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Abstract Self-excited vibrations in friction oscillators are known as stick-slip

phenomenon. The non-linearity in the friction force characteristics introduces insta-

bility to the steady frictional sliding. The self-excited friction oscillator consists of

the mass pushed horizontally on the surface, elastic element (spring) and a drive

(convey or belt). Described system serves as a classic toy model for representation

of stick-slip motion. Synchronization is an interdisciplinary phenomenon and can be

defined as correlation in time of at least two different processes. This chapter focuses

on synchronization thresholds in networks of oscillators with dry friction oscillators

coupled by linear springs. Oscillators are connected in the nearest neighbour fash-

ion into topologies of open and closed ring. In course of the numerical modelling

we are interested in identification of complete and cluster synchronization regions.

The thresholds for complete synchronization are determined numerically using brute

force numerical integration and by means of the master stability function (MSF).

Estimation of the MSF is conducted using approach called two-oscillator probe.

Moreover, we perform a parameter study in two-dimensional space, where differ-

ent cluster synchronization configurations are explored. The results indicate that the

MSF can be applied to non-smooth system such as stick-slip oscillator. Synchro-

nization thresholds determined using MSF occur to be in line with the one obtained

numerically.

1 Introduction

Synchronization phenomenon draws attention of scientists in different disciplines of

science, e.g. biology, social science, engineering, physics. Word “synchronization”
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has Greek origins and is combined of two parts: syn—common and chronos—time,

which together mean happening at the same time. Synchronization may be defined as

adjustments of rhythms of oscillating objects due to their weak interaction (Pikovsky

et al. 2003).

Dutch scientist Christiaan Huygens was a pioneer of research in the field of syn-

chronization, when back in the 17th century he observed synchronization of two pen-

dula hanging on a common support (Huygens 1673). In the 19th century Sir John

William Strutt (Lord Rayleigh) described synchronization in organ pipes (Rayleigh

1896). Pipes with the same pitch, placed side by side cause the sound to quench.

Beginning of the 20th century brought observation of synchronization in electric

engineering, when Eccles and Vincent (1920) discovered synchronization property

of triode generator. The experiment they proposed proved that coupling generator

forces common frequency of system vibration (current frequency of single genera-

tor depends on electric properties circuit elements). This idea was later developed

by Appleton (1922), van der Pol (1927).

In the second half of the 20th century the synchronization phenomenon was

reported in biological systems (Mirollo and Strogatz 1990; Winfree 1967). John

and Elisabeth Buck investigated the synchronization phenomenon among fireflies is

south-east Asia (Buck and Buck 1968), where males emit synchronous light flashes

to attract female during the mating season. Phenomenon of swarm behaviour in

groups of animals (e.g. fish school, flock of birds) is addressed in Heppner and

Grenander (1990), Reynolds (1987). Existence of synchronization is found in pace-

makers cells (Jalife 1984; Michaels et al. 1987), adjustments of menstrual cycle

among women (Graham and McGrew 1980), rhythmic applause in concert halls

(Néda et al. 2000). An example of synchronization in civil engineering is the case

of the Millennium Bridge in London. The just opened footbridge started to vibrate

unexpectedly after reaching a threshold number of pedestrian. The lateral forces

exerted by pedestrians induced the bridge vibrations, which forced the walkers to

move in synchronized step, which additionally amplify the lateral oscillations of the

bridge (Dallard et al. 2001a, b; Eckhardt et al. 2007; Lenci and Marcheggiani 2012;

Strogatz et al. 2005).

Friction is an ubiquitous force in mechanics, responsible for the resistance of

contacting surfaces to relative motion. One can distinguish two types of friction:

dry friction—when two solid surfaces are in contact and viscous friction—when the

contact occurs through a layer of fluid (e.g. lubricant). Friction dissipates the energy

of contacting interfaces into heat and can be the source of self-excited vibrations.

These can be heard as squeal sound in various devices (e.g. breaks, machining tools,

chalk on blackboard, string and bow in violin) (Ghazaly et al. 2013; Patitsas 2010;

Warmiński et al. 2003). Proper understanding of friction phenomenon is crucial in

control engineering (Gogoussis and Donath 1987; Saha et al. 2010).

The word “friction” is of Latin origin—fricare. One of the first scholars study-

ing the properties of friction was da Vinci (1518), who formulated two theories.

He reported that friction is directly proportional to the normal load applied on the

friction interface. Additionally he stated that friction is independent from the appar-

ent contact area (Dowson 1979; Hutchings 2016; Wojewoda 2008). Works of da
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Vinci were unpublished until they had been rediscovered by Amontons (1669) and

today are now known as Amontons’ laws of friction. Euler (1750, 1761) distin-

guished static and kinetic friction. He also found the relation between inclination

angle of inclined plane and friction coefficient 𝜇 = tan 𝛼 (Meyer et al. 1998). French

physicist Charles Coulomb, further developed Amontons’ ideas (Coulomb 1821).

