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Abstract In this chapter we study the influence of a single strongly attractively cou-

pled external oscillator on a system of coupled Kuramoto oscillators. First we go

through the original method used by Kuramoto to solve this system of coupled oscil-

lators. Then we use a later approach developed by Ott and Antonsen. We will use this

approach first to solve the original system and show that the results match. Next we

will solve a variations of the this system using Ott-Antonsen method, after which we

will use it to solve our particular system. We consider a variation of the Kuramoto

system which shows multiple regions of synchronization. First we observe the effects

of attractive and repulsive couplings. Next we qualitatively study the effect of the ini-

tial frequency distribution of the internal oscillators, both the mean and the standard

deviation of different distributions like the Gaussian and Lorentzian distributions,

on these synchronization regions.

1 Introduction

Synchronization has always been an interesting topic of study since its discovery

by Huygen’s (1673) in coupled pendulum. In a field as diverse and encompassing

as non-linear dynamics, coupled systems and their synchronization behaviour has

Gokul P. M. (✉) ⋅ T. Kapitaniak

Division of Dynamics, Lodz University of Technology, ul. Stefanowskiego 1/15,

90-924 Lodz, Poland

e-mail: gokulnappu@gmail.com

T. Kapitaniak

e-mail: tomasz.kapitaniak@p.lodz.pl

V. K. Chandrasekar

Center for Nonlinear Science and Engineering, School of Electrical

and Electronics Engineering, SASTRA University, Thanjavur 613401, Tamil Nadu, India

e-mail: chandrasekar@eee.sastra.edu

© Springer International Publishing AG 2018

V.-T. Pham et al. (eds.), Nonlinear Dynamical Systems with Self-Excited
and Hidden Attractors, Studies in Systems, Decision and Control 133,

https://doi.org/10.1007/978-3-319-71243-7_10

229



230 Gokul P. M. et al.

been used to model a wide variety of systems from those in Biology and Physics to

Economics. Many studies on the mathematical aspects of collective synchronization

have been done in the past decades. These systems have a lot of applications in phys-

ical systems like Josephson junction, electrochemical array, etc. (Yamaguchi et al.

2003; Kiss et al. 2002; Wiesenfeld and Swift 1995; Pantaleone 1998; Hubler et al.

1997).

Many types of synchronization have been observed. Two types of synchroniza-

tion are of immediate interest in our case. They are spontaneaous synchronization

and froced synchronization. In many coupled systems, there can be spontaneous syn-

chronization (Pikovsky et al. 2001; Strogatz 2004; Boccaletti et al. 2002). That is, for

a critical value of a parameter, the system shows some collective behavior without

any external influence. In case of forced synchronization, the system shows collec-

tive behavior due to an external forcing term. There are many more different types of

synchronization that may be induced due to many factors, including noise (Flandoli

et al. 2017).

One interesting coupled system that shows a variety of different synchronization

behaviour was proposed by Kuramoto (1975). The Kuramoto system is a system of

N-coupled phase oscillators. These can be thought of as a collection of limit cycles.

Under certain conditions, these coupled phase oscillators were seen to undergo the

phenomenon of synchronization. Many different variations of the system, including

even second-order differential forms were studied (Bountis et al. 2014; Olmi et al.

2014; Jaros et al. 2015), many of whom showed partial synchronizations, chimera

(Maistrenko et al. 2017) and even solitary states (Jaros et al. 2017).

A system similar to the one that will be studied in this chapter was analyzed by

Childs and Strogatz in 2008 (Strogatz 2008). These systems show different types

of synchronization. An interesting fact about this specific system is that even repul-

sive coupling of oscillators lead to synchronization. Not only that, they show behav-

ior very similar to that shown when the oscillators have attractive coupling. This

is true for different distributions of the initial frequencies making it a very general

phenomenon.

To understand the system better, we can consider the Kuramoto system to be a set

of points moving around in a unit circle with 𝜃 position and angular velocity 𝜔. We

can see that some transformations, like 𝜃 ⟶ 𝜃 + c, where c is a constant does not

change the system. A commonly used transformation of the system during calcula-

tions is 𝜔 ⟶ 𝜔 + c. This is called the rotating frame transformation. This can be

seen as the unit circle with all the point oscillators itself rotating at a frequency. Also,

now addition of external force could be seen as the unit circle itself experiencing the

force rather than the same force being applied to every single oscillator, since both

scenarios give the same equation.

