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Preface

Recently, there has been an increasing interest in a new classification of nonlinear
dynamical systems including two kinds of attractors: self-excited attractor and
hidden attractor. Previous research has established that a self-excited attractor has a
basin of attraction which is excited from unstable equilibrium point. As a result,
classical nonlinear systems such as Lorenz’s system, Rössler’s system, Chen’s
system, Lü’s system, or Sprott’s system are considered as systems with self-excited
attractors. Several attempts have been made to study systems with self-excited
attractors, which appear in various fields from computer sciences, physics, com-
munications, biology, mechanics, chemistry, to economics and finance. However,
there are still different questions which invite more investigation in such systems
with self-excited attractors.

In recent years, systems with hidden attractors have received great attention from
both a theoretical and a practical viewpoint. There are a number of important
differences between self-excited attractors and hidden attractors. Self-excited
attractor can be localized straightforwardly by applying a standard computational
procedure. By contrast, we have to develop a specific computational procedure to
identify a hidden attractor due to the fact that the equilibrium points do not help in
their localization. There is evidence that hidden attractors play a crucial role in the
fields of oscillators, describing convective fluid motion, model of drilling system, or
multilevel DC/DC converter. In addition, hidden attractors are attracting wide-
spread interest because they may lead to unexpected and disastrous responses, for
example, in a structure like a bridge or an airplane wing. Therefore, it is useful for
engineering students and researchers to know emergent topics of this new classi-
fication of attractors. For the past 5 years, although there has been a rapid rise in the
discovery of systems with hidden attractors, there is still very little scientific
understanding of hidden attractors. For example, to date there has been little dis-
cussion on the existence of systems with different families of hidden attractors.
Further studies need to be carried out in order to provide insights for hidden
attractor.
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The aim of this book, Nonlinear Dynamical Systems with Self-Excited and
Hidden Attractors, is to report the latest advances, developments, research trends,
design, and realization as well as practical applications of nonlinear systems with
self-excited attractors and hidden attractors. The book consists of 20 contributed
chapters of experts who are specialized in these areas. We hope that this book will
serve as a reference book about nonlinear systems with self-excited and hidden
attractors for researchers and graduate students.

We would like to thank the authors of all chapters submitted to our book. We
also wish to thank the reviewers for their contributions in reviewing the chapters. In
addition, we would like to express our gratitude to Springer, especially to the book
editorial team.

Hanoi, Vietnam Viet-Thanh Pham
Chennai, India Sundarapandian Vaidyanathan
Thessaloniki, Greece Christos Volos
Łódź, Poland Tomasz Kapitaniak
October 2017
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Bifurcation Analysis and Chaotic
Behaviors of Fractional-Order Singular
Biological Systems

Komeil Nosrati and Christos Volos

Abstract In this chapter, singular system theory and fractional calculus are utilized
to model the biological systems in the real world, some fractional-order singular
(FOS) biological systems are established, and some qualitative analyses of pro-
posed models are performed. Through the fractional calculus and economic theory,
a new and more realistic model of biological systems predator-prey, logistic map
and SEIR epidemic system have been extended, and besides some mathematical
analysis, the numerical simulations are considered to illustrate the effectiveness of
the numerical method to explore the impacts of fractional-order and economic
interest on the presented systems in biological contexts. It will be demonstrated that
the presence of fractional-order changes the stability of the solutions and enrich the
dynamics of system. In addition, singular models exhibit more complicated
dynamics rather than standard models, especially the bifurcation phenomena and
chaotic behaviors, which can reveal the instability mechanism of systems. Toward
this aim, some materials including several definitions and existence theorems of
uniqueness of solution, stability conditions and bifurcation phenomena in FOS
systems and detailed introductions to fundamental tools for discussing complex
dynamical behavior, such as chaotic behavior have been added.

Keywords Fractional-Order singular system ⋅ Bifurcation and chaos
Biological systems ⋅ Qualitative analysis
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1 Introduction

Singular systems (differential-algebraic systems, descriptor systems, generalized
state space systems, semi-state systems, singular singularly perturbed systems,
degenerate systems, constrained systems, etc.), more general kind of equations
which have been investigated over the past three decades, are established according
to relationships among the variables (Dai 1989). As a valuable tool for system
modeling and analysis, singular system theory has been widely utilized in different
fields including nonlinear electric and electronic circuits, constrained mechanics,
networks and economy (Lewis 1986).

This class of systems, which was introduced first by Luenberger in 1977, can be
described as the following form.

EðtÞx ̇ðtÞ=HðxðtÞ, uðtÞ, tÞ,
yðtÞ= JðxðtÞ, uðtÞ, tÞ, ð1Þ

where H and J are appropriate dimensional vector functions, and the matrix EðtÞ
may be singular.

In 1954, Gordon investigated the economic theory of natural resource utilization
in fishing industry and discussed the effects of harvest effort on its ecosystem
(Gordon 1954). To study the economic interest of the yield of harvest effort in his
theory of a common-property resource, Gordon proposed an algebraic equation to
put his idea into practice. Recently, by using this theory of natural resource uti-
lization in industry, the effects of harvest effort on biological systems were studied,
and some singular model of these ecosystems were investigated to study the eco-
nomic interest of the yield of harvest effort. Besides, many qualitative analyses such
as stability analysis, presence of bifurcations and chaos and controller design were
investigated (Zhang et al. 2010; Chakraborty et al. 2011; Zhang et al. 2012, 2014).

The majority of these works has been carried out in dynamical modeling of
biological systems using integer-order differential equations which are valuable in
understanding the dynamics behavior. However, the effects of long-range temporal
memory and long-range space interactions in these systems are neglected. Due to its
ability to provide an exact description of different nonlinear phenomena, inherent
relation to various materials and processes with memory and hereditary properties
and greater degrees of freedom, fractional-order modeling has recently garnered a
lot of attention and gained popularity in the evaluation of dynamical systems
(Podlubny 1998; Diethelm 2010; Petras 2011). According to these reasons,
fractional-order modeling of many real phenomena such as biological systems has
more advantages and consistency rather than classical integer-order mathematical
modeling (Rivero et al. 2011).

In this chapter, singular system theory besides fractional calculus is utilized to
model the biological systems in the real world which takes the general form

4 K. Nosrati and C. Volos



EðtÞDαxðtÞ=F t, xðtÞð Þ, t≥ 0, ð2Þ

where F:ℝn →ℝn is a vector function, 0 < α<1, xðtÞ∈ℝn, and EðtÞ∈ℝn× n is a
singular matrix.

Based on this model, some fractional-order singular (FOS) biological systems,
such as predator-prey models (Holling-II, Holling-Tanner and food web), logistic
map and SEIR epidemic model are established. Then, local stability analysis is
performed to investigate the complex dynamical behavior and instability of model
systems around the interior equilibrium, which are beneficial to study the coexis-
tence and interaction mechanisms of population in these systems. Furthermore,
some qualitative analyses of proposed models such as bifurcation and chaos will be
illustrated. These studies can be utilized to design different kinds of controllers with
the purpose of stabilizing a model system around the interior equilibrium, to restore
the model system to a stable state, which are also theoretical guides to formulate
related measures to maintain the sustainable development of population resources in
such biological systems.

The remainder of this chapter is organized as follows. Section 2 presents some
preliminaries in singular systems theory, and fractional-order integral and derivative
definitions will be given. Then, the FOS model will be presented, and some defi-
nitions and theorems in solvability and stability conditions will be derived. In
Sect. 3, we give some theory for the local bifurcations and chaos of vector fields
and maps and extend them to FOS systems. Also, we consider the proposed FOS
predator–prey models, logistic map and SEIR epidemic model in Sect. 4, which are
followed by some discussions of the local stability, the phenomena of bifurcations
and chaos, and numerical simulations to verify the effectiveness of the obtained
results. This section will be continued with interpreting of results in biological
context, and finally, this chapter ends up by concluding remarks.

2 Preliminary FOS Systems Theory

This section explains the proposed FOS model, beginning with the fractional-order
systems and some definitions of fractional integral and derivative operators, and
also, stability theorem in Sect. 2.1. Section 2.2 explains a mathematical definition
of singular systems and gives their properties, and finally, the FOS model is
introduced and established, which is followed by discussion of admissibility and
stability conditions.

Bifurcation Analysis and Chaotic Behaviors … 5



2.1 Fractional-Order Systems

Fractional calculus as a powerful tool for mathematical modeling has been applied
in different fields of sciences such as economics, engineering and biological sys-
tems. For instance, it covers the widely known classical fields such as Abel’s
integral equation and viscoelastic material modeling, and also less reputed fields
including feedback amplifiers, description of propagation in plane electromagnetic
waves, generalized voltage divider, electro-analytical chemistry, electric conduc-
tance of biological systems, neurons modeling, etc. (Podlubny 1998). The
increasing number of such applications shows that there is a significant demand for
more realistic and adequate mathematical modeling of real phenomena using
fractional calculus in which provides one possible approach on this way.

In this section, some basic materials on fractional calculus have been presented,
and the Grunwald-Letnikov (GL), Rienlann-Liouville (RL) and Caputo definitions
among many interesting definitions of fractional integral and derivatives will be
defined as follows.

Definition 1 (Podlubny 1998) Relied on a generalization of classical concept in
traditional calculus in which derivatives of integer order can be represented as limits
of finite differences, the GL fractional derivative operator of order α∈ℝ+ of a
continuous function f :ℝ+ →ℝ is defined by

GL
a Dα

t f ðtÞ= lim
h→ 0

∑
⌊t− a

h ⌋

r=0
− 1ð Þr α

r

� �
f ðt− rhÞ

hα
, ð3Þ

where GL
a Dα

t is the GL derivative of fractional order operator, a and t are the lower
and upper terminals, respectively.

Definition 2 (Podlubny 1998) Based on a generalization of classical concept in
integral using Cauchy formula, the RL fractional integral operator of order α∈ℝ+

of a continuous function f :ℝ+ →ℝ is presented by

RL
a Iαt =

1
Γ αð Þ

Z t

a

t− τð Þα− 1f τð Þdτ, ð4Þ

in which RL
a Iαt is the RL integral of fractional-order operator, and Γð ⋅ Þ is the Euler

gamma function.

Definition 3 (Podlubny 1998) According to the Definition 2, the RL fractional
derivative operator is expressed by

RL
a Dα

t =
dn

dtn
RL
a In− α

t f ðtÞ� �
=

dn

dtn
1

Γ n− αð Þ
Z t

a

t− τð Þn− α− 1f τð Þdτ
8<
:

9=
;, ð5Þ
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where RL
a Dα

t is the RL derivative of fractional order operator, and
n= ⌈α⌉=min x∈Zjx≥ αf g.

Practical problems require definitions of fractional derivatives allowing the uti-
lization of physically interpretable initial conditions. Unfortunately, the RL
approach leads to apply initial conditions which are practically useless, and con-
sequently causes to conflict between the well-established and polished mathemat-
ical theory and practical needs. A certain solution to this conflict was Caputo’s
definition which proposed by Michele Caputo as follows (Caputo 1966):

Definition 4 (Diethelm 2010) Based on Definition 2, the Caputo fractional
derivative operator is defined by

C
a D

α
t =

RL
a In− α

t
dn

dtn
f ðtÞ

� �
=

1
Γ n− αð Þ

Z t

a

t− τð Þn− α− 1 dn

dtn
f τð Þdτ

8<
:

9=
;, ð6Þ

where C
a D

α
t is the Caputo derivative of fractional order operator and n is defined as

same as Definition 3.
All these three approaches provide an interpolation among integer-order

derivatives, and their definitions must reach to the same results during
steady-state dynamical processes studies.

The initial value problem of a time invariant fractional-order differential equation
(FODE) model related to Definition 4 is

C
0D

α
t xðtÞ=F xðtÞð Þ,

xðtÞjt=0+ =X0,

�
ð7Þ

in which xðtÞ∈ℝn and F:ℝn →ℝn. The stability theorem on nonlinear
fractional-order system (7) has been introduced below.

Theorem 1 (Petras 2011) Consider the nonlinear autonomous commensurate
fractional-order system (7). The equilibrium points of this system can be calculated
by solving the equation f ðxÞ=0. This system is locally asymptotically stable if all
eigenvalues λi (i=1,⋯, n) of the Jacobian matrix J = ∂f ̸∂x evaluated at the
equilibrium points lie in the stable regions of Rα

s (Fig. 1).

2.2 FOS Systems

Singular systems are general kind of equations, which have been investigated
during three past decades and established according to relationships among the
variables based on differential or algebraic equations that form the mathematical
model of the system. As a valuable tool, the theory of these systems has been
widely utilized in different fields including modeling and analysis of nonlinear

Bifurcation Analysis and Chaotic Behaviors … 7



electric and electronic circuits, constrained mechanics, networks and economy
(Podlubny 1998).

Since the 1960s, much research has been extensively focused on analysis of a
dynamical system with the state-space variable method as a core feature in modern
control theory. The concept of state in a dynamic system refers to a minimum set of
variables, and state-space variable method provides us with a completely new
method for system analysis and offers us more understanding of systems. Using this
method, state-space models of a time-varying nonlinear singular system are
obtained as (1). This suitable representation can describe systems that evolve over
time, especially; nonlinear singular systems which are the natural outcome of
component-based modeling of complex dynamic systems.

If H and J are linear functions of xðtÞ and uðtÞ, another special form of the
system (1) is a time-varying linear singular system as

EðtÞx ̇ðtÞ=AðtÞxðtÞ+BðtÞuðtÞ,
yðtÞ=CðtÞxðtÞ, ð8Þ

where xðtÞ∈ℝn, yðtÞ∈ℝr, uðtÞ∈ℝm, and EðtÞ∈ℝn× n, AðtÞ∈ℝn× n, BðtÞ∈ℝn×m,
and CðtÞ∈ℝr × n are time-varying matrices. Here, for singular systems mentioned
above, matrix E is considered to be singular, i.e., rankE= r< n, otherwise, the
system (1) and (8) reduce to a standard (normal) system. In practical system
analysis and control system design, many system models may be established in the
form of (8), while they could not be described by standard forms (Campbell 1980).

Fig. 1 Stability (Rα
s : = λj j argðλÞj> απ ̸2, λ∈ℂf g) and instability (Rα

is: = fλj j argðλÞj< απ ̸2,
λ∈ℂg) regions of a fractional-order system

8 K. Nosrati and C. Volos



Under the regularity assumption,1 the state and output responses of singular
system is derived, and it has been demonstrated that unlike standard system theory,
the singular system (8) has a unique solution only for the consistent initial vector
xð0Þ, and for the h times piecewise continuously differentiable input function uðtÞ,
where h is the nilpotent index. Also, by using time domain analysis, a fair
understanding of the system’s structural features and its internal properties such as
reachability, controllability, observability, system decomposition, and transfer
matrix were obtained (Duan 2010).

Compared with the standard systems, the price paid is that singular systems are
more difficult to deal with. However, the advantage they offer over the more often
used standard systems is that they are generally easier to formulate and exhibit more
complicated dynamics and have been applied widely in different fields of electrical
engineering (Ayasun et al. 2004; Marszalek et al. 2005; Yue and Schlueter 2004),
aerospace engineering (Masoud et al. 2006), biology (Zhang et al. 2012), chemical
processes (Kumar and Daoutidis 1999) and economics (Zhang 1990; Luenberger
and Arbel 1997). With the help of singular model for the systems in mentioned
fields, complex dynamical behaviors of them, especially the bifurcation phenom-
ena, which can reveal the instability mechanism of systems, have been extensively
studied. However, as far as the FOS system theory is concerned, the related research
results are few.

Very recently, the study on FOS systems has received much attention due to the
fact that the fractional order calculus has contributed great merits, particularly in
non-short memory and non-local property of describing physical systems, espe-
cially in power systems and biology (Kaczorek and Rogowski 2015; Nosrati and
Shafiee 2017). These complicated systems requires considering not only stability,
but also regularity and impulse elimination, while the latter do not appear in
fractional-order standard ones. Although a number of valuable results and great
achievements in the research about FOS systems have been reported in the literature
(Yao et al. 2013; N’Doye et al. 2013; Ji and Qiu 2015; Zhang and Chen 2017),
there are still many challenging and unsolved problems in the field of stability
analysis and controller synthesis.

An initial value problem of a time invariant nonlinear FOS model related to
Definition 4 is

EC
0D

α
t xðtÞ=F xðtÞð Þ,

xðtÞjt=0+ =X0,

�
ð9Þ

where x∈ℝn and F:ℝn →ℝn, and E∈ℝn× n is a singular matrix (rankE= r< n),
and C

0D
α
t denotes the Caputo derivative operator. If F is linear function of xðtÞ,

another special form of the system (9) is a time invariant linear FOS system

1For the singular system (2), if detðsE−AÞ≠ 0 for some complex number s, then the pair ðE,AÞ is
said to be regular (Yang et al. 2012).

Bifurcation Analysis and Chaotic Behaviors … 9



EC
0D

α
t xðtÞ=Ax tð Þ,

xðtÞjt=0+ =X0,

�
ð10Þ

where A= ∂F ̸∂x∈ℝn× n is the jacobian matrix evaluated at the equilibrium points
FðxÞ=0ð Þ. Parallel to fractional-order standard systems, the concerning basic
definitions and relevant facts for the FOS system (10) are given as follows (Yao
et al. 2013).

Definition 5 For FOS system (8), the triplet ðE,A, αÞ is called regular if there exists
a constant scalar s0 ∈ℂ such that sα0E−A

�� ��≠ 0.
Similar to the proof of regularity of integer order singular systems, the triplet

ðE,A, αÞ in FOS system (10) is regular if and only if there exist two nonsingular
matrices Q and P such that QEP= diagðIn1 ,NÞ and QAP= diagðA1, In2Þ where
n1 + n2 = n, A1 ∈ℝn1 × n1 , N ∈ℝn2 × n2 is nilpotent. Assume the triplet ðE,A, αÞ in
FOS system (10) is regular, then, this system can be transformed into

C
0D

α
t x1ðtÞ=A1x1 tð Þ,

NC
0D

α
t x2ðtÞ= x2 tð Þ,

�
ð11Þ

where xT1 tð Þ xT2 tð Þ	 
T =P− 1x tð Þ, x1 tð Þ∈ℝn1 and x2 tð Þ∈ℝn2 . The initial state
response of FOS system (11) is

x1 tð Þ
x2 tð Þ
� �

=P
Eα, 1 A1tαð Þx1 0ð Þ

− ∑
h− 1

k=1
δ k − 1ð Þαð Þ tð ÞNkx2 0ð Þ

2
4

3
5, t≥ 0

where δ tð Þ is the impulse function, and Eα, β tð Þ is the two-parameter Mittag-Leffler
function. From the derived response, we know that the triplet ðE,A, αÞ is
impulse-free if N =0.

Let σðE,A, αÞ= fλj λ∈ℂ, λ finite, jλE−Aj =0g denotes the finite pole set for
FOS system (10). It can be easily known from Theorem 1 that the system (10) is
asymptotically stable, if all the finite dynamic modes lie in the domain Rα

s .

Remark 1 Consider the nonlinear autonomous commensurate FOS system (9). This
system is locally asymptotically stable if all eigenvalues λi (i=1,⋯, n) of the
Jacobian matrix A= ∂F ̸∂x evaluated at the equilibrium points, satisfy the relation
argðλiÞj ji=1,⋯, n > απ ̸2. Also, to assess the stability analysis of the system (9), the
roots of the equation λαI −Aj j=0 evaluated at the equilibrium points can be
checked regarding the imaginary axis.
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Definition 6 The generalized eigenvectors v satisfying Ev=0 are defined as:

(1) The infinite eigenvector of order one satisfies Ev1i =0.
(2) The infinite eigenvector of order k satisfies Ev1i =Avk− 1

i , k>1.

Remark 2 Suppose that Ev1 = 0, then the infinite eigenvalues associated with the
generalized principal vectors vk satisfying Evk = vk− 1 are impulsive modes. The
triplet ðE,A, αÞ is impulse-free if and only if there exists no infinite eigenvector of
order two.

Definition 7 FOS system (10) is said to be admissible, if the triplet ðE,A, αÞ is
regular, impulse-free, and all the finite eigenvalues of triplet ðE,A, αÞ lie in the
stable regions of Rα

s .
System (9) is the general or fully-implicit nonlinear time-invariant FOS system.

The dynamics of a large class of physical systems, including nonlinear circuits,
robotics, and biological system, can be modeled by an important especial case of
the system (9), called parameter dependent semi-explicit FOS system of the form

C
0D

α
t zðtÞ = f ðzðtÞ, yðtÞ, pÞ f :ℝn+m+ q →ℝn, ð12aÞ

0= gðzðtÞ, yðtÞ, pÞ g:ℝn+m+ q →ℝm, ð12bÞ

where z ∈ Z ⊂ ℝn, y∈Y ⊂ ℝm and p∈P ⊂ ℝq. In the state-space Z × Y ,
dynamic state variables z and instantaneous state variable y are distinguished. The
dynamics of the states z are directly defined by (12a) while the dynamics of the y
variable in such that the system satisfies the constraints (12b). The parameters p
define a specific system configuration and the operating condition.

As an example, for the predator-prey system, typical dynamic state variables are
time dependent values of population densities of the prey and predator, and
instantaneous variable is harvest effort performed by a static human population. The
parameter space is composed of system parameters such as capture rate, growth
rate, carrying capacity, etc., and operating parameters such as net economic profit.
The interactions between prey and predator define the f equations and the constraint
g=0 is defined by the economic interest equation.

Lemma 1 (Nosrati and Shafiee 2017) The characteristic polynomial of system
(12a, 12b) can be obtained by jλαI − Jj=0, where I is the identity matrix, and

J =
∂f
∂z

+
∂f
∂y

ð∂g
∂y
Þ− 1 ∂g

∂z
. ð13Þ
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Theorem 2 The FOS system (12a, 12b) is stable if and only if the fractional degree
characteristic polynomial

DðλÞ= λαI − Jj j= a0λαn + a1λαn− 1 + . . . + anλα0 , ð14Þ

with αn = α= nα′, i.e., this polynomial has no zero in the closed right-half of the
Riemann complex surface, that is

DðλÞ≠ 0, for Re λ≥ 0. ð15Þ

It is assumed that the fractional order is commensurate, i.e., αi = iα′, for
i=0, 1, . . . , n− 1, and α∈ℝ.

Proof It can be directly derived from Theorem 9.1 in (Kaczorek 2011).

Remark 3 The commensurate degree characteristic polynomial

DðλÞ= a0λnα
′

+ a1λðn− 1Þα′ + . . . + an ð16Þ

is stable if and only if all zeros of this polynomial satisfy the condition (15) or,
equivalently, all zeros of the associated natural degree polynomial

D̃ðsÞ= a0sn + a1sðn− 1Þ + . . . + a1s+ an ð17Þ

for s= λα
′

, lie in the domain Rα
s .

For the system (12a, 12b), the set of all equilibrium points (AEP) and the set of
all stable equilibrium points (SEP) are defined as

AEP= z, y, pð Þ∈ Z × Y ×P; f ðz, y, pÞ=0, gðz, y, pÞ=0f g

and

SEP= z, y, pð Þ∈AEP; detð ∂g
∂y
Þ≠ 0 and all eigenvalues of matrix J lie in Rα

s

� �
,

respectively.
Note that the full Jacobian J of the functions f and g in the z and y coordinates is

nonsingular for all ðz, y, pÞ∈ SEP, and therefore, by the implicit function theorem,
the equations f ðz, y, pÞ=0 and gðz, y, pÞ=0 can theoretically be solved uniquely for
z and y as functions of the parameter p, locally near any equilibrium point in SEP.
Hence SEP is a p-dimensional submanifold embedded in AEP ⊂ Z × Y × P.

Definition 8 Given a stable equilibrium ðz0, y0Þ for parameter value p0, the con-
nected component F of SEP which contain ðz0, y0, p0Þ is called the feasibility
region of ðz0, y0, p0Þ, and its boundary is named feasibility boundary.
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This definition provides a convenient mathematical apparatus for analyzing the
local stability properties in the nonlinear semi-explicit FOS system (12a, 12b) in
light of special nonlinear phenomena that may arise near the equilibrium point. The
feasibility boundary for the large system can be solved for the common zeroes (zero
sets) of three different sets of functions. These three zero sets are each connected
with a special nonlinear property, which are equilibrium points at the singularity,
proximity of multiple equilibrium points and birth of limit cycle for the nonlinear
system (12a, 12b).

Theorem 3 (Extended Feasibility Boundary Theorem) For a system defined in
(12a, 12b), the feasibility boundary of a feasibility region F consists of three zero
sets

∂F = ∂F ∩Csibð Þ∪ ∂F ∩Csnð Þ∪ ∂F ∩CHð Þ,

where

Csib = z, y, pð Þ∈AEP; det
∂g
∂y

� �
=0

� �
,

Csn = z, y, pð Þ∈AEP; det
∂g
∂y

� �
≠ 0, det Að Þ=0

� �

and

CH = z, y, pð Þ∈AEP; det
∂g
∂y

� �
≠ 0, det Að Þ≠ 0, det Hn− 1ðJÞð Þ=0

� �
,

where Hn− 1 is the Hurwitz matrix as

Hn− 1 =

a1 a3 a5 . . . a2n− 3

a2 a4 a6 . . . a2n− 4

0 a1 a3 . . . a2n− 5

0 a2 a4 . . . a2n− 6

⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ an− 1

0
BBBBBB@

1
CCCCCCA

corresponding to the coefficient ai of the following characteristic polynomial

DðλÞ= λαI − Jj j= a0λαn + a1λαn− 1 + . . . + anλα0 .

Proof The proof is in the analogous manner with the proof of Theorem 1 in
(Venkatasubramanian et al. 1995).
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3 Different Bifurcations and Chaos

As we have seen from (12a, 12b), systems of physical interest typically have
parameters that appear in the defining systems of equations. As these parameters are
varied, changes may occur in the qualitative structure of the solutions for certain
parameter values. These changes are called bifurcations and the parameter values
are called bifurcation values. The bifurcation theory provides a natural platform for
studying the parameter space phenomena by establishing the dynamic mechanisms
that effect changes in the system structure upon parameter variations. When the
system parameters are varied, the dynamics of system (12a, 12b) changes contin-
uously; however, topologically the structure remains unchanged under small per-
turbations provided the system is structurally stable. Structurally unstable points
then identify the parameter values where the structure of system undergoes changes.

Systems of the form (12a, 12b) typically have singular points where the implicit
function theorem for solving the constraint g=0 is not applicable. When the
constraint (12b) is absent, it can be shown that the feasibility boundary essentially
corresponds to two of three different local bifurcations, namely, the saddle-node
bifurcation, transcritical bifurcation, and Hopf bifurcation. For constrained models
(12a, 12b), however, the feasibility boundary typically also contains another
bifurcation segment named the singularity induced bifurcation (SIB) which occurs
when the system equilibrium is at the singularity. When this happens, some of the
system eigenvalues may become unbounded. In what follows, we describe four
bifurcations of equilibrium points and give some theory for the local bifurcations of
vector fields and maps. This section will be ended by some explanations about
chaos, other possible types of equilibrium behaviors, which may occur in FOS
systems.

3.1 Saddle-Node Bifurcation

The saddle-node bifurcation is well understood mathematically and has been much
studied in different type of systems such as power system, biology etc. A sad-
dle-node bifurcation occurs when a system has non-hyperbolic equilibrium with a
geometrically simple zero eigenvalue at the bifurcation point and additional
transversality conditions are satisfied (Sotomayor 1973). By definition, the points in
the set Csn are not singular, i.e., detð∂g ̸∂yÞ≠ 0. Therefore, by the implicit function
theorem, we can reduce the system (12a, 12b) to fractional-order system

C
0D

α
t zðtÞ= fRðzðtÞ, pÞ ð18Þ

locally near ðz0, y0, p0Þ for a suitable and unique function fR.
Then points in Csn are saddle-node bifurcations if the following conditions are

satisfied:
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(a) The matrix ∂fR
∂z = J = ∂f

∂z +
∂f
∂y ð∂g∂yÞ− 1 ∂g

∂z has a geometrically simple zero eigen-
value with right eigenvector v and left eigenvector w and there is no other
eigenvalue on the imaginary axis.

(b) wT ∂fR
∂p

 �
=wT ∂f

∂p +
∂f
∂y ð∂g∂yÞ− 1 ∂g

∂p

 �
≠ 0.

(c) wT ∂
2fR
∂z2 v, vð Þ
 �

≠ 0.

At this type of bifurcations, stable and unstable equilibrium points meet and
disappear in the feasibility boundary, resulting in a loss of equilibrium points
locally near the bifurcation point on the wrong side of the feasibility boundary. As
an example, this can be represented by the differential equation x ̇= p− x2 which
depends on a single parameter p. The bifurcation diagram for this equation is
depicted in Fig. 2a.

Hypotheses (b) and (c) are the transversality conditions that control the
non-degeneracy of the behavior with respect to the parameter and the dominant
effect of the quadratic nonlinear term. The results obtained from the conditions
above are limited in two different ways. On the one hand, it is possible that more
quantitative information about the flows near bifurcation can be extracted. The

Fig. 2 Different bifurcations; a Saddle-node bifurcation b Transcritical bifurcation c Pitchfork
bifurcation (supercritical) bifurcation d Hopf bifurcation
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second limitation is that there may be global changes in a phase portrait associated
with a saddle-node bifurcation.

3.2 Transcritical and Pitchfork Bifurcation

The importance of the saddle-node bifurcation is that all bifurcations of one
parameter families at an equilibrium with a zero eigenvalue can be perturbed to
saddle-node bifurcations. Thus, one expects that the zero eigenvalue bifurcations
encountered in applications will be saddle-nodes. If they are not, then there is
probably something special about the formulation of the problem that restricts the
context so as to prevent the saddle-node from occurring. The transcritical bifur-
cation is one example that illustrates how the setting of the problem can rule out the
saddle-node bifurcation (Hartman 2002; Kielhoefer 2004).

In classical bifurcation theory, it is often assumed that there is a trivial solution
from which bifurcation occurs. Thus, the reduced system (18) is assumed to satisfy
fRð0, pÞ=0 for all p, so that z=0 is an equilibrium for all parameter values. Since
the saddle-node families contain parameter values for which there are no equilibria
near the point of bifurcation, this situation is qualitatively different. To formulate
the appropriate transversality conditions, we look at the one-parameter families that
satisfy the constraint that fRð0, pÞ=0 for all p. This prevents hypothesis (b) from
being satisfied. If we replace this condition with the requirement that
wTð∂2fR ̸∂p∂zÞðvÞ≠ 0, then the phase portraits of the family near the bifurcation will
be topologically equivalent to those of Fig. 2b and we have a transcritical bifur-
cation or exchange of stability.

As an example, the transcritical bifurcation can be represented by the normal
form x ̇= px− x2, which depend on a single parameter p (Fig. 2b). This kind of
bifurcation can be considered as an unfolding of the saddle-node bifurcation
because if we apply the transformation ζ= x− p ̸2 in the normal form, we obtain
ζ= p2 ̸4− ζ2 is a normal form of saddle-node bifurcation parameterized by p.

A second setting in which the saddle-node does not occur involves systems that
have a symmetry. Many physical problems are formulated so that the equations
defining the system do have symmetries of some kind. The reduced fractional-order
system (18) is symmetric with respect to the symmetry z→ − z if
fRð− z, pÞ= − fRðz, pÞ. Thus, the symmetric vector fields are ones for which fR is an
odd function of z. In particular, all such equations have an equilibrium at zero. The
transcritical bifurcation cannot occur in these systems, however, because an odd
function fR cannot satisfy the condition ∂

2fR ̸∂z2 ≠ 0 required by the transcritical
bifurcation hypothesis (c). If this condition is replaced by the hypothesis
∂
3fR ̸∂z3 ≠ 0, then one obtains the pitchfork bifurcation. At the point of bifurcation,
the stability of the trivial equilibrium changes, and a new pair of equilibrium points
appear to one side of the point of bifurcation in parameter space, as in Fig. 2c.
(The pitchfork bifurcation can be represented by the normal form x ̇= px− x3).
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3.3 Hopf Bifurcation

A Hopf bifurcation occurs at points where the system has non-hyperbolic equi-
librium connected with a pair of purely imaginary eigenvalues, but no zero
eigenvalues, and additional transversality conditions are met (Guckenheimer and
Holmes 1983). As an example, the Hopf bifurcation can be represented by the
following normal form, which depends on a single parameter p (Fig. 2d).

x ̇= − y+ xðp− ðx2 + y2ÞÞ,
y ̇= x+ yðp− ðx2 + y2ÞÞ.

�

One of the basic differences between dynamical behavior of fractional-order
systems and integer-order systems is that the limit set of a trajectory of integer-order
system as the limit cycle of this system is a solution for this system, but in the
fractional-order case, the limit set of a trajectory of fractional-order system can be, not
a solution for this system (Tavazoei et al. 2009a, b). In (Tavazoei et al. 2009a, b), the
authors claimed there are no periodic orbits in fractional order systems, and in
(Tavazoei 2010), the authors gave an example where the solutions of the system are
not periodic, but they converge to periodic signals. In (Abdelouahab et al. 2012),
the authors were interested about the final state of trajectory, and it has been
demonstrated that chaos, as well as the other usual nonlinear dynamic phenomena,
occur in this system with mathematical order less than three. The largest Lyapunov
exponents and the bifurcation diagrams show the period-doubling bifurcation and
the transformation from periodic to chaotic motion through the fractional-order and
confirm the justness of the proposed fractional Hopf bifurcation conditions.

Let consider the following the reduced fractional-order commensurate system
(18). Suppose that z∈ℝ3, and e* is an equilibrium point of this system. In the
integer case (α=1), the stability of e* is related to the sign of ReðλiÞ, i=1, 2, 3,
where λi are the eigenvalues of Jacobian matrix A= ∂fR ̸∂zje* . The conditions of
system (18) with α=1, to undergo a Hopf bifurcation at the equilibrium point e*

when p= p*, are

(a) The Jacobian matrix has two complex-conjugate eigenvalues λ1, 2ðpÞ = θðpÞ ±
iωðpÞ, and one real λ3ðpÞ (this can be expressed by DðPe*ðp*ÞÞ<0, where D is
the discriminant of characteristic equation PðλÞ= jλI −Aj).

(b) θðp*Þ=0, and λ3ðp*Þ≠ 0.
(c) ωðp*Þ≠ 0.
(d) dθ ̸dpjp= p* ≠ 0.

But in the fractional case, the stability of e* is related to the sign of
miðα, pÞ= απ ̸2− j argðλiðpÞÞj, i=1, 2, 3. If miðα, pÞ<0 for all i=1, 2, 3, then e* is
locally asymptotically stable. If there exist i such that miðα, pÞ>0, then e* is
unstable. So, the function miðα, pÞ has a similar effect as the real part of eigenvalue
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in integer systems, therefore, we extend the Hopf bifurcation conditions to the
fractional systems by replacing ReðλiÞ with miðα, pÞ<0 as follows:

(a) DðPe*ðp*ÞÞ<0.
(b) m1, 2ðα, p*Þ=0, and λ3ðp*Þ≠ 0.
(c) dm ̸dpjp= p* ≠ 0.

Hopf bifurcations are especially interesting for the large system because they
signal the birth or the annihilation of periodic orbits for the system (12a, 12b) which
are otherwise impossible to observe by purely numerical means.

3.4 Singularity Induced Bifurcation (SIB)

SIB is a new type of bifurcation which has been characterized by a singular system
and refers to a stability change of the singular system possessing some eigenvalues
which diverges to infinity (Venkatasubramanian et al. 1995). The result is impulse
phenomenon of the singular system which may cause to the collapse of this system.

An SIB occurs when an equilibrium point e* crosses the singular surface

S: = z, y, pð Þ∈ℝn+m+ q; gðz, y, pÞ=0, Δðz, y, pÞ: = det
∂g
∂y

� �
=0

� �
,

that is a point in the zero set Csib, and certain additional transversality conditions are
satisfied at ðz, y, pÞ:
(a) ∂g ̸∂y has an algebraically simple zero eigenvalue, and

trace
∂f
∂y

adj
∂g
∂y

� �
∂g
∂z

� �����
e*
≠ 0.

(b) The following two matrices are nonsingular in e*.

∂f
∂z

∂f
∂y

∂g
∂z

∂g
∂y

" #
,

∂f
∂z

∂f
∂y

∂f
∂p

∂g
∂z

∂g
∂y

∂g
∂p

∂Δ
∂z

∂Δ
∂y

∂Δ
∂p

2
64

3
75.

Suppose the above conditions are satisfied at ð0, 0, p0Þ, then there exists a
smooth curve of equilibrium points in ℝn+m+1 that passes through this point and is
transversal to the singular surface at ð0, 0, p0Þ. When p increases through p0, one
eigenvalue of the system moves from ℂ+ to ℂ+ if B ̸C>0 (respectively, from ℂ+

to ℂ+ if B ̸C<0) along the real axis by diverging through infinity. The other
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ðn− 1Þ eigenvalues remain bounded and stay away from the origin. The constants B
and C can be computed by

B= − trace
∂f
∂y

adj
∂g
∂y

� �
∂g
∂z

� �
,

and

C=
∂Δ
∂p

− ∂Δ
∂z

∂Δ
∂y

 � ∂f
∂z

∂f
∂y

∂g
∂z

∂g
∂y

 !− 1
∂f
∂p
∂g
∂p

 !0
@

1
A.

3.5 Chaotic Behavior

The asymptotic behavior of an autonomous dynamical system is uniquely specified
by their initial conditions. Equilibrium point, limit cycle, torus and chaos are four
possible types of equilibrium behaviors. A chaotic system is a deterministic system
that exhibits irregular and unpredictable behavior (Giannakopoulos et al. 2002).
Chaos occurs in many nonlinear systems, and its main characteristic is that system
does not repeat its past behavior. In spite of their irregularity, chaotic dynamical
systems follow deterministic equations (Baker and Gollub 1990). The unique
characteristic of chaotic systems is dependence on the initial conditions sensitively.
Slightly different initial conditions result in very different orbits. There are various
methods for detecting chaos such as Poincare maps and Lyapunov exponents.

One-dimensional bifurcation diagrams of Poincare maps present information
about the dependence of the dynamics on a certain parameter to gain preliminary
insight into the properties of the dynamical system. The analysis reveal the type of
attractor to which the dynamics will ultimately settle down after passing the initial
transient phase and within which the trajectory will then remain forever. The
dynamical behavior on a Poincare surface of section can be described by a discrete
map whose phase-space dimension is less than that of the original continuous flow.

Moreover, the Lyapunov exponent is another approach to detect chaos, and it is
a measure of the speeds at which initially nearby trajectories of the system diverge.
The Lyapunov exponent is related to the predictability of the system, and the largest
Lyapunov exponent of a stable system does not exceed zero. However, a chaotic
system has at least one positive Lyapunov exponent, and the more positive the
largest Lyapunov exponent, the more unpredictable the system is. Consistent with
the idea that the chaotic attractor is globally stable, thus the sum of all Lyapunov
exponents of a chaotic system will be negative.
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4 Bifurcation Analysis and Chaotic Behaviors of FOS
Biological Models

As it mentioned in Sect. 1, fractional-order modeling has recently garnered a lot of
attention and gained popularity in the evaluation of dynamical systems due to its
ability to provide an exact description of different nonlinear phenomena and inherent
relation to various materials and processes with memory and hereditary properties. It
allows greater degrees of freedom in the model and is closely related to fractals
which are abundant in integer-order descriptions of biological systems and describes
the whole time domain for a physical process, while the integer-order derivative is
related to the local properties of a certain position and indicates a variation or certain
attribute at particular time. According to these reasons, fractional-order modeling of
many real phenomena especially biological systems has more advantages and
consistency rather than classical integer-order mathematical modeling.

In 1954, Gordon investigated the economic theory of natural resource utilization
in fishing industry, and discussed the effects of harvest effort on its ecosystem
(Gordon 1954). The harvest can be affected by numerous factors such as season-
ality, revenue, market demand and harvest cost, and then, it’s reasonable to consider
the harvest effort as a variable from the real point of view, and consequently harvest
function hðtÞ can be expressed by hðtÞ= xðtÞyðtÞ, where xðtÞ is the harvest effort
performed by a static human population, and yðtÞ is a harvested specious in a
considered ecosystem. Finally, he proposed the following algebraic equation to
study the economic interest of the yield of harvest effort in his theory of a
common-property resource:

phðtÞ− cxðtÞ=m ð19Þ

where m represents the net economic profit, phðtÞ is total revenue and cxðtÞ is total
cost, where p and c are the price of a unit of the harvested biomass and the cost of a
unit of the effort, respectively (Gordon 1954).

In line with this theory, differential-algebraic (singular) integer-order biological
systems were proposed, and dynamic behaviors analysis was investigated to design
some control strategies (Chakraborty et al. 2011; Zhang et al. 2012). Combining the
economic theory of fishery resource with fractional calculus, some FOS biological
economic models such as predator-prey models (Holling-II, Holling-Tanner and
food web), logistic map and SEIR epidemic model will be introduced as follows,
and their qualitative behaviors such as bifurcation and chaos will be illustrated.

4.1 Predator-Prey Models

The last few decades have been active in the development of different kinds of
predator–prey model within the traditional territory of population biology.
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Most studies of generalists have focused on their functional response, and many
authors have explored the dynamics of predator-prey systems based on type-II,
Holling-Tanner and Leslie-Grower functional responses. In recent years, there was
a growing interest in the research field of the predator-prey with multi-species
(especially one predator and two prey) which is called food web systems, and rich
dynamical behavior has been found in such a system (Gakkhar and Singh 2007;
Gakkhar and Naji 2003). Here, we explain the most popular predator-prey model
with Holling type-II functional response, and its FOS model will be investigated in
details. We only introduce the FOS models of Holling-Tanner and food web and
neglect their detail analysis which can be expressed in an analogous manner.

4.1.1 Model Formulation and Qualitative Analysis

Freedman introduced the most popular predator-prey model with the Holling type-II
functional response βx1ðtÞx2ðtÞ ̸ð1+ σx1ðtÞÞ, where x1 and x2 are the population
densities of the prey and predator, respectively (Freedman 1980). β is the feeding
rate, and σ is a positive constant that explains the effects of capture rate. The
interactions between prey and predator take the form with the following ordinary
differential equations:

dx1ðtÞ
dt

= rx1ðtÞ 1−
x1ðtÞ
K

� �
−

βx1ðtÞx2ðtÞ
1+ σx1ðtÞ ,

dx2ðtÞ
dt

=
βx1ðtÞx2ðtÞ
1+ σx1ðtÞ − ax2ðtÞ,

ð20Þ

where a is a positive real number and the logistic growth rx1ðtÞð1− x1ðtÞ ̸KÞ is
assumed to be the prey host population with carrying capacity K and a specific
growth rate constant r.

Using the fractional calculus and the economic theory, the integer-order standard
predator-prey model (20) can be extended based on the algebraic economic interest
Eq. (19), and accordingly, the proposed FOS model of the predator-prey system
which consists of two fractional-order differential equations and one algebraic
equation can take the following form (Nosrati and Shafiee 2017):

C
0D

α
t x1ðtÞ= rx1ðtÞ 1−

x1ðtÞ
K

� �
−

βx1ðtÞx2ðtÞ
1+ σx1ðtÞ ,

C
0D

α
t x2ðtÞ=

βx1ðtÞx2ðtÞ
1+ σx1ðtÞ − ax2ðtÞ− hðtÞ,

0 = x3ðtÞðpx2ðtÞ− cÞ−m, t≥ 0.

8>>>>><
>>>>>:

ð21Þ

The system (21) can also be written as the FOS system (9), where F:ℝ3 →ℝ3,
xðtÞ∈ℝ3 and the matrix E∈ℝ3× 3 have the following forms:
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xðtÞ=
x1ðtÞ
x2ðtÞ
x3ðtÞ

2
4

3
5, E=

1 0 0
0 1 0
0 0 0

2
4

3
5,

F =
f1
f2
f3

2
4

3
5=

rx1ðtÞ 1− x1ðtÞ
K

 �
− βx1ðtÞx2ðtÞ

1+ σx1ðtÞ
βx1ðtÞx2ðtÞ
1+ σx1ðtÞ − ax2ðtÞ− x3ðtÞx2ðtÞ

x3ðtÞðpx2ðtÞ− cÞ−m

2
64

3
75.

As seen, the system (21) is in form of the semi-explicit FOS system (12a, 12b) in
which zðtÞ= x1 x2½ �T , yðtÞ= x3ðtÞ, f = f1 f2½ �T , g= f3.

Theorem 4 (Nosrati and Shafiee 2017) The FOS model of predator-prey system
(21) is solvable if x2 ≠ c ̸p.

The main objective is to investigate the local stability of the system (21) based
on singular system, bifurcation theories and the effects of economic profit on
dynamics of this system in which will be discussed in the region
R3

+ = fðx1, x2, x3Þjxi ≥ 0, i=1, 2, 3g as an admissible space.
When m=0, there exist following six equilibrium points X*

i = ð ix*1 ix*2 ix*3 ÞT
(i=1, 2, . . . , 6) for the system (21):

X*
1 =

0
0
0

0
@

1
A,X*

2 =
K
0
0

0
@

1
A,X*

3 =

a
β− aσ

− rða− kðβ− aσÞÞ
kðβ− aσÞ

0

0
@

1
A,X*

4 =
0
c
p
− a

0
@

1
A,X*

5 =
5x*1
c
p

5x*3

0
@

1
A,X*

6 =
6x*1
c
p

6x*3

0
@

1
A

where 5x*1 and 6x*1 (5x*1 ≤ 6x*1) are roots of the equation prσx21 + prð1− kσÞx1 +
Kðβc− prÞ=0, and also, 5x*3 = − a+ β5x*1 ̸ð1+ σ5x*1Þ and 6x*3 = − a+ β6x*1
̸ð1+ σ6x*1Þ.
Regarding any positive parameters and admissible space definition, all these

points can be admissible except X*
4 which is always negative. To assess the stability

analysis of the system (21), using Remark 3 and Lemma 1, the argument eigen-
values of Jacobian matrix J evaluated at the admissible equilibrium points will be
checked respect to απ ̸2.

Obviously, the equilibrium point X*
1 is saddle node. The eigenvalues of system

(21) at equilibrium point X*
2 are λ1 = − r and λ2 = − a+ βK ̸ð1+ σKÞ. Using

Remark 3, λ1 is always stable, since j argðλ1Þj= π > απ ̸2, and the stability of λ2
changes under parameter variation:

argðλ2Þj j= 0< απ
2 if βK > að1+ σKÞ ⇒ unstable

π > απ
2 if βK < að1+ σKÞ ⇒ stable

�
.

According to the analysis illustrated above, the stability of equilibrium point
X*
2 changes from stable to unstable when β increases through að1+ σKÞ ̸K.
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Then, β can be regarded as a bifurcation parameter, and the following theorem can
be extracted:

Theorem 5 (Nosrati and Shafiee 2017) The system (21) undergoes transcritical
bifurcation at the equilibrium point X*

2 when bifurcation parameter μ= β is
increased through að1+ σKÞ ̸K.

Based on the results derived in Subsect. 3.2, it is adequate to check the following
statements to prove the theorem:

(1) ∂f1, 2
∂x1, 2

���
X*
2

=
− r − a
0 0

� �
, then λI − ∂f1, 2 ̸∂x1, 2j jX*

2
has a simple zero eigenvalue

with right eigenvector v= 1 − r ̸að ÞT and left eigenvector w= 0 1ð Þ.
(2) w ∂

2f1, 2
∂μ∂x1, 2

���
X*
2

� �
v≠ 0.

(3) wð∂2f1, 2
∂
2x1, 2

���
X*
2

Þðv, vÞ≠ 0.

At the equilibrium point X*
3 , it is easy to check under different parameter values,

this equilibrium point can be stable focus or node. The equilibrium points X*
5 and

X*
6 are at the singularity, and after that, the matrix J is not well defined because

∂f3 ̸∂x3 is singular. Therefore, the matrix J might have some unbounded eigen-
values, and subsequently, the system (21) may show SIB behavior. Based on
following theorem, the system (21) has a SIB at equilibrium points X*

5 and X*
6 when

the bifurcation parameter m is zero. If m increases through zero, one eigenvalue of
the system (21) evaluated at these equilibrium points will move from an open
complex half plane to other open complex half plane along the real axis by
diverging into infinity. The other eigenvalue remains bounded and stays away from
the origin.

Theorem 6 (Nosrati and Shafiee 2017) Assume ∂f1 ̸∂x1jX*
5 ,X

*
6
≠ 0. The FOS model

of predator-prey system (21) has an SIB at the equilibrium points X*
5 and X*

6 when
the bifurcation parameter m increases through zero. Besides, the stability of the
equilibrium points varies from stable to unstable.

Suppose Υ= ∂f3 ̸∂x3 = px2ðtÞ− c. According to the results, we have

(1) ΥjX*
5 ,X

*
6
has a simple zero eigenvalue, and
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(2)
∂f1, 2
∂x1, 2

∂f1, 2
∂x3

∂f3
∂x1, 2

∂f3
∂x3

" #�����
X*
5 ,X

*
6

= cðr− 2r5, 6x*1ðtÞ
K − βc

pð1+ σ5, 6x*1ðtÞÞ2
Þ5, 6x*3ðtÞðtÞ≠ 0

and

∂f1, 2
∂x1, 2

∂f1, 2
∂x3

∂f1, 2
∂μ

∂f3
∂x1, 2

∂f3
∂x3

∂f3
∂μ

∂Υ
∂x1, 2

∂Υ
∂x3

∂Υ
∂μ

2
64

3
75
�������
X*
5 ,X

*
6

= cðr− 2r1x*5, 6ðtÞ
K

−
βc

pð1+ σ1x*5, 6ðtÞÞ2
Þ≠ 0.

Therefore, there exists stability change of the equilibrium points X*
5 and X

*
6 when

m increases through zero; i.e., one eigenvalue of the system (eigenvalue of Jacobian
matrix J evaluated along the equilibrium locus related to X*

5 and X*
6 ) moves from

one half plane to other half plane. On the other hand, B= px2ðtÞx3ðtÞjX*
5 ,X

*
6
, and

C= ð1 ̸px3ðtÞÞjX*
5 ,X

*
6
. Regarding the admissibility space, B>0 and C>0. After that,

when μ increases through zero, this eigenvalue of the system moves from left half
plane to right half plane along the real axis by diverging into infinity because
B ̸C>0. The other eigenvalue maintains bounded and stays away from the origin
in left half plane. Thus, the stability of system (21) changes from stable to unstable
at the equilibrium points X*

5 and X*
6 when the economic profit increases through

zero. This completes the proof. □

A complete analysis on this system under positive economic profit can be seen in
(Nosrati and Shafiee 2017).

4.1.2 Numerical Simulation

In order to solve (21), the method introduced by Atanackovic and Stankovic can be
used. Atanackovic and Stankovic showed that for a function f ðtÞ, the Caputo
fractional derivative of order α may be expressed as

C
0D

α
t f ðtÞ≃Ω α, t,Mð Þf ð̇tÞ+Φ α, t,Mð Þf ðtÞ+ ∑

M

n=2
A α, t,Mð Þ vn fð ÞðtÞ

tn− 1+ α
, ð22Þ

where

A α, t,Mð Þ= − Γ n− 1+ αð Þ
Γ 2− αð ÞΓ α− 1ð Þ n− 1ð Þ!, Ω α, t,Mð Þ= 1

Γ 2− αð Þtα− 1 + ∑
M

n=1

A α, t, nð Þ
ntα− 1 , Φ α, t,ð

MÞ= 1− α
tαΓ 2− αð Þ + ∑

M

n=2

A α, t, nð Þ
tα and vn fð ÞðtÞ= − n− 1ð Þ R to τn− 2f τð Þdτ, n=2, 3, . . .

(Atanackovic and Stankovic 2004). Thus, the system (21) can be expressed by
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E′x ̇′ðt, nÞ=F′ x′ðt, nÞ� �
, 0 < α<1, n=2, 3, . . . ,M, t≥ 0, ð23Þ

where x′ðt, nÞ= x1ðtÞ wnðtÞ x2ðtÞ unðtÞ x3ðtÞ½ �T , and also, F′:ℝ5 →ℝ5 and
E

0 ∈ℝ5× 5 have the following forms:

E=
I4 0
0 0

� �
, F′ =

f
0
1
f
0
2
f
0
3
f
0
4
f
0
5

2
66664

3
77775=

1
Ω α, t,Mð Þ f1 −Φ α, t,Mð Þx1ðtÞ− ∑

M

n=2
A α, t,Mð Þ wnðtÞ

tn− 1+ α

� �
− n− 1ð Þtn− 2x1 tð Þ

1
Ω α, t,Mð Þ f2 −Φ α, t,Mð Þx2ðtÞ− ∑

M

n=2
A α, t,Mð Þ unðtÞ

tn− 1+ α

� �
− n− 1ð Þtn− 2x2 tð Þ

f3

2
666666664

3
777777775

Now, numerical solution of the singular ordinary differential system (23) will be
considered to derive orbits of the FOS predator-prey system (21) for different set of
parameters. For convenience, the simulation will be implemented using the fixed
parameter values r=0.2, K =5, β=0.2, σ =0.01, a=0.2, p=1.5, c=1, M =10
and m will be varied.