He concluded that kinetic friction is independent of the relative velocity between

contacting surface, which is known as Coulomb’s law of friction. A basic friction

model is named after him (Coulomb friction model). However, the Coulomb model

despite robustness in simple case fails in more complex applications. In the begin-

ning of the 20th century German engineer Stribeck (Stribeck 1902) investigated the

non-linearity between the friction force and relative velocity, which is known as

Stribeck effect. The change between static and kinetic friction is not gradually, but

follows non-linear dependency called Stribeck curve. Should the relative velocity

between surface of contact be small, the friction force smoothly decrease from the

static friction level, converging at kinetic friction level. The difference between static

and kinetic friction in systems with energy source leads to self-excited vibration of

the investigated mass.

Nowadays a variety of friction models has been proposed, which can be divided

into two groups: static models (Armstrong-Helouvry 1991; Bo and Pavelescu 1982;

Hess and Soom 1990; Popp and Stelter 1990) and dynamical (Al-Bender et al. 2004;

de Wit et al. 1995; Dahl 1968; Stefański et al. 2003; Wojewoda et al. 2008), where

friction depends on many variables. The dynamical models have even internal states

described by ordinary differential equations.

In this chapter we deal with the synchronization properties and synchronization

properties of coupled dry friction oscillators. The research presented in this chapter is

a continuation of author’s previous research in Marszal (2017), Marszal et al. (2016),

Marszal and Stefański (2017). The chapter is organized as follows. Section 2 presents

theoretical background in the field of synchronization. Section 3 introduces the math-

ematical model and the concept of self-excited vibrations in single friction oscillator.

In Sect. 4 friction oscillators are coupled forming oscillator networks. Section 5 dis-

cusses the result of numerical simulations. Finally conclusions and possible future

development are shown in Sect. 6.

2 Synchronization

Let us consider a dynamical system, consisting of N oscillators, which can be

described using following matrix-form equation (Stefański 2009), where 𝐱 =(
x1,… , xN

)
∈ ℜN

is a state vector and 𝐅 (𝐱) =
(
f1
(
x1
)
, .., fN

(
xN

))
is a function

describing the local dynamics of the system, which is independent of the coupling.

�̇� = 𝐅(𝐱) + 𝜎(𝐆⊗𝐇)𝐱, (1)
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The second term in (1) describes the coupling properties. 𝐆 is a connectivity matrix,

𝐇 ∶ ℜN → ℜN
linking functions, 𝐇 a linking matrix, 𝜎 coupling coefficient, ⊗

denotes the Kronecker product of two matrices. For the general case the properties

of 𝐆 and 𝐇 matrices can be arbitrary.

2.1 Types of Synchronization

Synchronization is a complex phenomenon. For the case of this chapter let us limit

our consideration to few types of synchronization, namely, complete synchroniza-

tion, imperfect complete synchronization and cluster synchronization.

Let us restrict the area of considerations to a network of identical oscillators 𝐅(𝐱)
and linking functions 𝐇. In such a system it is possible to obtain complete syn-

chronization (CS), called also full synchronization. According to Pecora and Carroll

(1990) complete synchronization can be observed when two trajectories converge to

the same value and later hold that conditions. Stefański (2009) proposes following

definition of complete synchronization.

Definition 1 The complete synchronization of two dynamical systems represented

with their phase plane trajectories 𝐱(t) and 𝐲(t), respectively, takes place when for

all t > 0, the following relation is fulfilled:

lim
t→∞

‖𝐱(t) − 𝐲(t)‖ = 0. (2)

In practical applications it may be difficult to have identical oscillator nodes in

network. Should there be a mismatch between oscillators or coupling properties,

differences between their respective trajectories converge to zero with some small

tolerance 𝜀. Such a situation is called imperfect complete synchronization (ICS).

Stefański (2009) defines ICS as follows.

Definition 2 The imperfect complete synchronization of two dynamical systems

represented with their phase plane trajectories 𝐱(t) and 𝐲(t), respectively, occurs

when for all t > 0, the following inequality is fulfilled:

lim
t→∞

‖𝐱(t) − 𝐲(t)‖ < 𝜀, (3)

where 𝜀 is a small parameter.

Supposing the system consists of N > 2 identical oscillators one may distinguish

two or more subsets for which the particular oscillators are in sync with each other

and out of sync with the members of the other subset. Subsets of synchronized oscil-

lators are called clusters. It is important to mention that we can talk about clus-

ter synchronization when whole system is not in complete synchronization. The

motion of different cluster may be uncorrelated or one can observe a shift phase
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between them. Existence of clusters is connected with the existence and stability of

synchronization manifold (Perlikowski 2007). The topic of clusters can be found in

literature in Belykh et al. (2000, 2001), Dahms et al. (2012), Kaneko (1990), Wu

et al. (2009), Yanchuk et al. (2001).

2.2 Synchronous State Stability

A power mathematical tool used in assessing the stability of the synchronous state

is the concept of master stability function (MSF) introduced by Pecora and Carroll

(1998). Master stability function enables to divide the problem of the synchronous

state stability into two parts: (i) the topological part, where we need to calculate the

eigenvalues of the connectivity matrix, and (ii) local dynamic part, where one need

to calculate Lyapunov exponents of variational equation. The classic approach to

estimate the MSF is to calculate transversal Lyapunov exponents (TLE) of the Eq.

