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Abstract In the present chapter the combined function projective synchronization
among fractional order chaotic systems in the presence of uncertain parameters and
external disturbances using backstepping control method is investigated. The
chaotic attractors of the systems are found for fractional-order time derivative,
which is described in Caputo sense. A new lemma of Caputo derivatives is used to
design the controller based on Lyapunov stability theory. During the combined
function projective synchronization among the non-identical fractional order sys-
tems, the Lorenz, Rossler and Chen systems are taken to illustrate the effectiveness
of the considered method. Numerical simulation and graphical results for different
particular cases clearly exhibit that the method with this new procedure is easy to
implement and reliable for synchronization of non-identical fractional order chaotic
systems.
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1 Introduction

In last few decades, much attention has been devoted to the study of the fractional
calculus and their numerous applications in the area of mathematics, physics and
engineering. Fractional differential equations which are generalizations of classical
differential equations describe the memory effect, which is the major advantage
over integer-order derivatives. It has been extensively applied for modelling of
many real problems such in viscoelasticity (Koeller 1984) dielectric polarization
(Sun et al. 1984), electromagnetic waves (Heaviside 1971), quantitative finance
(Laskin 2000), quantum evolution of complex system (Kunsezov et al. 1999), chaos
control of dynamical systems (Chen and Yu 2003; Azar and Vaidyanathan 2015)
and the control of fractional order dynamic systems (Hartley and Lorenzo 2002) etc.

It is evident from literature survey that during last few decades the nonlinear
phenomena occurring in various areas of scientific fields have gained immense
popularity amongst the scientists and engineers who have delivered tireless efforts
towards the development of the models using non-linear differential equations.
Introduction of fractional calculus in nonlinear models had given a new dimension
to the existing problems. The interesting phenomena of nonlinear dynamics are the
possibility of chaos. Most of the nonlinear systems reveal chaotic behaviour which
is deterministic and has a periodic long-term behaviour, and also exhibit sensitive
dependence on initial conditions. A periodic long-term behaviour means that there
are trajectories which do not settle down to fixed points, periodic orbits, or
quasi-periodic orbits as time approaches to infinity. Deterministic means that the
system has no random or noisy inputs. This irregular behaviour arises from the
system’s nonlinearity, rather than from noisy driving forces. Sensitivity means that
a small change in the initial state will lead to progressively larger changes in later
system. Hence, an arbitrarily small perturbation of the current trajectory may lead to
different future behaviour. The concept of chaos has been used to explain how
systems subject to known laws of physics may be predictable in the short term but
are apparently random on a longer time scale.

The nonlinear chaotic dynamic system of fractional order has taken care by
mathematical and physical communities in the last few years. The chaotic dynamics
of fractional order systems are important topics, which are mainly devoted to the
chaos synchronization problem in nonlinear dynamical systems. Synchronization of
chaos refers to a process wherein two or more identical or non-identical chaotic
systems have a common behaviour due to a coupling, which appears to be struc-
turally stable. In other words, synchronization, an important achievement in the
research of chaos, means that the trajectories of two systems will converge and they
will remain in step with each other. Pecora and Carroll (1990), first introduced a
method about synchronization between the drive (master) and response (slave)
systems of two identical or non identical systems with different initial conditions,
which has important applications in ecological system, physical system, chemical
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system, modelling brain activity, system identification, pattern recognition phe-
nomena and secure communications etc. Different types of synchronization
schemes had already been handled by various researchers for the synchronization of
chaotic systems, such as complete synchronization, anti-synchronization lag syn-
chronization, hybrid synchronization, projective synchronization, and function
projective synchronization (Agrawal et al. 2012; Yu and Liu 2003; Zhang and Sun
2004; Rosenblum et al. 1997; Srivastava et al. 2013a; Si et al. 2012; Zhou and Zhu
2011) etc. using different types of control scheme such as linear and non linear
feedback synchronization, adaptive control, active control, sliding mode control etc.