Numerical values of prey and predator, and also, phase portrait of the system
(21) are presented in Figs. 3 and 4 for the set parameter values and two different
values of β. As seen in Fig. 3, the trajectories of the system converge to the
equilibrium point X*

3 in steady state, and the equilibrium point X*
2 is unstable

because β=0.2> 0.042. In Fig. 4, the system (21) is simulated for
β=0.041< 0.042. In this case, the equilibrium point X*

3 is unstable, and the tra-
jectories of the system converge to the equilibrium point X*

2 in steady state which
verifies the existence of transcritical bifurcation (Theorem 5). In all numerical runs,

Fig. 3 a Numerical value of x1ðtÞ and x2ðtÞ respect to time. b Phase portrait of system (21)
(α=0.8, β=0.2, x1ð0Þ=1.3, x2ð0Þ=0.4, x3ð0Þ=0.00025, m=0)
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the solution has been approximated using the parameter values given in the captions
of the figures.

The admissible equilibrium point X*
5 is at the singularity. When economic profit

m= − 0.0001, the eigenvalues are λ1 = − 193.8 and λ2 = − 0.067, and then become
λ1 = 191.4 and λ2 = − 0.066 when the parameter value m=0.0001. Obviously, λ2
remains almost constant and λ1 moves from the open complex left half plane to the
open complex right half plane along the real axis by diverging through infinity. This
verifies the Theorem 6 and demonstrates that the system (21) has an SIB at the
equilibrium point X*

5 when the bifurcation parameter m=0.
Numerical values of the system (21) are presented in Figs. 8 and 9 for two

different economic profit values m= − 0.0001 and m=0.0001. When
m= − 0.0001, the equilibrium point X*

5 is stable and the trajectories of system (21)
converge to X*

5 (Fig. 5). Besides the admissible equilibrium point X*
5 , there is

another stable equilibrium point X*
6 (related to m<0) when the initial condition is

varied. This equilibrium point is not admissible because the trajectory x3ðtÞ con-
verges to a negative point in steady state (Fig. 6). Also, when m=0.0001, the
stability of the equilibrium point X*

5 changes to unstable, and therefore, trajectories
of the system converge to X*

6 (related to m>0) (Fig. 7).
Furthermore, to explain the oscillation damping properties, the phase portrait of

system (21) for three different values of α are given in Fig. 8, for two different
values of m. The results show that, the fractional derivative damps the oscillation
behavior of the model when α decreases, which leads to improve the stability.

It should be noted that using the fractional calculus and the economic theory, the
integer-order standard predator-prey Holling-Tanner and web food models can be
extended based on the algebraic economic interest Eq. (19), and accordingly, the
proposed FOS model of these systems can take the (24) and (25), respectively.

Fig. 4 a Numerical value of x1ðtÞ and x2ðtÞ respect to time. b Phase portrait of system (21)
(α=0.8, β=0.041, x1ð0Þ=1.3, x2ð0Þ=0.4, x3ð0Þ=0.00025, m=0)
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Fig. 5 a Numerical value of x1ðtÞ, x2ðtÞ and x3ðtÞ respect to time. b Phase portrait of system (21)
(α=0.8, β=0.2, x1ð0Þ=1.3, x2ð0Þ=0.4, x3ð0Þ=0.00025, m= − 0.0001)

Fig. 6 a Numerical value of x1ðtÞ, x2ðtÞ and x3ðtÞ respect to time. b Phase portrait of system (21)
(α=0.8, β=0.2, x1ð0Þ=1.3, x2ð0Þ=0.7, x3ð0Þ= − 0.002, m= − 0.0001)

Fig. 7 a Numerical value of x1ðtÞ, x2ðtÞ and x3ðtÞ respect to time. b Phase portrait of system (21)
(α=0.8, β=0.2, x1ð0Þ=1.3, x2ð0Þ=0.7, x3ð0Þ=0.002, m=0.0001)
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Fig. 8 (Oscillation damping property). Phase portrait of system (21) respect to time a m=0
b m=0.002 (β=0.2, x1ð0Þ=1.3, x2ð0Þ=0.7, x3ð0Þ=0.0025)

Fig. 9 The x1k and x2k graphs for two nearby initial conditions ð0.5, 0.2Þ and ð0.5, 0.2001Þ
(r=2.8)
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C
0D

α
t x1ðtÞ= x1ðtÞ 1− x1ðtÞð Þ− x1ðtÞx2ðtÞ

γ + x1ðtÞ + λð1− cosθtÞx1ðtÞ,

C
0D

α
t x2ðtÞ= x2ðtÞðδ− β

x2ðtÞ
x1ðtÞÞ,

0 = x3ðtÞðpx2ðtÞ− cÞ−m, t≥ 0.

8>>>>><
>>>>>:

ð24Þ

C
0D

α
t x1ðtÞ= x1ðtÞ 1− x1ðtÞ− w2x3ðtÞ

1+w3x1ðtÞ+w4x2ðtÞ
� �

,

C
0D

α
t x2ðtÞ= x2ðtÞ ð1− x2ðtÞÞw5 −

w7x3ðtÞ
1+w4x2ðtÞ+w3x1ðtÞ

� �
,

C
0D

α
t x3ðtÞ= x3ðt w8x1ðtÞ+w9x2ðtÞ

1+w3x1ðtÞ+w4x2ðtÞ −w10

� �
−w11x3ðtÞ− x3ðtÞx4ðtÞ,

0 = x4ðtÞx3ðtÞð a
b+ x4ðtÞx3ðtÞ −

d
x3ðtÞÞ−m, t≥ 0.

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð25Þ

where the parameters interpretation is mentioned in (Zhang et al. 2012). The sys-
tems (24) and (25) can also be written as the FOS system (9), and therefore, their
analysis can be studied in a same analogous as the system (21) which are omitted in
this study.

4.2 Logistic Map

The logistic model is widely used to investigate the growth law of various bio-
logical ecosystems such as some kind of single-cell, marine population, and birds
and insects populations on continent (Clark 1990). Although many discussions
have been applied on the behavior of integer-order standard logistic map (Alligood
et al. 1997), fewer efforts have been contributed to the behaviors of the
fractional-order and singular cases. For the famous logistic map

xk+1 = r xk ð1− xk
K
Þ ð26Þ

popularized by May in (1976), the system exhibits chaotic behaviors for most
values of the growth coefficient r. For the system (26), xðkÞ>0 represents popu-
lation density, r>0 represents the intrinsic growth rate, and K >0 represents the
environment capacity.

In (Zhang et al. 2012), a discrete singular logistic system was proposed, and its
dynamics were discussed. It was demonstrated that the model system bifurcates into
periodical orbits and finally admits chaotic behavior under parameter variations.
Also, in some literatures, it has been demonstrated that there is a discrete fractional
logistic map which has a generalized chaos behavior (Munkhammar 2013; Wu and
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Baleanu 2014; Guckenheimer and Holmes 1983). These studies introduced a
fractional discrete logistic map using the fractional-order difference in different
senses. Compared with the one of the integer order, the fractional model has a
discrete memory and a fractional difference order. When the difference order
changes in the numerical results, new chaotic behaviors of the logistic map are
observed. It has been demonstrated that the chaotic zones not only depends on the
coefficients r but the difference order. Although the chaos theory for discrete maps
is well understood, how it is related to fractional calculus phenomena is perhaps less
clarified and need a further investigation.

In this subsection, a discrete fractional-order singular logistic system is pro-
posed, and the dynamics of the model system, especially chaotic behavior, are
discussed.

4.2.1 Model Formulation

The growth law of various biological species is usually described by the classic
logistic model (26). Compared with the continuous model, the dynamics of the
discrete logistic model with one dimension are abundant. There are two fixed points
for this system: x*1 = 0 and x*2 =K. Using these two real equilibrium points and the
eigenvalues of the corresponding Jacobian matrix, the behavior of the system can be
evaluated, and its rich dynamics can be derived when the parameter r changes.

According to the Gordon theory and fractional calculus, the following discrete
FOS system is proposed to investigate the dynamics of the logistic system and the
economic interest of the harvest effort on its population:

EGL
0 Δα

k+1xk+1 =FðxkÞ ð27Þ

where GL
0 Δα

k denotes the GL difference operator, and F:ℝ2 →ℝ2, xk ∈ℝ2 and the
matrix E∈ℝ2× 2 have the following forms:

xk =
x1k
x2k

� �
, E=

1 0
0 0

� �
, F =

f1
f2

� �
= rx1k 1− x1k

K

� �
− x1kx2k

x2kðpx1k − cÞ−m

� �
.

As seen, the system (27) is in the discrete form of the semi-explicit FOS system
(12a, 12b) in which zk = x1k x2k½ �T , yk = x2k, f = f1, g= f2.

The fractional order GL difference is given by

GL
0 Δα

k xk =
1
hα

∑
k

j=0
− 1ð Þ j α

j

� �
xk− j ð28Þ

where α= diagfα1, . . . , αng∈ℝn is the real orders of the fractional difference, h is
the sampling interval, k is the number of samples for which the derivative is
calculated, and the coefficient
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α
j

� �
= diag

α1
j

� �
,⋯,

αn
j

� �� �

is the extended form of integer-valued binomial coefficient developed by the
gamma function idea, with

αi
j

� �
=

1 if j=0
Γ αi +1ð Þ

Γ αi +1− jð Þ .Γ j+1ð Þ if j>0

�
,

for i=1, . . . , n. According to this definition, discrete equivalent of the
fractional-order derivative and integration can be obtained when α is positive and
negative, respectively.

For the FOS logistic system (27), x1k , r and K share the same biological inter-
pretations as in (26), and x2k represents the harvest effort on population, p is the unit
price of the harvested population, and c is the united cost of the harvest effort.

4.2.2 Numerical Simulation

From (28), we can obtain the following equivalent difference equation form of the
FOS logistic model (27):

x1ðk+1Þ = hαðrx1k 1−
x1k
K

 �
− x1kx2k −

1
hα

∑
k+1

j=1
− 1ð Þ j α

j

� �
xk+1− jÞ

0= x2kðpx1k − cÞ−m

ð29Þ

Compared with the map of the integer order (25), the fractionalized one (27) has
a discrete kernel function. As seen from (29), the state x1k depends on the past
information x1ðk− 1Þ, x1ðk− 2Þ, . . . , x1ð0Þ. As a result, the memory effects of the dis-
crete maps mean that their present state of evolution depends on all past states.

Assume K =8.05 × 107, p=5×10− 3, c=8.75 × 104, m=100 and h=1. We can
derive the numerical solutions xk using the Matlab. In what follows, Figs. 9 and 10
show the numerical solutions for different r and α, for two slightly different initial
conditions, one at ð0.5, 0.2Þ and the other at ð0.5, 0.2001Þ. These graphs are nearly
identical for a certain time period, but then they differ considerably. No matter how
close two solutions start, they always move apart in this manner when they are close
to the attractor. This is sensitive dependence on initial conditions, one of the main
features of a chaotic system. In Fig. 9, for a fixed parameter r=2.8, when the order
α decreases, period doubling event occurs, and finally system undergoes to a
chaotic behavior. Especially, Fig. 9c verifies the results obtained by the analysis of
the integer-order singular logistic map introduced by Zhang et al. (2012) in which
the proposed system showed the chaotic behavior when r=2.8. Also, in Fig. 10,
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this simulation is repeated for a fixed parameter r=2.5, and again we can see that
when the order α decreases, period doubling event occurs, and again system
undergoes to a chaotic behavior but this happens for a smaller order α. Unlike
Fig. 9c, as it can be seen from Fig. 10c, there is no chaotic behavior when r=2.5
and α=1, which verifies the previous results obtained in literatures.

To discuss more precisely under parameters variations, the bifurcation diagrams
of Poincare for model system (27) against variation of parameters α and r are
depicted in Figs. 11 and 12, respectively. As seen, the bifurcation diagram against
variation parameter α moves from right to left of plane when the parameter value r
decreases (Fig. 11). It means that chaotic behavior happens for a smaller value of α
when the parameter r decreases. This can be seen from Fig. 13a in which the
Lyaponuv exponent against variation parameter α gets positive for a smaller
parameter value r. Also, the bifurcation diagram against variation parameter r
moves from left to right of plane when the parameter value α increases (Fig. 12). It
means that chaotic behavior happens for a bigger value of r when the parameter α

1 1.2

(a) (b)

(c) (d)

Fig. 10 The x1k and x2k graphs for two nearby initial conditions ð0.5, 0.2Þ and ð0.5, 0.2001Þ
(r=2.5)
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increases. This can be seen from Fig. 13b in which the Lyaponuv exponent against
variation parameter r gets positive for a smaller parameter value α.

There is a strange evolution in the bifurcation diagrams of the system (27) when
the order α decreases (Fig. 11). This system exhibits stable equilibrium point
behavior at first and undergoes to period doubling route to chaos and eventually
enters to a chaotic space. When we continue the simulation while decreasing the
order α, the system (27) behaves in a reverse treatment and undergoes to inverse
period doubling and is finished by stable equilibrium point. Figure 14 shows the x1k
and x2k graphs for two nearby initial conditions and two parameter order values
α=0.05 and α=1.4, and also, r=2.5. It shows that system is stable out of a certain
band of the parameter values α, and when the order α increases (from left) and
decreases (from right), from both sides the system undergoes to period doubling
route to chaos in a reverse treatment.

(a) (b)

(c) (d)

r = 2.4 r = 2.5

r = 2.6 r = 2.8

Fig. 11 Bifurcation diagrams of Poincare for model system (27) against variation of parameter α
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(a) (b)

(c) (d)
α  = 0.8 α  = 0.9

α  = 1 α  = 1.1

Fig. 12 Bifurcation diagrams of Poincare for model system (27) against variation of parameter r

Fig. 13 Lyapunov Exponent diagram of the system (27) against variations of parameters a α and
b r
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4.3 SEIR Epidemic System

Modeling of the population dynamics of infectious diseases has been playing an
important role in better understanding epidemiological patterns, and many epidemic
models have been proposed and analyzed in recent years to control of disease for a
long time (Kermack and McKendrick 1927; Kot 2001; Li et al. 2001; May and
Oster 1976). The primary models, which customarily called an SIR
(susceptible-infectious-recovered) or SIRS (susceptible-infectious-recovered-
susceptible) system, assumes that the disease incubation can be negligible that,
once infected, each susceptible individual (in class S) becomes infectious instan-
taneously (in class I) and later recovers (in class R) with a permanent or temporary
acquired immunity (Glendinning and Perry 1997; Greenhalgh et al. 2004).

To study the role of incubation in disease transmission, the systems that are more
general than SIR or SIRS types need to be studied. Thus, the resulting models are of
SEIR (susceptible-exposed-infectious-recovered) or SEIRS (susceptible-exposed-
infectious-recovered-susceptible) types, respectively, depending on whether the
acquired immunity is permanent or not, and many analysis such as the stability,
bifurcation and chaos behavior of these epidemic systems have been studied
(Kuznetsov and Piccardi 1994; Sun et al. 2007; Xu et al. 2005).

Although many epidemic systems were described by differential and algebraic
equations (Zhang et al. 2007, Zhang and Zhang 2007), they were studied by
reducing the dimension of epidemic models to differential systems, accordingly, the
dynamical behaviors of the whole system were not better described. Via analysis of
the whole system by singular model, one can find more complex dynamical
behaviors if the SEIR epidemic system. In (Zhang et al. 2014), integer-order sin-
gular SEIR epidemic system with seasonal forcing in transmission rate was dis-
cussed, and hyper-chaotic behavior of this system and its control with the aim of
elimination of the disease was illustrated.

α  = 0.05 α  = 1.4

Fig. 14 The x1k and x2k graphs for two nearby initial conditions (r=2.5)
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Although a large amount of work has been done in modeling the dynamics of
epidemiological diseases, it was restricted to integer-order differential equations and
few works discussed an epidemics model with fractional-order case. It has been
demonstrated the great properties of fractional calculus are very useful to model
epidemics problems (Liu and Lu, 2014; Goufo et al. 2014; Rostamy and Mottaghi
2016). In recent years, it has turned out that SEIR system can be described very
successfully by the model using fractional-order differential equations in which help
us to reduce the errors arising from the neglected parameters in modeling (Ozalp
and Demirci 2011; Area et al. 2015).

However, no literature discusses fractional-order singular SEIR epidemic sys-
tem. To the best of our knowledge, chaotic behavior first appears in these systems
based on this subsection. In what follows, the FOS model of SEIR epidemic system
will be introduced, and the dynamical behaviors of the model will be analyzed.

4.3.1 Model Formulation

The Fractional-order singular SEIR epidemic model with nonlinear transmission
rate is introduced as follows. At time t, the population of size NðtÞ is divided into
four subpopulation containing susceptible SðtÞ, exposed EðtÞ, infectious IðtÞ, and
recovers RðtÞ. It is assumed that death and birth occur with the same constant rate,
i.e. the population size is constant. Thus, the host total population is
NðtÞ= SðtÞ+ IðtÞ+RðtÞ+EðtÞ at any time t. In addition, it is assumed that
immunity is permanent and recovered individuals do not revert to the susceptible
class, and also, all newborns are susceptible and there is a uniform birth rate.

The following fractional-order singular SEIR system is derived based on the
basic assumptions:

C
0D

α
t x1ðtÞ= bx5ðtÞ− dx1ðtÞ− β

x1ðtÞx3ðtÞ
x5ðtÞ

C
0D

α
t x2ðtÞ= β

x1ðtÞx3ðtÞ
x5ðtÞ − ðζ+ dÞx2ðtÞ

C
0D

α
t x3ðtÞ= ζx2ðtÞ− ðγ + dÞx3ðtÞ

C
0D

α
t x4ðtÞ= γx3ðtÞ− dx4ðtÞ

0= x1ðtÞ+ x2ðtÞ+ x3ðtÞ+ x4ðtÞ− x5ðtÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð30Þ

where x1ðtÞ, x2ðtÞ, x3ðtÞ, x4ðtÞ and x5ðtÞ are the population SðtÞ, EðtÞ, IðtÞ, RðtÞ and
NðtÞ, respectively. Also, the parameter b>0 is the rate for natural birth and d>0 is
the rate for natural death. The parameter ζ>0 is the rate at which the exposed
individuals become infectious, and γ >0 is the rate of recovery. The force of
infection is βx3ðtÞ ̸x4ðtÞ, where β>0 is effective per capita contact rate of infectious
individuals and the incidence rate is βx1ðtÞx3ðtÞ ̸x4ðtÞ.
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The FOS system (30) can describe the whole behavior of certain epidemic
spreads in a certain area. The first to fourth fractional-order differential equations of
this system describe whole dynamical behaviors of every dynamic element and the
last algebraic equation describes restriction of every dynamic element of system.

The transmission rate with seasonal forcing can be considered as
β= β0ð1+ β1cosð2πtÞÞ, where β0 is the base transmission rate, and 0≤ β1 ≤ 1
measures the degree of seasonality. By utilizing some transformation as

x′1 =
x1
x5

, x′2 =
x2
x5

, x′3 =
x3
x5

, x′4 =
x4
x5

,

the system (30) can be attacked by studying the following subsystem:

C
0D

α
t x

′

1ðtÞ= b− dx′1ðtÞ− βx′1ðtÞx′3ðtÞ
C
0D

α
t x

′

2ðtÞ= βx′1ðtÞx′3ðtÞ− ðζ+ dÞx′2ðtÞ
C
0D

α
t x

′

3ðtÞ= ζx′2ðtÞ− ðγ + dÞx′3ðtÞ
0= x′1ðtÞ+ x′2ðtÞ+ x′3ðtÞ+ x′4ðtÞ− 1

8>>>><
>>>>:

ð31Þ

The variable x′4 is described by the fractional-order differential equation
γx′3ðtÞ− dx′4ðtÞ as well as algebraic equation x′4ðtÞ=1− x′1ðtÞ− x′2ðtÞ− x′3ðtÞ, and
there is no the variable x′4 in the first to third equations of system (30). That is why
the forth equation is removed.

The system (31) can also be written as the FOS system (9), where F:ℝ4 →ℝ4,
xðtÞ∈ℝ4 and the matrix E∈ℝ4× 4 have the following forms:

xðtÞ=
x1ðtÞ
x2ðtÞ
x3ðtÞ
x4ðtÞ

2
664

3
775, E=

I3 0
0 0

� �
, F =

f1
f2
f3
f4

2
664

3
775=

b− dx′1ðtÞ− βx′1ðtÞx′3ðtÞ
βx′1ðtÞx′3ðtÞ− ðζ+ dÞx′2ðtÞ
ζx′2ðtÞ− ðγ + dÞx′3ðtÞ

x′1ðtÞ+ x′2ðtÞ+ x′3ðtÞ+ x′4ðtÞ− 1

2
664

3
775.

As seen, the system (30) is in form of the semi-explicit FOS system (12a, 12b) in
which zðtÞ= x1 x2 x3½ �T , yðtÞ= x4ðtÞ, f = f1 f2 f3½ �T and g= f4.

4.3.2 Numerical Simulation

In this subsection, we consider two case of varying parameters β1 and α, and
discuss the behaviors of the system (31) under these variations. In order to solve the
proposed system, the method introduced by Atanackovic and Stankovic can be used
similar to Sect. 4.1.2. The numerical results show that there is chaotic dynamical
behavior for the FOS SEIR system (31) with β1 = 0.28 when the order α is equal to
one. Also, for the case of varying parameter α, the dynamical behaviors of system
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(31) are analyzed by simulation results, and it will be showed that the chaotic
behavior occurs under different parameter value β1.

Let β1 be a varying parameter of (31), and the remaining parameters are as
follows: b= d=0.02, ξ=35.84, γ =100, and β0 = 1800, respectively (Olsen and
Schaffer 1990). Figure 15 shows the x1ðtÞ and x2ðtÞ coordinates of two solutions
that start out nearby, one at ð0.016, 0.006, 0.012, 0.02Þ and the other at
ð0.016001, 0.006, 0.012, 0.02Þ. From Fig. 15a, when α=1 and β1 = 0.28, these
graphs are nearly identical for a certain time period, but then they differ consid-
erably. No matter how close two solutions start, they always move apart in this
manner when they are close to the attractor. This is sensitive dependence on initial
conditions, one of the main features of a chaotic system. Also, when the order α

α = 1 α = 0.99

Fig. 15 The x1ðtÞ and x2ðtÞ graphs for two nearby initial conditions and β1 = 0.28

Fig. 16 The x1ðtÞ and x2ðtÞ graphs for two nearby initial conditions and different parameter values
β1 and α
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decreases insignificantly, the behavior of system changes and gets periodic
(Fig. 15b). Furthermore, it can be demonstrated from simulation results that the
system (31) exhibit chaotic behavior at α<1 when the parameter β1 increases
(Fig. 16). Figure 17 depicts the phase portrait for model system (31) in the case of
β1 = 0.28. As seen, the system (31) undergoes to period doubling when α increases
and gets chaotic at α=1. The mathematical analysis of the system (31) will be
illustrated in further investigations.

5 Conclusions and Discussions

In this chapter, some fractional-order singular (FOS) biological systems were
established to investigate the impacts of economic profit and fractional derivative
on the dynamic behaviors of these ecosystems. Our study extended previous models

Fig. 17 FOS SEIR attractors in for β1 = 0.28 and different parameter values of α
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of biological systems predator-prey, logistic map and SEIR epidemic system, and
proposed new and more realistic biological systems using fractional calculus and
singular theory. Besides some mathematical analysis, the numerical simulations
were considered to illustrate the effectiveness of the numerical method to explore
the following impacts of fractional-order and singular modeling on the presented
systems:

1. The effect of fractional derivative: It has been demonstrated that using frac-
tional derivative can have following influences on the proposed models:

• It reduces the errors arising from the neglected parameters in modeling of the
memory-based biological systems which leads to derive the exact dynamical
behavior of species interactions.

• It acts as a time lag in ordinary differential model and causes to notably
increase in the complexity of the observed behavior.

• It takes less time for predator and prey and infectious diseases population to
be settled as the fractional order decreases. Also, it will take the maximum
time for the standard motion, i.e., α=1. In logistic map, we encountered
with a strange behavior. When the order α decreases, this system exhibits
stable equilibrium point behavior at first and undergoes to period doubling
route to chaos and eventually enters to a chaotic space. Continuing this
process, the system behaves in a reverse treatment and undergoes to inverse
period doubling and is finished by stable equilibrium point.

• The combination of fractional derivative and economic profit in singular
form may change the stability of the system and cause the population and
capture capability to be more sustainable.

• The fractional derivative in the presented models damps the oscillation
behavior and improves the stability of the solutions. In addition, the frac-
tional order can impress the switching time from stability to instability. In
recent case, the persistence and sustainable development of the ecosystem
can be attained.

2. The effect of singular modeling: It is found that singular models exhibit more
complicated dynamics rather than standard models, especially the bifurcation
phenomena and chaotic behaviors, which can reveal the instability mechanism
of systems. The most derived features are as follows:

• Through the theoretical analysis and numerical simulation in predator-prey
model, it has been demonstrated that there is a phenomenon of singularity
induced bifurcation due to variation of economic interest of harvesting. This
brings impulse phenomenon and causes a rapid growth of the species pop-
ulation. If this phenomenon prolongs a period of time, the species population
will be out of the carrying capacity of the environment, and the collapse of
the ecosystem may be happened.

• It has been shown the predator-prey model exhibits another bifurcation
phenomenon called transcritical bifurcation which varies the stability of the
system and leads to extinct the predator population.
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• Using singular modeling, high dimension chaotic attractor was occurred in
SEIR epidemic models. Biologic signification of these types of attractor in
epidemic models is that the epidemic disease will break out suddenly and
spread gradually in a region at the period of the high incidence of the
epidemic disease, and accordingly, many people in the region would be
infected by disease. Also, singular modeling of logistic map can affect its
behavior and enrich its dynamical properties.

All results show that extinction, speciation and stability of the biological
ecosystems can be affected by fractional derivative and economic interest in sin-
gular form, and with considering the constraints imposed on the ecosystem, per-
sistence and sustainable development of the ecosystem can be attained.

The future directions of research include:

• Mathematical analysis: During FOS modeling of logistic map and SEIR epi-
demic system, these models exhibited equilibrium point, period doubling and
chaotic behaviors. These results were derived from simulation point of view,
and more detailed analysis and synthesis of these new extended models need
further investigations.

• Application to medicine and engineering: Biologic signification of chaotic
behavior in proposed ecosystems is that the extinction, speciation and stability
of the biological ecosystems can be affected and the species population will
break out suddenly. Many species would be infected by disease, for example,
and some of them would even lose their lives. Nevertheless, there exists
uncertain prediction for the low period of the incidence of these events.
Therefore, it is important to control chaos of the biological models, which need
further investigations. Further, characteristics of deterministic chaos are greatly
affecting basic concepts of engineering such as prediction, control, computation,
information, and optimization. New introduced chaotic models can be applied in
this field of science.

• Extending to other systems: In this chapter, we proposed only three FOS models
of biological systems and investigated their qualitative behaviors. This new era
of modeling can be extended to other biological systems and even other systems
from different fields of science such as power system, robotic, economics and so
on.
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Chaos and Bifurcation in Controllable
Jerk-Based Self-Excited Attractors

Wafaa S. Sayed, Ahmed G. Radwan and Hossam A. H. Fahmy

Abstract In the recent decades, utilization of chaotic systems has flourished in var-

ious engineering applications. Hence, there is an increasing demand on generalized,

modified and novel chaotic systems. This chapter combines the general equation of

jerk-based chaotic systems with simple scaled discrete chaotic maps. Two continuous

chaotic systems based on jerk-equation and discrete maps with scaling parameters

are presented. The first system employs the scaled tent map, while the other employs

the scaled logistic map. The effects of different parameters on the type of the response

of each system are investigated through numerical simulations of time series, phase

portraits, bifurcations and Maximum Lyapunov Exponent (MLE) values against all

system parameters. Numerical simulations show interesting behaviors and depen-

dencies among these parameters. Analogy between the effects of the scaling param-

eters is presented for simple one-dimensional discrete chaotic systems and the con-

tinuous jerk-based chaotic systems with more complicated dynamics. The impacts of

these scaling parameters appear on the effective ranges of other main system param-

eters and the ranges of the obtained solution. The dependence of equilibrium points

on the sign of one of the scaling parameters results in coexisting attractors according

to the signs of the parameter and the initial point. In addition, switching can be used

to generate double-scroll attractors. Moreover, bifurcation and chaos are studied for

fractional-order of the derivative.
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1 Introduction

Chaos theory studies the capability of generating aperiodic sequences, which are

unpredictable on the long term, from deterministic relations. Chaotic generators are

characterized by their sensitive dependence on initial conditions. Hence, they are

widely utilized in many applications, which belong to various fields such as: biol-

ogy, chemistry, physics (Moaddy et al. 2012; Strogatz 2014), circuit theory (Radwan

2012, 2013b; Radwan et al. 2008a, b), control and synchronization (Henein et al.

2016; Radwan et al. 2013, 2014a, 2017; Sayed et al. 2017b, 2016a), communica-

tion and cryptography (Abd-El-Hafiz et al. 2016, 2015, 2014; Abdelhaleem et al.

2014; Barakat et al. 2013, 2011; Gan et al. 2016; Hua et al. 2017; Kocarev and Lian

2011; Li et al. 2016; Lin et al. 2016; Radwan and Abd-El-Hafiz 2013, 2014; Radwan

et al. 2014b, 2015b; Sayed et al. 2017a, 2015a, b; Radwan et al. 2007b; Wang et al.

2016; Zidan et al. 2011).

The two main categories of chaotic systems are discrete-time maps and contin-

uous differential equations. Continuous chaotic systems based on differential equa-

tions overpass discrete chaotic systems based on difference equations or iterative

maps because the former are characterized by more complicated dynamics. Vari-

ous implementations of discrete and continuous chaotic systems on electronic plat-

forms have been presented (Radwan et al. 2004, 2007a; Radwan 2013a; Radwan

et al. 2003; Sayed et al. 2017d; Zidan et al. 2012). The recent decades witness an

increasing demand on generalized, modified and novel chaotic systems to satisfy

the requirements of modeling and random number generation. Researches ranged

between continuous and discrete chaotic systems, but they rarely combined ideas

from both and investigated the results.

Fractional calculus has also flourished in the last few decades and found its way to

real world applications in various fields including electromagnetics (Shamim et al.

2011), bioengineering (Magin 2006), chaotic systems (Petras 2011; Radwan et al.

2011a), image encryption (Ismail et al. 2015; Radwan et al. 2012, 2015a), circuits,

modeling and control (AbdelAty et al. 2017; Fouda and Radwan 2015; Fouda et al.

2016; Psychalinos et al. 2016; Radwan and Fouda 2013; Radwan et al. 2016, 2011b;

Semary et al. 2016; Soltan et al. 2012, 2015, 2017). In addition, advances in numer-

ical methods for solving fractional-order systems and their electronic implementa-

tions have been reported (Caponetto 2010; Gorenflo and Mainardi 1997; Semary

et al. 2017; Tolba et al. 2017). Fractional calculus is more suitable for modeling

the continuous non-standard behaviors of nature due to the flexibility offered by

the extra degrees of freedom and including memory effects. Recently, most of the

chaotic dynamical systems based on integer-order calculus have been extended into
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the fractional-order domain (AboBakr et al. 2017) to fit the experimental data much

precisely than the their integer-order counterparts.

Leading researches investigated the possibility of introducing novel continuous

chaotic systems, which are algebraically simple and, hence, suitable for hardware

realization (Sprott 1994, 2000a, 2007). The well-established examples of chaotic

flows occur in nonlinear systems with self-excited attractors, which have one or more

saddle points (Alligood et al. 1996). In a self-excited attractor, the trajectories start-

ing at some of the initial values converge to a saddle equilibrium point while the

others diverge from it. If most of the initial values diverge from the saddle point,

then it is called unstable and this set of initial values is called the unstable manifold

of the saddle. Consequently, the computational procedure for locating strange attrac-

tors is carried out through choosing an initial value on the unstable manifold in the

vicinity of the saddle point (Jafari et al. 2015).

Simple chaotic systems based on the jerk equation gained the interest of the sci-

entific community. The jerk-equation (Sprott 2000a) is given by:

x⃛ = −ẋ − rẍ + f (x), (1)

where f (x) is a nonlinear function. The assignments

ẋ = y, ẏ = z, ż = −y − rz + f (x), (2)

transform the third order differential equation (1) into an autonomous system of

three first order differential equations with a single nonlinear term. The choice of the

type of the nonlinearity f (x) yields new jerk-based systems. Several researches dis-

cussed jerk-based chaotic systems including analysis, simulations, implementation

and applications (Elwakil et al. 2000; Mansingka et al. 2013; Sayed et al. 2017c;

Sprott 1997, 1994, 2000b, 2011; Vaidyanathan 2015; Vaidyanathan et al. 2015b,

2014, 2015c).

Recently, generalized tent and logistic maps with signed control parameter and

added scaling parameters have been analyzed in (Radwan and Abd-El-Hafiz 2013;

Sayed et al. 2015a, b) studying their effects on the chaotic properties. The advan-

tages of these generalizations include the added control capabilities on the ranges

of parameters and outputs and the extra degrees of freedom increasing the keyspace

in encryption applications. While the generalized tent map represents a piece-wise

nonlinearity, the generalized logistic map represents a quadratic nonlinearity.

This chapter aims at utilizing both the generalized scaled discrete-time tent and

logistic maps in chaotic systems based on differential equations. Two continuous

chaotic systems with self-excited attractors are presented. The two systems are based

on the jerk-equation and discrete maps with scaling parameters in the form of piece-

wise nonlinearity and quadratic nonlinearity. The effects of different parameters on

the type of the response of each system are studied. Time series, phase portraits,

bifurcation diagrams and Maximum Lyapunov Exponent (MLE) are investigated

against all system parameters. It is shown that the role of each parameter is related

to its role in the corresponding case of discrete maps.
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Section 2 reviews the related previous works on jerk-based chaotic systems and

the two nonlinearities utilized in the two proposed systems. Section 3 presents the

two systems, their equations, attractor diagrams and Lyapunov exponents for spe-

cific parameter values. Section 4 discusses the type of system response against the

two main system parameters and the scaling parameters through bifurcation dia-

grams and Maximum Lyapunov Exponent (MLE) plots. In addition, it studies the

effects of the scaling parameters on the ranges of the main system parameters and

output responses. Moreover, it illustrates the possibility of generating coexisting and

double-scroll attractors from the proposed systems. Section 5 studies the behavior of

the systems in the factional-order domain. Finally, Sect. 6 summarizes the main con-

tributions of the chapter and suggests possible approaches for future work.

2 Survey of the Related and Utilized Continuous
and Discrete Chaotic Systems

2.1 Jerk-Based Chaotic Attractors

Chaotic time series starting at close initial conditions begin to diverge, as time passes,

leading to completely different long term behaviors as mentioned in Sect. 1. This

divergence property is quantified using Lyapunov exponents, which characterize the

divergence and convergence properties of an attractor. The number of Lyapunov

exponents equals to the number of orthogonal directions of divergence or conver-

gence in the phase space (Strogatz 2014). To have a dissipative dynamical system, the

values of all Lyapunov exponents should sum to a negative number. For this system

to be chaotic, the maximum Lyapunov exponent should be finite positive. Continu-

ous flows expressed in terms of ordinary differential equations can have numerous

types of post transient solution(s). An attractor or phase portrait is defined as the

set of points approached by the orbit as the number of iterations increase to infinity

representing its long term behavior.

Many researches presented the analysis of new jerk-based chaotic systems, their

implementations and applications. Sprott (1994) presented general three dimensional

autonomous ordinary differential equations with quadratic nonlinearities, which are

composed of either five terms and two nonlinearities or six terms and one nonlinear-

ity. Sprott (1997) presented systems with cubic nonlinearities, which were recently

employed in Vaidyanathan et al. (2015a). Elwakil et al. (2000) presented a very

simple jerk-based system with piecewise nonlinearity generated by a signum func-

tion. Sprott (2000a) discussed fourteen systems of the general form x⃛ + Aẍ + ẋ = f (x)
where f (x) is a nonlinearity in the form of a piece-wise linear, quadratic, cubic,

sinusoidal, or hyperbolic tangent non-linear function. The systems posses an unsta-

ble equilibrium point at the zero of f (x). Two of the systems with piece-wise and

quadratic nonlinearities, respectively, are given in Table 1 because they have some

similarities in common with the systems which will be proposed in Sect. 3.
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Table 1 Sprott’s chaotic systems based on the jerk-equation (1) at r = 0.6 and their properties,

where C is a scaling parameter

f(x) −B|x| + C −B(x2

C
− C)

B 01 .58
MLE 0.078
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Vaidyanathan et al. (2014) presented a six-term three dimensional novel jerk

chaotic system with two hyperbolic sinusoidal nonlinearities. Vaidyanathan (2015)

presented a seven-term three dimensional novel jerk chaotic system with two

quadratic nonlinearities. Vaidyanathan et al. (2015c) presented a six-term three

dimensional jerk chaotic system with two exponential nonlinearities. Vaidyanathan

et al. (2015b) presented a four dimensional novel hyperchaotic hyperjerk system.

Synchronization applications and electronic circuit realization were also presented

in Vaidyanathan (2015); Vaidyanathan et al. (2015b, 2014). Mansingka et al. (2013)

presented fully digital implementations of four different systems in the third order

jerk-equation based chaotic family using Euler approximation.
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2.2 Two Modified Non-linearities

This subsection reviews generalized forms of two well-known discrete-time chaotic

maps, which will be utilized as the nonlinear function of the jerk-equation in Sect. 3.

The two generalizations are the scaled tent map with piece-wise nonlinearity and the

scaled logistic map with quadratic nonlinearity. The complete bifurcation diagram

using negatively valued parameters in tent and logistic maps has been recently ana-

lyzed in Sayed et al. (2015b, 2016b). The new parameter range provides a controlling

capability resulting in a wider output range.

2.2.1 Piece-Wise Nonlinearity: Scaled Tent Map

Scaled tent map (Sayed et al. 2015a) with piece-wise nonlinearity is given by:

f (x) =

{
𝜇 sgn(b)x, x ≤ a

b+sgn(b)
𝜇(a − bx), x > a

b+sgn(b)
, (3)

where 𝜇, a and b are parameters, a ∈ R+
, b ∈ R − {0} and sgn(b) is the sign function

or signum function which is an odd mathematical function that extracts the sign of

b as follows

sgn(b) =
{

−1, b < 0
1, b > 0 (4)

The forms of the scaled tent map can be classified into positive, mostly positive, neg-

ative, and mostly negative maps named after the sign of the obtained output range.

Figure 1 shows the graphs of the map equation for the first two forms, in which b > 0,

expressing the output ranges in terms of the map parameters.

(a) (b)

Fig. 1 a Scaled positive tent map and b Scaled mostly positive tent map, where 𝜇min = −
(
1 + 1

b

)
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For a discrete-time map represented as a recurrence relation, the bifurcation dia-

gram is a plot of its steady state solution versus the control parameter(s) of the map.

Plotting bifurcation diagrams is one of the approaches towards identifying the effec-

tive range of parameters through which the system exhibits bounded responses. In

addition, it is used to classify the corresponding qualitative type of the post-transient

solution into stable, periodic or chaotic. Figure 2 shows the general schematic of the

bidirectional bifurcation diagram of the scaled tent map, which changes its shape

as the parameter b exceeds 1. The figure shows the main bifurcation points and the

ranges of the parameter 𝜇 and the output x. The effective range of the parameter 𝜇, in

which the output is bounded, depends on the scaling parameter b in an inverse pro-

portionality relation. The output range depends on both scaling parameters, where

it widens as the value of the parameter a increases and/or the value of the param-

eter b decreases. These effects can be further inferred from the three-dimensional

snapshots of bifurcation diagrams against the main system parameter 𝜇 for different

values of the scaling parameters a and b, which are shown in Fig. 3a, b respectively.

(a) (b)

Fig. 2 General schematic of the bidirectional bifurcation diagram of the scaled tent map in both

sides of 𝜇 a b < 1, b b > 1

(a) (b)

Fig. 3 3D snapshots of the bifurcation diagrams of the scaled tent map a at b = 1 and a =
{0.5, 1, 2} and b at a = 1 and b = {1, 2, 4}
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(a) (b)

Fig. 4 a Scaled positive logistic map and b Scaled mostly positive logistic map

(a)

(b) (c)

Fig. 5 a General bifurcation diagram of the scaled logistic map and 3D snapshots b at b = 1 and

a = {0.5, 1, 2} and c at a = 1 and b = {0.5, 1, 2}
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2.2.2 Quadratic Nonlinearity: Scaled Logistic Map

Similarly, scaled logistic map (Sayed et al. 2015b) with quadratic nonlinearity is

given by:

f (x) = 𝜇 sgn(b)x(a − bx), (5)

resulting in four forms similar to the scaled tent map. Figures 4 and 5 show the graphs

of two map versions and their bifurcation diagrams. The dependence of the range of

the output x on the scaling parameters is similar to the scaled tent map. However,

the effective range of the parameter 𝜇 depends on the scaling parameter a in an

inverse proportionality relation. Bifurcation diagrams against the scaling parameters

and more detailed analyses of the different aspects of the scaled tent and logistic maps

can be found in Sayed et al. (2015a, b).

3 Proposed Systems and Their Properties

Substituting either the scaled tent map (3) or the scaled logistic map (5) in the jerk-

system (2) as f (x) yields the piece-wise nonlinearity system and the quadratic non-

linearity system, respectively. For both systems, the equations, attractor diagrams

in the three-dimensional space and different projections, and lyapunov exponents

at the specified parameter values are shown in Table 2. The attractor diagrams and

the projections of the two systems resemble those of the two systems with similar

nonlinearities which were introduced in Sprott (2000a) and reviewed in Sect. 2.1.

However, they do not exhibit the same ranges of the three state space variables x, y
and z. The obtained values for Lyapunov exponents for the two systems are in the

same range obtained for the similar systems (Sprott 2000a). Both systems belong to

the dissipative systems category because the sum of the three Lyapunov exponents

for each system is negative (Strogatz 2014). Moreover, they exhibit chaotic strange

attractors since the maximum Lyapunov exponent is finite positive.

For a continuous system of differential equations, the equilibrium points are

defined to be those points at which all time derivatives equal zero. The equilibrium

points are (x∗, 0, 0) where x∗ = {x|f (x) = 0}. For both forms of f (x), x∗ = 0, a/b.

Hence, there are two equilibrium points (0, 0, 0) and (a/b, 0, 0). Hence, the sign of

the x-coordinate of the nontrivial equilibrium point, x∗, depends on the sign of the

parameter b and some consequences of this property will be discussed in Sect. 4.3.

The linear stability of each of the obtained points can be determined by calculating

the eigen values of the linearized Jacobian matrix (Sprott 1994) (Routh-Hurwitz

criterion). Specifically, if all the eigenvalues have real parts that are negative, then

the system is stable near the equilibrium point. If any eigenvalue has a positive real

part, then the point is unstable. If the matrix has at least one eigenvalue with positive

real part, at least one with negative real part, and no eigenvalues with zero real part,

then the point is called a saddle (Alligood et al. 1996). The Jacobian matrix of the

proposed jerk-based systems is given by:
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Table 2 Proposed systems and their properties

The piece-wise nonlinearity system The quadratic nonlinearity system

Nonlinearity f(x) =

{
μ sgn(b)x, x ≤ a

b+sgn(b)
μ(a − bx), x > a

b+sgn(b)
f(x) = μ sgn(b)x(a − bx)

Parameter
Values

μ = 1
a = 1
b = 1
r = 0.6

μ = 1
a = 1
b = 1
r = 0.5

Attractor
Diagram

Lyapunov
Exponents

(0.038, 0, −0.64) (0.092, 0, −0.59)
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⎛⎜⎜⎝
0 1 0
0 0 1

f ′(x) −1 −r

⎞⎟⎟⎠ (6)

4 Simulation Results in Integer-Order Domain

For the two systems presented in Sect. 3, the type of response obtained at the dif-

ferent values of the four parameters and the sensitivity to parameter variation need

to be studied. This study can be carried out in a discrete manner, where the phase

portrait and the time series are plotted at chosen values of each parameter fixing the

other parameters. Continuous bifurcation diagrams provide a better representation of

the systems behavior, which is also more consistent with the continuous description

where parameters vary in narrow steps. For continuous chaotic systems, the bifurca-

tion diagram versus a chosen parameter is generated through plotting the value of x
every time it reaches a local maximum, where the time series is sampled as shown

in Fig. 6, revealing whether the time series is stable, periodic or chaotic.

As previously detailed, Lyapunov Exponents (LE) measure the sensitivity to ini-

tial conditions through the exponential divergence of nearby trajectories. The Maxi-

mum Lyapunov Exponent (MLE) exhibits finite positive values for parameter ranges

which correspond to chaotic behavior. To further indicate which parameter ranges

exhibit chaotic behavior, MLE values are plotted against each studied parameter.

Fig. 6 Time series sampling to decide the type of system response
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Table 3 Responses versus the parameter r at a = b = 𝜇 = 1
r = 0.55 r = 0.57 r = 0.7 r = 1.1

Attractor
diagram

Single point

Time
series

Response
type

Divergent Chaotic Periodic Stable

4.1 Sensitivity to Main System Parameters

To study the effect of parameters r and 𝜇, the scaling parameters a and b are kept con-

stant a = b = 1 corresponding to the unity scaling case. For the piece-wise nonlin-

earity system, Tables 3 and 4 show its responses at different values of r and 𝜇, respec-

tively. The post-transient attractor diagrams, time series, and the obtained response

type at different values of the parameter r within a chosen interval are plotted in

Table 3 fixing the other parameter values to 1. The value of r is fixed at 0.6 to study

responses at different values of the parameter 𝜇, which are given in Table 4. Negative

values of 𝜇 can be studied similarly.

Figure 7 shows the bifurcation diagrams of both systems versus the system param-

eter r. For both systems, at 𝜇 = a = b = 1, chaotic behavior is reported starting at a

critical value of r, below which no bounded responses can be found and the solution

diverges. A series of reverse bifurcations from the chaotic state to periodic orbits is

noticed as the value of r increases, then stable responses prevail. The results dis-

cussed earlier are further indicated by the maximum Lyapunov exponent (MLE)

plots, which appear below each bifurcation diagram. MLE exhibits finite positive

values for ranges of r which correspond to chaotic behavior, whereas it is negative in

the regions of stable solution. It roughly equals zero for ranges of r which correspond

to periodic responses.
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Table 4 Responses versus the parameter 𝜇 at a = b = 1 and r = 0.6
μ = 0.9 μ = 0.95 μ = 1 μ = 1.1

Attractor
diagram

Time
series

Response
type

Periodic Chaotic Chaotic Divergent

Fixing r at 0.6 for the piece-wise nonlinearity system and 0.5 for the quadratic

nonlinearity system and studying the effect of 𝜇 yields the diagrams shown in

Table 5. Bounded responses are reported when the value of the parameter 𝜇 belongs

to a given interval, where around the middle of the interval, stable responses are

obtained. Then, the response type changes gradually to periodic in a series of period

doubling bifurcations as |𝜇| increases. Afterwards, the response becomes chaotic

as 𝜇 approaches the lower and upper bounds. The possibility of bounded responses

and the generation of chaotic sequences at both positive and negative values of 𝜇 in a

double sided bifurcation are analogous to the behavior in the discrete domain (Sayed

et al. 2015a, b).

4.2 Sensitivity to Scaling Parameters

This section studies the effects of scaling parameters a and b on the system responses.

For the piece-wise nonlinearity system, Table 6 shows the responses at different val-

ues of the parameter b, which was noticed to be related to the variation of the param-

eter 𝜇. In addition, Table 7 shows the continuous bifurcation diagrams and MLE

values against both scaling parameters a and b. The response type does not change

as the value of the parameter a increases. The response is chaotic for almost all values
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Fig. 7 Bifurcation diagram and MLE against the parameter r for a the piece-wise nonlinearity

system at 𝜇 = a = b = 1 and b the quadratic non-linearity system at 𝜇 = a = b = 1

of a, where the range of the obtained solution gets wider as the value of a increases.

MLE value is almost kept constant when varying the value of the parameter a. The

parameter a acts only as a scaling parameter that widens the range of the solution,

which can be further inferred from Fig. 8, where increasing the value of a increases

the size of the attractor diagram. Table 7 shows that b is a signed parameter and that

the system response exhibits double sided period doubling bifurcations when vary-

ing the value of b. In addition, the bifurcation diagram is limited by a value bmax
controlled by the value of 𝜇 analogous to discrete scaled tent map case (Sayed et al.

2015a). The corresponding MLE plot exhibits values that match the response types

shown in the bifurcation diagram.

For the quadratic nonlinearity system, bifurcation diagrams and MLE versus the

scaling parameters are shown in Table 8, which can be described similar to the piece-

wise nonlinearity system. The effects of the scaling parameters a and b on the output

range remain the same, where the range of the system output increases as a increases.

In addition, the bifurcation diagram is limited by a value amax controlled by the value

of 𝜇. The parameter b acts only as a scaling parameter, where as |b| increases the

output ranges and the attractor size decrease as shown in Fig. 9.

Figure 10a shows the dependence of the effective range of the parameter 𝜇 on

the value of b. For b > 0, the range of 𝜇 that yields bounded responses decreases
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Table 5 Summary of the sensitivity to the system parameter 𝜇 and the similarities with the discrete

scaled tent and logistic maps

Bifurcation and MLE Properties
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- Double sided bifurcations versus μ.
- Bounded responses are reported in
the range μ ∈ [−1, 1].
- Period doubling bifurcation to-
wards chaos as |μ| increases.

Q
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- Almost similar except for the
range, which is wider in this case.
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Table 6 Piece-wise nonlinearity system responses for different combinations of the parameters b
and 𝜇 at a = 1 and r = 0.6

b = 2, μ = 0.6 b = −2, μ = 0.8 b = 2, μ = −0.8 b = 0.5, μ = −1.3
Attractor
diagram

Time
series

as b increases and sometimes no chaotic behavior can be reported. The dependence

between 𝜇 and b resemble their dependence for discrete scaled tent map (Sayed et al.

2015a, c). Figure 10a also shows that the range of the solution shrinks as the absolute

value of b increases. On the other hand, the parameter a does not affect the range of

𝜇. The effects of a and b on the quadratic nonlinearity system differ from their effects

on the piece-wise nonlinearity system from the viewpoint of the effective range of

𝜇, where the roles are exchanged. The effective range of 𝜇 is affected by the value

of a analogous to the discrete scaled logistic map (Sayed et al. 2015b, c), where it

decreases as a increases as shown in Fig. 10b.

4.3 Co-existing and Multi-scroll Attractors

Each of the two studied systems can exhibit co-existing attractors for different signs

of the parameter b, which controls the sign of the x-coordinate of the equilibrium

point as mentioned before as shown in Fig. 11. Two different attractor diagrams can

be obtained at distinct values and/or signs of b. In addition, if the parameter b varies

dynamically with time and switches its value and sign as time advances, then multi-

scroll attractors can be generated similar to the procedure given in Elwakil et al.

(2002). Figure 12 shows various examples in which parameter switching is used to

generate multi-scroll chaotic attractors from the two systems. In this case, the attrac-

tor diagrams are joined and undergo switching from side to side throughout the sim-

ulation time. Figure 12a generates a four-scroll attractor from the piece-wise nonlin-

earity system through switching the parameter values from a = b = 1, to a = 2 and

b = −0.7, followed by a = 3 and b = 1, and finally a = 4 and b = −0.7, each case

for quarter the simulation time, respectively, where r = 0.6 and 𝜇 = 1. Figure 12b

generates a double-scroll attractor from the quadratic nonlinearity system through
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Table 7 Summary of the sensitivity of the piece-wise nonlinearity system to the scaling parameters

a and b and the similarities with the discrete scaled tent map

Bifurcation and MLE Properties

- The response is chaotic for almost
all values of a, where the range of
the obtained solution gets wider as
the value of a increases. MLE values
are positive and slightly vary versus
a.
- The range of μ decreases as b in-
creases. The bifurcation diagram is
limited by a value bmax controlled
by the value of μ.
- a acts only as a scaling parame-
ter, where as a increases the output
ranges and the size of the attractor
diagram increases.

- Double sided period doubling bi-
furcations towards chaos exist as |b|
increases.
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Fig. 8 Scaled chaotic responses of the piece-wise nonlinearity system for different values of the

parameter a at b = 𝜇 = 1, r = 0.6

switching the value of the parameter b from 1 to −0.6 after half of the simulation

time passes, where r = 0.5 and a = 𝜇 = 1.

5 Sensitivity to Fractional-Order Parameters

Consider the fractional-order differential equation

D𝛼x(t) = f (t, x). (7)

Grünwald-Letnikov method of approximation (Hussian et al. 2008) is defined as fol-

lows:

D𝛼x(t) = lim
h→0

h−𝛼
t∕h∑
j=0

(−1)j
(
𝛼

j

)
x(t − jh), (8)

where h is the step size. This equation can be discretized as follows:

n+1∑
j=0

cj𝛼x(t − jh) = f (tn, x(tn)), j = 1, 2, 3,… (9)

where tn = nh and cj𝛼 are the Grünwald-Letnikov coefficients defined as:

cj𝛼 =
(
1 − 1 + 𝛼

j

)
cj−1𝛼, j = 1, 2, 3,… , c0𝛼 = h−𝛼. (10)

The NSFD discretization technique is based on replacing the step size h by a function

𝜙(h) (Hussian et al. 2008; Moaddy et al. 2012) and applying it with (9) to solve (7).

Same algebraic manipulation can be applied to a system of three fractional-order

differential equations. Tables 9 and 10 show the time series of the three phase space

dimensions x, y and z as well as the post-transient attractor diagram illustrating the

obtained type of solution for different values of the fractional-order.