(7) derived below. Let us begin with obtaining variational equation of Eq. (1):

�̇� =
[
𝟏𝐍 ⊗ D𝐅 + 𝜎𝐆⊗ D𝐇

]
𝜉, (4)

where 𝜉i is the variation of the ith node, 𝜉 = (𝜉1, 𝜉2, ...𝜉N) is variation vector, D𝐅 is

the Jacobian of any node,D𝐇 is the Jacobian of the linking function. Diagonalization

of Eq. (4) yields to uncoupling the variational Eq. (4) into N block having a form of:

�̇�k =
[
D𝐅 + 𝜎𝛾kD𝐇

]
𝜉k, (5)

where 𝛾k is the kth eigenvalue of the 𝐆, i = 0, 1, 2, ...,N − 1, 𝜉k is transverse mode of

perturbation from the synchronous state. In case of k = 0 eigenvalue is 𝛾0 = 0, and

consequently Eq. (5) is reduced to

�̇�0 = D𝐟𝜉0, (6)

which is associated with the longitudinal direction located within the synchroniza-

tion manifold. The other kth eigenvalues correspond to transverse eigenvectors (Pec-

ora and Carroll 1998). In MSF concept the tendency to synchronization is a function

of eigenvalues 𝛾k. Let us substitute 𝜎𝛾 = 𝛼 + i𝛽 in Eq. (5), where 𝛼 and 𝛽 are respec-

tive real and imaginary part of eigenvalues.

�̇� = [D𝐅 + (𝛼 + i𝛽)D𝐇] 𝜉, (7)

where 𝜉 is an arbitrary transverse mode.

Condition for the existence of invariant synchronization manifold is the zero row

sum connectivity matrix 𝐆 (Pecora and Carroll 1998). All the real parts of eigenval-

ues, which correspond to transversal modes, are negative (Re(𝛾k≠0) < 0). The spec-

trum of eigenvalues has the descending form, i.e., 𝛾0 ≥ 𝛾1 ≥ ... ≥ 𝛾N−1. In general
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case, (Pecora and Carroll 1998) defines MSF as the largest transversal Lyapunov

exponent 𝜆T surface, computed basing on Eq. (7), on a complex numbers plane (𝛼, 𝛽).
Should the interaction between the nodes be mutual (e.g. mechanical systems), then

the eigenvalues have only real part and then MSF is represented only by a curve

describing the largest TLE as a function of real number 𝛼, defined as

𝛼 = 𝜎𝛾. (8)

The synchronous state of dynamical system is stable when all eigenmodes of the

discrete eigenvalue spectrum 𝜎𝛾k lay in ranges of the largest negative TLE (see

Fig. 1a). Supposing even only one eigenvalue is in the range, where 𝜆T > 0 (see

Fig. 1b), the global synchronization is unstable, however, cluster synchronization is

still possible.

The method mentioned in previous section is robust for time continuous sys-

tems, given by smooth equations, where the computation of TLE is relatively easy.

However, when dealing with non-smooth dynamical systems, such as dry friction

oscillators, the computation of TLE requires special care and algorithms. In such a

case, techniques called three-oscillator universal probe (Fink et al. 2000) and two-
oscillator probe (Wu 2001) come to our rescue. Oscillator probe is based on estimat-

ing the MSF on the complex plane by direct detection of the complete synchroniza-

tion in numerical calculations or in the experiment. The methodology is simple, but

yet efficient. When calculating MSF in three-oscillator probe for system containing

N oscillators, one initially investigates the reference probe of three oscillators. The

area on the complex plane (𝛼, 𝛽) where the complete synchronization or imperfect

complete synchronization occurs is the equivalent of the area of negative transver-

sal Lyapunov exponents. The two-oscillator probe can be applied for mechanical

systems, where due to mutual interaction between the nodes, the eigenvalues of the

λ
T

σγ
σγ

1 2 k
σγ σγ...

λ
T

σγ
σγ

2 k
σγ

1
σγ ...

(a) (b)

Fig. 1 Examples of the MSF with spectrum of eigenvalue of connectivity matrix for cases of

potential stable (a) and unstable (b) complete synchronization state of all network oscillators



Synchronization Properties in Coupled Dry Friction Oscillators 93

connectivity matrix 𝐆 are real and the MSF is reduced to a curve, which is also the

case for real only eigenvalues when using TLE as MSF.

Let us consider system of N = 2 coupled oscillators, given by Eq. (1), with con-

nectivity matrix 𝐆:

𝐆 =
(
−c c
c −c

)
, (9)

where c is the real coupling factor. One can formulate following variational equation

of the considered system.

