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Abstract Chaos theory has attracted the interest of the scientific community because

of its broad range of applications, such as in secure communications, cryptography

or modeling multi-disciplinary phenomena. Continuous flows, which are expressed

in terms of ordinary differential equations, can have numerous types of post transient

solutions. Reporting when these systems of differential equations exhibit chaos rep-

resents a rich research field. A self-excited chaotic attractor can be detected through a

numerical method in which a trajectory starting from a point on the unstable manifold

in the neighborhood of an unstable equilibrium reaches an attractor and identifies it.

Several simple systems based on jerk-equations and different types of nonlinearities

were proposed in the literature. Mathematical analyses of equilibrium points and

their stability were provided, as well as electrical circuit implementations of the pro-

posed systems. The purpose of this chapter is double-fold. First, a survey of several

self-excited dissipative chaotic attractors based on jerk-equations is provided. The

main categories of the included systems are explained from the viewpoint of nonlin-

earity type and their properties are summarized. Second, maximum Lyapunov expo-

nent values are explored versus the different parameters to identify the presence of

chaos in some ranges of the parameters.
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1 Introduction

Nonlinear dynamical systems with chaotic or strange attractors are characterized by

the sensitivity to initial conditions, which is a required property for many appli-

cations (Layek 2015; Schöll 2001; Strogatz 2014). Chaos theory, dating back to

Lorenz (1963), has attracted the interest of the scientific community and took part in

many engineering applications such as dynamical modeling, pseudo-random number

generation for secure communication and cryptography applications (Abd-El-Hafiz

et al. 2014, 2015, 2016; Abdelhaleem et al. 2014; Barakat et al. 2013; Chien and Liao

2005; Frey 1993; Kocarev and Lian 2011; Lau and Tse 2003; Radwan and Abd-El-

Hafiz 2013, 2014; Radwan et al. 2012, 2015a, b; Radwan AG et al. 2014; Sayed et

al. 2015a, b, 2017a; Tolba et al. 2017) and control and synchronization (Azar and

Vaidyanathan 2015, 2016; Azar et al. 2017; Henein et al. 2016; Martínez-Guerra

et al. 2015; Radwan et al. 2013, 2017; Radwan A et al. 2014; Sayed et al. 2016,

2017b). Consequently, chaotic systems have been implemented in several numerical

and electronic forms (Petras 2011; Radwan et al. 2003, 2004, 2007; Radwan 2013;

Sayed et al. 2017d; Zidan et al. 2012).

Continuous flows expressed in terms of ordinary differential equations can have

numerous types of post-transient solutions. An attractor is defined as the set of

points approached by the orbit as the number of iterations increases to infinity rep-

resenting its long term behavior. For a continuous system of differential equations,

the equilibrium points are defined to be those points at which all time derivatives

equal zero. The linear stability of each of the obtained points can be determined by

Routh-Hurwitz stability criterion (Sprott 1994). The eigenvalues of the linearized

Jacobian matrix are calculated. If all eigenvalues have negative real part, then the

system is stable near the equilibrium point. If any eigenvalue has a real part that is

positive, then the point is unstable. If the matrix has at least one eigenvalue with

positive real part, at least one with negative real part, and no eigenvalues with zero

real part, then the point is called a saddle (Alligood et al. 1996).

Furthermore, nearby trajectories diverge on strange attractors, giving rise to the

butterfly effect in chaotic dynamical systems. This divergence is exponential and

may be quantified using characteristic exponents known as Lyapunov exponents

(Addison 1997). The number of Lyapunov exponents is equal to the number of

phase space dimensions, or the order of the system of differential equations. They are

arranged in a descending order and if the maximum Lyapunov exponent is positive,

then the system is chaotic. The sum of Lyapunov exponents represents the average

contraction rate of volumes in phase space. The sum is less than zero in dissipative

dynamical systems, as the post-transient solutions lie on attractors with zero phase

volume. Dissipative systems exhibit chaos for most initial conditions in a specified

