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Abstract The design of systems without equilibrium or with line of equilibrium

points is a subject which has started to attract the interest of the research commu-

nity the last decade. In this direction, various chaotic systems with hidden attractors,

which are based on memristors or memristive systems, have been proposed. In this

chapter a new 4-D memristive system is presented. The peculiarity of the model is

that it displays a line of equilibrium points for a range of the parameters as well

as no-equilibrium for another range of the parameters. System in both occasions

presents a chaotic behavior with hidden attractors. The behavior of the proposed

system is investigated through numerical simulations, by using phase portraits, Lya-

punov exponents and bifurcation diagrams. The adaptive control scheme of the sys-

tem is presented in order to prove that the memristive system’s dynamical behavior

can be controlled. Also, we have designed an electronic circuit to confirm the feasi-

bility of the system in both cases.
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1 Introduction

The forth missing curcuit element, the memristor, was introduced for the first time

in 1971 (Chua 1971). A general concept of memristive systems expanded in 1976,

(Chua and Kang 1976). In 2008 the realization of a two terminal memristor was

announced (Strukov et al. 2008). This announcement influenced many researchers

and paved the way for various scientific fields. n 2009, other elements with memory

from the nano-world, memcapacitor and meminductor was introduced (Ventra et al.

2009).

There are systems, such as thermistors, with phenomena in which internal state

depends on the temperature (Sapoff and Oppenheim 1963), spintronic devices in

which resistance varies according to their spin polarization (Pershin and Di Ventra

2008) and molecules in which resistance changes according to their atomic configu-

ration (Chen et al. 2003), could be explained now with the use of the memristor. Also,

electronic circuits with memory could simulate processes typical of biological sys-

tems, such as the adaptive behavior of unicellular organisms (Pershin et al. 2009) and

the learning and associative memory (Pershin and Di Ventra 2010). Mem-elemets

also are used in order to replace nonlinear parts of the electrical circuits.

At present, many applications of memristors based on their properties, such as

memristor-based neural networks, memristor-based chaotic oscillators, memristor-

based charge pump locked loops etc. have been introduced (Itoh and Chua 2008;

Zhao et al. 2013; Wu et al. 2011). Research on memristor-based chaotic systems

becomes a focal research topic in both the technological and the application domain

(Volos et al. 2011; Yang et al. 2013; Driscoll et al. 2010; Wang et al. 2012; Shang

et al. 2012; Shin et al. 2011; Cepisca et al. 2008; Cepisca and Bardis 2011; Bog-

dan et al. 2011; Corinto and Ascoli 2012a, b). Also, the design of memristor- based

chaotic oscillators, by replacing the nonlinear part of chaotic dynamical systems with

memristors has been introduced (Sabarathinam et al. 2016; Chen et al. 2015; Bao

et al. 2016; Wu et al. 2016).

The last decades researchers introduced some memristor-based hyperchaotic sys-

tems, motivated by the complex dynamical behaviors of hyperchaotic systems and

the special features of memristor in order to investigate whether there exists a

memristor-based system that is hyperchaotic. Hyperchaos was generated by combin-

ing a memristor with its non-linear characteristics and a chaotic oscillator (Biswas et

al. 2016; Ponomarenko et al. 2013; Özkaynak and Yavuz 2013; Ye and Wong 2013;

Banerjee et al. 2012a, b; Banerjee and Biswas 2013).

Leonov and Kuznetsov (Kuznetsov et al. 2010; Leonov et al. 2011) in their

research categorized periodic and chaotic attractors as either self-excited or hidden.

A self-excited attractor has a basin of attraction that is associated with an unstable

equilibrium, whereas a hidden attractor (HA) has a basin of attraction that does not

intersect with small neighborhoods of any equilibrium points. The classical attractors

of Lorenz, Rössler, Chen, Sprott (cases B to S), and other widely-known attractors

are those excited from unstable equilibria. From a computational point of view this

allows one to use a numerical method in which a trajectory started from a point on
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the unstable manifold in the neighborhood of an unstable equilibrium, reaches an

attractor and identifies it. Hidden attractors cannot be found by this method and are

important in engineering applications because they allow unexpected and potentially

disastrous responses to perturbations in a structure like a bridge or an airplane wing.