There are many ways of solving the basic system. First we will see the method

that was used by Kuramoto (1975, 1984) to solve this system, after which we will

use a method suggested by Ott and Antonsen (2008).
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2 Solving Kuramoto System

First we will see the method used by Kuramoto to solve this system (Kuramoto 1975,

1984). The Kuramoto model is a simple model ofN-coupled oscillators with different

frequencies. The simple Kuramoto system is given by

d𝜃i
dt

= 𝜔i +
K
N

N∑

j=1
sin(𝜃j − 𝜃i) (1)

where i = 1,… ,N denote the N oscillators. Here 𝜔i gives the frequencies of the ith

oscillator. That is the frequency at which the oscillator would move had it not been

coupled to other oscillators. 𝜃i denotes the phase of the ith oscillator. The parameter

K gives the coupling strength. We have taken the coupling to be a sine function as was

done in the original Kuramoto article, although there have been many generalizations

done in later years.

We can see from the system equations that in the case of K > 0, which is the

one we are working with, the coupling is making the system come closer. That is,

if the phase of an individual oscillator is smaller than the average phase, then the

coupling will increase it, while if the individual oscillator has a larger than average

phase, then it will be decreased by the coupling. The system has a natural tendency

to synchronize towards the average phase.

It should also be noted that N−1
is also an important term in the coupling. If not

for this term, the coupling would not be N-independent in the thermodynamic limit

of N ⟶ ∞, which is the case we consider for analysis.

We define 𝜓 as R = rei𝜓 = 1
N

∑n
i=1 e

i𝜃i where R is called an order parameter. It

can be seen from this expression, that 𝜓 gives the average phase, and is hence called

the ‘mean field’, while r gives the variation of the individual oscillators phase from

𝜓 . This will be used as the measure for synchronization as when all sysntems are

synchronized, r = 1.

We now write the system equations as a function of r and 𝜓

d𝜃i
dt

= 𝜔i +
K
N
Im

[ n∑

i=1
ei(𝜃j−𝜃i)

]

= 𝜔i +
K
N
Im

[
e−i𝜃i

n∑

i=1
ei𝜃j

]

= 𝜔i + Im[Ke−i𝜃i rei𝜓 ]

= 𝜔i + Krsin(𝜓 − 𝜃i)
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From this form of the system equations we see that Kuramoto system can be

thought of as a system of oscillators being forced by a mean field. This also explains

neatly the tendency of the system to synchronize into the mean field.

Now we do the transformation 𝜃 ⟶ 𝜃 − 𝜓 and 𝛺 is assumed to be the steady

state frequency of the oscillators. One thing to be noted is that, for solving his system,

Kuramoto used a few assumption, like the existence of a steady state. To understand

this, we can think of it as the system of N-oscillators being thought of as a single

oscillator moving in the unit circle at 𝜓 angle and 𝛺 frequency. This assumption was

later verified by the self-consistency condition. Coming back to the calculation, we

do one more transformation in which we go to a rotating frame with 𝛺 frequency.

This eliminated the 𝜓 and 𝛺 terms leaving us with the equation

⇒
d𝜃i
dt

= 𝜔i − Krsin(𝜃i)

Since we are taking steady state solutions, we have r = constant.
There are two types of solutions for the oscillators described above depending on

the two terms on the right-hand side.

If |𝜔i| ⩽ Kr, then the oscillators converge to a steady state and reach synchro-

nization. This implies that at steady state ∣ 𝜔i ∣= Krsin𝜃i

⇒ 𝜃i = sin−1(Kr
𝜔i

) ⩽
pi
2

This set of oscillators are called phase locked, as undoing the transformations

would mean that these are moving at the same frequency 𝛺.

Now let us consider the other case where |𝜔i| ≥ Kr. These oscillators do not syn-

chronize but move freely around the unit circle.

Now the problem which arises is: Is r and 𝜓 constant? This was solved by

Kuramoto by assuming that the mean of the drifting oscillators form a stationary dis-

tribution on the circle. If 𝜌(𝜃, 𝜔)d𝜃 denote the fraction of oscillators with frequency

𝜔 that lie between 𝜃 and 𝜃 + d𝜃, then this 𝜌, to satisfy the stationary distribution

condition, should be inversely proportional to the speed.