range of parameters. On the other hand, a conservative system exhibits periodic and

quasi-periodic solutions for most values of parameters and initial conditions, and

can exhibit chaos for special values only. Consequently, dissipative systems usually

appear in most applications of chaos theory such as chaos-based communication,

physical and financial modeling. Conservative systems have another different set of
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applications that study the development of chaos in some kinds of systems. They are

useful in describing certain dynamical systems where there is no dissipation, or it

is so slight that it can be ignored, e.g., models of the solar system. Another impor-

tant classification of chaotic attractors is either self-excited or hidden. A self-excited

attractor has a basin of attraction that is associated with or excited from unstable

equilibria. On the other hand, a hidden attractor has a basin of attraction that does

not intersect with small neighborhoods of any equilibrium points. From a computa-

tional point of view, a self-excited chaotic attractor can be detected through a numer-

ical method in which a trajectory started from a point on the unstable manifold in

the neighborhood of an unstable equilibrium reaches an attractor and identifies it.

Hidden attractors cannot be found by this method (Leonov and Kuznetsov 2013).

Introducing novel chaotic systems requires a system of, at least, three differen-

tial equations involving, at least, one nonlinear term. A system of three or more first

order ordinary differential equations that contain one or more nonlinear term(s) is

constructed with the tendency to be as simple as possible. Some systematic numer-

ical search methods have been developed for detecting the presence of chaotic solu-

tions for new systems that contain multiple parameters. These parameters mainly

appear as the coefficients of each term in the system of differential equations. Those

numerical methods aim at setting many coefficients to zero with the others set to ±1
if possible or otherwise to a small integer or decimal fraction with the fewest possible

digits (Sprott 1994). These systems, with the least number of existing coefficients and

nonlinear terms, should exhibit chaotic properties of aperiodic bounded long-time

evolution and sensitive dependence on initial conditions for some ranges of para-

meters. Reporting the parameter ranges for which systems of differential equations

exhibit chaos or a strange attractor represents a rich research field.

Many researches focused on coming up with novel chaotic systems that, in the

simplest form, involve a differential equation of at least third order x⃛ = G(ẍ, ẋ, x) and

a nonlinearity. Differential equations of this form are called jerk equations because

they involve third derivatives. The word “jerk” refers to the rate of change of acceler-

ation, i.e., the derivative of acceleration with respect to time, the second derivative of

velocity, and the third derivative of position. The mathematically simple jerk equa-

tion, which is equivalent to a system of three first-order ordinary non-linear differ-

ential equations, was shown to have solutions that exhibit chaotic behavior (Gottlieb

1996). Moreover, the simple circuit implementation of jerk-based systems suggests

their utilization in secure communications and broadband signal generation. Systems

involving a fourth or higher derivative are accordingly called hyperjerk systems.

Several simple systems based on the jerk-equation and different types of non-

linearities were proposed in the literature (Elwakil et al. 2000; Sayed et al. 2017c;

Sprott 1994, 1997, 2000a, b, 2011; Vaidyanathan 2015; Vaidyanathan et al. 2014,

2015b, c). Mathematical analysis of equilibrium points and their stability were pro-

vided, as well as electrical circuit implementation of the proposed systems. Jerk-

based chaotic systems express a third order ordinary differential equation as a sys-

tem of three simultaneous first-order ordinary differential equations. Hence, they are

considered as one of the simplest types of continuous chaotic systems. Consequently,

they have been utilized in many applications including control and synchronization.



74 W. S. Sayed et al.

This chapter focuses on dissipative chaotic systems with self-excited attractors

because they are not easily driven away from chaotic behavior when correctly adjust-

ing the parameters and varying the initial conditions. All the reviewed systems are

based on jerk equations and were shown to be chaotic for specific values of the

parameters in the original papers which introduced them. The main properties of

the selected systems, which have different types of nonlinear terms, are reviewed.

