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Abstract Recently, Leonov and Kuznetsov introduced a new class of nonlinear
dynamical systems, which is called systems with hidden attractors, in contrary to
the well-known class of systems with self-excited attractors. In this class, dynamical
systems with infinite number of equilibrium points, with stable equilibria, or
without equilibrium are classified. Since then, the study of chaotic systems with
hidden attractors has become an attractive research topic because this new class of
dynamical systems could play an important role not only in theoretical problems but
also in engineering applications. In this direction, the proposed chapter presents the
bidirectional and unidirectional coupling schemes between two identical dynamical
chaotic systems with no-equilibrium points. As it is observed, when the value of the
coupling coefficient is increased in both coupling schemes, the coupled systems
undergo a transition from desynchronization mode to complete synchronization.
Also, the simulation results reveal the richness of the coupled system’s dynamical
behavior, especially in the bidirectional case, showing interesting nonlinear
dynamics, with a transition between periodic, quasiperiodic and chaotic behavior as
the coupling coefficient increases, as well as synchronization phenomena, such as
complete and anti-phase synchronization. Various tools of nonlinear theory for the
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study of the proposed coupling method, such as bifurcation diagrams, phase por-
traits and Lyapunov exponents have been used.

Keywords Complete synchronization ⋅ Anti-phase synchronization
Chaos ⋅ Hidden attractors ⋅ Bifurcation diagram ⋅ Lyapunov exponent

1 Introduction

In the past three decades, the phenomenon of synchronization between coupled
nonlinear systems and especially of systems with chaotic behavior has attracted the
interest of the research community because it is an interesting phenomenon with a
broad range of applications, such as in various complex physical, chemical and
biological systems (Holstein-Rathlou et al. 2001; Mosekilde et al. 2002; Pikovsky
et al. 2003; Szatmári and Chua 2008; Tognoli and Kelso 2009; Wang et al. 2009;
Liu and Chen 2010), in secure and broadband communication system (Kocarev
et al. 1992; Cuomo et al. 1993; Wu and Chua 1993; Feki et al. 2003; Sheng-Hai and
Ke 2004; Dimitriev et al. 2006; Jafari et al. 2010) and in cryptography
(Annovazzi-Lodi et al. 1997; Baptista 1998; Grassi and Mascolo 1999; Dachselt
and Schwarz 2001; Klein et al. 2005; Alvarez and Li 2006; Volos et al. 2006;
Banerjee 2010).

The concept of synchronization of two or more systems with chaotic behavior is
the phenomenon in which the coupled systems can adjust a given of their motion
property to a common behavior (equal trajectories or phase locking), due to forcing
or coupling (Luo 2013). However, having two chaotic systems being synchronized,
it is a major surprise, due to the exponential divergence of the nearby trajectories of
the systems. Nevertheless, nowadays the phenomenon of synchronization of cou-
pled chaotic oscillators is well-studied theoretically and proven experimentally
(Ouannas et al. 2017a, b; Azar and Vaidyanathan 2015a, b, c, 2016; Vaidyanathan
et al. 2015a, b, c, 2017a, b, c; Boulkroune et al. 2016a, b; Vaidyanathan and Azar
2015a, b, c, d, 2016a, b, c, d, e, f; Ouannas et al. 2016a, b).

Synchronization theory has begun studying in the 1980s and early 1990s by
Fujisaka and Yamada (1983), Pikovsky (1984), Pecora and Carroll (1990).
Onwards, a great number of research works based on synchronization of nonlinear
systems has risen and many synchronization schemes depending on the nature of the
coupling schemes and of the interacting systems have been presented. Complete or
full chaotic synchronization (Maritan and Banavar 1994; Kyprianidis and Stou-
boulos 2003a, b; Woafo and Enjieu Kadji 2004; Kyprianidis et al. 2006a, 2008),
phase synchronization (Dykman et al. 1991; Parlitz et al. 1996), lag synchronization
(Rosenblum et al. 1997; Taherion and Lai 1999), generalized synchronization
(Rulkov et al. 1995), antisynchronization (Kim et al. 2003; Liu et al. 2006),
anti-phase synchronization (Cao and Lai 1998; Astakhov et al. 2000; Zhong et al.
2001; Blazejczuk-Okolewska et al. 2001; Kyprianidis et al. 2006b; Tsuji et al. 2007),
projective synchronization (Mainieri and Rehacek 1999; Ouannas et al. 2017c),
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anticipating (Voss 2000), inverse lag synchronization (Li 2009) and fractional order
synchronization (Tolba et al. 2017; Azar et al. 2017a, b; Pham et al. 2017c, d;
Ouannas et al. 2017d, e, f, g, h, i, j, k) are the most interesting types of synchro-
nization, which have been investigated numerically and experimentally by many
research groups.