(
�̇�1
�̇�2

)
=
[
𝐈𝟐 ⊗ D𝐟 + 𝜎

(
−c c
c −c

)
⊗ D𝐇

](
𝜉1
𝜉2

)
, (10)

with real eigenvalues 𝛾0 = 0, 𝛾1 = −2c. This yields to generic variational equation

for MSF determination for the two-oscillator probe system

�̇� = (D𝐟 − 2𝜎cD𝐇) 𝜉. (11)

If the all non-zero eigenvalues of the connectivity matrix of the system of N oscil-

lators are in the surface or range of complete (imperfect complete) synchronization

for the reference probe, then the complete synchronization (imperfect complete syn-

chronization) is possible for the the system in question. When comparing Eq. (11)

with Eq. (7) one can notice that 𝛼 = 2𝜎c. Hence, the multiplier 2 has to be taken

under consideration when the MSF (e.g. from Fig. 1a) is replaced by two oscillators

probe as shown in Fig. 2.

In order to estimate the MSF using two-oscillator probe, it is necessary to couple

two oscillators with real coupling and perform numerical or experimental determi-

nation of synchronous ranges. The synchronous ranges can be indicated by average

synchronization error for two-oscillator probe ⟨eII⟩ = 0 and are equivalents of stable

synchronous region of MSF using the largest TLE. We can project this representative

two-oscillator probe for any number of coupled oscillators with arbitrary structure of

connection between them via eigenvalues of the connectivity matrix 𝐆 (Fink et al.

2000; Marszal and Stefański 2017; Pecora and Carroll 1998; Stefański 2009; Wu

2001).

One can distinguish three different regimes of synchronous intervals in the MSF

⟨eII⟩ (𝛼) analysis: (i) bottom-limited (𝛼1,∞), (ii) upper-limited (𝛼1 = 0, 𝛼2 > 0 but

of finite value) and (iii) double-limited (𝛼1, 𝛼2 > 0, but of finite value). Values of 𝛼1
and 𝛼2 denote upper and lower ends (Fig. 3) of the synchronous range, respectively

(Stefański 2009; Stefański et al. 2007). In this chapter let us focus on the second and

third cases. In the double-limited case, two transverse eigenmodes have influence

on the synchronization thresholds, i.e., the longest spatial-frequency mode, which

corresponds to the largest eigenvalue 𝛾1, and the shortest spatial frequency, which

corresponds to the smallest eigenvalue 𝛾N−1. They determine the size of the syn-

chronous state interval. The loss of stability can be caused by two desynchronization

bifurcations. Decrease of 𝜎 triggers a long-wavelength bifurcation, as the longest
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λ
T

σγ

σ

e〈  〉II

0

20

1

c

(a)

(b)

Fig. 2 Equivalence of the MSF (a) and two-oscillator probe (b)

wavelength mode 𝜉1 becomes unstable. Contrary, the increase of 𝜎 may lead to short-

wavelength bifurcation, because the shortest wavelength mode 𝜉N−1 becomes unsta-

ble (Marszal and Stefański 2017; Stefański et al. 2007). One can formulate condition

for the existence of the synchronous interval as
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𝛾N−1
𝛾1

<
𝛼2
𝛼1

, (12)

which implies the existence of the maximum number of oscillators, for which the

investigated system can be in CS. The increase of N follows the increase of 𝛾N−1∕𝛾1
ratio. Hence, the inequality in (12) cannot be fulfilled (Barahona and Pecora 2002;

Nishikawa et al. 2003; Pecora et al. 2000; Pecora 1998). The discussed case of double

limited synchronous interval is depicted in the Fig. 3. For the Fig. 3a the condition in

(12) is fulfilled and synchronous intervals overlap with cross-hatched area marking

the synchronous range (𝜎1, 𝜎2). Contrary, in the Fig. 3b the synchronous intervals do

not overlap and there is no synchronous range for network of N oscillators (Marszal

and Stefański 2017; Stefański 2009). In case of upper-limited synchronous interval

the synchronization regions depend on the smallest eigenvalue 𝛾N−1. The increase of

N forces to narrow the synchronization interval towards the origin of the coordinates

system.

As an additional effect of double-limited synchronous interval, the phenomenon

of the so called ragged synchronizability can be observed, i.e., alternately occurring

synchronous and desynchronous windows (Stefański et al. 2007) (e.g. Fig. 3a).

3 Single Self-excited Friction Oscillator

Consider a single, classic, dry friction, self-excited oscillator, depicted in Fig. 4. The

system consists of a drive—conveyor belt, elastic element—spring and moving oscil-

lating mass with a frictional interface. The equation of motion of the system can be

formulated as follows:

md2x
dt2

= FNf
(
vr
)
− kx, (13)

where:m—mass of the oscillator x—displacement of the oscillator, k—stiffness con-

stant, vb—velocity of the belt, vr—relative velocity between the contacting surfaces(
vr = vb −

dx
dt

)
,FN—normal load (the weight of oscillator is included inFN), f (vr)—

function describing friction characteristics.