⇒ 𝜌(𝜃, 𝜔) = C
𝜔 − Krsin𝜃

Here C = 1
2𝜋

√
𝜔2 − (kr)2 is the normalization constant.

Now to solve the system and to justify our assumptions, we will invoke the self-

consistency condition. Since the order parameter has to be a constant as assumed,

< ei𝜃 >=< ei𝜃 >lock + < ei𝜃 >drift

where <> denote the population averages. Continuing from here, since 𝜓 = 0,

< ei𝜃 >= r.
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⇒ r =< ei𝜃 >lock + < ei𝜃 >drift

Due to symmetry of the system as N ⟶ ∞,

< ei𝜃 >lock=< cos𝜃 >lock=
∫

Kr

−Kr
cos𝜃(𝜔)g(𝜔)d𝜔

For the drifting oscillators

< ei𝜃 >drift=
∫

𝜋

−𝜋 ∫|𝜔|>Kr
ei𝜃𝜌(𝜃, 𝜔)g(𝜔)d𝜔d𝜃

This integral vanishes due to the symmetry of 𝜌. Therefore now the whole self-

consistency is given just by the locked terms, which is written in terms of 𝜃 as

r = Kr
∫

𝜋∕2

−𝜋∕2
cos2𝜃g(Krsin𝜃)d𝜃

which has two solutions, the trivial r = 0 and the other given by

1 = K
∫

𝜋∕2

−𝜋∕2
cos2𝜃g(Krsin𝜃)d𝜃

This shows the increase in r beyond a critical Kc given by

Kc =
2

𝜋g(0)

For Lorentzian distribution, the integral can be calculated exactly and gives r =√
1 −

Kc

K
.

3 Ott-Antonsen Method for Solving Kuramoto-Like
Systems

3.1 Original Kuramoto System

As of now, we have defined and solved the simple Kuramoto system. We have shown

the existence of a synchronous state in the N ⟶ ∞ limit and derived the expression

for the the order parameter r. But as intuitive as the proof and calculations for the

system have been, it is not a general method. As in, even though this works for a
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simple Kuramoto system, the same method cannot be used for systems derived from

it, like the Kuramoto system with an external forcing term.

There are many methods used to solve this system, most of which are similar to

the method shown above. This process is done by separating the system into different

sub-populations and then using self-consistency to arrive at a solution for r. We will

be using a different approach proposed by Ott and Antonsen (2008). The crux of this

method is the use of an anzatz given by them. The reason and proof for the use of

this anzatz is given in has been studied in their publication and further used in many

others. Here we will just be showing the process involved with the solving.

The simple Kuramoto system is again given by

d𝜃i
dt

= 𝜔i +
K
N

N∑

j=1
sin

(
𝜃j − 𝜃i

)
(2)

where i = 1…N denote the N oscillators.

We define 𝜓 and r the same way as before

rei𝜓 = 1
N

n∑

i=1
ei𝜃i

Re-writing the equation again in terms of 𝜓 and r

d𝜃i
dt

= 𝜔i +
K
N
Im

[ n∑

i=1
ei(𝜃j−𝜃i)

]

= 𝜔i +
K
N
Im

[
e−i𝜃i

n∑

i=1
ei𝜃j

]

= 𝜔i + Im
[
Ke−i𝜃i rei𝜓

]

d𝜃i
dt

= 𝜔i + Krsin
(
𝜓 − 𝜃i

)
(3)

It is easier to use Eq. (3) for simulations since as is shown, it is the same system in

a different form.
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For our calculations

d𝜃i
dt

= 𝜔i +
K
N

( n∑

i=1

ei(𝜃j−𝜃i) − e−i(𝜃j−𝜃i)

2i

)

= 𝜔i +
K
2i

(
Re−i𝜃i − R∗ei𝜃i

)

In the continuous limit of N → ∞, let f be the probability distribution of 𝜃 and

g(𝜔) =
∫

2𝜋

0
f (𝜔, 𝜃, t) d𝜃 (4)

be the time-independent oscillator frequency distribution.