However, the most interesting and the most studied case of synchronization is
the Complete or Full synchronization. In this case the interaction between two
coupled identical nonlinear circuits leads to a perfect coincidence of their chaotic
trajectories, i.e.

x1 tð Þ= x2 tð Þ, as t→∞. ð1Þ

Also, in 1998, another interesting type of synchronization between mutually
coupled identical autonomous nonlinear systems was observed. In this new type of
synchronization, which is called Anti-phase synchronization, each one of the
uncoupled systems produces chaotic attractors (Wang et al. 2017). This synchro-
nization phenomenon is observed when the coupled system is in a phase locked
(periodic) state, depending on the coupling factor and it can be characterized by a
π-phase delay. So, the periodic signals (x1 and x2) of each coupled circuits have a
time lag τ, which is equal to T/2, where T is the period of the signals x1 and x2.

x1 tð Þ= x2 t+ τð Þ, where τ= T ̸2. ð2Þ

The anti-phase synchronization was also observed by Volos et al. (2013) in the
case of two mutually coupled identical non-autonomous Duffing-type systems,
which as it is known, have symmetry, because the transformation:

S: x, y, tð Þ→ − x, − y, t+ T ̸2ð Þ ð3Þ

leaves Duffing’s system equations invariant.
It is well-known that chaotic dynamical systems exhibit high sensitivity on initial

conditions or system’s parameters and if they are identical and start from almost the
same initial conditions, they follow trajectories which rapidly become uncorrelated.
That is why many techniques exist to obtain chaotic synchronization. So, many of
these techniques for coupling two or more nonlinear chaotic systems can be mainly
divided into two classes: unidirectional coupling and bidirectional or mutual
coupling (Gonzalez-Miranda 2004). In the first case, only the first system, the
master system, drives the second one, the slave system, while in the second case,
each system’s dynamic behavior influences the dynamics of the other.

Recently, a great interest for dynamical systems with hidden attractors has been
raised. The term hidden attractor is referred to the fact that in this class of systems
the attractor is not associated with an unstable equilibrium and thus often remains
undiscovered because it may occur in a small region of parameter space and with a
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small basin of attraction in the space of initial conditions (Kuznetsov et al. 2010;
Leonov et al. 2011a, b, 2012; Pham et al. 2014a, b). In 2010, for the first time, a
chaotic hidden attractor was discovered in the most well-known nonlinear circuit, in
Chua’s circuit, which is described by a three-dimensional dynamical system
(Kuznetsov et al. 2010).

The problem of analyzing hidden oscillations arose for the first time in the
second part of Hilbert’s 16th problem (1900) for two-dimensional polynomial
systems. The first nontrivial results were obtained in Bautin’s works (Bautin 1939,
1952), which were devoted to constructing nested limit cycles in quadratic systems
and showed the necessity of studying hidden oscillations for solving this problem.
Later, in the middle of the 20th century, Kapranov studied (Kapranov 1956) the
qualitative behavior of Phase-Locked Loop (PLL) systems, which are used in
telecommunications and computer architectures, and estimated stability domains. In
that work, Kapranov assumed that in PLL systems there were self-excited oscil-
lations only. However, in 1961, (Gubar 1961) revealed a gap in Kapranov’s work
and showed analytically the possibility of the existence of hidden oscillations in
two-dimensional system of PLL, thus, from a computational point of view, the
system considered was globally stable, but, in fact, there was only a bounded
domain of attraction.

Also, in the same period, the investigations of the widely known
Markus-Yamabe (1960) and Kalman (1957) conjectures on absolute stability have
led to the finding of hidden oscillations in automatic control systems with a unique
stable stationary point and with a nonlinearity, which belongs to the sector of linear
stability (Bernat and Llibre 1996; Fitts 1966; Leonov and Kuznetsov 2013).

Furthermore, systems with hidden attractors have received attention due to their
practical and theoretical importance in other scientific branches, such as in
mechanics (unexpected responses to perturbations in a structure like a bridge or in
an airplane wing) (Lauvdal et al. 1997). So, the study of these systems is an
interesting topic of a significant importance.