Chaos and Bifurcation in Controllable Jerk-Based Self-Excited Attractors 63

Table 8 Summary of the sensitivity of the quadratic nonlinearity system to the scaling parameters

a and b and the similarities with the discrete scaled logistic map

Bifurcation and MLE Properties

- The effects of a and b differ from
their effects on the first system. The
roles are exchanged with respect to
their effect on the solution type, bi-
furcation shape and range of the
main system parameter μ.
- Their effects on the output range
remain the same, which increases as
the absolute values of a increases
and/or b decreases.
- The range of μ decreases as a in-
creases. The bifurcation diagram is
limited by a value amax controlled
by the value of μ.

- b acts only as a scaling parame-
ter, where as |b| increases the out-
put ranges and the attractor size de-
creases.
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Fig. 9 Scaled chaotic responses of the quadratic nonlinearity system for different values of the

parameter b at a = 𝜇 = 1 and r = 0.5

Fig. 10 Bifurcation diagrams versus 𝜇 of a the piece-wise nonlinearity system at b = {0.5, 1} and

b the quadratic nonlinearity system at a = {0.5, 1}

Fig. 11 Coexisting attractor diagrams at b > 0 (blue) and b < 0 (red) for a the piece-wise nonlin-

earity system and b the quadratic nonlinearity system
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Fig. 12 a Four-scroll attractor using the piece-wise nonlinearity system and bDouble-scroll attrac-

tor using the quadratic nonlinearity system

Table 9 Piece-wise nonlinearity system responses versus the fractional-order 𝛼 at parameter val-

ues a = b = 𝜇 = 1 and r = 0.6
α = 0.9 α = 0.95 α = 0.99

cidoirePcidoirePelbatS

6 Conclusions

In this chapter, controllable jerk-based chaotic systems with extra parameters were

presented. The systems utilized generalized forms of well-known discrete time

chaotic maps as the nonlinear function of the jerk equation. While the piece-wise

nonlinearity system employs the scaled tent map, the quadratic nonlinearity system

employs the scaled logistic map. An analogy exists between the effects of the scal-

ing parameters a and b in simple one-dimensional discrete chaotic maps and their

effects in continuous jerk-based chaotic systems with more complicated dynamics.
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Table 10 Quadratic nonlinearity system responses versus the fractional-order 𝛼 at parameter val-

ues a = b = 𝜇 = 1 and r = 0.5
α = 0.9 α = 0.98 α = 0.99
Stable Periodic Chaotic

The impacts of these scaling parameters appear on the effective ranges of the param-

eter 𝜇 and the ranges of the obtained solution. Similar research ideas can be extended

from the discrete domain to the continuous domain and combined to produce new

systems. Increased nonlinearity and extra degrees of freedom can be added to the

systems through using more complicated maps (e.g., Radwan 2013a; Sayed et al.

2017a).
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Self-Excited Attractors in Jerk Systems:
Overview and Numerical Investigation
of Chaos Production
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Abstract Chaos theory has attracted the interest of the scientific community because

of its broad range of applications, such as in secure communications, cryptography

or modeling multi-disciplinary phenomena. Continuous flows, which are expressed

in terms of ordinary differential equations, can have numerous types of post transient

solutions. Reporting when these systems of differential equations exhibit chaos rep-

resents a rich research field. A self-excited chaotic attractor can be detected through a

numerical method in which a trajectory starting from a point on the unstable manifold

in the neighborhood of an unstable equilibrium reaches an attractor and identifies it.

Several simple systems based on jerk-equations and different types of nonlinearities

were proposed in the literature. Mathematical analyses of equilibrium points and

their stability were provided, as well as electrical circuit implementations of the pro-

posed systems. The purpose of this chapter is double-fold. First, a survey of several

self-excited dissipative chaotic attractors based on jerk-equations is provided. The

main categories of the included systems are explained from the viewpoint of nonlin-

earity type and their properties are summarized. Second, maximum Lyapunov expo-

nent values are explored versus the different parameters to identify the presence of

chaos in some ranges of the parameters.
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1 Introduction

Nonlinear dynamical systems with chaotic or strange attractors are characterized by

the sensitivity to initial conditions, which is a required property for many appli-

cations (Layek 2015; Schöll 2001; Strogatz 2014). Chaos theory, dating back to

Lorenz (1963), has attracted the interest of the scientific community and took part in

many engineering applications such as dynamical modeling, pseudo-random number

generation for secure communication and cryptography applications (Abd-El-Hafiz

et al. 2014, 2015, 2016; Abdelhaleem et al. 2014; Barakat et al. 2013; Chien and Liao

2005; Frey 1993; Kocarev and Lian 2011; Lau and Tse 2003; Radwan and Abd-El-

Hafiz 2013, 2014; Radwan et al. 2012, 2015a, b; Radwan AG et al. 2014; Sayed et

al. 2015a, b, 2017a; Tolba et al. 2017) and control and synchronization (Azar and

Vaidyanathan 2015, 2016; Azar et al. 2017; Henein et al. 2016; Martínez-Guerra

et al. 2015; Radwan et al. 2013, 2017; Radwan A et al. 2014; Sayed et al. 2016,

2017b). Consequently, chaotic systems have been implemented in several numerical

and electronic forms (Petras 2011; Radwan et al. 2003, 2004, 2007; Radwan 2013;

Sayed et al. 2017d; Zidan et al. 2012).

Continuous flows expressed in terms of ordinary differential equations can have

numerous types of post-transient solutions. An attractor is defined as the set of

points approached by the orbit as the number of iterations increases to infinity rep-

resenting its long term behavior. For a continuous system of differential equations,

the equilibrium points are defined to be those points at which all time derivatives

equal zero. The linear stability of each of the obtained points can be determined by

Routh-Hurwitz stability criterion (Sprott 1994). The eigenvalues of the linearized

Jacobian matrix are calculated. If all eigenvalues have negative real part, then the

system is stable near the equilibrium point. If any eigenvalue has a real part that is

positive, then the point is unstable. If the matrix has at least one eigenvalue with

positive real part, at least one with negative real part, and no eigenvalues with zero

real part, then the point is called a saddle (Alligood et al. 1996).

Furthermore, nearby trajectories diverge on strange attractors, giving rise to the

butterfly effect in chaotic dynamical systems. This divergence is exponential and

may be quantified using characteristic exponents known as Lyapunov exponents

(Addison 1997). The number of Lyapunov exponents is equal to the number of

phase space dimensions, or the order of the system of differential equations. They are

arranged in a descending order and if the maximum Lyapunov exponent is positive,

then the system is chaotic. The sum of Lyapunov exponents represents the average

contraction rate of volumes in phase space. The sum is less than zero in dissipative

dynamical systems, as the post-transient solutions lie on attractors with zero phase

volume. Dissipative systems exhibit chaos for most initial conditions in a specified

range of parameters. On the other hand, a conservative system exhibits periodic and

quasi-periodic solutions for most values of parameters and initial conditions, and

can exhibit chaos for special values only. Consequently, dissipative systems usually

appear in most applications of chaos theory such as chaos-based communication,

physical and financial modeling. Conservative systems have another different set of
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applications that study the development of chaos in some kinds of systems. They are

useful in describing certain dynamical systems where there is no dissipation, or it

is so slight that it can be ignored, e.g., models of the solar system. Another impor-

tant classification of chaotic attractors is either self-excited or hidden. A self-excited

attractor has a basin of attraction that is associated with or excited from unstable

equilibria. On the other hand, a hidden attractor has a basin of attraction that does

not intersect with small neighborhoods of any equilibrium points. From a computa-

tional point of view, a self-excited chaotic attractor can be detected through a numer-

ical method in which a trajectory started from a point on the unstable manifold in

the neighborhood of an unstable equilibrium reaches an attractor and identifies it.

Hidden attractors cannot be found by this method (Leonov and Kuznetsov 2013).

Introducing novel chaotic systems requires a system of, at least, three differen-

tial equations involving, at least, one nonlinear term. A system of three or more first

order ordinary differential equations that contain one or more nonlinear term(s) is

constructed with the tendency to be as simple as possible. Some systematic numer-

ical search methods have been developed for detecting the presence of chaotic solu-

tions for new systems that contain multiple parameters. These parameters mainly

appear as the coefficients of each term in the system of differential equations. Those

numerical methods aim at setting many coefficients to zero with the others set to ±1
if possible or otherwise to a small integer or decimal fraction with the fewest possible

digits (Sprott 1994). These systems, with the least number of existing coefficients and

nonlinear terms, should exhibit chaotic properties of aperiodic bounded long-time

evolution and sensitive dependence on initial conditions for some ranges of para-

meters. Reporting the parameter ranges for which systems of differential equations

exhibit chaos or a strange attractor represents a rich research field.

Many researches focused on coming up with novel chaotic systems that, in the

simplest form, involve a differential equation of at least third order x⃛ = G(ẍ, ẋ, x) and

a nonlinearity. Differential equations of this form are called jerk equations because

they involve third derivatives. The word “jerk” refers to the rate of change of acceler-

ation, i.e., the derivative of acceleration with respect to time, the second derivative of

velocity, and the third derivative of position. The mathematically simple jerk equa-

tion, which is equivalent to a system of three first-order ordinary non-linear differ-

ential equations, was shown to have solutions that exhibit chaotic behavior (Gottlieb

1996). Moreover, the simple circuit implementation of jerk-based systems suggests

their utilization in secure communications and broadband signal generation. Systems

involving a fourth or higher derivative are accordingly called hyperjerk systems.

Several simple systems based on the jerk-equation and different types of non-

linearities were proposed in the literature (Elwakil et al. 2000; Sayed et al. 2017c;

Sprott 1994, 1997, 2000a, b, 2011; Vaidyanathan 2015; Vaidyanathan et al. 2014,

2015b, c). Mathematical analysis of equilibrium points and their stability were pro-

vided, as well as electrical circuit implementation of the proposed systems. Jerk-

based chaotic systems express a third order ordinary differential equation as a sys-

tem of three simultaneous first-order ordinary differential equations. Hence, they are

considered as one of the simplest types of continuous chaotic systems. Consequently,

they have been utilized in many applications including control and synchronization.
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This chapter focuses on dissipative chaotic systems with self-excited attractors

because they are not easily driven away from chaotic behavior when correctly adjust-

ing the parameters and varying the initial conditions. All the reviewed systems are

based on jerk equations and were shown to be chaotic for specific values of the

parameters in the original papers which introduced them. The main properties of

the selected systems, which have different types of nonlinear terms, are reviewed.

The associated phase portraits and Maximum Lyapunov Exponent (MLE) values are

tabulated in Sect. 2. Section 3 explores the responses in wider ranges of parameters

to investigate the possibility of chaos production using MLE as a chaotic measure.

Section 4 summarizes the contributions of the chapter.

2 Review of Some Self-Excited Jerk-Based Attractors

Early researches presented different variations on chaotic systems such that their

equations look simpler or more “elegant” (Sprott 1994). Sprott (2000a) discussed

several systems of the general form x⃛ + Aẍ + ẋ = f (x), where f (x) is a nonlinear func-

tion satisfying some conditions that guarantee boundedness. The equation is rede-

fined as ẋ = y, ẏ = z and ż = −Az − y + f (x). An electrical circuit implementation

has been suggested for cases in which f (x) is a piecewise linear function. Several

cases in which f (x) is a piecewise linear, quadratic, cubic, sinusoidal or hyperbolic

tangent nonlinear function are illustrated in Fig. 1.

The systems presented in (Sprott 2000a) are listed as fourteen systems in Tables 1,

2, 3 and 4. Systems (1) to (14) are self-excited attractors that posses an unstable equi-

librium point at the zero of f (x). These systems are elementary, both in the sense of

having the algebraically simplest autonomous Ordinary Differential Equation (ODE)

and in the form of the nonlinearity. The first five systems, which are discussed in

Table 1, represent the simplest cases with piece-wise nonlinearity. Their governing

equations are the easiest to implement on electronic platforms. They represent a class

of chaotic electrical circuit that is simple to construct, analyze, and scale over a wide

Nonlinearity

Piecewise Cubic HyperbolicQuadratic Sinusoidal

(1)      (5) (6), (7) (8), (9) (10) (13) (14)

Fig. 1 Categorization of the reviewed dissipative chaotic systems with self-excited attractors from

the viewpoint of the type of nonlinearity
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Table 1 Systems with piece-wise linear function

Equations Attractor
(1) f(x) = B|x| − C
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MLE = 0.036
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Table 2 Systems with quadratic nonlinearity

Equations Attractor

(6) f(x) = B(x
2
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B = 0.58
MLE = 0.078
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(7) f(x) = −B(x
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B = 0.58
MLE = 0.078
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Table 3 Systems with cubic nonlinearity

Equations Attractor

(8) f(x) = Bx(x
2

C − 1)
B = 1.6
MLE = 0.103
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(9) f(x) = −Bx(x
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Table 4 Systems with sinusoidal or hyperbolic nonlinearity

Equations Attractor
(10) f(x) = B sin(Cx)/C

B = 2.7
MLE = 0.069
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(11) f(x) = −B sin(Cx)/C
B = 2.7
MLE = 0.069
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(12) f(x) = B cos(Cx)/C
B = 2.7
MLE = 0.069
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(13) f(x) = −B cos(Cx)/C
B = 2.7
MLE = 0.069
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(14) f(x) = −B[x− 2 tanh(Cx)/C]
B = 2.2
MLE = 0.221
Hyperbolic tangent
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range of frequencies. In addition, it does not involve analog multiplication and uses

only resistors, capacitors, diodes and operational amplifiers. The rest of the systems

range between quadratic, cubic, sinusoidal and hyperbolic nonlinearities. Although

they are more complicated, they are still good candidates for detailed quantitative

analysis of bifurcation theory and other chaotic properties to be compared with sim-

ulation or implementation results.

For all the systems, the parameter A = 0.6, while C can be arbitrarily chosen as it

acts as a scaling factor for the size of the attractor diagram. Each table provides the

nonlinear function f (x) and the specific value of the parameter B that produces chaos.

In addition, the attractor diagrams or phase portraits are shown with the correspond-

ing positive value of MLE, base-e, both indicating chaotic behavior. The diagrams

have been plotted using Economics and Finance (E&F) chaos software (Diks et al.

2008) at the specified parameter values and the MLE values were given in (Sprott

2000a). Systems with similar equations exhibit similar attractor diagrams, e.g., sys-

tems (1) and (2) and systems (10) to (13).

Several other papers presented jerk-based chaotic attractors (Elwakil et al. 2000;

Sprott 1994, 1997, 2000b, 2011). General three dimensional autonomous ordinary

differential equations with quadratic nonlinearities were examined in (Sprott 1994).

The resulting simple chaotic systems are composed of either five terms and two non-

linearities or six terms and one nonlinearity. Systems with cubic nonlinearities were

presented in (Sprott 1997) and employed in (Vaidyanathan et al. 2015a). A very sim-

ple jerk-based system with piecewise nonlinearity generated by a signum function

was presented in (Elwakil et al. 2000).

Several recent researches presented new jerk-based systems as part of their work

(Sayed et al. 2017c; Vaidyanathan 2015; Vaidyanathan et al. 2014, 2015b, c). A six-

term three dimensional novel jerk chaotic system with two hyperbolic sinusoidal

nonlinearities was presented in (Vaidyanathan et al. 2014). An adaptive backstep-

ping controller was designed to stabilize the system with two unknown parame-

ters. In addition, synchronization of two systems with two unknown parameters was

achieved. Moreover, an electronic circuit realization of the novel jerk chaotic sys-

tem using Spice was presented. A four-dimensional novel hyperchaotic hyperjerk

system was proposed in (Vaidyanathan et al. 2015b) associated with control, syn-

chronization and electronic circuit realization. A six-term three-dimensional jerk

chaotic system with two exponential nonlinearities was presented in (Vaidyanathan

et al. 2015c). A seven-term three-dimensional novel jerk chaotic system with two

quadratic nonlinearities was presented in (Vaidyanathan 2015). Adaptive backstep-

ping control of the proposed system and synchronization of two identical entities

with unknown parameters were also proposed. Generalized forms of two well-

known discrete-time chaotic maps were utilized as the nonlinear function of the

jerk-equation in (Sayed et al. 2017c). The two maps are the scaled tent map with

piece-wise nonlinearity and the scaled logistic map with quadratic nonlinearity.

Fully digital implementations of four different systems in the third order jerk-

equation based chaotic family using Euler approximation were presented in

(Mansingka et al. 2013). The systems ranged between absolute value, signum,

quadratic and cubic nonlinearities. The high performance metrics of the digitally
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implemented systems as pseudo-random number generators were verified and shown

to be suitable for communication systems and hardware encryption applications.

3 Sensitivity to Parameter Variations

This section provides some extra results and simulations for a selected set of the sys-

tems summarized in the previous section. The results mainly focus on plotting the

phase portraits or strange attractors at values of parameters around those specified in

the original paper (Sprott 2000a). A simulation-based procedure for specifying para-

meter ranges of chaos production around the specified values is discussed through

plotting MLE versus the different parameters.

In general, the basin of attraction is the set of initial conditions which leads to

a particular post-transient solution. Parameter values can control whether chaotic

behavior is exhibited or not. While the parameter values that drive the system into

chaos are called parameter basin of attraction of the chaotic attractor, the initial points

that converge to a chaotic orbit are called its basin of attraction. There are two reasons

for the importance of parameter basin of attraction. First, to test the robustness of the

solution or its sensitivity to small parameter changes. Second, to have an estimation

of the allowed parameter space and which values produce chaos.

Plots of phase portraits and MLE versus parameters have been generated by the

aid of E&F software (Diks et al. 2008). In addition, some of the calculations of

Lyapunov exponents were carried out by Lyapunov Exponent Toolbox (LET) (Siu

1998) and a MATLAB-based program for dynamical system investigation (MATDS)

(Govorukhin 2004). Calculations of Lyapunov exponents have been carried out for

10, 000 iterations up to accuracy of four decimal places. These choices are made to

ensure reaching a post-transient value of Lyapunov exponents. Lyapunov exponent

calculations at the specified parameters and initial conditions should satisfy the two

conditions for chaos production. First, their summation should be less than zero since

they are dissipative dynamical systems. Second, the MLE should be positive which

accounts for chaotic behavior.

Several numerical simulations are performed to get the ranges of parameters,

rather than specific values only, that produce chaos. The procedure makes use of

the calculated Lyapunov exponents in determining approximate ranges of parame-

ters that produce chaos. The systems are shown to satisfy the condition of dissipative

systems by using the Lyapunov exponent calculation function of MATDS. MLE is

plotted versus different system parameters using E&F chaos software. For the para-

meter values specified in (Sprott 2000a), the neighborhood of each parameter value

is explored while fixing the other parameters. The approximate ranges of parameters

that exhibit positive values of MLE are recorded. Visualizing phase portraits is also

used as a check of chaos production.

The parameter values that correspond to maximum chaos (largest MLE) are spec-

ified. In addition, other values of parameters are shown to drive the response out of

chaos and generate other types of solutions. The flows of most dynamical systems
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with respect to parameter variation exhibit the following pattern of different types

of solutions: stable or fixed followed by periodic then quasi-periodic and afterwards

chaotic and finally unstable or divergent, whether in the direction of increasing the

parameter or vice versa. Lyapunov exponents can be used to determine the type of

the attractor as follows, where three dimensional phase space is assumed for simplic-

ity. Lyapunov exponents with signs (+, 0,−) correspond to chaos or strange attractor,

(−,−,−) to fixed point, (0,−,−) to limit cycle and (0, 0,−) to quasi-periodic torus

(Addison 1997).

3.1 A Dissipative Self-Excited Attractor with Quadratic
Nonlinearity: System (6)

System (6) in Table 2 represents a sample for quadratic nonlinearity. Figure 2 shows

the ranges of parameters A, B and C that can produce chaos in system (6). Wider

ranges were investigated using E&F chaos software, but the chaotic range is focused

as shown in the figure. Figure 2a shows that for approximately 0.6 ≤ A ≤ 0.675, the

value of MLE varies but remains positive through almost the whole interval. This

indicates that the system exhibits chaotic behavior in this range of the parameter A.

0

0.02

0.04

0.06

0.08

0.1

0.6 0.65 0.7 0.75 0.8 0.85

M
LE

A

(a)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

M
LE

B

(b)

0

0.02

0.04

0.06

0.08

0.1

1 1.5 2 2.5 3 3.5 4 4.5 5

M
LE

C

(c)

Fig. 2 Ranges of parameters that produce chaos for system (6) a MLE versus A, b MLE versus B,

and c MLE versus C
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Fig. 3 a Time evolution of Lyapunov exponents at A = 0.6 and B = 0.58, b Phase portrait of the

chaotic attractor at A = 0.62 and B = 0.55, c Non-chaotic phase portrait, and d Time evolution of

Lyapunov exponents at A = 0.7 and B = 0.58 for system (6)

For A slightly less than 0.6, MLE diverges corresponding to unstable system, while

for A slightly greater than 0.675, MLE is around zero or negative corresponding to

periodic responses.

Regarding the effect of the parameter B, Fig. 2b shows that for approximately

0.525 ≤ B ≤ 0.585, the value of MLE varies but remains positive. For B slightly

greater than 0.585, MLE diverges corresponding to unstable system, while for B
slightly less than 0.525, MLE is around zero or negative corresponding to periodic

responses.

Figure 2c shows that the value of C does not affect the type of the behavior, which

conforms to its description in (Sprott 2000a) as a scaling factor for the attractor size.

The values chosen in (Sprott 2000a) to produce chaos are A = 0.6 and B = 0.58
corresponding to the attractor diagrams shown in Table 2. Figure 3a shows the time

evolution of Lyapunov exponents at these values of parameters, which satisfy the

conditions for chaotic behavior. The MLE value approaches the value given in

Table 2 as time advances. Furthermore, it is shown in Fig. 3b that other combinations

of A and B, which belong to the intervals specified in this section, can yield a chaotic

attractor too. Values of parameters outside the specified ranges drive the system out
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of chaos and can yield periodic responses as shown in Fig. 3c. Such responses exhibit

(0,−,−) values for the three Lyapunov exponents as shown in Fig. 3d indicating a

limit cycle.

3.2 A Dissipative Self-Excited Attractor with Cubic
Nonlinearity: System (8)

The range of the parameter A for system (8), with cubic nonlinearity, to exhibit

chaotic behavior is limited to roughly about 0.6 ≤ A < 0.65 as shown in Fig. 4a

with the largest MLE occurring at A = 0.6. For A slightly less than 0.6, the response

diverges, while for A slightly greater than 0.65, periodic responses start to appear.

For the parameter B, chaos is produced in the approximate interval 1.5 < B <

1.65, preceded by periodic responses and followed by divergent ones as shown in

Fig. 4b. The conditions on the values of Lyapunov exponents at the parmeter values

given in Table 3 can be illustrated similar to the previous case. Furthermore, Fig. 4c

shows the phase portrait of a chaotic attractor at other parameter values that belong

to the intervals defined in this section.
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Fig. 4 Ranges of parameters that produce chaos for system (8) a MLE versus A, b MLE versus B,

and c Phase portrait at A = 0.62 and B = 1.64



82 W. S. Sayed et al.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0 0.2 0.4 0.6 0.8 1

M
LE

A

(a)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0.5 1 1.5 2 2.5

M
LE

B

(b)

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-15 -10 -5 0 5 10

y

x

(c) (d)

Fig. 5 Ranges of parameters that produce chaos for system (10) a MLE versus A, b MLE versus

B, c Phase portrait, and d Time evolution of Lyapunov exponents at A = 0.2 and B = 2.7

3.3 A Dissipative Self-Excited Attractor with Sinusoidal
Nonlinearity: System (10)

System (10) is studied as a sample of systems with sinusoidal nonlinearity. Vari-

ous values that belong to the approximate intervals 0 < A < 0.7 and 0.5 < B < 2.75
correspond to chaotic behavior as shown in Fig. 5a and b. The intervals are not con-

tinuous, i.e., some exceptional values that correspond to non-chaotic behavior are

found in between. The ranges of parameters which correspond to chaotic responses

for the systems with sinusoidal nonlinearity are wider than the previous systems.

Values other than those stated in (Sprott 2000a) can produce chaos with larger val-

ues of MLE. This is illustrated through the phase portrait and Lyapunov exponents

in Fig. 5c and d, respectively.

Table 5 summarizes the main results obtained in this section for three continuous

dissipative chaotic systems with self-excited attractors and various types of nonlin-

earities. A combination of the parameter values, which produce chaos, was given

in (Sprott 2000a) as a single value for each parameter rather than a range. Table 5

shows the attractor digram of each system at the specified parameter values and wider

ranges of parameters that produce chaos, which were not mentioned in the original
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Table 5 Summary of the results obtained for the selected systems

System Equations Attractor Ranges of Parameters Category and Comments
(6) ẋ = y

ẏ = z

ż = −Az − y +B(x
2

C
− C)
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-1
0
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3
4
5

-6 -4 -2 0 2 4

y

x

0.6 ≤ A ≤ 0.675
0.525 ≤ B ≤ 0.585
C scaling only
(Figures 2 and 3)

– Dissipative.
– Self-excited.
– Quadratic nonlinearity.

(8) ẋ = y
ẏ = z

ż = −Az − y +Bx(x
2

C
− 1)
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1
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-1.5 -1 -0.5 0 0.5 1 1.5

y

x

0.6 ≤ A < 0.65
1.5 < B < 1.65
C scaling only
(Figure 4)

– Dissipative.
– Self-excited.
– Cubic nonlinearity.

(10) ẋ = y
ẏ = z
ż = −Az − y +B sin(Cx)/C
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0.5
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y
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0 < A < 0.7
0.5 < B < 2.75
(Figure 5)

– Dissipative.
– Self-excited.
– Sinusoidal nonlinearity.
– Relatively wide ranges of parameters
produce chaos.

paper. Moreover, the main category to which each system belongs and comments on

its behavior are included.

4 Conclusions

A review of dissipative jerk-based continuous chaotic systems with self-excited

attractors has been presented. The systems posses various types of nonlinearities:

piecewise, quadratic, cubic, sinusoidal and hyperbolic. The parameter values and

chaotic properties of each system have been validated through phase portraits and

MLE values. Using numerical simulations, wider ranges of parameters that corre-

spond to chaotic behavior have been defined and shown to exhibit positive value of

MLE. In addition, either periodic or divergent responses corresponding to values of

parameters outside these ranges have been included.
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Synchronization Properties in Coupled Dry
Friction Oscillators

Michał Marszal and Andrzej Stefański

Abstract Self-excited vibrations in friction oscillators are known as stick-slip

phenomenon. The non-linearity in the friction force characteristics introduces insta-

bility to the steady frictional sliding. The self-excited friction oscillator consists of

the mass pushed horizontally on the surface, elastic element (spring) and a drive

(convey or belt). Described system serves as a classic toy model for representation

of stick-slip motion. Synchronization is an interdisciplinary phenomenon and can be

defined as correlation in time of at least two different processes. This chapter focuses

on synchronization thresholds in networks of oscillators with dry friction oscillators

coupled by linear springs. Oscillators are connected in the nearest neighbour fash-

ion into topologies of open and closed ring. In course of the numerical modelling

we are interested in identification of complete and cluster synchronization regions.

The thresholds for complete synchronization are determined numerically using brute

force numerical integration and by means of the master stability function (MSF).

Estimation of the MSF is conducted using approach called two-oscillator probe.

Moreover, we perform a parameter study in two-dimensional space, where differ-

ent cluster synchronization configurations are explored. The results indicate that the

MSF can be applied to non-smooth system such as stick-slip oscillator. Synchro-

nization thresholds determined using MSF occur to be in line with the one obtained

numerically.

1 Introduction

Synchronization phenomenon draws attention of scientists in different disciplines of

science, e.g. biology, social science, engineering, physics. Word “synchronization”
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has Greek origins and is combined of two parts: syn—common and chronos—time,

which together mean happening at the same time. Synchronization may be defined as

adjustments of rhythms of oscillating objects due to their weak interaction (Pikovsky

et al. 2003).

Dutch scientist Christiaan Huygens was a pioneer of research in the field of syn-

chronization, when back in the 17th century he observed synchronization of two pen-

dula hanging on a common support (Huygens 1673). In the 19th century Sir John

William Strutt (Lord Rayleigh) described synchronization in organ pipes (Rayleigh

1896). Pipes with the same pitch, placed side by side cause the sound to quench.

Beginning of the 20th century brought observation of synchronization in electric

engineering, when Eccles and Vincent (1920) discovered synchronization property

of triode generator. The experiment they proposed proved that coupling generator

forces common frequency of system vibration (current frequency of single genera-

tor depends on electric properties circuit elements). This idea was later developed

by Appleton (1922), van der Pol (1927).

In the second half of the 20th century the synchronization phenomenon was

reported in biological systems (Mirollo and Strogatz 1990; Winfree 1967). John

and Elisabeth Buck investigated the synchronization phenomenon among fireflies is

south-east Asia (Buck and Buck 1968), where males emit synchronous light flashes

to attract female during the mating season. Phenomenon of swarm behaviour in

groups of animals (e.g. fish school, flock of birds) is addressed in Heppner and

Grenander (1990), Reynolds (1987). Existence of synchronization is found in pace-

makers cells (Jalife 1984; Michaels et al. 1987), adjustments of menstrual cycle

among women (Graham and McGrew 1980), rhythmic applause in concert halls

(Néda et al. 2000). An example of synchronization in civil engineering is the case

of the Millennium Bridge in London. The just opened footbridge started to vibrate

unexpectedly after reaching a threshold number of pedestrian. The lateral forces

exerted by pedestrians induced the bridge vibrations, which forced the walkers to

move in synchronized step, which additionally amplify the lateral oscillations of the

bridge (Dallard et al. 2001a, b; Eckhardt et al. 2007; Lenci and Marcheggiani 2012;

Strogatz et al. 2005).

Friction is an ubiquitous force in mechanics, responsible for the resistance of

contacting surfaces to relative motion. One can distinguish two types of friction:

dry friction—when two solid surfaces are in contact and viscous friction—when the

contact occurs through a layer of fluid (e.g. lubricant). Friction dissipates the energy

of contacting interfaces into heat and can be the source of self-excited vibrations.

These can be heard as squeal sound in various devices (e.g. breaks, machining tools,

chalk on blackboard, string and bow in violin) (Ghazaly et al. 2013; Patitsas 2010;

Warmiński et al. 2003). Proper understanding of friction phenomenon is crucial in

control engineering (Gogoussis and Donath 1987; Saha et al. 2010).

The word “friction” is of Latin origin—fricare. One of the first scholars study-

ing the properties of friction was da Vinci (1518), who formulated two theories.

He reported that friction is directly proportional to the normal load applied on the

friction interface. Additionally he stated that friction is independent from the appar-

ent contact area (Dowson 1979; Hutchings 2016; Wojewoda 2008). Works of da
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Vinci were unpublished until they had been rediscovered by Amontons (1669) and

today are now known as Amontons’ laws of friction. Euler (1750, 1761) distin-

guished static and kinetic friction. He also found the relation between inclination

angle of inclined plane and friction coefficient 𝜇 = tan 𝛼 (Meyer et al. 1998). French

physicist Charles Coulomb, further developed Amontons’ ideas (Coulomb 1821).

He concluded that kinetic friction is independent of the relative velocity between

contacting surface, which is known as Coulomb’s law of friction. A basic friction

model is named after him (Coulomb friction model). However, the Coulomb model

despite robustness in simple case fails in more complex applications. In the begin-

ning of the 20th century German engineer Stribeck (Stribeck 1902) investigated the

non-linearity between the friction force and relative velocity, which is known as

Stribeck effect. The change between static and kinetic friction is not gradually, but

follows non-linear dependency called Stribeck curve. Should the relative velocity

between surface of contact be small, the friction force smoothly decrease from the

static friction level, converging at kinetic friction level. The difference between static

and kinetic friction in systems with energy source leads to self-excited vibration of

the investigated mass.

Nowadays a variety of friction models has been proposed, which can be divided

into two groups: static models (Armstrong-Helouvry 1991; Bo and Pavelescu 1982;

Hess and Soom 1990; Popp and Stelter 1990) and dynamical (Al-Bender et al. 2004;

de Wit et al. 1995; Dahl 1968; Stefański et al. 2003; Wojewoda et al. 2008), where

friction depends on many variables. The dynamical models have even internal states

described by ordinary differential equations.

In this chapter we deal with the synchronization properties and synchronization

properties of coupled dry friction oscillators. The research presented in this chapter is

a continuation of author’s previous research in Marszal (2017), Marszal et al. (2016),

Marszal and Stefański (2017). The chapter is organized as follows. Section 2 presents

theoretical background in the field of synchronization. Section 3 introduces the math-

ematical model and the concept of self-excited vibrations in single friction oscillator.

In Sect. 4 friction oscillators are coupled forming oscillator networks. Section 5 dis-

cusses the result of numerical simulations. Finally conclusions and possible future

development are shown in Sect. 6.

2 Synchronization

Let us consider a dynamical system, consisting of N oscillators, which can be

described using following matrix-form equation (Stefański 2009), where 𝐱 =(
x1,… , xN

)
∈ ℜN

is a state vector and 𝐅 (𝐱) =
(
f1
(
x1
)
, .., fN

(
xN

))
is a function

describing the local dynamics of the system, which is independent of the coupling.

�̇� = 𝐅(𝐱) + 𝜎(𝐆⊗𝐇)𝐱, (1)
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The second term in (1) describes the coupling properties. 𝐆 is a connectivity matrix,

𝐇 ∶ ℜN → ℜN
linking functions, 𝐇 a linking matrix, 𝜎 coupling coefficient, ⊗

denotes the Kronecker product of two matrices. For the general case the properties

of 𝐆 and 𝐇 matrices can be arbitrary.

2.1 Types of Synchronization

Synchronization is a complex phenomenon. For the case of this chapter let us limit

our consideration to few types of synchronization, namely, complete synchroniza-

tion, imperfect complete synchronization and cluster synchronization.

Let us restrict the area of considerations to a network of identical oscillators 𝐅(𝐱)
and linking functions 𝐇. In such a system it is possible to obtain complete syn-

chronization (CS), called also full synchronization. According to Pecora and Carroll

(1990) complete synchronization can be observed when two trajectories converge to

the same value and later hold that conditions. Stefański (2009) proposes following

definition of complete synchronization.

Definition 1 The complete synchronization of two dynamical systems represented

with their phase plane trajectories 𝐱(t) and 𝐲(t), respectively, takes place when for

all t > 0, the following relation is fulfilled:

lim
t→∞

‖𝐱(t) − 𝐲(t)‖ = 0. (2)

In practical applications it may be difficult to have identical oscillator nodes in

network. Should there be a mismatch between oscillators or coupling properties,

differences between their respective trajectories converge to zero with some small

tolerance 𝜀. Such a situation is called imperfect complete synchronization (ICS).

Stefański (2009) defines ICS as follows.

Definition 2 The imperfect complete synchronization of two dynamical systems

represented with their phase plane trajectories 𝐱(t) and 𝐲(t), respectively, occurs

when for all t > 0, the following inequality is fulfilled:

lim
t→∞

‖𝐱(t) − 𝐲(t)‖ < 𝜀, (3)

where 𝜀 is a small parameter.

Supposing the system consists of N > 2 identical oscillators one may distinguish

two or more subsets for which the particular oscillators are in sync with each other

and out of sync with the members of the other subset. Subsets of synchronized oscil-

lators are called clusters. It is important to mention that we can talk about clus-

ter synchronization when whole system is not in complete synchronization. The

motion of different cluster may be uncorrelated or one can observe a shift phase
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between them. Existence of clusters is connected with the existence and stability of

synchronization manifold (Perlikowski 2007). The topic of clusters can be found in

literature in Belykh et al. (2000, 2001), Dahms et al. (2012), Kaneko (1990), Wu

et al. (2009), Yanchuk et al. (2001).

2.2 Synchronous State Stability

A power mathematical tool used in assessing the stability of the synchronous state

is the concept of master stability function (MSF) introduced by Pecora and Carroll

(1998). Master stability function enables to divide the problem of the synchronous

state stability into two parts: (i) the topological part, where we need to calculate the

eigenvalues of the connectivity matrix, and (ii) local dynamic part, where one need

to calculate Lyapunov exponents of variational equation. The classic approach to

estimate the MSF is to calculate transversal Lyapunov exponents (TLE) of the Eq.

(7) derived below. Let us begin with obtaining variational equation of Eq. (1):

�̇� =
[
𝟏𝐍 ⊗ D𝐅 + 𝜎𝐆⊗ D𝐇

]
𝜉, (4)

where 𝜉i is the variation of the ith node, 𝜉 = (𝜉1, 𝜉2, ...𝜉N) is variation vector, D𝐅 is

the Jacobian of any node,D𝐇 is the Jacobian of the linking function. Diagonalization

of Eq. (4) yields to uncoupling the variational Eq. (4) into N block having a form of:

�̇�k =
[
D𝐅 + 𝜎𝛾kD𝐇

]
𝜉k, (5)

where 𝛾k is the kth eigenvalue of the 𝐆, i = 0, 1, 2, ...,N − 1, 𝜉k is transverse mode of

perturbation from the synchronous state. In case of k = 0 eigenvalue is 𝛾0 = 0, and

consequently Eq. (5) is reduced to

�̇�0 = D𝐟𝜉0, (6)

which is associated with the longitudinal direction located within the synchroniza-

tion manifold. The other kth eigenvalues correspond to transverse eigenvectors (Pec-

ora and Carroll 1998). In MSF concept the tendency to synchronization is a function

of eigenvalues 𝛾k. Let us substitute 𝜎𝛾 = 𝛼 + i𝛽 in Eq. (5), where 𝛼 and 𝛽 are respec-

tive real and imaginary part of eigenvalues.

�̇� = [D𝐅 + (𝛼 + i𝛽)D𝐇] 𝜉, (7)

where 𝜉 is an arbitrary transverse mode.

Condition for the existence of invariant synchronization manifold is the zero row

sum connectivity matrix 𝐆 (Pecora and Carroll 1998). All the real parts of eigenval-

ues, which correspond to transversal modes, are negative (Re(𝛾k≠0) < 0). The spec-

trum of eigenvalues has the descending form, i.e., 𝛾0 ≥ 𝛾1 ≥ ... ≥ 𝛾N−1. In general
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case, (Pecora and Carroll 1998) defines MSF as the largest transversal Lyapunov

exponent 𝜆T surface, computed basing on Eq. (7), on a complex numbers plane (𝛼, 𝛽).
Should the interaction between the nodes be mutual (e.g. mechanical systems), then

the eigenvalues have only real part and then MSF is represented only by a curve

describing the largest TLE as a function of real number 𝛼, defined as

𝛼 = 𝜎𝛾. (8)

The synchronous state of dynamical system is stable when all eigenmodes of the

discrete eigenvalue spectrum 𝜎𝛾k lay in ranges of the largest negative TLE (see

Fig. 1a). Supposing even only one eigenvalue is in the range, where 𝜆T > 0 (see

Fig. 1b), the global synchronization is unstable, however, cluster synchronization is

still possible.

The method mentioned in previous section is robust for time continuous sys-

tems, given by smooth equations, where the computation of TLE is relatively easy.

However, when dealing with non-smooth dynamical systems, such as dry friction

oscillators, the computation of TLE requires special care and algorithms. In such a

case, techniques called three-oscillator universal probe (Fink et al. 2000) and two-
oscillator probe (Wu 2001) come to our rescue. Oscillator probe is based on estimat-

ing the MSF on the complex plane by direct detection of the complete synchroniza-

tion in numerical calculations or in the experiment. The methodology is simple, but

yet efficient. When calculating MSF in three-oscillator probe for system containing

N oscillators, one initially investigates the reference probe of three oscillators. The

area on the complex plane (𝛼, 𝛽) where the complete synchronization or imperfect

complete synchronization occurs is the equivalent of the area of negative transver-

sal Lyapunov exponents. The two-oscillator probe can be applied for mechanical

systems, where due to mutual interaction between the nodes, the eigenvalues of the

λ
T

σγ
σγ

1 2 k
σγ σγ...

λ
T

σγ
σγ

2 k
σγ

1
σγ ...

(a) (b)

Fig. 1 Examples of the MSF with spectrum of eigenvalue of connectivity matrix for cases of

potential stable (a) and unstable (b) complete synchronization state of all network oscillators
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connectivity matrix 𝐆 are real and the MSF is reduced to a curve, which is also the

case for real only eigenvalues when using TLE as MSF.

Let us consider system of N = 2 coupled oscillators, given by Eq. (1), with con-

nectivity matrix 𝐆:

𝐆 =
(
−c c
c −c

)
, (9)

where c is the real coupling factor. One can formulate following variational equation

of the considered system.

(
�̇�1
�̇�2

)
=
[
𝐈𝟐 ⊗ D𝐟 + 𝜎

(
−c c
c −c

)
⊗ D𝐇

](
𝜉1
𝜉2

)
, (10)

with real eigenvalues 𝛾0 = 0, 𝛾1 = −2c. This yields to generic variational equation

for MSF determination for the two-oscillator probe system

�̇� = (D𝐟 − 2𝜎cD𝐇) 𝜉. (11)

If the all non-zero eigenvalues of the connectivity matrix of the system of N oscil-

lators are in the surface or range of complete (imperfect complete) synchronization

for the reference probe, then the complete synchronization (imperfect complete syn-

chronization) is possible for the the system in question. When comparing Eq. (11)

with Eq. (7) one can notice that 𝛼 = 2𝜎c. Hence, the multiplier 2 has to be taken

under consideration when the MSF (e.g. from Fig. 1a) is replaced by two oscillators

probe as shown in Fig. 2.

In order to estimate the MSF using two-oscillator probe, it is necessary to couple

two oscillators with real coupling and perform numerical or experimental determi-

nation of synchronous ranges. The synchronous ranges can be indicated by average

synchronization error for two-oscillator probe ⟨eII⟩ = 0 and are equivalents of stable

synchronous region of MSF using the largest TLE. We can project this representative

two-oscillator probe for any number of coupled oscillators with arbitrary structure of

connection between them via eigenvalues of the connectivity matrix 𝐆 (Fink et al.

2000; Marszal and Stefański 2017; Pecora and Carroll 1998; Stefański 2009; Wu

2001).

One can distinguish three different regimes of synchronous intervals in the MSF

⟨eII⟩ (𝛼) analysis: (i) bottom-limited (𝛼1,∞), (ii) upper-limited (𝛼1 = 0, 𝛼2 > 0 but

of finite value) and (iii) double-limited (𝛼1, 𝛼2 > 0, but of finite value). Values of 𝛼1
and 𝛼2 denote upper and lower ends (Fig. 3) of the synchronous range, respectively

(Stefański 2009; Stefański et al. 2007). In this chapter let us focus on the second and

third cases. In the double-limited case, two transverse eigenmodes have influence

on the synchronization thresholds, i.e., the longest spatial-frequency mode, which

corresponds to the largest eigenvalue 𝛾1, and the shortest spatial frequency, which

corresponds to the smallest eigenvalue 𝛾N−1. They determine the size of the syn-

chronous state interval. The loss of stability can be caused by two desynchronization

bifurcations. Decrease of 𝜎 triggers a long-wavelength bifurcation, as the longest



94 M. Marszal and A. Stefański

λ
T

σγ

σ

e〈  〉II

0

20

1

c

(a)

(b)

Fig. 2 Equivalence of the MSF (a) and two-oscillator probe (b)

wavelength mode 𝜉1 becomes unstable. Contrary, the increase of 𝜎 may lead to short-

wavelength bifurcation, because the shortest wavelength mode 𝜉N−1 becomes unsta-

ble (Marszal and Stefański 2017; Stefański et al. 2007). One can formulate condition

for the existence of the synchronous interval as
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𝛾N−1
𝛾1

<
𝛼2
𝛼1

, (12)

which implies the existence of the maximum number of oscillators, for which the

investigated system can be in CS. The increase of N follows the increase of 𝛾N−1∕𝛾1
ratio. Hence, the inequality in (12) cannot be fulfilled (Barahona and Pecora 2002;

Nishikawa et al. 2003; Pecora et al. 2000; Pecora 1998). The discussed case of double

limited synchronous interval is depicted in the Fig. 3. For the Fig. 3a the condition in

(12) is fulfilled and synchronous intervals overlap with cross-hatched area marking

the synchronous range (𝜎1, 𝜎2). Contrary, in the Fig. 3b the synchronous intervals do

not overlap and there is no synchronous range for network of N oscillators (Marszal

and Stefański 2017; Stefański 2009). In case of upper-limited synchronous interval

the synchronization regions depend on the smallest eigenvalue 𝛾N−1. The increase of

N forces to narrow the synchronization interval towards the origin of the coordinates

system.

As an additional effect of double-limited synchronous interval, the phenomenon

of the so called ragged synchronizability can be observed, i.e., alternately occurring

synchronous and desynchronous windows (Stefański et al. 2007) (e.g. Fig. 3a).

3 Single Self-excited Friction Oscillator

Consider a single, classic, dry friction, self-excited oscillator, depicted in Fig. 4. The

system consists of a drive—conveyor belt, elastic element—spring and moving oscil-

lating mass with a frictional interface. The equation of motion of the system can be

formulated as follows:

md2x
dt2

= FNf
(
vr
)
− kx, (13)

where:m—mass of the oscillator x—displacement of the oscillator, k—stiffness con-

stant, vb—velocity of the belt, vr—relative velocity between the contacting surfaces(
vr = vb −

dx
dt

)
,FN—normal load (the weight of oscillator is included inFN), f (vr)—

function describing friction characteristics.

Let us non-dimensionalise the Eq. (13) by applying 𝜔0 =
√

k
m

, non-dimensional

time 𝜏 = 𝜔0t and characteristic constant x0 =
g
𝜔
2
0
, which results in

�̈� = 𝜖f (𝜗r) − 𝜒. (14)

The non-dimensional variables are formulated as follows: 𝜖 = FN

mg
—load

coefficient, 𝜗b =
vb

x0𝜔0
—non-dimensional velocity of the belt, 𝜗r = 𝜗b − �̇�—non-

dimensional relative velocity between contacting surfaces, 𝜒 = x
x0

—non-

dimensional displacement. The overdots stand for the respective derivatives with
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Fig. 3 Examples of double-limited synchronous intervals: a synchronous ranges of shortest and

longest frequency modes are partly overlapping, yielding to stable synchronous interval (𝜎1, 𝜎2);

b synchronous ranges of both modes are disconnected—CS is not possible. Gray corresponds to

desynchronous regions
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Fig. 4 Single stick-slip dry friction oscillator

respect to 𝜏. The relationships between dimensional and non-dimensional displace-

ment and its derivatives is given by:
d2x
dt2

= x0𝜔2
0�̈� ,

dx
dt

= x0𝜔0�̇� .

Stribeck friction model with the exponential non-linearity is applied as the basis

for friction modelling in this work. The Stribeck friction model with the exponential

non-linearity is given by formula:

f (𝜗r) =
(
𝜇k +

(
𝜇s − 𝜇k

)
e−a|𝜗r|

)
sgn𝜗r, (15)

where 𝜇s—static friction coefficient, 𝜇k—kinetic friction coefficient, a is constant

defining the shape of the friction—relative velocity curve. The friction force f as a

function of relative velocity 𝜗r based on the aforementioned model is depicted in

the Fig. 5. Note the negative slope of friction force—relative velocity curve, which

is essential for the occurrence of self-excited vibrations (Ding 2010).

Figure 6 illustrates a limit-cycle to which all +. The segment of trajectory with

horizontal line corresponds to the sticking phase when 𝜗r = 0. The mass moves along

with the belt and accumulates the potential energy. The value of friction force adjust

itself to maintain the equilibrium with the spring force. When the maximum value

of friction force is reached, the friction force cannot balance the spring and the mass

begins to slide. Friction is then responsible for the dissipation of energy into heat.

Eventually, the velocity of the mass decreases to the level of the velocity of the belt

and the mass sticks with it. Such kind of motion form a sawtooth wave (see Fig. 8 with

grey regions corresponding to stick phase). Hence, the sound of objects subjected to

stick-slip phenomenon is not pleasant to our ears. In Fig. 7 a phase diagram with

stick-slip limit cycle is depicted.
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Fig. 5 Friction force f as a function of relative velocity 𝜗r

Fig. 6 Phase portrait of

single friction oscillator with

self-excited stick-slip

vibrations. Multiple

trajectories approach the

stick-slip limit cycle. System

parameters: 𝜗b = 0.1,

𝜇s = 0.3, 𝜇k = 0.15, a = 2.5,

𝜖 = 2. (Marszal 2017)

The presented, 1-DOF system, can be treated as a toy model for more complicated

systems used in engineering application, e.g. disc brake (Wei et al. 2016). Here mass

corresponds to brake pad, belt—to disc of the brake, while spring—to the stiffness

of the system, which is subjected to external excitation (Popp et al. 1995).

4 Oscillators Network

Let us now consider an array of N identical oscillators described above, which

are coupled using linear springs of stiffness kC, as shown in the Fig. 9. Additional



Synchronization Properties in Coupled Dry Friction Oscillators 99

Fig. 7 Phase diagram of

single self-excited friction

oscillator. System

parameters: 𝜗b = 0.1,

𝜇s = 0.3, 𝜇k = 0.15, a = 2.5,

𝜖 = 2

excitation u cos𝜔𝜏 is applied to each oscillator. The equation of motion for the cou-

pled system can be written in matrix form, where the 𝜎 = kC∕k stands for the cou-

pling coefficient and determines the strength of the coupling:

⎧
⎪
⎨
⎪
⎩

�̈�1
⋮
�̈�N

⎫
⎪
⎬
⎪
⎭

= −
⎧
⎪
⎨
⎪
⎩

𝜒1
⋮
𝜒N

⎫
⎪
⎬
⎪
⎭

+ 𝜎GN

⎧
⎪
⎨
⎪
⎩

𝜒1
⋮
𝜒N

⎫
⎪
⎬
⎪
⎭

+
⎧
⎪
⎨
⎪
⎩

𝜖f
(
𝜗r1

)
+ u cos𝜔𝜏
⋮

𝜖f
(
𝜗rN

)
+ u cos𝜔𝜏

⎫
⎪
⎬
⎪
⎭

. (16)

Matrix 𝐆𝐍 is connectivity matrix and represents the connection topology of the

network. In this work, two distinct topologies are considered, namely open and close

ring of oscillators connected in nearest neighbour fashion. The scheme of the topolo-

gies is depicted in the Fig. 10. The connectivity matrices for both topologies are pre-

sented by Eq. (17) (𝐆𝐍𝐎
—open ring) and Eq. (18) (𝐆𝐍𝐂

—closed ring) respectively.

GNO
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 1 0 ⋯ 0 0
1 −2 1 ⋱ ⋯ 0
0 1 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 1 0
0 ⋯ ⋱ 1 −2 1
0 0 ⋯ 0 1 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (17)
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(a)

(b)

Fig. 8 Time diagram of single self-excited friction oscillator: a position of the oscillator, b velocity

of the oscillator. Gray regions correspond to stick phase. System parameters: 𝜗b = 0.1, 𝜇s = 0.3,

𝜇k = 0.15, a = 2.5, 𝜖 = 2
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Fig. 9 Array of coupled N stick-slip oscillators

(a) (b)

Fig. 10 Different connection topologies for network of N oscillators: a open ring b closed ring

GNC
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 1 0 ⋯ 0 1
1 −2 1 ⋱ ⋯ 0
0 1 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 1 0
0 ⋯ ⋱ 1 −2 1
1 0 ⋯ 0 1 −2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (18)

Note that for both matrices there are zero sum rows, which is caused by mutual

interaction in mechanical systems. The eigenvalues of the connectivity matrices are

used later in the master stability function to determine the synchronization thresh-

olds.

5 Results

In this Section we present the results of numerical studies, based on the numeri-

cal model described in Sects. 3 and 4. Additionally, we present the usage of mas-

ter stability function and two-oscillator probe for determining the synchronization

thresholds.
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(a) (b)

(c) (d)

Fig. 11 Synchronization regions for open ring of N oscillators in two-parameter space (𝜎 versus

𝜔), 𝜖 = 1, on sides of scheme of observed cluster layouts: a N = 3, b N = 4, c N = 5, d N = 6

The numerical simulations are based on author’s own program written in C++

using on Boost Odeint library (Ahnert and Mulansky 2011) as numerical engine.

Following non-dimensional parameters are used in simulations: 𝜗 = 0.1, 𝜇s = 0.35,

𝜇k = 0.2, a = 2.5, u = 0.1. If different values are used, information is placed in figure

caption or legend respectively. A transient time equal to 1000 excitation periods

(𝛥𝜏t = 1000 ⋅ 2𝜋∕𝜔) is applied, which is followed by measurement of average syn-

chronization error for time interval corresponding to 200 excitation periods. The

investigated systems are started from the initial conditions, when the complete syn-

chronization is slightly perturbed. Should the synchronous state be stable, the trajec-

tories return to synchronous state after time 𝛥𝜏t.

