
Cost-Sensitive Perceptron Decision Trees
for Imbalanced Drifting Data Streams

Bartosz Krawczyk(B) and Przemys�law Skryjomski

Department of Computer Science, Virginia Commonwealth University,
Richmond, VA 23284, USA

bkrawczyk@vcu.edu

Abstract. Mining streaming and drifting data is among the most popu-
lar contemporary applications of machine learning methods. Due to the
potentially unbounded number of instances arriving rapidly, evolving
concepts and limitations imposed on utilized computational resources,
there is a need to develop efficient and adaptive algorithms that can han-
dle such problems. These learning difficulties can be further augmented
by appearance of skewed distributions during the stream progress. Class
imbalance in non-stationary scenarios is highly challenging, as not only
imbalance ratio may change over time, but also relationships among
classes. In this paper we propose an efficient and fast cost-sensitive deci-
sion tree learning scheme for handling online class imbalance. In each
leaf of the tree we train a perceptron with output adaptation to compen-
sate for skewed class distributions, while McDiarmid’s bound is used for
controlling the splitting attribute selection. The cost matrix automati-
cally adapts itself to the current imbalance ratio in the stream, allowing
for a smooth compensation of evolving class relationships. Furthermore,
we analyze characteristics of minority class instances and incorporate
this information during the model update process. It allows our classifier
to focus on most difficult instances, while a sliding window keeps track
of changes in class structures. Experimental analysis carried out on a
number of binary and multi-class imbalanced data streams indicate the
usefulness of the proposed approach.

Keywords: Machine learning · Data streams · Imbalanced data
Concept drift · Online learning · Multi-class imbalance

1 Introduction

Modern machine learning systems must take into account the phenomenon of
data in motion, a scenario in which instances arrive rapidly and continuously.
This has given birth to the notion of data streams, potentially unbounded and
ordered data collections. They impose new challenges on learning systems, due
to their ever-growing size, speed of incoming instances and difficulties or laten-
cies for obtaining true class labels. Additionally, data characteristics may change
over time, leading to a phenomenon known as concept drift [2]. When dealing
c© Springer International Publishing AG 2017
M. Ceci et al. (Eds.): ECML PKDD 2017, Part II, LNAI 10535, pp. 512–527, 2017.
https://doi.org/10.1007/978-3-319-71246-8_31

Cost-Sensitive Perceptron Decision Trees 513

with non-stationary data, the previously trained classifier may lose its compe-
tence over time, as the new concepts are vastly different from the previously seen
ones. By using only incremental learning we will accommodate new instances,
but do not take into account the changes in the relevance of older cases. There-
fore, mining data streams require methods that are able to detect the potential
presence of drift in order to reset the learning model, or smoothly adapt to
incoming data with properly tuned forgetting mechanism. This is built on the
top of need for high responsiveness, low computational resource consumption
and highly limited data storage.

The discussed scenario becomes even more complex when we consider the
potential presence of difficulty known as class imbalance [4]. Skewed distributions
pose significant challenge for classifiers, leading to their bias towards the major-
ity class. At the same time in many real-life applications minority instances are
usually of higher significance. While learning from imbalanced data has gained
broad attention from the research community over last two decades, online class
imbalance is still an emerging topic [12]. Here the imbalance ratio may change
dynamically with the stream progress. Furthermore, the concept drift may lead
to changes in class relationships, allowing for minority class to become the major-
ity one and vice versa. While most works in online imbalance consider binary
cases, one must be aware that new classes may appear over time and old ones
disappear, causing further complications for the learning process. As the number
of classes may change over time, so may their mutual relationships. Multi-class
imbalance, while difficult on itself in static scenarios, is an important direction
to be addressed in order to obtain robust data stream classifiers. Additionally,
we need proper performance metrics that can take into account streaming and
multi-class skewed nature of analyzed data.

In this paper we propose a novel decision tree learning approach for handling
imbalanced and drifting data streams. As a base for our model, we use fast
perceptron trees and improve them to become skew-insensitive by using a moving
threshold solution. It aims at re-balancing the supports for each class during the
decision making step, thus alleviating the skew bias with almost no additional
computational cost. This is achieved by weighting support functions for each
class according to a specified cost function. In our solution the cost matrix evolves
over time and adapts to the current state of the stream. This allows us to propose
an adaptive cost-sensitive solution that is able to learn from both binary and
multi-class imbalanced data streams. We augment it with drift detection and use
McDiarmids bound for controlling the splitting attribute selection. Additionally,
we show how to analyze the structure of minority classes in an online manner
by using a sliding window. This allows us to estimate the difficulty of incoming
minority class instances, giving an additional insight into the current state of
the stream. We propose an efficient method of incorporating this background
information into the update process of the proposed decision tree in order to
better capture the minority class characteristics. Experimental study carried
out on a number of drifting and imbalanced binary and multi-class data streams
shows the usefulness of the proposed learning algorithm.

514 B. Krawczyk and P. Skryjomski

2 Learning from Imbalanced Data Streams

In this section, we will discuss the necessary background for this paper. This
includes the area of mining drifting data streams, the problem of skewed class
distributions and online learning in the presence of class imbalance.

2.1 Data Stream Mining

Let us define data stream as an ordered sequence of instances that arrive over
time and can be of unbounded size. This leads to a set of learning character-
istics specific to this problem that must be accounted for when designing data
stream mining algorithms. Here, we do not have a predefined training set, but
the instances become available at various time intervals sequentially with the
stream progress. Additionally, due to the unknown and potentially massive size
of the stream we cannot store it in memory and must use each instance a limited
number of times before discarding it to limit the computational resources being
used. Furthermore, characteristics of the stream are subject to change and we
must accommodate this fact during the continuous learning process [2].