Furthermore, the last two decades the subject of chaos control has attracted the

interest of the research community. The control of a chaotic system aims to sta-

bilize or regulate the system with the help of feedback control. There are many

methods available for controlling a chaotic system such as active control (Sundara-

pandian 2010; Vaidyanathan 2011, 2016), adaptive control (Sundarapandian 2013;

Vaidyanathan 2012, 2013, 2014; Azar and Vaidyanathan 2015), sliding mode con-

trol (Vaidyanathan 2012) and backstepping control (Njah and Sunday 2012; Vincent

et al. 2007). Adaptive control is an active field in the design of control systems,

especially of systems with hidden attractors (Vaidyanathan and Volos 2012; Wei

et al. 2014; Pham et al. 2016), and deal with uncertainties. The key difference

between adaptive controllers and linear controllers is the adaptive controller’s abil-

ity to adjust itself in order to handle unknown model’s uncertainties. Recently, much

effort has been placed in adaptive control in both theory and applications. New con-

troller design techniques are introduced to handle nonlinear and time-varying uncer-

tainties. Broader systems with larger nonlinear uncertainties can be covered by these

developments. As a result, adaptive control is used in various real world applications

(Cao et al. 2012; Vaidyanathan 2015).

This research work is organized as follows. In Sect. 2 the model of the memristive

system, as well as the new system are presented. In Sect. 3 the simulation results of

the memristive system are also presented. The adaptive control scheme of the system

is studied in Sect. 4. In Sect. 5 the circuit realization of the system is described in

detail, while Sect. 6 concludes this work with a summary of the main results.

2 The Memristive System with Hidden Attractors

In this section a new memristive system with different families of hidden attractors

is presented. First of all, the model of the memristive device will be analyzed, while

next the mathematical description of the 4-D system will be introduced.

2.1 Model of the Memristive Device

As it is mentioned, Chua and Kang introduced the memristive device by generalizing

the original definition of a memristor (Chua and Kang 1976). A memristive system

can be described by:

ẇm = F(wm, um, t),
fm = G(wm, um, t)um

(1)
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where wm, fm and um denote the state of memristive system, output and input, respec-

tively. The function G is a continuous and n-dimensional scalar function and F is

a vector function. Based on the definition of memristive system (1), a memristive

device is introduced in this section and used in our whole paper. This memristive

device is described by the following equations:

ẇm = um, (2a)

fm = (1 + 0.25w2
m − 0.002w4

m)um. (2b)

In order to investigate the behavior of the memristive system an external sinu-

soidal signal um is applied. The form of um is:

um = Asin(2π ν t) (3)

where A is the amplitude and ν is the frequency. From the first equation of the system

(3) we can find wm:

wm = wm(0) +
A

2π t
(1 − cos(2𝜋 ν t)) (4)

where wm(0) = ∫ 0
−∞ um(𝜏)d𝜏 is the initial condition of the internal state wm.

Substituting Eqs. (3) and (4) into Eq. (2b) it is easy to derive the output of the

memristive device. Therefore, the output fm depends on frequency and amplitude of

the applied input stimulus.

The figures below show the hysteresis loops of the proposed memristive system

driven by a sinusoidal stimulus, when it is driven by a periodic signal (4).

∙ Figure 1 with A = 1, w0 = 0 while ν = 0.1 (green line), ν = 0.2 (blue line) and

ν = 0.5 (red line).

∙ Figure 2 for ν = 0.1, w0 = 0 while A = 0.5 (green line), A = 1 (blue line) and A =
1.5 (red line).

∙ Figure 3 for ν = 0.1, A = 1 while w0 = −1 (green line), w0 = 0 (blue line) and

w0 = 1 (red line).

Obviously, the proposed memristive device exhibits a pinched hysteresis loop in the

input-output plane.