In the present chapter a new way for combined function projective synchro-
nization among fractional order chaotic systems in the presence of parametric
uncertainties and external disturbances is described using backstepping control
method. Function projective synchronization (FPS), the generalization of projective
synchronization (PS), is one of the synchronization methods where two identical (or
different) chaotic systems can synchronize up to a scaling function matrix with
different initial values. From literature survey, it is seen that many researchers and
scientists have worked on function projective synchronization of fractional order
chaotic systems (Yu and Li 2010; Chen and Li 2007; Yadav et al. 2017a). In
combination synchronization (Runzi et al. 2011; Yadav et al. 2017b), two or more
master systems and one slave system are synchronized. This synchronization
scheme has advantages over the usual drive response synchronization, such as
being able to provide greater security in secure communication. The influences of
the uncertainties during synchronization have been considered late. In the real
world applications, such as in secure communication (Vaidyanathan and Volos
2016), the receiver plants will definitely suffer from the various uncertainties
including parameter perturbation or external disturbance, which will no doubt
influence the accuracy of the communication. Therefore, the synchronization
between fractional order chaotic systems with uncertainties and disturbances are
tough jobs for researchers. There are possibilities of destroying synchronization
with the effects of those parameters (Srivastava et al. 2013b). The synchronization
between chaotic systems with uncertainties and disturbances are not easy jobs for
researchers since there are always possibilities of destroying synchronization under
the effects of those parameters especially for fractional order systems. There are few
results about the chaotic systems with uncertainties (Jawaadaa et al. 2012; Chen
et al. 2012). Recently, Park (2006), Wu et al. (2009) have shown that the back
stepping method is very simple, reliable and powerful for controlling the chaotic
behavior and synchronization of chaotic systems. Wang and Ge (2001) proposed
the adaptive synchronization of uncertain chaotic systems via backstepping design.
In the same year, Lu and Zhang (2001) controlled the Chen’s chaotic attractors
using backstepping design based on parameters identification. Tan et al. (2003)
synchronize the chaotic systems using backstepping design and again in the same
year Yu and Zhang (2003) controlled the uncertain behavior of chaotic systems
using backstepping design. These have motivated the authors to study on the
combined function projective synchronization of fractional order chaotic systems
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with the presence of parametric uncertainties and external disturbances using
backstepping control method. To the best of authors’ knowledge the combined
function projective synchronization among fractional order chaotic systems in the
presence of parametric uncertainties and external disturbances using backstepping
control method are few in numbers. Numerical simulation results are displayed
graphically which clearly exhibit that the backstepping design control method is
effective, easy to implement and reliable for combined function projective syn-
chronizations of two nonlinear fractional order uncertain chaotic systems.

This chapter has been organized as follows. In Sect. 2, problem formulation of
the combined function projective synchronization scheme of two different chaotic
master systems, and one chaotic response system are presented. Section 3 contains
some preliminaries, definition and lemma. In Sect. 4, the system descriptions of
Lorenz, Rossler and Chen systems are given. Combined function projective syn-
chronization among fractional order chaotic systems with uncertainties and external
disturbances using backstepping control method are discussed in Sect. 5. In Sect. 6,
the conclusion of the research work is presented.

