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Abstract. Topic models for text analysis are most commonly trained
using either Gibbs sampling or variational Bayes. Recently, hybrid va-
riational-Gibbs algorithms have been found to combine the best of both
worlds. Variational algorithms are fast to converge and more efficient
for inference on new documents. Gibbs sampling enables sparse updates
since each token is only associated with one topic instead of a distribu-
tion over all topics. Additionally, Gibbs sampling is unbiased. Although
Gibbs sampling takes longer to converge, it is guaranteed to arrive at
the true posterior after infinitely many iterations. By combining the two
methods it is possible to reduce the bias of variational methods while
simultaneously speeding up variational updates. This idea has previ-
ously been applied to standard latent Dirichlet allocation (LDA). We
propose a new sampling method that enables the application of the idea
to the nonparametric version of LDA, hierarchical Dirichlet process topic
models. Our fast sampling method leads to a significant speedup of vari-
ational updates as compared to other sampling methods. Experiments
show that training of our topic model converges to a better log-likelihood
than previously existing variational methods and converges faster than
Gibbs sampling in the batch setting.

1 Introduction

Topic models based on latent Dirichlet allocation (LDA) are a common tool
for analyzing large collections of text. They are used for extracting common
themes and provide a probabilistic clustering of documents. The topics, usually
represented by word clouds of frequent words, can be interpreted and used to
understand the content of a text corpus. Since scalability is an important factor
when modeling large datasets, various online algorithms have been developed to
handle streams of documents. A generalization of LDA that allows for asymmet-
ric topic priors and an unbounded number of topics is provided by nonparametric
topic models. These are based on hierarchical Dirichlet processes (HDPs) [16].
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The two main algorithms for training LDA topic models are Gibbs sampling
and variational Bayes. While Gibbs sampling is an unbiased method, it takes
very long on large datasets to converge. To make Gibbs sampling online, one has
to use particle samplers which are rather inefficient. Variational Bayes on the
other hand may be combined with stochastic gradients to be trained online.

Hybrid methods have gained popularity in recent years, especially in deep
neural networks where black box variational inference is a very efficient training
algorithm [11]. Sampling can be used to approximate the gradient in variational
Bayes which leads to a second source of stochasticity (in addition to random
choices of data subsets). In previous work this was applied to parametric topic
models [9] and a very efficient variant of this algorithm was recently proposed
that takes advantage of the sparsity in topic distributions during sampling [14].
Hybrid algorithms have the combined advantages of a reduced bias of the varia-
tional method and a faster convergence as compared to pure Gibbs sampling, as
well as the possibility of online training through stochastic gradient estimation.

We will first introduce topic models and the two main training algorithms,
Gibbs sampling and variational Bayes. Following this, we briefly introduce non-
parametric topic models and present an efficient sampling method. We then
show how this sampling method can be used to construct a hybrid Variational-
Gibbs method. To further speed up our algorithm, we propose a more efficient
sampling algorithm. Our experiments show that our method converges better
than the purely variational topic modeling method as well as the Gibbs sampler.
Supplementary material for this paper is available at https://www.datamining.
informatik.uni-mainz.de/files/2015/06/supplement.pdf.

2 Background

In this section, we will first provide the necessary background in latent Dirichlet
allocation (LDA). Second, we will introduce the nonparametric version, hierar-
chical Dirichlet processes (HDP).

2.1 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a generative model of document collec-
tions where each document is modeled as a mixture of latent topics. Each topic
k ∈ 1, . . . , K is represented by a multinomial distribution φk over words that is
assumed to be drawn from a Dirichlet distribution Dir(β). The dth document
is generated by drawing a distribution over topics from a Dirichlet θd ∼ Dir(α),
and for the nth word token in the document, first drawing a topic indicator
zdn ∼ θd and finally drawing a word wdn ∼ φzdn

.
To learn a model over an observed document collection W , we need to esti-

mate the posterior distribution over the latent variables z, θ, and φ.

p(φ, θ, z|W,α, β) =
K∏

k=1

p(φk|β)
D∏

d=1

p(θd|α)
Nd∏

n=1

p(zdn|θd)p(wdn|φzdn
) (1)

