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Abstract In the present decade, chaotic systems are used and appeared in many
fields like in information security, communication systems, economics, bioengi-
neering, mathematics, etc. Thus, developing of chaotic dynamical systems is most
interesting and desirable in comparison with dynamical systems with regular
behaviour. The chaotic systems are categorised into two groups. These are (i) sys-
tem with self-excited attractors and (ii) systems with hidden attractors.
A self-excited attractor is generated depending on the location of its unstable
equilibrium point and in such case, the basin of attraction touches the equilibria.
But, in the case of hidden attractors, the basin of attraction does not touch the
equilibria and also finding of such attractors is a difficult task. The systems with
(i) no equilibrium point and (ii) stable equilibrium points belong to the category of
hidden attractors. Recently chaotic systems with infinitely many equilibria/a line of
equilibria are also considered under the cattegory of hidden attractors. Higher
dimensional chaotic systems have more complexity and disorders compared with
lower dimensional chaotic systems. Recently, more attention is given to the
development of higher dimensional chaotic systems with hidden attractors. But, the
development of higher dimensional chaotic systems having both hidden attractors
and self-excited attractors is more demanding. This chapter reports three hyper-
chaotic and two chaotic, 5-D new systems having the nature of both the self-excited
and hidden attractors. The systems have non-hyperbolic equilibria, hence, belong to
the category of self-excited attractors. Also, the systems have many equilibria, and
hence, may be considered under the category of a chaotic system with hidden
attractors. A systematic procedure is used to develop the new systems from the
well-known 3-D Lorenz chaotic system. All the five systems exhibit multistability
with the change of initial conditions. Various theoretical and numerical tools like
phase portrait, Lyapunov spectrum, bifurcation diagram, Poincaré map, and fre-
quency spectrum are used to confirm the chaotic nature of the new systems.
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The MATLAB simulation results of the new systems are validated by designing
their circuits and realising the same.
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1 Introduction

Recently, the development and applications of chaotic systems are seen in many
fields like in communication theory (Xiong et al. 2016), image processing
(Tlelo-Cuautle et al. 2015a, b), information theory (Esteban et al. 2016; Valtierra
et al. 2016), robotics (Lochan and Roy 2015, 2016; Lochan et al. 2016a, b, c;
Tlelo-Cuautle et al. 2014; Singh et al. 2017a, b; Andrievskii and Fradkov 2004),
etc. Based on the desired behaviours and responses, many hyperchaotic/chaotic
systems are reported in the last decade (Pham et al. 2014, 2016g; Vaidyanathan
et al. 2015). An equilibrium point plays an important role in the generation of the
desired behaviour and responses. Recently, many hyperchaotic/chaotic systems are
reported based on different nature of equilibrium points (Pham et al. 2016e, f, h,
2017a, b; Wang et al. 2017; Sharma et al. (2015)). Higher dimensional (4-D/5-D)
hyperchaotic/chaotic systems are more important from the application point of view
as compared with the lower dimensional systems (Pham et al. 2016b; Shen et al.
2014a, b). This is because of their more complex and disorder behaviour as com-
pared with the lower dimensional systems (Shen et al. 2014a, b). Thus, develop-
ment of higher dimensional (5-D) hyperchaotic/chaotic systems with unique and
interesting nature of equilibrium points is the motivational background of this work.

Many control techniques are proposed in the literature and used in the last
decade for the applications of hyperchaotic/chaotic systems. Some of these are
sliding mode control (SMC) (Singh and Roy 2015a), backstepping control (Yu
et al. 2012), feedback control (Pang and Liu 2011), nonlinear active control (Singh
et al. 2014a, 2017a, b), adaptive control (Effati et al. 2014), H∞ (Wang et al. 2013),
sampled data control (Lam and Li 2014), etc.