The continuity equation is given by

𝜕f
𝜕t

+ 𝜕

𝜕𝜃
( f 𝜃̇) = 0

⇒
𝜕f
𝜕t

+ 𝜕

𝜕𝜃

[
(𝜔i +

K
2i
(Re−i𝜃 − R∗ei𝜃))f

]
(5)

where

R =
∫

2𝜋

0
d𝜃

∫

∞

−∞
d𝜔fei𝜃 (6)

Expanding f using Fourier series gives us

f =
g(𝜔)
2𝜋

[
1 +

[ ∞∑

n=1
fn(𝜔, t)ein𝜃 + f ∗n (𝜔, t)e

−in𝜃

]]

We will now use the anzatz provided by Ott and Antonsen

fn(𝜔, t) = [𝛼(𝜔, t)]n

where |𝛼(𝜔, t)| ⩽ 1 so that the system is convergent.

Putting this back in Eq. (5) and taking only the coefficients of ei𝜃 , we get

𝜕𝛼

𝜕t
+
[
𝛼𝜔i + k

2i
(R𝛼2 − R∗)i

]
= 0

⇒
𝜕𝛼

𝜕t
+ k

2
(
R𝛼2 − R∗) + i𝜔𝛼 = 0 (7)

and into Eq. (6)
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R∗ =
∫

∞

∞
d𝜔𝛼(𝜔, t)g(𝜔) (8)

As of now, this converted an infinite dimensional system in 𝜃 to an infinite dimen-

sional system in𝜔. To solve the system, we need to make this into a finite dimensional

set of differential equations, which is what this method will do in the following steps.

Now we will solve the equation for an example of 𝜔—distribution. Here we take

it to be Lorentzian.

g(𝜔) = 𝛥

𝜋

1[
(𝜔 − 𝜔0)2 + 𝛥2

]

= 1
2𝜋i

[
1

𝜔 − 𝜔0 − i𝛥
− 1

𝜔 − 𝜔0 + i𝛥

]

By going into a rotating frame using the transformation 𝜔 ⟶ 𝜔−𝜔0
𝛥

and 𝜃 ⟶
𝜃 − 𝜔0t, we can see that it is possible to put 𝜔0 = 0 and 𝛥 = 1.

Putting this in Eq. (8) and solving using the residue method, we get

R = 𝛼
∗(−i, t) (9)

Using this and R = rei𝜓 into Eq. (7), we get

𝜕

𝜕t
(
re−i𝜓

)
+ k

2
(
r3e−i𝜓 − re−i𝜓

)
+ re−i𝜓 = 0

⇒
𝜕r
𝜕t
e−i𝜓 − ire−i𝜓

𝜕𝜓

𝜕t
+ k

2
(r3e−i𝜓 − re−i𝜓 ) + re−i𝜓 = 0

Separating the real and imaginary parts, we have

𝜕r
𝜕t

+ k
2
(
r3 − r

)
+ r = 0 (10)

𝜕𝜓

𝜕t
= 0 (11)

On solving Eqs. (10) and (11), we get

r(t) =

√√√√√√
(1 − 2

K
)

|1 + [
1− 2

K
r(0)2

− 1]e(1−
K
2 )t|
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From this we can see that forK < 2, which is the critical k value, the order parame-

ter r goes to zero, signifying that the system is not synchronized. ForK > 2, the order

parameter is non-zero asymptotically. This is the same as was seen in the previous

section, with Kc = 2.

3.2 Kuramoto System with External Force

The Kuramoto system with an external driving force (Sakaguchi 1988) is given by

d𝜃i
dt

= 𝜔i +
K
N

N∑

j=1
sin(𝜃j − 𝜃i) + Fsin(𝛺t − 𝜃i) (12)

where i = 1…N denote the N oscillators.

R and𝜓 are defined exactly the same as in the last section.R = rei𝜓 = 1
N

∑n
i=1 e

i𝜃i .

Following the same method (Antonsen et al. 2008; Ott and Antonsen 2008; Childs

and Strogatz 2008), we can get a different form of the same equation which is easier

to work with in simulations. Therefore Eq. (12) is rewritten as

d𝜃i
dt

= 𝜔i + Krsin
(
𝜓 − 𝜃i

)
+ Fsin

(
𝛺t − 𝜃i

)

Now to reduce this infinite dimensional equation, we follow the same procedure as

in the previous section.