2 Problem Formulation

Consider two uncertain fractional order chaotic systems as the master system as

Dq
t x= ðA1 +ΔA1Þx+ f1ðxÞ+ d1, ð1Þ

Dq
t y= ðA2 +ΔA2Þy+ f2ðyÞ+ d2, 0 < q<1 ð2Þ

and another uncertain fractional order chaotic system as the slave system as

Dq
t z= ðA3 +ΔA3Þz+ f3ðzÞ+ d3 + uðtÞ, ð3Þ

where x= ½x1, x2, . . . xn�T ∈ Rn, y= ½y1, y2, . . . yn�T ∈ Rn and z= ½z1, z2, . . . zn�T
∈ Rn are the state vectors, A1, A2, A3 ∈Rn× n are constant matrices with proper
dimensions, f1, f2, f3:Rn →Rn are the nonlinear functions of the systems, ΔA1,ΔA2,
ΔA3 ∈ Rn× n are parametric uncertainties of chaotic systems with ΔA1j j≤ δ1,
ΔA2j j≤ δ2, ΔA3j j≤ δ3, where δ1, δ2, δ3 are positive constants and d1 , d2, d3 are
the external disturbances of uncertain chaotic systems with d1j j≤ ρ1, d2j j≤ ρ2,
d3j j≤ ρ3, where ρ1, ρ2, ρ3 > 0 and uðtÞ∈Rn is the control input vector of the
uncertain chaotic system (3). Now controller uðtÞ is to be designed in such a way
that the master and slave systems are synchronized through the proper definitions of
errors.
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If the synchronization error is defined by e= z− kðy+ xÞ, where k is the scaling
function, then the corresponding error dynamics can be obtained as

Dt
qe= ðA3 +ΔA3Þe− k½ðA1 +ΔA1 −A3 −ΔA3Þx+ ðA2 +ΔA2 −A3 −ΔA3Þy

+ f1ðxÞ+ f2ðyÞ+ d1 + d2�+ f3ðzÞ+ d3 + uðtÞ ð4Þ

Therefore, for combined function projective synchronization we use backstep-
ping control method to design the control functions in such a way that the origin
becomes asymptotically stable equilibrium point of the error dynamics i.e.,
lim
t→∞

z− kðy+ xÞk k=0. The demonstration of backstepping control method is given

in Sect. 5.

3 Some Preliminaries, Definition and Lemma

3.1 Fractional Calculus

Fractional calculus is a generalization of integration and differentiation of integer
order operator to a non-integer integro-differential operator denoted by aD

q
t and

defined by

aDq
t =

dq
dtq , RðqÞ>0
1, RðqÞ=0R t
a dτð Þ− q, RðqÞ<0,

8<
:

where q is the fractional order which may be a complex number and RðqÞ denotes
the real part of q and a is the fixed lower terminal and t is the moving upper
terminal.

Definition 1 (Kilbas et al. 2006) The Caputo derivative for fractional order q is
defined as

c
aD

q
t ϕðtÞ=

1
Γðn− qÞ

Z t

a

ϕðnÞðτÞ
ðt− τÞq+1− n dτ, t> a,

where q∈R+ on the half axis R+ and n=minfk∈N ̸k> qg, q>0.

Lemma 1 (Aguila-Camacho et al. 2014) Let xðtÞ∈R be a continuous and deriv-
able function. Then for any time instant t≥ t0,

1
2
c
t0D

q
t x

2ðtÞ≤ xðtÞct0Dq
t xðtÞ,∀q∈ ð0, 1�.
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4 Systems’ Description

4.1 Fractional Order Lorenz System

The Lorenz attractor is an example of a non linear dynamical system corresponding
to the long term behaviour of the Lorenz oscillation. The Lorenz oscillator is a three
dimensional dynamical system that exhibits lemniscates type shaped chaotic flow
which shows how the state of dynamical system evolves over time in a complex and
non-repeating pattern. The Lorenz equations deal with the stability of fluid flows in
the atmosphere. In addition to its interest in the field of non linear mathematics, the
Lorenz model has important implications for climate and weather predictions. The
case is also applicable for simplified models for lasers (Lorenz 1963) and dynamos
(Knobloch 1981).