The reported hyperchaotic/chaotic systems can be classified into two major cat-
egories. These are: (i) hyperchaotic/chaotic systems with hidden attractors and
(ii) self-excited attractors hyperchaotic/chaotic systems (Leonov and Kuznetsov
2013; Leonov et al. 2011a, b, 2012, 2014; Singh and Roy 2017a; Singh and Roy
(2016a); Singh et al. (2015)). Some of the conventional chaotic systems like Lorenz
system (Lorenz 1963), Rössler (1976), Chen and Ueta (1999), Lü et al. (2002),
Bhalekar-Gejji systems (Singh et al. 2014a) and systems in Singh and Roy (2015a, b,
2016a, b), etc., are grouped under the category of self-excited attractors. The family
of the hyperchaotic/chaotic systems with hidden attractors is grouped with the
systems having (i) only stable equilibrium points (Kingni et al. 2014), (ii) no
equilibrium point (Lin et al. 2016; Singh and Roy 2017a) and (iii) an infinite number
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of equilibria (Jafari and Sprott 2013; Wang and Chen 2012). The chaotic systems
with an infinite/line/many equilibria belong to the category of hidden attractors
(Leonov et al. 2014, 2015; Pham et al. 2016a, b, c, d, e, f, g, h). In a hyperchaotic/
chaotic system with hidden attractors, the basin of attraction does not intersect with
small neighbourhoods of its equilibria (Leonov et al. 2011a, b, 2012). However, in a
chaotic system with infinitely many equilibria, the basin of attraction may intersect
the equilibrium surface in some sections. Since there are usually uncountable
sections/points on the surface of equilibria which are outside the basin of attraction
and from a computational point of view, these attractors of hyperchaotic/chaotic
systems with many equilibria also belong to the family of hidden attractors (Barati
et al. 2016; Pham et al. 2016a, b). Because the knowledge about the locations of
equilibria in such systems does not help in the generation of attractors.

Very less attention is given to the development of 5-D hyperchaotic/chaotic
systems (Kemih et al. 2013; Ojoniyi and Njah 2016; Vaidyanathan et al. 2014,
2015, 2016). Recently, many hyperchaotic/chaotic systems with an infinite number
of equilibria are reported. The systems with infinitely many equilibria are the
systems with a line of equilibria (Singh and Roy 2017b), plane of equilibria (Jafari
et al. 2016a), surface of equilibria (Jafari et al. 2016b), sphere of equilibria (Qi and
Chen 2015), square shaped equilibria (Qi and Chen 2015; Gotthans et al. 2016;
Pham et al. 2016a, b, c, d, e, f, g, h), etc. The reported systems with an infinite
number of equilibria are classified in Table 1.

It is seen from Table 1 that very few 5-D hyperchaotic/chaotic systems are
reported with infinitely many equilibria. Motivated by this finding, an attempt is
made in this chapter to construct five new 5-D hyperchaotic/chaotic systems with
infinitely many equilibria. Multistability in a hyperchaotic/chaotic system is defined
as the coexistence of various possible steady states/attractors of the system (Pis-
archik and Feudel 2014; Sharma et al. 2015; Kiseleva et al. 2017). The occurrence
of multistability is governed by the choice of initial conditions, hence, creates a
complicated basin of attraction (Pisarchik and Feudel 2014; Sharma et al. 2015).
Multistability is seen in several areas (Sharma et al. 2015), like in an electronic
circuit, a laser system, chaotic/hyperchaotic system, etc., (Chen et al. 2017;
Chudzik et al. 2011; Leonov and Kuznetsov 2013; Pisarchik and Feudel 2014;
Sharma et al. 2015).

Most of the reported chaotic systems have hyperbolic nature of equilibria. Very
few hyperchaotic/chaotic systems are reported with non-hyperbolic nature of
equilibria (Sprott 2015; Wei et al. 2015a, b; Yang et al. 2010; Li and Xiong 2017).
Higher dimensional hyperchaotic/chaotic systems with non-hyperbolic nature of
equilibria are rare in the literature. Thus, developing higher dimensional
hyperchaotic/chaotic systems with some fascinating attributes like non-hyperbolic
equilibria and multistability is also a worthy motivation of this chapter.