We perform a study of parameters in (𝜎, 𝜔) two-dimensional parameter space with

goal to detect complete and cluster synchronization regions in open and closed ring

connection topology, for different values of the network size N. Based on previous

studies (Marszal et al. 2016; Marszal and Stefański 2017), we choose the following

ranges of parameters: coupling coefficient 𝜎 ∈ [0, 1] and angular frequency of exci-

tation 𝜔 ∈ [1, 2]. The parameter space is discretised into grid with grid element size

𝛥𝜎 = 𝛥𝜔 = 0.01, giving 10 201 elements in total. For each element of the grid aver-
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(a) (b)

(c) (d)

Fig. 12 Synchronization regions for open ring of N oscillators in two-parameter space (𝜎 versus

𝜔), 𝜖 = 1, on sides of scheme of observed cluster layouts: a N = 3, b N = 4, c N = 5, d N = 6

age global e (19) and cluster ei,j (20) synchronization errors are computed. Finally

a type of synchronization is classified according to definitions in Sect. 2.1. If the

respective synchronization error is bellow 10−3, element of the grid is classified as

synchronized.

e =
N∑

i=2

√(
𝜒1 − 𝜒i

)2 +
(
�̇�1 − �̇�i

)2
(19)

ei,j =
√(

𝜒i − 𝜒j
)2 +

(
�̇�i − �̇�j

)2
. (20)

In Figs. 11 and 12 results of the parameter study for the open ring topology are

presented. The systems in question are checked for two different values of normal

load coefficient: 𝜖 = 1 (Fig. 15), 𝜖 = 1.5 (Fig. 12). Black colour depicts the com-
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Fig. 13 MSF ⟨eII⟩(𝛼) projected onto respective average synchronization errors ⟨e3⟩, ⟨e1,3⟩ for N
coupled oscillators via eigenvalues of connectivity matrix 𝐆3. N = 3, 𝜔 = 1.6, 𝜖 = 1.5 initial con-

ditions 𝜒 = [0.2913, 0, 0.2945, 0, 0.2922, 0]T

plete synchronization region, while the yellow lack of synchronization. The other

colours correspond to different cluster synchronization layouts. The complete syn-

chronization region is larger for lower values of the normal load coefficient, which

yields to lower friction force between the contacting interfaces. Scheme of cluster

layouts are placed on side of respective diagrams. Note that for the case of (𝜖 = 1,

N = 6) three cluster layouts are observed (Fig. 11d). For other systems (Fig. 11a–c)

only one cluster layout is observed. In all cases the complete synchronization occurs

rather for weak coupling. The increase of coupling strength destroys the complete

synchronization, however cluster synchronization regions emerges.

Analysis of the eigenvectors of respective eigenvalues enables us to explain the

shapes of the clusters (Perlikowski et al. 2010; Yanchuk et al. 2001). Consider the

case of three oscillators depicted in one parameter space in the Fig. 13. Here we

have following values of eigenvalues: 𝛾0(3) = 0, 𝛾1(3) = −1, 𝛾2(3) = −3; together with

corresponding eigenvectors: 𝐯0(3) = [1, 1, 1]T , 𝐯1(3) = [−1, 0, 1]T , 𝐯2(3) = [1,−2, 1]T .

The desynchronization process from the complete synchronization state is governed
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Table 1 Non-zero eigenvalues and corresponding eigenvectors for the connectivity matrices 𝐆N
for open ring networks.

N=3 N=4

𝛾1(3) = −1 𝐯𝟏(𝟑) 𝛾2(3) = −3 𝐯𝟐(𝟑) 𝛾1(4) =
√
2 − 2

𝐯𝟏(𝟒)
𝛾2(4) = −2 𝐯𝟐(𝟒) 𝛾3(4) = −

√
2 − 2

𝐯𝟑(𝟒)
−1 1 −1 1 −1
0 −2 1 −

√
2 −1 1 +

√
2

1 1 −1 +
√
2 −1 −1 −

√
2

1 1 1
N=5

𝛾1(5) =(√
5 − 3

)
∕2

𝐯𝟏(𝟓)

𝛾2(5) =(√
5 − 5

)
∕2

𝐯𝟐(𝟓)

𝛾3(5) =(
−
√
5 − 3

)
∕2

𝐯𝟑(𝟓)

𝛾4(5) =
(
−
√
5 − 5

)
∕2 𝐯𝟒(𝟓)

−1 1 −1 1(
1 −

√
5
)
∕2

(
−3 +

√
5
)
∕2

(
1 +

√
5
)
∕2 −

(
3 +

√
5
)
∕2

0 1 −
√
5 0 1 +

√
5

−
(
1 −

√
5
)
∕2

(
−3 +

√
5
)
∕2 −

(
1 +

√
5
)
∕2 −

(
3 +

√
5
)
∕2

1 1 1 1
N=6

𝛾1(6) =
√
3 − 2

𝐯𝟏(𝟔)
𝛾2(6) = −1 𝐯𝟐(𝟔) 𝛾3(6) = −2 𝐯𝟑(𝟔) 𝛾4(6) = −3 𝐯𝟒(𝟔) 𝛾5(6) ≈ −2 −

√
3

𝐯𝟓(𝟔)
−1 1 −1 1 −1
1 +

√
3 0 1 −2 1 +

√
3

−2 +
√
3 −1 −1 1 −2 −

√
3

2 −
√
3 −1 1 1 2 +

√
3

−1 +
√
3 0 −1 −2 −1 −

√
3

1 1 1 1 1

by the 𝛾2(3). For this particular eigenvalues the first and the third element of the

eigenvector 𝐯2 are equal, leading to the existence of cluster consisting of the first

and the third oscillator. The other eigenvector—𝐯1(3) does not have at least two equal

elements, hence it cannot be responsible for the formation of cluster. The eigenvec-

tor 𝐯0(3) based on 𝛾0(3) corresponds to the direction along synchronization manifold

(the global CS state), as all its elements are equal. Table 1 lists non-zero eigenvalues

and their eigenvectors for all investigated networks with open ring topology. Note

that 𝛾0(N) = 0 and 𝐯0(N) = [1, ..., 1]T . In the cases of N = 3, 4, 5 only one eigenvec-

tor pattern can be responsible for the creation of clusters. Thus only single cluster

configuration can be observed.

More detailed analysis of global (CS) and cluster synchronization thresholds is

performed for certain selection of 𝜔, including verification of the obtained results

by means of MSF (see Figs. 13, 14). The MSF is defined as average synchronization
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Fig. 14 MSF ⟨eII⟩(𝛼) projected onto average synchronization error between 1st and 4th oscillator

⟨e1,4⟩ (dashed line) and average global synchronization error ⟨eIV⟩ (solid line) for three coupled

oscillators via eigenvalues of connectivity matrix 𝐆𝟒 for excitation angular frequency 𝜔 = 1.4. Ini-

tial conditions for each value of 𝜎: 𝜒𝟎 = [0.2913, 0, 0.2945, 0, 0.2922, 0]T

error for two-oscillator probe ⟨eII⟩(𝛼) as a function of real number 𝛼 (see Eq. (8)).

Next, MSF ⟨eII⟩(𝛼) is projected via eigenvalues of connectivity matrix𝐆N onto bifur-

cation diagrams of average synchronization error for networks consisting of N oscil-

lators with 𝜎 as a bifurcation parameter. The complete synchronization for network

of N oscillators occurs, provided all eigenvalues spectrum of connectivity matrix

𝐆N lies within zero ⟨eII(𝛼)⟩ function. The areas of zero MSF within the eigenvalues

spectrum, as well as complete synchronization regions in networks of N oscillators

are marked with grey colour respectively. The method described above is robust for

predicting the global CS thresholds and along with the analysis of eigenvectors can

be used to explain the cluster synchronizability. However, due to additional coupling

factors (i.e., excitation, friction or coexistence of the system attractors) the MSF

method indicates only the tendencies of the oscillators to synchronize and might be

not always verified in given network configuration.
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(a) (b)

(c) (d)

Fig. 15 Synchronization regions for open ring of N oscillators in two-parameter space (𝜎 versus

𝜔), on sides of scheme of observed cluster layouts: a N = 4, b N = 6, c N = 8, d N = 9

For the case of three oscillators 𝜖 = 1.5,N = 3, 𝜔 = 1.6 (Fig. 13) the CS region

is in range 𝜎 ∈ [0.12, 0.27]. It is worth mentioning that the first and last oscillator

in the network are in cluster synchronization for almost all investigated range of

𝜎. Similar behaviour can be seen in Fig. 12a, marked as red region, wherein cluster

synchronization occupies large area of the investigated parameter space. For the case

of four oscillators (see Fig. 14) with 𝜔 = 1.4, 𝜖 = 1 CS region is located for 𝜎 ∈
[0, 0.21].

In the presented systems it is possible to observe the so called ragged synchroniz-

ability phenomenon (Stefański et al. 2007). In Fig. 13 one can observe global ragged

synchronizability, where all oscillators in the network are in synchronous or desyn-

chronous state. One can also find for that case, cluster ragged synchronizability, i.e.,

synchronous and desynchronous regions in clusters.

Similar study as for open ring networks is performed to closed ring network

topology in Figs. 15 (𝜖 = 1) and 16 (𝜖 = 1.5). Table 2 lists non-zero eigenvalues

and their eigenvectors for all investigated networks with closed ring topology. Again

the parameter space is checked for global and cluster synchronization regions for

different length of identical oscillators. The systems are modelled according to

Eq. (16) with 𝐆NC
from Eq. (18). The obtained results for different network sizes

(N = 4, 6, 8, 9) are depicted in the Figs. 15 and 16. The areas of complete synchro-

nization occurs also for low values of coupling. However, in the case of closed ring
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(a) (b)

(c) (d)

Fig. 16 Synchronization regions for closed ring of N oscillators in two-parameter space (𝜎 versus

𝜔), on sides of scheme of observed cluster layouts: a N = 4, b N = 6, c N = 8, d N = 9

topology the variety of cluster configuration is richer. This can be explained by the

symmetry of the system, which aids the cluster formation.

6 Conclusion

Let us summarize this chapter, which is devoted to the analysis of synchronization

properties in dynamical systems with dry friction.

We have performed a parameter study of complete and cluster synchronization

properties in two-parameter space (coupling coefficient versus angular frequency of

excitation). Numerical investigations involve two different network topologies, i.e.,

open ring and closed ring. Oscillators are connected in nearest neighbour fashion.

The goal was to find synchronization thresholds in various networks of oscillators.

The used methodology is based on master stability function. However, MSF is not

estimated in a traditional way by TLE but by means of more direct approach, namely,

two-oscillator probe.

One needs to bear in mind that MSF describes tendencies of the system to syn-

chronize. It cannot be treated as the final condition for the synchronization. The oscil-

lators in question are coupled also by common excitation and the friction force itself,

which may contribute also to the synchronizability of the system. Velocity of the
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conveyor belt, which is equal for all oscillators as well as the same friction model,

provide identity of the parameters, which is necessary condition for the occurrence of

CS. Moreover, the common harmonic excitation correlates in time with the driving

components of all oscillators and as a consequence facilitates the synchronization.

On the contrary, important factor leading to the desynchronization or appearance

of cluster is the coexistence of attractors, which is characteristic and often encoun-

tered for the systems with friction and impact oscillators. Coexistence of attractors is

a property of non-linear systems, which can occur also in smooth, time-continuous

dynamical systems. Therefore, the MSF concept and eigenvectors analysis can be

treated only as a tool for estimating the overall, global predisposition of the system

of coupled oscillators to synchronize or to cluster. This may explain fact, that for

some configuration in closed ring topology, some of the cluster layouts cannot be

explained by the eigenvectors or eigenvalues interpretation. The results presented in

this chapter also show ragged synchronization phenomenon (i.e., complete synchro-

nization windows).

In general, the synchronization stability criterion given by the MSF does not

provide for proper detection of global network synchronization state even in the

case of smooth systems described by continuous differential equations. The more

this problem occurs in non-smooth systems where the structure of attractors coexis-

tence and their basins of attraction is usually more complex than in smooth systems.

Hence, on the basis of our research, we can conclude that for non-smooth dynamical

systems the MSF estimated with two oscillators probe can be even more effective

than one calculated with use of the TLE, because then we can be sure that the syn-

chronous region was really detected and it is not only a projection of an interval of the

negative TLE. Additionally, the numerical results show that the phenomenon of

ragged synchronizability concerns also the cluster synchronization case.

Based on the results of the chapter, further research can be conducted in following

directions. The first research proposal is to consider the presented model in the frame-

work of earthquake modelling as a version of Burridge-Knopoff model (Burridge

and Knopoff 1967). This requires changing the system parameters, as in earthquake

modelling transition from static to dynamic behaviour is a crucial property. It is also

possible to analyse the presented model in the framework of the so called snaking

phenomenon (Papangelo et al. 2017). Another direction of research may concern

experimental investigation of the proposed model. This would involve designing

and assembling experimental stand with all necessary measurement equipment,

which would enable to verify experimentally the synchronizability of the system in

question.
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1 Introduction

In last few decades, much attention has been devoted to the study of the fractional
calculus and their numerous applications in the area of mathematics, physics and
engineering. Fractional differential equations which are generalizations of classical
differential equations describe the memory effect, which is the major advantage
over integer-order derivatives. It has been extensively applied for modelling of
many real problems such in viscoelasticity (Koeller 1984) dielectric polarization
(Sun et al. 1984), electromagnetic waves (Heaviside 1971), quantitative finance
(Laskin 2000), quantum evolution of complex system (Kunsezov et al. 1999), chaos
control of dynamical systems (Chen and Yu 2003; Azar and Vaidyanathan 2015)
and the control of fractional order dynamic systems (Hartley and Lorenzo 2002) etc.

It is evident from literature survey that during last few decades the nonlinear
phenomena occurring in various areas of scientific fields have gained immense
popularity amongst the scientists and engineers who have delivered tireless efforts
towards the development of the models using non-linear differential equations.
Introduction of fractional calculus in nonlinear models had given a new dimension
to the existing problems. The interesting phenomena of nonlinear dynamics are the
possibility of chaos. Most of the nonlinear systems reveal chaotic behaviour which
is deterministic and has a periodic long-term behaviour, and also exhibit sensitive
dependence on initial conditions. A periodic long-term behaviour means that there
are trajectories which do not settle down to fixed points, periodic orbits, or
quasi-periodic orbits as time approaches to infinity. Deterministic means that the
system has no random or noisy inputs. This irregular behaviour arises from the
system’s nonlinearity, rather than from noisy driving forces. Sensitivity means that
a small change in the initial state will lead to progressively larger changes in later
system. Hence, an arbitrarily small perturbation of the current trajectory may lead to
different future behaviour. The concept of chaos has been used to explain how
systems subject to known laws of physics may be predictable in the short term but
are apparently random on a longer time scale.

The nonlinear chaotic dynamic system of fractional order has taken care by
mathematical and physical communities in the last few years. The chaotic dynamics
of fractional order systems are important topics, which are mainly devoted to the
chaos synchronization problem in nonlinear dynamical systems. Synchronization of
chaos refers to a process wherein two or more identical or non-identical chaotic
systems have a common behaviour due to a coupling, which appears to be struc-
turally stable. In other words, synchronization, an important achievement in the
research of chaos, means that the trajectories of two systems will converge and they
will remain in step with each other. Pecora and Carroll (1990), first introduced a
method about synchronization between the drive (master) and response (slave)
systems of two identical or non identical systems with different initial conditions,
which has important applications in ecological system, physical system, chemical
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system, modelling brain activity, system identification, pattern recognition phe-
nomena and secure communications etc. Different types of synchronization
schemes had already been handled by various researchers for the synchronization of
chaotic systems, such as complete synchronization, anti-synchronization lag syn-
chronization, hybrid synchronization, projective synchronization, and function
projective synchronization (Agrawal et al. 2012; Yu and Liu 2003; Zhang and Sun
2004; Rosenblum et al. 1997; Srivastava et al. 2013a; Si et al. 2012; Zhou and Zhu
2011) etc. using different types of control scheme such as linear and non linear
feedback synchronization, adaptive control, active control, sliding mode control etc.

In the present chapter a new way for combined function projective synchro-
nization among fractional order chaotic systems in the presence of parametric
uncertainties and external disturbances is described using backstepping control
method. Function projective synchronization (FPS), the generalization of projective
synchronization (PS), is one of the synchronization methods where two identical (or
different) chaotic systems can synchronize up to a scaling function matrix with
different initial values. From literature survey, it is seen that many researchers and
scientists have worked on function projective synchronization of fractional order
chaotic systems (Yu and Li 2010; Chen and Li 2007; Yadav et al. 2017a). In
combination synchronization (Runzi et al. 2011; Yadav et al. 2017b), two or more
master systems and one slave system are synchronized. This synchronization
scheme has advantages over the usual drive response synchronization, such as
being able to provide greater security in secure communication. The influences of
the uncertainties during synchronization have been considered late. In the real
world applications, such as in secure communication (Vaidyanathan and Volos
2016), the receiver plants will definitely suffer from the various uncertainties
including parameter perturbation or external disturbance, which will no doubt
influence the accuracy of the communication. Therefore, the synchronization
between fractional order chaotic systems with uncertainties and disturbances are
tough jobs for researchers. There are possibilities of destroying synchronization
with the effects of those parameters (Srivastava et al. 2013b). The synchronization
between chaotic systems with uncertainties and disturbances are not easy jobs for
researchers since there are always possibilities of destroying synchronization under
the effects of those parameters especially for fractional order systems. There are few
results about the chaotic systems with uncertainties (Jawaadaa et al. 2012; Chen
et al. 2012). Recently, Park (2006), Wu et al. (2009) have shown that the back
stepping method is very simple, reliable and powerful for controlling the chaotic
behavior and synchronization of chaotic systems. Wang and Ge (2001) proposed
the adaptive synchronization of uncertain chaotic systems via backstepping design.
In the same year, Lu and Zhang (2001) controlled the Chen’s chaotic attractors
using backstepping design based on parameters identification. Tan et al. (2003)
synchronize the chaotic systems using backstepping design and again in the same
year Yu and Zhang (2003) controlled the uncertain behavior of chaotic systems
using backstepping design. These have motivated the authors to study on the
combined function projective synchronization of fractional order chaotic systems
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with the presence of parametric uncertainties and external disturbances using
backstepping control method. To the best of authors’ knowledge the combined
function projective synchronization among fractional order chaotic systems in the
presence of parametric uncertainties and external disturbances using backstepping
control method are few in numbers. Numerical simulation results are displayed
graphically which clearly exhibit that the backstepping design control method is
effective, easy to implement and reliable for combined function projective syn-
chronizations of two nonlinear fractional order uncertain chaotic systems.

This chapter has been organized as follows. In Sect. 2, problem formulation of
the combined function projective synchronization scheme of two different chaotic
master systems, and one chaotic response system are presented. Section 3 contains
some preliminaries, definition and lemma. In Sect. 4, the system descriptions of
Lorenz, Rossler and Chen systems are given. Combined function projective syn-
chronization among fractional order chaotic systems with uncertainties and external
disturbances using backstepping control method are discussed in Sect. 5. In Sect. 6,
the conclusion of the research work is presented.

2 Problem Formulation

Consider two uncertain fractional order chaotic systems as the master system as

Dq
t x= ðA1 +ΔA1Þx+ f1ðxÞ+ d1, ð1Þ

Dq
t y= ðA2 +ΔA2Þy+ f2ðyÞ+ d2, 0 < q<1 ð2Þ

and another uncertain fractional order chaotic system as the slave system as

Dq
t z= ðA3 +ΔA3Þz+ f3ðzÞ+ d3 + uðtÞ, ð3Þ

where x= ½x1, x2, . . . xn�T ∈ Rn, y= ½y1, y2, . . . yn�T ∈ Rn and z= ½z1, z2, . . . zn�T
∈ Rn are the state vectors, A1, A2, A3 ∈Rn× n are constant matrices with proper
dimensions, f1, f2, f3:Rn →Rn are the nonlinear functions of the systems, ΔA1,ΔA2,
ΔA3 ∈ Rn× n are parametric uncertainties of chaotic systems with ΔA1j j≤ δ1,
ΔA2j j≤ δ2, ΔA3j j≤ δ3, where δ1, δ2, δ3 are positive constants and d1 , d2, d3 are
the external disturbances of uncertain chaotic systems with d1j j≤ ρ1, d2j j≤ ρ2,
d3j j≤ ρ3, where ρ1, ρ2, ρ3 > 0 and uðtÞ∈Rn is the control input vector of the
uncertain chaotic system (3). Now controller uðtÞ is to be designed in such a way
that the master and slave systems are synchronized through the proper definitions of
errors.
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If the synchronization error is defined by e= z− kðy+ xÞ, where k is the scaling
function, then the corresponding error dynamics can be obtained as

Dt
qe= ðA3 +ΔA3Þe− k½ðA1 +ΔA1 −A3 −ΔA3Þx+ ðA2 +ΔA2 −A3 −ΔA3Þy

+ f1ðxÞ+ f2ðyÞ+ d1 + d2�+ f3ðzÞ+ d3 + uðtÞ ð4Þ

Therefore, for combined function projective synchronization we use backstep-
ping control method to design the control functions in such a way that the origin
becomes asymptotically stable equilibrium point of the error dynamics i.e.,
lim
t→∞

z− kðy+ xÞk k=0. The demonstration of backstepping control method is given

in Sect. 5.

3 Some Preliminaries, Definition and Lemma

3.1 Fractional Calculus

Fractional calculus is a generalization of integration and differentiation of integer
order operator to a non-integer integro-differential operator denoted by aD

q
t and

defined by

aDq
t =

dq
dtq , RðqÞ>0
1, RðqÞ=0R t
a dτð Þ− q, RðqÞ<0,

8<
:

where q is the fractional order which may be a complex number and RðqÞ denotes
the real part of q and a is the fixed lower terminal and t is the moving upper
terminal.

Definition 1 (Kilbas et al. 2006) The Caputo derivative for fractional order q is
defined as

c
aD

q
t ϕðtÞ=

1
Γðn− qÞ

Z t

a

ϕðnÞðτÞ
ðt− τÞq+1− n dτ, t> a,

where q∈R+ on the half axis R+ and n=minfk∈N ̸k> qg, q>0.

Lemma 1 (Aguila-Camacho et al. 2014) Let xðtÞ∈R be a continuous and deriv-
able function. Then for any time instant t≥ t0,

1
2
c
t0D

q
t x

2ðtÞ≤ xðtÞct0Dq
t xðtÞ,∀q∈ ð0, 1�.
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4 Systems’ Description

4.1 Fractional Order Lorenz System

The Lorenz attractor is an example of a non linear dynamical system corresponding
to the long term behaviour of the Lorenz oscillation. The Lorenz oscillator is a three
dimensional dynamical system that exhibits lemniscates type shaped chaotic flow
which shows how the state of dynamical system evolves over time in a complex and
non-repeating pattern. The Lorenz equations deal with the stability of fluid flows in
the atmosphere. In addition to its interest in the field of non linear mathematics, the
Lorenz model has important implications for climate and weather predictions. The
case is also applicable for simplified models for lasers (Lorenz 1963) and dynamos
(Knobloch 1981).

The fractional order Lorenz system (Wu and Shen 2009; Grigorenko and
Grigorenko 2003) is given by

dqx1
dtq

= a1ðy1 − x1Þ,
dqy1
dtq

= x1ðc1 − z1Þ− y1,

dqz1
dtq

= x1y1 − b1z1,

ð5Þ

where a1 is the Prandtl number, c1 is the Rayleigh number and b1 is the size of the
region approximated by the system. The phase portraits of Lorenz system is shown
through Fig. 1 for the parameters’ values a1 = 10, b1 = 8 ̸3, c1 = 28 and initial
condition ð0.2, 0, 2Þ. The lowest value of fractional order q for which the system
remains chaotic is 0.99 (Wu and Shen 2009). The chaotic attractors in the
x1 − y1 − z1 space, x1 − y1, x1 − z1, y1 − z1 planes are shown in Fig. 1 for order of
derivative q=0.993.

The fractional order Lorenz system with uncertain parameters and external
disturbances is defined as

dqx1
dtq

= a1ðy1 − x1Þ+0.11z1 − cosð10dÞ,
dqy1
dtq

= x1ðc1 − z1Þ− y1 − 0.14x1 − 2 cosð10dÞ,
dqz1
dtq

= x1y1 − b1z1 + 0.23y1 − 3 sinð10dÞ,

ð6Þ
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where uncertain parameter ΔA1 =
0 0 0.11

− 0.14 0 0
0 0.23 0

2
4

3
5 and disturbance term

d1 =
− cosð10dÞ
− 2 cosð10dÞ
− 3 sinð10dÞ

2
4

3
5. Figure 2 shows the phase portraits of the fractional order

Lorenz system with uncertainties and disturbances in x1 − y1 − z1 space, x1 − y1,
x1 − z1, y1 − z1 planes for the order of the derivative q=0.993.

4.2 Fractional Order Rossler Systems

The fractional order Rossler system (Yan and Li 2007; Zhou and Cheng 2008) is
given by
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Fig. 1 Phase portraits of the Lorenz system at q=0.993: a x1 − y1 − z1 space, b x1 − y1 plane,
c x1 − z1 plane, d y1 − z1 plane
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dqx2
dtq

= − y2 − z2,

dqy2
dtq

= x2 + a2y2,

dqz2
dtq

= b2 + x2z2 − c2z2,

ð7Þ

For the parameters’ values a2 = 0.2, b2 = 0.2, c2 = 5.7 and q=0.96, the system
(7) is chaotic. The phase portraits of Rossler system for order of derivative q=0.98
are shown through Fig. 3.

The fractional order Rossler system with uncertain parameters and external
disturbances is defined as
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Fig. 2 Phase portraits of the Lorenz system with uncertain parameters and external disturbances
at q=0.993: a x1 − y1 − z1 space, b x1 − y1 plane, c x1 − z1 plane, d y1 − z1 plane
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dqx2
dtq

= − y2 − z2 − 0.01x2 − 0.1 sinð20dÞ,
dqy2
dtq

= x2 + a2y2 − 0.02z2 − 0.3 cosð20dÞ,
dqz2
dtq

= b2 + x2z2 − c2z2 − 0.15y2 − 0.04 sinð20dÞ,

ð8Þ

where uncertain parameter ΔA2 =
− 0.01 0 0
0 0 − 0.02
0 − 0.15 0

2
4

3
5 and disturbance

term d2 =
− 0.1 sinð20dÞ
− 0.3 cosð20dÞ
− 0.04 sinð20dÞ

2
4

3
5. The phase portraits of fractional order Rossler

system with uncertainties and disturbances in x2 − y2 − z2 space, x2 − y2, x2 − z2,
y2 − z2 planes are depicted through Fig. 4 at q=0.98.
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Fig. 3 Phase portraits of the Rossler system at q=0.98: a x2 − y2 − z2 space, b x2 − y2 plane,
c x2 − z2 plane, d y2 − z2 plane
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4.3 Fractional Order Chen System

The fractional order Chen system (Lu and Chen 2006) is defined as

dqx3
dtq

= a3ðy3 − x3Þ,
dqy3
dtq

= ðc3 − a3Þx3 − x3z3 + c3y3,

dqz3
dtq

= x3y3 − b3z3,

ð9Þ

For the parameters’ values a3 = 35, b3 = 3, c3 = 28, q=0.7 and initial condition
ð3, 4, 6Þ, the system (9) shows the chaotic behaviour. The phase portraits of Chen
system at q=0.90 are depicted through Fig. 5.

Fractional order Chen system with uncertain parameters and external distur-
bances is defined as
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dqx3
dtq

= a3ðy3 − x3Þ− 0.2z3 + 0.1 sinð100dÞ,
dqy3
dtq

= ðc3 − a3Þx3 − x3z3 + c3y3 − 0.4z3 − 0.2 cosð100dÞ,
dqz3
dtq

= x3y3 − b3z3 + 0.1x3 − sinð100dÞ,

ð10Þ

where uncertain parameter ΔA3 =
0 0 − 0.2
0 0 − 0.4
0.1 0 0

2
4

3
5 and disturbance term

d3 =
0.1 sinð100dÞ
− 0.2 cosð100dÞ
− sinð100dÞ

2
4

3
5. The phase portraits of fractional order Chen system with

uncertainties and disturbances in x3 − y3 − z3 space, x3 − y3, x3 − z3, y3 − z3 planes
are depicted through Fig. 6 at q=0.90.
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5 Combined Function Projective Synchronization Among
Fractional Order Chaotic Systems with Uncertainties
and External Disturbances Using Backstepping Control
Method

For the study of combined function projective synchronization among fractional
order chaotic systems with uncertain parameters and external disturbances, two
systems viz., Lorenz system (6) and Rossler system (8) are considered as drive
system-I and drive system-II and Chen system (10) is considered as response
system. The response system with the control functions is defined as
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dqx3
dtq

= a3ðy3 − x3Þ− 0.2z3 + 0.1 sinð100dÞ+ u1ðtÞ,
dqy3
dtq

= ðc3 − a3Þx3 − x3z3 + c3y3 − 0.4z3 − 0.2 cosð100dÞ+ u2ðtÞ,
dqz3
dtq

= x3y3 − b3z3 + 0.1x3 − sinð100dÞ+ u3ðtÞ,

ð11Þ

where uðtÞ= ½u1ðtÞ, u2ðtÞ, u3ðtÞ�T is the control functions to be deigned later.

Defining the error functions as

e1 = x3 − k1ðx2 + x1Þ

e3 = y3 − k2ðy2 + y1Þ

e3 = z3 − k3ðz2 + z1Þ,

we obtain the error system as

dqe1
dtq

= a3ðe2 − e1Þ− 0.2e3 +ϕ1 + u1ðtÞ,
dqe2
dtq

= ðc3 − a3Þe1 + c3e2 − 0.4e3 +ϕ2 + u2ðtÞ,
dqe3
dtq

= − b3e3 + 0.1e1 +ϕ3 + u3ðtÞ,

ð12Þ
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Fig. 7 Evolution of the error functions e1ðtÞ, e2ðtÞ and e3ðtÞ for fractional order q=0.96
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where

ϕ1 = − 0.2k3ðz2 + z1Þ+ a3k2ðy2 + y1Þ− k1½a3ðx2 + x1Þ− y2 − z2 − 0.01x2 − 0.1 sinð20dÞ
+ a1ðy1 − x1Þ+0.11z1 − cosð10dÞ�+0.1 sinð100dÞ

ϕ2 = ðc3 − a3Þk1ðx2 + x1Þ− k2½− c3ðy2 + y1Þ+ x2 + a2y2 − 0.02z2 − 0.3 cosð20dÞ
+ x1ðc1 − z1Þ− y1 − 0.14x1 − 2 cosð10dÞ�− 0.4k3ðz2 + z1Þ− x3z3 − 0.2 cosð100dÞ

ϕ3 = 0.1k1ðx2 + x1Þ− k3½b3ðz2 + z1Þ+ b2 + x2z2 − c2z2 − 0.15y2 − 0.04 sinð20dÞ+ x1y1
− b1z1 + 0.23y1 − 3 sinð10dÞ�+ x3y3 − sinð100dÞ.

Now the control functions would be properly designed using backstepping
approach for combination function projective synchronization among fractional
order chaotic systems in presence of uncertain parameters and external
disturbances.

Theorem 1 If the control functions are chosen as

u1ðtÞ=0.2e3 −ϕ1,

u2ðtÞ= − c3w1 −w2 − c3w2 −ϕ2,

u3ðtÞ= − 0.1w1 + 0.4w2 −ϕ3,

where w1 = e1, w2 = e2, w3 = e3, the systems (6) and (8) will be synchronized with
the system (10).

Proof To achieve control functions, we use active backstepping procedure through
following three steps.

Step I: Considering w1 = e1, the fractional derivative of w1 is

dqw1

dtq
=

dqe1
dtq

= a3ðe2 −w1Þ− 0.2e3 +ϕ1 + u1ðtÞ, ð13Þ

where e2 = α1ðw1Þ is regarded as an virtual controller. To stabilize w1-subsystem,
we define the Lyapunov function V1 as

V1 =
1
2
w2
1.

Fractional derivative of V1 is
dqV1
dtq = 1

2
dqw2

1
dtq ≤w1

dqw1
dtq (Using Lemma 1)

128 V. K. Yadav et al.



i.e., ≤w1½a3ðα1 −w1Þ− 0.2e3 +ϕ1 + u1ðtÞ�.

Taking α1ðw1Þ=0 and u1ðtÞ=0.2e3 −ϕ1, we get dqV1
dtq ≤ − a3w2

1 < 0, negative
definite, which implies that w1-subsystem (13) is asymptotically stable. For the
virtual control function α1ðw1Þ, we define a variable w2 between e2 and α1ðw1Þ as

w2 = e2 − α1ðw1Þ.

Then, ðw1,w2Þ subsystem is obtained as

dqw1

dtq
= a3ðw2 −w1Þ,

dqw2

dtq
= ðc3 − a3Þw1 + c3w2 − 0.4e3 +ϕ2 + u2ðtÞ.

ð14Þ

Let e3 = α2ðw1,w2Þ is an virtual controller.

Step II: In this step to stabilize ðw1,w2Þ-subsystem (14), define the Lyapunov
function V2 as

V2 =V1 +
1
2
w2
2 =

1
2
w2
1 +

1
2
w2
2.

Now

dqV3

dtq
=

1
2
dqw2

1

dtq
+

1
2
dqw2

2

dtq

≤w1
dqw1

dtq
+w2

dqw2

dtq

i.e., ≤ − a3w2
1 +w2½c3w1 + c3w2 − 0.4α2ðw1,w2Þ+ϕ2 + u2ðtÞ�,

If α2ðw1,w2Þ=0 and u2ðtÞ= − c3w1 −w2 − c3w2 −ϕ2, then
dqV2
dtq ≤ − a3w2

1 −w2
2

< 0 makes the subsystem (14) asymptotically stable.
Considering w3 = e3 − α2ðw1,w2Þ, we get the following ðw1,w2,w3Þ-subsystem

as

dqw1

dtq
= a3ðw2 −w1Þ,

dqw2

dtq
= − a3w1 −w2 − 0.4w3

dqw3

dtq
= − b3w3 + 0.1w1 +ϕ3 + u3ðtÞ,

ð15Þ
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Step III: In order to stabilize ðw1,w2,w3Þ-subsystem (15), choosing the Lyapunov
function as

V3 =V2 +
1
2
w2
3 =

1
2
w2
1 +

1
2
w2
2 +

1
2
w2
3,

we get

dqV3

dtq
=

1
2
dqw2

1

dtq
+

1
2
dqw2

2

dtq
+

1
2
dqw2

3

dtq

≤w1
dqw1

dtq
+w2

dqw2

dtq
+w3

dqw3

dtq
,

i.e., ≤ − a3w2
1 −w2

2 − 0.4w2w3 − b3w2
3 +w3½0.1w1 +ϕ3 + u3ðtÞ�.

If u3ðtÞ= − 0.1w1 + 0.4w2 −ϕ3, then dqV3
dtq ≤ − a3w2

1 −w2
2 − b3w2

3 < 0 negative
definite. In view of w1 = e1, w2 = e2 − α1ðw1Þ= e2, w3 = e3 − α2ðw1,w2Þ= e3, the
error states will converge to zero after a finite period of time, and thus the combined
function projective synchronization among Lorenz, Rossler and Chen systems in
the presence of uncertain parameters and external disturbances will be achieved.

5.1 Numerical Simulation and Results

In numerical simulation, the parameters of Lorenz system, Rossler system and Chen
system are taken as a1 = 10, b1 = 8 ̸3, c1 = 28; a2 = 0.2, b2 = 0.2, c2 = 5.7 and
a3 = 35, b3 = 3, c3 = 28 respectively. Time step size is taken as 0.005. The initial
condition of two master systems and one slave system are taken as ð0.1, 0.1, 0.1Þ,
ð0.2, 0, 2Þ and ð3, 4, 6Þ respectively. Thus according to definition of error
functions, the initial errors are ð2.85, 3.96, 4.95Þ.

During the combined function projective synchronization the scaling functions
are taken as periodic function as

k1 = a11 cosða12x1Þ+ a13

k2 = a21 cosða22y1Þ+ a23

k3 = a31 cosða32z1Þ+ a33.

For the values of parameters a11 = 0.4, a12 = 0.1, a13 = 0.1, a21 = 0.1, a22 = 0.2,
a23 = 0.3, a31 = 0.3, a32 = 0.3, a33 = 0.2 it is seen from Fig. 7 that the error functions
asymptotically converge to zero as time becomes large for the order of the
derivatives q=0.96, which shows that the master systems (6) and (8) are syn-
chronized with the slave system (10).
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6 Conclusion

The contribution of the present chapter is the investigation of the combined function
projective synchronization among different fractional order chaotic systems with
uncertainties and external disturbances using backstepping method. Based on
Lyapunov stability theory, the synchronization with function scaling factor of
chaotic systems through the proper design of control functions is achieved. The
components of error state tend to zero as time becomes large help to get the time
requires for combined synchronization among the systems. Numerical simulation
results demonstrate that the method is reliable, convenient and effective for the
combined function projective synchronization even for fractional order chaotic
systems.
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Chaotic Business Cycles within
a Kaldor-Kalecki Framework

Giuseppe Orlando

Abstract This chapter, after providing some background on business cycles,

Kaldor’s original model and related literature, presents an original specification

Orlando (Math Comput Simul 125:83–98, 2016) which adds to the cyclical behaviour

some peculiar characteristics such as an asymmetric investment and consumption

function, lagged investments and integration of economic shocks. A further section

proves the chaotic behaviour of the model and adds some insights derived from

recurrence quantification analysis. The final part draws some concluding remarks

and makes some suggestions for future research. This work investigates chaotic

behaviours within a Kaldor-Kalecki framework. This can be achieved by an orig-

inal specification of the functions describing the investments and consumption as

variants of the hyperbolic tangent function rather than the usual arctangent. There-

fore fluctuations of economic systems (i.e. business cycles) can be explained by the

shape of the investment and saving functions which, in turn, are determined by the

behaviour of economic agents. In addition it is explained how the model can accom-

modate those cumulative effects mentioned by Kaldor which may have the effect

of translating the saving and investment functions. This causes the so-called shocks

which may be disruptive to the economy or that may have the effect of helping the

system to recover from a crisis.
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1 Introduction

The seminal work of Kaldor (1940) on the business cycle is one of the most fruit-

ful for researching on non-linear dynamics in economics. In that paper the author’s

intention, contrary to the traditional Keynesian multiplier-accelerator concept, was to

explain from a macroeconomic viewpoint the fundamental reasons for cyclical phe-

nomena. After several years the Kaldor model re-gained the attention of some schol-

ars interested in non-linear phenomena in economics such as Morishima (1959),

Yasui (1953) and Ichimura (1955a, b) that were the first in investigating the exis-

tence, stability and uniqueness of limit cycles in a nonlinear trade cycle model.

Among other notable contributors were Hicks (1950), Goodwin (1951) and par-

ticularly Kalecki (1966). The latter divided the investment process into three steps

where the first is the decision, the second the time needed for the production and the

last is the delivery of the capital good. In such a way the dynamic of capital stock

in the economy is described by a non-linear difference-differential equation which

exhibits a complex behaviour (including chaos) and, as a result, oscillations of cap-

ital induce fluctuations of other economic variables. Chiarella (1990) showed how

the model could adjust to adaptive expectation of inflation. Krawiec and Szydlowski

(1999, 2001) analyzing the Kaldor-Kalecki model of business cycle found a Hopf

bifurcation leading to a limit cycle. Last but not least Pham et al. (2017) observed

that the presence of time delay, such as those hypothesized by Kalecki, could induce

unexpected oscillations, therefore time-delay systems may be suitable to introducing

chaotic dynamics.

Further we applied recurrence plots (RPs) and their quantitative description pro-

vided by recurrence quantification analysis (RQA) to detect relevant changes in the

dynamic regime of business time series. RQA aims at a direct and quantitative

appreciation of the amount of deterministic structure of time series and has been

proven to be an efficient and relatively simple tool in non-linear analysis of a wide

class of signals. The technique allows for the identification of sudden phase-changes

possibly pointing to underlying phenomena. Therefore RQA may be suitable for

studying business cycles as well as identifying possible signals of changes in the

economy.

The remainder of the chapter is organized as follows: Sect. 2 contains the def-

inition of business cycle and summarizes the literature on recurrence quantifica-

tion analysis and its applications to economics and finance. Section 3 presents some

results on the applicability of RQA to economic time series. Section 4 illustrates the

model along with its parameters and peculiarities. Section 5 shows the numerical

analysis performed and the results obtained. Finally Sect. 6 consolidates the ideas

and presents concluding remarks.
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2 Literature Review

2.1 On the Business Cycles

A definition of business cycles can be found in Burns and Mitchell (1946)

Business cycles are a type of fluctuation found in the aggregate economic activity of nations

that organize their work mainly in business enterprises: a cycle consists of expansions occur-

ring at about the same time in many economic activities, followed by similarly general reces-

sions, contractions, and revivals which merge into the expansion phase of the next cycle.

and it has been used for:

1. Creation of composite leading, coincident, and lagging indices based on the con-

sistent pattern of comovement among various variables over the business cycle

(e.g. Shishkin 1961).

2. The identification within the business cycles of separate phases or regimes.

The National Bureau of Economic Research (NBER) defines a recession as

“a significant decline in economic activity spread across the economy, lasting more

than a few months, normally visible in real GDP, real income, employment, indus-

trial production, and wholesale-retail sales. A recession begins just after the econ-

omy reaches a peak of activity and ends as the economy reaches its trough. Between

trough and peak, the economy is in an expansion. Expansion is the normal state of

the economy; most recessions are brief and they have been rare in recent decades.”

Figure 1 illustrates the business cycle where recession (trough) follows expansion

(peak) and Fig. 2 shows the financial and business cycle in the United States.

Fig. 1 The business cycle
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Fig. 2 BIS 85th annual report 2015

Schumpeter (1954) mentioned four stages linking together production, stock

exchange, confidence, demand, interest rates and prices:

1. Expansion (increase in production and prices and low interest rates)

2. Crisis (stock exchanges crash and multiple bankruptcies of firms occur)

3. Recession (drops in prices and in production and high interest rates)

4. Recovery (stocks recover because of the fall in prices and incomes)

In addition he suggested that each business cycles has its own typology according

to the periodicity so a number of cycles were named after their discoverers: see Koro-

tayev and Sergey 2010: Kitchin (1923) or inventory cycle (3–5 years long), Juglar

(1862) cycle (7–11 years long), Kuznets (1930) cycle (15–25 years long) and Kon-

dratiev (1935) technological cycle (45–60 years long).

Theories on business cycles expound on the volatility of economies and may differ

(for a review see Hillinger and Sebold-Bender 1992; Zarnowitz 1992; Mullineux

1984) depending on:

1. Their ability to explain cycle without having to rely on outside forces/shocks and

they are called respectively endogenous and exogenous business cycle theories.

2. The assumption of a general equilibrium framework (neoclassical theories) or the

assumption of market imperfections and/or disequilibrium (Keynesian theories).

3. Attributing cycles to real shocks or monetary shocks or too much or too little

investment or consumption.

4. Explaining business cycles from actions of individuals (micro-founded theories)

economic units or using aggregate variables (macro theories).
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2.2 On the Recurrence Quantification Analysis

Recurrence Quantification Analysis (RQA) in economics started relatively recently

see Zbilut (2005), Crowley and Schultz (2010), Karagianni and Kyrtsou (2011),

Chen (2011), Moloney and Raghavendra (2012). Fabretti and Ausloos (2005) found

cases where RQA could detect a warning before a crash. In accordance to that Addo

et al. (2013) assert “the usefulness of recurrence plots in identifying, dating and

explaining financial bubbles and crisis”. Strozzi et al. (2007) claim that determinism

and laminarity change “more clearly than standard deviation and then they provide

an alternative measure of volatility”. Finally, to quote Piskun and Piskun (2011),

laminarity (LAM) “is the most suitable measure, sensitive to critical events on mar-

kets”.

The ability of RQA to predict catastrophic changes stems from the fact that RQA

is based upon the change in correlation structure of the observed phenomenon that

is known to precede the actual event in many different systems, ranging from phys-

iology Zimatore et al. (2011) and geophysics Zimatore et al. (2017) to economy

Crowley (2008). Gorban et al. (2010) found out that even before crisis correlation

increases as well as variance (and volatility) increases too. In particular their dataset

composed of thirty largest companies from British stock market within the period

2006–2008 supports the hypothesis of increasing correlations during a crisis and,

therefore, that correlation (or equivalently determinism) increases when the market

goes down (respectively decreases when it recovers).

3 Recurrence Plot

As mentioned by Eroglu et al. (2014) “recurrence plots (RPs) have been shown to

be a powerful technique to uncover statistically many characteristic properties” of

Fig. 3 (Color online) Recurrence plot of logistic map for a r = 3.5 (periodic regime) and b r = 4.0

(chaotic regime) and c weighted recurrence plot of logistic map for r = 4.0 (chaotic regime). Source
Eroglu et al. (2014)
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Fig. 4 Changes in US GDP (above) and its unthreshold RP or Distance Matrix (DM) (below).

Period: 01-01-1947–01-07-2015. Compare the RP of the logistic Fig. 3c with the RP of business

cycles. Source St. Louis Fed, FRED database

complex dynamical systems. “In a given m-dimensional phase space, two points are

considered to be recurrent if their state vectors lie in a neighbourhood characterized

by a threshold ε”. Therefore in a RP, “elements Ri,j ≡ 1 (recurrence) are usually said

to be black dots, whereas Ri,j ≡ 0 (no recurrence) are usually called white dots” (see

Fig. 3a and b).

In order to have some indications whether business cycles are chaotic and to study

recessions from the point of view of a phase transition of non-linear phenomena

we applied RQA on time series extracted from Federal Reserve Economic Data
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(FRED)—St. Louis Fed. In Fig. 4 the recurrence plot of USA GDP% variation is

shown right below the FRED graph. Greyed areas correspond to periods of economic

recessions as reckoned by FRED. For the unthreshold RP or Distance Matrix (DM)

it is possible to observe the anticipating transitions to turbulent phases. The note-

worthy results consist in a correspondence between vertical lines in DM (i.e. chaos

to chaos transitions) and grey lines (recession periods) as well as in the apparent

resemblance between the RP of the chaotic logistic Fig. 3c with the RP of business

cycles Fig. 4.

4 The Model

The discretized Kaldor model is

Yt+1 − Yt = α(It − St) = α[It − (Yt − Ct)]
Kt+1 − Kt = It − δKt

(1)

where Y , I, S,K define respectively income, investment, saving and capital, α is the

“speed” by which the output responds to excess investment and δ represents the

depreciation rate of capital. It is worth mentioning that a key feature for Kaldor is

that I = I(Y ,K) and S = S(Y ,K) are non-linear functions of income and capital.

The author’s original variant is (for a detailed description see Orlando 2016)

Yt+1 − Yt = α
[
f1
(
g
(

Yt−1−Yt−2
Yt−2

− Kt−1−Kt−2
Kt−2

))
+ f2

(
g
(

Yt−Yt−1
Yt−1

− Ct−Ct−1
Ct−1

))
− Yt

]

Kt+1 − Kt = f1
(
g
(

Yt−1−Yt−2
Yt−2

− Kt−1−Kt−2
Kt−2

))
− δKt

(2)

Where the parameters α, δ, τ1, τ2, ρ, ĉ, k have the following meaning:

1. α is the savings adjustment speed with regard to investment. Its reciprocal in

physics is called delay and measures the time necessary for the adjustment.

2. δ is a percentage that determines the fixed capital which is lost during the pro-

ductive process (due to obsolescence or actual consumption).

3. τ determines the f function knee; it is, therefore, a measure of the reactivity of

the function to the variation in its argument.

4. ρ measures the maximum possible level (in capital terms) of investment. This

value changes according to the economic system (pre-industrial, industrial, post-

industrial) and the type of investment (i.e. high or low capital intensity).

5. ĉ = 1 − c multiplied by actual income, determines the minimum level of con-

sumption, therefore it is also called the base level. Its complement to 1, is c and

represents the average level of consumption.

6. The k parameter changes according to the economic development.
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Fig. 5 A simulation displaying a steady growth

In Figs. 5 and 6 are two examples of the system’s dynamic which differ only

because a different initial starting point.

4.1 Shocks in the Economy

Kaldor explained that there are some factors which affect consumption and saving

and which have the effect of shifting the functions in one direction or the other. In

the model this translation can be easily achieved and operates when the capital or

the income changes negatively (with the ultimate effect to help the system recover

from a crisis).

4.2 Consumption, Saving and Economic Recessions

The idea that an increase in the disposable income (which is the basis of fiscal stimu-

lus such as tax rebates that are supposed to encourage consumption, and hence aggre-

gate demand), automatically translates into an increase in the aggregate demand,

can be fallacious as it neglects to consider the state of health of the economy and
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Fig. 6 A simulation displaying a steady fall

therefore the confidence in it. In fact, if confidence in the economy is low, it could

be that people may reduce their consumption during the recession years: consumers

will continue the process of deleveraging (they use the money to pay off debt and

save more) because of uncertainty in the future.

For the above mentioned reasons, in the model, the change in consumption is

linked to the change of income as follows

w = ▵ Y
Y

− ▵ C
C

(3)

which we believe describes correctly the behaviour of consumption (Figs. 7 and 8).

4.3 Modelling Investment and Consumption

In the usual set-up, modified versions of Kaldor’s approach adopt the trigonomet-

ric investment function arctg (see Mircea et al. 1963; Kaddar and Alaoui 2009;

Agliari et al. 2007; Januario et al. 2005, 2009; Bischi et al. 2001 etc.). We have

decided, instead, to use a different functional form: the hyperbolic tangent. The rea-

sons why this specific functional form has been chosen are that there is no particular
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Fig. 7 Changes in US real disposable personal income (blue—DSPIC96) and real personal con-

sumption expenditures (red—PCECC96) 1959 (Q1)—2014 (Q2). Source St. Louis Fed, FRED

database

Fig. 8 US personal savings rate (PSAVERT) 1959 (Q1)—2014 (Q2). Source St. Louis Fed. FRED

Database
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justification to prefer the arctg,
1

whilst there are several to prefer the tanh. A good

reason, for example, is that across multiple sciences growth and decay are better mod-

elled by such exponential-like functions as tanh instead of trigonometric function

such as arctg. For some applications to physics (such as radioactive decay, capacitor

discharge, damped oscillations, etc.), to chemistry and biology (such as first order

reaction rates and population and cancer growth), to actuarial science and finance

(e.g. Gompertz-Makeham law of mortality, compound interest, etc.) Stewart (2010),

Benson (2008), Reger et al. (2010), Purves et al. (2003), Wheldon (1988), etc. More-

over the arctg tends to its asymptotes quite slowly compared to the hyperbolic tangent

whilst we wanted to design a framework in which economic agents can adjust quickly

(how quickly depends on some parameters as τ ) to changes. Given this framework

the suggested model could link up, for example, to the classic Solow-Swan growth

model in which labour and knowledge are represented by exponential functions.

Finally it should be noted that while consumption and investment are similarly

function of a difference (i.e., respectively, between the growth rates of income and

capital and the growth rates of income and consumption) their timing differs. In fact,

à la Kalecki, we suggest that the investment process has different timing than does

consumption hence the difference in the considered time lags (see Eq. 2).

5 Numerical Analysis

Up to now the sensitive dependence on initial conditions and the irregular trend

of variables over time has only been shown graphically. Naturally the experimen-

tal evidence is not sufficient to prove the chaoticity of a system. Therefore we must

use some numeric instruments in order to have a better insight into the nature of the

system. Specifically, we will report the results obtained by the spectral analysis as

well as the calculation of the correlation integral, the Lyapunov exponents, the Kol-

mogorov entropy and the embedding dimension.

5.1 Spectral Analysis

Spectral analysis has the aim of determining the spectral content of a time series

by decomposing a given time series into different harmonic series with different

frequencies and, by doing that, identifies the contribution of each series to the overall

signal Stoica and Moses (2005).

Spectral analysis may aid in identifying chaos for a given time series as well as

helping in discovering hidden periodicities in data. In the following three pictures of

1
On some issues related to the arctg see for example Bradford and Davenport (2002), Collicott

(2012), Walter (2010), Gonnet and Scholl (2009).
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logistic map are presented in order to illustrate how the power spectra change with

the parameter μ. The first box (top left) shows the cobweb diagram, the second (bot-

tom left) is for the orbits, the third (top right) depicts the power spectrum obtained

with a rectangular (sometimes called boxcar or Dirichlet) window and the last box

shows the power spectrum with a Hamming window. Figures 9, 10 and 11 illustrate,

respectively, very regular orbits with a single frequency peak, regular orbits with two

frequency peaks and irregular orbits (chaos) with several frequency peaks.

Even though the technique is not conclusive if the system has “many hidden

degrees of freedom of which the observer is unaware” (Moon 1987 p. 45) “chaotic

time series are known to have aperiodic cycles of many lengths, so it seems reason-

able to assume that if they are present in the candidate time series they should have

been observed” (McBurnett 1996 p. 50). In any case, as the proposed model is by

construction deterministic, the spectral analysis can definitively help in understand-

ing whether the system shows chaotic dynamics.

Following this reasoning we have run a simulation in order to show that for

the generated time series there is no peak that clearly dominates all other peaks

(power spectrum for C,K, I,Y with rectangular and Hamming windows are shown

in Figs. 12 and 13, respectively).

Fig. 9 Logistic map, μ = 3 cobweb diagram and periodogram
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Fig. 10 Logistic map, μ = 3.5 cobweb diagram and periodogram

5.2 Embedding Dimension

“The embedding dimension is the smallest dimension required to embed an object

(a chaotic attractor for instance). In other words, this is the minimum dimension of

the space in which you reconstruct a phase portrait starting from your measurements

and in which the trajectory does not cross itself, that is, in which the determinism

is verified. Of course, this is a statistical measure, meaning that you may have some

“rare” self-crossings. When a global model is attempted, this is the minimum dimen-

sion your model must have” Letellier (2013).

