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Abstract This chapter, after providing some background on business cycles,

Kaldor’s original model and related literature, presents an original specification

Orlando (Math Comput Simul 125:83–98, 2016) which adds to the cyclical behaviour

some peculiar characteristics such as an asymmetric investment and consumption

function, lagged investments and integration of economic shocks. A further section

proves the chaotic behaviour of the model and adds some insights derived from

recurrence quantification analysis. The final part draws some concluding remarks

and makes some suggestions for future research. This work investigates chaotic

behaviours within a Kaldor-Kalecki framework. This can be achieved by an orig-

inal specification of the functions describing the investments and consumption as

variants of the hyperbolic tangent function rather than the usual arctangent. There-

fore fluctuations of economic systems (i.e. business cycles) can be explained by the

shape of the investment and saving functions which, in turn, are determined by the

behaviour of economic agents. In addition it is explained how the model can accom-

modate those cumulative effects mentioned by Kaldor which may have the effect

of translating the saving and investment functions. This causes the so-called shocks

which may be disruptive to the economy or that may have the effect of helping the

system to recover from a crisis.
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1 Introduction

The seminal work of Kaldor (1940) on the business cycle is one of the most fruit-

ful for researching on non-linear dynamics in economics. In that paper the author’s

intention, contrary to the traditional Keynesian multiplier-accelerator concept, was to

explain from a macroeconomic viewpoint the fundamental reasons for cyclical phe-

nomena. After several years the Kaldor model re-gained the attention of some schol-

ars interested in non-linear phenomena in economics such as Morishima (1959),

Yasui (1953) and Ichimura (1955a, b) that were the first in investigating the exis-

tence, stability and uniqueness of limit cycles in a nonlinear trade cycle model.

Among other notable contributors were Hicks (1950), Goodwin (1951) and par-

ticularly Kalecki (1966). The latter divided the investment process into three steps

where the first is the decision, the second the time needed for the production and the

last is the delivery of the capital good. In such a way the dynamic of capital stock

in the economy is described by a non-linear difference-differential equation which

exhibits a complex behaviour (including chaos) and, as a result, oscillations of cap-

ital induce fluctuations of other economic variables. Chiarella (1990) showed how

the model could adjust to adaptive expectation of inflation. Krawiec and Szydlowski

(1999, 2001) analyzing the Kaldor-Kalecki model of business cycle found a Hopf

bifurcation leading to a limit cycle. Last but not least Pham et al. (2017) observed

that the presence of time delay, such as those hypothesized by Kalecki, could induce

unexpected oscillations, therefore time-delay systems may be suitable to introducing

chaotic dynamics.

Further we applied recurrence plots (RPs) and their quantitative description pro-

vided by recurrence quantification analysis (RQA) to detect relevant changes in the

dynamic regime of business time series. RQA aims at a direct and quantitative

appreciation of the amount of deterministic structure of time series and has been

proven to be an efficient and relatively simple tool in non-linear analysis of a wide

class of signals. The technique allows for the identification of sudden phase-changes

possibly pointing to underlying phenomena. Therefore RQA may be suitable for

studying business cycles as well as identifying possible signals of changes in the

economy.

The remainder of the chapter is organized as follows: Sect. 2 contains the def-

inition of business cycle and summarizes the literature on recurrence quantifica-

tion analysis and its applications to economics and finance. Section 3 presents some

results on the applicability of RQA to economic time series. Section 4 illustrates the

model along with its parameters and peculiarities. Section 5 shows the numerical

analysis performed and the results obtained. Finally Sect. 6 consolidates the ideas

and presents concluding remarks.
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2 Literature Review

2.1 On the Business Cycles

A definition of business cycles can be found in Burns and Mitchell (1946)

Business cycles are a type of fluctuation found in the aggregate economic activity of nations

that organize their work mainly in business enterprises: a cycle consists of expansions occur-

ring at about the same time in many economic activities, followed by similarly general reces-

sions, contractions, and revivals which merge into the expansion phase of the next cycle.

and it has been used for:

1. Creation of composite leading, coincident, and lagging indices based on the con-

sistent pattern of comovement among various variables over the business cycle

(e.g. Shishkin 1961).