We will assume that data stream is composed of a set of states S =
{S1,S2, · · · ,Sn}, where given state Si comes from a distribution Di. We may
deal with online case (each state is a separate instance) or chunk case (each state
is a set of instances). The simplest learning scenario is a stationary data stream,
where transition between states Sj → Sj+1 holds Dj = Dj+1. In most real-life
scenarios the stream characteristics evolve over time, leading to the notion of
non-stationary data stream and concept drift. It may affect various aspects of
incoming data, thus leading to a number of views on the discussed phenomenon.
From the point of view of influencing the existing decision boundaries, we may
distinguish real and virtual concept drifts. The former has effect on posterior
probabilities and may impact unconditional probability density functions. This
forces the learning system to adapt to change in order not to lose the compe-
tence. The latter drift does not have any effect on posterior probabilities, but
only on conditional probability density functions. It may still cause difficulties
for the learning system, leading to false alarms and unnecessary computational
expenses on rebuilding the classifier. Another view on concept drift comes form
the severity of ongoing changes. Sudden concept drift appears when Sj is being
suddenly replaced by Sj+1, where Dj �= Dj+1. Gradual concept drift is a tran-
sition phase where examples in Sj+1 are generated by a mixture of Dj and
Dj+1 with their proportions continuously changing. Incremental concept drift
is characterized by a smooth and slow transition between distributions, where
the differences between Dj and Dj+1 are not significant. Additionally, we may
face recurring concept drift, in which a state from k-th previous iteration may
suddenly reemerge Dj+1 = Dj−k, which may take place once or periodically.

In order to tackle the presence of concept drift one may chose among three
main approaches: (a) rebuilding classifier from a scratch whenever new instances
become available; (b) use a specific tool to detect changes and guide the model
reconstruction; and (c) use adaptive classifier that will naturally follow the

Cost-Sensitive Perceptron Decision Trees 515

changes in the stream. The first approach is completely unsuitable due to pro-
hibitive computational requirements, especially in case of online stream pro-
cessing. Following the remaining two directions, we may distinguish four main
approaches to handling drifting data streams. First one relies on using a concept
drift detector - an external tool that monitors the characteristics and informs
when a change is expected to appear. This allows for rebuilding the classifier
only when it is deemed as necessary. Second one uses a sliding window in order
to keep a track of most recent instances, as they should be most representative
to the current state of the stream. Such a window follows the stream, discarding
old instances and replacing them with most recent ones. However, the size of
the window is a crucial factor affecting the performance of this approach. Third
solution uses online or incremental classifiers that are able to incorporate new
instances by updating the classification model without a need for a complete
retraining. A forgetting mechanism is required in order to allow for better adap-
tation to changes and reduced model complexity. Finally, ensemble solutions are
popularly used for mining drifting data streams. Here, new instances may be
used to control diversity of the base learners, allowing them to better adapt to
changes, while offering improved predictive capabilities.

2.2 Online Class Imbalance

Learning from imbalanced data is continuously challenging topic despite over
two decades of developments in this domain [4]. Skewed distributions pose chal-
lenges to most of classifiers, as their will lead to a bias towards the majority class,
while minority is usually the more important one. This has lead to a number
of solutions that aims at alleviating this disproportion that can be grouped into
three categories: data-level, algorithm-level and hybrid solutions. The first one
uses preprocessing algorithms to balance class distributions. It involves oversam-
pling the minority class, undersampling the majority one, or both at the same
time. Second group focuses on identifying what causes a given classifier to fail in
an imbalanced scenario and modifying its learning procedure in order to make
it skew-insensitive. Third solution is a combination of one of the two previous
ones with another learning paradigm, most commonly ensemble solution [14].

While there is a plethora of works devoted to binary imbalanced problems,
its multi-class version still requires a significant attention [9]. One cannot view
it as a simple extension from two to many classes, as the complexities go far
beyond it. In binary cases the relationships between classes are easily defined
and the bias is easy to be identified. In multi-class scenario we deal with much
more complex dynamics among classes, leading to a notion of multi-minority
and multi-majority cases. Using a simple decomposition into a set of pairwise
relations leads to loss of useful information, as it is easy to gain performance on
some of classes, while losing it on others. Furthermore, difficulties embedded in
the nature of imbalanced data, such as noisy instances and class overlapping,
become much more difficult to tackle.

The problem of imbalance becomes even more challenging when being con-
sidered from online and non-stationary perspective [12]. Here not only we must

516 B. Krawczyk and P. Skryjomski

deal with skewed data distributions, but also with the fact that the underlying
imbalance ratio is not know from the beginning and is subject to continuous
change during the stream progress. As instances arrive one by one there is a
need to monitor the relationship between classes and update the learning model
accordingly. In this scenario two types of changes are bound to appear. First one
is evolving imbalance ratio and class properties. Here incoming instances may
influence the distribution skew, either strengthening or weakening it. The role of
classes in no longer stationary and in time minority and majority distributions
may swap places. Therefore, online class imbalance learning requires algorithms
that are not fixed on a given minority class, but can adapt themselves to con-
stantly evolving class dynamics. This may be accompanied with the concept
drift, where class boundaries may be affected. A proper solution to this prob-
lem should be able to react to both types of changes in order to achieve good
adaptability, generalization and minority-majority concept description. There is
a number of works for imbalanced data streams that work under a much sim-
pler assumption that the role of classes do not change over time or that data
arrives in chunks and we must handle only local skewness. There is still little
works devoted to actual online class imbalance and the most efficient approaches
include a neural network-based solutions [12], combination of Hoeffding decision
tree with Hellinger distance splitting criterion [5], and a Bagging-based ensemble
solution [12].