Let us non-dimensionalise the Eq. (13) by applying 𝜔0 =
√

k
m

, non-dimensional

time 𝜏 = 𝜔0t and characteristic constant x0 =
g
𝜔
2
0
, which results in

�̈� = 𝜖f (𝜗r) − 𝜒. (14)

The non-dimensional variables are formulated as follows: 𝜖 = FN

mg
—load

coefficient, 𝜗b =
vb

x0𝜔0
—non-dimensional velocity of the belt, 𝜗r = 𝜗b − �̇�—non-

dimensional relative velocity between contacting surfaces, 𝜒 = x
x0

—non-

dimensional displacement. The overdots stand for the respective derivatives with
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Fig. 3 Examples of double-limited synchronous intervals: a synchronous ranges of shortest and

longest frequency modes are partly overlapping, yielding to stable synchronous interval (𝜎1, 𝜎2);

b synchronous ranges of both modes are disconnected—CS is not possible. Gray corresponds to

desynchronous regions
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Fig. 4 Single stick-slip dry friction oscillator

respect to 𝜏. The relationships between dimensional and non-dimensional displace-

ment and its derivatives is given by:
d2x
dt2

= x0𝜔2
0�̈� ,

dx
dt

= x0𝜔0�̇� .

Stribeck friction model with the exponential non-linearity is applied as the basis

for friction modelling in this work. The Stribeck friction model with the exponential

non-linearity is given by formula:

f (𝜗r) =
(
𝜇k +

(
𝜇s − 𝜇k

)
e−a|𝜗r|

)
sgn𝜗r, (15)

where 𝜇s—static friction coefficient, 𝜇k—kinetic friction coefficient, a is constant

defining the shape of the friction—relative velocity curve. The friction force f as a

function of relative velocity 𝜗r based on the aforementioned model is depicted in

the Fig. 5. Note the negative slope of friction force—relative velocity curve, which

is essential for the occurrence of self-excited vibrations (Ding 2010).

Figure 6 illustrates a limit-cycle to which all +. The segment of trajectory with

horizontal line corresponds to the sticking phase when 𝜗r = 0. The mass moves along

with the belt and accumulates the potential energy. The value of friction force adjust

itself to maintain the equilibrium with the spring force. When the maximum value

of friction force is reached, the friction force cannot balance the spring and the mass

begins to slide. Friction is then responsible for the dissipation of energy into heat.

Eventually, the velocity of the mass decreases to the level of the velocity of the belt

and the mass sticks with it. Such kind of motion form a sawtooth wave (see Fig. 8 with

grey regions corresponding to stick phase). Hence, the sound of objects subjected to

stick-slip phenomenon is not pleasant to our ears. In Fig. 7 a phase diagram with

stick-slip limit cycle is depicted.
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Fig. 5 Friction force f as a function of relative velocity 𝜗r

Fig. 6 Phase portrait of

single friction oscillator with

self-excited stick-slip

vibrations. Multiple

trajectories approach the

stick-slip limit cycle. System

parameters: 𝜗b = 0.1,

𝜇s = 0.3, 𝜇k = 0.15, a = 2.5,

𝜖 = 2. (Marszal 2017)

The presented, 1-DOF system, can be treated as a toy model for more complicated

systems used in engineering application, e.g. disc brake (Wei et al. 2016). Here mass

corresponds to brake pad, belt—to disc of the brake, while spring—to the stiffness

of the system, which is subjected to external excitation (Popp et al. 1995).

4 Oscillators Network

Let us now consider an array of N identical oscillators described above, which

are coupled using linear springs of stiffness kC, as shown in the Fig. 9. Additional
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Fig. 7 Phase diagram of

single self-excited friction

oscillator. System

parameters: 𝜗b = 0.1,

𝜇s = 0.3, 𝜇k = 0.15, a = 2.5,

𝜖 = 2

excitation u cos𝜔𝜏 is applied to each oscillator. The equation of motion for the cou-

pled system can be written in matrix form, where the 𝜎 = kC∕k stands for the cou-

pling coefficient and determines the strength of the coupling:

⎧
⎪
⎨
⎪
⎩

�̈�1
⋮
�̈�N

⎫
⎪
⎬
⎪
⎭

= −
⎧
⎪
⎨
⎪
⎩

𝜒1
⋮
𝜒N

⎫
⎪
⎬
⎪
⎭

+ 𝜎GN

⎧
⎪
⎨
⎪
⎩

𝜒1
⋮
𝜒N

⎫
⎪
⎬
⎪
⎭

+
⎧
⎪
⎨
⎪
⎩

𝜖f
(
𝜗r1

)
+ u cos𝜔𝜏
⋮

𝜖f
(
𝜗rN

)
+ u cos𝜔𝜏

⎫
⎪
⎬
⎪
⎭

. (16)

Matrix 𝐆𝐍 is connectivity matrix and represents the connection topology of the

network. In this work, two distinct topologies are considered, namely open and close

ring of oscillators connected in nearest neighbour fashion. The scheme of the topolo-

gies is depicted in the Fig. 10. The connectivity matrices for both topologies are pre-

sented by Eq. (17) (𝐆𝐍𝐎
—open ring) and Eq. (18) (𝐆𝐍𝐂

—closed ring) respectively.