The most popular training algorithms are variational Bayesian inference and
Gibbs sampling and will briefly be introduced in the following sections.

https://www.datamining.informatik.uni-mainz.de/files/2015/06/supplement.pdf
https://www.datamining.informatik.uni-mainz.de/files/2015/06/supplement.pdf
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2.2 Variational Bayesian Inference

In variational Bayesian inference a variational distribution is introduced to
approximate the posterior by minimizing the KL divergence between the varia-
tional distribution and the true posterior. Usually, a fully factorized variational
distribution is chosen:

q(φ, θ, z|β̃, α̃, θ̃) =
K∏

k

q(φk|β̃k)
D∏

d

q(θd|α̃d)
Nd∏

n

q(zdn|θ̃dn) (2)

The evidence lower bound (ELBO) that is to be maximized is given as follows:

log p(W ) ≥ L(β̃, α̃, θ̃) � Eq[log p(φ, θ, z,W )] + H(q(φ, θ, z)), (3)

where H denotes the entropy.
By calculating the gradient of the ELBO with respect to the varia-

tional parameters, the parameters can be updated until convergence. The
local/document-level update equations for collapsed variational Bayes (CVB0
[1,6]), holding global variational parameter β̃ fixed, are:

α̃dk = α +
Nd∑

n=1

θ̃dnk (4)

θ̃dnk ∝ β̃wk + β
∑

v (β̃vk + βv)
(α̃dk + α), (5)

where α and β are hyperparameters and Nd is the number of words in document
d. Based on the local variational parameters θ̃, the global parameter β̃ can be
updated as follows:

β̃vk = β +
D∑

d=1

Nd∑

n=1

θ̃dnk1[wdn = v], (6)

where D is the number of documents. 1[wdn = v] is one if word wdn = v and
zero otherwise.

2.3 Gibbs Sampling

Gibbs sampling does not have to resort to a factorized variational distribution,
which is why the method is unbiased. Through integrating out the latent vari-
ables φ and θ, the model can be efficiently trained. Convergence is slower for
Gibbs sampling since updates only involve a sampled topic instead of the full
distribution over topics as in variational Bayes.

The conditional probabilities for training an LDA topic model are [7]:

p(zi = k|z−i, d, w) ∝ nwk + β∑
v nvk + βv

(ndk + α), (7)

where nwk and ndk are the respective counts of topics k with words w or in doc-
uments d and α and β are hyperparameters as before. z−i are all topic indicators
except the one for token i.
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2.4 Hierarchical Dirichlet Processes

For hierarchical Dirichlet process (HDP) topic models [16], the multinomial dis-
tribution θ from LDA is drawn from an HDP instead of a Dirichlet distribution:
θ ∼ DP (G0, b1), G0 ∼ DP (H, b0). The base distribution G0 of the first Dirichlet
process (DP) is again drawn from a DP with base distribution H. This is why
it is called a hierarchical DP.

A DP is a prior for a multinomial with a potentially unbounded number
of topics. Drawing different multinomials from a DP results in multinomials of
different sizes. Because the prior is hierarchical, there is a local topic distribution
θ for each document and a global topic distribution G0 which is shared among
all documents. The advantage of this global topic distribution is that it allows
topics of widely varying frequencies whereas in standard LDA with a symmetric
prior α, all topics are expected to have the same frequency. The asymmetric
prior of HDP usually leads to a better representation and higher log-likelihood
of the dataset [16].

2.5 Sampling for HDP

Sampling methods for HDPs are mostly based on the Chinese restaurant process
metaphor. Each word token is assumed to be a customer entering a restaurant,
and sitting down at a certain table where a specific dish is served. Each table
is associated with one dish which corresponds to a topic in a topic model. The
probability for a customer to sit down at a certain table is proportional to the
number of customers already sitting at that table. With a certain probability
α, the customer sits down at a new table. In this case a topic is sampled from
the base distribution. For an HDP topic model, each document corresponds to
a restaurant. The topics in each document-restaurant are drawn from a global
restaurant. Because all documents share the same global restaurant, the topics
are shared. If a new table is added to a document restaurant, a pseudo customer
enters the global restaurant. If a new table is opened in the global restaurant, a
new topic is added to the topic model.

