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Abstract This chapter deals with dynamic analysis, electronic circuit realization
and adaptive function projective synchronization (AFPS) of two identical coupled
Mathieu-Duffing oscillators with unknown parameters and external disturbances.
The dynamics of the Mathieu-Duffing oscillator is investigated with the help of
some classical nonlinear analysis techniques such as bifurcation diagrams, Lya-
punov exponent plots, phase portraits as well as frequency spectrum. It is found that
the oscillator experiences very rich and striking behaviors including periodicity,
quasi-periodicity and chaos. An appropriate electronic circuit capable to mimic the
dynamics of the Mathieu-Duffing oscillator is designed. The correspondences are
established between the parameters of the system model and electronic components
of the proposed circuit. A good agreement is obtained between the experimental
measurements and numerical results. Furthermore, based on Lyapunov stability
theory, adaptive controllers and sufficient parameter updating laws are designed to
achieve the function projective synchronization between two identical
drive-response structures of Mathieu-Duffing oscillators. The external disturbances
are taken into account in the drive and response systems in order to verify the
robustness of the proposed strategy. Analytical calculations and numerical simu-
lations are performed to show the effectiveness and feasibility of the method.
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1 Introduction

Several problems in physics, chemistry, biology, electronics, neurology and many
other disciplines are related to nonlinear self-excited oscillators (Rajasekar et al.
1992). Examples include, the self-excited oscillations in bridges and airplane wings,
the beating of a heart and the nonlinear model of a machine tool chatter, the
vortex-or flow-induced oscillations in the cylinder of square cross-section and the
galloping of transmission lines (Moon and Johnson 1998; Corless and Parkison,
1988, 1993; Yu et al. 1992, 1993a, b). Self-excited oscillators (e.g. Van der Pol,
damped Duffing, Duffing-Van der Pol and Duffing-Rayleigh) have been intensively
studied and demonstrated to exhibit complex and rich dynamical behaviors
including harmonic, subharmonic and superharmonic frequency entrainment
(Hayashi 1964), devil’s staircase in the behavior of the winding number (Parlitz and
Lauterborn 1987) and chaotic behavior with period-doubling cascades (Hayashi
1964; Parlitz and Lauterborn 1987; Guckenheimer and Holmes 1984; Steeb and
Kunick 1987). A two-well Duffing oscillator with nonlinear damping term pro-
portional to the power of velocity has been investigated in Anjali et al. (2012). The
authors focused their attention on how the damping exponent affects the global
dynamical behavior of the oscillator. Analytically, the threshold condition for the
occurrence of homoclinic bifurcation using Melnikov technique is derived. The
results were supported by numerical simulations. In Venkatesan and Lakshmanan
(1997) the authors have demonstrated that a driven Duffing-van der Pol oscillator
with a double well potential exhibits rich and striking bifurcation structures such as
period-doubling phenomena, intermittencies, crises, transient chaos, and
quasi-periodicity. Siewe Siewe and colleagues (Siewe Siewe et al. 2010) have
investigated the dynamics of a Duffing-Rayleigh oscillator under harmonic external
excitation. They used the Melnikov technique to derive the necessary conditions for
chaotic motion of this deterministic system. The effect of damping parameter on
phase portraits and Poincaré maps, in addition to the numerical simulations of
bifurcation diagram and maximum Lyapunov exponents have been also examined.
In Shen et al. (2008), the bifurcation and route to chaos of the Mathieu-Duffing
oscillator have been reported using the incremental harmonic balance (IHB) pro-
cedure. The authors proposed a new scheme for selecting the initial conditions used
for predicting the higher order periodic solutions. The phase portraits and bifur-
cation points obtained from the IHB method and numerical time-integration were
compared yielding a very good agreement. Shen and Chen (2009) investigated the
control of chaos in Mathieu-Duffing oscillator using open-plus-closed-loop (OPCL)
method. A controller composed of an external excitation and a linear feedback has
been designed to entrain chaotic trajectories of Mathieu-Duffing oscillator to its
periodic and higher periodic orbits. The critical feedback coefficients under which
the chaotic Mathieu-Duffing oscillator is globally and locally OPCL controllable
respectively are obtained theoretically and demonstrated numerically. Many other
interesting works (Yang et al. 2015; Wen et al. 2016, 2017) have been reported on
the fractional-order form of the Mathieu-Duffing oscillator. The authors of these
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references studied the effects of the fractional-order on the dynamical behaviors of
the integer-order Mathieu-Duffing oscillator. Numerical simulations are performed
in their works to validate the theoretical investigations. Motivated by complex
dynamical behaviors of self-excited oscillators and their potential applications in
many fields, in this chapter, we investigate numerically and experimentally the
dynamics and synchronization of a Mathieu-Duffing oscillator in presence of
unknown parameters and external disturbances.