2.2 The New Memristive System

Finally, based on the aforementioned memristive device, the following new dynam-

ical system can be obtained.
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Fig. 1 Hysteresis loops of the proposed memristive device driven by a sinusoidal stimulus with

A = 1 and w0 = 0, for frequencies ν = 0.1 (green line), ν = 0.2 (blue line), ν = 0.5 (red line)

Fig. 2 Hysteresis loops of the proposed memristive device driven by a sinusoidal stimulus with

ν = 0.1 and w0 = 0, for amplitude A = 0.5 (red line), A = 1 (blue line), A = 1.5 (green line)
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Fig. 3 Hysteresis loops of the proposed memristive device driven by a sinusoidal stimulus with

A = 1 and ν = 0.1, for w0 = −1 (green line), w0 = 0 (blue line) and w0 = 1 (red line)

ẋ = − α x + γ f (y,w)
ẏ = β x − δ xz + 𝜀

ż = − ζ z + xy
ẇ = y

(5)

where y = um the input, w = wm the state, f (y,w) = fm = (1 + 0.25w2 −
0.002w4)y the output of the memristor device and α, β, γ, δ, 𝜀, ζ are real positive

parameters. So, the fourth-order memristive system (5) is obtained and used in the

following sections.

2.2.1 Analysis of the New Hyperchaotic Memristive System

The equilibria of system (5) can be derived by solving the following equations:

− α x + γ f (y,w) = 0
β x − δ xz + 𝜀 = 0
− ζ z + xy = 0
y = 0

(6)

The 4-D memristive system (5) for 𝜀 = 0 and for every α, β, γ, δ, ζ set of values

has line of equilibrium E(0, 0, 0,w). Moreover for 𝜀 ≠ 0 and for every α, β, γ, δ, ζ has

no equilibria. As a result, this memristive hyperchaotic system can be considered as a
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dynamical system with hidden attractors because it is impossible to verify the chaotic

attractor by choosing an arbitrary initial condition in the vicinity of the unstable

equilibria. This system’s feature is noteworthy especially in the case of using these

systems in applications, such as chaos encryption, because of its complexity.

The Jacobian of the system (5), J at any point is calculated as:

J =
⎛
⎜
⎜
⎜
⎝

− α γQ 0 γR
β− δ z 0 − δ x 0

y x − ζ 0
0 1 0 0

⎞
⎟
⎟
⎟
⎠

(7)

where,

Q =
𝜕f (y,w)

𝜕y
= 1 + 0.25w2 − 0.002w4

R =
𝜕f (y,w)
𝜕w

= 0.5wy − 0.008w3y

For the case of 𝜀 = 0 there are infinite equilibrium points. In this case the eigen-

values of the matrix of Eq. (7), for α = 1, γ = 1, β = 7, δ = 1, ζ = 1, are:

𝜆1 = −1
𝜆2 = 0

𝜆3 = 0.5(−1 − (29 + 7w2 − 0.056w4)1∕2)
𝜆4 = 0.5(−1 + (29 + 7w2 − 0.056w4)1∕2)

(8)

As it is clear the eigenvalue 𝜆1 = −1 shows that there is a stable multiplicity, 𝜆2 = 0
is as expected because the system has a line equilibrium and the eigenvalues 𝜆3 and

𝜆4 of the Jacobian Matrix depend on the variable w. So, it is difficult to determine

the stability of the equilibrium points.

For the case of 𝜀 ≠ 0 there are no equilibrium points. As a result there cannot be

analysis of the equilibrium points.

The chaotic attractor in the (x, y, z) phase space, for 𝜀 = 0, α = 1, γ = 1, β = 8.5,
δ = 1, ζ = 1 is depicted in Fig. 4.

The chaotic attractor in the (x, y, z) phase space, for 𝜀 = 0.01, α = 1, γ = 1, β = 7,
δ = 2, ζ = 1 is depicted in Fig. 5.

According to system (5), the divergence of the system is

∇V = 𝜕ẋ
𝜕x

+ 𝜕ẏ
𝜕y

+ 𝜕ż
𝜕z
+ 𝜕ẇ

𝜕w
= − α− ζ (9)

where ∇V < 0 for α and ζ positive.