In this chapter, three new 5-D hyperchaotic and two chaotic systems are
reported. Out of these five systems, four of them have many equilibria and thus
qualify to be chaotic systems with hidden attractors. Again, all the five systems
exhibit non-hyperbolic equilibria and hence behave like a chaotic system with
self-attractors. Therefore, four new chaotic systems have both the self-attractor and
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hidden attractor. The three new systems have hyperbolic curve of equilibria and one
system has a line of equilibria. All the five new systems depict multistability. The
systems have various dynamical behaviours like hyperchaotic, chaotic, periodic,
quasi-periodic, etc. Various numerical tools are used to find the different dynamical
behaviour of the systems like phase portrait, Lyapunov spectrum, bifurcation dia-
gram, Poincaré map, frequency spectrum. Chaotic natures of the systems are val-
idated by circuit design and implementation. Circuit implementation results of the
two systems have good agreement with the MATLAB simulation results.

The rest part of the chapter is organised as follows. Section 2 describes the
development of the new systems. The findings of different dynamic behaviour of
the systems are shown in Sect. 3. Circuit design and implementations of the sys-
tems are discussed in Sect. 4. Section 5 presents the conclusions of the chapter.

Table 1 Categorisation of the reported chaotic and hyperchaotic systems with an infinite number
of equilibria

Sl.
no.

3-D/4-D
system

Nature of systems References of papers

1. 3-D chaotic
system

Line of equilibria Jafari and Sprott (2015, 2013), Kingni
et al. (2016a, b)

Many equilibria Wang and Chen (2012)
Circle of equilibria Gotthans and Petržela (2015), Gotthans

et al. (2016), Kingni et al. (2016a, b),
Pham et al. (2016d, f)

Surface of equilibria Jafari et al. (2016b)
Curve of equilibria Barati et al. (2016), Pham et al. (2016c)
Square shaped equilibria Gotthans et al. (2016), Pham et al.

(2016b, d, f)
Ellipse shaped equilibria Pham et al. (2016d)
Sphere of equilibria Qi and Chen (2015)

2. 4-D chaotic
system

Plane of equilibria Jafari et al. (2016a, b)
Line of equilibria Singh and Roy (2017b), Pham et al.

(2016c)
3. 4-D

hyperchaotic
system

Line of equilibria Li et al. (2014a, b), Zhou and Yang
(2014)

Curve of equilibria Chen and Yang (2015)
4. 4-D memristive

hyperchaotic
system

Line of equilibria Li et al. (2014a, b), Ma et al. (2015)

5. 5-D
hyperchaotic/
chaotic system

Line of equilibria Vaidyanathan (2016)
Line of equilibria with
coexistence of attractors

This work

Hyperbolic curve of
equilibria with
coexistence of attractors

This work
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2 Development of the Systems with Non-hyperbolic
Equilibria and a Line of Equilibria

The dynamics of the 3-D Lorenz chaotic system with linear control inputs is
described as (Lorenz 1963):

x1̇ = a x2 − x1ð Þ+ u1
x2̇ = rx1 − x2 − x1x3 + u2
x3̇ = x1x2 + cx3 + u3

8
<

:
ð1Þ

Table 2 Three hyperchaotic and two chaotic systems with non-hyperbolic and many equilibria

Case System dynamics LEs and nature DKY Initial conditions

NHE1 ẋ1 = a x3 − x1ð Þ
ẋ2 = b− x1x3 + x4
ẋ3 = x1x2 + x5
ẋ4 = cx3
ẋ5 = − cx2x3
a=10, b=45, c=0.0183

LE=
0.1632,
0.0124,

0,
− 0.0069,
− 11.6351

0

BBBB@

1

CCCCA

and hyperchaotic

4.014 x 0ð Þ=
0.001,
0.002,
0.003,
0.001,
0.001

0

BBBB@

1

CCCCA

T

NHE2 ẋ1 = a x3 − x1ð Þ
ẋ2 = b− x1x3 + x4
ẋ3 = x1x2 + x5
ẋ4 = cx3
ẋ5 = − cx2x5
a=10, b=45, c=0.0105

LE=
0.9470,
0.0011,

0,
− 0.0129,
− 10.9316

0

BBBB@

1

CCCCA

and hyperchaotic

4.085 x 0ð Þ=
0.001,
0.002,
0.003,
0.001,
0.001

0

BBBB@

1

CCCCA

T

NHE3 ẋ1 = a x3 − x1ð Þ
ẋ2 = b− x1x3 + x4
ẋ3 = x1x2 + x5
ẋ4 = − cx2
ẋ5 = − cx2x3
a=10, b=45, c=0.0198