The fractional order Lorenz system (Wu and Shen 2009; Grigorenko and
Grigorenko 2003) is given by

dqx1
dtq

= a1ðy1 − x1Þ,
dqy1
dtq

= x1ðc1 − z1Þ− y1,

dqz1
dtq

= x1y1 − b1z1,

ð5Þ

where a1 is the Prandtl number, c1 is the Rayleigh number and b1 is the size of the
region approximated by the system. The phase portraits of Lorenz system is shown
through Fig. 1 for the parameters’ values a1 = 10, b1 = 8 ̸3, c1 = 28 and initial
condition ð0.2, 0, 2Þ. The lowest value of fractional order q for which the system
remains chaotic is 0.99 (Wu and Shen 2009). The chaotic attractors in the
x1 − y1 − z1 space, x1 − y1, x1 − z1, y1 − z1 planes are shown in Fig. 1 for order of
derivative q=0.993.

The fractional order Lorenz system with uncertain parameters and external
disturbances is defined as

dqx1
dtq

= a1ðy1 − x1Þ+0.11z1 − cosð10dÞ,
dqy1
dtq

= x1ðc1 − z1Þ− y1 − 0.14x1 − 2 cosð10dÞ,
dqz1
dtq

= x1y1 − b1z1 + 0.23y1 − 3 sinð10dÞ,

ð6Þ
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where uncertain parameter ΔA1 =
0 0 0.11

− 0.14 0 0
0 0.23 0

2
4

3
5 and disturbance term

d1 =
− cosð10dÞ
− 2 cosð10dÞ
− 3 sinð10dÞ

2
4

3
5. Figure 2 shows the phase portraits of the fractional order

Lorenz system with uncertainties and disturbances in x1 − y1 − z1 space, x1 − y1,
x1 − z1, y1 − z1 planes for the order of the derivative q=0.993.

4.2 Fractional Order Rossler Systems

The fractional order Rossler system (Yan and Li 2007; Zhou and Cheng 2008) is
given by
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-20
-10

0
10

20

-40
-20

0
20

40
0

10

20

30

40

50

x1(t)y1(t)

z 1(t)

-20 -15 -10 -5 0 5 10 15 20
-30

-20

-10

0

10

20

30

x1(t)

y 1(t)

-20 -15 -10 -5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

x1(t)

z 1(t)

-30 -20 -10 0 10 20 30
0

5

10

15

20

25

30

35

40

45

50

y1(t)

z 1(t)

Fig. 1 Phase portraits of the Lorenz system at q=0.993: a x1 − y1 − z1 space, b x1 − y1 plane,
c x1 − z1 plane, d y1 − z1 plane

Backstepping Control for Combined Function … 121



dqx2
dtq

= − y2 − z2,

dqy2
dtq

= x2 + a2y2,

dqz2
dtq

= b2 + x2z2 − c2z2,

ð7Þ

For the parameters’ values a2 = 0.2, b2 = 0.2, c2 = 5.7 and q=0.96, the system
(7) is chaotic. The phase portraits of Rossler system for order of derivative q=0.98
are shown through Fig. 3.

The fractional order Rossler system with uncertain parameters and external
disturbances is defined as
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Fig. 2 Phase portraits of the Lorenz system with uncertain parameters and external disturbances
at q=0.993: a x1 − y1 − z1 space, b x1 − y1 plane, c x1 − z1 plane, d y1 − z1 plane
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dqx2
dtq

= − y2 − z2 − 0.01x2 − 0.1 sinð20dÞ,
dqy2
dtq

= x2 + a2y2 − 0.02z2 − 0.3 cosð20dÞ,
dqz2
dtq

= b2 + x2z2 − c2z2 − 0.15y2 − 0.04 sinð20dÞ,

ð8Þ

where uncertain parameter ΔA2 =
− 0.01 0 0
0 0 − 0.02
0 − 0.15 0

2
4

3
5 and disturbance

term d2 =
− 0.1 sinð20dÞ
− 0.3 cosð20dÞ
− 0.04 sinð20dÞ

2
4

3
5. The phase portraits of fractional order Rossler

system with uncertainties and disturbances in x2 − y2 − z2 space, x2 − y2, x2 − z2,
y2 − z2 planes are depicted through Fig. 4 at q=0.98.
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Fig. 3 Phase portraits of the Rossler system at q=0.98: a x2 − y2 − z2 space, b x2 − y2 plane,
c x2 − z2 plane, d y2 − z2 plane
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4.3 Fractional Order Chen System