Multi-class online imbalance is even more difficult to handle, as classes may
swap their multi-minority and multi-majority roles [11]. Therefore, not only we
need to model the evolving multi-distribution imbalance ratio, changing class
relationships (together with overlapping levels or noisy instances), but also take
into account the fact that number of minority and minority classes may change at
any stage of processed data stream. So far there are only two solutions discussed
in the literature to this problem, based on ensemble of neural networks and
multi-class oversampling/undersampling with online Bagging ensemble.

3 Cost-Sensitive Perceptron Decision Trees

In this section, we will discuss in details the proposed cost-sensitive perceptron
decision trees with adaptive threshold for online mining of imbalanced drifting
data streams, as well as the usage of McDiarmid’s bound for controlling the
splitting attribute selection and online analysis of the minority class structures
for gaining additional information to improve the performance of classifiers.

3.1 McDiarmid’s Perceptron Decision Tree

We propose to build our learning algorithm for imbalanced and drifting data
streams on top of the Fast Perceptron Decision Tree [1], as it provides both high
accuracy and update speed, making it highly suitable for the task at hand. Its
main advantage lies in using a linear perceptron at each leaf. This allows to speed-
up the decision making process, as well as improve the overall accuracy. This

Cost-Sensitive Perceptron Decision Trees 517

hybrid solution combines the advantages of trees and neural models, allowing
for efficient processing of data streams.

We use an online perceptron approach with sigmoid activation function (as
suggested by Bifet et al. [1]) with squared error optimization. Let us assume that
instances from the stream arrive in a form of 〈xi, yi〉, where xi is a feature vector
for i-th instance and yi is a class label associated with it. The perceptron learn-
ing scheme aims at minimizing the number of misclassified instances. We will
annotate the learning hypothesis function of given perceptron for i-th instance
as hw(xi). To evaluate the learning process, we apply the mean-square error
defined as J(w) = 1

2

∑
(yi − hw(xi))

2. Bifet et al. [1] proposed to use sigmoid
activation function instead of a traditional threshold and we follow this approach.
The sigmoid activation function for hypothesis hw = σ(wTxi) is expressed as
σ(x) = 1/(1 = e−x), being differentiable as σ′(x) = σ(x) (1 − σ(x)). This allows
us to calculate the error function gradient as follows:

�J = −
∑

i

(yi − hw(xi)) � hw(xi), (1)

where sigmoid hypothesis:

�hw(xi) = hw(xi)(1 − hw(xi)), (2)

which allows us to compute the following weight update rule:

w = w + η
∑

i

(yi − hw(xi)) hw(xi)(1 − hw(xi))xi. (3)

As we deal with online learning, a stochastic gradient descent is being used
with weights updated after each instance [1]. A single perceptron is trained per
each class, making it suitable for both binary and multi-class problems. To obtain
a final prediction regarding the class of new instance we select the highest value of
support functions returned by each perceptron arg maxk (hw1(x), · · · , hwK

(x)),
where K is the number of classes.

Original implementation of Fast Perceptron Decision Tree used Hoeffding
inequality to determine the amount of instances needed for conducting a split
[1]. However, recent study discussed flaws in the Hoeffding bound [8]. In this
work, we propose to modify the underlying base of the original Fast Perceptron
Decision Tree and use a McDiarmid’s inequality for controlling the splitting
criteria. It is a generalization of the Hoeffding’s inequality, being applicable to
both numerical and non-numerical data, as well as better describing the split
measures. Let us now present the McDiarmid’s theorem.

Theorem 1 (McDiarmid’s Theorem). Let X1, · · · ,Xn be a set of indepen-
dent random variables and f(x1, · · · , xn) be a function fulfilling the following
inequality:

sup
x1,··· ,xi,··· ,xn,x̂i

|f(x1, · · · , xi, · · · , xn) − f(x1, · · · , x̂i, · · · , xn)| ≤ ci,∀i=1,··· ,n.

(4)

518 B. Krawczyk and P. Skryjomski

Then for any given ε > 0 the following inequality is true:

Pr (f(X1, · · · ,Xn) − E [f(X1, · · · ,Xn)] ≥ ε) ≤ exp
(

− 2ε2
∑n

i=1 c2i

)

= δ. (5)

One may apply McDiarmid’s inequality to any split measure. We use it in
combination with the popular Gini gain in order to estimate the minimal number
of instances n to conduct a split during data stream processing [8]. One may
defined the Gini gain as follows:

ΔgGi (S) = gG(S) −
∑

q∈{L,R}

nq,i(S)
n(S)

⎛

⎝1 −
K∑

k

(
nk
q,i(S)

nq,i(S)

)2
⎞

⎠ , (6)

where S is a set of instances in analyzed node, L and R stand for children left
and right nodes, nq,i(S) is the number of elements in given node that will be
passed to q-th child node for split made on i-th attribute, and nq,i(S) is the
number of instances belonging to k-th class that will be passed to q-th child
node for split made on i-th attribute.

This allows us to formulate McDiarmid’s inequality for comparing Gini gains
for any two features.