In terms of the statistics that need to be kept, in the basic version we need to
store for each word not only the sampled topic, but also the table it is associated
with. Also, we need to store the corresponding topic for each table.

Three basic sampling methods were introduced in Teh et al. [16], two methods
are directly based on the Chinese restaurant representation, the third is the direct
assignment sampler. The first two methods sample a table for each word and a
topic for each table. This can be very slow and requires to store separate counts
for each table. The direct assignment sampler does not sample an individual
table but assigns a topic to each word token directly, and instead of keeping the
statistics for each table separately, it simply samples the number of tables that
are associated with a certain topic. While this sampler has improved convergence
over the other sampling methods, it needs to sample sk ∈ {1, . . . , Nk}, the
number of tables for topic k which can be very inefficient when the number of
customers per topic Nk is very large. A further improved version was therefore
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introduced by Chen et al. [5]. In this version another auxiliary variable u is
introduced which is sampled for each customer and determines whether or not
the customer sits down at a new table or an existing one. This is then used
to update the table count sk. u itself does not have to be kept in memory but
can be sampled when needed. This way, the memory requirements are similar to
Teh’s auxiliary variable sampler, the sampling process itself is more efficient, and
convergence is improved. For this reason we base our sampler on the sampling
method by Chen et al.. We will only give the sampling equations here and refer
to the original publication for more details.

P (zi = k|rest), the conditional probability of assigning topic k to token i in
document j, is given as follows:

If the topic is new for the root restaurant (table indicator is zero):

P (zi = knew, ui = 0|rest) ∝ b0b1
(b0 + M.)(b1 + Nj)

Nwk + β∑
w′ (Nw′k + β)

(8)

If the topic is new for the base restaurant (e.g. a document), but not for the root
restaurant (table indicator is one):

P (zi = k, ui = 1|rest) ∝ b1 ∗ M2
k

(Mk + 1)(b0 + M.)(b1 + Nj)
Nwk + β∑

w′ (Nw′k + β)
(9)

If the topic exists at the base restaurant and a new table is opened (table indi-
cator is one):

P (zi = k, ui = 1|rest) ∝ b1
b1 + Nj

S
njk+1
mjk+1

S
njk
mjk

mjk + 1
njk + 1

M2
k

(b0 + M.)(Mk + 1)
Nwk + β∑

w′ (Nw′k + β)

(10)

If the topic exists at the base restaurant and an old table is chosen (table indi-
cator is two):

P (zi = k, ui = 2|rest) ∝ S
njk+1
mjk

S
njk
mjk

njk − mjk + 1
(njk + 1)(b1 + Nj)

Nwk + β∑
w′ (Nw′k + β)

(11)

In the above equations, b0 and b1 are hyperparameters, Mk is the overall
number of tables for topic k, Nwk is the overall number of customers for topic
k and word w, Nj is the overall number of customers for restaurant j, njk is
the number of customers in restaurant j for topic k, and mjk is the number of
tables in restaurant j for topic k. Sn

m are generalized Stirling numbers that can
be efficiently precomputed and retrieved in O(1) [2].

3 Proposed Method – Hybrid Variational-Gibbs

We will now describe how the sampling method above can be used to construct
a hybrid Variational-Gibbs training algorithm for the HDP. Our algorithm is
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online since it is based on stochastic gradient ascent [6,9,10]. This means our
model can be continuously updated with new batches of data.

Taking up Sect. 2.2 on variational inference and following Hoffman et al. [9],
the natural gradient of the ELBO with respect to β̃ is defined as

Eq[Ndkw] +
1
D

(β − β̃kw) (12)

To evaluate the expectation in this equation we would need to evaluate all
possible topic configurations for each document. For using stochastic gradient
ascent however, an approximation is sufficient. This is where Gibbs sampling
comes in. By taking samples from the distribution q� we can approximate the
expectation in the above equation.

q�(zdi = k|z−i) ∝ exp{Eq(¬zd) log(p(zd|b1, G0)p(wd|zd, φ))}, (13)

where ¬zd denotes all topic indicators z except the ones for document d. This
distribution is difficult to normalize since we would have to consider all possible
topic configurations zd. However, we can easily sample from it and estimate the
variational Dirichlet parameters as follows [9]:

β̃kv = β +
∑

d

∑

i

Eq[1[zdi = k]1[wdi = v]], (14)

where the expectation is approximated by the samples from q�.
In contrast to Hoffman et al., we have an additional variational distribu-

tion over the topics G0. This is the global topic prior. The global variational
distribution for G0 and the mixture components φ is

q(G0, φ|γ̃, β̃) =
∏

k

q(G0k |γ̃)q(φk|β̃k), (15)

where γ̃ and β̃ are Dirichlet parameters.
The variational Dirichlet parameter for the global topic distribution is ana-

logously estimated as follows:

γ̃k = γ +
∑

d

∑

i

Eq[1[zdi = k]1[udi = 1|udi = 0]], (16)

where γ is a hyperparameter, and 1[u = 1|u = 0] is one if the table indicator u is
either zero or one, which means that a new table is being opened, and otherwise
zero.

The expectations in Eqs. 14 and 16 can be estimated by sampling from q�

which is given by the following set of equations (compare to Eqs. 8–11, differences
are highlighted in bold):

If the topic is new for the root restaurant (table indicator is zero):

q�(zdi = k, u = 0|z−i) ∝ b0b1
(b0 +

∑∑∑
k′ γ̃k′)(b1 + Nj)

exp (E[logφwk ]) (17)



Online Sparse Collapsed Hybrid Variational-Gibbs Algorithm 195

If the topic is new for the base restaurant (e.g. a document), but not for the root
restaurant (table indicator is one):

q�(zdi = k, u = 1|z−i) ∝ b1 ∗ γ̃2
k

(γ̃k + 1) (
∑∑∑

k′ γ̃k′ + b0) (b1 + Nj)
exp (E[logφwk ])

(18)
If the topic exists at the base restaurant and a new table is opened (u = 1):

q�(zdi = k, u = 1|z−i) ∝ b1
b1 + Nj

S
njk+1
mjk+1

S
njk
mjk

mjk + 1
njk + 1

γ̃2
k

(
∑∑∑

k′ γ̃k′ + b0)(γ̃k + 1)
exp (E[logφwk ])

(19)

If the topic exists at the base restaurant and an old table is chosen (u = 2):

q�(zdi = k, u = 2|z−i) ∝ S
njk+1
mjk

S
njk
mjk

njk − mjk + 1
njk + 1

exp (E[logφwk ]) (20)

In the above equations, the number of tables Mk (Eqs. 8 and 9) is substituted
by the global variational parameter γ̃. exp(E[log φwk]) is expensive to compute,
since log(φwk) = ψ(β̃wk) − ψ(

∑
w β̃wk), where ψ(·) is the digamma function.

Following Wang and Blei [18] and Li et al. [14] we use β̃wk+β
∑

w′ (β̃w′k+β)
instead. The

remaining variables are the local counts equivalent to the counts in Eqs. 8 to 11.
Updating variational parameters β̃ and γ̃ for one minibatch M is done as

follows, where the counts for one minibatch are scaled by |D|
B|M | for B burn-in

iterations, to arrive at the expectation for the whole corpus and ρ is a parameter
between zero and one.

β̃kw = (1 − ρt)β̃kw + ρt

(
β +

|D|
S|M |

∑

d∈M

Ndkw

)
(21)

γ̃k = (1 − ρt)γ̃k + ρt

(
γ +

|D|
S|M |

∑

d∈M

∑

n∈d

1[zdn = k]1[udn = 1|udn = 0]

)
(22)

Summing up this section, we make use of the table indicators from Chen et
al.’s sampling method for the HDP to be able to approximate the global topic
distribution from minibatch samples. This yields an online algorithm for the
HDP topic model.