For our calculations

d𝜃i
dt

= 𝜔i +
K
N

( n∑

i=1

ei(𝜃j−𝜃i) − e−i(𝜃j−𝜃i)

2i

)
+ Fei(𝛺t−𝜃i) − e−i(𝛺t−𝜃i)

2i

Now we put 𝜃i ⟶ 𝜃i +𝛺t

d𝜃i
dt

= 𝜔i −𝛺 + K
N

( n∑

i=1

ei(𝜃j−𝜃i) − e−i(𝜃j−𝜃i)

2i

)
+ Fe−i𝜃i − ei𝜃i

2i

= 𝜔i −𝛺 + 1
2i
[(KR + F)e−i𝜃i − (KR∗ + F)ei𝜃i ]

Since K and R are real

d𝜃i
dt

= 𝜔i −𝛺 + 1
2i

[
(KR + F)e−i𝜃i − (KR + F)∗ei𝜃i

]
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For the continuous system as N ⟶ ∞, first we write the continuity equation

which gives us

⇒
𝜕f
𝜕t

+ 𝜕

𝜕𝜃

[
𝜔 −𝛺 + 1

2i
[
(KR + F)e−i𝜃 − (KR + F)∗ei𝜃

]
f
]

(13)

and R being the same as before. Now we do the Fourier expansion, take the same

ansatz and check for the coefficients of ei𝜃 , which gives us

𝜕𝛼

𝜕t
+ 1

2
[
(KR + F)∗𝛼2 − (KR + F)

]
+ [1 + i(𝛺 − 𝜔)] 𝛼 = 0

We again consider the Lorentzian distribution for 𝜔 where we put 𝛥 = 1 and 𝜔 =
𝜔0 and repeat the same process, after which we get

𝜕R
𝜕t

+ 1
2
[
(KR + F)∗R2 − (KR + F)

]
+
[
1 + i(𝛺 − 𝜔0)

]
R = 0

Considering R = rei𝜓 , we can simplify this into two equations

ṙ = −𝛥r + (1 − r2)
2

(F cos(𝜓) + Kr) (14)

𝜓̇ = −(𝛺 − 𝜔0) −
F
2r

(1 + r2) sin(𝜓) (15)

This can be solved with the system being depended on the parameters K,F, (𝛺 −
𝜔0) (Childs and Strogatz 2008).

4 Model of the System

In this section we study a synchronization of Kuramoto-like phase oscillators with a

time-dependent external force. The equations of motion are as follows:

𝜃̇i = 𝜔i +
K
N

∑N
j=1 sin(𝜃i − 𝜃j) − F sin(𝜃i − 𝜉)

̇̇
𝜉 = 𝜎 − F

N

∑N
j=1 sin(𝜉 − 𝜃j)

}
(16)

where i = 1…N and N is number of single Kuramoto-like oscillators. Parameter K
refers to strength of internal oscillators, 𝜔i is frequency of single node, F is external

force and 𝜎 refers to external frequency. The phase of each Kuramoto-like system

is given by 𝜃i and phase of external oscillator is 𝜉. In our study we vary parameters

F, K and 𝜔i while external frequency is always fixed to 𝜎 = 1.5. The frequencies
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𝜔i are given by mean frequency 𝜔0, standard derivation and distribution (Gaussian,

uniform or Lorenzian).

There are two ways to visualize this system. One way is to consider this as a set

of Kuramoto oscillators experiencing a force. But unlike the normal force, in our

system the force is dependent to an extent on the internal oscillators. That is this

force is influence by the oscillators themselves.

The other way is to think of this system as a set of kuramoto oscillators being

influence by a lone strongly coupled external kuramoto oscillator. We have mainly

used this approach in explaining the results that we observed.

5 Numerical Study

Fig. 1 shows how the order parameter r changes with the strength of the external

oscillator for both repulsive and attractive coupling (Figs. 1a and 1b respectively).

The synchronization state appears for both type of coupling, however for a repulsive

coupling, it occurs for smaller values ofF then for the attractively coupled oscillators.

Additionally, we observe two ranges of synchronous motion with desynchronization

between them.