Theorem 2 (McDiarmid’s Inequality for Gini Gain). Let S = s1, · · · , sn
be a set of instances and let ΔgGi (S) and ΔgGj (S) be the Gini gain values (see
Eq. 6) for i-th and j-th feature. If the following condition is satisfied by them:

ΔgGi (S) − ΔgGj (S) >

√
8 ln(1/δ)

n(S)
, (7)

then the following inequality holds with probability of 1 − δ or higher:

E[ΔgGi (S)] > E[ΔgGj (S)]. (8)

Corollary 1 (McDiarmid’s Splitting Criterion for Gini Gain). Let us
assume that ΔgGi1(S) and DeltagGi2(S) are the metric values for features with
respectively highest and second highest Gini gain. If the following condition is
satisfied:

ΔgGi1(S) − ΔgGi2(S) >

√
8 ln(1/δ)

n(S)
, (9)

then following Theorem2, with the probability equal to (1 − δ)d−1 the following
statement is true:

i1 = arg max
i=1,··· ,d

{
E[gGi (S)]

}
, (10)

where d is the number of features and i1-th feature is selected to split the current
node.

Cost-Sensitive Perceptron Decision Trees 519

3.2 Cost-Sensitive Modification with Adaptive Output

The decision tree learning algorithm discussed above will be further modified in
order to make it suitable for learning from online imbalanced data. While decision
trees are popular both in static imbalanced or balanced streaming data mining
areas [13], for online skewed data there exists only a modification of Hoeffding
Tree using Hellinger distance for conducting splits [5]. This metric, although skew
insensitive, may still fail for difficult imbalanced datasets with complex class
structures. On the other hand, it imposes minimal additional computational
cost on the classifier - a highly desirable property in data stream mining. In
non-stationary scenarios using data preprocessing is challenging and may lead
to a prohibitively increased computational complexity. Therefore, algorithm-level
solutions are worth pursuing and we will concentrate on them in this paper.

We propose to take an advantage of using perceptrons in leafs of the decision
tree and enhance them with cost-sensitive approach. This will be achieved by
modifying the output of each perceptron, instead of changing the structure of
the training data or the training algorithm.

We will introduce the cost-sensitive modification in the prediction step. In
the previous section for a K-class problem we denoted the continuous output of
k-th perceptron for object x as hwk

(x). In the proposed cost-sensitive approach,
we will calculate the output of k-th perceptron in a leaf of our decision tree as:

h∗
wk

(x) =
K∑

l=1

hwk
(x) · cost[k, l], (11)

where cost[k, l] is the misclassification cost between k-th and l-th class, provided
by the user.

Output modification approaches for neural classifiers have proved themselves
to be efficient in tackling stationary imbalanced data [15], yet this is the first
work on their usage for online class imbalance. This solution is highly compatible
with data stream mining requirements, as it does not impose significant addi-
tional computational needs, do not rely on data preprocessing and can be easily
included in the proposed decision tree learning scheme, taking the advantage of
McDiarmid’s inequality. Additionally, it is easily applicable for both binary and
multi-class data streams, making it a versatile approach.

3.3 Adaptive Online Cost Matrix

The used misclassification costs have significant influence on the performance
of this method. Too low cost would not alleviate the bias, while too high cost
would degrade the performance over the majority classes. We need to strive for
a balanced performance. In optimal scenario the cost would be provided by a
domain expert or embedded in the nature of the problem. However, in most of
real-life cases we do not have a supplied cost matrix and thus a manual setting
is required. There exist some automatic and semi-automatic methods applicable
to stationary data, yet they cannot be used for data streams.

520 B. Krawczyk and P. Skryjomski

As the imbalanced stream will evolve over time, it is to be expected that
it will affect relationships among classes. Therefore, a static cost matrix will
quickly become outdated, not being able to properly reflect the current concept.
On the other hand tuning it for each incoming set of instances would impose
additional computational requirements, as well as a need for validation instances
to select the best settings. Therefore, a lightweight solution is needed that will
be able to keep a track of changes in the stream.

We propose a simple, yet effective approach of monitoring the current imbal-
ance ratio among classes and setting the cost according to local pairwise imbal-
ance ratios. This will allow for an easy modeling of multi-minority and multi-
majority cases. The costs will change with the progress of the stream, as labels
of incoming instances will be recorded and used to update the current skew-
ness levels. Please note that this solution does not require to keep the instances
in memory, as only counters for each class are needed. However, as the stream
evolve over time one cannot keep all of previous information regarding class rela-
tionships. Therefore, we propose to use a fixed time threshold, as well as time
stamps with each recorded label and use them to remove outdated cases from
imbalance ratio counting. This allows for dynamically adapting our cost matrix
to changes and drifts in the data stream.

3.4 Drift and Imbalance Detection

In order to efficiently learn from imbalanced and drifting data streams, we require
tools that will be able to monitor the imbalance ratio and the appearance of con-
cept drifts. We propose to combine our Cost-Sensitive Perceptron Decision Tree
with Drift Detection Method for Online Class Imbalance (DDM-OCI) [10]. It is
based on monitoring the recall in the minority class and if there is a significant
drop in it (as evaluated by drift detector), it reports a drift. Following other
works in drift detection, it may also be used to output a two-stage decision:
drift warning and drift detection. This will be very useful for the next solution
to online class imbalance proposed in this paper. DDM-OCI was proposed for
binary online imbalance, but can be easily extended to multi-class cases. Here,
we monitor the averaged recall over all of minority classes. In our case that
means all of classes with an exception to the current most frequent one, allowing
for taking into account that in multi-class online imbalance roles of classes are
also subject to change.