3.1 Doubly Sparse Sampling for HDP

Having introduced our hybrid variational algorithm based on the table indicator
sampling scheme, we will now introduce a doubly sparse sampling method for
the nonparametric topic model [4]. This is similar to Li et al.’s [14] method for
the parametric topic model and would not be possible for the direct assignment
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Algorithm 1. Train Topic Model
Input: Dataset D

1 repeat
2 M ← get minibatch from D
3 compute qe (Eqs. 23,17,18) and Q =

∑
qe

4 Aw ← computeAliasTable(
qew
Qw

) for each word w (see supplement)

5 for document d ∈ M do
6 zd ← initialize randomly
7 for iteration i = 1, . . . , S + B do
8 for token n = 1, . . . , Nd do
9 zdn, udn ← Sample(A, wdn) (Algorithm 2)

10 if i > B then
11 Save sample

12 update β̃ and γ̃ (Eqs. 21 and 22)

13 until convergence

Algorithm 2. Sample(A,w)

1 compute p̃,P̃ =
∑

p̃,Δ (Eqs. 24,25), i = −1, u ←1

2 sample r ∼ Uniform(0, P̃ + Q̃)

3 if r < P̃ then
4 while r > 0 do
5 i ← i + 1, t ← i/2, u ← 2 − (i mod 2), r ← r − p̃j,w(t, u)

6 else
7 repeat
8 t ← sample from Alias Aw

9 until t is new in document

10 return u, t

sampler. Hereby, we take advantage of the fact that the number of topics that
occur in one document Kd is usually much lower than the total number of topics
K. Furthermore, we improve this sampling method to make it more memory
efficient.

Making Table Indicator Sampling Sparse. To obtain sparsity, the topic
distribution can be divided into three parts according to the table indicators [4]:

q�(z = k|z−i) = q�(z = k, u = 0|z−i)+
q�(z = k, u = 1|z−i) + q�(z = k, u = 2|z−i).

The last part is sparse since it is only nonzero for the topics that occur with
the document. Therefore, we can use alias-sampling to save the distribution for
the dense part (The algorithm is provided in the supplementary material.) and
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subsequently draw samples from it in O(1), whereas the sparse part can be
computed in O(Kj) since it is only necessary to iterate over those topics that
occur within the jth document.

Formally, we rewrite the topic distribution q�(k) over topics k as a combi-
nation of a dense distribution qjw and a sparse distribution pjw, where w is a
word, and j is a document-restaurant. The normalization terms are given by
Pjw =

∑
k pjw(k) and Qjw =

∑
k qjw(k). The resulting distribution is given by:

q�(k) :=
pjw(k) + qjw(k)

Pjw + Qjw

We define the stale distribution qjw as the distribution over all topics and a table
indicator of 0 or 1:

qjw(k) := q�(z = k, u = 0|rest) + q�(z = k, u = 1|rest) (23)

The fresh distribution pjw is defined as the distribution over all topics that exist
in restaurant j and a table indicator of 2:

pjw(k) := q�(z = k, u = 2|rest)

Improving the Sparse Sampler. As can be inferred from the above equations
and Eqs. 18 and 19, qjw depends on document j. If topic k exists in document j,
the probability is given by Eq. 19, otherwise by Eq. 18. This means we would have
to save topic distributions for every single document. It would be more appealing
to have one topic distribution that represents the global topic distribution and
can be used for all documents. The solution we propose to improve the method
described above is as follows:

We simply assume for each topic that it does not exist in the document
and save the resulting distribution qe

w for an empty pseudo document e. This is
equivalent to replacing Eq. 19 with Eq. 18. Now we only need to add a subsequent
rejection step for the case where we sample a topic from this distribution that
exists in the current document. If this happens, we simply discard it and draw
a new sample. Since each sample is drawn in O(1) this does not significantly
increase the complexity as long as the basic assumption holds that Kd � K.
The sparse distribution is now over table indicators one and two instead of just
two, to account for the case where a new table is opened for an existing topic.

p̃jw(k, u′) := q�(z = k, u = u′|rest)1[njk > 0], (24)

where 1[njk > 0] is one if the number of tokens in document-restaurant j asso-
ciated with topic k is at least one and zero otherwise. Accordingly, the normal-
ization sum is P̃jw =

∑
k

∑
u p̃jw(k, u).