LE=
2.0149,
0.0120,

0,
− 0.0012,
− 12.0229

0

BBBB@

1

CCCCA

and hyperchaotic

4.168 x 0ð Þ=
0.001,
0.002,
0.003,
0.001,
0.001

0

BBBB@

1

CCCCA

T

NHE4 ẋ1 = a x3 − x1ð Þ
ẋ2 = b− x1x3 + x4
ẋ3 = x1x2 + x5
ẋ4 = − cx2
ẋ5 = − dx3x5
a=10, b=45, c=0.01, d=0.001

LE=
1.0288,
0.0,

− 0.0004,
− 0.0007,
− 11.0212

0

BBBB@

1

CCCCA

and chaotic

4.093 x 0ð Þ=
0.001,
0.002,
0.003,
0.001,
0.001

0

BBBB@

1

CCCCA

T

NHE5 ẋ1 = a x3 − x1ð Þ
ẋ2 = b− x1x3 + x4
ẋ3 = x1x2 + x5
ẋ4 = − cx2
ẋ5 = − cx1x2
a=10, b=45, c=0.001

LE=
1.0513,
0.0,
0.0,
0.0,

− 11.0461

0

BBBB@

1

CCCCA

and chaotic

4.095 x 0ð Þ=
0.001,
0.002,
0.003,
0.001,
0.001

0

BBBB@

1

CCCCA

T
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where a, r, c are the parameters, x1, x2, x3 are the state variables and u1, u2, u3 are the
control inputs. Selecting control inputs u1, u2, u3 as in the form of (2) (Yuhua et al.
2010), we get (3).

u1 = a x3 − x2ð Þ
u2 = b− rx1 + x2
u3 = − cx3

8
<

:
ð2Þ

Using (2), the dynamics of the Lorenz system can be written as in (3).

Table 3 Stability analysis of equilibrium points of the systems

System Equilibrium points Shape of equilibria Eigenvalues Nature

NHE1 E1= 0, 0, 0, − 45, 0ð Þ Constant λ= − 10, 0, 0, 0, 0ð Þ Non-hyperbolic

E2= 0, x2, 0, − 45, 0ð Þ Line of equilibria The system has non-hyperbolic, stable focus
and saddle nature of eigenvalues for different
values of state variables x2

NHE2 E1= 0, 0, 0, − 45, 0ð Þ Constant λ= ð0.2653, ±0.2653i,
− 0.2653, − 10Þ

Non-hyperbolic

NHE3 E1= 0, 0, 0, − 45, 0ð Þ Constant λ= − 10, 0, 0, ±0.1407ið Þ Non-hyperbolic

E2= x1, 0, x1, x21 − 45, 0
� �

Hyperbolic curve
of equilibria

The system has non-hyperbolic and saddle
nature of eigenvalues for different values of
state variables x1

NHE4 E1= 0, 0, 0, − 45, 0ð Þ Constant λ= − 10, 0, 0, ±0.10ið Þ
E2= x1, 0, x1, x21 − 45, 0

� �
Hyperbolic curve
of equilibria

The system has non-hyperbolic and saddle
nature of eigenvalues for different values of
state variables x1

NHE5 E1= 0, 0, 0, − 45, 0ð Þ Constant λ= − 10, 0, 0, ±0.0316ið Þ
E2= x1, 0, x1, x21 − 45, 0

� �
Hyperbolic curve
of equilibria

The system has non-hyperbolic and saddle
nature of eigenvalues for different values of
state variables x1

Fig. 1 Hyperchaotic attractors of the NHE1 system with a=10, b=45, c=0.0183
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x1̇ = a x3 − x1ð Þ
x2̇ = b− x1x3
x3̇ = x1x2

8
<

:
ð3Þ

System (3) is chaotic with a=10, b=45 (Yuhua et al. 2010).
Using the above system (3), this chapter presents five new 5-D self-attractor/

hidden attractor hyperchaotic/chaotic systems with non-hyperbolic and many
equilibria. A known and widely used systematic search procedure is used to
develop the systems as used in the paper (Munmuangsaen et al. 2011; Pham et al.
2016f; Sprott 1993, 2000, 2010). The procedure considers various combinations of
states to generate hyperchaotic/chaotic systems with largest Lyapunov exponents at
least greater than 0.9. The general expression of the new 5-D hyperchaotic or
chaotic systems is considered as:

Fig. 2 Hyperchaotic attractors of the NHE2 system with a=10, b=45, c=0.0105

Fig. 3 Hyperchaotic attractors of the NHE3 system with a=10, b=45, c=0.0198
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x1̇ = a x3 − x1ð Þ
x2̇ = b− x1x3 + x4
x3̇ = x1x2 + x5
x4̇ = f1 x1, x2, x3ð Þ
x5̇ = f2 x1, x2, x3, x4, x5ð Þ

8
>>>><

>>>>:

ð4Þ

where f1 x1, x2, x3ð Þ and f2 x1, x2, x3, x4, x5ð Þ are linear and nonlinear functions,
respectively. Different choices of f1 x1, x2, x3ð Þ and f2 x1, x2, x3, x4, x5ð Þ lead to sys-
tems with various type of equilibria.
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-40 -20 0 20 40
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-0.015

-0.01

-0.005

x 4

NHE4

Fig. 4 Chaotic attractors of the NHE4 system with a=10, b=45, c=0.01, d=0.001

Fig. 5 Chaotic attractors of the NHE5 system with a=10, b=45, c=0.001
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With suitable choices of f1 x1, x2, x3ð Þ and f2 x1, x2, x3, x4, x5ð Þ, five different types
of hyperchaotic or chaotic systems are developed. There are named as NHE1 to
NHE5 and the details are shown in Table 2. The first three systems (NHE1 to
NHE3) have hyperchaotic behaviour and the rest two systems (NHE4 and NHE5)
have chaotic behaviour. Table 2 describes the dynamics of the systems, Lyapunov
exponents (LEs), nature of the systems, Lyapunov dimension/Kaplan-Yorke
dimension (DKY ) and initial conditions used for simulation of these systems.

Stability analysis of the equilibrium points of the systems given in Table 2 is
discussed in Table 3. It is seen from Table 3 that all the systems have
non-hyperbolic nature of equilibria. All the systems have many equilibria except the
system NHE2.

3 Numerical Findings of the Proposed Systems Given
in Table 2

This section discusses various numerical tools like time series plot, phase portrait,
Lyapunov spectrum, bifurcation diagram, frequency spectrum, Poincaré maps used
for finding different dynamical behaviour of the new systems given in Table 2.
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Fig. 6 Chaotic signals of the NHE1 system with a=10, b=45, c=0.0183
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3.1 Time Series and Phase Portrait

Chaotic behaviour of the systems given in Table 2 is confirmed by plotting their
time responses and phase portraits. Figures 1, 2, 3, 4 and 5 show the hyperchaotic
and chaotic attractors of the new systems. The irregular shape of the phase portraits
of the systems in Figs. 1, 2, 3, 4 and 5 depicts their chaotic behaviours. Time
responses of the systems NHE1 and NHE3 are shown in Figs. 6 and 7, respectively.
Aperiodic nature of the responses confirms the chaotic behaviour of the systems
(Singh and Roy 2015a, b, 2016a, b, 2017a, b, c; Singh et al. 2017a, b). All the time
responses and phase portraits of the systems are generated using the fixed initial
conditions and value of the parameters which are given in Table 2.

3.2 Lyapunov Spectrum and Bifurcation Diagram

Different dynamical behaviour of the systems given in Table 2 are calculated using
Lyapunov spectrum and bifurcation diagram. Lyapunov spectrums of all the sys-
tems are calculated by finding Lyapunov exponents using Wolf algorithm (Wolf
et al. 1985) with the observation time T =20000, step size Δt=0.01 and fixed
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(e)

(d)
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300 320 340 360
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x 4

300 310 320 330 340 350 360
t

-10

0

10

x 5

Fig. 7 Chaotic signals of the NHE3 system with a=10, b=45, c=0.0198
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Fig. 8 Lyapunov spectrum of the NHE1 system with b=45, c=0.0183 and a∈ 1, 30½ �

Fig. 9 Bifurcation diagram of the NHE1 system with b=45, c=0.0183 and a∈ 1, 30½ �
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Fig. 10 Lyapunov spectrum of the NHE1 system with a=10, c=0.0183 and b∈ 5, 100½ �

Fig. 11 Bifurcation diagram of the NHE1 system with a=10, c=0.0183 and b∈ 5, 100½ �
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Fig. 12 Lyapunov spectrum of the NHE1 system with a=10, b=45 and c∈ 0.0001, 0.02½ �

Fig. 13 Bifurcation diagram of the NHE1 system with a=10, b=45 and c∈ 0.0001, 0.02½ �
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Fig. 14 Lyapunov spectrum of the NHE3 system with b=45, c=0.0198 and a∈ 1, 100½ �

Fig. 15 Bifurcation diagram of the NHE3 system with b=45, c=0.0198 and a∈ 5, 100½ �
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Fig. 16 Lyapunov spectrum of the NHE3 system with a=10, c=0.0198 and b∈ 5, 100½ �

Fig. 17 Bifurcation diagram of the NHE3 system with a=10, c=0.0198 and b∈ 5, 100½ �
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initial conditions x 0ð Þ= 0.001, 0.002, 0.003, 0.001, 0.001ð ÞT . In MATLAB, the time
variable is selected as T =0:Δt: 1000, where Δt is the step size and 1000 is the
total observation time. It may be noted that T does not reflect the actual time of
calculation. Lyapunov spectrum and bifurcation diagram of the systems are shown
with the variation of one parameter and keeping other fixed. Here, Lyapunov

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-14

-12

-10
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-4

-2

0

2
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λ

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
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0

0.01

0.02

λ1 λ2 λ3 λ4 λ5

Fig. 18 Lyapunov spectrum of the NHE3 system with a=10, b=45 and c∈ 0.0001, 0.02½ �

Fig. 19 Bifurcation diagram of the NHE3 system with a=10, b=45 and c∈ 0.0001, 0.02½ �
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spectrums and bifurcation diagrams of systems NHE1 and NHE3 are only shown.
These figures for the other systems can also be calculated in a similar manner and
are not shown here to avoid the repetition. However, Lyapunov exponents of
systems NHE2, NHE4 and NHE5 are given in Table 2.

Lyapunov spectrum and bifurcation diagram of the NHE1 system with the
variation of one parameter, out of a, b or c, and keeping the rest two fixed are
shown in Figs. 8, 9, 10, 11, 12 and 13. Similarly, Lyapunov spectrum and bifur-
cation diagram of the NHE3 system are shown in Figs. 14, 15, 16, 17, 18 and 19. It
is observed from Figs. 8, 10, 12, 14, 16 and 18 that NHE1 and NHE3 systems,
respectively, have different dynamical behaviours like hyperchaotic, chaotic, peri-
odic and quasi-periodic. It is also observed from Figs. 9, 11, 13, 15, 17 and 19 that
NHE1 and NHE3 systems, respectively, have various dynamical behaviours like
chaotic and periodic.

Periodic nature of the NHE1 system with a=1.1, b=45, c=0.0183 and
a=4.25, b=45, c=0.0183 is shown in Figs. 20 and 21, respectively. Periodic
nature of the NHE3 system with a=1.1, b=45, c=0.0198 is shown in Fig. 22. The
NHE2 system shows transient chaotic behaviour with trajectory going to infinity for
smaller values of parameter b. The transient chaotic behaviour of the NHE2 system
with a=10, b=10, c=0.0105 is shown in Fig. 23. It is apparent from Fig. 23 that
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Fig. 20 Periodic attractors of the NHE1 system with a=1.1, b=45, c=0.0183 and
x 0ð Þ= 0.001, 0.002, 0.003, 0.001, 0.001ð ÞT
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the NHE2 system has chaotic behaviour approximately for t<1500 and trajectory
going to infinity at t>1600 approximately.

3.3 Coexistences of Attractors

All the proposed systems show multistability (i.e. coexistences of attractors) with
the change of initial conditions. Coexistence of chaotic attractors of NHE1, NHE2
and NHE3 systems are shown in Figs. 24, 26 and 27, respectively. Coexistences of
the quasi-periodic behaviour of the NHE2 system is shown in Fig. 25. Other two
systems, i.e. NHE4 and NHE5 also show the coexistences of attractors with the
changes of initial conditions. Their results are not shown here to avoid the
repetition.