3.5 Online Analysis of Minority Class Structure

Imbalance ratio among classes is not the sole source of learning difficulty. The
underlying class structures, overlapping and noisy instances have significant
impact on the decision boundaries being estimated. Therefore, one may assume
that minority class instances may pose a different level of difficulty to the learn-
ing procedure. Recent works for static imbalanced data propose to take this
factor into account and analyze the types of minority instances [6]. However,

Cost-Sensitive Perceptron Decision Trees 521

there is still a need for approaches that will directly incorporate this informa-
tion into training procedures. Additionally, no such analysis have been done for
data streams and online class imbalance.

In this work, we propose to analyze the difficulty of incoming minority class
objects, while taking into account the evolving structure of classes. Firstly, let
us define the types of minority instances. For their identification, we will use a
neighborhood search with k = 5, similar as in works dealing with static data.
Based on that, we propose six levels of difficulty λ that can be assigned to each
new minority instance based on how contaminated is its neighborhood. This is
measured by parameter ρ that states how many of k neighbors belong to the same
minority class. Details are presented in Table 1. This analysis may be extended
to multi-class scenario by considering each multi-minority class separately, as we
have shown for static scenarios in our previous work [9].

Table 1. Six levels of instance difficulty for minority class.

safe borderline borderline+ rare rare+ outlier

ρ 5 4 3 2 1 0

λ 1 2 3 4 5 6

We propose to label each new minority class instance based on this analy-
sis. As we deal with an online scenario, we cannot nor want to keep the entire
stream in the memory. Therefore, we propose to analyze the types of minor-
ity instances using a small sliding window that will keep only the most recent
instances, allowing for a fast neighborhood search within it. Additionally, we
will incorporate the information from the drift detector. When a warning signal
is being raised, the window will be reduced to 1/4 of its original size. This will
allow to accommodate the change that starts to appear by taking into account
a reduced subset of recent instances. When a drift is being detected, we reset
the window in order to not include instances from the previous concepts into the
analysis after the change. When minority classes switch places with majority, we
also reset the window.

Another issue lies in how to utilize this information regarding minority class
structure during the online learning process. We propose to take advantage of
perceptrons in the introduced cost-sensitive decision tree model. Their learning
procedure can be influenced by the number of iterations they are allowed to
spend on each instance. Therefore, each new minority instance will be presented
to the cost-sensitive perceptron tree λ times during online learning, where λ
is the difficulty level associated with this instance. This will shift our classifier
towards concentrating on difficult instances, which in turn should lead to a better
predictive performance.

522 B. Krawczyk and P. Skryjomski

4 Experimental Study

This experimental study was designed in order to answer the following research
questions:

– Does the proposed cost-sensitive perceptron decision tree is able to efficiently
learn from online binary and imbalanced drifting data streams?

– Does the introduced online analysis of minority instance difficulties can lead
to better understanding the learning difficulties in online imbalance and thus
improving the performance of an underlying classifier?

– Do the proposed modifications significantly influence the memory and time
requirements of the learning model?

Following subsections will describe used datasets, experimental set-up, as
well as present obtained results with their discussion.

4.1 Datasets

As there are no standard benchmarks for online class imbalance learning, we
selected a diverse set of both artificially generated and real-life datasets with
various levels of class imbalance. Let us now describe them shortly.

– Binary data streams. We have created six artificial datasets with varying
proportions of minority instance types. They are generated by mixing one of
five predefined states (described in Table 2), each consisting of 10000 instances
and 7 features created using Clover data generator [7]. Therefore, each arti-
ficial dataset has 50000 instances. Artificial1 is S1 → S2 → S3 → S1 → S2.
Artificial1 is S1 → S2 → S3 → S1 → S2. Artificial2 is S1 → S2 →
S3 → S2 → S3. Artificial3 is S2 → S3 → S4 → S1 → S3. Artificial4 is
S3 → S5 → S2 → S3 → S4. Artificial6 is S1 → S5 → S3 → S3 → S4. Addi-
tionally, we include Twitter dataset as described in [12]. We use MOA bench-
marks, including RBF (10 classes), Hyperplane (5 classes), LED (10 classes),
Random Tree (3 classes), and Poker (10 classes), generated using standard
settings with 50000 instances each. They were transformed into binary prob-
lems by randomly selecting one class as minority and merging remaining ones
as majority. After each 10000 instances minority class is swapped with one of
the remaining ones.

– Multi-class data streams. Here, we used Chess and Tweet datasets, as
described in [11]. Additionally, we used three MOA generators. RBF dataset
consisted of 50000 instances, 20 features and 10 classes with random pro-
portions and gradual drift. Hyperplane dataset consisted of 50000 instances,
10 features and 5 classes with proportions 1:5:10:20:50:100 and incremental
concept drift. Random Tree dataset consisted of 50000 instances, 10 features
and 3 classes with proportions 10:30:100 and sudden concept drift. Addition-
ally, we use Yeast dataset with 8 features and 10 classes due to its difficult
multi-class structure [9]. It has been copied and randomly shuffled to create
50000 instances.