So, from the introduction of dynamical systems with hidden attractors a great
number of systems belonging in this category has been reported. All these systems
can be classified in three families of systems depending on the kind of systems’
equilibria (Pham et al. 2017a). The first family is the systems without equilibrium
points. The works of Nosé (1984) and Hoover (1985) in 1984–1985 have led the
study of the aforementioned family of dynamical systems. Since then, many 3D or
4D dynamical systems of this family have been studied (Jafari et al. 2013; Wei
2011; Wang et al. 2012a; Wang and Chen 2013; Wei et al. 2014; Maaita et al. 2015;
Tahir et al. 2015; Pham et al. 2016a, b; Wang et al. 2016; Zuo and Li 2016). The
second family is the systems with stable equilibria (Wang and Chen 2012b; Molaie
et al. 2013; Wei and Wang, 2013; Kingni et al. 2014; Lao et al. 2014; Pham et al.
2017b), while the third is the systems with an infinite number of equilibria (Jafari
and Sprott 2013; Li and Sprott 2014; Gotthans and Petržela 2015; Gotthans et al.
2016; Pham et al. 2016c, d, e).

In the present chapter, the study of various synchronization phenomena between
bidirectionally or unidirectionally coupled dynamical systems with hidden
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attractors is presented. For this reason, a no-equilibrium chaotic system, introduced
by Pham et al. has been used (Pham et al. 2014c). Especially, in the case of the
mutually coupled systems, except of the complete chaotic synchronization, the
existence of anti-phase synchronization is also confirmed from the simulation
results.

The rest of the chapter is organized as follows. Section 2 provides the mathe-
matical model as well as the dynamics and properties of the proposed system with
hidden attractors. Section 3 describes the coupling schemes of two identical
no-equilibrium chaotic systems, while the simulation results of the coupled systems
are thoroughly presented in Sect. 4. Finally, conclusions are drawn in Sect. 5

2 Description and Dynamics of the System Without
Equilibrium

In 2013, Jafari and Sprott have introduced nine simple chaotic flows with a line
equilibrium by using an exhaustive computer search (Jafari and Sprott 2013). These
systems belong to the family of systems with hidden attractors because it is
impossible to verify the chaotic attractor by choosing an arbitrary initial condition
in the vicinity of the unstable equilibria.

As an example, the first of these systems, which is described by the following
system

x ̇= − y
y ̇= − x+ yz
z ̇= − x− axy− bxz

8<
: ð4Þ

where a, b are real positive parameters, has a line of equilibria E(0, 0, z).
In the third equation of system (5) (Pham et al. 2014c) added a real parameter

c in order to obtain the following new system

x ̇= − y
y ̇= − x+ yz
z ̇= − x− axy− bxz+ c

8<
: ð5Þ

which possesses no equilibrium points. So, it belongs to the family of dynamical
systems without equilibrium.

Next, in order to discover system’s (5) dynamics well-known tools of nonlinear
theory, such as phase portrait, bifurcation diagram and Lyapunov spectrum, are
used. For this reason the proposed system is integrated numerically using the
classical fourth-order Runge-Kutta integration algorithm. For each set of parameters
used in this work, the time step is always Δt = 0.002 and the calculations are
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performed using variables and parameters in extended precision mode. For each
parameter settings, the system is integrated for a sufficiently long time and the
transient is discarded.

To study the type of scenario giving rise to chaos by considering the parameter
a in system (5), as the main control parameter, the bifurcation diagram in Fig. 1a is
obtained, while the other parameters remain fixed as b = 1 and c = 0.001 and the
initial conditions are chosen as (x0, y0, z0) = (0, 0.5, 0.5). The bifurcation diagram
is obtained by plotting the variable x when the trajectory cuts the plane y = 0 with
dy/dt < 0, as the control parameter a is decreased in tiny steps in the range of
14 ≤ a ≤ 23. From the bifurcation diagram of Fig. 1a it is possible to verify that
the system (5) is driven to chaos through a period-doubling route as the control