3.4 Frequency Spectrum and Poincaré Maps

Frequency spectra of x2 tð Þ and x3 tð Þ signals of NHE1 and NHE3 systems are shown
in Fig. 28 and Fig. 29, respectively. Aperiodic continuous natures of the spectra
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Fig. 21 Periodic attractors of the NHE1 system with a=4.25, b=45, c=0.0183 and
x 0ð Þ= 0.001, 0.002, 0.003, 0.001, 0.001ð ÞT
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(Figs. 28 and 29) indicate the chaotic behaviour of the systems. Poincaré maps
across different section of planes of NHE1 and NHE3 systems are shown in Fig. 30
and Fig. 31, respectively. Random locations of dots in the maps indicate the chaotic
behaviour of the systems (Singh and Roy 2015a, b, 2016a, b, 2017a, b, c; Singh
et al. 2017a, b). Frequency spectra and Poincaré maps of other systems can also be
shown in a similar way but avoided here.

4 Circuit Implementation

This section describes the circuit design and realisation of NHE1 and NHE3 sys-
tems. Circuit realisations of other systems can also be done in a similar manner and
are not shown here to avoid repetition.

Circuit realisation of a chaotic system represents its practical applicability
(Trejo-Guerra et al. 2011, 2012; Nunez et al. 2015; Valtierra et al. 2015;
Tlelo-Cuautle et al. 2016a). Circuit realisation of various chaotic/hyperchaotic
systems are achieved by FPGA tool (Tlelo-Cuautle et al. 2015a, b, 2016b; Esteban
et al. 2016), Cadence OrCAD (Trejo-Guerra et al. 2011) and NI Multisim
(Ruo-Xun and Shi-ping 2010; Lao et al. 2014; Xiong et al. 2016) software. In this
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Fig. 22 Periodic attractors of the NHE3 system with a=1.1, b=45, c=0.0198 and
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Fig. 23 Transient chaotic behaviour of the system NHE2 with a=10, b=10, c=0.0105 and
x 0ð Þ= 0.001, 0.002, 0.003, 0.001, 0.001ð ÞT
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Fig. 24 Coexistences of chaotic attractors of the NHE1 system with a=10, b=100, c=0.0183
and x 0ð Þ= ±0.001, ±0.002, ±0.003, ±0.001, ±0.001ð ÞT
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chapter, the circuit realisation of NHE1 and NHE3 systems are achieved using NI
Multisim v12 software. Chaotic attractors of the NHE1 system obtained using the
circuit implementation are shown in Figs. 32 and 33. The circuit designed for the
implementation of the NHE1 system is shown in Fig. 34. The circuit which is
shown in Fig. 34 has five integrators (U9A, U1A, U3A, U5A, and U7A) and use to
realise the five states of the NHE1 system. The circuit consists of capacitors

Fig. 25 Coexistences of the quasi-periodic behaviour of the NHE2 system with
a=10, b=25, c=0.0105 and x 0ð Þ= ±0.001, ±0.002, ±0.003, ±0.001, ±0.001ð ÞT
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Fig. 26 Coexistences of chaotic attractors of NHE2 system with a=10, b=35, c=0.0105 and
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(C1, C2, C3, C4, C5), resistances (R1,…, R19), Op-Amp (LF353D) and multi-
pliers (AD633). The circuit equations of the NHE1 system can be written by using
Kirchhoff’s laws as:

Fig. 27 Coexistences of chaotic attractors of NHE3 system with a=100, b=45, c=0.0198,
x 0ð Þ= ±0.001, ±0.002, ±0.003, ±0.001, ±0.001ð ÞT (blue, brown) and x 0ð Þ= 0.001, 0.002,ð
0.003, − 0.001, − 0.001ÞT (red)
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Fig. 28 The frequency spectrum of the NHE1 system with a=10, b=45 and c=0.0183
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Fig. 29 The frequency spectrum of the NHE3 system with a=10, b=45 and c=0.0198
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where the variables x1, x2, x3, x4 and x5 are the outcome of U9A, U1A, U3A, U5A
and U7A, respectively. The system in (5) is equivalent to the NHE1 system with
τ= t ̸RC, R1=R2= bR=40 kΩ, R6=R11= 40 kΩ, R5=R10= 400 kΩ,R7= bR=
8.88 kΩ, R14= cR=21857.92 kΩ, R17= 0.1Rc=2185.79 kΩ, C1=C2=C3=
C4=C5= 10 nF, a=10, b=45, c=0.0183.