Cost-Sensitive Perceptron Decision Trees 523

Table 2. Five predefined states for generating artificial binary data streams with
respect to composition [in %] of different minority instance types.

safe borderline borderline+ rare rare+ outlier

S1 100 0 0 0 0 0

S2 50 30 20 0 0 0

S3 30 30 20 15 5 0

S4 10 20 40 10 10 10

S5 0 10 20 30 20 20

4.2 Set-up

There are but few methods for online class imbalance learning for both binary
and multi-class cases. Most of them are either rooted in neural networks or
ensemble approaches [12], thus not making a fair nor suitable reference for our
single tree learning procedure. Therefore, as reference we have selected a stan-
dard Fast Perceptron Decision Tree (PDT) [1], to evaluate how our modifications
increase its skew-insensitivity and Hellinger Hoeffding Decision Tree (HHT) [5],
as this is another decision tree algorithm for imbalanced data streams. Fur-
thermore, we evaluate the performance of the proposed cost-sensitive algorithm
without taking into account the types of minority instances (CSPT) and with
this extension included (CSPT+). Our algorithm is directly applicable for both
binary and multi-class data streams, while for multi-class cases we modify HHT
to conduct binary decompositions in each split in an identical fashion as its static
version [3].

As evaluation metric, we use prequential G-mean for binary streams and
prequential Averaged Recall for multi-class ones (where AvRec =

∑K
k=1 TPRk

K).
Decay factor is set to 0.995 for both metrics.

Experiments were conducted in R language using RMOA package on a
machine equipped with an Intel Core i7-4700MQ Haswell @ 2.40 GHz proces-
sor and 32.00 GB of RAM.

4.3 Experiment 1: Binary Imbalanced Data Streams

Firstly, let us analyze the performance of our method on binary imbalanced data
streams. We wanted to check how does the size of sliding window influence the
performance of our method. Results for window size ∈ [25, · · · , 300] instances
are reported in Table 3. From it one can see that in most cases 100 instances
are enough to efficiently calculate both current imbalance ratio and minority
instances types. Smaller windows cut-off too many instances, thus preventing
us from gaining a more global view on the current state of the stream. Bigger
windows do not contribute to the predictive power, yet significantly increase
the computational complexity. Therefore, we may conclude that for estimating

524 B. Krawczyk and P. Skryjomski

Table 3. Averaged prequential G-mean [%] for varying sizes of sliding windows used
to analyze the difficulty of minority instances over binary data streams. Best trade-off
between size and predictive performance bolded.

25 50 75 100 125 150 175 200 225 250 275 300

Artificial1 77.94 78.14 81.34 82.59 82.59 82.59 82.59 82.59 82.59 82.59 80.43 78.67

Artificial2 78.60 78.80 81.86 83.18 83.18 83.18 83.18 83.18 83.18 83.18 81.37 79.61

Artificial3 78.88 79.17 82.23 83.59 83.59 83.59 83.59 83.46 83.42 83.60 81.65 79.94

Artificial4 79.16 79.41 82.42 84.18 84.18 83.78 83.83 83.60 83.60 83.93 81.79 80.13

Artificial5 78.22 78.61 81.29 82.99 82.99 82.99 82.99 82.99 82.99 82.99 80.52 78.86

Artificial6 78.50 78.94 81.67 83.94 83.94 83.94 83.94 83.94 83.94 83.23 80.85 79.19

Twitter 46.43 48.92 50.27 50.27 50.27 50.27 50.27 50.27 50.27 50.27 46.47 45.18

RBF 90.08 92.34 94.18 94.51 94.51 94.51 94.51 94.51 94.51 94.51 94.51 92.01

Hyperplane 77.54 79.89 81.02 81.87 81.87 81.87 81.87 81.87 81.87 81.87 80.18 79.83

LED 53.19 55.88 56.11 56.11 56.11 56.11 56.11 56.11 56.11 56.11 54.36 52.19

RTree 49.75 52.12 52.12 52.12 52.12 52.12 52.12 52.12 52.12 52.12 52.12 52.12

poker 61.34 62.67 66.03 67.69 67.69 67.69 67.69 67.69 67.69 67.69 67.69 67.69

the imbalance ratios and minority class structures sliding window of size 100 is
sufficient. This setting will be used in following experimental comparison.

Table 4 presents comparison with reference decision tree algorithms for binary
online data streams. Standard PDT cannot tackle skewed distributions and
becomes easily biased towards the majority class. HHT performs much bet-
ter, yet CSPT and CSPT+ outperform it on 10 out of 12 data streams. This
can be explained by Hellinger split criterion not being enough to counter severe
class imbalance and difficult minority class structures, which is especially visi-
ble in case of six artificial datasets. In most cases CSPT+ returns the superior
performance, showing that the proposed online analysis of minority instances
difficulty can be beneficial to the learning process. It is interesting to notice that
this happens on most of datasets, not only on six artificial ones that had explic-
itly generated such structures. We may conclude that difficult minority instances
are bound to happen in online learning scenarios, especially when the minority
class structure is constantly evolving. Therefore, it is worthwhile to incorporate
such information during online classifier updating.

When taking into account both time and memory resources being used, one
can see that perceptron-based solutions are faster than HHT. CSPT displays
almost identical resource usage as the native PDT, proving that the proposed
cost-sensitive modification and adaptive cost matrix does not impose any signif-
icant additional costs. CSPT+ displays slightly higher computational require-
ments, which was to be expected as for each new minority instance it analyzes
its type and needs to store instances in a sliding window. However, this search is
conducted only for minority instances, leading only to a slight increase in overall
resource consumption which is far from being prohibitive.