GNO
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 1 0 ⋯ 0 0
1 −2 1 ⋱ ⋯ 0
0 1 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 1 0
0 ⋯ ⋱ 1 −2 1
0 0 ⋯ 0 1 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (17)
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(a)

(b)

Fig. 8 Time diagram of single self-excited friction oscillator: a position of the oscillator, b velocity

of the oscillator. Gray regions correspond to stick phase. System parameters: 𝜗b = 0.1, 𝜇s = 0.3,

𝜇k = 0.15, a = 2.5, 𝜖 = 2
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Fig. 9 Array of coupled N stick-slip oscillators

(a) (b)

Fig. 10 Different connection topologies for network of N oscillators: a open ring b closed ring

GNC
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 1 0 ⋯ 0 1
1 −2 1 ⋱ ⋯ 0
0 1 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 1 0
0 ⋯ ⋱ 1 −2 1
1 0 ⋯ 0 1 −2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (18)

Note that for both matrices there are zero sum rows, which is caused by mutual

interaction in mechanical systems. The eigenvalues of the connectivity matrices are

used later in the master stability function to determine the synchronization thresh-

olds.

5 Results

In this Section we present the results of numerical studies, based on the numeri-

cal model described in Sects. 3 and 4. Additionally, we present the usage of mas-

ter stability function and two-oscillator probe for determining the synchronization

thresholds.
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(a) (b)

(c) (d)

Fig. 11 Synchronization regions for open ring of N oscillators in two-parameter space (𝜎 versus

𝜔), 𝜖 = 1, on sides of scheme of observed cluster layouts: a N = 3, b N = 4, c N = 5, d N = 6

The numerical simulations are based on author’s own program written in C++

using on Boost Odeint library (Ahnert and Mulansky 2011) as numerical engine.

Following non-dimensional parameters are used in simulations: 𝜗 = 0.1, 𝜇s = 0.35,

𝜇k = 0.2, a = 2.5, u = 0.1. If different values are used, information is placed in figure

caption or legend respectively. A transient time equal to 1000 excitation periods

(𝛥𝜏t = 1000 ⋅ 2𝜋∕𝜔) is applied, which is followed by measurement of average syn-

chronization error for time interval corresponding to 200 excitation periods. The

investigated systems are started from the initial conditions, when the complete syn-

chronization is slightly perturbed. Should the synchronous state be stable, the trajec-

tories return to synchronous state after time 𝛥𝜏t.

We perform a study of parameters in (𝜎, 𝜔) two-dimensional parameter space with

goal to detect complete and cluster synchronization regions in open and closed ring

connection topology, for different values of the network size N. Based on previous

studies (Marszal et al. 2016; Marszal and Stefański 2017), we choose the following

ranges of parameters: coupling coefficient 𝜎 ∈ [0, 1] and angular frequency of exci-

tation 𝜔 ∈ [1, 2]. The parameter space is discretised into grid with grid element size

𝛥𝜎 = 𝛥𝜔 = 0.01, giving 10 201 elements in total. For each element of the grid aver-
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(a) (b)

(c) (d)

Fig. 12 Synchronization regions for open ring of N oscillators in two-parameter space (𝜎 versus

𝜔), 𝜖 = 1, on sides of scheme of observed cluster layouts: a N = 3, b N = 4, c N = 5, d N = 6

age global e (19) and cluster ei,j (20) synchronization errors are computed. Finally

a type of synchronization is classified according to definitions in Sect. 2.1. If the

respective synchronization error is bellow 10−3, element of the grid is classified as

synchronized.

e =
N∑

i=2

√(
𝜒1 − 𝜒i

)2 +
(
�̇�1 − �̇�i

)2
(19)

ei,j =
√(

𝜒i − 𝜒j
)2 +

(
�̇�i − �̇�j

)2
. (20)

In Figs. 11 and 12 results of the parameter study for the open ring topology are

presented. The systems in question are checked for two different values of normal

load coefficient: 𝜖 = 1 (Fig. 15), 𝜖 = 1.5 (Fig. 12). Black colour depicts the com-
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Fig. 13 MSF ⟨eII⟩(𝛼) projected onto respective average synchronization errors ⟨e3⟩, ⟨e1,3⟩ for N
coupled oscillators via eigenvalues of connectivity matrix 𝐆3. N = 3, 𝜔 = 1.6, 𝜖 = 1.5 initial con-

ditions 𝜒 = [0.2913, 0, 0.2945, 0, 0.2922, 0]T

plete synchronization region, while the yellow lack of synchronization. The other

colours correspond to different cluster synchronization layouts. The complete syn-

chronization region is larger for lower values of the normal load coefficient, which

yields to lower friction force between the contacting interfaces. Scheme of cluster

layouts are placed on side of respective diagrams. Note that for the case of (𝜖 = 1,

N = 6) three cluster layouts are observed (Fig. 11d). For other systems (Fig. 11a–c)

only one cluster layout is observed. In all cases the complete synchronization occurs

rather for weak coupling. The increase of coupling strength destroys the complete

synchronization, however cluster synchronization regions emerges.

Analysis of the eigenvectors of respective eigenvalues enables us to explain the

shapes of the clusters (Perlikowski et al. 2010; Yanchuk et al. 2001). Consider the

case of three oscillators depicted in one parameter space in the Fig. 13. Here we

have following values of eigenvalues: 𝛾0(3) = 0, 𝛾1(3) = −1, 𝛾2(3) = −3; together with

corresponding eigenvectors: 𝐯0(3) = [1, 1, 1]T , 𝐯1(3) = [−1, 0, 1]T , 𝐯2(3) = [1,−2, 1]T .