Fig. 1 a Bifurcation diagram
of system (5) for decreasing
values of a and b the graph of
the maximal Lyapunov
exponent plotted in the range
of 14 ≤ a ≤ 23, with b = 1,
c = 0.001 and initial
conditions
(x0, y0, z0) = (0, 0.5, 0.5)
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Fig. 2 Simulation phase portraits and Poincaré maps of system (5) for a a = 23 (period-1),
b a = 19 (period-2), c a = 17.5 (period-4), d a = 17.3 (period-8), e a = 15 (chaos), f a = 14.5
(period-1), with b = 1, c = 0.001 and initial conditions (x0, y0, z0) = (0, 0.5, 0.5)
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parameter is decreased and through a crisis is resulted to a period-1 steady state.
Furthermore, the corresponding spectrum of the three Lyapunov exponents is
shown in Fig. 1b. It can be seen that the bifurcation diagram well coincides with the
spectrum of the Lyapunov exponents. Figure 2 depicts a series of phase portraits of
y versus x and the respective Poincaré maps of z versus x, for various values of the
parameter a, showing the route to chaos.

3 The Coupling Schemes

Generally, there are various methods of coupling between coupled nonlinear sys-
tems available in the literature. However, two are the most interesting. In the first
method due to Pecora and Carroll (1990), a stable subsystem of a chaotic system
could be synchronized with a separate chaotic system under certain suitable con-
ditions. In the second method, chaos synchronization between two nonlinear sys-
tems is achieved due to the effect of coupling without requiring to construct any
stable subsystem (Chua et al. 1992; Kyprianidis et al. 2005; Volos et al. 2006).

This second method can be divided into two classes: drive-response or unidi-
rectional coupling and bidirectional or mutual coupling. In the first case, one
system drives another one called the response or slave system. The system of two

Fig. 2 (continued)
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unidirectional coupled identical systems is described by the following set of dif-
ferential equations:

x ̇1 =F(x1)
x2̇ =F(x2) +C(x1 − x2)

�
ð6Þ

where F(x) is a vector field in a phase space of dimension n and C a matrix of
constants, which describes the nature and strength of the coupling between the
oscillators. It is obvious from (6) that only the first system influences the dynamic
behavior of the other.

In the second case, both the coupled systems are connected and each one
influences the dynamics of the other. This is the reason for which this method is
called mutual (or bidirectional). The coupled system of two mutually coupled
chaotic oscillators is described by the following set of differential equations:

x1̇ =F(x1) +C(x2 − x1)
x2̇ =F(x2) +C(x1 − x 2)

�
ð7Þ

In the last twenty years, many research groups approached the coupling methods
between coupled chaotic systems, with the intention to study not only the cases of
synchronization but also the various desynchronization phenomena. In this direc-
tion, the desynchronization in connection with a parameter mismatch between two
coupled electronic oscillators has been studied (Astakhov et al. 1998). Furthermore,
in (Yanchuk et al. 2001), the bifurcation sequence associated with desynchro-
nization of a pair of coupled identical Rössler systems as the coupling parameter
being reduced, has been followed. Starting with the transverse destabilization of a
periodic orbit embedded in the fully synchronized chaotic state, this sequence
proceeds via a torus bifurcation and regimes of anti-phase periodic and chaotic
dynamics to asynchronous chaos.

4 Simulation Results

In this chapter, the study of the dynamic behavior of the bidirectionally and uni-
directionally coupled systems with hidden attractors has been investigated numer-
ically by employing the fourth order Runge-Kutta algorithm. Due to the fact that
each one of the three system’s variables and especially the variables y and z holds
different order of nonlinearity the synchronization phenomena as well as the
threshold for complete synchronization can be dependent on the selection of cou-
pling variable. For this reason, in this work, the variable y has been preferred as the
coupling variable because a great variety of phenomena can be observed.
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So, the system of differential equations that describes the bidirectionally coupled
systems’ dynamics is:

x ̇1 = − y1
y1̇ = − x1 + y1z1 + ξ(y2 − y1)
z1̇ = − x1 − ax1y1 − bx1z1 + c
x2̇ = − y2
y2̇ = − x2 + y2z2 + ξ(y1 − y2)
z2̇ = − x2 − ax2y2 − bx2z2 + c

8>>>>>><
>>>>>>:

ð8Þ

The first three equations of system (8) describe the first of the two coupled
identical systems with hidden attractors, while the other three describe the second
one. Also, the parameter ξ is the coupling coefficient and it is present in the
equations of both systems, since the coupling between them is mutual.