Cao (1997) has suggested an algorithm based on the work of Kennel et al. (1992)

for estimating the embedding dimension (see Takens 1981; Adachi 1993; Whitney

1992) through E1(d) and E2(d) functions, where d denotes the dimension.
2

The func-

tion E1(d) stops changing when d is greater than or equal to the embedding dimen-

sion staying close to 1. The function E2(d), instead, is used to distinguish determin-

istic from stochastic signals. If the signal is deterministic, there exist some d such

2
Which has the following advantages: (a) does not require any subjective parameters except for the

time-delay for the embedding; (b) does not strongly depend on the number of data points; (c) is

able to distinguish between deterministic and stochastic signals; (d) it is computationally efficient

and works well in presence of high-dimensional attractors.
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Fig. 11 Logistic map, μ = 4 cobweb diagram and periodogram

that E2(d)! = 1 whilst if the signal is stochastic E2(d) is approximately 1 for all the

values (see also Arya 1993; Arya et al. 1998).

For example, in Figs. 14 and 15, analogously to Cao (2002) we report the embed-

ding dimension for the FX British Pound/US Dollar showing the values of E1 and

E2 for a time series of 1,008 data points. In “looking at the results of the quantity

E2 whose values are very close to 1 with some oscillations when the dimensions

are small, this implies that the time series is likely a random time series, comparing

with the case of random colored noise shown in Cao (1997). Given the oscillation

behaviour away from 1 when the embedding dimensions are small, the time series

should contain some determinism although the determinism may be weak”.
3

By applying the same analysis to our model, it is possible to observe a similar

behaviour in the following figures where the E1 and E2 are calculated on consump-

tion (Fig. 16), income (Fig. 17), capital (Fig. 18) and investment (Fig. 19). In fact we

can observe that E2, on the four macroeconomic variables that by construction are

not deterministic, is not 1 for all values but approaches it for d ≥ 10.

3
By contrast in the proposed model determinism is ensured by construction.
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Fig. 12 Power spectrum with rectangular window

5.3 Correlation Integral

This kind of correlation is called spatial correlation and it aims to measure the degree

of “relationship” between the different points on the strange attractor. The function

which performs this task is called correlation integral C(r,m) (see Lorenz 1993)

which represents a direct arithmetic average of the pointwise mass function Theiler

(1990) and it is defined as

C(r,m) = lim
m→∞

lim
r→0

1
ϑ
ln C(r,m)
C(r,m + 1)

(4)

with m embedding dimension and r radius (i.e. the space contraction or stretching).

In the following Figs. 20 and 21 we can observe that its trend (or its logarithm)

is a function of r the radius and when it depicts a regular growth it confirms that the

system is deterministic.
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Fig. 13 Power spectrum with Hamming window

Fig. 14 Embedding

dimension for USD/EUR FX

rates (tao = 1, data points =

260)
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Fig. 15 Embedding

dimension for USD/GBP FX

rates (tao = 1, data points =

260)

Fig. 16 Embedding

dimension for consumption

(tao = 1, data points =

10,000)

Fig. 17 Embedding

dimension for income (tao =

1, data points = 10,000)
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Fig. 18 Embedding

dimension for capital

(tao = 1, data points

= 10,000)

Fig. 19 Embedding

dimension for investments

(tao = 1, data points =

10,000)

5.4 Correlation Dimension

Another useful notion is the correlation dimension defined as

DC(m) = lim
r→0

ln(C(r,m))
ln(r)

(5)

hence

DC(m)ln(r) ≈ ln(C(r,m)) i.e. rDC(m) ≈ C(r,m). (6)

The correlation dimension is intended to measure the information content “where

the limit of small size is taken to ensure invariance over smooth coordinate changes.

This small-size limit also implies that dimension is a local quantity and that any

global definition of fractal dimension will require some kind of averaging” Theiler
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Fig. 20 Correlation integral

trend versus r

Fig. 21 Log-log plot
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Fig. 22 Correlation

dimension when r → 0

(1990). Moreover it is shown that the correlation dimension DC
is an approxima-

tion of Hausdorff’s dimension DH
with DC

≤ DH
. In Fig. 22 it can be seen that the

dimension of correlation is noninteger. As DC
is a “more relevant measure of the

attractor than DH
because it is sensitive to the dynamical process of the coverage of

the attractor” (Grassberger and Procaccia 1983c p. 348), we can say that the system

is fractal (see Grassberger and Procaccia 1983a; Grassberger 1986).

5.5 Lyapunov Exponents

“Lyapunov exponents are the average exponential rates of divergence or convergence

of nearby orbits in the phase space. Since nearby orbits correspond to nearly identical

states, exponential orbital divergence means that systems whose initial differences

that may not be possible to resolve will soon behave quite differently, i.e. predictive

ability is rapidly lost” (Sivakumar and Berndtsson 2010 p. 424). Dynamical systems

have a spectrum of Lyapunov exponents, one for each dimension of the phase space

and, similarly to the largest eigenvalue of a matrix, the largest Lyapunov exponent

determines the dominant behaviour of a system. The sensible dependence on initial

conditions, hence, can be restated as follows:

‖δx(t)‖ ≈ eλt‖δx0‖ (7)
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Fig. 23 Logistic map with Lyapunov exponents

Table 1 Lyapunov exponents

Min Max Mean

Consumption 6.22 11.399 10.885

Income 12.8338 19.6440 13.3534

Capital 7.3165 14.594 12.999

Investment 5.511 11.969 11.049

Calculated Lyapunov’s exponents for 10,000 points time series of C, Y, K and I

“where λ, the mean rate of separation of trajectories of the system, is called the

leading Lyapunov exponent. In the limit of infinite time the Lyapunov exponent is

a global measure of the rate at which nearby trajectories diverge, averaged over the

strange attractor” Cvitanovic et al. (2012).

Figure 23 shows the Lyapunov exponents of the Logistic Map for comparison (see

Schuster 1988).

Lyapunov exponents are used to measure the rate at which nearby trajectories

of a dynamical system diverge (see for example Sivakumar and Berndtsson 2010;

Cvitanovic et al. 2012). A dynamic dissipative system is chaotic if its biggest Lya-

punov exponent is a positive number (see Lorenz 1993). In our simulations, by adopt-

ing the Wolf algorithm (see Wolf et al. 1985; Wolf 1986), we have found out that the

biggest Lyapunov exponent has always been positive (see Table 1).

5.6 Entropy

To supplement the above mentioned analysis it could be useful to refer to the entropy

K of Kolmogorov-Sinai (see Farmer 1982; Schuster 1988). We know it must con-

verge to a positive finite value in order for the time series to be defined as chaotic
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because “Kolmogorov entropy is the mean rate of information created by the sys-

tem. It is important in characterizing the average predictability of a system of which

it represents the sum of the positive Lyapunov exponents. The Kolmogorov entropy

quantifies the average amount of new information on the system dynamics brought by

the measurement of a new value of the time series. In this sense, it measures the rate

of information produced by the system, being zero for periodic or quasiperiodic (i.e.

completely predictable) time series, and infinite for white noise (i.e. unpredictable

by definition), and between the two for chaotic system” (Sivakumar and Berndtsson

2010 p. 424). In fact, according to the Pesin’s theorem, Pesin (1977), the sum of all

the positive Lyapunov exponents gives an estimate of the Kolmogorov-Sinai entropy.

So, if K > 0, then the biggest Lyapunov exponent is bigger than zero and the sys-

tem is chaotic. In order to measure K we used the approximation K2 as defined by

Grassberger and Procaccia (1983b) and we found that it was positive (e.g. 21.34561).

5.7 Symplectic Geometry Method

In addition to the embedding dimension, the symplectic geometry method (see Lei

et al. 2002; Xie et al. 2005; Lei and Meng 2011) is used as a consistency check

to verify the appropriate embedding dimension from a scalar time series. Symplec-

tic similarity transformation is nonlinear and has measure-preserving properties i.e.

time series remain unchanged when performing symplectic similarity transforma-

tion. For this reason symplectic geometry spectra (SGS) is preferred to singular value

decomposition (SVD) (which is by nature a linear method that can bring distorted

and misleading results Palus and Dvorak 1992).

Figures 24 and 25 show respectively the embedding dimension of the Logistic

(which is deterministic) and the Gauss white noise and they can be be used as ref-

erence for comparing the embedding dimension obtained for consumption (Fig. 26),

income (Fig. 27), capital (Fig. 28) and investment (Fig. 29) depicted.

5.8 Correlation Integral and Embedding Dimension

As we have repeatedly shown the system behaves stochastically but by construction

is deterministic. In Table 2 we report the correlation integral versus the embedding

dimension for our variables. As it can be observed the correlation integral does not

increase with the embedding dimension confirming the validity of this analysis and

that the system is deterministic (see Lorenz 1993 p. 213).
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Fig. 24 Embedding

dimension symplectic

geometry method for

logistic, μ = 3.9 (data

points = 1,000, abscissa is

d, ordinate is log( σi

tr(σi)
))

Fig. 25 Embedding

dimension symplectic

geometry method for

consumption (data points =

10,000, abscissa is d,

ordinate is log( σi

tr(σi)
))

Fig. 26 Embedding

dimension symplectic

geometry method for capital

(data points = 10,000,

abscissa is d, ordinate is

log( σi

tr(σi)
))
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Fig. 27 Embedding

dimension symplectic

geometry method for income

(data points = 10,000,

abscissa is d, ordinate is

log( σi

tr(σi)
))

Fig. 28 Embedding

dimension symplectic

geometry method for capital

(data points = 10,000,

abscissa is d, ordinate is

log( σi

tr(σi)
))

Fig. 29 Embedding

dimension symplectic

geometry method for

investments (data points =

10,000, abscissa is d,

ordinate is log( σi

tr(σi)
))
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6 Conclusions

We share the view that “economists will be led, as natural scientists have been led,

to seek in nonlinearities an explanation of the maintenance of oscillation” Goodwin

(1951). In this paper, with the help of RP, we have first shown that business cycles

may be chaotic in nature and then we have proposed a non-linear model has a chaotic

behaviour. But while the latter result has been achieved by many, we suggested a

different functional form (i.e. the hyperbolic tangent) instead of the usual arctangent.

Moreover the originality of this work lies in the specification of consumption and

investment as a function of the difference, respectively, between the growth rates

of income and capital and the growth rates of income and consumption. This has

been obtained by considering, à la Kalecki, that the investment process has different

timing than does consumption, hence the difference in the considered time lags. Last

but not least the model can accommodate such external perturbations as shocks by a

translation of the argument of the function f .
In future we will research the calibration of the model to real economy as well

as study further its features with the help of RQA (which, possibly, may result to

identifying some leading indicators of economic crashes). Moreover here we stress

that such non-linear behaviour has some implications which could be potentially

considered as being of some interest, e.g. what should be the rules set by a regulator

(such as the central bank) within a chaotic framework?

For example if the system is not predictable, not reachable and then not observ-

able but nevertheless controllable (see Romieras et al. 1992; Grebogi and Laib 1997;

Calvo and Cartwright 1998; Pettini 2005), can one set up a system of controls that

is able to drive the economy?

Acknowledgements The author is grateful to the editors, the referees and his colleagues. Special

thanks go to Giovanna Zimatore (CNR-IDASC, Institute of Acoustics and Sensors O. M. Corbino,

Rome) for the support given on the RQA analysis, to Edward Bace (Middlesex University London),

Carlo Lucheroni (School of Science and Technologies, University of Camerino) and to Michele

Mininni (Department of Economics and Mathematical Methods, University of Bari) for his guid-

ance, patience and invaluable time.

References

Adachi M (1993) Embeddings and immersions. American Mathematical Society

Addo PM, Billio M, Guegan D (2013) Nonlinear dynamics and recurrence plots for detecting finan-

cial crisis. N Am J Econ Finan 26:416–435

Agliari A, Dieci R, Gardini L (2007) Homoclinic tangles in a Kaldor-like business cycle model. J

Econ Behav Organ 62:324–347

Arya S, Mount DM (1993) Approximate nearest neighbor searching. In: Proceedings of 4th annual

ACM-SIAM symposium on discrete algorithms (SODA’93), pp 271–280

Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal algorithm for approx-

imate nearest neighbor searching. J ACM 45(6):891–923



Chaotic Business Cycles within a Kaldor-Kalecki Framework 159

Benson H (2008) University physics. Wiley

Bischi GI, Dieci R, Rodano G, Saltari E (2001) Multiple attractors and global bifurcations in a

kaldor-type business cycle model. J Evolut Econ 11:527–554

Bradford R, Davenport JH (2002) Towards better simplification of elementary functions. In: ISSAC

’02 Proceedings of the 2002 international symposium on symbolic and algebraic computation,

New York. ACM, pp 16–22

Burns AF, Mitchell WC (1946) Measuring business cycles. In: National bureau of economic

research

Calvo O, Cartwright JHE (1998) Fuzzy control of chaos. Int J Bifurc Chaos 8:1743–1747

Cao L (1997) Practical method for determining the minimum embedding dimension of a scalar time

series. Phys D 110(1–2):43–50

Cao L (2002) Determining minimum embedding dimension from scalar time series. In: Soofi A,

Cao L (eds) Modelling and forecasting financial data, vol 2. Studies in computational finance.

US, Springer, pp 43–60

Chen W-S (2011) Use of recurrence plot and recurrence quantification analysis in taiwan unem-

ployment rate time series. Phys A Stat Mech Appl 390(7):1332–1342

Chiarella C (1990) The elements of a nonlinear theory of economic dynamic. Springer, Berlin-

Heidelberg-New York

Collicott SH (2012) Never trust an arctangent. https://engineering.purdue.edu/~collicot/NTAA_

files/Chapter1.pdf

Crowley PM (2008) Analyzing convergence and synchronicity of business and growth cycles in the

euro area using cross recurrence plots. Eur Phys J Spec Topics 164(1):67–84

Crowley PM, Schultz A (2010) A new approach to analyzing convergence and synchronicity in

growth and business cycles: cross recurrence plots and quantification analysis. Bank of Finland

research discussion paper (16)

Cvitanović P, Artuso R, Mainieri R, Tanner G, Vattay G (2012) Lyapunov exponents. In: Chaos:

classical and quantum, chapter 6. Niels Bohr Institute, Copenhagen. http://ChaosBook.org/

version14ChaosBook.org/version14

Eroglu D, Peron TKD, Marwan N, Rodrigues FA, Costa LdF, Sebek M, Kiss, IZ, Kurths J (2014)

Entropy of weighted recurrence plots. Phys Rev E 90(4):042919

Fabretti A, Ausloos M (2005) Recurrence plot and recurrence quantification analysis techniques

for detecting a critical regime. Examples from financial market indices. Int J Mod Phys C

16(05):671–706

Farmer D (1982) Chaotic attractors of an infinite-dimensional dynamical system. Phys D 4:366–93

Gonnet GH, Scholl R (2009) Scientific computation. Cambridge University Press, Cambridge

Goodwin RM (1951) The nonlinear accelerator and the persistence of business cycle. Econometrica

19(1)

Gorban AN, Smirnova EV, Tyukina TA (2010) Correlations, risk and crisis: from physiology to

finance. Phys A Stat Mech Appl 389(16):3193–3217

Grassberger P (1986) Estimating the fractal dimension and entropies of strange attractors. In:

Holden AV (ed) Chaos. Manchester University Press, Manchester, pp 291–311

Grassberger P, Procaccia I (1983a) Characterization of strange attractors. Phys Rev Lett 50:346

Grassberger P, Procaccia I (1983b) Estimation of the Kolmogorov entropy from a chaotic signal.

Phys Rev A 28:2591–2593

Grassberger P, Procaccia I (1983c). Measuring the strangeness of strange attractors. Physica D

9:189–208

Grebogi C, Laib YC (1997) Controlling chaotic dynamical systems. Syst Control Lett 31(5):307–

312

Hicks JR (1950) A contribution to the theory of the trade cycle. Clarendon Press, Oxford

Hillinger C, Sebold-Bender M (1992) Cyclical growth in market and planned economies. Oxford

University Press, Oxford

Ichimura S (1955a) Notes on non-linear business cycle theories. Osaka economic papers

https://engineering.purdue.edu/~collicot/NTAA_files/Chapter1.pdf
https://engineering.purdue.edu/~collicot/NTAA_files/Chapter1.pdf
http://ChaosBook.org/version14ChaosBook.org/version14
http://ChaosBook.org/version14ChaosBook.org/version14


160 G. Orlando

Ichimura S (1955b) Toward a general nonlinear macrodynamic theory of economic fluctuations. In:

Kurihara KK (ed) Post-Keynesian economics, chapter 8. George Allen & Unwin Ltd., London,

pp 192–226

Januário C, Grácio C, Duartea J (2009) Measuring complexity in a business cycle model of the

Kaldor type. Chaos, Solitons Fractals 42(5):2890–2903

Januário C, Grácio C, Ramos JS (2005) Chaotic behaviour in a two-dimensional business cycle

model. In: Elaydi S, Cushing J, Lasser R, Ruffing A, Papageorgiou V, Assche WV (eds) Pro-

ceedings of the international conference, difference equations, special functions and orthogonal

polynomials, pp 294–304, Munich

Kaddar A, Alaoui HT (2009) Global existence of periodic solutions in a delayed Kaldor-Kalecki

model. Nonlinear Anal Model Control 14(4):463–472

Kaldor N (1940) A model of trade cycle. Econ J 50(197):78–92

Kalecki M (1966) Studies in the theory of business cycles, 1933–1939. New York, A.M, Kelley

Karagianni S, Kyrtsou C (2011) Analysing the dynamics between US inflation and Dow Jones index

using non-linear methods. Stud Nonlinear Dyn Econom 15(2)

Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase-space

reconstruction using a geometrical construction. Phys Rev A 45(6):3403–3411

Korotayev AV, Sergey TV (2010) A spectral analysis of world gdp dynamics: Kondratieff waves,

Kuznets swings, Juglar and Kitchin cycles in global economic development, and the 2008–2009

economic crisis. Struct Dyn 4(1)

Krawiec A, Szydlowski M (1999). The Kaldor-Kalecki business cycle model. Ann Oper Res, 89–

100

Krawiec A, Szydlowski M (2001) On nonlinear mechanics of business cycle model. Regul Chaotic

Dyn 6(1):101–118

Lei M, Meng G (2011) Symplectic principal component analysis: a new method for time series

analysis. Math Probl Eng 2011. Article ID 793429, 14 p

Lei M, Wang Z, Feng Z (2002) A method of embedding dimension estimation based on symplectic

geometry. Phys Lett A 303(2–3):179–189

Letellier C (2013) Estimating the minimum embedding dimension

Lorenz HW (1993) Nonlinear dynamical economics and chaotic motion, 2nd edn. Springer, Berlin-

Heidelberg-New York

McBurnett M (1996) Probing the underlying structure in dynamical systems: an introduction to

spectral analysis, chapter 2. The University of Michigan Press, pp 31–51

Mircea G, Neamt M, Opris D (1963) The Kaldor and Kalecki stochastic model of business cycle,

nonlinear analysis: modelling and control. J Atmos Sci 16(2):191–205

Moloney K, Raghavendra S (2012) A linear and nonlinear review of the arbitrage-free parity theory

for the cds and bond markets. In: Topics in numerical methods for finance. Springer, pp 177–200

Moon FC (1987) Chaotic vibrations: an introduction for applied scientists and engineers. Wiley,

New York

Morishima M (1959) A contribution to the nonlinear theory of the trade cycle. Zeitschrift für

Nationalökonomie 18(4):166–170

Mullineux AW (1984) The business cycle after Keynes. Wheatsheaf Books Ltd, Brighton, Sussex

Orlando G (2016) A discrete mathematical model for chaotic dynamics in economics: Kaldor’s

model on business cycle. Math Comput Simul 125:83–98

Palus M, Dvorak I (1992) Singular-value decomposition in attractor reconstruction: pitfalls and

precautions. Phys D Nonlinear Phenom 55(1–2):221–234

Pesin YB (1977) Characteristic Lyapunov exponents and smooth ergodic theory. Rus Math Surv

32:55–114

Pettini M (2005) Controlling chaos through parametric excitations. In: Dynamics and stochastic pro-

cesses theory and applications. Lecture notes in physics, vol 355. Springer, Berlin-Heidelberg-

New York, pp 242–250

Pham V-T, Volos C, Vaidyanathan S (2017) A chaotic time-delay system with saturation nonlinear-

ity. Int J Syst Dyn Appl (IJSDA) 6(3):111–129



Chaotic Business Cycles within a Kaldor-Kalecki Framework 161

Piskun O, Piskun S (2011) Recurrence quantification analysis of financial market crashes and crises.

arXiv:1107.5420

Purves WK, Orians GH, Sadava D, Heller HC (2003) Life: the science of biology, vol 3. Macmillan

Reger D, Goode S, Ball D (2010) Chemistry: principles and practice. Brooks/Cole, 3rd edn

Romieras FJ, Ott E, Grebogi C, Daiawansa WP (1992) Controlling chaotic dynamical systems.

Physica D, 58:165–192

Schumpeter JA (1954) History of economic analysis. George Allen & Unwin, London

Schuster H (1988) Deterministic chaos—an introduction. VcH Verlagsgesellschaft mbH

Shishkin J (1961) Signals of recession and recovery. NBER Occasional Paper n 77

Sivakumar B, Berndtsson R (2010) Advances in data-based approaches for hydrologic modeling

and forecasting, chapter 9. World Scientific, pp 411–461

Stewart J (2010) Single variable calculus, 4th edn. Brooks/Cole Publishing Company

Stoica P, Moses R (2005) Spectral analysis of signals. Prentice Hall

Strozzi F, Gutierrez E, Noè C, Rossi T, Serati M, Zaldivar J (2007) Application of non-linear time

series analysis techniques to the nordic spot electricity market data. Libero istituto universitario

Carlo Cattaneo

Takens F (1981) Dynamical systems and turbulence. Lecture notes in mathematics, chapter Detect-

ing strange attractors in turbulence, vol 898. Springer, Berlin-Heidelberg-New York, pp 366–381

Theiler J (1990) Estimating fractal dimension. J Opt Soc Am A 7:1055–1073

Walter FS (2010) Waves and oscillations: a prelude to quantum mechanics. Oxford University Press,

Oxford

Wheldon TE (1988) Mathematical models in cancer research. Taylor & Francis

Whitney H (1992) Hassler Whitney collected papers. In: Eells J, Toledo D (eds) Hassler Whit-

ney collected papers, volume I II of contemporary mathematicians. Birkhäuser Verlag, Basel-

Boston-Stuttgart

Wolf A (1986) Quantifying chaos with Lyapunov exponents. In: Holden AV (ed) Chaos. Manchester

University Press, Manchester, pp 273–290

Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time

series. Physica D 16:285–317

Xie H, Wang Z, Huang H (2005) Identification determinism in time series based on symplectic

geometry spectra. Phys Lett A 342(1–2):156–161

Yasui E (1953) Non-linear self-excited oscillations and business cycles. Cowles Comm Discuss

Paper 2063:1–20

Zarnowitz V (1992)Business cycles: theory, history, indicators, and forecasting. National bureau of

economic research studies in business cycles, vol 27. The University of Chicago Press, Chicago

and London

Zbilut JP (2005) Use of recurrence quantification analysis in economic time series. In: Economics:

complex windows. Springer, pp 91–104

Zimatore G, Fetoni AR, Paludetti G, Cavagnaro M, Podda MV, Troiani D (2011) Post-processing

analysis of transient-evoked otoacoustic emissions to detect 4 khz-notch hearing impairment—a

pilot study. Med Sci Monit Int Med J Experimental Clin Res, 17(6):MT41

Zimatore G, Garilli G, Poscolieri M, Rafanelli C, Terenzio Gizzi F, Lazzari M (2017) The remark-

able coherence between two Italian far away recording stations points to a role of acoustic emis-

sions from crustal rocks for earthquake analysis. Chaos: An Interdisciplinary. J Nonlinear Sci

27(4):043101

http://arxiv.org/abs/1107.5420


Analysis of Three-Dimensional
Autonomous Van der Pol–Duffing Type
Oscillator and Its Synchronization
in Bistable Regime

Gaetan Fautso Kuiate, Victor Kamdoum Tamba
and Sifeu Takougang Kingni

Abstract This chapter proposes a three-dimensional autonomous Van der
Pol-Duffing (VdPD) type oscillator which is designed from a nonautonomous
VdPD two-dimensional chaotic oscillator driven by an external periodic source
through replacing the external periodic drive source with a direct positive feedback
loop. The dynamical behavior of the proposed autonomous VdPD type oscillator is
investigated in terms of equilibria and stability, bifurcation diagrams, Lyapunov
exponent plots, phase portraits and basin of attraction plots. Some interesting
phenomena are found including for instance, period-doubling bifurcation, sym-
metry recovering and breaking bifurcation, double scroll chaos, bistable one scroll
chaos and coexisting attractors. Basin of attraction of coexisting attractors is
computed showing that is associated with an unstable equilibrium. So the proposed
autonomous VdPD type oscillator belongs to chaotic systems with self-excited
attractors. A suitable electronic circuit of the proposed autonomous VdPD type
oscillator is designed and its investigations are performed using ORCAD-PSpice
software. Orcard-PSpice results show a good agreement with the numerical simu-
lations. Finally, synchronization of identical coupled proposed autonomous VdPD
type oscillators in bistable regime is studied using the unidirectional linear feedback
methods. It is found from the numerical simulations that the quality of synchro-
nization depends on the coupling coefficient as well as the selection of coupling
variables.
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1 Introduction

In recent years, the implementation and study of chaotic systems have grown up in
many fields and attracts many scientists because chaos was found useful with great
potential in many fields, including liquid mixing with low power consumption,
human brain and heartbeat regulation, and secure communications (Otto 1993;
Hilborn 2006; Xiaofan and Guanrong 2000; Liu et al. 2011). Chaotic oscillations
can be generated in the third-order or higher-order autonomous nonlinear differ-
ential equations. In the case of non-autonomous differential equations, i.e. nonlinear
damped systems driven by external periodic signal, the minimal order of the dif-
ferential equations can be reduced to two. Among the periodically forced autono-
mous (or self-excited) oscillators, one of the most extensively studied examples is
the VdPD oscillator. The nonautonomous VdPD oscillator can be used as a basic
model for describing periodically self-excited oscillators in physics, engineering,
electronics, biology, neurology and many other disciplines (Kapitaniak 1998). In
the literature, nonautonomous VdPD oscillator has been widely investigated
because it is a classical example of a nonlinear dynamical system exhibiting
complex behaviors such as chaos (Ueda and Akamatsu 1981; Rudowski and
Szemplinska-Stupnicka 1997; Kozlov et al. 1999). Maccari (2008) investigated the
dynamics and the vibration amplitude of a VdPD oscillator under time-delayed
position and velocity feedbacks. Asymptotic perturbation method is used to derive
two slow-flow equations for the amplitude and phase of the fundamental resonance
response. The author of reference (Maccari 2008) proved that the introduction of
the control term guarantees the stability of the periodic solutions. In reference (Cui
et al. 2016), the stability analysis of periodic solutions of the forced VdPD oscillator
is reported. Vincent and coworkers (Vincent et al. 2011) investigated the dynamics
of VdPD circuit driven by an external periodical signal. They showed that driven
VdPD circuit can develop a rich and complex dynamical behaviors such as
hyperchaos, metastable chaos (or transient chaos), strange-nonchoatic attractors and
quasiperiodic orbits. However, the external periodic signal required to generate
chaotic behaviors are not always easy to obtain because frequency generator is
expensive. Moreover, in some applications where chaotic behavior is required, the
frequency generator used to provide the external periodic signal might not be
available or, in some situations, the space to put all the devices can be very small.
Therefore, having an autonomous, minor and less bulky system capable of
achieving the tasks required is advantageous. A self-sustained system can provide
wide benefits for the physical equipment while reducing its cost. On the dynamical
point of view, the power spectrum of a chaotic system driven by a periodic signal
presents some clear peaks at the multiple of the frequency of the periodic signal
indicating that the chaos found in system is not fully developed (Kingni et al. 2012,
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2014). And therefore this chaotic behavior found is not indicating for some relevant
engineering applications such as secure communications. While the power spec-
trum of chaos found in an autonomous system has a randomly distributed har-
monics peaks indicating the robustness of chaotic signal (Nana et al. 2009; Sprott
2010; Kingni et al. 2015).

The external periodical signal required to drive some systems in order to gen-
erate complex behaviors such as chaos can be overcome by using two techniques:
(i) by replacing the external periodic drive source of the nonlinear damped systems
by a direct positive feedback loop (Tamaševičius et al. 2009) or (ii) by using the
jerk architecture (Benítez et al. 2006). The authors of reference (Tamaševičius et al.
2009) designed and built a three-dimensional autonomous Duffing-Holmes chaotic
oscillator as an alternative for the nonautonomous Duffing-Holmes two dimensional
chaotic oscillator. In comparison with the well-known nonautonomous
Duffing-Holmes circuit, it lacks the external periodic drive, but includes two extra
linear feedback subcircuits, namely a direct positive feedback loop and an inertial
negative feedback loop. Inspired by reference (Tamaševičius et al. 2009), in this
work, we introduce as an alternative for the VdPD oscillator driven by the external
periodic signal, an autonomous three dimensional VdPD type oscillator with a
direct positive feedback loop. Our objective in this work is to investigate analytical,
numerically and analogically the proposed autonomous three dimensional VdPD
type oscillator in order to shed more light on its dynamics and synchronization.

The paper is organized as follows. Section 2 is devoted to the analytical and
numerical analysis of the proposed autonomous three dimensional VdPD type
oscillator. In Sect. 3, an appropriate analog computer is proposed for the investi-
gation of the dynamical behavior of the proposed autonomous three dimensional
VdPD type oscillator. Section 4 focuses on synchronization of identical coupled
proposed autonomous VdPD type oscillators in bistable and coexisting regimes is
studied using the unidirectional linear feedback methods. The conclusion is given in
Sect. 5.

2 Design and Analysis of the Proposed Three-Dimensional
Autonomous Van der Pol–Duffing Type Oscillator

The nonautonomous VdPD oscillator is a classical example of a nonlinear
dynamical system exhibiting complex behaviors such as chaos (Ueda and Aka-
matsu 1981; Rudowski and Szemplinska-Stupnicka 1997; Kozlov et al. 1999). It is
described by the two dimensional differential equation with an external periodic
drive term:

x ̈− ε 1− x2
� �

x ̇+ αx+ βx3 = f sin ωtð Þ ð1Þ
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where the parameters ε, α and β are the dimensionless damping coefficient, linear
and cubic nonlinearity parameters, respectively.ω is the external frequency of
periodic signal and f stands for the amplitude of the external excitation. The
potential associated to VdPD oscillator is given by V xð Þ= α

2 x
2 + β

4 x
4 and it is a Φ4

potential. Depending on the signs of α and β, the potential V xð Þ can as three main
shapes: single-well potential (for α > 0 and β > 0), double-well potential (for
α < 0 and β>0) and double hump potential (for α > 0 and β < 0). These three
shapes correspond to three physical situations of VdPD. In this work, we focus our
attention on the study of VdPD oscillator with double-well potentials. For f =0 and
α= − 1, Eq. (1) has three fixed points x*, y* = dx* ̸dtð Þ= 0, 0ð Þ and ±1 ̸

ffiffiffi
β

p
, 0ð Þ.

According to the Routh-Hurwitz criteria, the equilibrium point 0, 0ð Þ is unstable for
any values of parameters ε and β. The equilibrium points ±1 ̸

ffiffiffi
β

p
, 0ð Þ are stable for

ε>0 and 0 < β < 1. The trajectories of Eq. (1) for f =0 and α= − 1 converge to a
limit cycle. Inspired by reference (Tamaševičius et al. 2009) in this section, an
autonomous version of the VdPD type oscillator is designed by replacing the
external periodic drive source by a direct positive feedback loop. That is given by:

x ̈− ε 1− x2
� �

x ̇− x+ βx3 + kz=0 ð2aÞ

z ̇= x ̇− z ð2bÞ

By setting x ̇= y, we obtain the following the three-dimensional autonomous
VdPD type oscillator:

x ̇= y ð3aÞ

y ̇= x− βx3 + ε 1− x2
� �

y− kz ð3bÞ

z ̇= y− z ð3cÞ

Here z is the third independent dynamical variable and k>0 is the feedback
coefficient. It is apparent that the system (3a, 3b, 3c) has a natural symmetry under
the transformation Sðx, y, zÞ → ð− x, − y, − zÞ. The system (3a, 3b, 3c) has three
equilibrium points O= ð0, 0, 0Þ and E1, 2 = ±1 ̸

ffiffiffi
β

p
, 0, 0ð Þ. The characteristic

equation associated to the equilibrium point E= ðx*, y*, z*Þ is

λ3 + 1− ε 1− x2
� �� �

λ2 + k2 − ε 1− x2
� �

− 1+ 3βx2 + εxy
� �

λ

− 1+ 3βx2 + εxy=0
ð4Þ

For the equilibrium point O, we have λ3 + 1− εð Þλ2 + k2 − 1− εð Þλ− 1= 0.
According to the Routh-Hurwitz criteria, the equilibrium point O is unstable for any
values of ε and k. For the equilibrium points E1, 2, we have
λ3 + 1− ε− ε ̸βð Þλ2 + 2− ε+ k2ð Þλ+2=0. According to the Routh-Hurwitz crite-
ria, the equilibrium points E1, 2 is stable if
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ε 1+ 1 ̸βð Þ < 1 ð5aÞ

1− ε− ε ̸βð Þ 2+ k2 − ε
� �

− 2 > 0 ð5bÞ

Since k > 0 and β>0, the set of inequality (5a, 5b) is not met therefore the
equilibrium points E1, 2 are unstable.

The dynamical behavior of system (3a, 3b, 3c) is illustrated by bifurcation
diagrams, Lyapunov exponent, basin of attraction and phase portraits. In Fig. 1, we
present the two parameters (k, β) bifurcation diagram of the dynamical behavior of
system (3a, 3b, 3c) for ε=1.

The two parameters (k, β) bifurcation diagram of Fig. 1 is constructed by
examining the Lyapunov exponents and time series for each cell. From Fig. 1, we
see that system (3a, 3b, 3c) can display periodic (cyan regions) and chaotic
behaviors (red regions). In order to know the route to chaotic behavior exhibited by
system (3a, 3b, 3c), we plot in Figs. 2 and 4 the bifurcation diagrams depicting the
local maxima of x tð Þ as a function of the parameter k or parameter β for ε=1 and
for a specific value of parameter β or k.

The bifurcation diagram of Fig. 2a is obtained by plotting local maxima of the
output x tð Þ versus the parameter k which increased (or decreased) in tiny steps in the
range 1.46 ≤ k ≤ 2. The final state at each iteration of the control parameter

Fig. 1 Regions of dynamical behavior in the parameters k and β for ε=1. Periodic oscillations are
in light blue color and chaotic oscillations are in red color
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k serves as the initial state for the next iteration. In Fig. 2a, the system (3a, 3b, 3c)
presents a reverse period-doubling to chaos interspersed with periodic windows
when the parameter k varies from 1.46 to 2 (see black dot in Fig. 2a). When
performing the same analysis by ramping the parameter k (see red dot in Fig. 2a),
the output x tð Þ displays the same dynamical behaviors as in Fig. 2a (see black dot)
but at k=1.842 where the symmetry breaking bifurcation appeared the amplitudes
of the output x tð Þ are not the same. The chaotic behavior found in Fig. 2a is
confirmed by the largest Lyapunov exponent shown in Fig. 2b. The chaotic
behavior and bistability phenomenon shown in Fig. 2 is further detailed in Fig. 3,
which shows the phase portrait of system (3a, 3b, 3c) for specific values of β, ε and
k.

From the black and red curves in Fig. 3a, we notice that system (3a, 3b, 3c)
displays bistable one-scroll chaotic attractor with the same shape and parameters
but different initial conditions. The attractor in black curve is called left one-scroll
chaotic attractor while the attractor in red curve is called rigth one-scroll chaotic
attractor. In Fig. 3b, the system (3a, 3b, 3c) presents monostable double-scroll
chaotic attractor.

Fig. 2 The bifurcation diagrams depicting maxima of x tð Þ (a) and the largest Lyapunov exponent
(b) of system (3a, 3b, 3c) versus the parameter k for ε=1 and β=2.0. Bifurcation diagrams are
obtained by scanning the parameter k upwards (black) and downwards (red). The acronym SB
means symmetry-breaking
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For ε=1 and k=1.7, we plot the bifurcation diagrams depicting maxima of x tð Þ
and the largest Lyapunov exponent of system (3a, 3b, 3c) versus the parameter β as
shown in Fig. 4.

The bifurcation diagram of Fig. 4a is obtained by plotting local maxima of the
output x tð Þ versus the parameter β which increased (or decreased) in tiny steps in
the range 1.7 ≤ β ≤ 2.6. The final state at each iteration of the control parameter β
serves as the initial state for the next iteration. When the parameter β varies from
1.7 to 2.6 (see black dot in Fig. 4a), the bifurcation diagram of the output x tð Þ
shows a period-1-oscillations followed by a period-doubling bifurcation to chaos
interspersed with periodic windows. When performing the same analysis by
ramping the parameter β (see red dot in Fig. 4a), the output x tð Þ displays the same
dynamical behaviors as in Fig. 4 (a) (see black dot) in the range 1.7 ≤ β ≤ 1.882
but the amplitudes of the output x tð Þ are not the same from β=1.7 up to β=1.76
where the symmetry recovering appeared. Therefore one can notice that the system
(3a, 3b, 3c) shows bistability in the range 1.7 ≤ β ≤ 1.76. While in the range

Fig. 3 The phase portrait of system (3a, 3b, 3c) in planes x, yð Þ, x, zð Þ and y, zð Þ for specific value
of parameter k: a k=1.85 and b k=1.7. The curve in black line is obtained by using the initial
conditions x 0ð Þ, y 0ð Þ, z 0ð Þð Þ= 0.1, 0.1, 0.1ð Þ whereas the curve in red line is obtained by using the
initial conditions x 0ð Þ, y 0ð Þ, z 0ð Þð Þ= − 0.1, − 0.1, − 0.1ð Þ. The other parameter are β=2 and ε=1
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1.882 < β ≤ 2.6, the output x tð Þ exhibits period-1-oscillations. By comparing the
two set of data [for increasing (black) and decreasing (red)] used to plot Fig. 4a, one
can notice that period-1-oscillations coexist with chaotic oscillations and periodic
oscillations in the range 1.882 < β ≤ 2.6. The chaotic behavior found in Fig. 4a is
confirmed by the largest Lyapunov exponent shown in Fig. 4b. The coexistence of
attractors found in Fig. 4 is presented in Fig. 5 which depicts the phase portraits of
the resulting attractors of the system (3a, 3b, 3c) in the plane x, yð Þ for specific value
of β and initial conditions.

At β=2, the system (3a, 3b, 3c) displays period-1-oscillations and double-scroll
chaotic attractor for two different initial conditions as shown in Fig. 5. The coex-
istence of attractors shown in Fig. 5 is further detailed in Fig. 6 which shows the
basin of attraction of system (3a, 3b, 3c) in the plane z=0 for β=2, ε=1.0 and
k=1.7.

One can see from Fig. 6 that the system (3a, 3b, 3c) can exhibit either chaotic
attractor or periodic attractor depending of the initial conditions. Since basin of
attraction of coexisting attractor is associated with an unstable equilibrium.

Fig. 4 The bifurcation diagrams depicting maxima of x tð Þ (a) and the largest Lyapunov exponent
(b) of system (3a, 3b, 3c) versus the parameter β for ε=1 and k=1.7. Bifurcation diagrams are
obtained by scanning the parameter β upwards (black) and downwards (red). The acronym SR
corresponds to symmetry-restoring
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The proposed autonomous VdPD type oscillator belongs to chaotic systems with
self-excited attractor attractors.

3 Electronic Simulations of the Proposed
Three-Dimensional Autonomous Van der Pol–Duffing
Type Oscillator

Electronic circuit implementation of theoretical chaotic models (Chedjou et al. 2001;
Kengne et al. 2018; Kingni et al. 2014; Pehlivan and Uyarogglu 2012; Pham et al.
2017a) is an interesting approach to investigate the dynamical behavior of such
systems and has many practical technological applications including cryptography,
image encryption, random bit generator (Nana and Woafo 2015; Yalcin et al. 2004;
Volos et al. 2012, 2013; Akgul et al. 2016; Pham et al. 2017b) and so on. The aim of
this section is to design and simulate a proposed electronic circuit able to emulate the
dynamical behavior of system (3a, 3b, 3c) in order to validate the numerical results.

Fig. 5 Coexistence of attractors for specific value of β=2 and initial conditions. In the left panel
the initial conditions are x 0ð Þ, y 0ð Þ, z 0ð Þð Þ = 1.5, 0.1, 0.1ð Þ whereas in the right panel, the initial
conditions are x 0ð Þ, y 0ð Þ, z 0ð Þð Þ = 0.1, 0.1, 0.1ð Þ. The remaining parameters are ε=1 and k=1.7
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To this end, we propose the electronic circuit depicted in Fig. 7 which is designed
according to the theoretical model of the proposed three-dimensional autonomous
VdPD type oscillator described by system (3a, 3b, 3c).

The circuit consists of operational amplifiers configured as integrators and
negative gain amplifiers, analog multipliers used to implement the different non-
linearities, capacitors and resistors. Each state variable (x, y and z) of system (3a,
3b, 3c) is implemented as the output voltage of operational amplifiers U2A, U4A
and U6A, respectively. By applying the Kirchhoff’s laws into the circuit of Fig. 7,
we obtain its state equations given as follows

dVx

dt
=

Vy

RC
ð6aÞ

dVy

dt
=

Vx

RC
−

V3
x

kmRbC
+

Vy

RC
−

V2
x Vy

Rekm
−

Vz

RkC
ð6bÞ

dVz

dt
=

Vy

RC
−

Vz

RC
ð6cÞ

Fig. 6 Cross section of the basin of attraction of system (3a, 3b, 3c) in the xy-plane at z = 0 for
β=2, ε=1.0 and k=1.7. Periodic attractors are in light blue color and chaotic attractors are in red
color
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where km =100 is a fixed constant introduced by the analog multipliers, R=Ri

(i=1, 2, 3, . . . , 15) and C=Ci (i=1, 2, 3). Using the following dimensionless
states variables x=Vx ̸1V , y=Vy ̸1V , z=Vz ̸1V , t= τRC, system (7a, 7b, 7c)
becomes

x ̇= y ð7aÞ

y ̇= x−
R

Rbkm
x3 + y−

R
Rekm

x2y−
R
Rk

z ð7bÞ

z ̇= y− z ð7cÞ

The system (6a, 6b, 6c) and (7a, 7b, 7c) are equivalent if and only if β=R ̸kmRb,
ε=R ̸kmRb and k=R ̸Rk. When R=10 kΩ, Rb =5 kΩ and Re =10 kΩ, the

Fig. 7 The schematic diagram of the proposed three-dimensional autonomous VdPD type
oscillator described by system (3a, 3b, 3c)
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proposed three-dimensional autonomous VdPD type oscillator described by system
(3a, 3b, 3c) displays bistable and monostable chaotic attractors as shown in
Figs. 8a1, a2 and b, respectively for Rk =5.263 kΩ and Rk =5.882 kΩ.

The phase portraits of bistable double-scroll and monostable one-scroll chaotic
attractors obtained from the Orcad-PSpice using the designed circuit of system (3a,
3b, 3c) is depicted in Fig. 8. Comparing with numerical results reported in Fig. 3,
one can notice good agreement, at least qualitatively. The phenomenon of coex-
isting attractors is shown in Fig. 9 for Rk =5.882 kΩ.

The occurrence of coexisting attractors can be clearly seen from Fig. 9. By
comparing, it with Fig. 5, it can be concluded that good qualitative agreement with
the numerical simulations is obtained, as well.

Fig. 8 The phase portraits of the chaotic attractors in planes Vx,Vy
� �

, Vy,Vz
� �

and Vx,Vzð Þ for
specific values of Rk (a) Rk =5.263 kΩ and (b) Rk =5.882 kΩ. The initial conditions are setting as:
a1 Vxð0Þ,Vyð0Þ,Vzð0Þ

� �
= 0.1, 0.1, 0.1ð Þ, a2 Vxð0Þ,Vyð0Þ,Vzð0Þ

� �
= − 0.1, − 0.1, − 0.1ð Þ and

b Vxð0Þ,Vyð0Þ,Vzð0Þ
� �

= 0.1, 0.1, 0.1ð Þ
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4 Synchronization of Identical Coupled Proposed
Three-Dimensional Autonomous Van der Pol–Duffing
Type Oscillators in Bistable Regime

With the intent of utilising the bistable one-scroll chaotic attractor property of the
proposed three-dimensional autonomous VdPD type oscillator described by system
(3a, 3b, 3c), synchronization between left one-scroll chaotic attractor as drive and
right one-scroll chaotic attractor as response is introduced so as to enhance the
safety factor of secure communication. In this section, the unidirectional linear error
feedback coupling scheme is used to achieve chaos synchronization between two
identical coupled proposed three-dimensional autonomous VdPD oscillators. The
drive system is described by:

dx1
dt

= y1 ð8aÞ

dy1
dt

= x1 − βx31 + ε 1− x21
� �

y1 − kz1 ð8bÞ

dz1
dt

= y1 − z1 ð8cÞ

and the response system is given by:

Fig. 9 The phase portraits in plane Vx,Vy
� �

of the coexisting attractors for specific values of
Rk =5.882 kΩ. The limit cycle is obtained with ðVxð0Þ,Vyð0Þ,Vzð0ÞÞ= ð1.5, 0, 0Þ while, the
chaotic attractor one is obtained with ðVxð0Þ,Vyð0Þ,Vzð0ÞÞ= ð0.1, 0.1, 0.1Þ
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dx2
dt

= y2 + κ1 x1 − x2ð Þ ð9aÞ

dy2
dt

= x1 − βx32 + ε 1− x22
� �

y2 − kz2 + κ2 y1 − y2ð Þ ð9bÞ

dz2
dt

= y2 − z2 + κ3 z1 − z2ð Þ ð9cÞ

where the constant parameters κ1, κ2 and κ3 are the coupling strengths. The syn-

chronization error is defined by e tð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x2ð Þ2 + y1 − y2ð Þ2 + z1 − z2ð Þ2

q
, the aim

of the synchronization scheme is to find the coupling strength such that e tð Þ→ 0 as
t→∞. In Fig. 10, we plot the phase portraits of the drive and response systems and
the synchronization error without coupling strength.

The drive and response systems display chaotic attractors and are not synchro-
nized without coupling as shown in Fig. 10. It is interesting to explore the

Fig. 10 The phase portraits of the drive (a) and response (b) systems and synchronization error
(c) for k=1.85, β=2, ε=1 and the coupling strength κ1 = κ2 = κ3 = 0. The initial conditions of the
drive and response systems are x1 0ð Þ, y1 0ð Þ, z1 0ð Þð Þ= 0.1, 0.1, 0.1ð Þ and x2 0ð Þ, y2 0ð Þ,ð
z2 0ð ÞÞ= − 0.1, − 0.1, − 0.1ð Þ respectively
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synchronization between the drive and response systems (8a, 8b, 8c) and (9a, 9b,
9c) by setting different coupling strengths and the results are plotted in Fig. 11
when the first and second variables are coupled respectively.

The drive and response systems (8a, 8b, 8c) and (9a, 9b, 9c) are synchronized, if
the maximum synchronization errors of the three state variables become close to
zero. In Fig. 11a, only the first variable is coupled (κ2 = κ3 = 0), one can observe
that the drive and response systems (8a, 8b, 8c) and (9a, 9b, 9c) are synchronized
for κ1 ≥ 0.67. While when only the second variable is coupled (κ1 = κ3 = 0), the
drive and response systems (8a, 8b, 8c) and (9a, 9b, 9c) are synchronized for
κ2 ≥ 0.79 as shown in Fig. 11b. The projection of the phase space trajectory of the
response and drive systems (8a, 8b, 8c) and (9a, 9b, 9c) for a specific value of the
coupling strengths are depicted in Fig. 12.

The drive and response systems (8a, 8b, 8c) and (9a, 9b, 9c) are synchronized for
specific value of the coupling strengths as shown in Fig. 12. It is worth noting that
when the third variable is set as linear coupling our investigation shown that the
drive and response systems (8a, 8b, 8c) and (9a, 9b, 9c) are not synchronized.

Fig. 11 Maximum synchronization error e tð Þ versus the coupling strengths: κ1 (a) and κ2
(b) using the parameter values k=1.85, β=2, ε=1
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5 Conclusion

This chapter reported results on the analysis and electronic implementation of
proposed autonomous Van der Pol-Duffing type oscillator. This autonomous Van
der Pol-Duffing type oscillator belongs to chaotic systems with self-excited
attractors. For specific parameters, proposed autonomous Van der Pol-Duffing type
oscillator exhibited interesting dynamics such as monostable double-scroll chaotic
attractor, bistable one-scroll chaotic attractor and coexisting attractors. The coex-
istence of attractors, one- and double-scroll chaotic attractors obtained during
numerical simulations have been confirmed using electronic implementation of the
proposed autonomous Van der Pol-Duffing type oscillator. Finally, It has been
found from the numerical simulations that chaos synchronization of identical uni-
directional coupled proposed autonomous Van der Pol-Duffing type oscillators in
bistable regime depends on the coupling coefficient as well as the selection of
coupling variables.

Fig. 12 The projection of the phase space trajectory of the response system and its auxiliary
system for specific value of the coupling strengths: a κ1 = 0.7, κ2 = κ3 = 0 and b κ2 = 0.9,
κ1 = κ3 = 0
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Dynamic Analysis, Electronic Circuit
Realization of Mathieu-Duffing Oscillator
and Its Synchronization with Unknown
Parameters and External Disturbances

Victor Kamdoum Tamba, François Kapche Tagne,
Elie Bertrand Megam Ngouonkadi and Hilaire Bertrand Fotsin

Abstract This chapter deals with dynamic analysis, electronic circuit realization
and adaptive function projective synchronization (AFPS) of two identical coupled
Mathieu-Duffing oscillators with unknown parameters and external disturbances.
The dynamics of the Mathieu-Duffing oscillator is investigated with the help of
some classical nonlinear analysis techniques such as bifurcation diagrams, Lya-
punov exponent plots, phase portraits as well as frequency spectrum. It is found that
the oscillator experiences very rich and striking behaviors including periodicity,
quasi-periodicity and chaos. An appropriate electronic circuit capable to mimic the
dynamics of the Mathieu-Duffing oscillator is designed. The correspondences are
established between the parameters of the system model and electronic components
of the proposed circuit. A good agreement is obtained between the experimental
measurements and numerical results. Furthermore, based on Lyapunov stability
theory, adaptive controllers and sufficient parameter updating laws are designed to
achieve the function projective synchronization between two identical
drive-response structures of Mathieu-Duffing oscillators. The external disturbances
are taken into account in the drive and response systems in order to verify the
robustness of the proposed strategy. Analytical calculations and numerical simu-
lations are performed to show the effectiveness and feasibility of the method.
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1 Introduction

Several problems in physics, chemistry, biology, electronics, neurology and many
other disciplines are related to nonlinear self-excited oscillators (Rajasekar et al.
1992). Examples include, the self-excited oscillations in bridges and airplane wings,
the beating of a heart and the nonlinear model of a machine tool chatter, the
vortex-or flow-induced oscillations in the cylinder of square cross-section and the
galloping of transmission lines (Moon and Johnson 1998; Corless and Parkison,
1988, 1993; Yu et al. 1992, 1993a, b). Self-excited oscillators (e.g. Van der Pol,
damped Duffing, Duffing-Van der Pol and Duffing-Rayleigh) have been intensively
studied and demonstrated to exhibit complex and rich dynamical behaviors
including harmonic, subharmonic and superharmonic frequency entrainment
(Hayashi 1964), devil’s staircase in the behavior of the winding number (Parlitz and
Lauterborn 1987) and chaotic behavior with period-doubling cascades (Hayashi
1964; Parlitz and Lauterborn 1987; Guckenheimer and Holmes 1984; Steeb and
Kunick 1987). A two-well Duffing oscillator with nonlinear damping term pro-
portional to the power of velocity has been investigated in Anjali et al. (2012). The
authors focused their attention on how the damping exponent affects the global
dynamical behavior of the oscillator. Analytically, the threshold condition for the
occurrence of homoclinic bifurcation using Melnikov technique is derived. The
results were supported by numerical simulations. In Venkatesan and Lakshmanan
(1997) the authors have demonstrated that a driven Duffing-van der Pol oscillator
with a double well potential exhibits rich and striking bifurcation structures such as
period-doubling phenomena, intermittencies, crises, transient chaos, and
quasi-periodicity. Siewe Siewe and colleagues (Siewe Siewe et al. 2010) have
investigated the dynamics of a Duffing-Rayleigh oscillator under harmonic external
excitation. They used the Melnikov technique to derive the necessary conditions for
chaotic motion of this deterministic system. The effect of damping parameter on
phase portraits and Poincaré maps, in addition to the numerical simulations of
bifurcation diagram and maximum Lyapunov exponents have been also examined.
In Shen et al. (2008), the bifurcation and route to chaos of the Mathieu-Duffing
oscillator have been reported using the incremental harmonic balance (IHB) pro-
cedure. The authors proposed a new scheme for selecting the initial conditions used
for predicting the higher order periodic solutions. The phase portraits and bifur-
cation points obtained from the IHB method and numerical time-integration were
compared yielding a very good agreement. Shen and Chen (2009) investigated the
control of chaos in Mathieu-Duffing oscillator using open-plus-closed-loop (OPCL)
method. A controller composed of an external excitation and a linear feedback has
been designed to entrain chaotic trajectories of Mathieu-Duffing oscillator to its
periodic and higher periodic orbits. The critical feedback coefficients under which
the chaotic Mathieu-Duffing oscillator is globally and locally OPCL controllable
respectively are obtained theoretically and demonstrated numerically. Many other
interesting works (Yang et al. 2015; Wen et al. 2016, 2017) have been reported on
the fractional-order form of the Mathieu-Duffing oscillator. The authors of these
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references studied the effects of the fractional-order on the dynamical behaviors of
the integer-order Mathieu-Duffing oscillator. Numerical simulations are performed
in their works to validate the theoretical investigations. Motivated by complex
dynamical behaviors of self-excited oscillators and their potential applications in
many fields, in this chapter, we investigate numerically and experimentally the
dynamics and synchronization of a Mathieu-Duffing oscillator in presence of
unknown parameters and external disturbances.