Since the idea of synchronization of chaotic systems was introduced by Pecora
and Carroll in 1990 (Pecora and Carrol 1990), chaos synchronization has received
an increasing attention due to its theoretical challenge and its potential applications
in secure communications, chemical reactions, biological systems, information
science, and plasma technologies (Zhan et al. 2003). Up to now, many types of
synchronization phenomena have been reported. These include complete syn-
chronization (Vincent et al. 2008), phase synchronization (Chitra and Kuriakose
2008), lag synchronization (Zhu and Wu 2004), anticipating synchronization (Zhu
and Wu 2004), projective synchronization (Yang et al. 2010), modified projective
synchronization (Zhu and Zhang 2009), function projective synchronization
(FPS) (Li and Chen 2007), etc. In projective synchronization, the drive and the
response systems synchronize up to a scaling factor whereas in modified projective
synchronization, the response of the synchronized dynamical state variables syn-
chronizes up to a constant matrix (Kareem et al. 2012). Recently, a more general
form of projective synchronization called function projective synchronization (An
and Chen 2009; Ping and Yu-Xia 2010) in which drive and response systems are
synchronized up to a desired scaling function has attracted much attention of sci-
entists and engineers as it provides more security in its applications to secure
communication because the unpredictability of the scaling function matrix. Also,
FPS of discrete chaotic systems has now been widely investigated for its great
practical application (Fei et al. 2013). Therefore, the research on FPS is more
valuable in practice. The majority of the mentioned works are carried out by using
the known (certain) parameters of drive and response systems, and the controller is
constructed from those known parameters. However, some system’s parameters
may not be exactly known in advance. In real physical systems, or experimental
situations, chaotic systems may have some uncertain or time varying parameters
(Mahmoud and Mansour 2011). Moreover, the influence of the uncertainties has
been taken into account rarely. It is known that in the real world applications (e.g.
secure communication), the systems are affected by various uncertainties including
parameter perturbations and external disturbances, which can influence the accuracy
of the communication. To our understanding, function projective synchronization
of Mathieu-Duffing oscillators with the consideration of unknown parameters and
external disturbances has not been explored. The objectives of this chapter are
threefold: (a) to consider the dynamics of the Mathieu-Duffing oscillator and
investigate its bifurcation structures with particular emphasis on the effects of the
amplitude of the parametric excitation; (b) to carry out an experimental study of the
dynamics of the system in order to validate the theoretical and numerical results;
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and (c) to investigate the synchronization of such a coupled oscillators with
unknown parameters and subjected to the external disturbances.

The layout of chapter is as follows. Section 2 deals with the analytical and
numerical analysis of the system under study. Some basic properties and bifurcation
structures of the system are investigated. The experimental study is carried out in
Sect. 3. The laboratory experimental measurements show a qualitative agreement
with numerical results. Section 4 deals with FPS between two identical
Mathieu-Duffing oscillators in presence of unknown parameters and external dis-
turbances. Numerical simulations are performed in order to illustrate and verify the
effectiveness, feasibility and the robustness of the synchronization scheme. Finally,
we summarize our results and draw the conclusions of this chapter in Sect. 5.