The Lyapunov exponents for 𝜀 = 0.1 have been calculated as: L1 = 0.01044, L2 =
0.05774, L3 = 0 and L4 = −2.95934. There are two positive Lyapunov exponents, so

the system is hyperchaotic. In addition the Kaplan-Yorke dimension of the system is

found as:
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Fig. 4 Chaotic attractor in

(x, y, z) phase space, for

𝜀 = 0, α = 1, γ = 1, β = 8.5,
δ = 1, ζ = 1

Fig. 5 Chaotic attractor in

(x, y, z) phase space, for

𝜀 = 0.01, α = 1, γ = 1,
β = 7, δ = 2, ζ = 1

DKY = 3 + L1+L2+L3
|L4|

= 3.023038 (10)

3 Simulation Results

In order to study the behavior of the new system, usual tools of the theory of dynam-

ical systems such as phase portaits, bifurcation diagrams, continuation diagrams and

diagram of Lyapunov exponents have been used.

Firstly, the bifurcation diagram of y versus β, for various values of the parameter

𝜀, is obtained by plotting the variable x when the trajectory cuts the plane w = 0
with dy∕dt < 0, as the control parameter β is decreased in tiny steps in the range of

7 ≤ β ≤ 10. Also, the continuations diagrams of y versus β, in which the initial con-

ditions in each iteration have different values, and the diagram of system’s (5) Lya-

punov exponents versus β are presented for different sets of values of the system’s

parameters. At the Lyapunov diagrams the fourth Lyapunov exponent is ignored
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Fig. 6 The bifurcation diagram of y versus β for 𝜀 = 0, α = 1, γ = 1, δ = 2, ζ = 1

because it takes negative values far from the zero value. Especially, the hyperchaotic

behavior is shown in the Lyapunov diagrams in the region where two Lyapunov

exponents become positive and one zero.

For values of the parameters 𝜀 = 0, α = 1, γ = 1, δ = 1, ζ = 1 in Figs. 6, 7 and 8

the bifurcation diagram of y versus β, the continuation diagram of y versus β and the

diagram of systems Lyapunov exponents versus β are presented.

In more details, system (5) presents the following dynamical behavior, in respect

to β for 𝜀 = 0, α = 1, γ = 1, δ = 2, ζ = 1:

∙ A region of periodic behavior for β < 7.162
∙ A region of chaotic behavior for 7.162 < β < 7.204
∙ A region of quasi-periodic behavior for 7.204 < β < 7.216
∙ A region of chaotic behavior for 7.216 < β < 7.228
∙ A region of quasi-periodic behavior for 7.228 < β < 7.246
∙ A region of chaotic behavior for 7.246 < β < 7.294
∙ A region of quasi-periodic behavior for 7.294 < β < 7.306
∙ A region of chaotic behavior for 7.306 < β < 8.134
∙ A region of hyperchaotic behavior for 8.134 < β < 8.152
∙ A region of chaotic behavior for 8.152 < β < 8.212
∙ A region of hyperchaotic behavior for 8.212 < β < 8.224
∙ A region of chaotic behavior for 8.224 < β < 8.242
∙ A region of hyperchaotic behavior for 8.242 < β < 8.254
∙ A region of chaotic behavior for 8.254 < β < 9.472
∙ A region of hyperchaotic behavior for 9.472 < β < 10.
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Fig. 7 The continuation diagram of y versus β for 𝜀 = 0, α = 1, γ = 1, δ = 2, ζ = 1

Fig. 8 The Lyapunov diagram of Lyapunov exponents versus β for 𝜀 = 0, α = 1, γ = 1, δ = 2,

ζ = 1
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Fig. 9 The bifurcation diagram of y versus β for 𝜀 = 0.0001, α = 1, γ = 1, δ = 1, ζ = 1

For values of the parameters 𝜀 = 0.0001, α = 1, γ = 1, δ = 1, ζ = 1 in Figs. 9, 10

and 11 the bifurcation diagram of y versus β, the continuation diagram of y versus β

and the diagram of systems Lyapunov exponents versus β are presented.

In more details, system (5) presents the following dynamical behavior, in respect

to β for 𝜀 = 0.0001, α = 1, γ = 1, δ = 1, ζ = 1:

∙ A region of periodic behavior for β < 7.216
∙ A region of chaotic for 7.216 < β < 8.11
∙ A region of hyperchaotic behavior for 8.11 < β < 8.158
∙ A region of chaotic behavior for 8.158 < β < 9.49
∙ A region of hyperchaotic behavior for 9.49 < β < 10.