2. The identification within the business cycles of separate phases or regimes.

The National Bureau of Economic Research (NBER) defines a recession as

“a significant decline in economic activity spread across the economy, lasting more

than a few months, normally visible in real GDP, real income, employment, indus-

trial production, and wholesale-retail sales. A recession begins just after the econ-

omy reaches a peak of activity and ends as the economy reaches its trough. Between

trough and peak, the economy is in an expansion. Expansion is the normal state of

the economy; most recessions are brief and they have been rare in recent decades.”

Figure 1 illustrates the business cycle where recession (trough) follows expansion

(peak) and Fig. 2 shows the financial and business cycle in the United States.

Fig. 1 The business cycle
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Fig. 2 BIS 85th annual report 2015

Schumpeter (1954) mentioned four stages linking together production, stock

exchange, confidence, demand, interest rates and prices:

1. Expansion (increase in production and prices and low interest rates)

2. Crisis (stock exchanges crash and multiple bankruptcies of firms occur)

3. Recession (drops in prices and in production and high interest rates)

4. Recovery (stocks recover because of the fall in prices and incomes)

In addition he suggested that each business cycles has its own typology according

to the periodicity so a number of cycles were named after their discoverers: see Koro-

tayev and Sergey 2010: Kitchin (1923) or inventory cycle (3–5 years long), Juglar

(1862) cycle (7–11 years long), Kuznets (1930) cycle (15–25 years long) and Kon-

dratiev (1935) technological cycle (45–60 years long).

Theories on business cycles expound on the volatility of economies and may differ

(for a review see Hillinger and Sebold-Bender 1992; Zarnowitz 1992; Mullineux

1984) depending on:

1. Their ability to explain cycle without having to rely on outside forces/shocks and

they are called respectively endogenous and exogenous business cycle theories.

2. The assumption of a general equilibrium framework (neoclassical theories) or the

assumption of market imperfections and/or disequilibrium (Keynesian theories).

3. Attributing cycles to real shocks or monetary shocks or too much or too little

investment or consumption.

4. Explaining business cycles from actions of individuals (micro-founded theories)

economic units or using aggregate variables (macro theories).
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2.2 On the Recurrence Quantification Analysis

Recurrence Quantification Analysis (RQA) in economics started relatively recently

see Zbilut (2005), Crowley and Schultz (2010), Karagianni and Kyrtsou (2011),

Chen (2011), Moloney and Raghavendra (2012). Fabretti and Ausloos (2005) found

cases where RQA could detect a warning before a crash. In accordance to that Addo

et al. (2013) assert “the usefulness of recurrence plots in identifying, dating and

explaining financial bubbles and crisis”. Strozzi et al. (2007) claim that determinism

and laminarity change “more clearly than standard deviation and then they provide

an alternative measure of volatility”. Finally, to quote Piskun and Piskun (2011),

laminarity (LAM) “is the most suitable measure, sensitive to critical events on mar-

kets”.

The ability of RQA to predict catastrophic changes stems from the fact that RQA

is based upon the change in correlation structure of the observed phenomenon that

is known to precede the actual event in many different systems, ranging from phys-

iology Zimatore et al. (2011) and geophysics Zimatore et al. (2017) to economy

Crowley (2008). Gorban et al. (2010) found out that even before crisis correlation

increases as well as variance (and volatility) increases too. In particular their dataset

composed of thirty largest companies from British stock market within the period

2006–2008 supports the hypothesis of increasing correlations during a crisis and,

therefore, that correlation (or equivalently determinism) increases when the market

goes down (respectively decreases when it recovers).

3 Recurrence Plot

As mentioned by Eroglu et al. (2014) “recurrence plots (RPs) have been shown to

be a powerful technique to uncover statistically many characteristic properties” of

Fig. 3 (Color online) Recurrence plot of logistic map for a r = 3.5 (periodic regime) and b r = 4.0

(chaotic regime) and c weighted recurrence plot of logistic map for r = 4.0 (chaotic regime). Source
Eroglu et al. (2014)
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Fig. 4 Changes in US GDP (above) and its unthreshold RP or Distance Matrix (DM) (below).