In the case of unidirectionally coupled systems (5) the following system of
differential equations is produced.

x1̇ = − y1
y1̇ = − x1 + y1z1
z1̇ = − x1 − ax1y1 − bx1z1 + c
x2̇ = − y2
y2̇ = − x2 + y2z2 + ξ(y1 − y2)
z2̇ = − x2 − ax2y2 − bx2z2 + c

8>>>>>><
>>>>>>:

ð9Þ

The coupling coefficient ξ is present only in the second coupled system, since
only the first system affects the dynamics of the second.

The parameters of the system are chosen as: a = 15, b = 1, c = 0.001. With
these values each one of the coupled systems with hidden attractors are in chaotic
mode.

So, by solving the coupled systems’ Eqs. (8) and (9) the bifurcation diagrams of
the signal’s difference (x2 − x1) versus the coupling factor ξ are produced. In
details, these diagrams are produced by increasing the coupling factor ξ, from ξ = 0
(uncoupled systems) with step Δξ = 0.0002, in two different ways. In the first, the
initial conditions in each iteration have the same values (x10, y10, z10, x20, y20,
z20) = (0, 0.5, 0.5, 0.1, 0.6, 0.6), while in the second case the initial conditions in
each iteration have different values. This occurs because the last values of the state
variables in the previous iteration become the initial values for the next iteration.
The second type of bifurcation diagram is more close to the experimental obser-
vation of coupled systems’ dynamic behavior in many scientific fields, such as
electronics, economy, biology etc.
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4.1 Same Initial Conditions in Each Iteration

In the first case, as it is mentioned, the initial conditions have the same values in
each iteration and the bifurcations diagrams in the cases of bidirectional and uni-
directional coupling schemes have been produced (Figs. 3a and 10).

The bifurcation diagram of the bidirectionally coupling system (8) shows that the
coupled system undergoes from full desynchronization, for ξ < 0.048, where each
system is in a chaotic state and lays on its own manifold, to complete chaotic
synchronization, for ξ ≥ 0.39, where their manifolds coincide, through an inter-
mediate region where the system shows a more complex dynamic behavior. This is
a typical transition from full desynchronization to complete synchronization.
Simulation phase portraits of x2 versus x1 of the bidirectionally coupled systems (8)
are depicted in Fig. 4, for various values of the coupling coefficient.

Fig. 3 a Bifurcation diagram
of (x2 − x1) versus ξ and b the
spectrum of Lyapunov
exponents of the
bidirectionally coupling
system (8), with the same
initial conditions in each
iteration. The parameters are
a = 15, b = 1, c = 0.001 and
initial conditions (x10, y10, z10,
x20, y20, z20) = (0, 0.5, 0.5,
0.1, 0.6, 0.6)
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The intermediate region of the bifurcation diagram of Fig. 3a is more compli-
cated and it can be divided in three discrete regions:

• Region I: 0.048 < ξ ≤ 0.063 (Quasiperiodic state). This type of behavior is
confirmed from the spectrum of Lyapunov exponents (Fig. 3b), which i.e. for

Fig. 4 Simulation phase portraits of x2 versus x1 of the bidirectionally coupled system (8) with the
same initial conditions in each iteration, for a ξ = 0.01 (chaotic state), b ξ = 0.055 (quasiperiodic
state), c ξ = 0.075 (period-4 steady state), d ξ = 0.38 (chaotic state), e ξ = 0.5 (complete chaotic
synchronization). The parameters are a = 15, b = 1, c = 0.001 and initial conditions (x10, y10, z10,
x20, y20, z20) = (0, 0.5, 0.5, 0.1, 0.6, 0.6)
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ξ = 0.055 are LE1 = 0.0094, LE2 = 0.0063, LE3 = –0.2398, LE4 = –0.7223,
LE5 = –0.7590, LE6 = –0.7894.

• Region II: 0.063 < ξ ≤ 0.093 (Period-4 steady state). In this region the coupled
system shows the phenomenon of anti-phase synchronization. This occurs
because each one of the coupled circuits remains in the same periodic state.
Figures 5 show the simulation phase portraits of y1,2 versus x1,2, for ξ = 0.075,
respectively. In this figure the coincidence of circuits’ attractors in the phase
plain is presented. Furthermore, in Fig. 6, the time-series of the state variables x1
and x2 of the coupled circuits are shown. It is obvious that the two signals x1 and
x2 are identical with a time lag.

To quantify this time lag we have used the well-known Similarity Function S
(Rosenblum et al. 1997).