To see if these two regions are the same or distinct we calculate the ratio of mean

frequency 𝜔 of the oscillators to the frequency of the external oscillator 𝜎 (see Fig. 2)

was plotted as shown in Fig. 2a. As can be seen here, these regions are qualitatively

different. This implies that the first synchronization region refers to phase locked

solution with ratio 2:1 between synchronized Kuramoto-like oscillators and external

frequency. The second region is typical 1:1 locked state.

To study this phenomenon in detail, we increased the external frequency to 30

times higher then internal frequency. The ratios are plotted in Fig. 2b. Transition to

synchronization state occurs every time the internal frequency reaches an integer

multiple value of the external frequency. That is to say that the repulsively coupled

oscillators synchronize separately into natural frequencies which are integer multi-

ples of the external frequency and that this is a more general phenomenon with not

two but many different internal synchronizations depending on the initial difference

between the external and internal frequencies. Nevertheless it is clear that for higher

ratios the plateau of synchronous motion becomes narrower.

Aforementioned results are for Lorentzian internal frequency distribution. To

see how general this phenomenon is, we repeat the process with different initial

frequency distribution for the internal oscillators, each time varying the standard

deviation. Figure 3 shows the plot of the change of order parameter for varying

strength of external oscillator for the Lorentzian distribution for varying standard

deviation, that is 0.1, 0.01, 0.001. Figure 4 shows the same plot but with the inter-

nal oscillators now in an initial distribution that is Gaussian and Fig. 5 shows again

the same plot, but now for a Uniform initial internal frequency distribution. As it

is easy to see, the observed phenomenon is independent of the frequency distribu-

tion, although we observe that it is sensitive to the standard deviation. The region
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Fig. 1 Order parameter in repulsive and attractive coupling. The parameters are 𝜔0 = 0.5, standard

deviation = 0.01, 𝜎 = 1.5: a K = 1.5 for repulsive and b K = −1.5 for attractive coupling
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Fig. 2 Plot of the change in

the ratio of mean frequency

𝜔 of the oscillators to

frequency of the the external

oscillator 𝜎 with respect to

the parameter F for repulsive

coupling for three values of

𝜎 = 1.5 (panel (a)), 𝜎 = 2.5
(panel (b)) and 𝜎 = 15 (panel

(c)). The other parameters

are 𝜔0 = 0.5, standard

deviation = 0.01 and

K = 1.5
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Fig. 3 Panels (a), (b) and

(c) show the variation of

order parameter r with

increasing external oscillator

interaction(F) for an initial

𝜔i distribution as Lorentzian

with varying standard

deviation of 0.1, 0.01, 0.001

respectively
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Fig. 4 Panels (a), (b) and

(c) show the variation of

order parameter r with

increasing external oscillator

interaction(F) for an initial

𝜔i distribution as Gaussian

with varying standard

deviation of 0.1, 0.01, 0.001

respectively
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Fig. 5 Panels (a), (b) and

(c) show the variation of

order parameter r with

increasing external oscillator

interaction (F) for an initial

𝜔i distribution as Uniform

with varying standard

deviation of 0.1, 0.01, 0.001

respectively



Synchronization in Kuramoto Oscillators Under Single External Oscillator 245

Fig. 6 a Shows the variation of the order parameter (in color) with respect to external oscillator

interaction (F) and the strength of internal coupling (K) for a given 𝛺 = −(𝜎 − 𝜔0), where 𝜔0 =
0.5, 𝜎 = 1.5, for Lorentzian distribution as the initial oscillator frequency distribution. b Shows the

variation of the order parameter (in false color) with respect to the external force/oscillator interac-

tion (F) and 𝛺 = −(𝜎 − 𝜔0), where 𝜔0 = 0.5, 𝜎 increases from −1 to 1, for Lorentzian distribution

as the initial oscillator frequency distribution for a fixed strength of internal coupling (K) = 1.5
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of the transition is changing with the standard deviation whereas the regions them-

selves are independent of the distribution. Also the smaller the standard deviation,

the more pronounced the effect. That is, for more identical oscillator, we see that the

different regions and their boundaries become more distinct. This could mean that

the transition region depends on how nearly identical the initial frequencies are.

Now we base the initial 𝜔 − distribution as Lorentzian distribution again. As can

be noted, there are three main parameters of consideration in the system equations.