Period: 01-01-1947–01-07-2015. Compare the RP of the logistic Fig. 3c with the RP of business

cycles. Source St. Louis Fed, FRED database

complex dynamical systems. “In a given m-dimensional phase space, two points are

considered to be recurrent if their state vectors lie in a neighbourhood characterized

by a threshold ε”. Therefore in a RP, “elements Ri,j ≡ 1 (recurrence) are usually said

to be black dots, whereas Ri,j ≡ 0 (no recurrence) are usually called white dots” (see

Fig. 3a and b).

In order to have some indications whether business cycles are chaotic and to study

recessions from the point of view of a phase transition of non-linear phenomena

we applied RQA on time series extracted from Federal Reserve Economic Data
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(FRED)—St. Louis Fed. In Fig. 4 the recurrence plot of USA GDP% variation is

shown right below the FRED graph. Greyed areas correspond to periods of economic

recessions as reckoned by FRED. For the unthreshold RP or Distance Matrix (DM)

it is possible to observe the anticipating transitions to turbulent phases. The note-

worthy results consist in a correspondence between vertical lines in DM (i.e. chaos

to chaos transitions) and grey lines (recession periods) as well as in the apparent

resemblance between the RP of the chaotic logistic Fig. 3c with the RP of business

cycles Fig. 4.

4 The Model

The discretized Kaldor model is

Yt+1 − Yt = α(It − St) = α[It − (Yt − Ct)]
Kt+1 − Kt = It − δKt

(1)

where Y , I, S,K define respectively income, investment, saving and capital, α is the

“speed” by which the output responds to excess investment and δ represents the

depreciation rate of capital. It is worth mentioning that a key feature for Kaldor is

that I = I(Y ,K) and S = S(Y ,K) are non-linear functions of income and capital.

The author’s original variant is (for a detailed description see Orlando 2016)

Yt+1 − Yt = α
[
f1
(
g
(

Yt−1−Yt−2
Yt−2

− Kt−1−Kt−2
Kt−2

))
+ f2

(
g
(

Yt−Yt−1
Yt−1

− Ct−Ct−1
Ct−1

))
− Yt

]

Kt+1 − Kt = f1
(
g
(

Yt−1−Yt−2
Yt−2

− Kt−1−Kt−2
Kt−2

))
− δKt

(2)

Where the parameters α, δ, τ1, τ2, ρ, ĉ, k have the following meaning:

1. α is the savings adjustment speed with regard to investment. Its reciprocal in

physics is called delay and measures the time necessary for the adjustment.

2. δ is a percentage that determines the fixed capital which is lost during the pro-

ductive process (due to obsolescence or actual consumption).

3. τ determines the f function knee; it is, therefore, a measure of the reactivity of

the function to the variation in its argument.

4. ρ measures the maximum possible level (in capital terms) of investment. This

value changes according to the economic system (pre-industrial, industrial, post-

industrial) and the type of investment (i.e. high or low capital intensity).

5. ĉ = 1 − c multiplied by actual income, determines the minimum level of con-

sumption, therefore it is also called the base level. Its complement to 1, is c and

represents the average level of consumption.

6. The k parameter changes according to the economic development.
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Fig. 5 A simulation displaying a steady growth

In Figs. 5 and 6 are two examples of the system’s dynamic which differ only

because a different initial starting point.

4.1 Shocks in the Economy

Kaldor explained that there are some factors which affect consumption and saving

and which have the effect of shifting the functions in one direction or the other. In

the model this translation can be easily achieved and operates when the capital or

the income changes negatively (with the ultimate effect to help the system recover

from a crisis).

4.2 Consumption, Saving and Economic Recessions

The idea that an increase in the disposable income (which is the basis of fiscal stimu-

lus such as tax rebates that are supposed to encourage consumption, and hence aggre-

gate demand), automatically translates into an increase in the aggregate demand,

can be fallacious as it neglects to consider the state of health of the economy and



Chaotic Business Cycles within a Kaldor-Kalecki Framework 141

Fig. 6 A simulation displaying a steady fall

therefore the confidence in it. In fact, if confidence in the economy is low, it could

be that people may reduce their consumption during the recession years: consumers

will continue the process of deleveraging (they use the money to pay off debt and

save more) because of uncertainty in the future.