The associated phase portraits and Maximum Lyapunov Exponent (MLE) values are

tabulated in Sect. 2. Section 3 explores the responses in wider ranges of parameters

to investigate the possibility of chaos production using MLE as a chaotic measure.

Section 4 summarizes the contributions of the chapter.

2 Review of Some Self-Excited Jerk-Based Attractors

Early researches presented different variations on chaotic systems such that their

equations look simpler or more “elegant” (Sprott 1994). Sprott (2000a) discussed

several systems of the general form x⃛ + Aẍ + ẋ = f (x), where f (x) is a nonlinear func-

tion satisfying some conditions that guarantee boundedness. The equation is rede-

fined as ẋ = y, ẏ = z and ż = −Az − y + f (x). An electrical circuit implementation

has been suggested for cases in which f (x) is a piecewise linear function. Several

cases in which f (x) is a piecewise linear, quadratic, cubic, sinusoidal or hyperbolic

tangent nonlinear function are illustrated in Fig. 1.

The systems presented in (Sprott 2000a) are listed as fourteen systems in Tables 1,

2, 3 and 4. Systems (1) to (14) are self-excited attractors that posses an unstable equi-

librium point at the zero of f (x). These systems are elementary, both in the sense of

having the algebraically simplest autonomous Ordinary Differential Equation (ODE)

and in the form of the nonlinearity. The first five systems, which are discussed in

Table 1, represent the simplest cases with piece-wise nonlinearity. Their governing

equations are the easiest to implement on electronic platforms. They represent a class

of chaotic electrical circuit that is simple to construct, analyze, and scale over a wide

Nonlinearity

Piecewise Cubic HyperbolicQuadratic Sinusoidal

(1)      (5) (6), (7) (8), (9) (10) (13) (14)

Fig. 1 Categorization of the reviewed dissipative chaotic systems with self-excited attractors from

the viewpoint of the type of nonlinearity
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Table 1 Systems with piece-wise linear function

Equations Attractor
(1) f(x) = B|x| − C
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MLE = 0.036
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(4) f(x) = Bx− Csgn(x)
B = 1.2
MLE = 0.657
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Table 2 Systems with quadratic nonlinearity

Equations Attractor

(6) f(x) = B(x
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MLE = 0.078
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Table 3 Systems with cubic nonlinearity

Equations Attractor

(8) f(x) = Bx(x
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MLE = 0.103
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Table 4 Systems with sinusoidal or hyperbolic nonlinearity

Equations Attractor
(10) f(x) = B sin(Cx)/C

B = 2.7
MLE = 0.069
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(11) f(x) = −B sin(Cx)/C
B = 2.7
MLE = 0.069
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(12) f(x) = B cos(Cx)/C
B = 2.7
MLE = 0.069
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(13) f(x) = −B cos(Cx)/C
B = 2.7
MLE = 0.069
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B = 2.2
MLE = 0.221
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range of frequencies. In addition, it does not involve analog multiplication and uses

only resistors, capacitors, diodes and operational amplifiers. The rest of the systems

range between quadratic, cubic, sinusoidal and hyperbolic nonlinearities. Although

they are more complicated, they are still good candidates for detailed quantitative

analysis of bifurcation theory and other chaotic properties to be compared with sim-

ulation or implementation results.

For all the systems, the parameter A = 0.6, while C can be arbitrarily chosen as it

acts as a scaling factor for the size of the attractor diagram. Each table provides the

nonlinear function f (x) and the specific value of the parameter B that produces chaos.

In addition, the attractor diagrams or phase portraits are shown with the correspond-

ing positive value of MLE, base-e, both indicating chaotic behavior. The diagrams

have been plotted using Economics and Finance (E&F) chaos software (Diks et al.

2008) at the specified parameter values and the MLE values were given in (Sprott

2000a). Systems with similar equations exhibit similar attractor diagrams, e.g., sys-

tems (1) and (2) and systems (10) to (13).