2 Theoretical Analysis of Mathieu-Duffing Oscillator

2.1 Description of the Model

In this chapter, we consider the Mathieu-Duffing oscillator (Shen et al. 2008) which
is described by the following equation of motion:

x ̈+2εx ̇− ðα+ β sinωtÞx+ γx3 = 0 ð1Þ

in which x ̇= dx ̸dt represents the derivative with respect to time, ε is the damping
coefficient, β and ω are respectively, the amplitude and the frequency of the
parametric excitation, α and γ represent respectively, the linear and nonlinear
stiffness coefficients. Many mechanical and engineering problems can be really
described by Eq. (1). Indeed, it has been used to model the one-mode transverse
vibration of the axially moving beam with harmonic fluctuated speed (Shen et al.
2008). The second-order differential Eq. (1) can be transformed into a set of
first-order differential equations as follows:

x ̇= y

y ̇= − 2εy+ αx− γx3 + βx sinωt

(
ð2Þ

System (2) involves five independent parameters. Due to the relatively large
number of parameters, the detailed influence of each parameter on dynamics of the
system (2) will be not presented here. The bifurcation structure will be carried out
with respect to the amplitude of the parametric excitation because this parameter
can be easily varied in the practical situation using a low frequency generator. For
the numerical analysis, the following values of parameters will be employed:
ε=0.125, α= γ =1, ω=2 and β variable.
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2.2 Dissipativity and Symmetry

To generate chaotic signal, it is necessary for the system to be dissipative. The
divergence of system (2) in absence of the external force is evaluated as

∇V =
∂x ̇
∂x

+
∂y ̇
∂y

= − 2ε ð3Þ

System (2) is dissipative since ∇V <0. This implies that any volume element
V0 =Vðt=0Þ will be continuously contracted by the flow (i.e. each volume element
containing the trajectory shrinks to zero as time evolves to infinity). Then, all
system orbits will be confined to a specific bounded subset of zero volume in state
space and the asymptotic dynamics settles onto an attractor. The symmetry is one of
the interesting characteristics of the dynamical system. This property commonly
exists in many nonlinear systems. It is easy to check in absence of external force
that system (2) has a natural symmetry since the transformation S:
ðx, yÞ ↔ ð− x, − yÞ is invariant for a specific set of the system parameters. The
solution of system (2) that is invariant under the above transformation is called a
symmetry solution; otherwise it is called an asymmetry solution.

2.3 Fixed Points Analysis

In absence of external force and by setting the right hand side of system (2) to zero,
it is found that there are three equilibrium points E1ð0, 0Þ and E2, 3ð±

ffiffiffiffiffiffiffiffi
α ̸γ

p
, 0Þ. The

characteristic equation obtained at any equilibrium point Eðx ̄, y ̄Þ is defined as

λ2 + 2ελ− ðα− 3γx ̄Þ=0 ð4Þ

The characteristic equation for the equilibrium point E1ð0, 0Þ is

λ2 + 2ελ− α=0 ð5Þ

It is obvious that E1ð0, 0Þ is always unstable provided that the corresponding
characteristic Eq. (5) has coefficients with different signs. For the analysis of sta-
bility of the equilibrium points E2, 3ð±

ffiffiffiffiffiffiffiffi
α ̸γ

p
, 0Þ, one only needs to consider since

the system is invariant under the transformation ðx, yÞ↔ ð− x, − yÞ as mentioned
above. Thus, the characteristic equation associated to one of them is defined as
follows

λ2 + 2ελ+2α=0 ð6Þ

Since ε and α are positive, the equilibrium points E2, 3ð±
ffiffiffiffiffiffiffiffi
α ̸γ

p
, 0Þ are stable.
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2.4 Bifurcation and Chaos

In the numerical results that follow, we investigate the dependence of the system
behavior at given angular frequency, linear and nonlinear stiffness coefficients by
varying the amplitude of the parametric excitation. The bifurcation diagram shows
the projection of the attractors in the Poincaré section onto one of the system
coordinates with respect to the chosen control parameter. In order to gain further
insight about the dynamics of the oscillator under investigation, we compute the
frequency spectrum as well as the largest Lyapunov exponent with the help of the
algorithm proposed by Wolf et al. (1985). These results are obtained by solving
system (2) with aid of the standard fourth-order Runge Kutta algorithm (Press et al.
1992). The system is integrated for sufficiently long time and the transient is
cancelled. The bifurcation diagram showing the local maxima of the coordinate y
and the corresponding graph of the largest Lyapunov exponent in terms of the
control parameter β varying in the range 3.6≤ β≤ 6 are provided in Fig. 1 for
ε=0.125, α= γ =1 and ω=2.