For the above mentioned reasons, in the model, the change in consumption is

linked to the change of income as follows

w = ▵ Y
Y

− ▵ C
C

(3)

which we believe describes correctly the behaviour of consumption (Figs. 7 and 8).

4.3 Modelling Investment and Consumption

In the usual set-up, modified versions of Kaldor’s approach adopt the trigonomet-

ric investment function arctg (see Mircea et al. 1963; Kaddar and Alaoui 2009;

Agliari et al. 2007; Januario et al. 2005, 2009; Bischi et al. 2001 etc.). We have

decided, instead, to use a different functional form: the hyperbolic tangent. The rea-

sons why this specific functional form has been chosen are that there is no particular
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Fig. 7 Changes in US real disposable personal income (blue—DSPIC96) and real personal con-

sumption expenditures (red—PCECC96) 1959 (Q1)—2014 (Q2). Source St. Louis Fed, FRED

database

Fig. 8 US personal savings rate (PSAVERT) 1959 (Q1)—2014 (Q2). Source St. Louis Fed. FRED

Database
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justification to prefer the arctg,
1

whilst there are several to prefer the tanh. A good

reason, for example, is that across multiple sciences growth and decay are better mod-

elled by such exponential-like functions as tanh instead of trigonometric function

such as arctg. For some applications to physics (such as radioactive decay, capacitor

discharge, damped oscillations, etc.), to chemistry and biology (such as first order

reaction rates and population and cancer growth), to actuarial science and finance

(e.g. Gompertz-Makeham law of mortality, compound interest, etc.) Stewart (2010),

Benson (2008), Reger et al. (2010), Purves et al. (2003), Wheldon (1988), etc. More-

over the arctg tends to its asymptotes quite slowly compared to the hyperbolic tangent

whilst we wanted to design a framework in which economic agents can adjust quickly

(how quickly depends on some parameters as τ ) to changes. Given this framework

the suggested model could link up, for example, to the classic Solow-Swan growth

model in which labour and knowledge are represented by exponential functions.

Finally it should be noted that while consumption and investment are similarly

function of a difference (i.e., respectively, between the growth rates of income and

capital and the growth rates of income and consumption) their timing differs. In fact,

à la Kalecki, we suggest that the investment process has different timing than does

consumption hence the difference in the considered time lags (see Eq. 2).

5 Numerical Analysis

Up to now the sensitive dependence on initial conditions and the irregular trend

of variables over time has only been shown graphically. Naturally the experimen-

tal evidence is not sufficient to prove the chaoticity of a system. Therefore we must

use some numeric instruments in order to have a better insight into the nature of the

system. Specifically, we will report the results obtained by the spectral analysis as

well as the calculation of the correlation integral, the Lyapunov exponents, the Kol-

mogorov entropy and the embedding dimension.

5.1 Spectral Analysis

Spectral analysis has the aim of determining the spectral content of a time series

by decomposing a given time series into different harmonic series with different

frequencies and, by doing that, identifies the contribution of each series to the overall

signal Stoica and Moses (2005).

Spectral analysis may aid in identifying chaos for a given time series as well as

helping in discovering hidden periodicities in data. In the following three pictures of

1
On some issues related to the arctg see for example Bradford and Davenport (2002), Collicott

(2012), Walter (2010), Gonnet and Scholl (2009).
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logistic map are presented in order to illustrate how the power spectra change with

the parameter μ. The first box (top left) shows the cobweb diagram, the second (bot-

tom left) is for the orbits, the third (top right) depicts the power spectrum obtained

with a rectangular (sometimes called boxcar or Dirichlet) window and the last box

shows the power spectrum with a Hamming window. Figures 9, 10 and 11 illustrate,

respectively, very regular orbits with a single frequency peak, regular orbits with two

frequency peaks and irregular orbits (chaos) with several frequency peaks.

Even though the technique is not conclusive if the system has “many hidden

degrees of freedom of which the observer is unaware” (Moon 1987 p. 45) “chaotic

time series are known to have aperiodic cycles of many lengths, so it seems reason-

able to assume that if they are present in the candidate time series they should have

been observed” (McBurnett 1996 p. 50). In any case, as the proposed model is by

construction deterministic, the spectral analysis can definitively help in understand-

ing whether the system shows chaotic dynamics.