Cost-Sensitive Perceptron Decision Trees 525

Table 4. Averaged prequential G-mean [%], together with update time [s.] and memory
consumption [RAM] per 1000 instances for binary data streams.

Dataset PDT HHT CSPT CSPT+

G-mean Time Memory G-mean Time Memory G-mean Time Memory G-mean Time Memory

Artificial1 72.34 0.98 2.13 81.32 2.00 2.33 82.59 1.04 2.15 82.59 1.20 2.40

Artificial2 69.17 1.03 2.17 80.14 1.95 2.40 82.34 1.10 2.19 83.18 1.27 2.47

Artificial3 65.28 1.05 2.25 79.85 1.56 2.37 81.52 1.12 2.28 83.59 1.28 2.42

Artificial4 61.03 1.06 2.28 78.02 2.09 2.50 80.05 1.17 2.32 84.18 1.26 2.46

Artificial5 58.51 1.11 2.30 76.98 2.31 2.48 78.83 1.20 2.31 82.99 1.30 2.52

Artificial6 52.18 1.17 2.36 73.97 2.24 2.53 75.33 1.25 2.38 83.94 1.34 2.48

Twitter 37.37 0.99 1.78 47.24 1.43 1.98 48.42 1.04 1.82 50.27 1.13 2.00

RBF 70.38 1.36 2.03 87.04 2.56 2.21 92.18 1.42 2.05 94.51 1.51 2.19

Hyperplane 65.19 1.28 2.78 81.26 2.09 3.01 79.58 1.34 2.79 80.87 1.45 3.07

LED 21.89 2.17 3.01 56.89 3.05 3.23 54.29 2.23 3.04 56.11 2.31 3.32

RTree 19.76 2.02 2.32 47.51 2.74 2.49 51.15 2.08 2.35 52.12 2.18 2.46

poker 39.04 0.78 1.34 62.98 1.95 1.44 65.66 0.83 1.37 67.69 1.00 1.67

Table 5. Averaged prequential AvRec for varying sizes of sliding windows used to
analyze the difficulty of minority instances over multi-class data streams. Best trade-
off between size and predictive performance bolded.

25 50 75 100 125 150 175 200 225 250 275 300

Chess 23.19 23.21 23.29 23.97 24.28 25.72 25.72 25.72 25.72 25.14 24.73 24.28

Tweet 28.54 28.93 28.99 29.36 30.42 31.93 31.93 31.93 31.93 31.93 31.74 31.02

RBF 37.56 37.87 37.89 40.05 41.25 41.25 41.25 41.25 41.25 41.25 40.51 39.99

Hyperplane 46.45 46.65 46.39 47.54 47.89 47.92 48.31 48.31 48.31 48.31 48.31 47.69

RTree 67.34 68.39 70.18 70.18 70.18 70.18 70.18 70.18 70.18 69.17 68.92 68.38

Yeast 78.23 78.78 79.02 79.43 79.58 80.98 80.98 80.98 80.98 80.02 78.93 78.75

4.4 Experiment 2: Multi-class Imbalanced Data Streams

We will now switch to multi-class imbalanced data streams. Let us once again
check how does the size of sliding window influence the performance of our
method, this time when higher number of classes is being taken into considera-
tion. Results for window size ∈ [25, · · · , 300] instances are reported in Table 5.
From it one can see that multi-class scenarios prefer slightly bigger sliding win-
dows. This can be contributed the need for capturing more complex relationships
among a number of distributions. Thus, more instances are needed as they will
be divided among a number of classes. We will use the window size of 150 in the
following experiments.

Table 6 presents comparison with reference decision tree algorithms for multi-
class online data streams. Once again PDT fails to deliver satisfactory per-
formance. However, we can see much bigger discrepancies between HHT and
CSPT/CSPT+. As Hellinger distance is a binary metric, to adapt it for multi-
class problems one must use a binary decomposition at each node and ten average
the metric results when conducting splits. Our experiments show that this fails
for multi-class imbalanced data streams. CSPT+ always returns the superior

526 B. Krawczyk and P. Skryjomski

Table 6. Averaged prequential AvRec [%], together with update time [s.] and memory
consumption [RAM] per 1000 instances for multi-class data streams.

Dataset PDT HHT CSPT CSPT+

AvRec Time Memory AvRec Time Memory AvRec Time Memory AvRec Time Memory

Chess 2.74 1.18 3.03 14.98 2.31 3.26 23.43 1.24 3.17 25.72 1.44 4.44

Tweet 3.19 1.39 2.87 22.12 2.25 2.97 28.71 1.48 2.99 31.93 1.59 4.33

RBF 3.89 3.03 4.03 33.91 3.68 4.22 40.59 3.08 4.15 41.25 3.19 5.02

Hyperplane 5.19 3.89 5.48 37.19 4.48 5.69 47.31 3.94 5.63 48.31 4.23 6.62

RTree 20.98 2.15 2.78 58.13 2.59 3.02 67.28 2.21 2.88 70.18 2.45 3.90

Yeast 21.48 4.02 6.48 61.93 5.01 6.71 72.19 4.14 6.58 80.98 4.25 8.05

performance, showing that taking into account minority class structures in multi-
class online imbalance plays a very important role for the learning process.

When analyzing the resource usage, we can see that perceptron-based solu-
tions increased their costs. This is due to higher number of perceptrons being
trained at each leaf. Additionally, CSPT+ needs to store more instances in
the sliding window and conduct more instance difficulty analyses, as minority
instances may arrive from multiple classes. However, the displayed complexity
does is not prohibitive and shows that CSPT+ can be used in real-life scenarios
with multi-class imbalanced data streams.