In light of Fig. 1a, the extreme sensitivity of the oscillator with respect to small
parameter changes is clearly observed. Some interesting dynamical behaviors such

Fig. 1 Bifurcation diagram
a showing the local maxima
of the coordinate y and the
corresponding graph of the
largest Lyapunov exponent
b in terms of the control
parameter β for ε=0.125,
α= γ =1 and ω=2
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as periodicity, quasi-periodicity and chaos are visible. The bifurcation structure is
perfectly traced by the largest Lyapunov exponent. Accordingly, some phase por-
traits showing chaotic states with corresponding frequency spectrum of the system
are depicted in Fig. 2.

Asymmetric chaotic attractor is observed in Fig. 2a while a double band strange
attractor is depicted in Fig. 2b. The broadband noise-like of frequency spectrum
(see Fig. 2c) is signature of the chaotic steady state.

3 Electronic Circuit Realization of Mathieu-Duffing
Oscillator

Implementing the theoretical chaotic models using electronic circuits is of great
importance for various engineering applications such as robotics, chaos based
communications, image encryption and random number generation (Banerjee 2010;
Volos et al. 2012, 2013a, b). Moreover, the electronic circuit realization of theo-
retical chaotic models is an effective approach to investigate the dynamics of such

Fig. 2 Chaotic phase portraits of Mathieu-Duffing oscillator computed for ε=0.125, α= γ =1
and ω=2. a Single band chaotic attractor for β=5.2, b double band chaotic attractor and
c frequency spectrum of coordinate y for β=5.8
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systems via for instance the experimental bifurcation diagram obtained by varying
the values of variable resistors associated to the control bifurcation parameters (Ma
et al. 2014; Buscarino et al. 2009). The dynamics of the system under scrutiny has
been investigated in preceding paragraphs using theoretical and numerical methods.
It is predicted that the system can exhibit very rich and complex behaviors. In this
section, in order to validate the numerical results, we design and implement an
electronic circuit capable to mimic the dynamical behaviors of system (2). The
schematic diagram of the proposed electronic circuit is depicted in Fig. 3.

The electronic circuit of Fig. 3 consists of some analog multipliers used to
implement the cubic nonlinear term of the model. They operate over a dynamic
range of ±1V with typical tolerance less than 1%. The output signal (W) is con-
nected to those at inputs ( +X1), (−X2), ( +Y1), (−Y2), and ( +Z) by the following
expression W = ðX1 −X2ÞðY1 − Y2Þ ̸10+ Z. The operational amplifiers accompa-
nied with resistors and capacitors are exploited to implement the basic operations
such as addition, subtraction and integration. The bias is provided by a 15Volts DC
symmetry source. Using the Kirchhoff’s laws into the circuit of Fig. 3, we obtain its
mathematical model given by two coupled first-order nonlinear differential
equations

Fig. 3 Electronic circuit realization of the Mathieu-Duffing oscillator. The value of electronic
components are fixed as C=10 nF, R=10 kΩ, R1 = 40 kΩ, R2 = 100Ω, R3 = 100Ω and R4

variable. The analog multipliers devices are AD633JN-type while operational amplifiers (U1,U2

and U3) are TL084CN-type ones
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dVx

dt
=

Vy

RC
dVy

dt
= −

Vy

R1C
+

Vx

R2C
−

V3
x

10kmR3C
+

Vx sinωt
kmR4C

8>><
>>: ð7Þ

where Vx and Vy are the output voltages of the operational amplifiers and km =10 is
a constant introduced by the analog multiplier. The values of components of
electronic circuit in Fig. 3 are chosen in order to match system (2) and according to
the following change of state variables and parameters: t= τRC; x=Vx ̸1V ;
y=Vy ̸1V; 2ε=R ̸R1; α=R ̸R2; γ =R ̸10kmR3, β=R ̸kmR4 as follows:
C=10 nF, R=10 kΩ, R1 = 40 kΩ, R2 = 10 kΩ, R3 = 100Ω and R4 variable.

Fig. 4 Photograph of the analog oscilloscope displaying a single band chaotic attractor obtained
from the electronic circuit of Fig. 3
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A photograph of the analog oscilloscope displaying a single band chaotic attractor
obtained from the electronic circuit of Fig. 3 is shown in Fig. 4.