For values of the parameters 𝜀 = 0.001, α = 1, γ = 1, δ = 1, ζ = 1 in Figs. 12, 13

and 14 the bifurcation diagram of y versus β, the continuation diagram of y versus β

and the diagram of systems Lyapunov exponents versus β are presented.

In more details, system (5) presents the following dynamical behavior, in respect

to β for 𝜀 = 0.001, α = 1, γ = 1, δ = 1, ζ = 1:

∙ A region of periodic behavior for β < 7.138
∙ A region of quasi-periodic behavior for 7.144 < β < 7.204
∙ A region of chaotic behavior for 7.204 < β < 7.234
∙ A region of quasi-periodic behavior for 7.234 < β < 7.246
∙ A region of chaotic behavior for 7.246 < β < 8.164
∙ A region of hyperchaotic behavior for 8.164 < β < 8.254
∙ A region of chaotic behavior for 8.254 < β < 9.502
∙ A region of hyperchaotic behavior for 9.502 < β < 10.
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Fig. 10 The continuation diagram of y versus β for 𝜀 = 0.0001, α = 1, γ = 1, δ = 1, ζ = 1

Fig. 11 The Lyapunov Diagram of Lyapunov exponents versus β for 𝜀 = 0.0001, α = 1, γ = 1,
δ = 1, ζ = 1
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Fig. 12 The bifurcation diagram of y versus β for 𝜀 = 0.001, α = 1, γ = 1, δ = 1, ζ = 1

Fig. 13 The continuation diagram of y versus β for 𝜀 = 0.001, α = 1, γ = 1, δ = 1, ζ = 1
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Fig. 14 The Lyapunov Diagram of Lyapunov exponents versus β for 𝜀 = 0.001, α = 1, γ = 1,
δ = 1, ζ = 1

For values of the parameters 𝜀 = 0.01, α = 1, γ = 1, δ = 1, ζ = 1 in Figs. 15, 16

and 17 the bifurcation diagram of y versus β, the continuation diagram of y versus β

and the diagram of systems Lyapunov exponents versus β are presented.

In more details, system (5) presents the following dynamical behavior, in respect

to β for 𝜀 = 0.01, α = 1, γ = 1, δ = 2, ζ = 1:

∙ A region of periodic behavior for β < 7.048
∙ A region of chaotic behavior for 7.048 < β < 7.06
∙ A region of quasi-periodic behavior for 7.06 < β < 7.066
∙ A region of chaotic behavior for 7.066 < β < 7.732
∙ A region of periodic behavior for 7.732 < β < 7.75
∙ A region of chaotic behavior for 7.732 < β < 9.508
∙ A region of hyperchaotic behavior for 9.508 < β < 10.

For values of the parameters 𝜀 = 0.1, α = 1, γ = 1, δ = 1, ζ = 1 in Figs. 18, 19

and 20 the bifurcation diagram of y versus β, the continuation diagram of y versus β

and the diagram of systems Lyapunov exponents versus β are presented.

In more details, system (5) presents the following dynamical behavior, in respect

to β for 𝜀 = 0.1, α = 1, γ = 1, δ = 2, ζ = 1.:

∙ A region of periodic behavior for 7.108 < β < 7.126
∙ A region of quasi-periodic behavior for 7.126 < β < 7.156
∙ A region of periodic behavior for 7.156 < β < 7.258
∙ A region of chaotic behavior for 7.258 < β < 8.83
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Fig. 15 The bifurcation diagram of y versus β for 𝜀 = 0.01, α = 1, γ = 1, δ = 2, ζ = 1

Fig. 16 The continuation diagram of y versus β for 𝜀 = 0.01, α = 1, γ = 1, δ = 2, ζ = 1
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Fig. 17 The Lyapunov Diagram of Lyapunov exponents versus β for 𝜀 = 0.01, α = 1, γ = 1, δ = 2,

ζ = 1

Fig. 18 The bifurcation diagram of y versus β for 𝜀 = 0.1, α = 1, γ = 1, δ = 2, ζ = 1
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Fig. 19 The continuation diagram of y versus β for 𝜀 = 0.1, α = 1, γ = 1, δ = 2, ζ = 1