Following this reasoning we have run a simulation in order to show that for

the generated time series there is no peak that clearly dominates all other peaks

(power spectrum for C,K, I,Y with rectangular and Hamming windows are shown

in Figs. 12 and 13, respectively).

Fig. 9 Logistic map, μ = 3 cobweb diagram and periodogram
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Fig. 10 Logistic map, μ = 3.5 cobweb diagram and periodogram

5.2 Embedding Dimension

“The embedding dimension is the smallest dimension required to embed an object

(a chaotic attractor for instance). In other words, this is the minimum dimension of

the space in which you reconstruct a phase portrait starting from your measurements

and in which the trajectory does not cross itself, that is, in which the determinism

is verified. Of course, this is a statistical measure, meaning that you may have some

“rare” self-crossings. When a global model is attempted, this is the minimum dimen-

sion your model must have” Letellier (2013).

Cao (1997) has suggested an algorithm based on the work of Kennel et al. (1992)

for estimating the embedding dimension (see Takens 1981; Adachi 1993; Whitney

1992) through E1(d) and E2(d) functions, where d denotes the dimension.
2

The func-

tion E1(d) stops changing when d is greater than or equal to the embedding dimen-

sion staying close to 1. The function E2(d), instead, is used to distinguish determin-

istic from stochastic signals. If the signal is deterministic, there exist some d such

2
Which has the following advantages: (a) does not require any subjective parameters except for the

time-delay for the embedding; (b) does not strongly depend on the number of data points; (c) is

able to distinguish between deterministic and stochastic signals; (d) it is computationally efficient

and works well in presence of high-dimensional attractors.
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Fig. 11 Logistic map, μ = 4 cobweb diagram and periodogram

that E2(d)! = 1 whilst if the signal is stochastic E2(d) is approximately 1 for all the

values (see also Arya 1993; Arya et al. 1998).

For example, in Figs. 14 and 15, analogously to Cao (2002) we report the embed-

ding dimension for the FX British Pound/US Dollar showing the values of E1 and

E2 for a time series of 1,008 data points. In “looking at the results of the quantity

E2 whose values are very close to 1 with some oscillations when the dimensions

are small, this implies that the time series is likely a random time series, comparing

with the case of random colored noise shown in Cao (1997). Given the oscillation

behaviour away from 1 when the embedding dimensions are small, the time series

should contain some determinism although the determinism may be weak”.
3

By applying the same analysis to our model, it is possible to observe a similar

behaviour in the following figures where the E1 and E2 are calculated on consump-

tion (Fig. 16), income (Fig. 17), capital (Fig. 18) and investment (Fig. 19). In fact we

can observe that E2, on the four macroeconomic variables that by construction are

not deterministic, is not 1 for all values but approaches it for d ≥ 10.

3
By contrast in the proposed model determinism is ensured by construction.
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Fig. 12 Power spectrum with rectangular window

5.3 Correlation Integral

This kind of correlation is called spatial correlation and it aims to measure the degree

of “relationship” between the different points on the strange attractor. The function

which performs this task is called correlation integral C(r,m) (see Lorenz 1993)

which represents a direct arithmetic average of the pointwise mass function Theiler

(1990) and it is defined as

C(r,m) = lim
m→∞

lim
r→0

1
ϑ
ln C(r,m)
C(r,m + 1)

(4)

with m embedding dimension and r radius (i.e. the space contraction or stretching).