The experimental results showing some dynamical behaviors of electronic cir-
cuit of Fig. 3 for some specific values of control parameter R4 are shown in Fig. 5.

In light of the pictures in Fig. 5, one can note the good similarity of experimental
portraits with those obtained numerically. This shows that the proposed electronic
circuit is capable to reproduce the dynamics of the system under investigation. It
should be stressed that system (2) can be also implemented using many other
techniques such as integrated circuit technology (Trejo-Guerra et al. 2012), Field
Programmable Analog Array (FPAA) technologies (Koyuncu et al. 2014) and Field

Fig. 5 Experimental phase portrait obtained from the Mathieu-Duffing oscillator using a
dual-trace oscilloscope in XY mode. Corresponding numerical phase portraits are shown in the
left. Output voltages Vx and Vy are fed to the X and Y input, respectively. a Single-band chaotic
attractor for R4 = 1.92 kΩ and b double-band chaotic attractor for R4 = 1.72 kΩ
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Programmable Gate Array (FPGA) (Fatma et al. 2016). The latter technology
provides a fast prototype for investigating chaotic systems.

4 Adaptive Function Projective Synchronization of Two
Identical Coupled Mathieu-Duffing Oscillators

In this section, we consider the problem of synchronization of Mathieu-Duffing
oscillators with unknown parameters and external disturbances using adaptive
function projective synchronization technique.

4.1 Problem Formulation

Let the drive and response systems be defined as

x ̇=F1ðt, xÞ+G1ðt, xÞφ+D′ðtÞ ð8Þ

y ̇=F2ðt, yÞ+G2ðt, yÞθ+D′′ðtÞ+ uðt, x, yÞ ð9Þ

where x, y ∈ Rn, are the state variables of the drive and response systems,
respectively, F1ðt, xÞ, F2ðt, yÞ:Rn → Rn, G1ðt, xÞ ∈ Rn× p, G2ðt, yÞ ∈ Rn× q are the
continuous nonlinear functions, φ∈Rp, θ ∈ Rq are the unknown parameters of the
drive and response system respectively, D′ðtÞ= d11, d12, . . . , d1n½ �T ∈ Rn and
D′′ðtÞ= d21, d22, . . . , d2n½ �T ∈Rn represent the disturbance inputs with
d1ij j ≤ λi, ði=1, 2, . . . , nÞ and d2ij j ≤ λi, ði=1, 2, . . . , nÞ, and assume that λi ≥ 0
are given, λi = λ1, λ2, . . . , λi½ �T and uðt, x, yÞ is the control function to be determined.
Let us define the error state between the drive (8) and response (9) systems as
follows

eðtÞ= xðtÞ−mðtÞyðtÞ ð10Þ

where mðtÞ is a continuously differentiable bounded function with mðtÞ ≠ 0 for all
t. The objective is to synchronize both drive and response systems to a scaling
function mðtÞ in presence of unknown parameters and external disturbances such
that the error system (10) can be asymptotically stable at the zero equilibrium, i.e.
eðtÞk k → 0 as t → ∞.

Remark 1 If the scaling function mðtÞ is a constant different from 1, the problem of
function projective synchronization becomes projective synchronization. In the
cases that mðtÞ=1 and mðtÞ= − 1, it turns out to be complete synchronization and
antisynchronization, respectively (Chen and Li. 2007).
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4.2 Main Results

Here, we suppose that the parameters in the drive system or response system are
unknown. From Eq. (10), we can obtain the error dynamical system as

e ̇ðtÞ= y ̇ðtÞ−mðtÞx ̇ðtÞ− ṁðtÞxðtÞ ð11Þ

By substituting systems (8) and (9), we obtain

e ̇ðtÞ=F2ðt, yÞ+G2ðt, yÞθ−mðtÞ½F1ðt, xÞ+G1ðt, xÞφ+D′ðtÞ�
− ṁðtÞxðtÞ+D′′ðtÞ+ uðt, x, yÞ ð12Þ

Theorem 1 For the given scaling function mðtÞ, the adaptive FPS between drive
system (8) and response system (9) can be achieved by the control function (13) and
sufficient parameters update laws (14) and (15) as below

uðt, x, yÞ=mðtÞ½F1ðt, xÞ+G1ðt, xÞφ ̂�−F2ðt, yÞ
−G2ðt, yÞθ ̂+ ṁðtÞx− ke−Hðt, eÞρ ð13Þ