The desynchronization process from the complete synchronization state is governed
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Table 1 Non-zero eigenvalues and corresponding eigenvectors for the connectivity matrices 𝐆N
for open ring networks.

N=3 N=4

𝛾1(3) = −1 𝐯𝟏(𝟑) 𝛾2(3) = −3 𝐯𝟐(𝟑) 𝛾1(4) =
√
2 − 2

𝐯𝟏(𝟒)
𝛾2(4) = −2 𝐯𝟐(𝟒) 𝛾3(4) = −

√
2 − 2

𝐯𝟑(𝟒)
−1 1 −1 1 −1
0 −2 1 −

√
2 −1 1 +

√
2

1 1 −1 +
√
2 −1 −1 −

√
2

1 1 1
N=5

𝛾1(5) =(√
5 − 3

)
∕2

𝐯𝟏(𝟓)

𝛾2(5) =(√
5 − 5

)
∕2

𝐯𝟐(𝟓)

𝛾3(5) =(
−
√
5 − 3

)
∕2

𝐯𝟑(𝟓)

𝛾4(5) =
(
−
√
5 − 5

)
∕2 𝐯𝟒(𝟓)

−1 1 −1 1(
1 −

√
5
)
∕2

(
−3 +

√
5
)
∕2

(
1 +

√
5
)
∕2 −

(
3 +

√
5
)
∕2

0 1 −
√
5 0 1 +

√
5

−
(
1 −

√
5
)
∕2

(
−3 +

√
5
)
∕2 −

(
1 +

√
5
)
∕2 −

(
3 +

√
5
)
∕2

1 1 1 1
N=6

𝛾1(6) =
√
3 − 2

𝐯𝟏(𝟔)
𝛾2(6) = −1 𝐯𝟐(𝟔) 𝛾3(6) = −2 𝐯𝟑(𝟔) 𝛾4(6) = −3 𝐯𝟒(𝟔) 𝛾5(6) ≈ −2 −

√
3

𝐯𝟓(𝟔)
−1 1 −1 1 −1
1 +

√
3 0 1 −2 1 +

√
3

−2 +
√
3 −1 −1 1 −2 −

√
3

2 −
√
3 −1 1 1 2 +

√
3

−1 +
√
3 0 −1 −2 −1 −

√
3

1 1 1 1 1

by the 𝛾2(3). For this particular eigenvalues the first and the third element of the

eigenvector 𝐯2 are equal, leading to the existence of cluster consisting of the first

and the third oscillator. The other eigenvector—𝐯1(3) does not have at least two equal

elements, hence it cannot be responsible for the formation of cluster. The eigenvec-

tor 𝐯0(3) based on 𝛾0(3) corresponds to the direction along synchronization manifold

(the global CS state), as all its elements are equal. Table 1 lists non-zero eigenvalues

and their eigenvectors for all investigated networks with open ring topology. Note

that 𝛾0(N) = 0 and 𝐯0(N) = [1, ..., 1]T . In the cases of N = 3, 4, 5 only one eigenvec-

tor pattern can be responsible for the creation of clusters. Thus only single cluster

configuration can be observed.

More detailed analysis of global (CS) and cluster synchronization thresholds is

performed for certain selection of 𝜔, including verification of the obtained results

by means of MSF (see Figs. 13, 14). The MSF is defined as average synchronization
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Fig. 14 MSF ⟨eII⟩(𝛼) projected onto average synchronization error between 1st and 4th oscillator

⟨e1,4⟩ (dashed line) and average global synchronization error ⟨eIV⟩ (solid line) for three coupled

oscillators via eigenvalues of connectivity matrix 𝐆𝟒 for excitation angular frequency 𝜔 = 1.4. Ini-

tial conditions for each value of 𝜎: 𝜒𝟎 = [0.2913, 0, 0.2945, 0, 0.2922, 0]T

error for two-oscillator probe ⟨eII⟩(𝛼) as a function of real number 𝛼 (see Eq. (8)).

Next, MSF ⟨eII⟩(𝛼) is projected via eigenvalues of connectivity matrix𝐆N onto bifur-

cation diagrams of average synchronization error for networks consisting of N oscil-

lators with 𝜎 as a bifurcation parameter. The complete synchronization for network

of N oscillators occurs, provided all eigenvalues spectrum of connectivity matrix

𝐆N lies within zero ⟨eII(𝛼)⟩ function. The areas of zero MSF within the eigenvalues

spectrum, as well as complete synchronization regions in networks of N oscillators

are marked with grey colour respectively. The method described above is robust for

predicting the global CS thresholds and along with the analysis of eigenvectors can

be used to explain the cluster synchronizability. However, due to additional coupling

factors (i.e., excitation, friction or coexistence of the system attractors) the MSF

method indicates only the tendencies of the oscillators to synchronize and might be

not always verified in given network configuration.
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(a) (b)

(c) (d)

Fig. 15 Synchronization regions for open ring of N oscillators in two-parameter space (𝜎 versus

𝜔), on sides of scheme of observed cluster layouts: a N = 4, b N = 6, c N = 8, d N = 9

For the case of three oscillators 𝜖 = 1.5,N = 3, 𝜔 = 1.6 (Fig. 13) the CS region

is in range 𝜎 ∈ [0.12, 0.27]. It is worth mentioning that the first and last oscillator

in the network are in cluster synchronization for almost all investigated range of

𝜎. Similar behaviour can be seen in Fig. 12a, marked as red region, wherein cluster

synchronization occupies large area of the investigated parameter space. For the case

of four oscillators (see Fig. 14) with 𝜔 = 1.4, 𝜖 = 1 CS region is located for 𝜎 ∈
[0, 0.21].