We need to subtract an amount Δj from the normalization sum Qw which
is different for each document j and accounts for the topics that are present in
document j and would be rejected if drawn from distribution q. We call it the
discard mass Δ and it is defined as follows:

Δj :=
∑

qe
k1[njk > 0] (25)
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Since Δj can be computed in O(Kj) time, it does not add to the overall com-
putational complexity. Following this, the normalization sum is now given by
Q̃jw = Qw − Δj , where Qw =

∑
qe
w.

Note that since the distribution does not change during the gradient estima-
tion for one minibatch, i.e. we sample from the exact distribution, we do not
need to add a Metropolis-Hastings acceptance step as in Li et al. [13].

The whole algorithm is summed up in Algorithm 1. For each minibatch,
the dense distributions qe are computed for each word that occurs in the mini-
batch. Alias tables are computed for these distributions (see the supplementary
material) to be able to sample from them in O(1). For each document d in the
minibatch, the topics zd are sampled using Algorithm 2 and stored after a burn-
in period of B iterations. The stored samples are finally used to update the
global variational distributions.

4 Experiments

4.1 Algorithms

We compare three different topic models:

1. Our method OSCHVB-HDP (Online Sparse Collapsed Hybrid Variational
Bayes): The implementation is done in Java.

2. Wang et al.’s stochastic mean-field variational HDP (SMF-HDP) [19]: The
python implementation provided by the author was used. Unfortunately this
does not allow doing a fair runtime comparison. We generally observed our
method to be faster, however, this could be due to the different programming
languages.

3. The Gibbs sampling algorithm by Chen et al. [5]: Our own Java implementa-
tion was used to make the runtime comparable to our hybrid algorithm; the
code only differs in the implementation of the sampling step.

4.2 Parameter Settings

The Dirichlet parameter for the topic-word distributions β is always set to 0.01,
a standard default value.

The number of sampling iterations S and the number of burn-in iterations
B are parameters in the hybrid algorithm. In accordance with the existing liter-
ature, we chose S = B = 5. The same parameters were used during evaluation.

We used the same update parameter ρt = 1
(1+n)0.6 for all algorithms, where

n is the number of batches that have been processed up to time t.
For the mean-field variational algorithm by Wang et al. [19] we used the

public python implementation provided by the authors. As parameter settings we
chose the default settings that were also used by Wang and Blei [18], the second
level truncation was set to 20. A batch size of 100 was chosen as our default
batch size. For our nonparametric method we used the same hyperparameters
b1 = b0 = 1.0.
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4.3 Datasets

We used four publicly available datasets (Table 1) and preprocessed them as
follows:

1. BioASQ:
This dataset consists of paper abstracts from the PubMed database. It was
made available for the BioASQ competition, a large-scale semantic indexing
challenge [17]. We separated the 500,000 most recent documents plus 10,000
documents as a separate test dataset. After stopword removal we kept the
20,000 most frequent features.

2. Enron:
The Enron dataset consists of ca. 500,000 emails and is available at
https://www.cs.cmu.edu/∼./enron/[12]. We removed the header, tokenized
the emails, removed stopwords and kept the 20,000 most frequent features.
We randomly separated 10,000 documents as a testing dataset.

3. NIPS:
This dataset is available in a preprocessed format from the UCI Machine
Learning Repository [15]. It has 5,812 documents and 11,463 features and
is the second smallest dataset that we used. It consists of NIPS conference
papers published between 1987 and 2015. In comparison to the other datasets,
the individual documents are large. 1000 documents were separated as a test-
set.

4. KOS:
The 3430 blog entries of this dataset were originally extracted from http://
www.dailykos.com/, the dataset is available in the UCI Machine Learn-
ing Repository https://archive.ics.uci.edu/ml/datasets/Bag+of+Words. The
number of features is 6906.

Table 1. Statistics for the datasets used in our experiments, |D| train and test: the
number of documents in the train- and testset, respectively, |V |: size of vocabulary

Dataset |D| train |D| test |V |
Enron 507,401 10,000 20,000

BioASQ 500,000 10,000 20,000

NIPS 4,811 1,000 11,463

KOS 2930 500 6906

4.4 Evaluation

We evaluated the models on the per-word-log-likelihood according to Heinrich
[8]:

log p(w|M)
|nd| =

(
∑

w∈d

ndw log

(
K∑

k=1

φkwθkw

))
/|nd|, (26)

https://www.cs.cmu.edu/~./enron/
http://www.dailykos.com/
http://www.dailykos.com/
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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where ndw is the number of times word w occurs in document d, K is the
overall number of topics, and φ are the model parameters. θ are the document
specific parameters that need to be estimated using the model. In our case, we
run the sampler with a fixed point estimate of parameters φ and estimate θ
analogously to the training procedure with S samples that are saved after B
burn-in iterations.