φ ̂̇= −GT
1 ðt, xÞmðtÞe ð14Þ

θ ̂̇=GT
2 ðt, yÞe ð15Þ

where Hðt, eÞ= tanh½mðtÞðe1, e2, . . . , enÞ�. In Eq. (15), φ ̂ and θ ̂ are estimated
values of unknown parameters φ and θ of the drive and the response system,
respectively; tanhð.Þ denotes the tangent hyperbolic function; ρ= ½ρ1, ρ2, . . . , ρn�T
is the boundaries of the uncertainties and k= diagðk1, k2, . . . , knÞ is a gain matrix
for each controller. The desired convergence rate can be adjusted by the gain
matrix k.

Remark 2 In the control function (13), Hðt, eÞρ is a compensation term which is
introduced to eliminate the influence of the disturbance inputs.

It is interesting to note that the conventional control methods often use the sign
function (Hongyue et al. 2011; Fu 2012; Srivastava et al. 2013), but the disconti-
nuity of the sign function causes the chattering and undesirable oscillations. In order
to avoid these problems, in this chapter the discontinuous sign function is replaced
by the continuous tangent hyperbolic function.

Proof Let φ ̃=φ−φ ̂ and θ ̃= θ− θ ̂ be the parameter estimation errors. Choose the
storage Lyapunov function of system (11) as

V =
1
2

eTe+φ ̃Tφ ̃+ θ
T̃
θ ̃

� �
ð16Þ
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Thus, the time derivation of the Lyapunov function V along the trajectory of the
error dynamics system (11) with following notations (φ ̃̇= −φ ̂̇ and θ ̃̇= − θ ̂̇) is

V ̇= eTe ̇+ϕ
T̃
ϕ ̃̇+ θ

T̃
θ ̇

= eT G2ðt, yÞðθ− θ ̂Þ−mðtÞG1ðt, xÞðφ−φ ̂Þ−Hðt, eÞρ� �
+φ ̃T GT

1 ðt, xÞmðtÞe
� �

+ θT −GT
2 ðt, yÞe

� �
− eTke−mðtÞD′ðtÞeT

+D′′ðtÞeT = − eTke− eTHðt, eÞρ−mðtÞD′ðtÞeT +D′′ðtÞeT
ð17Þ

Let

n1 = eT ½D′′ðtÞ−mðtÞD′ðtÞ� and n2 = eTHðt, eÞρ where n1, n2 ∈R and n2 ≥ 0.
According to the definition and assumption of D′ðtÞ, D′′ðtÞ, φ and θ, it is guaranteed
that n1 ≤ n2, i.e. n1 − n2 ≤ 0, then V ̇ is written as

V ̇= − eTke+ n1 − n2 ≤ − eTke ≤ 0 ð18Þ

Provided that V ̇ is negative semi-definite, and since V is positive definite, it
follows that e ∈ L∞, φ, θ ∈ L∞. Thus e ̇ ∈ L∞, and according to Eq. (11), it can be
obtained that

Z t

0

ek k2dt=
Z t

0

eTe dt ≤ −
1
l

Z t

0

V ̇ dt =
1
l
Vð0Þ−VðtÞ½ � ≤ 1

l
Vð0Þ ð19Þ

Since Vð0Þ ≤ ∞ and e ∈ L2, according to Barbalat’s lemma, we have
eðtÞk k → 0 as t → ∞, i.e. the error dynamical system (11) will be stabilized at the

zero equilibrium asymptotically. Thus, according to the Lyapunov stability theo-
rem, the adaptive function projective synchronization between drive system (8) and
response system (9) in presence of unknown parameters and external disturbances
is achieved under the control function (13) and sufficient parameter update laws
(14) and (15). However, we cannot conclude that the unknown parameters can be
automatically estimated to their true values. The unknown parameters should be
almost constant in some bounded interval (i.e. φ ̂̇=0 and θ ̂̇=0). Another sufficient
condition to guarantee the parameter identification based on the Linear Indepen-
dence (LI) condition which is elaborated as follows. Using the Lasalle’s Invariant
Set Theorems (Zhiyong et al. 2012), the largest invariant set M can be obtained as