The fractional order Chen system (Lu and Chen 2006) is defined as

dqx3
dtq

= a3ðy3 − x3Þ,
dqy3
dtq

= ðc3 − a3Þx3 − x3z3 + c3y3,

dqz3
dtq

= x3y3 − b3z3,

ð9Þ

For the parameters’ values a3 = 35, b3 = 3, c3 = 28, q=0.7 and initial condition
ð3, 4, 6Þ, the system (9) shows the chaotic behaviour. The phase portraits of Chen
system at q=0.90 are depicted through Fig. 5.

Fractional order Chen system with uncertain parameters and external distur-
bances is defined as
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Fig. 4 Phase portraits of the Rossler system with uncertain parameters and external disturbances
at q=0.98: a x2 − y2 − z2 space, b x2 − y2 plane, c x2 − z2 plane, d y2 − z2 plane
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dqx3
dtq

= a3ðy3 − x3Þ− 0.2z3 + 0.1 sinð100dÞ,
dqy3
dtq

= ðc3 − a3Þx3 − x3z3 + c3y3 − 0.4z3 − 0.2 cosð100dÞ,
dqz3
dtq

= x3y3 − b3z3 + 0.1x3 − sinð100dÞ,

ð10Þ

where uncertain parameter ΔA3 =
0 0 − 0.2
0 0 − 0.4
0.1 0 0

2
4

3
5 and disturbance term

d3 =
0.1 sinð100dÞ
− 0.2 cosð100dÞ
− sinð100dÞ

2
4

3
5. The phase portraits of fractional order Chen system with

uncertainties and disturbances in x3 − y3 − z3 space, x3 − y3, x3 − z3, y3 − z3 planes
are depicted through Fig. 6 at q=0.90.
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Fig. 5 Phase portraits of the Chen system at q=0.90: a x3 − y3 − z3 space, b x3 − y3 plane,
c x3 − z3 plane, d y3 − z3 plane
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5 Combined Function Projective Synchronization Among
Fractional Order Chaotic Systems with Uncertainties
and External Disturbances Using Backstepping Control
Method

For the study of combined function projective synchronization among fractional
order chaotic systems with uncertain parameters and external disturbances, two
systems viz., Lorenz system (6) and Rossler system (8) are considered as drive
system-I and drive system-II and Chen system (10) is considered as response
system. The response system with the control functions is defined as
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Fig. 6 Phase portraits of the Chen system with uncertain parameters and external disturbances at
q=0.90: a x3 − y3 − z3 space, b x3 − y3 plane, c x3 − z3 plane, d y3 − z3 plane
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dqx3
dtq

= a3ðy3 − x3Þ− 0.2z3 + 0.1 sinð100dÞ+ u1ðtÞ,
dqy3
dtq

= ðc3 − a3Þx3 − x3z3 + c3y3 − 0.4z3 − 0.2 cosð100dÞ+ u2ðtÞ,
dqz3
dtq

= x3y3 − b3z3 + 0.1x3 − sinð100dÞ+ u3ðtÞ,

ð11Þ

where uðtÞ= ½u1ðtÞ, u2ðtÞ, u3ðtÞ�T is the control functions to be deigned later.