4.5 Experimental Results

Mean-Field vs. Hybrid Approach. First of all we compare our hybrid app-
roach to Wang et al.’s SMF-HDP [19] on the three largest datasets. We notice
that the performance of SMF-HDP heavily depends on the batch size. Small
batch sizes lead to a much worse performance (see Fig. 1). The same observation
was made by Wang and Blei [18]. SMF-HDP starts with the maximum topic
number and then reduces the number of topics. In our experiments, often only
a handful of topics remained for small batch sizes. Wang and Blei hypothesized
that this is due to the algorithm being strongly dependent on the initialization
and not being able to add topics occurring in later batches that had not been
present from the start. This behavior is problematic, especially in the online
setting where it is not guaranteed that the first batch contains all the topics.
Our method is more robust and better suited to settings where small batch sizes
are a requirement.
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Fig. 1. Effect of batch size on the log-likelihood after 1000 updates. The truncation
was set to 100 topics.

Second, we compare the two algorithm for different settings of the truncation
for the number of topics (50, 100, 200, 500, 1000). The results are shown in Fig. 2.
While the truncation does not seem to influence the performance of SMF-HDP
for small batch sizes, our method has an improved performance for higher topic
numbers on all three datasets. We see therefore, that it is not necessary to start
with one topic and add more topics subsequently as was suggested by Wang and
Blei [18]. Agreeing with the observations in previous work [3], we find that it
is beneficial to start out with the maximum number of topics and subsequently
reduce it. Overall, our method has a higher log-likelihood for all truncation
settings.
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Fig. 2. Effect of truncation on the log-likelihood after 1000 updates. The batch size
was set to 100 and 1000 documents as mentioned in the plot labels. For Enron we
only used a batch size of 100 since larger batch sizes lead to a substantial increase in
runtime. Our method has a higher log-likelihood for all settings.

Gibbs Sampling vs. Hybrid Approach. Since training and evaluation of the
Gibbs sampler take too long on the large datasets, we also included the smaller
KOS dataset in our experiments. We compare the convergence of the Gibbs sam-
pler to the convergence of our method by measuring the testset per-word-log-
likelihood after each iteration over the full dataset for the Gibbs sampler, and
evaluating our method after each batch. Figure 3a shows the performance of
four different methods trained with a truncation to 100 topics. We can see that
the two hybrid methods converge much faster initially than the Gibbs samplers.
Comparing the sparse and the original sampler, the sparse sampler is worse in
the beginning since it does not sample from the true distribution, but manages
to catch up and even surpass the original sampler due to its faster sampling1.

Figure 3b shows the performance for a truncation to 1000 topics. We can see
that here the difference in log-likelihood between the sparse and the original sam-
pling method is much bigger. This is because the number of topics per document
Kd does not grow that much when the number of total topics is increased. There-
fore, while for small topic numbers the differences might be negligible in prac-
tice, for higher topic numbers, our sparse sampling method is preferable. This
performance improvement in the experiments shows that sparseness is actually
achieved and the assumption Kd � K is justified in practice.

For the NIPS dataset, the difference between 100 and 1000 topics is even
bigger (Fig. 3c and d). NIPS has very long documents which means that it has
more topics per document on average. With only 100 topics, it is possible that
almost all topics are present in the document. Therefore, the original sampler is
faster than the sparse sampler for 100 topics, but not for 1000 topics, where it is
the other way around. The Gibbs samplers have barely even started to converge
in the first 1000 s where the convergence for the hybrid methods is far ahead.

1 Note that our implementation of the hybrid method uses the sparse sampling
method, but does not use the sparse updating introduced by Hoffman et al. [9].
Therefore, a further speedup is possible.