M = fe ∈ Rn,φ ∈ Rp, θ ∈ Rqj, e=0,G2ðt, yÞθ ̃−mðtÞG1ðt, xÞφ ̃− ke=0g ð20Þ

Thus one can get G2ðt, yÞθ ̃−mðtÞG1ðt, xÞφ ̃=0. To ensure that this equation has
the unique solution of φ ̃=0 and θ ̃=0(which implies that the unknown parameters
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are estimated to their true values as φ ̂=φ, θ ̂= θ), the following condition (Linear
Independence condition) should be satisfied. To achieve synchronization based on
parameter identification of systems (8) and (9) with unknown parameters, the
function elements in the function vector groups −GT

1 ðt, xÞmðtÞ and GT
2 ðt, yÞ should

be linearly independent on the synchronization manifold. Interested readers would
consult (Yu et al. 2007) for more discussions. This completes the proof.

4.3 Application to Mathieu-Duffing Oscillator

For application we consider that the parameters of the drive system are known and
those of the response system are unknown. With these considerations, the drive
system is given as

x ̇1 = x2 + d′1ðtÞ
x2̇ = − 2εx2 + αx1 − γx31 + βx1 sinðωtÞ+ d′2ðtÞ

(
ð21Þ

and the response system is given as

y1̇ = y2 + d′′1 ðtÞ+ u1ðt, x, yÞ
y2̇ = − 2ε ̂y2 + α ̂y1 − γ ̂y31 + β ̂y1 sinðωtÞ+ d′′2 ðtÞ+ u2ðt, x, yÞ

(
ð22Þ

Based on Theorem 1, the control functions and and parameter update laws are
determined by

u1ðt, x, yÞ=mðtÞx2 − y2 + ṁðtÞx1 − ke1 −Hðt, e1Þ ð23aÞ

u2ðt, x, yÞ=mðtÞ½− 2εx2 + αx1 − γx31 + βx1 sinωt�+2ε ̂y2 − α̂y1 + γ ̂y31
− β ̂y1 sinωt+ ṁðtÞx2 − ke2 −Hðt, e2Þ

ð23bÞ

and

ε ̂̇= − y2e2
α̇̂= y1e2

γ ̂̇= − y32e2

β ̂̇= y1 sinðωtÞe2

8>>>><
>>>>:

ð24Þ

In what follows, numerical simulations are given to verify the feasibility and the
robustness of the proposed methods. The standard fourth-order Runge-Kutta
method is applied to solve the differential equations describing the drive (21) and
the response (22) systems with time step size equal to 0.005. The parameters values
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of the drive system are selected as ε=0.125, α=1, γ =1, ω=2 and β=5.8 so that
it exhibits chaotic behaviors. The initial states are chosen as xð0Þ= ½0.1, 0.2� and
yð0Þ= ½0.3, 0.4�, respectively for the drive and response systems. The initial values
of unknown parameters are set to be ε ̂ð0Þ=0.006, α̂ð0Þ=0.015, γ ̂ð0Þ=0.07 and
βð0Þ=0.08. The control gains are set as ki =20(i=1, 2). The scaling function is
selected as mðtÞ=0.6+ 0.1 sinð0.15πtÞ. In order to verify the robustness of the
method, we perform the numerical simulations in three cases (i) without external
disturbances, (ii) with continuous time varying (sinusoidal type) and (iii) with white
Gaussian noise. For the first case, the time response of the error system (11) and the
synchronization quality which is defined by e=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e22

p
are shown in Fig. 6.

In Fig. 7, we show the time evolution of the parameter estimations in the
response system.

Obviously, the synchronization errors converge to zero with exponentially
asymptotical speed and two systems with different initial states achieve FPS very
quickly. The unknown parameters of the response system are simultaneously
successfully estimated to their true values.

For the second case, the external disturbances subjected to the drive and
response systems are selected as d′1 = 0.1 cosð0.2πtÞ, d′2 = 0.2 sinð0.3πtÞ and
d′′1 = 0.1 sinð0.2πtÞ, d′′2 = 0.2 cosð0.3πtÞ. The boundaries of the uncertainties are
chosen randomly as ρ1 = 0.8 and ρ2 = 0.5. The time response of the error system
(11) and the synchronization quality are depicted in Fig. 8.