Several other papers presented jerk-based chaotic attractors (Elwakil et al. 2000;

Sprott 1994, 1997, 2000b, 2011). General three dimensional autonomous ordinary

differential equations with quadratic nonlinearities were examined in (Sprott 1994).

The resulting simple chaotic systems are composed of either five terms and two non-

linearities or six terms and one nonlinearity. Systems with cubic nonlinearities were

presented in (Sprott 1997) and employed in (Vaidyanathan et al. 2015a). A very sim-

ple jerk-based system with piecewise nonlinearity generated by a signum function

was presented in (Elwakil et al. 2000).

Several recent researches presented new jerk-based systems as part of their work

(Sayed et al. 2017c; Vaidyanathan 2015; Vaidyanathan et al. 2014, 2015b, c). A six-

term three dimensional novel jerk chaotic system with two hyperbolic sinusoidal

nonlinearities was presented in (Vaidyanathan et al. 2014). An adaptive backstep-

ping controller was designed to stabilize the system with two unknown parame-

ters. In addition, synchronization of two systems with two unknown parameters was

achieved. Moreover, an electronic circuit realization of the novel jerk chaotic sys-

tem using Spice was presented. A four-dimensional novel hyperchaotic hyperjerk

system was proposed in (Vaidyanathan et al. 2015b) associated with control, syn-

chronization and electronic circuit realization. A six-term three-dimensional jerk

chaotic system with two exponential nonlinearities was presented in (Vaidyanathan

et al. 2015c). A seven-term three-dimensional novel jerk chaotic system with two

quadratic nonlinearities was presented in (Vaidyanathan 2015). Adaptive backstep-

ping control of the proposed system and synchronization of two identical entities

with unknown parameters were also proposed. Generalized forms of two well-

known discrete-time chaotic maps were utilized as the nonlinear function of the

jerk-equation in (Sayed et al. 2017c). The two maps are the scaled tent map with

piece-wise nonlinearity and the scaled logistic map with quadratic nonlinearity.

Fully digital implementations of four different systems in the third order jerk-

equation based chaotic family using Euler approximation were presented in

(Mansingka et al. 2013). The systems ranged between absolute value, signum,

quadratic and cubic nonlinearities. The high performance metrics of the digitally
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implemented systems as pseudo-random number generators were verified and shown

to be suitable for communication systems and hardware encryption applications.

3 Sensitivity to Parameter Variations

This section provides some extra results and simulations for a selected set of the sys-

tems summarized in the previous section. The results mainly focus on plotting the

phase portraits or strange attractors at values of parameters around those specified in

the original paper (Sprott 2000a). A simulation-based procedure for specifying para-

meter ranges of chaos production around the specified values is discussed through

plotting MLE versus the different parameters.

In general, the basin of attraction is the set of initial conditions which leads to

a particular post-transient solution. Parameter values can control whether chaotic

behavior is exhibited or not. While the parameter values that drive the system into

chaos are called parameter basin of attraction of the chaotic attractor, the initial points

that converge to a chaotic orbit are called its basin of attraction. There are two reasons

for the importance of parameter basin of attraction. First, to test the robustness of the

solution or its sensitivity to small parameter changes. Second, to have an estimation

of the allowed parameter space and which values produce chaos.

Plots of phase portraits and MLE versus parameters have been generated by the

aid of E&F software (Diks et al. 2008). In addition, some of the calculations of

Lyapunov exponents were carried out by Lyapunov Exponent Toolbox (LET) (Siu

1998) and a MATLAB-based program for dynamical system investigation (MATDS)

(Govorukhin 2004). Calculations of Lyapunov exponents have been carried out for

10, 000 iterations up to accuracy of four decimal places. These choices are made to

ensure reaching a post-transient value of Lyapunov exponents. Lyapunov exponent

calculations at the specified parameters and initial conditions should satisfy the two

conditions for chaos production. First, their summation should be less than zero since

they are dissipative dynamical systems. Second, the MLE should be positive which

accounts for chaotic behavior.