Since the idea of synchronization of chaotic systems was introduced by Pecora
and Carroll in 1990 (Pecora and Carrol 1990), chaos synchronization has received
an increasing attention due to its theoretical challenge and its potential applications
in secure communications, chemical reactions, biological systems, information
science, and plasma technologies (Zhan et al. 2003). Up to now, many types of
synchronization phenomena have been reported. These include complete syn-
chronization (Vincent et al. 2008), phase synchronization (Chitra and Kuriakose
2008), lag synchronization (Zhu and Wu 2004), anticipating synchronization (Zhu
and Wu 2004), projective synchronization (Yang et al. 2010), modified projective
synchronization (Zhu and Zhang 2009), function projective synchronization
(FPS) (Li and Chen 2007), etc. In projective synchronization, the drive and the
response systems synchronize up to a scaling factor whereas in modified projective
synchronization, the response of the synchronized dynamical state variables syn-
chronizes up to a constant matrix (Kareem et al. 2012). Recently, a more general
form of projective synchronization called function projective synchronization (An
and Chen 2009; Ping and Yu-Xia 2010) in which drive and response systems are
synchronized up to a desired scaling function has attracted much attention of sci-
entists and engineers as it provides more security in its applications to secure
communication because the unpredictability of the scaling function matrix. Also,
FPS of discrete chaotic systems has now been widely investigated for its great
practical application (Fei et al. 2013). Therefore, the research on FPS is more
valuable in practice. The majority of the mentioned works are carried out by using
the known (certain) parameters of drive and response systems, and the controller is
constructed from those known parameters. However, some system’s parameters
may not be exactly known in advance. In real physical systems, or experimental
situations, chaotic systems may have some uncertain or time varying parameters
(Mahmoud and Mansour 2011). Moreover, the influence of the uncertainties has
been taken into account rarely. It is known that in the real world applications (e.g.
secure communication), the systems are affected by various uncertainties including
parameter perturbations and external disturbances, which can influence the accuracy
of the communication. To our understanding, function projective synchronization
of Mathieu-Duffing oscillators with the consideration of unknown parameters and
external disturbances has not been explored. The objectives of this chapter are
threefold: (a) to consider the dynamics of the Mathieu-Duffing oscillator and
investigate its bifurcation structures with particular emphasis on the effects of the
amplitude of the parametric excitation; (b) to carry out an experimental study of the
dynamics of the system in order to validate the theoretical and numerical results;
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and (c) to investigate the synchronization of such a coupled oscillators with
unknown parameters and subjected to the external disturbances.

The layout of chapter is as follows. Section 2 deals with the analytical and
numerical analysis of the system under study. Some basic properties and bifurcation
structures of the system are investigated. The experimental study is carried out in
Sect. 3. The laboratory experimental measurements show a qualitative agreement
with numerical results. Section 4 deals with FPS between two identical
Mathieu-Duffing oscillators in presence of unknown parameters and external dis-
turbances. Numerical simulations are performed in order to illustrate and verify the
effectiveness, feasibility and the robustness of the synchronization scheme. Finally,
we summarize our results and draw the conclusions of this chapter in Sect. 5.

2 Theoretical Analysis of Mathieu-Duffing Oscillator

2.1 Description of the Model

In this chapter, we consider the Mathieu-Duffing oscillator (Shen et al. 2008) which
is described by the following equation of motion:

x ̈+2εx ̇− ðα+ β sinωtÞx+ γx3 = 0 ð1Þ

in which x ̇= dx ̸dt represents the derivative with respect to time, ε is the damping
coefficient, β and ω are respectively, the amplitude and the frequency of the
parametric excitation, α and γ represent respectively, the linear and nonlinear
stiffness coefficients. Many mechanical and engineering problems can be really
described by Eq. (1). Indeed, it has been used to model the one-mode transverse
vibration of the axially moving beam with harmonic fluctuated speed (Shen et al.
2008). The second-order differential Eq. (1) can be transformed into a set of
first-order differential equations as follows:

x ̇= y

y ̇= − 2εy+ αx− γx3 + βx sinωt

(
ð2Þ

System (2) involves five independent parameters. Due to the relatively large
number of parameters, the detailed influence of each parameter on dynamics of the
system (2) will be not presented here. The bifurcation structure will be carried out
with respect to the amplitude of the parametric excitation because this parameter
can be easily varied in the practical situation using a low frequency generator. For
the numerical analysis, the following values of parameters will be employed:
ε=0.125, α= γ =1, ω=2 and β variable.
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2.2 Dissipativity and Symmetry

To generate chaotic signal, it is necessary for the system to be dissipative. The
divergence of system (2) in absence of the external force is evaluated as

∇V =
∂x ̇
∂x

+
∂y ̇
∂y

= − 2ε ð3Þ

System (2) is dissipative since ∇V <0. This implies that any volume element
V0 =Vðt=0Þ will be continuously contracted by the flow (i.e. each volume element
containing the trajectory shrinks to zero as time evolves to infinity). Then, all
system orbits will be confined to a specific bounded subset of zero volume in state
space and the asymptotic dynamics settles onto an attractor. The symmetry is one of
the interesting characteristics of the dynamical system. This property commonly
exists in many nonlinear systems. It is easy to check in absence of external force
that system (2) has a natural symmetry since the transformation S:
ðx, yÞ ↔ ð− x, − yÞ is invariant for a specific set of the system parameters. The
solution of system (2) that is invariant under the above transformation is called a
symmetry solution; otherwise it is called an asymmetry solution.

2.3 Fixed Points Analysis

In absence of external force and by setting the right hand side of system (2) to zero,
it is found that there are three equilibrium points E1ð0, 0Þ and E2, 3ð±

ffiffiffiffiffiffiffiffi
α ̸γ

p
, 0Þ. The

characteristic equation obtained at any equilibrium point Eðx ̄, y ̄Þ is defined as

λ2 + 2ελ− ðα− 3γx ̄Þ=0 ð4Þ

The characteristic equation for the equilibrium point E1ð0, 0Þ is

λ2 + 2ελ− α=0 ð5Þ

It is obvious that E1ð0, 0Þ is always unstable provided that the corresponding
characteristic Eq. (5) has coefficients with different signs. For the analysis of sta-
bility of the equilibrium points E2, 3ð±

ffiffiffiffiffiffiffiffi
α ̸γ

p
, 0Þ, one only needs to consider since

the system is invariant under the transformation ðx, yÞ↔ ð− x, − yÞ as mentioned
above. Thus, the characteristic equation associated to one of them is defined as
follows

λ2 + 2ελ+2α=0 ð6Þ

Since ε and α are positive, the equilibrium points E2, 3ð±
ffiffiffiffiffiffiffiffi
α ̸γ

p
, 0Þ are stable.
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2.4 Bifurcation and Chaos

In the numerical results that follow, we investigate the dependence of the system
behavior at given angular frequency, linear and nonlinear stiffness coefficients by
varying the amplitude of the parametric excitation. The bifurcation diagram shows
the projection of the attractors in the Poincaré section onto one of the system
coordinates with respect to the chosen control parameter. In order to gain further
insight about the dynamics of the oscillator under investigation, we compute the
frequency spectrum as well as the largest Lyapunov exponent with the help of the
algorithm proposed by Wolf et al. (1985). These results are obtained by solving
system (2) with aid of the standard fourth-order Runge Kutta algorithm (Press et al.
1992). The system is integrated for sufficiently long time and the transient is
cancelled. The bifurcation diagram showing the local maxima of the coordinate y
and the corresponding graph of the largest Lyapunov exponent in terms of the
control parameter β varying in the range 3.6≤ β≤ 6 are provided in Fig. 1 for
ε=0.125, α= γ =1 and ω=2.

In light of Fig. 1a, the extreme sensitivity of the oscillator with respect to small
parameter changes is clearly observed. Some interesting dynamical behaviors such

Fig. 1 Bifurcation diagram
a showing the local maxima
of the coordinate y and the
corresponding graph of the
largest Lyapunov exponent
b in terms of the control
parameter β for ε=0.125,
α= γ =1 and ω=2
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as periodicity, quasi-periodicity and chaos are visible. The bifurcation structure is
perfectly traced by the largest Lyapunov exponent. Accordingly, some phase por-
traits showing chaotic states with corresponding frequency spectrum of the system
are depicted in Fig. 2.

Asymmetric chaotic attractor is observed in Fig. 2a while a double band strange
attractor is depicted in Fig. 2b. The broadband noise-like of frequency spectrum
(see Fig. 2c) is signature of the chaotic steady state.

3 Electronic Circuit Realization of Mathieu-Duffing
Oscillator

Implementing the theoretical chaotic models using electronic circuits is of great
importance for various engineering applications such as robotics, chaos based
communications, image encryption and random number generation (Banerjee 2010;
Volos et al. 2012, 2013a, b). Moreover, the electronic circuit realization of theo-
retical chaotic models is an effective approach to investigate the dynamics of such

Fig. 2 Chaotic phase portraits of Mathieu-Duffing oscillator computed for ε=0.125, α= γ =1
and ω=2. a Single band chaotic attractor for β=5.2, b double band chaotic attractor and
c frequency spectrum of coordinate y for β=5.8
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systems via for instance the experimental bifurcation diagram obtained by varying
the values of variable resistors associated to the control bifurcation parameters (Ma
et al. 2014; Buscarino et al. 2009). The dynamics of the system under scrutiny has
been investigated in preceding paragraphs using theoretical and numerical methods.
It is predicted that the system can exhibit very rich and complex behaviors. In this
section, in order to validate the numerical results, we design and implement an
electronic circuit capable to mimic the dynamical behaviors of system (2). The
schematic diagram of the proposed electronic circuit is depicted in Fig. 3.

The electronic circuit of Fig. 3 consists of some analog multipliers used to
implement the cubic nonlinear term of the model. They operate over a dynamic
range of ±1V with typical tolerance less than 1%. The output signal (W) is con-
nected to those at inputs ( +X1), (−X2), ( +Y1), (−Y2), and ( +Z) by the following
expression W = ðX1 −X2ÞðY1 − Y2Þ ̸10+ Z. The operational amplifiers accompa-
nied with resistors and capacitors are exploited to implement the basic operations
such as addition, subtraction and integration. The bias is provided by a 15Volts DC
symmetry source. Using the Kirchhoff’s laws into the circuit of Fig. 3, we obtain its
mathematical model given by two coupled first-order nonlinear differential
equations

Fig. 3 Electronic circuit realization of the Mathieu-Duffing oscillator. The value of electronic
components are fixed as C=10 nF, R=10 kΩ, R1 = 40 kΩ, R2 = 100Ω, R3 = 100Ω and R4

variable. The analog multipliers devices are AD633JN-type while operational amplifiers (U1,U2

and U3) are TL084CN-type ones
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dVx

dt
=

Vy

RC
dVy

dt
= −

Vy

R1C
+

Vx

R2C
−

V3
x

10kmR3C
+

Vx sinωt
kmR4C

8>><
>>: ð7Þ

where Vx and Vy are the output voltages of the operational amplifiers and km =10 is
a constant introduced by the analog multiplier. The values of components of
electronic circuit in Fig. 3 are chosen in order to match system (2) and according to
the following change of state variables and parameters: t= τRC; x=Vx ̸1V ;
y=Vy ̸1V; 2ε=R ̸R1; α=R ̸R2; γ =R ̸10kmR3, β=R ̸kmR4 as follows:
C=10 nF, R=10 kΩ, R1 = 40 kΩ, R2 = 10 kΩ, R3 = 100Ω and R4 variable.

Fig. 4 Photograph of the analog oscilloscope displaying a single band chaotic attractor obtained
from the electronic circuit of Fig. 3
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A photograph of the analog oscilloscope displaying a single band chaotic attractor
obtained from the electronic circuit of Fig. 3 is shown in Fig. 4.

The experimental results showing some dynamical behaviors of electronic cir-
cuit of Fig. 3 for some specific values of control parameter R4 are shown in Fig. 5.

In light of the pictures in Fig. 5, one can note the good similarity of experimental
portraits with those obtained numerically. This shows that the proposed electronic
circuit is capable to reproduce the dynamics of the system under investigation. It
should be stressed that system (2) can be also implemented using many other
techniques such as integrated circuit technology (Trejo-Guerra et al. 2012), Field
Programmable Analog Array (FPAA) technologies (Koyuncu et al. 2014) and Field

Fig. 5 Experimental phase portrait obtained from the Mathieu-Duffing oscillator using a
dual-trace oscilloscope in XY mode. Corresponding numerical phase portraits are shown in the
left. Output voltages Vx and Vy are fed to the X and Y input, respectively. a Single-band chaotic
attractor for R4 = 1.92 kΩ and b double-band chaotic attractor for R4 = 1.72 kΩ
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Programmable Gate Array (FPGA) (Fatma et al. 2016). The latter technology
provides a fast prototype for investigating chaotic systems.

4 Adaptive Function Projective Synchronization of Two
Identical Coupled Mathieu-Duffing Oscillators

In this section, we consider the problem of synchronization of Mathieu-Duffing
oscillators with unknown parameters and external disturbances using adaptive
function projective synchronization technique.

4.1 Problem Formulation

Let the drive and response systems be defined as

x ̇=F1ðt, xÞ+G1ðt, xÞφ+D′ðtÞ ð8Þ

y ̇=F2ðt, yÞ+G2ðt, yÞθ+D′′ðtÞ+ uðt, x, yÞ ð9Þ

where x, y ∈ Rn, are the state variables of the drive and response systems,
respectively, F1ðt, xÞ, F2ðt, yÞ:Rn → Rn, G1ðt, xÞ ∈ Rn× p, G2ðt, yÞ ∈ Rn× q are the
continuous nonlinear functions, φ∈Rp, θ ∈ Rq are the unknown parameters of the
drive and response system respectively, D′ðtÞ= d11, d12, . . . , d1n½ �T ∈ Rn and
D′′ðtÞ= d21, d22, . . . , d2n½ �T ∈Rn represent the disturbance inputs with
d1ij j ≤ λi, ði=1, 2, . . . , nÞ and d2ij j ≤ λi, ði=1, 2, . . . , nÞ, and assume that λi ≥ 0
are given, λi = λ1, λ2, . . . , λi½ �T and uðt, x, yÞ is the control function to be determined.
Let us define the error state between the drive (8) and response (9) systems as
follows

eðtÞ= xðtÞ−mðtÞyðtÞ ð10Þ

where mðtÞ is a continuously differentiable bounded function with mðtÞ ≠ 0 for all
t. The objective is to synchronize both drive and response systems to a scaling
function mðtÞ in presence of unknown parameters and external disturbances such
that the error system (10) can be asymptotically stable at the zero equilibrium, i.e.
eðtÞk k → 0 as t → ∞.

Remark 1 If the scaling function mðtÞ is a constant different from 1, the problem of
function projective synchronization becomes projective synchronization. In the
cases that mðtÞ=1 and mðtÞ= − 1, it turns out to be complete synchronization and
antisynchronization, respectively (Chen and Li. 2007).
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4.2 Main Results

Here, we suppose that the parameters in the drive system or response system are
unknown. From Eq. (10), we can obtain the error dynamical system as

e ̇ðtÞ= y ̇ðtÞ−mðtÞx ̇ðtÞ− ṁðtÞxðtÞ ð11Þ

By substituting systems (8) and (9), we obtain

e ̇ðtÞ=F2ðt, yÞ+G2ðt, yÞθ−mðtÞ½F1ðt, xÞ+G1ðt, xÞφ+D′ðtÞ�
− ṁðtÞxðtÞ+D′′ðtÞ+ uðt, x, yÞ ð12Þ

Theorem 1 For the given scaling function mðtÞ, the adaptive FPS between drive
system (8) and response system (9) can be achieved by the control function (13) and
sufficient parameters update laws (14) and (15) as below

uðt, x, yÞ=mðtÞ½F1ðt, xÞ+G1ðt, xÞφ ̂�−F2ðt, yÞ
−G2ðt, yÞθ ̂+ ṁðtÞx− ke−Hðt, eÞρ ð13Þ

φ ̂̇= −GT
1 ðt, xÞmðtÞe ð14Þ

θ ̂̇=GT
2 ðt, yÞe ð15Þ

where Hðt, eÞ= tanh½mðtÞðe1, e2, . . . , enÞ�. In Eq. (15), φ ̂ and θ ̂ are estimated
values of unknown parameters φ and θ of the drive and the response system,
respectively; tanhð.Þ denotes the tangent hyperbolic function; ρ= ½ρ1, ρ2, . . . , ρn�T
is the boundaries of the uncertainties and k= diagðk1, k2, . . . , knÞ is a gain matrix
for each controller. The desired convergence rate can be adjusted by the gain
matrix k.

Remark 2 In the control function (13), Hðt, eÞρ is a compensation term which is
introduced to eliminate the influence of the disturbance inputs.

It is interesting to note that the conventional control methods often use the sign
function (Hongyue et al. 2011; Fu 2012; Srivastava et al. 2013), but the disconti-
nuity of the sign function causes the chattering and undesirable oscillations. In order
to avoid these problems, in this chapter the discontinuous sign function is replaced
by the continuous tangent hyperbolic function.

Proof Let φ ̃=φ−φ ̂ and θ ̃= θ− θ ̂ be the parameter estimation errors. Choose the
storage Lyapunov function of system (11) as

V =
1
2

eTe+φ ̃Tφ ̃+ θ
T̃
θ ̃

� �
ð16Þ
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Thus, the time derivation of the Lyapunov function V along the trajectory of the
error dynamics system (11) with following notations (φ ̃̇= −φ ̂̇ and θ ̃̇= − θ ̂̇) is

V ̇= eTe ̇+ϕ
T̃
ϕ ̃̇+ θ

T̃
θ ̇

= eT G2ðt, yÞðθ− θ ̂Þ−mðtÞG1ðt, xÞðφ−φ ̂Þ−Hðt, eÞρ� �
+φ ̃T GT

1 ðt, xÞmðtÞe
� �

+ θT −GT
2 ðt, yÞe

� �
− eTke−mðtÞD′ðtÞeT

+D′′ðtÞeT = − eTke− eTHðt, eÞρ−mðtÞD′ðtÞeT +D′′ðtÞeT
ð17Þ

Let

n1 = eT ½D′′ðtÞ−mðtÞD′ðtÞ� and n2 = eTHðt, eÞρ where n1, n2 ∈R and n2 ≥ 0.
According to the definition and assumption of D′ðtÞ, D′′ðtÞ, φ and θ, it is guaranteed
that n1 ≤ n2, i.e. n1 − n2 ≤ 0, then V ̇ is written as

V ̇= − eTke+ n1 − n2 ≤ − eTke ≤ 0 ð18Þ

Provided that V ̇ is negative semi-definite, and since V is positive definite, it
follows that e ∈ L∞, φ, θ ∈ L∞. Thus e ̇ ∈ L∞, and according to Eq. (11), it can be
obtained that

Z t

0

ek k2dt=
Z t

0

eTe dt ≤ −
1
l

Z t

0

V ̇ dt =
1
l
Vð0Þ−VðtÞ½ � ≤ 1

l
Vð0Þ ð19Þ

Since Vð0Þ ≤ ∞ and e ∈ L2, according to Barbalat’s lemma, we have
eðtÞk k → 0 as t → ∞, i.e. the error dynamical system (11) will be stabilized at the

zero equilibrium asymptotically. Thus, according to the Lyapunov stability theo-
rem, the adaptive function projective synchronization between drive system (8) and
response system (9) in presence of unknown parameters and external disturbances
is achieved under the control function (13) and sufficient parameter update laws
(14) and (15). However, we cannot conclude that the unknown parameters can be
automatically estimated to their true values. The unknown parameters should be
almost constant in some bounded interval (i.e. φ ̂̇=0 and θ ̂̇=0). Another sufficient
condition to guarantee the parameter identification based on the Linear Indepen-
dence (LI) condition which is elaborated as follows. Using the Lasalle’s Invariant
Set Theorems (Zhiyong et al. 2012), the largest invariant set M can be obtained as

M = fe ∈ Rn,φ ∈ Rp, θ ∈ Rqj, e=0,G2ðt, yÞθ ̃−mðtÞG1ðt, xÞφ ̃− ke=0g ð20Þ

Thus one can get G2ðt, yÞθ ̃−mðtÞG1ðt, xÞφ ̃=0. To ensure that this equation has
the unique solution of φ ̃=0 and θ ̃=0(which implies that the unknown parameters

Dynamic Analysis, Electronic Circuit Realization … 193



are estimated to their true values as φ ̂=φ, θ ̂= θ), the following condition (Linear
Independence condition) should be satisfied. To achieve synchronization based on
parameter identification of systems (8) and (9) with unknown parameters, the
function elements in the function vector groups −GT

1 ðt, xÞmðtÞ and GT
2 ðt, yÞ should

be linearly independent on the synchronization manifold. Interested readers would
consult (Yu et al. 2007) for more discussions. This completes the proof.

4.3 Application to Mathieu-Duffing Oscillator

For application we consider that the parameters of the drive system are known and
those of the response system are unknown. With these considerations, the drive
system is given as

x ̇1 = x2 + d′1ðtÞ
x2̇ = − 2εx2 + αx1 − γx31 + βx1 sinðωtÞ+ d′2ðtÞ

(
ð21Þ

and the response system is given as

y1̇ = y2 + d′′1 ðtÞ+ u1ðt, x, yÞ
y2̇ = − 2ε ̂y2 + α ̂y1 − γ ̂y31 + β ̂y1 sinðωtÞ+ d′′2 ðtÞ+ u2ðt, x, yÞ

(
ð22Þ

Based on Theorem 1, the control functions and and parameter update laws are
determined by

u1ðt, x, yÞ=mðtÞx2 − y2 + ṁðtÞx1 − ke1 −Hðt, e1Þ ð23aÞ

u2ðt, x, yÞ=mðtÞ½− 2εx2 + αx1 − γx31 + βx1 sinωt�+2ε ̂y2 − α̂y1 + γ ̂y31
− β ̂y1 sinωt+ ṁðtÞx2 − ke2 −Hðt, e2Þ

ð23bÞ

and

ε ̂̇= − y2e2
α̇̂= y1e2

γ ̂̇= − y32e2

β ̂̇= y1 sinðωtÞe2

8>>>><
>>>>:

ð24Þ

In what follows, numerical simulations are given to verify the feasibility and the
robustness of the proposed methods. The standard fourth-order Runge-Kutta
method is applied to solve the differential equations describing the drive (21) and
the response (22) systems with time step size equal to 0.005. The parameters values
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of the drive system are selected as ε=0.125, α=1, γ =1, ω=2 and β=5.8 so that
it exhibits chaotic behaviors. The initial states are chosen as xð0Þ= ½0.1, 0.2� and
yð0Þ= ½0.3, 0.4�, respectively for the drive and response systems. The initial values
of unknown parameters are set to be ε ̂ð0Þ=0.006, α̂ð0Þ=0.015, γ ̂ð0Þ=0.07 and
βð0Þ=0.08. The control gains are set as ki =20(i=1, 2). The scaling function is
selected as mðtÞ=0.6+ 0.1 sinð0.15πtÞ. In order to verify the robustness of the
method, we perform the numerical simulations in three cases (i) without external
disturbances, (ii) with continuous time varying (sinusoidal type) and (iii) with white
Gaussian noise. For the first case, the time response of the error system (11) and the
synchronization quality which is defined by e=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e22

p
are shown in Fig. 6.

In Fig. 7, we show the time evolution of the parameter estimations in the
response system.

Obviously, the synchronization errors converge to zero with exponentially
asymptotical speed and two systems with different initial states achieve FPS very
quickly. The unknown parameters of the response system are simultaneously
successfully estimated to their true values.

For the second case, the external disturbances subjected to the drive and
response systems are selected as d′1 = 0.1 cosð0.2πtÞ, d′2 = 0.2 sinð0.3πtÞ and
d′′1 = 0.1 sinð0.2πtÞ, d′′2 = 0.2 cosð0.3πtÞ. The boundaries of the uncertainties are
chosen randomly as ρ1 = 0.8 and ρ2 = 0.5. The time response of the error system
(11) and the synchronization quality are depicted in Fig. 8.

(a)

(b)

Fig. 6 Time dependence of the errors dynamics ei ði=1, 2Þ (a) and synchronization quality
(b) between two coupled identical Mathieu-Duffing oscillators with FPS scheme without external
disturbances
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Fig. 7 Time evolution of the parameter estimations in the response system with FPS scheme
without external disturbances

(a)

(b)

Fig. 8 Time dependence of the errors dynamics ei ði=1, 2Þ (a) and synchronization quality
(b) between two coupled identical Mathieu-Duffing oscillators with FPS scheme with continuous
time varying (sinusoidal type) external disturbances
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The time evolution of the parameter estimations in the response system subjected
to a continuous time varying (sinusoidal type) external disturbances are depicted in
Fig. 9.

As can be seen from those figures, the synchronization errors and synchro-
nization quality arrive at zero in finite time and the unknown parameters in the

Fig. 9 Time evolution of the parameter estimations in the response system with FPS scheme with
continuous time varying (sinusoidal type) external disturbances

(a)

(b)

Fig. 10 Time evolution of a white Gaussian noise (a) and its histogram in the range [−4, 4] (b)
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response system have been estimated to their true values in spite of the presence of
the external disturbances. The effect of the external disturbances is clearly visible on
the errors dynamics as well as on the estimation of the unknown parameters.

In the last case, external disturbances subjected to drive and response systems
are the white Gaussian noises chosen as d′1 = d′′2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið− 2 ln λÞp
sinð2πλÞ and

d′2 = d′′1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið− 2 ln λÞp

cosð2πλÞ where λ is the random function. The control gains
are set as ki =10 ði=1, 2Þ. In Fig. 10, we show the white Gaussian noise and its
histogram in the range [−4, 4].

The time response of the error system (11) and the synchronization quality are
displayed in Fig. 11.

The time evolution of the parameter estimations in the response system subjected
to a white Gaussian noise are depicted in Fig. 12.

One can see from those figures that the synchronization errors and synchro-
nization quality converge to zero and the unknown parameters in the response
system have been estimated approximatively to their true values. The effect of the
external disturbances is more visible on the errors dynamics as well as on the
estimation of the unknown parameters. All these results demonstrate that the FPS in
the coupled identical Mathieu-Duffing oscillators via control functions (23) and

(a)

(b)

Fig. 11 Time dependence of the errors dynamics ei ði=1, 2Þ (a) and synchronization quality
(b) between two coupled identical Mathieu-Duffing oscillators with FPS scheme with white
Gaussian external noise
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parameter update laws (24) is obtained with estimation of the unknown parameters
of the response system and in presence of external uncertainties at the desired
scaling function mðtÞ.

5 Concluding Remarks

The dynamics of a Mathieu-Duffing oscillator has been investigated numerically
and experimentally in this chapter. The dynamical properties of the oscillator have
been examined using classical nonlinear analysis techniques such as bifurcation
diagram, plot of largest Lyapunov exponent and frequency spectrum. It was found
from the bifurcation structure that the system experiences very rich and complex
behaviors including periodicity, quasi-periodicity and chaos. An experimental study
has been carried out and the laboratory experimental measurements were in a good
qualitative agreement with numerical results. Furthermore, using the Lyapunov
stability theory, we have designed adaptive controllers and sufficient parameter
update laws able to achieve the function projective synchronization between two
identical drive-response structures of Mathieu-duffing oscillators with unknown
parameters. We have introduced the external disturbances in the drive and response
systems in order to verify the robustness of our proposed strategy. It has been noted
that the unpredictable properties of the scaling function mðtÞ can additionally
enhance the security of the communication. Theoretical results and numerical
simulations were finally included to visualize the effectiveness and feasibility of the
developed methods. We stress also that the approach followed in this chapter may

Fig. 12 Time evolution of the parameter estimations in the response system with FPS scheme
with white Gaussian external noise
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be exploited rigorously to the study of any other nonlinear dynamical system driven
by an external force.

Acknowledgements V. Kamdoum Tamba wishes to thank Dr. Sifeu Takougang Kingni
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An Autonomous Helmholtz Like-Jerk
Oscillator: Analysis, Electronic Circuit
Realization and Synchronization Issues

Victor Kamdoum Tamba, Gaetan Fautso Kuiate,
Sifeu Takougang Kingni and Pierre Kisito Talla

Abstract This chapter introduces an autonomous self-exited three-dimensional
Helmholtz like oscillator which is built by converting the well know autonomous
Helmholtz two-dimensional oscillator to a jerk oscillator. Basic properties of the
proposed Helmholtz like-jerk oscillator such as dissipativity, equilibrium points and
stability are examined. The dynamics of the proposed jerk oscillator is investigated
by using bifurcation diagrams, Lyapunov exponent plots, phase portraits, frequency
spectra and cross-sections of the basin of attraction. It is found that the proposed
jerk oscillator exhibits some interesting phenomena including Hopf bifurcation,
period-doubling bifurcation, reverse period-doubling bifurcation and hysteretic
behaviors (responsible of the phenomenon of coexistence of multiple attractors).
Moreover, the physical existence of the chaotic behavior and the coexistence of
multiple attractors found in the proposed autonomous Helmholtz like-jerk oscillator
are verified by some laboratory experimental measurements. A good qualitative
agreement is shown between the numerical simulations and the experimental
results. In addition, the synchronization of two identical coupled Helmholtz
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like-jerk oscillators is carried out using an extended backstepping control method.
Based on the considered approach, generalized weighted controllers are designed to
achieve synchronization in chaotic Helmholtz like-jerk oscillators. Numerical
simulations are performed to verify the feasibility of the synchronization method.
The approach followed in this chapter shows that by combining both numerical and
experimental techniques, one can gain deep insight about the dynamics of chaotic
systems exhibiting hysteretic behavior.

Keywords Helmholtz like-jerk oscillator ⋅ Bifurcation analysis
Coexistence of attractors ⋅ Electronic circuit realization ⋅ Synchronization

1 Introduction

Chaos is an interesting phenomenon which has been extensively studied in the last
three decades. Chaotic systems are characterized by their extreme sensitivity both to
initial conditions as well as to parameters changes. The great interest allowed to
chaotic systems is motivated by their important applications in various fields
including for instance physics, chemistry, biology, ecology, engineering and eco-
nomics just to name a few (Azar et al. 2015; Hilborn 2001; Lakshmanan and
Rajasekhar 2003; Strogatz 1994). In the recent past, there is increasing interest in
the study of robust chaotic systems with as simple as possible mathematical model
and simple electronic circuit. Some typical examples of this class of chaotic systems
have been investigated in Sprott (2000a, b), Vaidyanathan et al. (2016). In these
references, the authors studied several new systems with many nonlinearities that
show chaotic behavior with easy electronic circuit realization. These systems are
modelled by the time evolution of a single scalar variable x given by ⃛x = Fðx, x ̇, x ̈Þ
and namely jerk equation. In this equation, x, x ̇, x ̈ and ⃛x represent position, velocity,
acceleration and jerk (the time derivative of the acceleration), respectively.
According to the simplicity and elegance (in the mathematical model and electronic
circuit) of this class of chaotic systems, development of new jerk systems is of great
importance. In this point of view, in Benitez et al. (2006), the authors introduced
and investigated theoretically and experimentally a new jerk system obtained by
converting the well know Van der Pol architecture into a third order differential
equation. The proposed mathematical model and electronic circuit are relatively
simple. Also, using the same technique, an autonomous chaotic Duffing oscillator
based on a jerk architecture is reported in Louodop et al. (2014). The finite-time
synchronization of two identical proposed chaotic jerk systems via a simple linear
feedback control is examined. The authors used theoretical proofs, numerical and
PSpice simulations, as well as practical implementation to demonstrate the feasi-
bility of their proposed scheme. Another interesting works on jerk systems are
reported in Kengne et al. (2016, 2017), where the authors introduced and analyzed a
new jerk oscillators with hyperbolic sine and smooth piecewise quadratic nonlin-
earities. They proved through theoretical analysis, numerical simulations and
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experimental measurements that both systems experience very rich and complex
dynamical behaviors such as period-doubling, symmetry recovering crises events,
antimonotonicity (i.e. the concurrent creation and annihilation of periodic orbits)
and coexistence of multiple attractors.

Motivated by the above mentioned works reported in Sprott (2000a, b), Benitez
et al. (2006), Louodop et al. (2014), Kengne et al. (2016, 2017) and many others, in
this chapter, we consider an autonomous chaotic jerk oscillator which is obtained
by converting the second-order well know Helmholtz oscillator (Del Rio et al.
1992) into a third order differential equations using the jerk architecture. The
Helmholtz oscillator is a second order differential equation with a quadratic non-
linearity (Del Rio et al. 1992; Thompson 1989; Gottwald et al. 1995). This oscil-
lator known to naval-architects as the Helmholtz-Thompson equation, provides a
simple archetype to describe ship stability to waves in windy situations and its
potential and eventual capsize (Thompson et al. 1990). It plays an important role in
a large number of developments. In Del Rio et al. (1992) the author provides an
overview of the dynamic response of the system which has been studied experi-
mentally by Gottwald et al. (1995). The inhibition of chaotic escape is considered in
the context of Balibrea et al. (1998) and a more general approach to the problem is
discussed in Lenci and Rega (2001). It is interesting to note that the escape of a
dynamical system from a potential well is a common topic in physics and engi-
neering and under periodic forcing it is known that the escape will often be trig-
gered by chaotic motions. The Helmholtz equation finds direct application in the
study of bubble dynamics (Kang and Leal 1990) and is much discussed in the naval
architecture literature (Thompson 1997). The engineering integrity diagram (Soli-
man and Thompson 1989) and the use of Melnikov theory to predict parameter
values for which erosion of basins of attraction takes place were developed in this
context. These concepts continue to find fruitful applications in quantification of
capsize resistance, see Spyrou et al. (2002).

Chaos synchronization is one the important issues in nonlinear dynamical sci-
ence because of its various applications in physics, chemical reactors, control
theory, biological networks, artificial neural networks, secure communication, etc.
(Blekhman 1988; Pikovsky et al. 2001; Nagaev 2003; Pecora and Carrol 1990;
Junde and Parlitz 2000). Various types of synchronization including complete
synchronization, generalized synchronization, phase synchronization, lag syn-
chronization, anticipated synchronization and measure synchronization (Vincent
et al. 2005; Rullkov et al. 1995; Rosemblum et al. 1997; Voss 2000; Hampton and
Zanette 1999) have been investigated in the literature. To achieve these different
type of synchronization in dynamical systems, many several methods have been
identified and studied. Among these include adaptive control, active control, non-
linear control, sliding mode control and backstepping design. The backstepping
technique has been recognized as a powerful design technique for stabilization,
tracking and synchronization of chaotic systems. It has been reported in Krstic et al.
(1995) that backstepping can guarantee global stability, tracking and transient
performance of a broad class of strict-feedback nonlinear systems. Due to the many
advantages of backstepping design, in this chapter, we develop an extended
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backstepping technique to achieve the synchronization of two identical coupled
autonomous Helmholtz like-jerk oscillators.

The goal of this chapter is fourfold: (i) to enrich the literature by proposing a
relatively simple autonomous chaotic jerk system obtained by converting the
second-order well know Helmholtz oscillator into a third order differential equa-
tions using the jerk architecture; (ii) to point out the stability and bifurcation
analyses in order to reveal different dynamics of the system with respect to its
parameter as well as highlighting some of its singularities; (iii) to carry out an
experimental study of the system to validate the theoretical analyses and (iv) to
investigate the synchronization of a coupled autonomous Helmholtz jerk oscillators
via extended backstepping method in order to promote chaos-based synchronization
designs of this type of oscillators. Such an approach is particularly useful as it
provides important tools for the design of such types of oscillators for relevant
engineering applications.

The layout of chapter is as follows. Section 2 describes the system under study
and highlights some of its basic properties. The stability of the equilibrium points is
also examined and conditions for the occurrence of the Hopf bifurcation are
derived. Section 3 deals with numerical study. The bifurcation structures of the
system are investigated in order to depict some interesting transitions such as
period-doubling and reverse period-doubling scenarios to chaos. Some windows
showing the hysteretic dynamics (responsible of the occurrence of the coexistence
of multiple attractors) are depicted. The multistability is illustrated by plotting the
cross-sections of the basins of attraction of various coexisting attractors. The
experimental study is carried out in Sect. 4. The laboratory experimental mea-
surements show a qualitative agreement with numerical results. Section 5 discusses
the design of the extended backstepping controllers for synchronization of chaos in
the jerk systems. Numerical simulations are given for the illustration and verifi-
cation of the effectiveness and feasibility of the synchronization technique. Finally
in Sect. 6, we summarize our results and draw the conclusions of this chapter.

2 Description and Analytical Analysis of the Proposed
Autonomous Helmholtz Like-Jerk Oscillator

2.1 System Description and Basic Properties

In this chapter we consider an autonomous Helmholtz like-jerk oscillator derived
from the standard nonautonomous Helmholtz oscillator (Del Rio et al. 1992)
described by a two-dimensional differential equation as follows

d2x
dt2

+ δ
dx
dt

+ x + x2 = f sinðωtÞ ð1Þ
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where x denotes the vibratory displacement, δ > 0 is a dimensionless damping
coefficient, f and ω are respectively, the amplitude and the pulsation of the har-
monic external force. It is demonstrated in Thompson (1989), Gottwald et al.
(1995) that Eq. (1) can oscillate chaotically for some specific parameters setting.
Motived by the fact that jerk systems are simple in the mathematical representation
and easy to realize its corresponding electronic circuit, we propose in this section a
three dimensional autonomous Helmholtz oscillator based on jerk architecture. The
jerk systems are the third-order equation defined as in Sect. 1. The Helmholtz
oscillator defined in Eq. (1) with f =0 can be converted to a jerk oscillator, as
follows

d3x
dt3

= −
d2x
dt2

+ δ
dx
dt

+ x + x2
� �

ð2Þ

where the parameter δ has the same signification as in Eq. (1). Obviously, Eq. (2)
can be converted to the following set of three coupled first-order nonlinear differ-
ential equations:

dx
dt = y
dy
dt = γz
dz
dt = − z − δy − x − x2

8<
: ð3Þ

where dx ̸dt = y, d2x ̸dt2 = z and γ a new parameter introduced in order to achieve
chaotic behavior in Eq. (2). The simplicity of the model is remarkable. It can be
implemented experimentally using an appropriate analog electronic circuit as well
as integrated circuit technology.

The divergence of system (3) can be obtained as follows

∇V =
∂x ̇
∂x

+
∂y ̇
∂y

+
∂z ̇
∂z

= − 1 ð4Þ

Obviously, ∇V is less than zero and therefore, system (3) is dissipative. This
means that the system can support attractors.

2.2 Analytical Analysis of the Proposed Autonomous
Helmholtz Jerk Oscillator

It is well known that the equilibrium points play an important role on the dynamics
of nonlinear system (Hilborn 1994). By setting the right hand side of system (3) to
zero, it is found that there are two equilibrium points E1ð0, 0, 0Þ and E1 ð− 1, 0, 0Þ.
The characteristic equation obtained at any equilibrium point E* ðx*, y*, z*Þ is
defined as
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λ3 + λ2 + γδλ + γð2x* + 1Þ = 0 ð5Þ

The characteristic equation for the equilibrium point E1ð0, 0, 0Þ is

λ3 + λ2 + γδλ + γ = 0 ð6Þ

Based on Routh-Hurwitz conditions, Eq. 6 has all roots with negative real parts
if and only if γðδ − 1Þ > 0. The equilibrium point E1ð0, 0, 0Þ is stable if δ>1 and
unstable if δ<1 provided that the parameters γ and δ are strictly positive. The two
situations (stable for δ>1 and unstable for δ<1Þ suggest the existence of the Hopf
bifurcation from the equilibrium point E1ð0, 0, 0Þ when δ is selected as the control
parameter.

Theorem The system under scrutiny undergoes a Hopf bifurcation at the equi-
librium point E1ð0, 0, 0Þ when δ passes through the critical value δH = 1.

Proof Let a root of the characteristic Eq. (6) as λ = iω0 ω0 > 0ð Þ. By substituting
this root into Eq. (6) and after some manipulations, we have

ω = ω0 =
ffiffiffi
γ

p ð7aÞ

δH = 1 ð7bÞ

The differentiation of both sides of Eq. (6) with respect to bifurcation parameter
δ leads to the following expression

dλ
dδ

=
− γλ

3λ2 + 2λ + γδ
ð8Þ

By substituting λ and δ by their corresponding expressions defined above into
Eq. (8), the following relation is obtained

Re
dλ
dδ

� ����� λ= iω0

δ= δH

= −
γ

2ðγ +1Þ ≠ 0 ð9Þ

Provided that the characteristic equation of the system at the equilibrium point
E1ð0, 0, 0Þ has two purely imaginary eigenvalues and the real part satisfy Eq. (9),
thus all the conditions for occurrence of Hopf bifurcation are satisfied. As conse-
quence, system (3) undergoes Hopf bifurcation at critical value of control parameter
δH =1 and periodic solutions will exist in a neighbourhood of this critical point.
Thus the proof is completed.

The characteristic equation for the equilibrium point E2ð− 1, 0, 0Þ is

λ3 + λ2 + γδλ− γ =0 ð10Þ
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It is obvious that the equilibrium point E2ð− 1, 0, 0Þ is always unstable provided
that the corresponding characteristic Eq. (10) has coefficients with different signs
and the parameters γ and δ are positive. Thus, the system under consideration is a
self-exited system since its basin of attraction is associated with an unstable
equilibrium.

3 Complex Dynamics in the Autonomous Helmholtz
Like-Jerk Oscillator

In order to investigate various bifurcation structures in the proposed jerk oscillator,
system (3) is integrated numerically using the standard fourth-order Runge-Kutta
integration algorithm (Press et al. 1992). Throughout this chapter, the time grid is
always Δt = 0.001 and the calculations are pointed out using variables and con-
stants parameters in extended mode. The system is integrated for a sufficiently long
time and the transient is discarded. The transition to chaos is characterized by the
bifurcation diagram and graph of largest Lyapunov exponent noted λmaxð Þ. The
bifurcation diagram is computed by plotting the local maxima or local minima of
the state variable with respect to the control parameter that is changed in tiny steps
and the final state at each iteration of the control parameter is used as the initial
conditions for the next iteration, while the largest Lyapunov exponent is obtained
numerically using the algorithm of Wolf et al. (1985). It measures the exponential
rates of divergence or convergence of nearby trajectories in phase space, which can
also be used to measure the sensitive dependence of the initial conditions. In
particular, the sign of the largest Lyapunov exponent is used to determine the rate of
almost all small perturbations to the system’s state, and consequently, the nature of
the underlined dynamical attractor. For λmax < 0, all perturbations vanish and tra-
jectories starting sufficiently close to each other converge to the same stable fixed
point in state space; for λmax = 0, initially close orbits remains close but distinct,
corresponding to oscillatory dynamics of a limit-cycle or torus; and finally for
λmax > 0, small perturbations grow exponentially, and the system evolves chaoti-
cally within the folded space of a strange attractor. In addition, the complexity of
system (3) is examined by using the Lyapunov dimension of the attractors which is
computed with the help of the definition proposed by Kaplan and Yorke expressed
(Frederickson et al. 1983) as

DL = k +
1

λk+1j j ∑
k

j=1
λj ð11Þ

where k is the largest integer satisfying the following conditions ∑k
j=1 λj ≥ 0 and

∑k+1
j=1 λj < 0. The Kaplan-Yorke dimension indicates the complexity of the

attractor. In other words, it is a measure of the degree of disorder of the points on
the attractor. The dynamics of system (3) is also investigated by using another
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numerical tools such as, the time series of state variables, the frequency spectra as
well as the cross sections of the basin of attraction. The latter tool is computed by
taking a grid 500 × 500 initial states, testing each initial state on the grid to
determine which attractor is goes to, and then plotting those which lead to the
chaotic attractors λmax > 0ð Þ and periodic solutions λmax ≤ 0ð Þ. The same strategy
is used to compute the two-parameter phase diagram in which we take a grid
500 × 500 points of parameter γ and δ with fixed initial states.

3.1 Transition to Chaos

In order to select the values of the system parameters accordingly, we plot in Fig. 1,
the two-parameter phase diagram showing the regions of periodic, chaotic and
unbounded behaviors in the γ, δð Þ plane with 4 ≤ γ ≤ 6 and 0.5 ≤ δ ≤ 0.6.

In Fig. 1, one can see that different regions of chaotic, periodic and unbounded
solutions intertwined intricately. This diagram is of great importance for a practical
implementation of system (3). Indeed, it helps to choose the parameters of the
system according to the desired bahavior.

We select δ as the control parameter in order to examine its sensitivity on the
dynamics of the system. To this end, we fix γ = 4 and vary δ in the range
0.53 ≤ δ ≤ 1.02. The bifurcation diagram showing the local maxima (magenta
dots) and local minima (blue dots) of coordinate x associated to the graph of largest
Lyapunov exponent versus control parameter δ are provided in Fig. 2.

It found from Fig. 2 that the system under study can experience various and rich
dynamical behaviors such as fixed point motion, Hopf bifurcation, period-doubling
bifurcation, periodic and chaotic motions when the control parameter is monitored.
For values of δ above the critical value δc = 1, the system exhibits a fixed point
motion (i.e. no oscillations) and the associated largest Lyapunov exponent is
negative. By decreasing the control parameter δ past this critical value, the system

Fig. 1 Two-parameter phase
diagram showing different
dynamical behaviors of
system (3) in the γ, δð Þ plane.
The chaotic regions are shown
in red, the periodic regions are
shown in cyan and
unbounded regions are in
green
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displays a stable period-1 limit cycle born from the Hopf bifurcation. Further
decreasing δ, this period-1 limit cycle metamorphoses to chaos via a series of
period-doubling bifurcations. It can be also seen that the bifurcation diagram well
coincides with the graph of largest Lyapunov exponent.

To confirm the transition to chaos observed in Fig. 2, sample phase portraits in
plane x, yð Þ accompanied with the corresponding frequency spectra along the
control parameter δ for γ = 4 are shown in Fig. 3.

One can observe that the scenario to chaos predicted by the bifurcation diagram
of Fig. 2 is confirmed by the phase portraits of Fig. 3.

Using γ = 4 and δ = 0.55, the corresponding Lyapunov exponents are
λ1 = 0.070, λ2 = − 0.001 and λ3 = − 1.069. From this Lyapunov spectrum, we
find that ∑k+1

j=1 λj = − 1 < 0, which confirms that system (3) is dissipative. The
calculated fractional dimension with the same system parameters setting is

DL = 2 +
λ1 + λ2
λ3j j = 2.064 ð12Þ

Fig. 2 Bifurcation diagram
a depicting the local maxima
(magenta dots) and local
minima (blue dots) of the
coordinate x and the
corresponding graph of
largest Lyapunov exponent
(b) versus control parameter δ
computed with γ =4. Chaotic
and regular behaviors are
indicated respectively, by
positive and zero largest
Lyapunov exponents while
fixed points are marked by
negative largest Lyapunov
exponent
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Fig. 3 Phase portraits a(i)–d(i) and corresponding frequency spectra a(ii)–d(ii) depicting routes to
chaos in the system with respect to the control parameter δ for γ = 4. a Period-1 for δ = 0.8,
b period-2 for δ = 0.6, c period-4 for δ=0.585 and d chaos for δ=0.56
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Equation (12) clearly indicates that the dissipative system under investigation
displays chaotic behavior.

Now, we select also γ as the control parameter in order to investigate its effect on
the dynamics of the system. The bifurcation diagram depicting the local maxima of
the coordinate x and corresponding graph of largest Lyapunov exponent with γ
varying in the range 3 ≤ γ ≤ 14 are shown in Fig. 4 for δ = 0.55.

The bifurcation diagram (Fig. 4a) and the corresponding graph of largest Lya-
punov exponent (Fig. 4b) indicate clearly that there are some windows of periodic
and chaotic behaviors. In Fig. 4a, one can observe that two set of data corre-
sponding, respectively, for increasing (blue) and decreasing (magenta) values of
control parameter γ are superimposed. This method is a simple way to localize the
window in which the system experiences hysteretic phenomenon which is at the
origin of multistability (i.e. coexistence of attractors). This striking and exciting
phenomenon is examined in the next subsection.

Fig. 4 Bifurcation diagram
a depicting the local maxima
of the coordinate x with
respect to the control
parameter γ and the
corresponding graph of
largest Lyapunov exponent
b computed in the range
3≤ γ ≤ 14 for δ = 0.55

An Autonomous Helmholtz Like-Jerk Oscillator … 213



3.2 Coexistence of Attractors in Autonomous Helmholtz
Like-Jerk Oscillator

Multistability (i.e. coexistence of multiple attractors) is one of the most striking and
exciting phenomenon commonly encountered in dynamical systems. This phe-
nomenon has been reported in almost all natural sciences, including electronics
(Maurer and Libchaber 1980; Kamdoum et al. 2016; Kengne et al. 2017; Kengne
et al. 2018), optics (Brun et al. 1985), mechanics (Thompson and Stewart 1986),
and biology (Foss et al. 1996). During the numerical investigations of the system
under consideration, the effects of the initial states on the dynamics of the model
were observed. In fact, when we made an enlargement of the bifurcation diagram
(Fig. 4a) and the graph of largest Lyapunov exponent (Fig. 4b) in the range
4 ≤ γ ≤ 5.8, the region in which the system experiences hysteretic dynamics
(coexisting bifurcation) is clearly visible as shown in Fig. 5.

Fig. 5 Enlargement of the
bifurcation diagram (a) and
corresponding graph of
largest Lyapunov exponent
(b) of Fig. 4 in the range
4 ≤ γ ≤ 5.8 in order to make
more visible the region in
which the system exhibits
coexisting attractors
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For the values of γ selected in this window, the dynamics of the system depends
on the initial states. For instance, the coexistence of chaotic attractor with period-3
limit cycle obtained respectively, for xð0Þ, yð0Þ, zð0Þ = ð0.1, 0.1, 0.1Þ and
xð0Þ, yð0Þ, zð0Þ = ð0.2, 0.3, 0.1Þ is shown in Fig. 6 for δ = 0.55 and γ = 5.2.

In order to further characterize the phenomenon of coexisting attractors observed
in the system, we provide in Fig. 7 the cross-sections of the basin of attraction,
respectively for zð0Þ = 0, yð0Þ = 0 and xð0Þ = 0 for δ = 0.55 and γ = 5.2.

In Fig. 7, the complexity of the basin boundaries is clearly highlighted. It can
also be noted that the regions of initial conditions leading to chaotic attractors (red
dots) are more abundant than those leading to period-3 limit cycle (cyan dots). This
implies that the chaotic behavior in the coexisting windows dominates the period-3
limit cycle. It is known that the occurrence of multiple attractors represents an
additional source of randomness (Luo and Small 2007) and system which experi-
ence this phenomenon can be used for many applications such as chaos based
communication, image encryption and generation of random numbers. However, in
many practical situations, this singular phenomenon is not desirable and requires
control. Interested readers can see the interesting work of Pisarshik and collabo-
rators (2014) about the review on control of multistability. This direction is an
important challenge in the continuation of this work.

4 Electronic Circuit Realization of Proposed Autonomous
Helmholtz Like-Jerk Oscillator

The physical realization of theoretical chaotic models is of great importance in
various engineering applications such as robotics, chaos based communications,
image encryption and random number generation (Banerjee 2010; Volos et al.
2012, 2013a, b). Moreover, the electronic circuit realization of theoretical chaotic
models is an effective approach to investigate the dynamics of such systems via for

Fig. 6 Coexistence of two different attractors obtained with δ = 0.55 and γ = 5.2.
a Chaotic attractor and b period-3 limit cycle. The initial conditions are respectively,
xð0Þ, yð0Þ, zð0Þ = ð0.1, 0.1, 0.1Þ and xð0Þ, yð0Þ, zð0Þ = ð0.2, 0.3, 0.1Þ
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Fig. 7 (Color online)
Cross-sections of the basin of
attraction respectively, for
zð0Þ = 0, yð0Þ = 0 and
xð0Þ = 0 for δ = 0.55 and
γ =5.2 showing the regions of
initial conditions leading to
chaotic attractors (red) and
period-3 limit cycle (cyan).
The green dots regions
correspond to the unbounded
solutions
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instance the experimental bifurcation diagram obtained by varying the values of
variable resistors associated to the control bifurcation parameters (Ma et al. 2014;
Buscarino et al. 2009). The dynamics of the system under scrutiny has been
examined in preceding paragraphs using theoretical and numerical methods. It is
predicted that the system can exhibit very rich and complex behaviors. In this
section, to validate the numerical results, we design and realize an electronic circuit
capable to emulate the dynamics of system (3). The schematic diagram of the
proposed electronic circuit is depicted in Fig. 8.