In the following Figs. 20 and 21 we can observe that its trend (or its logarithm)

is a function of r the radius and when it depicts a regular growth it confirms that the

system is deterministic.
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Fig. 13 Power spectrum with Hamming window

Fig. 14 Embedding

dimension for USD/EUR FX

rates (tao = 1, data points =

260)
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Fig. 15 Embedding

dimension for USD/GBP FX

rates (tao = 1, data points =

260)

Fig. 16 Embedding

dimension for consumption

(tao = 1, data points =

10,000)

Fig. 17 Embedding

dimension for income (tao =

1, data points = 10,000)
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Fig. 18 Embedding

dimension for capital

(tao = 1, data points

= 10,000)

Fig. 19 Embedding

dimension for investments

(tao = 1, data points =

10,000)

5.4 Correlation Dimension

Another useful notion is the correlation dimension defined as

DC(m) = lim
r→0

ln(C(r,m))
ln(r)

(5)

hence

DC(m)ln(r) ≈ ln(C(r,m)) i.e. rDC(m) ≈ C(r,m). (6)

The correlation dimension is intended to measure the information content “where

the limit of small size is taken to ensure invariance over smooth coordinate changes.

This small-size limit also implies that dimension is a local quantity and that any

global definition of fractal dimension will require some kind of averaging” Theiler
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Fig. 20 Correlation integral

trend versus r

Fig. 21 Log-log plot
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Fig. 22 Correlation

dimension when r → 0

(1990). Moreover it is shown that the correlation dimension DC
is an approxima-

tion of Hausdorff’s dimension DH
with DC

≤ DH
. In Fig. 22 it can be seen that the

dimension of correlation is noninteger. As DC
is a “more relevant measure of the

attractor than DH
because it is sensitive to the dynamical process of the coverage of

the attractor” (Grassberger and Procaccia 1983c p. 348), we can say that the system

is fractal (see Grassberger and Procaccia 1983a; Grassberger 1986).

5.5 Lyapunov Exponents

“Lyapunov exponents are the average exponential rates of divergence or convergence

of nearby orbits in the phase space. Since nearby orbits correspond to nearly identical

states, exponential orbital divergence means that systems whose initial differences

that may not be possible to resolve will soon behave quite differently, i.e. predictive

ability is rapidly lost” (Sivakumar and Berndtsson 2010 p. 424). Dynamical systems

have a spectrum of Lyapunov exponents, one for each dimension of the phase space

and, similarly to the largest eigenvalue of a matrix, the largest Lyapunov exponent

determines the dominant behaviour of a system. The sensible dependence on initial

conditions, hence, can be restated as follows:

‖δx(t)‖ ≈ eλt‖δx0‖ (7)
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Fig. 23 Logistic map with Lyapunov exponents

Table 1 Lyapunov exponents

Min Max Mean

Consumption 6.22 11.399 10.885

Income 12.8338 19.6440 13.3534

Capital 7.3165 14.594 12.999

Investment 5.511 11.969 11.049

Calculated Lyapunov’s exponents for 10,000 points time series of C, Y, K and I

“where λ, the mean rate of separation of trajectories of the system, is called the

leading Lyapunov exponent. In the limit of infinite time the Lyapunov exponent is

a global measure of the rate at which nearby trajectories diverge, averaged over the

strange attractor” Cvitanovic et al. (2012).

Figure 23 shows the Lyapunov exponents of the Logistic Map for comparison (see

Schuster 1988).

Lyapunov exponents are used to measure the rate at which nearby trajectories

of a dynamical system diverge (see for example Sivakumar and Berndtsson 2010;

Cvitanovic et al. 2012). A dynamic dissipative system is chaotic if its biggest Lya-

punov exponent is a positive number (see Lorenz 1993). In our simulations, by adopt-

ing the Wolf algorithm (see Wolf et al. 1985; Wolf 1986), we have found out that the

biggest Lyapunov exponent has always been positive (see Table 1).

5.6 Entropy

To supplement the above mentioned analysis it could be useful to refer to the entropy

K of Kolmogorov-Sinai (see Farmer 1982; Schuster 1988). We know it must con-

verge to a positive finite value in order for the time series to be defined as chaotic
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because “Kolmogorov entropy is the mean rate of information created by the sys-

tem. It is important in characterizing the average predictability of a system of which

it represents the sum of the positive Lyapunov exponents. The Kolmogorov entropy

quantifies the average amount of new information on the system dynamics brought by

the measurement of a new value of the time series. In this sense, it measures the rate

of information produced by the system, being zero for periodic or quasiperiodic (i.e.

completely predictable) time series, and infinite for white noise (i.e. unpredictable

by definition), and between the two for chaotic system” (Sivakumar and Berndtsson

2010 p. 424). In fact, according to the Pesin’s theorem, Pesin (1977), the sum of all

the positive Lyapunov exponents gives an estimate of the Kolmogorov-Sinai entropy.