Several numerical simulations are performed to get the ranges of parameters,

rather than specific values only, that produce chaos. The procedure makes use of

the calculated Lyapunov exponents in determining approximate ranges of parame-

ters that produce chaos. The systems are shown to satisfy the condition of dissipative

systems by using the Lyapunov exponent calculation function of MATDS. MLE is

plotted versus different system parameters using E&F chaos software. For the para-

meter values specified in (Sprott 2000a), the neighborhood of each parameter value

is explored while fixing the other parameters. The approximate ranges of parameters

that exhibit positive values of MLE are recorded. Visualizing phase portraits is also

used as a check of chaos production.

The parameter values that correspond to maximum chaos (largest MLE) are spec-

ified. In addition, other values of parameters are shown to drive the response out of

chaos and generate other types of solutions. The flows of most dynamical systems
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with respect to parameter variation exhibit the following pattern of different types

of solutions: stable or fixed followed by periodic then quasi-periodic and afterwards

chaotic and finally unstable or divergent, whether in the direction of increasing the

parameter or vice versa. Lyapunov exponents can be used to determine the type of

the attractor as follows, where three dimensional phase space is assumed for simplic-

ity. Lyapunov exponents with signs (+, 0,−) correspond to chaos or strange attractor,

(−,−,−) to fixed point, (0,−,−) to limit cycle and (0, 0,−) to quasi-periodic torus

(Addison 1997).

3.1 A Dissipative Self-Excited Attractor with Quadratic
Nonlinearity: System (6)

System (6) in Table 2 represents a sample for quadratic nonlinearity. Figure 2 shows

the ranges of parameters A, B and C that can produce chaos in system (6). Wider

ranges were investigated using E&F chaos software, but the chaotic range is focused

as shown in the figure. Figure 2a shows that for approximately 0.6 ≤ A ≤ 0.675, the

value of MLE varies but remains positive through almost the whole interval. This

indicates that the system exhibits chaotic behavior in this range of the parameter A.
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Fig. 2 Ranges of parameters that produce chaos for system (6) a MLE versus A, b MLE versus B,

and c MLE versus C
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Fig. 3 a Time evolution of Lyapunov exponents at A = 0.6 and B = 0.58, b Phase portrait of the

chaotic attractor at A = 0.62 and B = 0.55, c Non-chaotic phase portrait, and d Time evolution of

Lyapunov exponents at A = 0.7 and B = 0.58 for system (6)

For A slightly less than 0.6, MLE diverges corresponding to unstable system, while

for A slightly greater than 0.675, MLE is around zero or negative corresponding to

periodic responses.

Regarding the effect of the parameter B, Fig. 2b shows that for approximately

0.525 ≤ B ≤ 0.585, the value of MLE varies but remains positive. For B slightly

greater than 0.585, MLE diverges corresponding to unstable system, while for B
slightly less than 0.525, MLE is around zero or negative corresponding to periodic

responses.

Figure 2c shows that the value of C does not affect the type of the behavior, which

conforms to its description in (Sprott 2000a) as a scaling factor for the attractor size.

The values chosen in (Sprott 2000a) to produce chaos are A = 0.6 and B = 0.58
corresponding to the attractor diagrams shown in Table 2. Figure 3a shows the time

evolution of Lyapunov exponents at these values of parameters, which satisfy the

conditions for chaotic behavior. The MLE value approaches the value given in

Table 2 as time advances. Furthermore, it is shown in Fig. 3b that other combinations

of A and B, which belong to the intervals specified in this section, can yield a chaotic

attractor too. Values of parameters outside the specified ranges drive the system out
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of chaos and can yield periodic responses as shown in Fig. 3c. Such responses exhibit

(0,−,−) values for the three Lyapunov exponents as shown in Fig. 3d indicating a

limit cycle.