The electronic circuit of Fig. 8 comprises the analog multipliers used to
implement the nonlinear term of the model. They operate over a dynamic range of
±1V with typical tolerance less than 1%. The output signal (W) is connected to
those at inputs +X1ð Þ, −X2ð Þ, + Y1ð Þ, ð− Y2Þ, and + Zð Þ by the following
expression W = ðX1 −X2ÞðY1 − Y2Þ ̸10 + Z. The operational amplifiers accompa-
nied with resistors and capacitors which are exploited to implement the basic
operations such as addition, subtraction and integration. The bias is provided by a
15 V DC symmetry source. By applying the Kirchhoff’s laws into the circuit of
Fig. 8, we obtain its mathematical model given by three coupled first-order non-
linear differential equations

dVx
dt = Vy

RC
dVy

dt = Vz
R1C

dVz
dt = − Vz

RC − Vy

R2C
− Vx

RC − V2
x

kmRC

8><
>: ð13Þ

Fig. 8 Electronic circuit realization of the autonomous Helmholtz like-jerk oscillator. The value
of electronic components are fixed as C = 10 nF, R = 10 kΩ, R1 and R2 variable. The analog
multipliers devices are AD633J N-type while operational amplifiers are TL084C N-type ones
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where Vx, Vy and Vz are the output voltages of the operational amplifiers. Systems
(13) and (3) are equivalent according to the following change of state variables and
parameters: t= τRC; x=Vx ̸1V ; y=Vy ̸1V ; z=Vz ̸1V ; γ =R ̸R1; δ=R ̸R2. The
electronic circuit components are selected as C=10 nF, R=10 kΩ, R1 = 2.5 kΩ
and R2 variable. When monitoring the control resistor R2, it is found that the
electronic circuit under study displays a rich and striking behaviors including
period-doubling route to chaos and coexistence of attractors. A photograph of the
experimental hardware on breadboard in operation is shown in Fig. 9. The analog
oscilloscope presents the single-band chaotic attractor.

The comparison between numerical (left) and experimental (right) phase por-
traits is provided in Fig. 10 and a very good similarity can be noted.

Fig. 9 Photograph of the experimental hardware on breadboard in operation. The analog
oscilloscope displays the single-band chaotic attractor captured from the experimental circuit
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In Fig. 10, it clearly appears that the dynamics of the proposed autonomous
Helmholtz like-jerk system is well reproduced by the electronic circuit. Moreover,
one can note that the experimental circuit displays the same bifurcation scenarios as
those obtained numerically.

The phenomenon of coexisting attractors is also validated experimentally for
R1 = 1.92 kΩ (i.e. γ =5.2Þ and R2 = 18.18 kΩ (i.e. δ=0.55Þ. In Fig. 11, we provide
the coexistence between period-3 limit cycle with single band chaotic attractor for
different initial states obtained by switching on and off the power supply randomly.

From Fig. 11, one can note the good similarity of experimental portraits of
coexisting attractors with those obtained numerically. This serves to proof that the
phenomenon of coexisting attractors exists in the proposed autonomous Helmholtz

◀Fig. 10 Experimental phase portraits (right) obtained from the circuit using a dual trace
oscilloscope in the XY mode; the corresponding numerical phase portraits are shown in the left
obtained by a direct integration of system (3). The scales are X = 1V ̸div and X = 2V ̸div for all
pictures

Fig. 11 Numerical (left) and experimental (right) phase portraits of coexisting attractors obtained
for R1 = 1.92 kΩ (i.e. γ = 5.2Þ and R2 = 18.18 kΩ (i.e. δ = 0.55Þ. Both period-3 limit cycle and
chaotic attractor appear randomly in experiment by switching on and off the power supply. The
scales are X = 1V ̸div and X = 2V ̸div for all pictures
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like-jerk oscillator. It should be stressed that system (3) can be also implemented
using many other ways such as integrated circuit technology (Trejo Guerra et al.
2012), Field Programmable Gate Array (FPGA) (Koyuncu et al. 2014) and Field
Programmable Analog Array (FPAA) technologies (Fatma and Sprott 2016).

5 Synchronization of Two Identical Coupled Autonomous
Helmholtz Like-Jerk Oscillators via Extended
Backstepping Method

In this section, we synchronize two identical coupled autonomous Helmholtz
like-jerk oscillators via extended backstepping method. Based on the proposed
approach, generalized weighted controllers are designed to achieve synchronization
in chaotic systems. The effectiveness and feasibility of the proposed weighted
controllers are verified numerically.

5.1 Design of the Extended Backstepping Controllers
for Synchronization in Chaotic Autonomous Helmholtz
Like-Jerk Oscillators

Brief recall that the classical backstepping technique has been widely exploited to
achieve synchronization in chaotic and hyperchaotic systems. It has the advantage
to achieve global stability tracking transient performance for a large class of
strict-feedback nonlinear systems (Njah 2010) and the references therein. More-
over, the scheme requires less control effort in comparison to the differential geo-
metric approach (Mascolo 1997). However, the control function designed via this
method has been demonstrated to be difficult for practical implementation because
of its complexity and high signal strength (Olusola et al. 2011). To overcome these
limitations of classical backstepping technique, the improved version of this method
namely extended backstepping technique is proposed in Onma et al. (2014). The
proposed approach in latter reference is suitable for practical implementation.

To derive the controllers for synchronization in chaotic autonomous Helmholtz
like jerk oscillators, we rewrite system (3) in the form

x1 = x2
x2 = x3
x3 = − x3 − x2 − x1 − x21

8<
: ð14Þ

Let system (14) be the drive system and the following be the response
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y1 = y2 + u1ðtÞ
y2 = y3 + u2ðtÞ
y3 = − y3 − y2 − y1 − y21 + u3ðtÞ

8<
: ð15Þ

where uiðtÞi=1, 2, 3 are the control functions.
Let the error state between (14) and (15) defined as

ei = yi − xi ð16Þ

From (16), we can obtain the error dynamical system as

e1̇ = e2 + u1ðtÞ
e2̇ = e3 + u2ðtÞ
e3̇ = − e3 − δe2 − e1ð1+ e1 + 2x1Þ+ u3ðtÞ

8<
: ð17Þ

The challenge is to determine the control function uiðtÞ that can stabilize the
error states in (17) at the origin. To this end, we design the controllers in three steps.
In the first step, we stabilize the first equation in (17) by considering e2 as con-
troller. Choosing the storage Lyapunov function as V1ðe1Þ= e21 ̸2, the time
derivative of V1 along the trajectory of error dynamical subsystem e ̇1 is

V 1̇ = e1e1̇ = e1ðe2 + u1Þ ð18Þ

We suppose that the controller e2 has the following form e2 = α1ðe1Þ, then (18)
can be written as V ̇1 = e1ðα1e1 + u1Þ. The time derivative of Lyapunov function V ̇1
is negative definite if the estimate function α1ðe1Þ= − e1 and u1 = 0. Thus, the
subsystem e1 is stabilized. In the second step, we choose the error between e2 and
α1ðe1Þ as

w2 = e2 − α1e1 = e2 + e1 ð19Þ

The time derivative of (19) is

ẇ2 = e3 +w2 − e1 + u2 ð20Þ

We now stabilize the e1, w2ð Þ subsystem defined by (20) as follows. Let a
Lyapunov function V2ðe1, w2Þ=V1ðe1Þ+w2

2 ̸2 and its time derivative is

V 2̇ =V ̇1ðe1Þ+w2ẇ2 = − e21 +w2ð−w2 + e3 + 2w2 − e1 + u2Þ ð21Þ

Estimating that the controller e3 = α2ðe1, w2Þ, then (21) can be written as

V ̇2 = − e21 +w2ð−w2 + α2 + 2w2 − e1 + u2Þ ð22Þ
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If the estimative function α2ðe1, w2Þ=0 and u2 = e1 − 2w2, then V ̇2 = − e21 −w2
2

is negative definite and hence the e1,w2ð Þ subsystem is stabilized. For the last step,
we define the error between e3 and α2ðe1, w2Þ as

w3 = e3 − α2ðe1,w2Þ= e3 ð23Þ

The time derivative of (23) is

ẇ3 = e3̇ = − e3 − δe2 − e1ð1+ e1 + 2x1Þ+ u3 ð24Þ

We now stabilize the e1, w2, w3ð Þ complete system defined by (17) as follows.
Let a Lyapunov function V3ðe1, w2, w3Þ=V2ðe1, w2Þ+w2

3 ̸2 and its time deriva-
tive is

V 3̇ =V ̇2ðe1, w2Þ+w3ẇ3 = − e21 −w2
2 +w3ẇ3

= − e21 −w2
2 +w3½−w3 − δe2 − e1ð1+ e1 + 2x1Þ+ u3�

ð25Þ

Estimating that u3 = δe2 + e1ð1+ e1 + 2x1Þ, (25) becomes

V ̇3 = − e21 −w2
2 −w2

3 < 0 ð26Þ

Thus, the synchronization goal is realized with the weight added to the control
functions as follows

u1ðtÞ= ½0�ε1
u2ðtÞ= ½e1 − 2w2�ε1
u3ðtÞ= ½δe2 + e1ð1+ e1 + 2x1Þ�ε3

8<
: ð27Þ

5.2 Numerical Simulations

In this subsection, numerical simulations are given in order to verify and demon-
strate the effectiveness and feasibility of the proposed method. The fourth-order
Runge-Kutta method is applied to integrate the drive (14) and response (15) system
with time step size equal to 0.001. The initial conditions are selected randomly as
x1ð0Þ, x2ð0Þ, x3ð0Þ = ð0.1, 0.1, 0.1Þ and y1ð0Þ, y2ð0Þ, y3ð0Þ = ð− 1, 1, − 0.1Þ,
respectively for the drive and the response system, while the parameter values are
chosen to be γ =4 and δ=0.56 so that the systems exhibited chaotic behaviors if no
control functions are applied. The time response of the error system and the syn-
chronization quality which is defined by e=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e22 + e23

p
are shown in Fig. 12 for

the control function applied after approximately 100 units of time.
From Fig. 12, it is found that the error dynamics moves chaotically with time

when the controllers are switched off in the interval 50 < t < 100. After this
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interval, it is very clear that the synchronization is achieved since the error
dynamics between the two identical coupled chaotic autonomous Helmholtz
like-jerk oscillators approaches zero as t → ∞. The synchronization between the
drive and the response systems is also confirmed by the synchronization quantity e
which approaches also zero as t → ∞. It is important to notice that, the control
strength and its complexity are reduced by about 70% when the extended back-
stepping method is used compared with the classical backstepping approach
(Mascolo 1997; Njah 2010; Olusola et al. 2011). Thus, the new approach investi-
gated in this chapter produces economic controllers with low energy consumption
which may be of vital importance for practical applications (Onma et al. 2014). The
effectiveness and feasibility of study of synchronization of chaotic systems is
verified and is found to be good to be used in secure communication field.

6 Conclusions

This chapter has focused on the dynamical analysis, electronic circuit realization
and synchronization of an autonomous oscillator obtained by converting the
two-dimensional well know Helmholtz oscillator into a third-order differential
equations using the jerk architecture. The stability of the equilibrium points has

Fig. 12 Error dynamics between two identical coupled chaotic autonomous Helmholtz like-jerk
oscillators (a)–(c) and the synchronization quality (d) with the controller deactivated
50 < t < 100. The values of parameters and initial conditions are indicated in the text and
εi = 0.3 where i = 1, 2, 3
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been examined and conditions for the occurrence of the Hopf bifurcation have been
derived. Some basic properties of the model have been studied using standard
nonlinear analysis tools. The bifurcation structures of the proposed jerk oscillator
were revealed some interesting transitions and phenomena such as period-doubling
and reverse period-doubling scenarios to chaos, periodic windows and hysteretic
behavior. The latter phenomena has been further illustrated by computing some
cross-sections of the basin of attraction showing the domains of initial conditions
where coexisting attractors are found. An experimental study has been carried out
and the laboratory experimental measurements were in a good qualitative agree-
ment with numerical results. Finally, appropriate controllers have been designed via
extended backstepping technique to synchronize the proposed jerk oscillators.
Numerical simulations are given to illustrate and verify the effectiveness and fea-
sibility of the synchronization technique. It is worth pointing out that the extended
backstepping technique has several advantages over other methods of synchro-
nization as mentioned in Sect. 5. Thus, synchronization of the autonomous pro-
posed jerk oscillators via extended backstepping technique is of practical interest.
We stress also that the approach followed in this chapter may be exploited rigor-
ously to the study of any other nonlinear dynamical system exhibiting coexisting
bifurcations.
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Synchronization in Kuramoto Oscillators
Under Single External Oscillator

Gokul P. M., V. K. Chandrasekar and Tomasz Kapitaniak

Abstract In this chapter we study the influence of a single strongly attractively cou-

pled external oscillator on a system of coupled Kuramoto oscillators. First we go

through the original method used by Kuramoto to solve this system of coupled oscil-

lators. Then we use a later approach developed by Ott and Antonsen. We will use this

approach first to solve the original system and show that the results match. Next we

will solve a variations of the this system using Ott-Antonsen method, after which we

will use it to solve our particular system. We consider a variation of the Kuramoto

system which shows multiple regions of synchronization. First we observe the effects

of attractive and repulsive couplings. Next we qualitatively study the effect of the ini-

tial frequency distribution of the internal oscillators, both the mean and the standard

deviation of different distributions like the Gaussian and Lorentzian distributions,

on these synchronization regions.

1 Introduction

Synchronization has always been an interesting topic of study since its discovery

by Huygen’s (1673) in coupled pendulum. In a field as diverse and encompassing

as non-linear dynamics, coupled systems and their synchronization behaviour has
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been used to model a wide variety of systems from those in Biology and Physics to

Economics. Many studies on the mathematical aspects of collective synchronization

have been done in the past decades. These systems have a lot of applications in phys-

ical systems like Josephson junction, electrochemical array, etc. (Yamaguchi et al.

2003; Kiss et al. 2002; Wiesenfeld and Swift 1995; Pantaleone 1998; Hubler et al.

1997).

Many types of synchronization have been observed. Two types of synchroniza-

tion are of immediate interest in our case. They are spontaneaous synchronization

and froced synchronization. In many coupled systems, there can be spontaneous syn-

chronization (Pikovsky et al. 2001; Strogatz 2004; Boccaletti et al. 2002). That is, for

a critical value of a parameter, the system shows some collective behavior without

any external influence. In case of forced synchronization, the system shows collec-

tive behavior due to an external forcing term. There are many more different types of

synchronization that may be induced due to many factors, including noise (Flandoli

et al. 2017).

One interesting coupled system that shows a variety of different synchronization

behaviour was proposed by Kuramoto (1975). The Kuramoto system is a system of

N-coupled phase oscillators. These can be thought of as a collection of limit cycles.

Under certain conditions, these coupled phase oscillators were seen to undergo the

phenomenon of synchronization. Many different variations of the system, including

even second-order differential forms were studied (Bountis et al. 2014; Olmi et al.

2014; Jaros et al. 2015), many of whom showed partial synchronizations, chimera

(Maistrenko et al. 2017) and even solitary states (Jaros et al. 2017).

A system similar to the one that will be studied in this chapter was analyzed by

Childs and Strogatz in 2008 (Strogatz 2008). These systems show different types

of synchronization. An interesting fact about this specific system is that even repul-

sive coupling of oscillators lead to synchronization. Not only that, they show behav-

ior very similar to that shown when the oscillators have attractive coupling. This

is true for different distributions of the initial frequencies making it a very general

phenomenon.

To understand the system better, we can consider the Kuramoto system to be a set

of points moving around in a unit circle with 𝜃 position and angular velocity 𝜔. We

can see that some transformations, like 𝜃 ⟶ 𝜃 + c, where c is a constant does not

change the system. A commonly used transformation of the system during calcula-

tions is 𝜔 ⟶ 𝜔 + c. This is called the rotating frame transformation. This can be

seen as the unit circle with all the point oscillators itself rotating at a frequency. Also,

now addition of external force could be seen as the unit circle itself experiencing the

force rather than the same force being applied to every single oscillator, since both

scenarios give the same equation.

There are many ways of solving the basic system. First we will see the method

that was used by Kuramoto (1975, 1984) to solve this system, after which we will

use a method suggested by Ott and Antonsen (2008).
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2 Solving Kuramoto System

First we will see the method used by Kuramoto to solve this system (Kuramoto 1975,

1984). The Kuramoto model is a simple model ofN-coupled oscillators with different

frequencies. The simple Kuramoto system is given by

d𝜃i
dt

= 𝜔i +
K
N

N∑

j=1
sin(𝜃j − 𝜃i) (1)

where i = 1,… ,N denote the N oscillators. Here 𝜔i gives the frequencies of the ith

oscillator. That is the frequency at which the oscillator would move had it not been

coupled to other oscillators. 𝜃i denotes the phase of the ith oscillator. The parameter

K gives the coupling strength. We have taken the coupling to be a sine function as was

done in the original Kuramoto article, although there have been many generalizations

done in later years.

We can see from the system equations that in the case of K > 0, which is the

one we are working with, the coupling is making the system come closer. That is,

if the phase of an individual oscillator is smaller than the average phase, then the

coupling will increase it, while if the individual oscillator has a larger than average

phase, then it will be decreased by the coupling. The system has a natural tendency

to synchronize towards the average phase.

It should also be noted that N−1
is also an important term in the coupling. If not

for this term, the coupling would not be N-independent in the thermodynamic limit

of N ⟶ ∞, which is the case we consider for analysis.

We define 𝜓 as R = rei𝜓 = 1
N

∑n
i=1 e

i𝜃i where R is called an order parameter. It

can be seen from this expression, that 𝜓 gives the average phase, and is hence called

the ‘mean field’, while r gives the variation of the individual oscillators phase from

𝜓 . This will be used as the measure for synchronization as when all sysntems are

synchronized, r = 1.

We now write the system equations as a function of r and 𝜓

d𝜃i
dt

= 𝜔i +
K
N
Im

[ n∑

i=1
ei(𝜃j−𝜃i)

]

= 𝜔i +
K
N
Im

[
e−i𝜃i

n∑

i=1
ei𝜃j

]

= 𝜔i + Im[Ke−i𝜃i rei𝜓 ]

= 𝜔i + Krsin(𝜓 − 𝜃i)
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From this form of the system equations we see that Kuramoto system can be

thought of as a system of oscillators being forced by a mean field. This also explains

neatly the tendency of the system to synchronize into the mean field.

Now we do the transformation 𝜃 ⟶ 𝜃 − 𝜓 and 𝛺 is assumed to be the steady

state frequency of the oscillators. One thing to be noted is that, for solving his system,

Kuramoto used a few assumption, like the existence of a steady state. To understand

this, we can think of it as the system of N-oscillators being thought of as a single

oscillator moving in the unit circle at 𝜓 angle and 𝛺 frequency. This assumption was

later verified by the self-consistency condition. Coming back to the calculation, we

do one more transformation in which we go to a rotating frame with 𝛺 frequency.

This eliminated the 𝜓 and 𝛺 terms leaving us with the equation

⇒
d𝜃i
dt

= 𝜔i − Krsin(𝜃i)

Since we are taking steady state solutions, we have r = constant.
There are two types of solutions for the oscillators described above depending on

the two terms on the right-hand side.

If |𝜔i| ⩽ Kr, then the oscillators converge to a steady state and reach synchro-

nization. This implies that at steady state ∣ 𝜔i ∣= Krsin𝜃i

⇒ 𝜃i = sin−1(Kr
𝜔i

) ⩽
pi
2

This set of oscillators are called phase locked, as undoing the transformations

would mean that these are moving at the same frequency 𝛺.

Now let us consider the other case where |𝜔i| ≥ Kr. These oscillators do not syn-

chronize but move freely around the unit circle.

Now the problem which arises is: Is r and 𝜓 constant? This was solved by

Kuramoto by assuming that the mean of the drifting oscillators form a stationary dis-

tribution on the circle. If 𝜌(𝜃, 𝜔)d𝜃 denote the fraction of oscillators with frequency

𝜔 that lie between 𝜃 and 𝜃 + d𝜃, then this 𝜌, to satisfy the stationary distribution

condition, should be inversely proportional to the speed.

⇒ 𝜌(𝜃, 𝜔) = C
𝜔 − Krsin𝜃

Here C = 1
2𝜋

√
𝜔2 − (kr)2 is the normalization constant.

Now to solve the system and to justify our assumptions, we will invoke the self-

consistency condition. Since the order parameter has to be a constant as assumed,

< ei𝜃 >=< ei𝜃 >lock + < ei𝜃 >drift

where <> denote the population averages. Continuing from here, since 𝜓 = 0,

< ei𝜃 >= r.
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⇒ r =< ei𝜃 >lock + < ei𝜃 >drift

Due to symmetry of the system as N ⟶ ∞,

< ei𝜃 >lock=< cos𝜃 >lock=
∫

Kr

−Kr
cos𝜃(𝜔)g(𝜔)d𝜔

For the drifting oscillators

< ei𝜃 >drift=
∫

𝜋

−𝜋 ∫|𝜔|>Kr
ei𝜃𝜌(𝜃, 𝜔)g(𝜔)d𝜔d𝜃

This integral vanishes due to the symmetry of 𝜌. Therefore now the whole self-

consistency is given just by the locked terms, which is written in terms of 𝜃 as

r = Kr
∫

𝜋∕2

−𝜋∕2
cos2𝜃g(Krsin𝜃)d𝜃

which has two solutions, the trivial r = 0 and the other given by

1 = K
∫

𝜋∕2

−𝜋∕2
cos2𝜃g(Krsin𝜃)d𝜃

This shows the increase in r beyond a critical Kc given by

Kc =
2

𝜋g(0)

For Lorentzian distribution, the integral can be calculated exactly and gives r =√
1 −

Kc

K
.

3 Ott-Antonsen Method for Solving Kuramoto-Like
Systems

3.1 Original Kuramoto System

As of now, we have defined and solved the simple Kuramoto system. We have shown

the existence of a synchronous state in the N ⟶ ∞ limit and derived the expression

for the the order parameter r. But as intuitive as the proof and calculations for the

system have been, it is not a general method. As in, even though this works for a
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simple Kuramoto system, the same method cannot be used for systems derived from

it, like the Kuramoto system with an external forcing term.

There are many methods used to solve this system, most of which are similar to

the method shown above. This process is done by separating the system into different

sub-populations and then using self-consistency to arrive at a solution for r. We will

be using a different approach proposed by Ott and Antonsen (2008). The crux of this

method is the use of an anzatz given by them. The reason and proof for the use of

this anzatz is given in has been studied in their publication and further used in many

others. Here we will just be showing the process involved with the solving.

The simple Kuramoto system is again given by

d𝜃i
dt

= 𝜔i +
K
N

N∑

j=1
sin

(
𝜃j − 𝜃i

)
(2)

where i = 1…N denote the N oscillators.

We define 𝜓 and r the same way as before

rei𝜓 = 1
N

n∑

i=1
ei𝜃i

Re-writing the equation again in terms of 𝜓 and r

d𝜃i
dt

= 𝜔i +
K
N
Im

[ n∑

i=1
ei(𝜃j−𝜃i)

]

= 𝜔i +
K
N
Im

[
e−i𝜃i

n∑

i=1
ei𝜃j

]

= 𝜔i + Im
[
Ke−i𝜃i rei𝜓

]

d𝜃i
dt

= 𝜔i + Krsin
(
𝜓 − 𝜃i

)
(3)

It is easier to use Eq. (3) for simulations since as is shown, it is the same system in

a different form.
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For our calculations

d𝜃i
dt

= 𝜔i +
K
N

( n∑

i=1

ei(𝜃j−𝜃i) − e−i(𝜃j−𝜃i)

2i

)

= 𝜔i +
K
2i

(
Re−i𝜃i − R∗ei𝜃i

)

In the continuous limit of N → ∞, let f be the probability distribution of 𝜃 and

g(𝜔) =
∫

2𝜋

0
f (𝜔, 𝜃, t) d𝜃 (4)

be the time-independent oscillator frequency distribution.

The continuity equation is given by

𝜕f
𝜕t

+ 𝜕

𝜕𝜃
( f �̇�) = 0

⇒
𝜕f
𝜕t

+ 𝜕

𝜕𝜃

[
(𝜔i +

K
2i
(Re−i𝜃 − R∗ei𝜃))f

]
(5)

where

R =
∫

2𝜋

0
d𝜃

∫

∞

−∞
d𝜔fei𝜃 (6)

Expanding f using Fourier series gives us

f =
g(𝜔)
2𝜋

[
1 +

[ ∞∑

n=1
fn(𝜔, t)ein𝜃 + f ∗n (𝜔, t)e

−in𝜃

]]

We will now use the anzatz provided by Ott and Antonsen

fn(𝜔, t) = [𝛼(𝜔, t)]n

where |𝛼(𝜔, t)| ⩽ 1 so that the system is convergent.

Putting this back in Eq. (5) and taking only the coefficients of ei𝜃 , we get

𝜕𝛼

𝜕t
+
[
𝛼𝜔i + k

2i
(R𝛼2 − R∗)i

]
= 0

⇒
𝜕𝛼

𝜕t
+ k

2
(
R𝛼2 − R∗) + i𝜔𝛼 = 0 (7)

and into Eq. (6)
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R∗ =
∫

∞

∞
d𝜔𝛼(𝜔, t)g(𝜔) (8)

As of now, this converted an infinite dimensional system in 𝜃 to an infinite dimen-

sional system in𝜔. To solve the system, we need to make this into a finite dimensional

set of differential equations, which is what this method will do in the following steps.

Now we will solve the equation for an example of 𝜔—distribution. Here we take

it to be Lorentzian.

g(𝜔) = 𝛥

𝜋

1[
(𝜔 − 𝜔0)2 + 𝛥2

]

= 1
2𝜋i

[
1

𝜔 − 𝜔0 − i𝛥
− 1

𝜔 − 𝜔0 + i𝛥

]

By going into a rotating frame using the transformation 𝜔 ⟶ 𝜔−𝜔0
𝛥

and 𝜃 ⟶
𝜃 − 𝜔0t, we can see that it is possible to put 𝜔0 = 0 and 𝛥 = 1.

Putting this in Eq. (8) and solving using the residue method, we get

R = 𝛼
∗(−i, t) (9)

Using this and R = rei𝜓 into Eq. (7), we get

𝜕

𝜕t
(
re−i𝜓

)
+ k

2
(
r3e−i𝜓 − re−i𝜓

)
+ re−i𝜓 = 0

⇒
𝜕r
𝜕t
e−i𝜓 − ire−i𝜓

𝜕𝜓

𝜕t
+ k

2
(r3e−i𝜓 − re−i𝜓 ) + re−i𝜓 = 0

Separating the real and imaginary parts, we have

𝜕r
𝜕t

+ k
2
(
r3 − r

)
+ r = 0 (10)

𝜕𝜓

𝜕t
= 0 (11)

On solving Eqs. (10) and (11), we get

r(t) =

√√√√√√
(1 − 2

K
)

|1 + [
1− 2

K
r(0)2

− 1]e(1−
K
2 )t|
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From this we can see that forK < 2, which is the critical k value, the order parame-

ter r goes to zero, signifying that the system is not synchronized. ForK > 2, the order

parameter is non-zero asymptotically. This is the same as was seen in the previous

section, with Kc = 2.

3.2 Kuramoto System with External Force

The Kuramoto system with an external driving force (Sakaguchi 1988) is given by

d𝜃i
dt

= 𝜔i +
K
N

N∑

j=1
sin(𝜃j − 𝜃i) + Fsin(𝛺t − 𝜃i) (12)

where i = 1…N denote the N oscillators.

R and𝜓 are defined exactly the same as in the last section.R = rei𝜓 = 1
N

∑n
i=1 e

i𝜃i .

Following the same method (Antonsen et al. 2008; Ott and Antonsen 2008; Childs

and Strogatz 2008), we can get a different form of the same equation which is easier

to work with in simulations. Therefore Eq. (12) is rewritten as

d𝜃i
dt

= 𝜔i + Krsin
(
𝜓 − 𝜃i

)
+ Fsin

(
𝛺t − 𝜃i

)

Now to reduce this infinite dimensional equation, we follow the same procedure as

in the previous section.

For our calculations

d𝜃i
dt

= 𝜔i +
K
N

( n∑

i=1

ei(𝜃j−𝜃i) − e−i(𝜃j−𝜃i)

2i

)
+ Fei(𝛺t−𝜃i) − e−i(𝛺t−𝜃i)

2i

Now we put 𝜃i ⟶ 𝜃i +𝛺t

d𝜃i
dt

= 𝜔i −𝛺 + K
N

( n∑

i=1

ei(𝜃j−𝜃i) − e−i(𝜃j−𝜃i)

2i

)
+ Fe−i𝜃i − ei𝜃i

2i

= 𝜔i −𝛺 + 1
2i
[(KR + F)e−i𝜃i − (KR∗ + F)ei𝜃i ]

Since K and R are real

d𝜃i
dt

= 𝜔i −𝛺 + 1
2i

[
(KR + F)e−i𝜃i − (KR + F)∗ei𝜃i

]
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For the continuous system as N ⟶ ∞, first we write the continuity equation

which gives us

⇒
𝜕f
𝜕t

+ 𝜕

𝜕𝜃

[
𝜔 −𝛺 + 1

2i
[
(KR + F)e−i𝜃 − (KR + F)∗ei𝜃

]
f
]

(13)

and R being the same as before. Now we do the Fourier expansion, take the same

ansatz and check for the coefficients of ei𝜃 , which gives us

𝜕𝛼

𝜕t
+ 1

2
[
(KR + F)∗𝛼2 − (KR + F)

]
+ [1 + i(𝛺 − 𝜔)] 𝛼 = 0

We again consider the Lorentzian distribution for 𝜔 where we put 𝛥 = 1 and 𝜔 =
𝜔0 and repeat the same process, after which we get

𝜕R
𝜕t

+ 1
2
[
(KR + F)∗R2 − (KR + F)

]
+
[
1 + i(𝛺 − 𝜔0)

]
R = 0

Considering R = rei𝜓 , we can simplify this into two equations

ṙ = −𝛥r + (1 − r2)
2

(F cos(𝜓) + Kr) (14)

�̇� = −(𝛺 − 𝜔0) −
F
2r

(1 + r2) sin(𝜓) (15)

This can be solved with the system being depended on the parameters K,F, (𝛺 −
𝜔0) (Childs and Strogatz 2008).

4 Model of the System

In this section we study a synchronization of Kuramoto-like phase oscillators with a

time-dependent external force. The equations of motion are as follows:

�̇�i = 𝜔i +
K
N

∑N
j=1 sin(𝜃i − 𝜃j) − F sin(𝜃i − 𝜉)

̇̇
𝜉 = 𝜎 − F

N

∑N
j=1 sin(𝜉 − 𝜃j)

}
(16)

where i = 1…N and N is number of single Kuramoto-like oscillators. Parameter K
refers to strength of internal oscillators, 𝜔i is frequency of single node, F is external

force and 𝜎 refers to external frequency. The phase of each Kuramoto-like system

is given by 𝜃i and phase of external oscillator is 𝜉. In our study we vary parameters

F, K and 𝜔i while external frequency is always fixed to 𝜎 = 1.5. The frequencies
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𝜔i are given by mean frequency 𝜔0, standard derivation and distribution (Gaussian,

uniform or Lorenzian).

There are two ways to visualize this system. One way is to consider this as a set

of Kuramoto oscillators experiencing a force. But unlike the normal force, in our

system the force is dependent to an extent on the internal oscillators. That is this

force is influence by the oscillators themselves.

The other way is to think of this system as a set of kuramoto oscillators being

influence by a lone strongly coupled external kuramoto oscillator. We have mainly

used this approach in explaining the results that we observed.

5 Numerical Study

Fig. 1 shows how the order parameter r changes with the strength of the external

oscillator for both repulsive and attractive coupling (Figs. 1a and 1b respectively).

The synchronization state appears for both type of coupling, however for a repulsive

coupling, it occurs for smaller values ofF then for the attractively coupled oscillators.

Additionally, we observe two ranges of synchronous motion with desynchronization

between them.

To see if these two regions are the same or distinct we calculate the ratio of mean

frequency 𝜔 of the oscillators to the frequency of the external oscillator 𝜎 (see Fig. 2)

was plotted as shown in Fig. 2a. As can be seen here, these regions are qualitatively

different. This implies that the first synchronization region refers to phase locked

solution with ratio 2:1 between synchronized Kuramoto-like oscillators and external

frequency. The second region is typical 1:1 locked state.

To study this phenomenon in detail, we increased the external frequency to 30

times higher then internal frequency. The ratios are plotted in Fig. 2b. Transition to

synchronization state occurs every time the internal frequency reaches an integer

multiple value of the external frequency. That is to say that the repulsively coupled

oscillators synchronize separately into natural frequencies which are integer multi-

ples of the external frequency and that this is a more general phenomenon with not

two but many different internal synchronizations depending on the initial difference

between the external and internal frequencies. Nevertheless it is clear that for higher

ratios the plateau of synchronous motion becomes narrower.

Aforementioned results are for Lorentzian internal frequency distribution. To

see how general this phenomenon is, we repeat the process with different initial

frequency distribution for the internal oscillators, each time varying the standard

deviation. Figure 3 shows the plot of the change of order parameter for varying

strength of external oscillator for the Lorentzian distribution for varying standard

deviation, that is 0.1, 0.01, 0.001. Figure 4 shows the same plot but with the inter-

nal oscillators now in an initial distribution that is Gaussian and Fig. 5 shows again

the same plot, but now for a Uniform initial internal frequency distribution. As it

is easy to see, the observed phenomenon is independent of the frequency distribu-

tion, although we observe that it is sensitive to the standard deviation. The region
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Fig. 1 Order parameter in repulsive and attractive coupling. The parameters are 𝜔0 = 0.5, standard

deviation = 0.01, 𝜎 = 1.5: a K = 1.5 for repulsive and b K = −1.5 for attractive coupling
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Fig. 2 Plot of the change in

the ratio of mean frequency

𝜔 of the oscillators to

frequency of the the external

oscillator 𝜎 with respect to

the parameter F for repulsive

coupling for three values of

𝜎 = 1.5 (panel (a)), 𝜎 = 2.5
(panel (b)) and 𝜎 = 15 (panel

(c)). The other parameters

are 𝜔0 = 0.5, standard

deviation = 0.01 and

K = 1.5
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Fig. 3 Panels (a), (b) and

(c) show the variation of

order parameter r with

increasing external oscillator

interaction(F) for an initial

𝜔i distribution as Lorentzian

with varying standard

deviation of 0.1, 0.01, 0.001

respectively
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Fig. 4 Panels (a), (b) and

(c) show the variation of

order parameter r with

increasing external oscillator

interaction(F) for an initial

𝜔i distribution as Gaussian

with varying standard

deviation of 0.1, 0.01, 0.001

respectively
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Fig. 5 Panels (a), (b) and

(c) show the variation of

order parameter r with

increasing external oscillator

interaction (F) for an initial

𝜔i distribution as Uniform

with varying standard

deviation of 0.1, 0.01, 0.001

respectively
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Fig. 6 a Shows the variation of the order parameter (in color) with respect to external oscillator

interaction (F) and the strength of internal coupling (K) for a given 𝛺 = −(𝜎 − 𝜔0), where 𝜔0 =
0.5, 𝜎 = 1.5, for Lorentzian distribution as the initial oscillator frequency distribution. b Shows the

variation of the order parameter (in false color) with respect to the external force/oscillator interac-

tion (F) and 𝛺 = −(𝜎 − 𝜔0), where 𝜔0 = 0.5, 𝜎 increases from −1 to 1, for Lorentzian distribution

as the initial oscillator frequency distribution for a fixed strength of internal coupling (K) = 1.5
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of the transition is changing with the standard deviation whereas the regions them-

selves are independent of the distribution. Also the smaller the standard deviation,

the more pronounced the effect. That is, for more identical oscillator, we see that the

different regions and their boundaries become more distinct. This could mean that

the transition region depends on how nearly identical the initial frequencies are.

Now we base the initial 𝜔 − distribution as Lorentzian distribution again. As can

be noted, there are three main parameters of consideration in the system equations.

They are, the strength of the external oscillators (F), the coupling strength of the

internal oscillators (K) and the difference between the mean internal frequency (𝜔0)

and the frequency of the external oscillator (𝜎). To see how theses parameters affect

the order parameter, we plot Fig. 6. This plot shows that the observed phenomenon

is robust and exists for wide range of system parameters. In both panels we vary

external force F in range F ∈ [0, 2], however vertical axis is different, i.e., in panel

(a) we change strength of external oscillators K from 0 to 2.0 and in panel (b) the

difference 𝛺 = −(𝜎 − 𝜔0) between the external frequency and the mean internal fre-

quency. In color we show the order parameter r. In Fig. 6a synchronous range (yellow

color) appears for K > 0.6 nearly independ of the external oscillator strength F. It is

present till K ≈ 1.1 (with some variations with where the oscillators desynchronize

a change in the ratio between frequencies from 2:1 to 1:1 occurs. Above K ≈ 1.3 the

synchronous state persists and is stable. In Fig. 6b the structure is more complex due

to change of ratio between the frequencies. For most of 𝛺 values two or more ranges

of synchronization appear.

6 Analysis

The system we are dealing with is

�̇�i = 𝜔i +
K
N

∑N
j=1 sin(𝜃i − 𝜃j) − F sin(𝜃i − 𝜉)

̇̇
𝜉 = 𝜎 − F

N

∑N
j=1 sin(𝜉 − 𝜃j)

}
(17)

which consists of N coupled oscillators which are acting under a force, whose fre-

quency is coupled with the system using an attractive coupling. It is easier to see this

by writing Eq. (17) using the mean field 𝜓 and the order parameter R defined as

Rei𝜓 = 1
N

N∑

j=1
ei𝜃j (18)

using (18), we can rewrite (17) as

�̇�i = 𝜔i + KR sin(𝜃i − 𝜓) − F sin(𝜃i − 𝜉)
̇̇
𝜉 = 𝜎 − FR sin(𝜉 − 𝜓)

}
(19)
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This is an easier form to understand. This system has atleast two different ways of

attaining synchronisation: with either the mean field 𝜓 or the forcing field 𝜙. In fact

both these types of synchronisation has been oberved in this system as can be seen

from the Fig. 1.

Now to analyze this system we go into a rotating frame. That is we do the transfor-

mation 𝜃i → 𝜃i − 𝜉. After which we follow the procedure given by Ott and Antonsen

and taking the 𝜔 − distribution to be Lorentzian to finally arrive at

Ṙ = 1
2
[
(KR + F)∗R2 − (KR + F)

]
− F

2
(R − R∗) −

[
𝛥 + i(𝜎 − 𝜔0)

]
R

where 𝜔0 is the mean and 𝛥 the width of the 𝜔 − distribution.

Now by putting R = rei𝜓 , we can simplify the whole system into the following

two equations:

ṙ = −𝛥r + (1 − r2)
2

(F cos(𝜓) − Kr) (20)

�̇� = 𝛺 − F
2r

(1 + 3r2) sin(𝜓) (21)

where 𝛺 = −(𝜎 − 𝜔0), 𝜓 is the mean field of the full system.

Figure 7 shows the order parameter as calculated from the equation with increas-

ing value of F for different 𝛥 values along with the respective numerical result.

Fig. 7 Analytical and numerical plots for order parameter with F for different 𝛥 values
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7 Conclusion

We observed that in the presence of a strong attractively coupled oscillator, a sys-

tem of repulsively coupled kuramoto oscillators reach synchronization faster than a

system of attractively coupled oscillators. There are different regions of synchroniza-

tion of the internal oscillators, characterized by their frequencies. They are such that

the mean of the internal oscillators are integer multiples of the external oscillator

frequency.

Next found out that this phenomenon is independent of the initial frequency dis-

tribution by repeating the numerical simulations for a total of three different ini-

tial internal frequency distributions: namely the Lorentzian, Gaussian and uniform

distributions.

We also observed that even though this phenomenon occurs independent of the

initial internal frequency distribution, they are dependent on the width of the dis-

tribution, which characterizes how close these initial values are and the smaller the

width, the more clearer these separate regions became. In other words the more iden-

tical the initial distribution, the more clear the observed phenomenon.

Finally, we solved this system of equations using the method given by Ott-

Antonsen. After having done the analysis, it was discovered that this phenomenon

was not seen analytically.
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1 Introduction

The subject of chaos synchronization has received a great attention since 1990

(Pecora and Carroll 1990) and grown rapidly, both theoretically and experimen-

tally (Azar and Vaidyanathan 2015, 2016, 2017; Vaidyanathan and Volos 2016a, b,

2017). Chaos control and synchronization have applications in several areas such as

memristors (Azar and Vaidyanathan 2017; Pham et al. 2015, 2016b), chemical reac-

tors (Vaidyanathan 2015b, c, e), oscillators (Yu et al. 2016; Vaidyanathan 2015f, i),

secure communication (Xu et al. 2017; Wang et al. 2016), cryptosystems (Ahmad

et al. 2015), robotics (Jafarov et al. 2016), neural networks (Sadeghpour et al. 2012;

Vaidyanathan 2015a, j), etc.

Synchronization of chaotic systems considers a pair of chaotic systems called

master and slave systems, and it aims to achieve asymptotic tracking of the states of

the slave system to the states of the master system. Because of the butterfly effect of

chaotic systems, the synchronization of chaotic systems is a challenging problem in

the literature (Azar and Vaidyanathan 2015, 2016, 2017; Vaidyanathan and Volos

2016a, b). In the literature, there are also other type of synchronization problems such

as generalized synchronization (Kocarev and Parlitz 1996; Yang and Duan 1998),

phase synchronization (Mg et al. 1996), anti-synchronization (Hammami et al. 2010;

Vaidyanathan 2015d; Vaidyanathan et al. 2015b), hybrid synchronization (Li 2005;

Vaidyanathan 2015g, h), lag synchronization (Taherion and Lai 1999), generalized

projective synchronization (Sarasu and Sundarapandian 2012, 2011b; Vaidyanathan

and Pakiriswamy 2016), etc.

Many control techniques are developed to synchronize chaotic systems such as

active control (Sundarapandian 2013; Sarasu and Sundarapandian 2011a; Karthikeyan

and Sundarapandian 2014), adaptive control (Tirandaz and Hajipour 2017; Fotsin

and Bowong 2006; Sundarapandian and Karthikeyan 2012), backstepping control

(Vaidyanathan and Rasappan 2014; Vaidyanathan 2017), sliding mode control

(Vaidyanathan and Sampath 2012, 2017; Vaidyanathan et al. 2015a; Lakhekar et al.

2016; Vaidyanathan and Rhif 2017; Vaidyanathan 2014), etc.

There is good interest in exploiting chaotic dynamics in engineering applications,

where some attention has been focused on effectively creating chaos via simple phys-

ical systems, such as electronic circuits (Sundarapandian and Pehlivan 2012; Pehli-

van et al. 2014; Akgul et al. 2016; Pham et al. 2016a; Volos et al. 2017). The pursuit

of designing circuits to produce chaotic attractors has become a focal point for engi-

neers, not only because of their theoretical interest, but also due to their potential

real-world applications in various chaos-based technologies and information systems

(Vaidyanathan and Volos 2016a, b, 2017; Azar and Vaidyanathan 2017).

Recently, chaotic systems are classified into two types of attractors, viz. self-excited
and hidden attractors (Leonov et al. 2011, 2012, 2015). An attractor is called a self-

excited attractor if its basin of attraction intersects an arbitrarily small open neigh-

borhood of equilibrium. Otherwise, the attractor is called a hidden attractor. Thus,

hidden attractor has basin of attraction which does not overlap with an arbitrarily
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small vicinity of equilibria. For example, hidden attractors are attractors in systems

without equilibria or with only one stable equilibrium.

In this chapter, we first discuss the qualitative properties of the hyperchaotic

Wang system (Wang et al. 2010) with three quadratic nonlinearities. We show that

the hyperchaotic Wang system exhibits self-excited hyperchaotic attractor. Next, by

modifying the dynamics of the hyperchaotic Wang system (Wang et al. 2010), we

propose a new 4-D hyperchaotic system with three quadratic nonlinearities.

The proposed new hyperchaotic system has a unique equilibrium at the origin,

which is a saddle point and unstable. Thus, the new hyperchaotic system exhibits

self-excited hyperchaotic attractor. Indeed, the new hyperchaotic system has a unique

equilibrium at the origin, which is unstable. We describe the qualitative properties of

the new hyperchaotic system such as symmetry, Lyapunov exponents, Kaplan-Yorke

dimension, etc.

Furthermore, we discuss the numerical simulation and circuit realization of syn-

chronization of the new hyperchaotic systems (Wang et al. 2010) via active control.

The stability of the complete synchronization error system is assured by Lyapunov

criterion to prove that the error vector approaches zero as time approaches infinity.

The rest of this chapter is organized as follows. In Sect. 2, we describe the dynam-

ics and analysis of the new hyperchaotic system. In Sect. 3, we derive new results for

the active control of identical new hyperchaotic systems. In Sect. 4, we discuss the

numerical simulations of the synchronization scheme developed in Sect. 3 for the

identical new hyperchaotic systems. In Sect. 5, we provide a circuit design of the

new hyperchaotic system and the active controller designed in Sect. 3. The circuital

design results confirm the feasibility of the theoretical model. Section 6 contains the

main conclusions.

2 A New Hyperchaotic System

In this section, we first consider the hyperchaotic Wang system (Wang et al. 2010)

given by

⎧
⎪
⎨
⎪
⎩

ẋ = a(y − x)
ẏ = bx + cy − xz + w
ż = y2 − hz
ẇ = −dx

(1)

where x, y, z,w are the states and a, b, c, d, h are real parameters.

The hyperchaotic Wang system (1) is a nonlinear autonomous system with three

quadratic nonlinearities.

In Wang et al. (2010), it was shown that the system (1) undergoes hyperchaotic

behavior when the parameters take the values

a = 27.5, b = 3, c = 19.3, d = 3.3, h = 2.9 (2)
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Fig. 1 2-D phase portraits of the hyperchaotic Wang system

For numerical simulations, we take the initial values

x(0) = 1, y(0) = 1, z(0) = 1, w(0) = 1 (3)

Figure 1 shows the phase portraits of the hyperchaotic Wang system (1) for the

parameter values (2) and the initial state (3).

The Lyapunov exponents of the hyperchaotic Wang system (1) for the parameter

values (2) and the initial state (3) are calculated using Wolf’s algorithm (Wolf et al.

1985) as

L1 = 1.67, L2 = 0.1, L3 = 0, L4 = −12.87 (4)

Since there are two positive Lyapunov exponents in (4), we find that the 4-D Wang

system (1) is hyperchaotic.

Also, the Kaplan-Yorke dimension of the hyperchaotic Wang system (1) is found

as

DKY = 3 +
L1 + L2 + L3

|L4|
= 3.1375, (5)

which shows the complexity of the system.

Since the sum of the Lyapunov exponents in (4) is negative, the hyperchaotic

Wang system (1) is dissipative.

Figure 2 shows the Lyapunov exponents of the hyperchaotic Wang system (1).



Analysis, Circuit Design and Synchronization of a New Hyperchaotic . . . 255

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−10

−5

0

5

10

Time (sec)

Ly
ap

un
ov

 E
xp

on
en

ts
L

1
 = 1.67

L
2
 = 0.1

L
3
 = 0

L
4
 = −12.87

Fig. 2 Lyapunov exponents of the hyperchaotic Wang system

The equilibrium points of the hyperchaotic Wang system (1) are obtained by solv-

ing the following system of equations:

a(y − x) = 0 (6a)

bx + cy − xz + w = 0 (6b)

y2 − hz = 0 (6c)

−dx = 0 (6d)

From (6d), we get x = 0. Substituting x = 0 in (6a), we get y = 0.

Substituting y = 0 in (6c), we get z = 0.

Substituting x = y = z = 0 in (6b), we get w = 0.

Thus, we conclude that the hyperchaotic Wang system (1) has a unique equilib-

rium point at E0 = 𝟎.

To test the stability type of the equilibrium E0, we take the parameter values of

the hyperchaotic Wang system (1) as in the hyperchaotic case (2).

Then we obtain the Jacobian matrix

J0 = J(E0) =
⎡
⎢
⎢
⎢
⎣

−27.5 27.5 0 0
3 19.3 0 1
0 0 −2.9 0

−3.3 0 0 0

⎤
⎥
⎥
⎥
⎦

(7)
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The matrix J0 has the eigenvalues

𝜆1 = −2.9, 𝜆2 = −29.2627, 𝜆3 = 0.1483, L4 = −29.2627, (8)

which shows that the equilibrium E0 is a saddle-point and unstable.

Thus, the hyperchaotic Wang system (1) exhibits a self-excited attractor.

In this chapter, by modifying the dynamics of the hyperchaotic Wang system (1),

we obtain a new hyperchaotic system as follows:

⎧
⎪
⎨
⎪
⎩

ẋ = a(y − x)
ẏ = bx + cy − xz + w
ż = y2 − hz
ẇ = −dy

(9)

where x, y, z,w are the states and a, b, c, d, h are real parameters.

Our new 4-D system (9) is a nonlinear autonomous system with three quadratic

nonlinearities.

In this work, we shall demonstrate that the system (9) undergoes hyperchaotic

behavior when the parameters take the values

a = 27.5, b = 3.5, c = 19.5, d = 3.3, h = 3 (10)

For numerical simulations, we take the initial values
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Fig. 3 2-D phase portraits of the new hyperchaotic system
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Fig. 4 Lyapunov exponents of the new hyperchaotic system

x(0) = 1, y(0) = 1, z(0) = 1, w(0) = 1 (11)

Figure 3 shows the phase portraits of the new hyperchaotic system (9) for the

parameter values (10) and the initial state (11).

The Lyapunov exponents of the new hyperchaotic system (9) for the parameter

values (10) and the initial state (11) are calculated using Wolf’s algorithm (Wolf

et al. 1985) as

L1 = 1.67, L2 = 0.1, L3 = 0, L4 = −12.87 (12)

Since there are two positive Lyapunov exponents in (12), we find that our 4-D

system (9) is hyperchaotic.

Also, the Kaplan-Yorke dimension of the new hyperchaotic system (9) is found as

DKY = 3 +
L1 + L2 + L3

|L4|
= 3.1413, (13)

which is greater than the Kaplan-Yorke dimension of the hyperchaotic Wang system

(1). This shows that our hyperchaotic system (9) exhibits more complexity than the

hyperchaotic Wang system (9).

Since the sum of the Lyapunov exponents in (12) is negative, the hyperchaotic

Wang system is dissipative.

Figure 4 shows the Lyapunov exponents of the new hyperchaotic system (9).
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The equilibrium points of the new hyperchaotic system (9) are obtained by solving

the following system of equations:

a(y − x) = 0 (14a)

bx + cy − xz + w = 0 (14b)

y2 − hz = 0 (14c)

−dy = 0 (14d)

From (14d), we get y = 0. Substituting y = 0 in (14a), we get x = 0.

Substituting y = 0 in (14c), we get z = 0.

Substituting x = y = z = 0 in (14b), we get w = 0.

Thus, we conclude that the new hyperchaotic system (9) has a unique equilibrium

point at E0 = 𝟎.

To test the stability type of the equilibrium E0, we take the parameter values of

the new hyperchaotic system (9) as in the hyperchaotic case (10).

Then we obtain the Jacobian matrix

J0 = J(E0) =
⎡
⎢
⎢
⎢
⎣

−27.5 27.5 0 0
3.5 19.5 0 1
0 0 −3 0
0 −3 0 0

⎤
⎥
⎥
⎥
⎦

(15)

The matrix J0 has the eigenvalues

𝜆1 = −3, 𝜆2 = −29.4617, 𝜆3 = 0.1313, L4 = −29.4617, (16)

which shows that the equilibrium E0 is a saddle-point and unstable.

Thus, the new hyperchaotic system (9) exhibits a self-excited attractor.

We also note that the new hyperchaotic system (9) stays invariant under the change

of coordinates given by

(x, y, z,w) ↦ (−x,−y, z,−w) (17)

for all values of the parameters. This shows that the new hyperchaotic system (9) has

rotation symmetry about the z-axis and that every non-trivial trajectory of the new

hyperchaotic system (9) must have a twin trajectory.

We also observe that the z-axis is invariant under the flow of the new hyperchaotic

system (9), and the invariant flow on the z-axis is characterized by the 1-D dynamics

ż = −hz (18)

which is globally exponentially stable since h > 0.
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3 Synchronization of the Identical New Hyperchaotic
Systems

3.1 Problem Description

As the master system, we consider the new hyperchaotic system given by

⎧
⎪
⎨
⎪
⎩

ẋm(t) = a(ym(t) − xm(t))
ẏm(t) = bxm(t) + cym(t) − xm(t)zm(t) + wm(t)
żm(t) = y2m(t) − hzm(t)
ẇm(t) = −dym(t)

(19)

As its slave system, we consider the following hyperchaotic system given by

⎧
⎪
⎨
⎪
⎩

ẋs(t) = a(ys(t) − xs(t)) + u1(t)
ẏs(t) = bxs(t) + cys(t) − xs(t)zs(t) + ws(t) + u2(t)
żs(t) = y2s (t) − hzs(t) + u3(t)
ẇs(t) = −dys(t)

(20)

where u(t) =
[
u1(t) u2(t) u3(t)

]T
is the active control to be determined to ensure the

complete synchronization of the new identical hyperchaotic systems.

We define the synchronization error between the new hyperchaotic systems (19)

and (20) as

⎧
⎪
⎨
⎪
⎩

e1s(t) = xs(t) − xm(t)
e2s(t) = ys(t) − ym(t)
e3s(t) = zs(t) − zm(t)
e4s(t) = ws(t) − wm(t)

(21)

The error dynamics is obtained as

⎧
⎪
⎨
⎪
⎩

ė1s = a(e2s − e1s) + u1
ė2s = be1s + ce2s + e4s − xszs + xmzm + u2
ė3s = −he3s + y2s − y2m + u1
ė4s = −de2s

(22)

We can express the error dynamics (22) in matrix form as

ės = Aees + Bu (23)

where

es(t) =
[
e1s(t) e2s(t) e3s(t) e4s(t)

]T
(24)



260 A. A. Oumate et al.

and

Ae =
⎡
⎢
⎢
⎢
⎣

−a a 0 0
b − zm c −xs 1

0 ys + ym −h 0
0 −d 0 0

⎤
⎥
⎥
⎥
⎦

, B =
⎡
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥
⎥
⎥
⎦

(25)

3.2 Main Results

In this subsection, we derive a new active control law for achieving complete syn-

chronization of the new hyperchaotic systems (19) and (20). Our active controller

design makes use of the practical stability criterion of Borne and Gentina (Borne

and Benjerab 2008).