5 Conclusions and Future Works

In this paper, we have introduced a novel decision tree learning algorithm for
online learning from binary and multi-class data streams in presence of class
imbalance and concept drift, using McDiarmid’s inequality. A cost-sensitive
improvement to Fast Perceptron Decision Trees was introduced. It modified the
outputs of perceptrons in each leaf that were used to predict a class for new
instances. Cost-sensitive weighting of support functions allowed to alleviate the
bias towards the majority class without introducing additional computational
costs associated with data preprocessing techniques. We proposed a simple, yet
effective method for calculating cost matrix dynamically using pairwise imbal-
ance ratios measured over most recent examples. This allowed for our cost matrix
to swiftly adapt to changes in class distributions during the stream progress.
Furthermore, we proposed to incorporate information regarding the types and
difficulties of minority class instances into the learning process. We used a sliding
window solution to store a small batch of most recent instances and use them to
label types of incoming minority class instances by measuring how contaminated
was their neighborhood. We proposed six levels of difficulty that were used to
determine how many times a given instance is used by our cost-sensitive percep-
tron tree during the learning process. This allowed for more difficult instances
to have a greater influence over the formed decision boundaries.

Obtained results encourage us to further pursue this direction. We envision
a potential of using the proposed decision tree in ensemble set-up to improve its

Cost-Sensitive Perceptron Decision Trees 527

predictive power and drift handling capacities, as well as a need for evaluating
alternative approaches to analyzing structure of minority classes.

References

1. Bifet, A., Holmes, G., Pfahringer, B., Frank, E.: Fast perceptron decision tree
learning from evolving data streams. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi,
V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6119, pp. 299–310. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13672-6 30

2. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

3. Hoens, T.R., Qian, Q., Chawla, N.V., Zhou, Z.-H.: Building decision trees for the
multi-class imbalance problem. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J.
(eds.) PAKDD 2012. LNCS (LNAI), vol. 7301, pp. 122–134. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30217-6 11

4. Krawczyk, B.: Learning from imbalanced data: open challenges and future direc-
tions. Prog. AI 5(4), 221–232 (2016)

5. Lyon, R.J., Brooke, J.M., Knowles, J.D., Stappers, B.W.: Hellinger distance trees
for imbalanced streams. In: 22nd International Conference on Pattern Recognition,
ICPR 2014, 24–28 August 2014, Stockholm, Sweden, pp. 1969–1974 (2014)

6. Napierala, K., Stefanowski, J.: Types of minority class examples and their influence
on learning classifiers from imbalanced data. J. Intell. Inf. Syst. 46(3), 563–597
(2016)

7. Napiera�la, K., Stefanowski, J., Wilk, S.: Learning from imbalanced data in presence
of noisy and borderline examples. In: Szczuka, M., Kryszkiewicz, M., Ramanna,
S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 158–167.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13529-3 18

8. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining
data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng.
25(6), 1272–1279 (2013)

9. Sáez, J.A., Krawczyk, B., Woźniak, M.: Analyzing the oversampling of different
classes and types of examples in multi-class imbalanced datasets. Pattern Recogn.
57, 164–178 (2016)

10. Wang, S., Minku, L.L., Ghezzi, D., Caltabiano, D., Tiño, P., Yao, X.: Concept
drift detection for online class imbalance learning. In: The 2013 International Joint
Conference on Neural Networks, IJCNN 2013, 4–9 August 2013, Dallas, TX, USA,
pp. 1–10 (2013)

11. Wang, S., Minku, L.L., Yao, X.: Dealing with multiple classes in online class imbal-
ance learning. In: Proceedings of 25th International Joint Conference on Artificial
Intelligence, IJCAI 2016, 9–15 July 2016, New York, NY, USA, pp. 2118–2124
(2016)

12. Wang, S., Minku, L.L., Yao, X.: A systematic study of online class imbalance
learning with concept drift. CoRR abs/1703.06683 (2017). http://arxiv.org/abs/
1703.06683

13. Wozniak, M.: A hybrid decision tree training method using data streams. Knowl.
Inf. Syst. 29(2), 335–347 (2011)

14. Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as
hybrid systems. Inf. Fusion 16, 3–17 (2014)

15. Zhou, Z., Liu, X.: Training cost-sensitive neural networks with methods addressing
the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2006)

https://doi.org/10.1007/978-3-642-13672-6_30
https://doi.org/10.1007/978-3-642-30217-6_11
https://doi.org/10.1007/978-3-642-13529-3_18
http://arxiv.org/abs/1703.06683
http://arxiv.org/abs/1703.06683

	Cost-Sensitive Perceptron Decision Trees for Imbalanced Drifting Data Streams
	1 Introduction
	2 Learning from Imbalanced Data Streams
	2.1 Data Stream Mining
	2.2 Online Class Imbalance

	3 Cost-Sensitive Perceptron Decision Trees
	3.1 McDiarmid's Perceptron Decision Tree
	3.2 Cost-Sensitive Modification with Adaptive Output
	3.3 Adaptive Online Cost Matrix
	3.4 Drift and Imbalance Detection
	3.5 Online Analysis of Minority Class Structure

	4 Experimental Study
	4.1 Datasets
	4.2 Set-up
	4.3 Experiment 1: Binary Imbalanced Data Streams
	4.4 Experiment 2: Multi-class Imbalanced Data Streams

	5 Conclusions and Future Works
	References