They are, the strength of the external oscillators (F), the coupling strength of the

internal oscillators (K) and the difference between the mean internal frequency (𝜔0)

and the frequency of the external oscillator (𝜎). To see how theses parameters affect

the order parameter, we plot Fig. 6. This plot shows that the observed phenomenon

is robust and exists for wide range of system parameters. In both panels we vary

external force F in range F ∈ [0, 2], however vertical axis is different, i.e., in panel

(a) we change strength of external oscillators K from 0 to 2.0 and in panel (b) the

difference 𝛺 = −(𝜎 − 𝜔0) between the external frequency and the mean internal fre-

quency. In color we show the order parameter r. In Fig. 6a synchronous range (yellow

color) appears for K > 0.6 nearly independ of the external oscillator strength F. It is

present till K ≈ 1.1 (with some variations with where the oscillators desynchronize

a change in the ratio between frequencies from 2:1 to 1:1 occurs. Above K ≈ 1.3 the

synchronous state persists and is stable. In Fig. 6b the structure is more complex due

to change of ratio between the frequencies. For most of 𝛺 values two or more ranges

of synchronization appear.

6 Analysis

The system we are dealing with is

𝜃̇i = 𝜔i +
K
N

∑N
j=1 sin(𝜃i − 𝜃j) − F sin(𝜃i − 𝜉)

̇̇
𝜉 = 𝜎 − F

N

∑N
j=1 sin(𝜉 − 𝜃j)

}
(17)

which consists of N coupled oscillators which are acting under a force, whose fre-

quency is coupled with the system using an attractive coupling. It is easier to see this

by writing Eq. (17) using the mean field 𝜓 and the order parameter R defined as

Rei𝜓 = 1
N

N∑

j=1
ei𝜃j (18)

using (18), we can rewrite (17) as

𝜃̇i = 𝜔i + KR sin(𝜃i − 𝜓) − F sin(𝜃i − 𝜉)
̇̇
𝜉 = 𝜎 − FR sin(𝜉 − 𝜓)

}
(19)
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This is an easier form to understand. This system has atleast two different ways of

attaining synchronisation: with either the mean field 𝜓 or the forcing field 𝜙. In fact

both these types of synchronisation has been oberved in this system as can be seen

from the Fig. 1.

Now to analyze this system we go into a rotating frame. That is we do the transfor-

mation 𝜃i → 𝜃i − 𝜉. After which we follow the procedure given by Ott and Antonsen

and taking the 𝜔 − distribution to be Lorentzian to finally arrive at

Ṙ = 1
2
[
(KR + F)∗R2 − (KR + F)

]
− F

2
(R − R∗) −

[
𝛥 + i(𝜎 − 𝜔0)

]
R

where 𝜔0 is the mean and 𝛥 the width of the 𝜔 − distribution.

Now by putting R = rei𝜓 , we can simplify the whole system into the following

two equations:

ṙ = −𝛥r + (1 − r2)
2

(F cos(𝜓) − Kr) (20)

𝜓̇ = 𝛺 − F
2r

(1 + 3r2) sin(𝜓) (21)

where 𝛺 = −(𝜎 − 𝜔0), 𝜓 is the mean field of the full system.

Figure 7 shows the order parameter as calculated from the equation with increas-

ing value of F for different 𝛥 values along with the respective numerical result.

Fig. 7 Analytical and numerical plots for order parameter with F for different 𝛥 values
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7 Conclusion

We observed that in the presence of a strong attractively coupled oscillator, a sys-

tem of repulsively coupled kuramoto oscillators reach synchronization faster than a

system of attractively coupled oscillators. There are different regions of synchroniza-

tion of the internal oscillators, characterized by their frequencies. They are such that

the mean of the internal oscillators are integer multiples of the external oscillator

frequency.

Next found out that this phenomenon is independent of the initial frequency dis-

tribution by repeating the numerical simulations for a total of three different ini-

tial internal frequency distributions: namely the Lorentzian, Gaussian and uniform

distributions.

We also observed that even though this phenomenon occurs independent of the

initial internal frequency distribution, they are dependent on the width of the dis-

tribution, which characterizes how close these initial values are and the smaller the

width, the more clearer these separate regions became. In other words the more iden-

tical the initial distribution, the more clear the observed phenomenon.

Finally, we solved this system of equations using the method given by Ott-

Antonsen. After having done the analysis, it was discovered that this phenomenon

was not seen analytically.
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