Fig. 20 The Lyapunov diagram of Lyapunov exponents versus β for 𝜀 = 0.1, α = 1, γ = 1, δ = 2,

ζ = 1
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∙ A region of periodic behavior for 8.83 < β < 8.842
∙ A region of quasi-periodic behavior for 8.842 < β < 8.854
∙ A region of periodic behavior for 8.854 < β < 8.872
∙ A region of chaotic behavior for 8.872 < β < 8.896
∙ A region of periodic behavior for 8.896 < β < 8.902
∙ A region of quasi-periodic behavior for 8.902 < β < 8.92
∙ A region of chaotic behavior for 8.92 < β < 9.46
∙ A region of hyperchaotic behavior for 9.46 < β < 10.

4 Adaptive Control of the 4-D Hyperchaotic Memristive
Dynamical System

From the results of the simulations it is shown that the memristor adds an extra

complexity to the system’s dynamical behavior. So it is useful to see if the new 4-D

memristive system can be controlled by using the adaptive control method, in order

to derive an adaptive feedback control law for globally stabilization of the system

with unknown parameters.

The controlled 4-D hyperchaotic memristive dynamical system given by follow-

ing state equilibrium for γ = 1, 𝜀 = 0, ζ = 1:

ẋ = − α x + f (y,w) + u1
ẏ = β x − δ xz + u2
ż = −z + xy + u3
ẇ = y + u4

(11)

where x, y, z, w are the states and u1, u2, u3, u4 are the adaptive controls and α, β and

δ are the unknown parameters of the system.

The problem is finding the adaptive controls u1, u2, u3, u4 so as to regulate the

variables x, y, z,w.

Consider the adaptive feedback control law:

u1 = α̂(t)x − f (y,w) − k1x
u2 = − ̂β(t)x + ̂δ(t)xz − k2y
u3 = z − xy − k3z
u4 = −y − k4w

(12)

where k1, k2, k3, k4 are the positive gain constants.

Substituting Eq. (12) into Eq. (11), the closed-loop plant dynamics is given as:
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ẋ = −(α−α̂(t))x − k1x
ẏ = (β− ̂β(t))x − (δ−̂δ(t))xz − k2y
ż = −k3z
ẇ = −k4w

(13)

The parameter estimation errors are defined as:

e
𝛼

= α−α̂(t)
e
𝛽

= β− ̂β(t)
e
𝛿

= δ−̂δ(t)
(14)

Differentiating the Eq. (14) with respect to t

̇eα = − ̇α̂(t)
ėβ = − ̇

̂β(t)
ėδ = − ̇

̂δ(t)
(15)

In the view of Eq. (15) the plant dynamics can be simplified as:

ẋ = −eαx − k1x
ẏ = eβx − eδxz − k2y
ż = −k3z
ẇ = −k4w

(16)

Next the adaptive control theory is used in order to find an update law for the

parameter estimates. Consider the quadratic candidate Lyapunov function defined

by

V(x, y, z,w, eα, eβ, eδ) =
= 1

2
(x2 + y2 + z2 + w2) + 1

2
(e2

α
+ e2

β
+ e2

δ
) (17)

Differentiating the Eq. (17) with respect to t

̇V = xẋ + yẏ + zż + wẇ + eα ̇eα + eβėβ + eδėδ (18)

Finally,

̇V = −k1x2 − k2y2 − k3z2 − k4w2+
+eα(x2 − ̇α̂) + eβ(xy −

̇

̂β) − eδ(zxy
̇

̂δ)
(19)

From Eq. (19) the parameter update law is

̇α̂(t) = −x2
̇

̂β(t) = xy
̇

̂δ(t) = −zxy
(20)
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Theorem 1 The states x, y, z, w of the 4-D hyperchaotic memristive dynamical sys-
tem (5) with unknown system parameters are globaly and exponentially regulated
for all initial conditions to the desired constant values α, β, δ by the adaptive control
law (11) and the parameter update law (19), where k1, k2, k3 and k4 are positive gain
constants.

Proof This result will be prooved by applying Lyapunov stability theory (Khalil

2001).

The quadratic Lyapunov function defined by Eq. (17), which is a positive definite

function on ℜ7
, is considered.