The circuit designed for implementation of the NHE3 system is shown in
Fig. 35. The circuit in Fig. 35 consists of five integrators (U9A, U1A, U3A, U5A
and U7A) which are used to realise the five states of the NHE3 system. The circuit
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Fig. 31 Poincaré maps of the NHE3 system with a=10, b=45 and c=0.0198 for: x1 = 0 in (a),
(b) and x2 = 0 in (c), (d)

Fig. 32 Chaotic attractors of the NHE1 system obtained using circuit implementation with
a=10, b=45 and c=0.0183
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consists of capacitors (C1, C2, C3, C4, C5), resistors (R1,…, R19), Op-Amp
(LF353D) and multipliers (AD633). The circuit equations of the NHE3 system can
be written as:

x ̇1 = 1
RC1

R
R1 x3 −

R
R1 x1

� �

x2̇ = 1
RC2

R
R7V1−

0.1R
R6 x1x3 + R

R5 x4
� �

x3̇ = 1
RC3

0.1R
R11 x1x2 +

R
R10 x5

� �

x4̇ = 1
RC4 − R

R14 x2
� �

x5̇ = 1
RC5 − 0.1R

R17 x2x3
� �

8
>>>>>>><

>>>>>>>:

ð6Þ

where the variables x1, x2, x3, x4 and x5 are the outcome of U9A, U1A, U3A U5A
and U7A, respectively. The system in (6) is equivalent to the NHE3 system with
τ= t ̸RC, R1=R2= bR=40 kΩ, R6=R11= 40 kΩ, R5=R10= 400 kΩ,R7=
bR=8.88 kΩ, R14= cR=20202.02 kΩ, R17= 0.1R c=2020.20 kΩ, C1=C2=
C3=C4=C5= 10 nF, a=10, b=45, c=0.0198. The chaotic attractors of the
NHE3 system are shown in Figs. 36 and 37.

It is apparent from Figs. 31, 33, 36 and 37 that the attractors of NHE1 and NHE3
systems obtained using circuit implementation match with the MATLAB simula-
tion results. It is visible from Figs. 32 and 33 that the ranges of state variables are
different from the MATLAB simulation results. This is because of difference in
time constants considered. Relation between the time constant of system for
MATLAB simulation and time used for circuit implementation is
τ= t

RC ,where R=400 kΩ,C=10 nF.

Fig. 33 Chaotic attractors of the NHE1 system obtained using circuit implementation with
a=10, b=45 and c=0.0183
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Fig. 34 Designed circuit of the system NHE1
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Fig. 35 Designed circuit of the NHE3 system
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5 Conclusions

In this chapter, three new 5-D hyperchaotic systems and two new 5-D chaotic
systems with the nature of self-excited attractors are reported. Four of these systems
may behave as hidden chaotic attractors. Such chaotic systems having both the
self-excited and hidden attractors are rare in the literature. All the five systems have
non-hyperbolic equilibria and hence belong to the category of self-excited attrac-
tors. NHE1, NHE3, NHE4 and NHE5 systems have many equilibria along with
non-hyperbolic nature of equilibria. Hence, these four systems may be considered
under the category of both self-excited and hidden attractors chaotic systems. The
new systems are developed from the well-known 3-D Lorenz chaotic system with
some transformation. All the five systems exhibit multistability. Various numerical
tools like phase portrait, Lyapunov spectrum, bifurcation diagram, Poincaré map,
and frequency spectrum are used to find different dynamic behaviour of the new
systems. These behaviours confirm the chaotic nature of the proposed systems. The

Fig. 36 Chaotic attractors of the NHE3 system obtained using circuit implementation with
a=10, b=45 and c=0.0198

Fig. 37 Chaotic attractors of the NHE3 system obtained using circuit implementation with
a=10, b=45 and c=0.0198
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results obtained using MATLAB simulations are validated by using circuit reali-
sation. The proposed 5-D systems can have better application in the field of secure
communications.
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