Defining the error functions as

e1 = x3 − k1ðx2 + x1Þ

e3 = y3 − k2ðy2 + y1Þ

e3 = z3 − k3ðz2 + z1Þ,

we obtain the error system as

dqe1
dtq

= a3ðe2 − e1Þ− 0.2e3 +ϕ1 + u1ðtÞ,
dqe2
dtq

= ðc3 − a3Þe1 + c3e2 − 0.4e3 +ϕ2 + u2ðtÞ,
dqe3
dtq

= − b3e3 + 0.1e1 +ϕ3 + u3ðtÞ,

ð12Þ

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

2

3

4

5

t

e 1(t)
,  

e 2(t)
,  

e 3(t)

e1(t)

e2(t)

e3(t)

Fig. 7 Evolution of the error functions e1ðtÞ, e2ðtÞ and e3ðtÞ for fractional order q=0.96
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where

ϕ1 = − 0.2k3ðz2 + z1Þ+ a3k2ðy2 + y1Þ− k1½a3ðx2 + x1Þ− y2 − z2 − 0.01x2 − 0.1 sinð20dÞ
+ a1ðy1 − x1Þ+0.11z1 − cosð10dÞ�+0.1 sinð100dÞ

ϕ2 = ðc3 − a3Þk1ðx2 + x1Þ− k2½− c3ðy2 + y1Þ+ x2 + a2y2 − 0.02z2 − 0.3 cosð20dÞ
+ x1ðc1 − z1Þ− y1 − 0.14x1 − 2 cosð10dÞ�− 0.4k3ðz2 + z1Þ− x3z3 − 0.2 cosð100dÞ

ϕ3 = 0.1k1ðx2 + x1Þ− k3½b3ðz2 + z1Þ+ b2 + x2z2 − c2z2 − 0.15y2 − 0.04 sinð20dÞ+ x1y1
− b1z1 + 0.23y1 − 3 sinð10dÞ�+ x3y3 − sinð100dÞ.

Now the control functions would be properly designed using backstepping
approach for combination function projective synchronization among fractional
order chaotic systems in presence of uncertain parameters and external
disturbances.

Theorem 1 If the control functions are chosen as

u1ðtÞ=0.2e3 −ϕ1,

u2ðtÞ= − c3w1 −w2 − c3w2 −ϕ2,

u3ðtÞ= − 0.1w1 + 0.4w2 −ϕ3,

where w1 = e1, w2 = e2, w3 = e3, the systems (6) and (8) will be synchronized with
the system (10).

Proof To achieve control functions, we use active backstepping procedure through
following three steps.

Step I: Considering w1 = e1, the fractional derivative of w1 is

dqw1

dtq
=

dqe1
dtq

= a3ðe2 −w1Þ− 0.2e3 +ϕ1 + u1ðtÞ, ð13Þ

where e2 = α1ðw1Þ is regarded as an virtual controller. To stabilize w1-subsystem,
we define the Lyapunov function V1 as

V1 =
1
2
w2
1.

Fractional derivative of V1 is
dqV1
dtq = 1

2
dqw2

1
dtq ≤w1

dqw1
dtq (Using Lemma 1)
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i.e., ≤w1½a3ðα1 −w1Þ− 0.2e3 +ϕ1 + u1ðtÞ�.

Taking α1ðw1Þ=0 and u1ðtÞ=0.2e3 −ϕ1, we get dqV1
dtq ≤ − a3w2

1 < 0, negative
definite, which implies that w1-subsystem (13) is asymptotically stable. For the
virtual control function α1ðw1Þ, we define a variable w2 between e2 and α1ðw1Þ as

w2 = e2 − α1ðw1Þ.

Then, ðw1,w2Þ subsystem is obtained as

dqw1

dtq
= a3ðw2 −w1Þ,

dqw2

dtq
= ðc3 − a3Þw1 + c3w2 − 0.4e3 +ϕ2 + u2ðtÞ.

ð14Þ

Let e3 = α2ðw1,w2Þ is an virtual controller.

Step II: In this step to stabilize ðw1,w2Þ-subsystem (14), define the Lyapunov
function V2 as

V2 =V1 +
1
2
w2
2 =

1
2
w2
1 +

1
2
w2
2.