So, if K > 0, then the biggest Lyapunov exponent is bigger than zero and the sys-

tem is chaotic. In order to measure K we used the approximation K2 as defined by

Grassberger and Procaccia (1983b) and we found that it was positive (e.g. 21.34561).

5.7 Symplectic Geometry Method

In addition to the embedding dimension, the symplectic geometry method (see Lei

et al. 2002; Xie et al. 2005; Lei and Meng 2011) is used as a consistency check

to verify the appropriate embedding dimension from a scalar time series. Symplec-

tic similarity transformation is nonlinear and has measure-preserving properties i.e.

time series remain unchanged when performing symplectic similarity transforma-

tion. For this reason symplectic geometry spectra (SGS) is preferred to singular value

decomposition (SVD) (which is by nature a linear method that can bring distorted

and misleading results Palus and Dvorak 1992).

Figures 24 and 25 show respectively the embedding dimension of the Logistic

(which is deterministic) and the Gauss white noise and they can be be used as ref-

erence for comparing the embedding dimension obtained for consumption (Fig. 26),

income (Fig. 27), capital (Fig. 28) and investment (Fig. 29) depicted.

5.8 Correlation Integral and Embedding Dimension

As we have repeatedly shown the system behaves stochastically but by construction

is deterministic. In Table 2 we report the correlation integral versus the embedding

dimension for our variables. As it can be observed the correlation integral does not

increase with the embedding dimension confirming the validity of this analysis and

that the system is deterministic (see Lorenz 1993 p. 213).
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Fig. 24 Embedding

dimension symplectic

geometry method for

logistic, μ = 3.9 (data

points = 1,000, abscissa is

d, ordinate is log( σi

tr(σi)
))

Fig. 25 Embedding

dimension symplectic

geometry method for

consumption (data points =

10,000, abscissa is d,

ordinate is log( σi

tr(σi)
))

Fig. 26 Embedding

dimension symplectic

geometry method for capital

(data points = 10,000,

abscissa is d, ordinate is

log( σi

tr(σi)
))
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Fig. 27 Embedding

dimension symplectic

geometry method for income

(data points = 10,000,

abscissa is d, ordinate is

log( σi

tr(σi)
))

Fig. 28 Embedding

dimension symplectic

geometry method for capital

(data points = 10,000,

abscissa is d, ordinate is

log( σi

tr(σi)
))

Fig. 29 Embedding

dimension symplectic

geometry method for

investments (data points =

10,000, abscissa is d,

ordinate is log( σi

tr(σi)
))
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6 Conclusions

We share the view that “economists will be led, as natural scientists have been led,

to seek in nonlinearities an explanation of the maintenance of oscillation” Goodwin

(1951). In this paper, with the help of RP, we have first shown that business cycles

may be chaotic in nature and then we have proposed a non-linear model has a chaotic

behaviour. But while the latter result has been achieved by many, we suggested a

different functional form (i.e. the hyperbolic tangent) instead of the usual arctangent.

Moreover the originality of this work lies in the specification of consumption and

investment as a function of the difference, respectively, between the growth rates

of income and capital and the growth rates of income and consumption. This has

been obtained by considering, à la Kalecki, that the investment process has different

timing than does consumption, hence the difference in the considered time lags. Last

but not least the model can accommodate such external perturbations as shocks by a

translation of the argument of the function f .
In future we will research the calibration of the model to real economy as well

as study further its features with the help of RQA (which, possibly, may result to

identifying some leading indicators of economic crashes). Moreover here we stress

that such non-linear behaviour has some implications which could be potentially

considered as being of some interest, e.g. what should be the rules set by a regulator

(such as the central bank) within a chaotic framework?

For example if the system is not predictable, not reachable and then not observ-

able but nevertheless controllable (see Romieras et al. 1992; Grebogi and Laib 1997;

Calvo and Cartwright 1998; Pettini 2005), can one set up a system of controls that

is able to drive the economy?
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