By substituting the Eq. (15) into Eq. (14) the time derivative of V is obtained as:

̇V = −k1x2 − k2y2 − k3z2 − k4w2
(21)

From the above equation (21) it is obvious that the derivative of V respect to t,
dV
dt

< 0 is a negative semi-definite function on ℜ7
. So the state vector x(t) and the

parameter estimation error can be concluded that are globally bounded, i.e.

[x y z w eα(t) eβ(t) eδ(t)]
T ∈ L∞

where the function space L∞ consists of all functions of the form h(t) that satisfies

∣ h(⋅, t) ∣< ∞ for all t.
If k = min{k1, k2, k3, k4}, then it follows from the Eq. (16) that

̇V ≤ −k||x(t)||2 (22)

Thus

k||x(t)||2 ≤ ̇V (23)

Integrating the inequality (23)

k ∫ t
0 ||x(t)||

2d𝜏 ≤ V(0) − V(t) (24)

From Eq. (24) it follows that x, y, z,w ∈ L2, where the function space L2 consists

of all functions h(t) with properties such that the integral ∫ ∞
0

√
h(t)2 exists for all t.

By using Barbalat’s lemma (Khalil 2001), the x, y, z,w → 0 exponentially as t → ∞
for all initial conditions x(0), y(0), z(0), w(0) ∈ ℜ4

. Then it follows that ths states

x, y, z,w of the system with the unknown parameters α, β, δ are globally exponen-

tially regulated for all the initial conditions, by the adaptive control laws (12) and

the parameter update law (20).

Here the proof is completed.

For the numerical simulations the parameter values are α = 1, β = 8, δ = 2 as

used before. Also the positive gain constants are chosen k1 = k2 = k3 = k4 = 5.
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Fig. 21 Time-series of the controlled states x, y, z, w

Futhermore the initial conditions are x(0) = −1.1, y(0) = 0.6, z(0) = −1.5, w(0) =
0.2, and α̂(0) = −0.5, ̂β(0) = −0.2, ̂δ(0) = −0.1. In Fig. 21 the exponential conver-

gence of the controlled states of the system, is depicted.

Fig. 22 Time-series of the controlled states x, y, z, w
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Fig. 23 Time-series of the controlled states x, y, z, w

In Fig. 22 the parameter values are α = 1, β = 8, δ = 2, while the initial conditions

are x(0) = −1.1, y(0) = 1, z(0) = −0.5, w(0) = 0.7, and α̂(0) = −0.5, ̂β(0) = −0.2,

̂δ(0) = −0.1.

In Fig. 23 the parameter values are α = 1, β = 8, δ = 2, while the initial conditions

are x(0) = 1.1, y(0) = 0.8, z(0) = −1.5, w(0) = 0.2, and â(0) = −0.5, ̂b(0) = −0.2,

̂

𝛿(0) = −0.1.

5 Circuit Realization

The classical approach for the verification of the feasibility of theoretical chaotic

models is the physical realization through electronic circuits (Borah et al. 2016;

Bouali et al. 2012; Kingni et al. 2016; Wu et al. 2015; Zhou et al. 2015). Furthermore,

the circuital realization of chaotic systems has been applied in numerous engineer-

ing applications, for example in secure communications (Banerjee 2010; Cicek et al.

2010), liquid mixing (Sahin and Guzelic 2013), robotics (Volos et al. 2012), image

encryption process (Volos et al. 2013), audio encryption scheme (Liu et al. 2016),

target detection (Wang et al. 2015) or random signal generation (Fatemi-Behbahani

et al. 2016; Yalcin et al. 2004). For this reason, analog and digital approaches have

been applied to realize chaotic oscillators by using different kinds of electronic

devices such as common off-the-shelf electronic components (Elwakil and Ozoguz

2003; Piper and Sprott 2010), integrated circuit technology (Trejo-Guerra et al. 2012,
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2013), microcontroller (Pano-Azucena et al. 2017) or field-programmable gate array

(FPGA) (Koyuncu et al. 2014; Tlelo-Cuautle et al. 2015).

