 78.7

d = 54 1000 - 8.5 - 1.0 - 176.6

mnist 50 7.3 3.6 5.3 1.0 1.5 12.3

n = 60000 200 1.9 3.7 5.7 1.0 1.2 24.6

d = 784 1000 4.7 3.6 5.9 1.0 0.8 43.4

mnist50 50 12.7 3.7 5.4 1.0 1.3 8.8

n = 60000 200 1.9 4.2 6.7 1.0 1.2 22.3

d = 50 1000 3.1 4.1 6.6 1.0 0.8 38.0

tinygist10k 50 16.2 2.4 3.6 1.0 1.4 11.7

n = 10000 200 12.8 2.3 3.5 1.0 1.3 22.3

d = 384 1000 1.5 2.1 - 1.0 - 13.6

usps 50 5.3 4.1 - 1.0 - 11.8

n = 7291 200 16.8 4.4 - 1.0 - 23.6

d = 256 1000 18.5 2.7 - 1.0 - -

yale 50 2.1 4.2 6.3 1.0 0.6 17.9

n = 2414 200 21.9 2.9 - 1.0 - 13.9

d = 32256 1000 - 1.9 - 1.0 - -

Avg. speedup 8.7 3.6 4.7 1.0 1.1 33.0

3.4 Performance

Our goal is fast accurate clustering, where the cluster energy differs only slightly
from Lloyd with a good initialization (such as k-means++) at convergence.
Therefore, we measure the runtime complexity needed to achieve a clustering
energy that is within 1% of the energy obtained with Lloyd++ at convergence.

For a given budget i.e. the maximum number of iterations and parameters
such as m for AKM and kn for k2 means, it is not known beforehand how well the
algorithms approximate the targeted Lloyd++ energy. For a fair comparison we
use an oracle to select the best parameters and the number of iterations for each
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Table 6. Algorithmic speedup in reaching the same energy as the final Lloyd++
energy. (-) marks failure in reaching the target of 0% relative error. For each method,
the parameter(s) that gave the highest speedup at 0% error is used.

Dataset k AKM Elkan++ Elkan Lloyd++ Lloyd k2-means

cifar 50 - 17.8 - 1.0 - 37.9

200 1.2 24.2 - 1.0 - 139.8

1000 11.3 17.5 28.2 1.0 2.6 373.6

cnnvoc 50 2.4 9.3 - 1.0 - 26.2

200 3.7 9.3 - 1.0 - 59.7

1000 5.8 8.1 - 1.0 - -

covtype 50 - 28.9 - 1.0 - 172.0

200 - 40.2 - 1.0 - 442.4

1000 - 44.5 - 1.0 - -

mnist 50 1.1 17.3 26.6 1.0 2.9 39.3

200 - 25.8 - 1.0 - 81.0

1000 9.0 29.8 - 1.0 - 141.1

mnist50 50 - 18.7 - 1.0 - 31.0

200 2.1 26.6 - 1.0 - 80.3

1000 5.1 22.7 - 1.0 - 94.1

tinygist10k 50 12.5 12.5 20.1 1.0 3.6 50.1

200 4.7 11.0 - 1.0 - 71.8

1000 2.6 7.8 - 1.0 - -

usps 50 - 12.6 - 1.0 - 31.7

200 3.4 14.6 - 1.0 - 54.4

1000 - 9.4 - 1.0 - -

yale 50 2.8 9.5 - 1.0 - 32.5

200 20.8 6.5 - 1.0 - 18.7

1000 - 4.0 - 1.0 - -

Avg. speedup 5.9 17.9 25.0 1.0 3.0 104.1

method, i.e. the ones that give the highest speedup but still reach the reference
error. In practice, one can use a rule of thumb or progressively increase k, m and
the number of iterations until a desired energy has been reached.

To measure performance we run AKM, Elkan++, Elkan, Lloyd++, Lloyd,
MiniBatch, and k2-means with k ∈ {50, 200, 1000} on various datasets, with
3 different seeds and report average speedups over Lloyd++ when the energy
reached is within 1% from Lloyd++ at convergence in Table 5.

Each method is stopped once it reaches the reference energy and for AKM
and k2-means, we use the parameters m and kn from {3, 5, 10, 20, 30, 50, 100, 200}
that give the highest speedup.
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Table 5 shows that for most settings, our k2-means has the highest algorith-
mic speedup at 1% error. It benefits the most when both the number of clusters
and the number of points are large, e.g. for k = 200 at least 19× speedup for
all datasets with n ≥ 7000 samples. We do not reach the target energy for usps
and yale with k = 1000, because kn was limited to 200.
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Fig. 2. Cluster Energy (relative to best Lloyd++ energy) vs distance computations on
cifar, cnnvoc, mnist and mnist50 for k ∈ {50, 200, 1000}. For AKM and k2-means, we
use the parameter with the highest algorithmic speedup at 1% error.
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Figure 2 show the convergence curves corresponding to cifar, cnnvoc, mnist
and mnist50 entries in Table 5. Figure 3 shows the convergence curves of AKM
and k2 means under same settings, when varying the parameters m and kn.
On cifar the benefit of k2-means is clear since it reaches the reference error
significantly faster than the other methods. On mnist50 k2-means is considerably
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Fig. 3. Cluster Energy (relative to best Lloyd++ energy) vs distance computations on
cifar, cnnvoc, mnist and mnist50 for k ∈ {50, 200, 1000}. For AKM and k2-means, we
use the parameter with the highest algorithmic speedup at 1% error.
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faster than AKM for k = 1000 but AKM reaches the 1% reference faster for
k = 50.

In all settings of Table 5, Elkan++ gives a consistent up to 8.5× speedup
(since it is an exact acceleration of Lloyd++). For some settings Elkan is faster
than Elkan++ in reaching the desired accuracy. This is due to the faster ini-
tialization. MiniBatch fails in all but one case (mnist, k = 50) to reach the
reference error of 1% and is thus not shown. In 2/40 cases, we do not reach the
1% reference error - since the maximum kn employed is kn = 200.

For accurate clustering, when the reference energy is the Lloyd++ conver-
gence energy (i.e. 0% error), Table 6 shows that the speedups of k2-means are
even higher. This is partially because in 87.5% of the cases (35/40) we obtain a
lower energy than Lloyd++ since our proposed GDI initialization is compara-
ble or better than k-means++ (see Table 4). For this setting, the second fastest
method is Elkan++, which is designed for accelerating the exact Lloyd++.

4 Conclusions

We proposed k2-means, a simple yet efficient method ideally suited for fast and
accurate large scale clustering (n > 10000, k > 10, d > 50). k2-means combines
an efficient divisive initialization with a new method to speed up the k-means
iterations by using the kn nearest clusters as the new set of candidate centers
for the cluster members as well as triangle inequalities. The algorithmic com-
plexity of our k2-means is sublinear in k for n 
 k and experimentally shown
to give a high accuracy on diverse datasets. For accurate clustering, k2-means
requires an order of magnitude fewer computations than alternative methods
such as the fast approximate k-means (AKM) clustering. Moreover, our efficient
divisive initialization leads to comparable clustering energies and significantly
lower runtimes than the k-means++ initialization under the same conditions.
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