Now

dqV3

dtq
=

1
2
dqw2

1

dtq
+

1
2
dqw2

2

dtq

≤w1
dqw1

dtq
+w2

dqw2

dtq

i.e., ≤ − a3w2
1 +w2½c3w1 + c3w2 − 0.4α2ðw1,w2Þ+ϕ2 + u2ðtÞ�,

If α2ðw1,w2Þ=0 and u2ðtÞ= − c3w1 −w2 − c3w2 −ϕ2, then
dqV2
dtq ≤ − a3w2

1 −w2
2

< 0 makes the subsystem (14) asymptotically stable.
Considering w3 = e3 − α2ðw1,w2Þ, we get the following ðw1,w2,w3Þ-subsystem

as

dqw1

dtq
= a3ðw2 −w1Þ,

dqw2

dtq
= − a3w1 −w2 − 0.4w3

dqw3

dtq
= − b3w3 + 0.1w1 +ϕ3 + u3ðtÞ,

ð15Þ
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Step III: In order to stabilize ðw1,w2,w3Þ-subsystem (15), choosing the Lyapunov
function as

V3 =V2 +
1
2
w2
3 =

1
2
w2
1 +

1
2
w2
2 +

1
2
w2
3,

we get

dqV3

dtq
=

1
2
dqw2

1

dtq
+

1
2
dqw2

2

dtq
+

1
2
dqw2

3

dtq

≤w1
dqw1

dtq
+w2

dqw2

dtq
+w3

dqw3

dtq
,

i.e., ≤ − a3w2
1 −w2

2 − 0.4w2w3 − b3w2
3 +w3½0.1w1 +ϕ3 + u3ðtÞ�.

If u3ðtÞ= − 0.1w1 + 0.4w2 −ϕ3, then dqV3
dtq ≤ − a3w2

1 −w2
2 − b3w2

3 < 0 negative
definite. In view of w1 = e1, w2 = e2 − α1ðw1Þ= e2, w3 = e3 − α2ðw1,w2Þ= e3, the
error states will converge to zero after a finite period of time, and thus the combined
function projective synchronization among Lorenz, Rossler and Chen systems in
the presence of uncertain parameters and external disturbances will be achieved.

5.1 Numerical Simulation and Results

In numerical simulation, the parameters of Lorenz system, Rossler system and Chen
system are taken as a1 = 10, b1 = 8 ̸3, c1 = 28; a2 = 0.2, b2 = 0.2, c2 = 5.7 and
a3 = 35, b3 = 3, c3 = 28 respectively. Time step size is taken as 0.005. The initial
condition of two master systems and one slave system are taken as ð0.1, 0.1, 0.1Þ,
ð0.2, 0, 2Þ and ð3, 4, 6Þ respectively. Thus according to definition of error
functions, the initial errors are ð2.85, 3.96, 4.95Þ.

During the combined function projective synchronization the scaling functions
are taken as periodic function as

k1 = a11 cosða12x1Þ+ a13

k2 = a21 cosða22y1Þ+ a23

k3 = a31 cosða32z1Þ+ a33.

For the values of parameters a11 = 0.4, a12 = 0.1, a13 = 0.1, a21 = 0.1, a22 = 0.2,
a23 = 0.3, a31 = 0.3, a32 = 0.3, a33 = 0.2 it is seen from Fig. 7 that the error functions
asymptotically converge to zero as time becomes large for the order of the
derivatives q=0.96, which shows that the master systems (6) and (8) are syn-
chronized with the slave system (10).
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6 Conclusion

The contribution of the present chapter is the investigation of the combined function
projective synchronization among different fractional order chaotic systems with
uncertainties and external disturbances using backstepping method. Based on
Lyapunov stability theory, the synchronization with function scaling factor of
chaotic systems through the proper design of control functions is achieved. The
components of error state tend to zero as time becomes large help to get the time
requires for combined synchronization among the systems. Numerical simulation
results demonstrate that the method is reliable, convenient and effective for the
combined function projective synchronization even for fractional order chaotic
systems.
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