In the presented systems it is possible to observe the so called ragged synchroniz-

ability phenomenon (Stefański et al. 2007). In Fig. 13 one can observe global ragged

synchronizability, where all oscillators in the network are in synchronous or desyn-

chronous state. One can also find for that case, cluster ragged synchronizability, i.e.,

synchronous and desynchronous regions in clusters.

Similar study as for open ring networks is performed to closed ring network

topology in Figs. 15 (𝜖 = 1) and 16 (𝜖 = 1.5). Table 2 lists non-zero eigenvalues

and their eigenvectors for all investigated networks with closed ring topology. Again

the parameter space is checked for global and cluster synchronization regions for

different length of identical oscillators. The systems are modelled according to

Eq. (16) with 𝐆NC
from Eq. (18). The obtained results for different network sizes

(N = 4, 6, 8, 9) are depicted in the Figs. 15 and 16. The areas of complete synchro-

nization occurs also for low values of coupling. However, in the case of closed ring
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(a) (b)

(c) (d)

Fig. 16 Synchronization regions for closed ring of N oscillators in two-parameter space (𝜎 versus

𝜔), on sides of scheme of observed cluster layouts: a N = 4, b N = 6, c N = 8, d N = 9

topology the variety of cluster configuration is richer. This can be explained by the

symmetry of the system, which aids the cluster formation.

6 Conclusion

Let us summarize this chapter, which is devoted to the analysis of synchronization

properties in dynamical systems with dry friction.

We have performed a parameter study of complete and cluster synchronization

properties in two-parameter space (coupling coefficient versus angular frequency of

excitation). Numerical investigations involve two different network topologies, i.e.,

open ring and closed ring. Oscillators are connected in nearest neighbour fashion.

The goal was to find synchronization thresholds in various networks of oscillators.

The used methodology is based on master stability function. However, MSF is not

estimated in a traditional way by TLE but by means of more direct approach, namely,

two-oscillator probe.

One needs to bear in mind that MSF describes tendencies of the system to syn-

chronize. It cannot be treated as the final condition for the synchronization. The oscil-

lators in question are coupled also by common excitation and the friction force itself,

which may contribute also to the synchronizability of the system. Velocity of the
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conveyor belt, which is equal for all oscillators as well as the same friction model,

provide identity of the parameters, which is necessary condition for the occurrence of

CS. Moreover, the common harmonic excitation correlates in time with the driving

components of all oscillators and as a consequence facilitates the synchronization.

On the contrary, important factor leading to the desynchronization or appearance

of cluster is the coexistence of attractors, which is characteristic and often encoun-

tered for the systems with friction and impact oscillators. Coexistence of attractors is

a property of non-linear systems, which can occur also in smooth, time-continuous

dynamical systems. Therefore, the MSF concept and eigenvectors analysis can be

treated only as a tool for estimating the overall, global predisposition of the system

of coupled oscillators to synchronize or to cluster. This may explain fact, that for

some configuration in closed ring topology, some of the cluster layouts cannot be

explained by the eigenvectors or eigenvalues interpretation. The results presented in

this chapter also show ragged synchronization phenomenon (i.e., complete synchro-

nization windows).

In general, the synchronization stability criterion given by the MSF does not

provide for proper detection of global network synchronization state even in the

case of smooth systems described by continuous differential equations. The more

this problem occurs in non-smooth systems where the structure of attractors coexis-

tence and their basins of attraction is usually more complex than in smooth systems.

Hence, on the basis of our research, we can conclude that for non-smooth dynamical

systems the MSF estimated with two oscillators probe can be even more effective

than one calculated with use of the TLE, because then we can be sure that the syn-

chronous region was really detected and it is not only a projection of an interval of the

negative TLE. Additionally, the numerical results show that the phenomenon of

ragged synchronizability concerns also the cluster synchronization case.

Based on the results of the chapter, further research can be conducted in following

directions. The first research proposal is to consider the presented model in the frame-

work of earthquake modelling as a version of Burridge-Knopoff model (Burridge

and Knopoff 1967). This requires changing the system parameters, as in earthquake

modelling transition from static to dynamic behaviour is a crucial property. It is also

possible to analyse the presented model in the framework of the so called snaking

phenomenon (Papangelo et al. 2017). Another direction of research may concern

experimental investigation of the proposed model. This would involve designing

and assembling experimental stand with all necessary measurement equipment,

which would enable to verify experimentally the synchronizability of the system in

question.
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