Fig. 5 Simulation phase
portrait of y1,2 versus x1,2, for
ξ = 0.075 (anti-phase
synchronization)

Fig. 6 Time-series of x1, x2,
for ξ = 0.075
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S(t) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟨ x2(t+ τ)− x1(t)½ �2⟩

⟨ x1(t)ð Þ2⟩ ⋅ ⟨ x2(t)ð Þ2⟩
h i1 ̸2

vuuut ð11Þ

Let Smin be the minimum value of the Similarity function S(τ) and let τmin be the
amount of time lag, when Smin is achieved. The time lag τmin between the variables
x1 and x2 is found, when the conditions Smin = 0 and τmin ≠ 0 are fulfilled. The
calculation of the similarity function for ξ = 0.075 (Fig. 7) shows that the expected
time lag τmin = 6.39 n.u., is equal to T/2, where T is the period of x1 and x2.

Furthermore, the same time lag is found for every value of coupling coefficient
(ξ) in the Region II. So, the value of time lag remains always the same in this region
and equals to the half of the period of the external voltage source. Moreover the fact
that the difference of [x1(t) − x2(t + T/2)] is equal to zero (Fig. 8), confirms that the
coupled system demonstrates π phase delay, which is defined as anti-phase

Fig. 7 The similarity
function (S) versus time (t),
for ξ = 0.075. Smin = 0
means lag with time shift of
τmin = 6.39 = T/2. So, the
phenomenon of anti-phase
synchronization is confirmed

Fig. 8 Time-series of
x1(t) − x2(t + T/2), for
ξ = 0.075
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synchronization or π-lag synchronization. Finally, Fig. 9 shows the time-series of
(x1 − x2) in the case of system’s intermittent behavior for ξ = 0.38.

• Region III: 0.093 < ξ ≤ 0.39 (Hyperchaotic state). This type of behavior is
confirmed from the two positive Lyapunov exponents in Fig. 3b. For example
the Lyapunov exponents for this type of behavior, for a value of the coupling
coefficient ξ = 0.2, are LE1 = 0.113, LE2 = 0.0521, LE3 = 0, LE4 = –0.2788,
LE5 = –0.7416, LE6 = −0.8867. Especially, in the region 0.31 < ξ ≤ 0.39 the
system has an intermittent behavior as it is observed from the time-series of
x1 − x2 for ξ = 0.38.

The bifurcation diagram of Fig. 10, in the case of unidirectionally coupling
system (9), shows that the coupled system undergoes from full desynchronization,
for ξ < 0.76 (Fig. 11a) directly to complete chaotic synchronization (Fig. 11b).

Fig. 9 Time-series of
(x1 − x2), for ξ = 0.38

Fig. 10 a Bifurcation
diagram of (x2 − x1) versus ξ
of the unidirectionally
coupled system (9), with the
same initial conditions in each
iteration. The parameters are
a = 15, b = 1, c = 0.001 and
initial conditions (x10, y10, z10,
x20, y20, z20) = (0, 0.5, 0.5,
0.1, 0.6, 0.6)
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This occurred because only the first system affects the dynamics of the second. So,
there is no any complex behavior and the value of the synchronization threshold
(ξ = 0.76) is significant higher than in the case of bidirectional coupling (ξ = 0.39).

4.2 Different Initial Conditions in Each Iteration

In the second case of study, the initial conditions have different values in each
iteration and the bifurcation diagrams in the cases of bidirectional and unidirec-
tional coupling schemes have been produced (Figs. 12a and 14).

The bifurcation diagram in the case of bidirectionally coupling scheme (8) shows
that the coupled system undergoes from full desynchronization, for ξ < 0.048, to
complete chaotic synchronization, for ξ ≥ 0.277, through an intermediate region
where the system shows a more complex dynamic behavior than in the respective
case of bidirectional coupling of the previous case. Simulation phase portraits of x2
versus x1 of the bidirectionally coupled systems (8) are depicted in Fig. 13, for
various values of the coupling coefficient.

In the intermediate region of the bifurcation diagram of Fig. 12a, the coupled
system can be characterized by three different dynamical behavior:

• Quasiperiodic state. This type of behavior is observed in three different distinct
regions (ξ ∈ (0.054, 0.061], ξ ∈ (0.1670, 0.1684] and ξ ∈ (0.2620, 0.2664])
and is confirmed by the spectrum of Lyapunov exponents of Fig. 12b.

• Periodic state. In the following five regions of the bifurcation diagram of
Fig. 13 the system is in a periodic state. In more details:

1. For ξ ∈ (0.0491, 0.0518] the system is in a period-12 steady state.
2. For ξ ∈ (0.061, 0.093] the system is in a period-4 steady state.