3.2 A Dissipative Self-Excited Attractor with Cubic
Nonlinearity: System (8)

The range of the parameter A for system (8), with cubic nonlinearity, to exhibit

chaotic behavior is limited to roughly about 0.6 ≤ A < 0.65 as shown in Fig. 4a

with the largest MLE occurring at A = 0.6. For A slightly less than 0.6, the response

diverges, while for A slightly greater than 0.65, periodic responses start to appear.

For the parameter B, chaos is produced in the approximate interval 1.5 < B <

1.65, preceded by periodic responses and followed by divergent ones as shown in

Fig. 4b. The conditions on the values of Lyapunov exponents at the parmeter values

given in Table 3 can be illustrated similar to the previous case. Furthermore, Fig. 4c

shows the phase portrait of a chaotic attractor at other parameter values that belong

to the intervals defined in this section.
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Fig. 4 Ranges of parameters that produce chaos for system (8) a MLE versus A, b MLE versus B,

and c Phase portrait at A = 0.62 and B = 1.64
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Fig. 5 Ranges of parameters that produce chaos for system (10) a MLE versus A, b MLE versus

B, c Phase portrait, and d Time evolution of Lyapunov exponents at A = 0.2 and B = 2.7

3.3 A Dissipative Self-Excited Attractor with Sinusoidal
Nonlinearity: System (10)

System (10) is studied as a sample of systems with sinusoidal nonlinearity. Vari-

ous values that belong to the approximate intervals 0 < A < 0.7 and 0.5 < B < 2.75
correspond to chaotic behavior as shown in Fig. 5a and b. The intervals are not con-

tinuous, i.e., some exceptional values that correspond to non-chaotic behavior are

found in between. The ranges of parameters which correspond to chaotic responses

for the systems with sinusoidal nonlinearity are wider than the previous systems.

Values other than those stated in (Sprott 2000a) can produce chaos with larger val-

ues of MLE. This is illustrated through the phase portrait and Lyapunov exponents

in Fig. 5c and d, respectively.

Table 5 summarizes the main results obtained in this section for three continuous

dissipative chaotic systems with self-excited attractors and various types of nonlin-

earities. A combination of the parameter values, which produce chaos, was given

in (Sprott 2000a) as a single value for each parameter rather than a range. Table 5

shows the attractor digram of each system at the specified parameter values and wider

ranges of parameters that produce chaos, which were not mentioned in the original
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Table 5 Summary of the results obtained for the selected systems

System Equations Attractor Ranges of Parameters Category and Comments
(6) ẋ = y

ẏ = z

ż = −Az − y +B(x
2

C
− C)

-3
-2
-1
0
1
2
3
4
5

-6 -4 -2 0 2 4

y

x

0.6 ≤ A ≤ 0.675
0.525 ≤ B ≤ 0.585
C scaling only
(Figures 2 and 3)

– Dissipative.
– Self-excited.
– Quadratic nonlinearity.

(8) ẋ = y
ẏ = z

ż = −Az − y +Bx(x
2

C
− 1)

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

y

x

0.6 ≤ A < 0.65
1.5 < B < 1.65
C scaling only
(Figure 4)

– Dissipative.
– Self-excited.
– Cubic nonlinearity.

(10) ẋ = y
ẏ = z
ż = −Az − y +B sin(Cx)/C

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

0 < A < 0.7
0.5 < B < 2.75
(Figure 5)

– Dissipative.
– Self-excited.
– Sinusoidal nonlinearity.
– Relatively wide ranges of parameters
produce chaos.

paper. Moreover, the main category to which each system belongs and comments on

its behavior are included.

4 Conclusions

A review of dissipative jerk-based continuous chaotic systems with self-excited

attractors has been presented. The systems posses various types of nonlinearities:

piecewise, quadratic, cubic, sinusoidal and hyperbolic. The parameter values and

chaotic properties of each system have been validated through phase portraits and

MLE values. Using numerical simulations, wider ranges of parameters that corre-

spond to chaotic behavior have been defined and shown to exhibit positive value of

MLE. In addition, either periodic or divergent responses corresponding to values of

parameters outside these ranges have been included.
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