Therefore, in this section, we will confirm the feasibility of the proposed mem-

ristive system by discussing its circuital realization by using the general operational

amplier–based approach. The third state variable (z) of the memristive system has

been rescaled as Z = z∕2, in order to avoid the limitations problems of the compo-

nents of our electronic circuit. Therefore, the memristive system is transformed into

the following equivalent system:

̇X = −X + F(Y ,W)
̇Y = 𝛽X − 2𝛿XZ + 𝜀

̇Z = −Z + 1
2
XY

̇W = Y

(25)

where F(Y ,W) = (1 + 0.25W2 − 0.002W4)Y the output of the memristive device.

Figure 24 shows the schematic of the circuit for realizing the system (5). As shown

in this figure, the circuit includes sixteen resistors, four capacitors, seven operational

amplifiers (TL081) and five analog multipliers (AD633). By applying Kirchhoffs

circuit laws into the designed circuit, we get the following circuital equation:

ẋ = 1
R⋅C

[−X + F(Y ,W)]y + R
10V⋅R1

y ⋅ z]
ẏ = 1

R⋅C
[ R
R
𝛽

X − R
10V⋅R

𝛿

XZ + V + 𝜀]

ż = 1
R⋅C

[−Z + R
10V⋅R1

X ⋅ Y]
ẇ = 1

R⋅C
Y

(26)

where

F(Y ,W) = [ R
10V⋅Ra

Vf +
R

(10V)2⋅Rb
W2 − R

(10V)4⋅Rc
W4]y (27)

is the output of the memristive circuit in the dotted frame of the schematic in Fig. 16,

which implements the opposite of the memristive function of Eq. (2).

In system (26), X,Y ,Z and W correspond to the voltages on the integrators (U1–

U4), respectively, while the power supply is ±15VDC. System (26) is normalized by

using 𝜏 = t∕RC. It can thus be suggested that system (26) is equivalent to system

(5), with a = R
10V⋅Ra

, b = R
(10V)2⋅Rb

, c = R
(10V)4⋅Rc

, d = R∕R
𝛿

, 2e = R
10V⋅Re

, m = Vm and

R
10V⋅R1

= 0.5. So, the values of circuit components are: R = 10 kΩ, Ra = 1 kΩ, Rb =
0.4 kΩ, Rc = 0.5 kΩ, R

𝛿

= 1 kΩ, Re = 0.5 kΩ, R1 = 2 kΩ, C = 10 nF, Vf = 1V and

V
𝜀

= 0V (for the case of 𝜀 = 0). The designed circuit has been implemented in Mul-

tisim and PSpice results are reported in Fig. 24. It is easy to see the good agreement

between the circuit’s simulation results (Figs. 25, 26 and 27) and numerical results

(Fig. 2).
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Fig. 24 Schematic of the circuit including sixeteen resistors, four capacitors, seven operational

amplifiers and five analog multipliers. The power supplies of all operational amplifiers and analog

multipliers are ±15VDC
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(b)(a)

Fig. 25 a PSpice chaotic attractors of the designed circuit in (a) X − Y plane, b X − Z plane for

𝜀 = 0

(a) (b)

Fig. 26 a PSpice chaotic attractors of the designed circuit in (a) X −W plane, b Y − Z plane for

𝜀 = 0
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(a) (b)

Fig. 27 a PSpice chaotic attractors of the designed circuit in (a) Y −W plane, b Z −W plane for

𝜀 = 0

6 Conclusion

The existence of a memristor-based hyperchaotic system with line of equibria and

with no equilibria has been studied in this paper. Although 4-D memristive systems

often only generate chaos, the presence of a memristive device leads the proposed

system to a hyperchaotic system with hidden attractors. The system has rich dynam-

ical behavior as confirmed by the reported example of attractor and by the presented

numerical bifurcation diagrams and Lyapunov exponents. It is worth noting that the

possibilities of control of such system with unknown parameters is verified by con-

structing an adaptive controller. Also, the designed circuit emulates very well the

proposed hyperchaotic memristive system. Because there is little knowledge about

the special features of such systems, future works will continue focusing on their

dynamical behaviors, as well as the possibility of synchronization of such systems.

Furthermore, the robustness of the control technique with respect to noise is very

crucial especially in practical applications. For this reason, the investigation of noise

effect on the control scheme will be taken as a future work.
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