Fig. 11 Simulation phase portraits of x2 versus x1 of the unidirectionally coupled system (9) with
the same initial conditions in each iteration, for a ξ = 0.4 (chaotic state) and b ξ = 0.8 (complete
chaotic synchronization). The parameters are a = 15, b = 1, c = 0.001 and initial conditions
(x10, y10, z10, x20, y20, z20) = (0, 0.5, 0.5, 0.1, 0.6, 0.6)
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3. For ξ ∈ (0.1684, 0.1710] the system is in a period-8 steady state.
4. For ξ ∈ (0.250, 0.252] the system is in a period-22 steady state.
5. For ξ ∈ (0.2664, 0.2760] the system is in a period-8 steady state.

In all these windows of periodic behavior the coupled system shows the phe-
nomenon of anti-phase synchronization. By calculating the Similarity function S(τ)
in each case we find that the expected time lag τmin is equal to T/2, where T is the
period of x1 and x2.

• Hyperchaotic state. In the rest of this intermediate region the system displays an
hyperchaotic behavior, as it is observed from the respective phase portraits of
Fig. 13a, f, and i, as well as from the spectrum of the Lyapunov exponents of
Fig. 12b.

Fig. 12 a Bifurcation
diagram of (x2 − x1) versus ξ
and b the spectrum of
Lyapunov exponents of the
bidirectionally coupling
system (9), with different
initial conditions in each
iteration. The parameters are
a = 15, b = 1, c = 0.001
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Fig. 13 Simulation phase portraits of x2 versus x1 of the bidirectionally coupled system (9) with
different initial conditions in each iteration, for a ξ = 0.03 (hypechaotic state), b ξ = 0.05
(periodic state), c ξ = 0.055 (quasiperiodic state), d ξ = 0.075 (periodic state), e ξ = 0.10
(hyperchaotic state), f ξ = 0.14 (hyperchaotic state), g ξ = 0.1678 (quasiperiodic state),
h ξ = 0.17 (periodic state), i ξ = 0.2 (chaotic state), j ξ = 0.251 (periodic state) k ξ = 0.263
(quasiperiodic state), l ξ = 0.27 (periodic state), m ξ = 0.28 (complete chaotic synchronization).
The parameters are a = 15, b = 1, c = 0.001
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Finally, from the bifurcation diagram (Fig. 14) in the case of unidirectionally
coupling system (9) we can conclude that the coupled system undergoes from full
desynchronization, for ξ < 0.55 directly to complete chaotic synchronization,
without appearing any complex dynamical behavior, while the value of the syn-
chronization threshold (ξ = 0.55) is significant higher than in the case of bidirec-
tional coupling (ξ = 0. 0.277).

Fig. 13 (continued)
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5 Conclusion

In the present chapter, a gallery of various synchronization phenomena between
resistively coupled identical nonlinear systems with hidden attractors was pre-
sented. For this reason, two coupling schemes were adopted. The first one was the
well-known bidirectional coupling while the second one was the unidirectional
coupling. In each coupling scheme two different study cases related with systems’
initial conditions were also adopted. The initial conditions in each iteration had the
same values in the first case, while in the second one the initial conditions in each
iteration had different values.

In more details, in the bidirectional coupling scheme, with the same initial
conditions in each iteration, the coupled systems undergone from full desynchro-
nization, where each system was in a chaotic state to complete chaotic synchro-
nization, through an intermediate region where the coupled systems were in a
periodic states showing the phenomenon of anti-phase synchronization. In the case
of unidirectionally coupled systems, the coupled system undergone from full
desynchronization directly to complete chaotic synchronization, without showing
any other complex dynamics.

Similarly, the coupling schemes (bidirectional and unidirectional), with different
initial conditions in each iteration, appeared the same route from desynchronization
to complete chaotic synchronization. However, in the bidirectional coupling
scheme, a more complex dynamics was arisen as the system had more periodic
windows where the phenomenon of anti-phase synchronization was presented.

As a future work, a more exhaustive study of coupling schemes between
identical dynamical systems with other types of hidden attractors will be done.

Fig. 14 a Bifurcation
diagram of (x2 − x1) versus ξ
of the unidirectionally
coupled system (10), with
different initial conditions in
each iteration. The parameters
are a = 15, b = 1, c = 0.001
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