202 S. Burkhardt and S. Kramer

-8.2

-8.1

-8

-7.9

-7.8

-7.7

-7.6

-7.5

-7.4

-7.3

 0  10  20  30  40  50  60  70  80  90  100

P
er

-W
or

d-
Lo

g-
Li

ke
lih

oo
d

Runtime(s)

Hybrid - Sparse Sampler
Hybrid - Original Sampler
Gibbs - Sparse Sampler
Gibbs - Original Sampler

(a) KOS 100 topics

-7.85

-7.8

-7.75

-7.7

-7.65

-7.6

-7.55

-7.5

-7.45

 0  10  20  30  40  50  60  70  80  90  100

P
er

-W
or

d-
Lo

g-
Li

ke
lih

oo
d

Runtime(s)

Hybrid - Sparse Sampler
Hybrid - Original Sampler
Gibbs - Sparse Sampler
Gibbs - Original Sampler

(b) KOS 1000 topics

-8.2

-8.1

-8

-7.9

-7.8

-7.7

-7.6

-7.5

 0  100  200  300  400  500  600  700  800  900 1000

P
er

-W
or

d-
Lo

g-
Li

ke
lih

oo
d

Runtime(s)

Hybrid - Sparse Sampler
Hybrid - Original Sampler
Gibbs - Sparse Sampler
Gibbs - Original Sampler

(c) NIPS 100 topics

-8

-7.9

-7.8

-7.7

-7.6

-7.5

-7.4

-7.3

 0  100  200  300  400  500  600  700  800  900 1000

P
er

-W
or

d-
Lo

g-
Li

ke
lih

oo
d

Runtime(s)

Hybrid - Sparse Sampler
Hybrid - Original Sampler
Gibbs - Sparse Sampler
Gibbs - Original Sampler

(d) NIPS 1000 topics

Fig. 3. Comparison of runtime with 100 and 1000 topics, respectively. The hybrid
methods were trained with a batch size of 100 documents. Performance was evaluated
on a separate testset. Our hybrid method with the sparse sampling algorithm converges
faster than the other methods.

5 Related Work

A hybrid Variational-Gibbs method for parametric LDA topic models was intro-
duced by Hoffman et al. [9]. In this work, a sparse update scheme was proposed
that allowed to do variational updates for only the topic-word-combinations
that were actually sampled. Experiments by Hoffman et al. showed that the
method is faster especially for large topic numbers. Additionally the convergence
is improved as compared to other variational methods since the variational dis-
tribution considered is not completely factorized but considers each document
as a unity.

A doubly sparse method was build on top of the sparse hybrid model by Li
et al. [14]. They used a fast Gibbs sampling method to further speed up sam-
pling for parametric LDA. Thereby they exploited sparseness in the variational
updates as well as the document-topic distributions. We do the same, only for
nonparametric topic models.

Another extension of the original work by Hoffman et al. was proposed by
Wang and Blei [18] who developed a similar method for the nonparametric HDP.
Unfortunately, we were not able to compare to this method since the code is not
publicly available. The main contribution of this work is the development of a
truncation-free variational method that allows the number of topics to grow. This
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is made possible by the sampling step which does not depend on a truncation
as in pure variational methods. In contrast to our work, their method builds on
Teh’s direct assignment sampler [16], whereas our method relies on the more
advanced table indicator sampler proposed by Chen et al. [5]. Also, our method
starts out with the maximum number of topics, and subsequently removes topics
(by letting their expected counts approach zero over time). This was found to
be beneficial in previous work [3]. Finally, their method is not sparse which is
due to the direct assignment sampling scheme which cannot be made sparse as
easily as the table indicator sampling scheme.

6 Conclusion

To conclude, we introduced a hybrid sparse Variational-Gibbs nonparametric
topic model that can be trained online on large-scale or streaming datasets.
Experiments on three large-scale test datasets as well as one smaller dataset
were conducted. We found our method to be superior to the purely variational
Bayes mean field approach in per-word log-likelihood. Additionally, it is more
robust to different settings of the batch size. Compared to the pure Gibbs sampler
it converges faster with improved log-likelihood. In the future, we would like to
apply our method to hierarchical topic models with more levels.
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