(a)

(b)

Fig. 6 Time dependence of the errors dynamics ei ði=1, 2Þ (a) and synchronization quality
(b) between two coupled identical Mathieu-Duffing oscillators with FPS scheme without external
disturbances
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Fig. 7 Time evolution of the parameter estimations in the response system with FPS scheme
without external disturbances

(a)

(b)

Fig. 8 Time dependence of the errors dynamics ei ði=1, 2Þ (a) and synchronization quality
(b) between two coupled identical Mathieu-Duffing oscillators with FPS scheme with continuous
time varying (sinusoidal type) external disturbances
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The time evolution of the parameter estimations in the response system subjected
to a continuous time varying (sinusoidal type) external disturbances are depicted in
Fig. 9.

As can be seen from those figures, the synchronization errors and synchro-
nization quality arrive at zero in finite time and the unknown parameters in the

Fig. 9 Time evolution of the parameter estimations in the response system with FPS scheme with
continuous time varying (sinusoidal type) external disturbances

(a)

(b)

Fig. 10 Time evolution of a white Gaussian noise (a) and its histogram in the range [−4, 4] (b)
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response system have been estimated to their true values in spite of the presence of
the external disturbances. The effect of the external disturbances is clearly visible on
the errors dynamics as well as on the estimation of the unknown parameters.

In the last case, external disturbances subjected to drive and response systems
are the white Gaussian noises chosen as d′1 = d′′2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið− 2 ln λÞp
sinð2πλÞ and

d′2 = d′′1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið− 2 ln λÞp

cosð2πλÞ where λ is the random function. The control gains
are set as ki =10 ði=1, 2Þ. In Fig. 10, we show the white Gaussian noise and its
histogram in the range [−4, 4].

The time response of the error system (11) and the synchronization quality are
displayed in Fig. 11.

The time evolution of the parameter estimations in the response system subjected
to a white Gaussian noise are depicted in Fig. 12.

One can see from those figures that the synchronization errors and synchro-
nization quality converge to zero and the unknown parameters in the response
system have been estimated approximatively to their true values. The effect of the
external disturbances is more visible on the errors dynamics as well as on the
estimation of the unknown parameters. All these results demonstrate that the FPS in
the coupled identical Mathieu-Duffing oscillators via control functions (23) and

(a)

(b)

Fig. 11 Time dependence of the errors dynamics ei ði=1, 2Þ (a) and synchronization quality
(b) between two coupled identical Mathieu-Duffing oscillators with FPS scheme with white
Gaussian external noise
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parameter update laws (24) is obtained with estimation of the unknown parameters
of the response system and in presence of external uncertainties at the desired
scaling function mðtÞ.

5 Concluding Remarks

The dynamics of a Mathieu-Duffing oscillator has been investigated numerically
and experimentally in this chapter. The dynamical properties of the oscillator have
been examined using classical nonlinear analysis techniques such as bifurcation
diagram, plot of largest Lyapunov exponent and frequency spectrum. It was found
from the bifurcation structure that the system experiences very rich and complex
behaviors including periodicity, quasi-periodicity and chaos. An experimental study
has been carried out and the laboratory experimental measurements were in a good
qualitative agreement with numerical results. Furthermore, using the Lyapunov
stability theory, we have designed adaptive controllers and sufficient parameter
update laws able to achieve the function projective synchronization between two
identical drive-response structures of Mathieu-duffing oscillators with unknown
parameters. We have introduced the external disturbances in the drive and response
systems in order to verify the robustness of our proposed strategy. It has been noted
that the unpredictable properties of the scaling function mðtÞ can additionally
enhance the security of the communication. Theoretical results and numerical
simulations were finally included to visualize the effectiveness and feasibility of the
developed methods. We stress also that the approach followed in this chapter may

Fig. 12 Time evolution of the parameter estimations in the response system with FPS scheme
with white Gaussian external noise
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be exploited rigorously to the study of any other nonlinear dynamical system driven
by an external force.

Acknowledgements V. Kamdoum Tamba wishes to thank Dr. Sifeu Takougang Kingni
(University of Maroua, Cameroon) for interesting discussions and careful reading of the chapter.
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