We consider an active control law of the form

u = −Kes (26)

Substituting (26) into the error dynamics (23) leads to the closed-loop error sys-

tem

ės = Aeses (27)

where

Aes = Ae − BK =
⎡
⎢
⎢
⎢
⎣

−a − k11 a − k12 −k13 −k14
b − zm − k21 c − k22 −xs − k23 1 − k24

−k31 ys + ym − k32 −h − k33 −k34
0 −d 0 0

⎤
⎥
⎥
⎥
⎦

(28)

We establish stability of the closed-loop error system (27) by applying the prac-

tical stability criterion of Borne and Gentina (Borne and Benjerab 2008), which is

associated with the Benrejeb arrow form matrix.

To satisfy this aim, the parameters of the gain matrix K can be chosen as follows.

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

a − k12 = 0
−k13 = 0
b − zm − k21 = 0
−k31 = 0
ys + ym − k32 = 0
−xs − k23 = 0

⟹

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

k12 = a
k13 = 0
k21 = b − zm
k31 = 0
k32 = ys + ym
k23 = −xs

(29)
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Fig. 5 Synchronization of the new hyperchaotic systems
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Fig. 6 Time-history of the synchronization errors

By application of the classical Borne and Gentina stability criterion (Borne and

Benjerab 2008), associated to the particular canonical Benrejeb arrow matrix, the

instantaneous characteristic matrix Aes must satisfy the following three conditions.

(C1) The nonlinear elements are isolated in either one row or one column of the

matrix Aes.

(C2) The diagonal elements, aii, of the matrix Aes are such that:

aii < 0, ∀i = 1, 2, 3 (30)

(C3) There exist 𝜀 > 0 such that:

(c − k22)[−(k13k34 − dk14(h + k33))] < −𝜀 (31)

The condition (C1) leads to

1 − k24 = 0 or k24 = 1 (32)

Thus, we take k24 = 1.

The condition (C2) leads to

⎧
⎪
⎨
⎪
⎩

−a − k11 < 0
c − k22 < 0
−h − k33 < 0

⟹

⎧
⎪
⎨
⎪
⎩

−a < k11
c < k22
−h < k33

(33)

Thus, we choose

⎧
⎪
⎨
⎪
⎩

k11 = 1
k22 = 30
k33 = 1

(34)
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Fig. 7 Circuit diagram of the drive system (19)

For the gains k12, k13, k21, k31, k32, k23, k24, k11, k22 and k33 defined in (29), (32)

and (34), the condition (C3) leads to

{
k14 = 5
k34 = 5

Among the various choices of the gain matrix K, one possible choice is the fol-

lowing matrix.

K =
⎡
⎢
⎢
⎣

1 a 0 5
b − zm 30 −xs 1

0 ym + ys 1 5

⎤
⎥
⎥
⎦

(35)
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Fig. 8 Circuit diagram of the response system (20)
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Fig. 9 Circuit diagram of

the synchronization error

dynamics (22)

4 Numerical Simulation

For numerical simulation, we use classical fourth-order Runge-Kutta method in

MATLAB.

We take parameters of the new hyperchaotic systems (19) and (20) as in the hyper-

chaotic case (10).

The gain matrix K is chosen as in (35).

The initial conditions of the master system (19) are taken as

xm(0) = 1, ym(0) = 1, zm(0) = 1, wm(0) = 1 (36)

The initial conditions of the slave system (20) are taken as

xs(0) = −1, ys(0) = −1, zs(0) = −1, ws(0) = −1 (37)

Figure 5 shows the synchronization between the new hyperchaotic systems (19)

and (20).

Figure 6 shows the time-history of the synchronization errors.

5 Circuit Design of the New Hyperchaotic System

In this section, we realize the circuit of the synchronized new hyperchaotic systems

with Electronic Work Bench (EWB). We use electronic components: operational

amplifiers, resistors and capacitors to realize the system equations. We select LF353D

as the amplifier and AD633JN as the multiplier to design the synchronous circuit.

The input supply was Vcc = +15V and Vee = −15V. In order to restrict the change

of state variables to the operating voltage of the analog circuit, the state variables

are reduced by 10 and 20 times, namely let (xm, ym, zm,wm) ⟶ (10xm, 10ym, 10zm,
20wm) and (xs, ys, zs,ws) ⟶ (10xs, 10ys, 10zs, 20ws).
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Fig. 10 Circuit simulation of phase portraits of the new hyperchaotic system (19)

The circuit schematics of the drive system (19) and the response system (20)

are given respectively in Figs. 7 and 8, where the values of resistors and capacitors

are indicated. Figure 9 depicts the circuit design of the error dynamics. Figure 10

presents the experimental simulation of the phase portraits of the drive system (19).

Figure 11 shows the circuit simulations of the synchronization of drive and response

systems which indicates that complete synchronization of new hyperchaotic systems

is achieved.
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Fig. 11 Circuit simulation of synchronization between new hyperchaotic systems
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6 Conclusion

In this paper, we introduced a new hyperchaotic system and investigated the qualita-

tive properties of the system such as Lyapunov exponents, Kaplan-Yorke dimension,

equilibria, dissipativity, etc. We noted that the new system with three quadratic non-

linearities exhibits a self-excited hyperchaotic attractor. Next, we derived new results

for the complete synchronization of new hyperchaotic system via active control law.

To verify the feasibility of the theoretical model, the electronic circuits of the new

hyperchaotic systems have been designed and the circuital simulation results are in

good accordance with the theoretical model for the synchronization of the new hyper-

chaotic systems via active control.
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Abstract This chapter announces a new chaotic finance system and show that it is
a self-excited chaotic attractor. The phase portraits and qualitative properties of the
new chaotic system are described in detail. An electronic circuit realization of the
new chaotic finance system is carried out to verify the feasibility of the theoretical
model. Next, this chapter examines the control and synchronization of the new
chaotic financial system with uncertain parameters as well as known parameters
using adaptive control and backstepping control techniques. The designed adaptive
controller control and globally synchronizes two identical chaotic financial systems
evolving from different initial conditions. The designed controller is capable of
stabilizing the financial system at any position as well as controlling it to track any
trajectory that is a smooth function of time. Numerical simulations are presented to
demonstrate the feasibility of the proposed schemes.
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1 Introduction

Due to complexity and diversity of systems in real-world applications, there has
been increasing interest in presenting new systems to fit into it and also describe the
phenomenon observed. In order to achieve this, new chaotic systems are been
developed, studied and modelled. Thus, Chaos modelling has applications in sev-
eral areas of science, engineering (Vaidyanathan and Volos 2016a, b, 2017), social
sciences and other areas of human endeavor. Chaos control (which is stabilizing a
desired unstable periodic solution or one of the systems equilibrium points) and
synchronization (two systems are required to co-operate with each other, of which
many potential applications abounds) which looks impracticable several decades
ago now have applications in several areas such as memristors (Pham et al. 2015,
2016a), chemical reactors (Vaidyanathan 2015a, b, c), neural networks (Sadegh-
pour et al. 2012; Vaidyanathan 2015d, e), robotics (Jafarov et al. 2016), oscillators
(Yu et al. 2016; Vaidyanathan 2015f, g), secure communications (Xu et al. 2017),
financial economics etc.

In order to achieve chaos control and synchronization, many control techniques
have been developed over time, such as active control (Sundarapandian 2013;
Sarasu and Sundarapandian 2011a; Karthikeyan and Sundarapandian 2014; Idowu
et al. 2009), adaptive control (Tirandaz and Hajipour 2017; Sarasu and Sundara-
pandian 2011b, 2012; Fotsin and Bowong 2006; Sundarapandian and Karthikeyan
2012; Vaidyanathan and Idowu 2016; Idowu et al. 2013; Guo et al. 2009) back-
stepping control (Vaidyanathan 2017; Vaidyanathan and Rasappan 2014; Vaidya-
nathan et al. 2015a, 2016; Idowu et al. 2009), sliding mode control (Vaidyanathan
2014; Vaidyanathan and Sampath 2012, 2017; Vaidyanathan and Rhif 2017;
Lakhekar et al. 2016), etc. The techniques can be used for systems with either
known or unknown parameters, although, most applications are based on systems
with known parameters. In real-world situations, many systems are nonlinear with
unknown parameters and are desirable and this showcases the butterfly effect.

In engineering applications, some attention has been focused on effectively
creating chaos via simple physical systems, such as electronic circuits (Sundara-
pandian and Pehlivan 2012; Pehlivan et al. 2014; Akgul et al. 2016; Pham et al.
2016b; Volos et al. 2017). The pursuit of designing circuits to produce chaotic
attractors has become a focal point for engineers, not only because of their theo-
retical interest, but also due to their potential real-world applications in various
chaos-based technologies and information systems (Vaidyanathan and Volos
2016a, b, 2017; Azar and Vaidyanathan 2015, 2016, 2017). As a result we will be
presenting the circuit design of our new system.

Recently, chaotic systems are classified into two types of attractors, viz.
self-excited and hidden attractors (Leonov et al. 2011, 2015). An attractor is called a
self-excited attractor if its basin of attraction intersects an arbitrarily small open
neighborhood of equilibrium. Otherwise, the attractor is called a hidden attractor.
Thus, hidden attractor has a basin of attraction which does not overlap with an
arbitrarily small neighborhood of equilibria. For example, hidden attractors are
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attractors in systems without equilibria or with only one stable equilibrium. In this
chapter, we present a novel new chaotic finance system that is a self-excited
attractor.

According to Cai and Huang (2007), since the chaotic phenomenon in eco-
nomics was first found in 1985, great impact has been imposed on the prominent
economics at present, because the occurrence of the chaotic phenomenon in the
economic system means that the macroeconomic operation has in itself the inherent
indefiniteness. As a result utilizing the nonlinear dynamical theory to study the
complexity of economy and finance system has wide foreground, important theo-
retical and practical meaning (Wang et al. 2010). Similarly, Zhao et al. (2014) stated
that it is well known that the economic activity is a complex human behavior; it has
many uncertainties, which is reflected in the nonlinear model for economic
dynamics such as Goodwin’s nonlinear accelerator model (Godwin 1951), forced
van der Pol model on business cycle (Chian et al. 2006), the dynamic IS-LM model
(Fanti and Manfredi 2007), and nonlinear dynamical model on finance system (Ma
and Chen 2001a, b; Gao and Ma 2009). In these models, chaotic phenomena are
common and have showed the importance of the chaotic finance system as well as
the need for new models to be developed to fit into evolving scenarios. This we
have considered by bringing forth a new chaotic finance model, with two quadratic
nonlinearities and a quartic nonlinearity. To the best of our knowledge, this is the
only chaotic finance system with quartic nonlinearity designed so far.

In 2007, Cai and Huang investigated the complicated dynamical behaviour and
slow manifold of a new finance chaotic attractor and also presented the adaptive
control of the system amongst other things. Cai et al. (2009), presented the pro-
jective synchronization of the finance attractor using the active sliding mode
technique, whilst, Zheng and Du (2014), presented two feedback control schemes to
control the system to any equilibrium points and N identical chaotic systems to
achieve synchronization. In Abd-Elouahab et al. (2010), Yu et al. (2012) the chaos
control of a fractional-order financial system and control of a new hyperchaotic
finance system were investigated respectively and Xie et al. (2015), investigated
chaos synchronization of financial chaotic system with external perturbation, while
Chen (2006) investigated the dynamics and control of this system with multiple
delayed feed-backs.

Most investigations on the chaotic finance system has been with known
parameters, but due to nonlinearities involved in the system, it is ideal to consider
situations with unknown parameters, because in real-world situations, some of the
systems parameters are unknown. It has been established that the derivative of
adaptive controller for control and synchronization of chaotic system in the pres-
ence of unknown parameters is an important issue (Vaidyanathan et al. 2015b).

It is a known fact that in economic activities, chaos is undesired sometimes, so
there is need to control the chaotic orbits to a stable state or a periodic orbit and we
are going to achieve this in this chapter. Similarly, the synchronization of the
chaotic system with unknown parameters will be achieved, using adaptive control
technique.
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In this chapter, we describe a nine-term 3-D nonlinear finance chaotic system
consisting of two quadratic nonlinearities and a quartic nonlinearity. Our novel
finance chaotic system is obtained by adding a quartic nonlinearity to the finance
chaotic system presented by Gao and Ma (2009).

This chapter is organized as follows. Section 2 describes the dynamic equations,
phase portraits and qualitative properties of the novel 3-D finance chaotic system.
We show that the novel 3-D finance chaotic systems exhibits a self-excited
attractor. Section 3 describes the electronic circuit realization of the new finance
chaotic system. Section 4 discusses the adaptive controller to control the new
chaotic finance system with unknown parameters to equilibrium, while Sect. 5 is
for synchronization of the system with unknown parameters via adaptive controller.
In Sect. 6 we presented the chaos control and tracking while Sect. 7 discusses the
synchronization of the new system using backstepping technique. Section 8 con-
tains the conclusions.

2 A New Chaotic Finance System and Its Dynamic
Properties

Gao and Ma (2009) studied the nonlinear chaotic finance system described by the
3-D dynamics

x ̇1 = x3 + ðx2 − aÞx1
x2̇ = 1− bx2 − x21
x3̇ = − x1 − cx3

ð1Þ

where x1, x2, x3 are the states of the nonlinear system (1) with the following eco-
nomic interpretation.

In (1), x1 represents the interest rate, x2 represents the investment demand and x3
denotes the price index. Also, the parameter a represents the savings, b represents
the investment cost and c represents the commodities demand elasticity.

In the work (Gao and Ma 2009), it was shown that the system (1) exhibits a
strange chaotic attractor for the parameter values

a=0.6, b=0.1, c=1 ð2Þ

For numerical simulations, we take the initial values as

x1ð0Þ=0.2, x2ð0Þ=0.2, x3ð0Þ=0.2 ð3Þ

Then the Lyapunov exponents of the finance system (1) are obtained for the
parameter values (2) and initial values (3) using Wolf’s algorithm (Wolf et al. 1985)
as
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L1 = 0.0903, L2 = 0, L3 = − 0.3933 ð4Þ

This shows that the finance system (1) is chaotic. Since the sum of the Lyapunov
chaos exponents in (4) is negative, the nonlinear finance system (1) is dissipative.
Also, the Maximal Lyapunov Exponent (MLE) of the chaotic finance system (1) is
L1 = 0.0903.

The Kaplan Yorke dimension of the chaotic finance system (1) is calculated as

DKY =2+
L1 + L2
jL3j =2.2296 ð5Þ

which shows the complexity of the nonlinear finance system (1).
Figure 1 shows the strange chaotic attractor of the nonlinear finance system (1)

for the parameter values (2) and the initial state (3). We note that the strange
attractor of the finance system (1) is a two-scroll attractor. Figure 2 shows the
Lyapunov exponents of the nonlinear finance system (1).

In this chapter, we announce a new chaotic system by adding a quartic non-
linearity in the second differential equation of the nonlinear finance system (1).
Thus, we obtain a new 3-D nonlinear finance system given by

Fig. 1 Strange chaotic attractor of the nonlinear finance system (1)
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x1̇ = x3 + ðx2 − aÞx1
x2̇ = 1− bx2 − x21 − dx41
x3̇ = − x1 − cx3

ð6Þ

where x1, x2, x3 have the same economic interpretation as in the nonlinear finance
system (1). It is also remarked that the parameters a, b, c, d are all constants and
positive. Here, the parameter a represents the savings, b represents the investment
cost and c represents the commodities demand elasticity. The parameter d is a
positive scaling parameter.

In this work, we shall show that the new nonlinear finance system (6) is chaotic
when the parameter values are chosen as

a=0.6, b=0.1, c=1, d=0.1 ð7Þ

For numerical simulations, we take the initial values as

x1ð0Þ=0.2, x2ð0Þ=0.2, x3ð0Þ=0.2 ð8Þ

Then the Lyapunov exponents of the new finance system (6) are obtained for the
parameter values (7) and initial values (8) using Wolf’s algorithm (Wolf et al. 1985)
as

Fig. 2 Lyapunov exponents of the nonlinear finance system (1)
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L1 = 0.0964, L2 = 0, L3 = − 0.4078 ð9Þ

This shows that the new finance system (6) is chaotic. Since the sum of the
Lyapunov chaos exponents in (9) is negative, the new nonlinear finance system (6)
is dissipative. Also, the Maximal Lyapunov Exponent (MLE) of the new chaotic
finance system (6) is L1 = 0.0964.

The Kaplan Yorke dimension of the new chaotic finance system (6) is calculated
as

DKY =2+
L1 + L2
jL3j =2.2364, ð10Þ

which shows the complexity of the nonlinear finance system (6).
Since the Maximal Lyapunov Exponent (MLE) and Kaplan-Yorke dimension of

the new finance chaotic system (6) are greater than the Maximal Lyapunov
Exponent (MLE) and Kaplan-Yorke dimension of the nonlinear finance chaotic
system (1) respectively, it is clear that the new finance chaotic system (6) is more
complex and chaotic than the finance chaotic system (1).

Figure 3 shows the strange chaotic attractor of the new chaotic finance system
(6) for the parameter values (7) and the initial state (8). We note that the strange
attractor of the finance system (6) is a two-scroll attractor. Figure 4 shows the
Lyapunov exponents of the nonlinear finance system (6).

The equilibrium points of the new chaotic finance system are obtained by
solving the system of equations

Fig. 3 Strange chaotic attractor of the new chaotic finance system (6)
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x3 + ðx2 − aÞx1 = 0
1− bx2 − x21 − dx41 = 0

− x1 − cx3 = 0
ð11Þ

We take the parameter values as in the chaotic case (7). It is easy to check that
the new chaotic finance system has three equilibrium points given by

E1 =
0
10
0

2
4

3
5,E2 =

0.8828
1.6000
− 0.8828

2
4

3
5,E3 =

− 0.8828
1.6000
0.8828

2
4

3
5 ð12Þ

Let JðxÞ denote the Jacobian matrix for the new chaotic system (6) at any x∈R3.
We find that the matrix J1 = JðE1Þ has the spectral values

λ1 = − 0.1, λ2 = − 0.9029, λ3 = 9.3029 ð13Þ

This shows that the equilibrium point E1 is a saddle-point. Thus, E1 is unstable.
We find that the matrix J2 = JðE2Þ has the spectral values

λ1 = − 0.7750, λ2, 3 = 0.3375± 1.4869i ð14Þ

This shows that the equilibrium point E2 is a saddle-focus. Thus, E2 is unstable.
We also find that the matrix J3 = JðE3Þ has the spectral values

Fig. 4 Lyapunov exponents of the new chaotic finance system (6)

278 B. A. Idowu et al.



λ1 = − 0.7750, λ2, 3 = 0.3375± 1.4869i ð14Þ

This shows that the equilibrium point E3 is a saddle-focus. Thus, E3 is unstable.
Since all the equilibrium points of the new chaotic finance system are unstable,

this chaotic system exhibits a self-excited strange attractor.
Furthermore, we see that the new chaotic finance system (6) is invariant under

the change of coordinates

ðx1, x2, x3Þ↦ ð− x1, x2, − x3Þ ð15Þ

Thus, it follows that the new chaotic finance system (6) has a rotation symmetry
about the x2-axis and any non-trivial trajectory of the system (6) must have a twin
trajectory.

3 Circuit Simulation Results

In this section, circuit design of the new chaotic finance system (6) is presented. The
state variable x1, x2, x3 of system (6) are the scaled up to display in a larger range.
Therefore the system (6) will be changed to:

x1̇ = x3 + ð4x2 − aÞx1
x2̇ =

1
4
− bx2 − 4x21 − 64dx41

x3̇ = − x1 − cx3

8>>><
>>>:

ð16Þ

By applying Kirchhoff’s circuit laws, the corresponding circuital equations of
designed circuit can be written as

x1̇ =
1

C1R1
x3 +

1
C1R2

x1x2 −
1

C1R3
x1

x2̇ =
1

C2R7
V1 −

1
C2R4

x2 −
1

C2R5
x21 −

1
C2R6

x41

x3̇ = −
1

C3R8
x1 −

1
C3R9

x3

8>>>>>><
>>>>>>:

ð17Þ

where x1, x2, x3 are the voltages in the outputs of the operational amplifiers U1A,
U2A and U3A. The TL082CD operational amplifiers are used in this work. The
supplies of all active devices are ±15 V. We choose the values of the circuital
elements as:
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R1 =R8 =R9 = 400KΩ,R3 = 666.67KΩ,
R4 = 4MΩ,R6 = 62.5KΩ,R7 = 1.6MΩ,V1 = − 1VDC

R2 =R5 =R10 =R11 =R12 =R13 = 100KΩ
C1 =C2 =C3 = 1 nF

8>>><
>>>:

ð18Þ

Using the design approach based on the operational amplifiers, we have the
electronic circuit as shown in Fig. 5. Oscilloscope results are displayed in Fig. 6
where we show various phase portraits of the new chaotic finance system (6)
obtained in MultiSIM. It is observed that the obtained oscilloscope results (See
Fig. 6) confirm the feasibility of the theoretical model (See Fig. 3).

4 Design of Adaptive Controllers for Controlling a New
Chaotic Financial System with Unknown Parameters
to Equilibrium

The new chaotic fiancé attractor is describable by the following set of differential
equations:

x ̇1 = x3 + ðx2 − aÞx1
x2̇ = 1− bx2 − x21 − dx41
x3̇ = − x1 − cx3

ð19Þ

Fig. 5 The schematic of the circuit that emulates the proposed new finance chaotic system (6)
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Fig. 6 MultiSIM chaotic
attractors of the new finance
chaotic system (6), a x1-x2
plane, b x1-x3 plane and c x2-
x3 plane
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We assumed that the parameters a, b, c and d are as defined earlier in Sect. 2 and
in system (19) are unknown. Adaptive control method will be used to control the
financial chaotic system (19) to the equilibrium point.

We then consider the controlled system as follows:

x1̇ = x3 + ðx2 − aÞx1 + u1

x2̇ = 1− bx2 − x21 − dx41 + u2
x3̇ = − x1 − cx3 + u3

ð20Þ

where uiðtÞ (i=1, 2, 3) are the controllers to be determined appropriately.
According to the Lyapunov stability theory, we select a Lyapunov function as

follows:

V =
1
2
ðx21 + x22 + x23 + a ̃2 + b

2̃
+ c ̃2 + d

2̃Þ ð21Þ

where a ̃= a− a ̄, b ̃= b− b,̄ c ̃= c− c ̄ and d ̃= d− d ̄ are the estimated values of these
unknown parameters respectively. Differentiating Eq. (21) with respect to time,
result into Eq. (22).

V ̇= x1x1̇ + x2x2̇ + x3x3̇ + a ̃a ̃̇+ bb̃ ̃̇+ c ̃c ̃̇+ dd̃ ̃̇ ð22Þ

In order to ensure that the controller in Eq. (20) converges to the origin, we
choose the control input from Eq. (20) as follows

u1 = − ðx2 − aÞx1 − x3 − x1

u2 = bx2 + x21 + dx41 − 1− x2
u3 = x1 + cx3 − x3

ð23Þ

We substituted Eq. (20) in Eq. (22) as follows;

V ̇= x1½x3 + ðx2 − aÞx1 + u1�+ x2½1− bx2 − x21 − dx41 + u2�
+ x3½− x1 − cx3 + u3�+ a ̃ð− a ̃̇Þ+ bð̃− b ̃Þ̇+ c ̃ð− c ̄̇Þ+ dð̃− d ̄Þ̇

V ̇= x1½x3 + ðx2 − aÞx1 + u1�+ x2½1− bx2 − x21 − dx41 + u2�
+ x3½− x1 − cx3 + u3�+ a ̃ð− a ̄̇− x21Þ+ bð̃− b ̄̇− x22Þ+ c ̃ð− c ̄̇− x23Þ
+ dð̃− d ̄̇− x2x41Þ

ð24Þ

We choose the following parameter estimation update laws from Eq. (24).
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a ̄̇= − x21

b ̄̇= − x22
c ̄̇= − x23

d ̄̇= − x2x41

ð25Þ

Substituting Eqs. (25) and (23) respectively in Eq. (24) we have,

V ̇= − x21 − x22 − x23 < 0

According to Lyapunov stability theory, the condition above ensures that the
controlled system (20) converges to the equilibrium point with the controllers in
Eq. (23) and the parameter update laws in Eq. (25).

Furthermore, we verify the effectiveness and feasibility of the derived controllers
in (25) above by simulating the dynamics of drive system and response system
using the fourth-order Runge-Kutta algorithm with initial conditions
ðx1, x2, x3Þ= ð1.0, 5.0, − 5.0Þ, a time step of 0.001 and fixing the parameter values
of the system to ensure a chaotic dynamics of the state variables, we solved system
(20) with the control function as defined in (25). The results shows that the error
state variable moves chaotically with time when the controllers are deactivated and
when the controllers are switched on at t=20 as shown in Fig. 7. However, the
initial values of the parameter update laws (25) are chosen as a1ð0Þ= − 0.5,

Fig. 7 Controlled states of the new chaotic finance system to equilibrium
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b1ð0Þ=0.4, c1ð0Þ=2.0 and d1ð0Þ=8.0. The system is controlled to a stable
equilibrium when the controllers (23) are activated as shown in Fig. 7.

5 Design of Adaptive Controllers for Synchronization
of a New Chaotic Financial System with Unknown
Parameters to Equilibrium

In this section, by using adaptive control technique, we designed controllers that
can globally synchronize two identical financial chaotic systems evolving from
different initial conditions.

We regard the system (19) as the drive (transmitter) while the following is the
response (receiver).

y ̇1 = y3 + ðy2 − aÞy1 + u1

y2̇ = 1− by2 − y21 − dy41 + u2
y3̇ = − y1 − cy3 + u3

ð26Þ

where uiðtÞ ði=1, 2, 3Þ are the control functions to be designed.
We assume that the parameters a, b, c and d are unknown parameters.
Using this notation; ei = yi − xi or yi = ei + xi, we obtain the error vector given in

Eq. (27) below:

e1̇ = e3 + x1e2 + x2e1 + e1e2 − ae1 + u1

e2̇ = − be2 − ð2x1e1 + e21Þ− dðe41 + 4x1e31 + 2x21e
2
1 + 4x31e1Þ+ u2

e3̇ = − e1 − ce3 + u3

ð27Þ

We choose a Lyapunov function; V = 1
2 ðe21 + e22 + e23 + a2̃ + b

2̃
+ c2̃ + d

2̃Þ and
differentiating with respect to time, to have;

V ̇= e1e1̇ + e2e2̇ + e3e3̇ + a ̃a ̃̇+ bb̃ ̃̇+ c ̃c ̃̇+ dd̃ ̃̇

V ̇= e1 e3 + x1e2 + x2e1 + e1e2 + u1½ �
+ e2 − be2 − 2x1e1 + e21

� �
− d e41 + 4x1e31 + 2x21e

2
1 + 4x31e1

� �
+ u2

� �

+ e3 − e1 − ce3 + u3½ �+ a ̃ð− a ̄̇Þ+ bð̃− b ̄Þ̇+ c ̃ð− c ̄̇Þ+ dð̃− d ̄Þ̇

ð28Þ

where a ̄, b,̄ c ̄ and d ̄ are the estimate of a, b, c and d respectively.

284 B. A. Idowu et al.



Hence,

V ̇= e1 e3 + x1e2 + x2e1 + e1e2 − ae1 + u1½ �
+ e2 − be2 − 2x1e1 + e21

� �
− d e41 + 4x1e31 + 2x21e

2
1 + 4x31e1

� �
+ u2

� �

+ e3 − e1 − ce3 + u3½ �+ a ̃ − a ̄̇− e21
� �

+ b ̃ − b ̄̇− e22
� �

+ c ̃ − c ̄̇− e23
� �

+ d ̃ − d ̄̇− e2 e41 + 4x1e31 + 2x21e
2
1 + 4x31e1

� �� �

From Eq. (27), the controller function is chosen as follows:

u1 = ae1 − ðx1e2 + x2e1 + e1e2Þ− e3 − e1

u2 = be2 + 2x1e2 + e21 + dðe41 + 4x1e31 + 2x21e
2
1 + 4x31e1Þ− e2

u3 = e1 + ce3 − e3

ð29Þ

The parameter updates estimation law is chosen as follows:

a ̄̇= − e21 − a

b ̄̇= − e22 − b

c ̄̇= − e23 − c

d ̄̇= − e2ðe41 + 4x1e31 + 2x21e
2
1 + 4x31e1Þ− d

ð30Þ

Substituting Eq. (30) into Eq. (28) yields,

V ̇= − e21 − e22 − e23 − a ̃2 − b
2̃ − c ̃2 − d

2̃
< 0 ð31Þ

With condition (31), the error dynamical system converges to the origin
asymptotically in line with the Lyapunov stability theory. Also the drive system
(19) is synchronized with the response system (26) with controller (29) and the
parameter update law (30).

Using fourth-order Runge-Kutta routine with initial conditions
ðx, y, zÞ = ð5.0, 10.0, 7.0Þ, a time step of 0.001 and fixing the parameter values as in
Fig. 7 to ensure chaotic dynamics of the state variables, we solved system (20) with
the controllers uiðtÞ, i=1, 2, 3 as defined in (29). The results obtained show that the
state variables move chaotically with time when the controllers are deactivated and
when the controllers are switched on at time t = 20, the state variables converges to
the equilibrium point. The results are shown in Figs. 8 and 9.
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Fig. 8 Error dynamics between the two chaotic financial system with the controller deactivated
for 0 < t<20 and activated for t≥ 20

Fig. 9 Time responses of the parameter estimation errors
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6 Chaos Control and Tracking of a New Finance Chaotic
Attractor Based on Backstepping Approach

Here, we present a recursive backstepping tracking control for the new chaotic
financial system, to track a smooth function of time f ðtÞ.

From Eq. (19), we have

x1̇ = x3 + ðx2 − aÞx1 + u1

x2̇ = 1− bx2 − x21 − dx41 + u2
x3̇ = − x1 − cx3 + u3

ð32Þ

The state variables x1, x2 and x3 of the system (20) have the desired values x1d,
x2d and x3d respectively.

The error states between the states variable and the desired value are;

ex1 = x1 − x1d
ex2 = x2 − x2d
ex3 = x3 − x3d

ð33Þ

To determine a general control function, uiðtÞ, ði=1, 2, 3Þ that can control
system (20), to track any trajectory f ðtÞ that is a smooth function of time, we let;

x1d = f ðtÞ
x2d = c1ex1
x3d = c2ex1 + c3ex2

ð34Þ

where ci (i=1, 2, 3) are the arbitrary control parameters to be chosen appropriately.
By substituting Eq. (34) into Eq. (33) and differentiating the resulting equation with
respect to time, we have the following system of error vector.

e ̇x1 = ex3 + c2ex1 + c3ex2 + ðex2 + c1ex1 − aÞðex1 + f ðtÞÞ− f ð̇tÞ+ u1

eẋ2 = 1− bðex2 + c1ex1Þ− ðex1 + f ðtÞÞ2 − dðex1 + f ðtÞÞ4 − c1eẋ1 + u2
eẋ3 = − ðex1 + f ðtÞÞ− cðex3 + c2ex1 + c3ex2Þ− c2eẋ1 − c3eẋ2 + u3

ð35Þ

To stabilize the error system (33), we consider a Lyapunov function of the form;

V =
1
2
ðkx1e2x1 + kx2e2x2 + kx3e2x3Þ ð36Þ

where kx1, kx2 and kx3 are positive constant coefficient and the derivative of Eq. (36)
are as follows;
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V ̇= kx1ex1eẋ1 + kx2ex2eẋ2 + kx3ex3eẋ3 ð37Þ

To satisfy the condition for asymptotic stability of the error system (35), nec-
essary for tracking, i.e. V ̇= − ∑ k2xie

2
xi <0; i=1, 2 and 3, we substitute Eq. (35) into

Eq. (37) with the choice of control input function uiðtÞ (i = 1, 2, 3) as follows;

u1 = ex3 − c2ex1 − c3ex2 − ðex2 + c1ex1 − aÞðex1 + f ðtÞÞ− f ð̇tÞ− ex1

u2 = − 1+ bðex2 + c1ex1Þ+ ðex1 + f ðtÞÞ2 + dðex1 + f ðtÞÞ4 − ex2
u3 = ðex1 + f ðtÞÞ+ cðex3 + c2ex1 + c3ex2Þ− ex3

ð38Þ

We observed from the numerical simulation that for system (19) to be effectively
controlled to follow a smooth function of time, we chose c1 = c2 = c3 = 1, which
reduces the controller in Eq. (38) to;

u1 = ex3 − ex1 − ex2 − ðex2 + ex1 − aÞðex1 + f ðtÞ− f ð̇tÞÞ− ex1

u2 = − 1+ bðex2 + ex1Þ+ ðex1 + f ðtÞÞ2 + dðex1 + f ðtÞÞ4 − ex2
u3 = ðex1 + f ðtÞÞ+ cðex3 + ex1 + ex2Þ− ex3

ð39Þ

In order to verify the effectiveness of the proposed scheme, the fourth-order
Runge-Kutta routine is applied with the initial conditions ðx, y, zÞ= ð5.0, 10.0, 7.0Þ,
a time step of 0.001 and fixing the parameter values as in Fig. 7 to ensure chaotic

Fig. 10 Time responses of the state variables ðx, y, zÞ for chaotic financial system with the control
uiðtÞ activated at t=20 to track f ðtÞ=27 cos 0.05t
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dynamics of the state variables, we solve system (32) with the controllers uiðtÞ,
i=1, 2, 3 as defined in (39). The result obtained show that the state variables move
chaotically with time when the controllers are deactivated and when the controllers
are switched on at t≥ 20 the state variables are controlled to track any desired
smooth functions of time such as f ðtÞ=27 cos 0.05t as displayed in Fig. 10. The
results showed that the recursive backstepping controllers (39) are effective in the
stabilization and to track any desired smooth function f ðtÞ of the new chaotic
financial system.

7 Synchronization of a New Financial Attractor Using
Active Backstepping Method

Our aim here is to design an appropriate active backstepping nonlinear control
vector u= ½u1, u2, u3�T that can stabilize the error states at the origin also to make
the state variables of the response (receiver) system to track the ones of drive
(transmitter) system.

From Eqs. (19) and (26) the drive and response systems are given in Eqs. (34)
and (35) respectively:

x ̇1 = x3 + ðx2 − aÞx1
x2̇ = 1− bx2 − x21 − dx41
x3̇ = − x1 − cx3

ð40Þ

y1̇ = y3 + ðy2 − aÞy1 + u1

y2̇ = 1− by2 − y21 − dy41 + u2
y3̇ = − y1 − cy3 + u3

ð41Þ

Using this notation; ei = yi − xi or yi = ei + xi, we obtained the error vector given
in Eq. (42).

e1̇ = e3 + x1e2 + x2e1 + e1e2 − ae1 + u1

e2̇ = − be2 − ð2x1e1 + e21Þ− dðe41 + 4x1e31 + 2x21e
2
1 + 4x31e1Þ+ u2

e3̇ = − e1 − ce3 + u3

ð42Þ

We stabilize the first equation in system (42) by regarding e2 as a virtual con-
troller. Selecting a Lyapunov function V1ðe1Þ= 1

2 e
2
1, and differentiating it with

respect to time, we have;
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V ̇1ðe1Þ= e1ðe3 + x2e1 − ae1 + ðx1 + e1Þe2 + u1Þ ð43Þ

We estimate that the virtual controller is e2 = α1ðe1Þ. Then Eq. (43) becomes;

V 1̇ðe1Þ= e1ðe3 + x2e1 − ae1 + ðx1 + e1Þα1ðe1Þ+ u1Þ.

We choose u1 = − ðe3 + x2e1Þ and estimating that α1ðe1Þ=0,
V 1̇ðe1Þ= − ae21(negative definite since a>0). This means that the e1 subsystem is
stabilized since the virtual controller α1ðe1Þ is measurable. The error ω2 between e2
and α1ðe1Þ is defined as;

ω2 = e2 − α1ðe1Þ= e2 ð44Þ

Substituting for e2̇ and e2 from Eqs. (42) and (44) respectively into the time
derivative of Eq. (38) yields;

ω2̇ = − bω2 − ð2x1e1 + e21Þ− dðe41 + 4x1e31 + 2x21e
2
1 + 4x31e1Þ+ u2 ð45Þ

We now stabilize ðe1,ω2Þ subsystem given by Eq. (45) as follows. We select
another Lyapunov function, V2ðe1,ω2Þ= v1ðe1Þ+ 1

2ω
2
2 and its time derivative

yields;

V ̇2ðe1,ω2Þ= v1̇ +ω2ω2̇ ð46Þ

From Eqs. (41) and (42),

V ̇1ðe1Þ= − ae21 + ðx1 + e1Þe1ω2 ð47Þ

Thus,

V 2̇ðe1,ω2Þ= − ae21 + ½− bω2 − x1e1

− dðe31 + 4x1e21 + 2x21e1 + 4x31Þe1 + u2�
ð48Þ

If u2 = x1e1, and e1 = α2ðe1,ω2Þ then Eq. (48) reduces to;

V ̇2ðe1,ω2Þ= − ae21 +ω2½− bω2 − dðe31 + 4x1e21 + 2x21e1 + 4x31Þα2�.

If the estimative function α2ðe1,ω2Þ=0, then V ̇2 = − ae21 − bω2
2 < 0 (negative

definite since a, b>0). Thus, we can conclude that the ðe1,ω2Þ subsystem is stable
since α2ðe1,ω2Þ is estimated.
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The error ω3 between e3 and α2ðe1,ω2Þ is:

ω3 = e3 − α2ðe1,ω2Þ= e3 ð49Þ

Substituting for e3̇ and e3 from Eqs. (40) and (49) into the time derivative of
Eq. (49) gives;

ω ̇3 = − e1 − cω3 + u3 ð50Þ

In order to stabilize (e1,ω2,ω3) complete system given by Eqs. (40), (42) and
(50), we select a Lyapunov function V3ðe1,ω2,ω3Þ as follows;

V3ðe1,ω2,ω3Þ= v2ðe1,ω2Þ+ω3ω3̇ ð51Þ

We differentiate Eq. (51) with respect to time as;

V 3̇ðe1,ω2,ω3Þ= v2̇ðe1,ω2Þ+ω3ω3̇ ð52Þ

Hence,

V 3̇ðe1,ω2,ω3Þ= − ae21 − bω2
2 +ω3½− e1 − cω3 + u3�.

But e1 = α2ðe1,ω2Þ=0.
Thus, we have

V ̇3ðe1,ω2,ω2Þ= − ae21 − bω2
2 +ω3½− cω3 + u3�.

If u3 = 0, V ̇3 = − ae21 − bω2
2 − cω2

3 < 0 (i.e. the time derivative of Lyapunov is
negative definite).

According to Lassalle-Yoshizawa theorem, it follows that all the solution of
Eq. (36) converges to the manifold ei =0 (i=1, 2, 3) as t → ∞. Hence, the systems
(40) and (41) are globally synchronized.

The synchronization aim is achieved with the control input;

u1 = − ðe3 + x2e1Þ
u2 = x1e1
u3 = 0

ð53Þ

To verify the feasibility and effectiveness of the designed backstepping control
function (53), we simulate the dynamics of drive system and response system using
the fourth-order Runge-Kutta algorithm with initial conditions
ðx1, x2, x3Þ= ð1.0, 5.0, − 5.0Þ,ðy1, y2, y3Þ= ð2.0, 8.0, − 1.0Þ, with a time grid of
0.001 and fixing the parameter values as in Fig. 7 to ensure a chaotic dynamics of
the state variables. We solve systems (40) and (41) with the control function as
defined in (53). The results shows that the error state variable moves chaotically
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with time when the controllers are deactivated and when the controllers are swit-
ched on at t = 20 as depicted in Fig. 11 the error state variables converges to zero
and thereby guaranteeing the synchronization of systems (40) and (41).

8 Conclusions

In this chapter, we presented a new chaotic finance system that is a self-excited
chaotic attractor with two quadratic nonlinearities and a quartic nonlinearity and
also describe its phase portrait and qualitative properties. The Maximal Lyapunov
Exponent (MLE) and Kaplan-Yorke dimension of the new finance chaotic system
(6) are greater than the Maximal Lyapunov Exponent (MLE) and Kaplan-Yorke
dimension of the nonlinear finance chaotic system (1) respectively, thus, it is clear
that the new finance chaotic system (6) presented here is more complex and chaotic
than the finance chaotic system (1) by Gao and Ma (2009). The electronic circuit
realization of the new chaotic finance system was also carried out to verify the
feasibility of the theoretical model.

We utilized the adaptive and backstepping control techniques to synchronize the
new chaotic financial system with fully unknown and known parameters respec-
tively. Since in economic activities, chaos is sometimes not desired, we designed

Fig. 11 Error dynamics between the two chaotic financial with the controller deactivated for
0 < t<20 and activated for t≥ 20
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control functions to control and track the new chaotic financial system. The
designed controllers control and globally synchronize two identical chaotic finan-
cial systems evolving from different initial conditions.
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Part II
Nonlinear Dynamical Systems

with Hidden Attractors



Periodic Orbits, Invariant Tori and Chaotic
Behavior in Certain Nonequilibrium
Quadratic Three-Dimensional Differential
Systems

Alisson C. Reinol and Marcelo Messias

Abstract In (Jafari et al, Phys Lett A 377(9):699-702, 2013) the authors gave the

expressions of seventeen classes of quadratic differential systems defined in ℝ3
,

depending on one real parameter a, which present chaotic behavior even without hav-

ing any equilibrium point, for suitable choices of the parameter a > 0. In that paper,

such systems are denoted by NE1 to NE17. As these systems have no equilibrium

points, a natural question arises: how chaotic motion is generated in their nonequi-

librium phase spaces? In this note we combine analytical and numerical results in

order to study the integrability and dynamics of systems NE1, NE6, NE8 and NE9
among those listed in Jafari et al. (2013). We show that they exhibit a quite similar

dynamical behavior and, consequently, the mechanisms for birth of chaos in these

systems are similar. In this way, we intend to give at least a partial answer to the

above question and contribute to better understand the complicated dynamics of the

considered systems, in particular concerning the existence of periodic orbits and

invariant tori and the emergence of chaotic behavior. The periodic orbits are studied

using the Averaging Theory while the invariant tori are proved to exist via KAM

Theorem. The chaotic dynamics arises from the broken of some of these invariant

tori.
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1 Introduction

Let 𝕂[x, y, z] be the ring of polynomials in the variables x, y, z with coefficients in

𝕂, where 𝕂 = ℝ or ℂ, and

X = P 𝜕

𝜕x
+ Q 𝜕

𝜕y
+ R 𝜕

𝜕z

the vector field associated to the differential system

ẋ = P(x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z), (1)

where P, Q, R are relatively prime polynomials in ℝ[x, y, z] and the dot denotes

derivative with respect to the independent variable t, usually called the time. We

say that d = max{degP, degQ, degR} is the degree of system (1) (or the degree of

the vector field X ).

Besides their theoretical importance, polynomial differential systems like (1) are

used as mathematical models of many natural phenomena arising in Physics, Chem-

istry, Biology, Engineering, and other sciences, see for instance Strogatz (2001),

Wiggins (2003) and references therein. Hence understanding the dynamical behav-

ior of the solutions of these systems is a very important matter, since it enables to

better understand the natural phenomena modeled by them. In this way hundreds of

books and papers have been published in the last 30 years aiming to describe the

dynamics of system (1), which is far from being completely understood, even in the

quadratic case, that is when it has degree d = 2. Indeed the dynamics generated by

the flow of system (1) with degree d ≥ 2 is, in general, very complex and difficult to

be studied. Beyond equilibrium points, periodic, homoclinic and heteroclinic orbits,

which are commonly encountered in the phase space of systems like (1), they may

present chaotic behavior, which indicates the occurrence of complicated dynamical

phenomena (Guckenheimer and Holmes 2002; Lorenz 1963; Wiggins 1988).

In general, it is possible to find a chaotic attractor in differential systems presenting

chaotic behavior. An attractor of system (1) is a compact and connected set in its phase

space for which all solutions in an open neighborhood of this set tend to as t → +∞. It

can be a stable equilibrium point or periodic orbit, or, in some cases, a more compli-

cated set, called chaotic attractor. The first chaotic attractor in a quadratic polynomial

differential system of the form (1) was reported by Edward Lorenz in 1963 while he

was studying the thermal convection of fluids in the atmosphere (Lorenz 1963; Spar-

row 1982). Since then, several differential systems defined in ℝn
, with n ≥ 3, having

this kind of attractors have been found and intensively studied, from theoretical and

physical points of view, as for instance in the Chua system (Chua 1994), Chen system

(Chen and Ueta 1999), Lü system (Lü and Chen 2002), Rabinovich system (Pikovskii

et al. 1978), Rössler system (Rössler 1976), among others. For an introduction and

some recent applications of chaotic dynamics in differential systems like (1) see for
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instance (Alligood et al. 1996; Broer and Takens 2011; Cencini and Vulpiani 2010;

Chen and Yu 2003; Ott 2002; Wiggins 2003).

Recently, chaotic attractors of differential system (1) have been categorized as

either self-excited or hidden attractors (Dudkowski et al. 2016; Leonov and Kuznetsov

2013a, b). Whereas a self-excited attractor has a basin of attraction that overlaps with

the neighborhood of an unstable equilibrium point, a hidden attractor has a basin

of attraction which does not intersect with small neighborhoods of any equilibrium

point. The concept of hidden attractor was introduced in connection with the discov-

ery of hidden oscillations in the classical and generalized Chua’s circuit (Kuznetsov

et al. 2010; Leonov et al. 2011, 2010). Chaotic attractors numerically observed in dif-

ferential systems with no equilibrium points (Jafari et al. 2013; Li and Sprott 2014;

Wang et al. 2012), with only one stable equilibrium point (Kingni et al. 2014; Lao

et al. 2014; Molaie et al. 2013; Wang and Chen 2012; Wei and Pehlivan 2012; Wei and

Yang 2011; Wei and Zhang 2014) or with an infinite number of equilibrium points

(Gotthans and Petržela 2015; Jafari and Sprott 2013; Jafari et al. 2016) are examples

of hidden attractors.

Differential systems with hidden attractors are rarely encountered, because there

is no standard way of predicting the existence of this kind of attractors. In this way,

only a few examples of such systems have been reported in the literature, as the ones

mentioned above. Moreover, there is little knowledge about the formation of hidden

attractors. Indeed, self-excited attractors in classical chaotic differential systems, as

in the Lorenz and in the Chua systems, have some known routes to their formation

(known as “routes to chaos”), as the bifurcation of homoclinic orbits (Shil’nikov-like

theorems) or cascade of period doubling bifurcations, for more information about

these bifurcations see Chaps. 4 and 6 of Kuznetsov (1998). On the other hand, very

little is reported in the literature about the formation of hidden attractors.

In Jafari et al. (2013), the authors gave the expressions of seventeen classes of

quadratic differential systems defined in ℝ3
, depending on one real parameter a,

which present chaotic behavior for certain values of a, even without having any equi-

librium point. In that paper such systems are denoted by NE1 to NE17. This kind of

differential systems appear naturally in the study of various electromechanical models

with rotation and electrical circuits with cylindrical phase space (Kuznetsov 2016).

An analytical proof about the existence of chaotic attractors in these systems is yet

needed. In this case, the attractors would be called hidden attractors because the sys-

tems have no equilibrium points. In this note we combine analytical and numerical

results in order to study the integrability and dynamics of systems NE1, NE6, NE8 and

NE9 shown in Table 1, which are among those provided in Jafari et al. (2013). We shall

see in the course of this chapter that they present quite similar dynamical behavior. In

this way we intend to give at least a partial answer to the question about how chaotic

motion is generated in these nonequilibrium differential systems and contribute to

better understand the complicated dynamics of them, in particular concerning the

existence of periodic orbits and invariant tori and the emergence of chaotic behavior.

In the third column of Table 1 are shown the values of the real parameter a for

which the corresponding systems present chaotic behavior, according to Jafari et al.

(2013).
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Table 1 Differential systems NE1, NE6, NE8 and NE9 given in Jafari et al. (2013)

Model Equations a

NE1 (Sprott A)

ẋ = y,
ẏ = −x − yz,
ż = y2 − a

1.0

NE6

ẋ = y,
ẏ = z,
ż = −y − xz − yz − a

0.75

NE8

ẋ = y,
ẏ = −x − yz,
ż = xy + 0.5x2 − a

1.3

NE9

ẋ = y,
ẏ = −x − yz,
ż = −xz + 7x2 − a

0.55

System NE1 in Table 1 is also called Sprott A system because it appeared in Sprott

(1994) as the Case A system in a list of nineteen distinct differential systems in ℝ3

with quadratic nonlinearities and presenting chaotic dynamics. In Messias and Reinol

(2017b) we studied the integrability and global dynamics of NE1 system, proving that

for a = 0 it has a line of equilibria in the z–axis, its phase space is foliated by con-

centric invariant spheres with two equilibrium points located at their south and north

poles and each one of these spheres is filled by heteroclinic orbits of south pole—

north pole type. For a ≠ 0, the spheres are no longer invariant algebraic surfaces and

the heteroclinic orbits are destroyed. Then, from a detailed numerical study in the

case a > 0 small, we observed that small nested invariant tori and a limit set, which

encompasses these tori and is the 𝛼– and ω–limit set of almost all orbits in the phase

space, are formed in a neighborhood of the origin. As the parameter a increases, this

limit set expands and chaotic dynamics were detected in Sprott A system, for certain

positive values of the parameter a. For details see Messias and Reinol (2017b).

In Messias and Reinol (2017a), through a further study of the line of equilibria at

the z–axis, which exists in NE1 system for a = 0, we showed that all its equilibrium

points are normally hyperbolic, except the origin, which is a non-isolated zero-Hopf
equilibrium point. We recall that an (isolated) equilibrium point of a differential sys-

tem inℝ3
is called a zero-Hopf equilibrium if the Jacobian matrix of the system at this

point has a zero and a pair of purely imaginary eigenvalues. As for a = 0 the origin of

NE1 system is a non-isolated equilibrium point with eigenvalues 0 and ±i, then it is

called a non-isolated zero-Hopf equilibrium point. This type of equilibrium was stud-

ied for instance in Llibre and Xiao (2014), where the authors proved the existence of

one or two limit cycles bifurcating from it by using analysis techniques and the aver-

aging theory of second order. In Messias and Reinol (2017a), by using the averaging

theory and the KAM (Kolmogorov-Arnold-Moser) Theorem we proved that there

exists a linearly stable periodic orbit which bifurcates from the non-isolated zero-

Hopf equilibrium point located at the origin of system NE1 and nested invariant tori
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are created around this periodic orbit. These dynamical elements play an important

role in the emergence of chaotic behavior in NE1 system. Indeed, chaotic seas are cre-

ated through the destruction of some of these invariant tori, when the parameter a is

varied. Furthermore, it was also proved in Messias and Reinol (2017a) that for a ≠ 0
the NE1 system has neither invariant algebraic surfaces nor polynomial first integrals.

We observe that NE1 system is a particular case of the well-known and widely stud-

ied Nosé-Hoover oscillator (Hoover 1985; Nosé 1984; Posch et al. 1986); some of

the analytical results obtained in Messias and Reinol (2017a, b) were yet numerically

described in Posch et al. (1986).

Based on the results obtained for NE1 system in Messias and Reinol (2017a, b), we

investigate the dynamics of the other sixteen differential systems provided in Jafari

et al. (2013), that is NE2–NE17, trying to better understand the dynamics of these

systems. After an extensive theoretical and numerical study, we obtained that NE6,

NE8 and NE9 systems shown in Table 1 have similar dynamical behavior than NE1
system, in particular they seem to present similar mechanisms of birth of chaos. More

precisely, although having no invariant algebraic surfaces for a = 0, NE8 and NE9 sys-

tems have a line of equilibria at the z–axis and in both cases, as well as in NE1 system,

all the equilibria at this line are normally hyperbolic, except the origin, which is a non-

isolated zero-Hopf equilibrium point. The same is true for NE6 system, except that in

this case the line of equilibria existing for a = 0 is given by the x–axis. In this note,

by using the averaging theory we show that for a > 0 small enough a linearly stable

periodic orbit bifurcates from the non-isolated zero-Hopf equilibrium at the origin

and nested invariant tori are formed around this periodic orbit, in NE6, NE8 and NE9
systems, similarly to what happens in NE1 system. The existence of these invariant

tori are proved using the KAM Theorem. Finally, a detailed numerical investigation

of the dynamics of NE6, NE8 and NE9 systems suggests that the existence of such a

periodic orbit bifurcating from the origin and nested invariant tori around it play an

important role in the emergence of chaotic behavior in their nonequilibrium phase

spaces, which is also determined by the broken of some of these invariant tori.

In the subsequent part of this chapter we give the proofs of the statements above,

and it is organized as follows. In Sect. 2 we study the existence of invariant algebraic

surfaces and polynomial first integrals for NE6, NE8 and NE9 systems, while in Sect. 3

we prove the existence of periodic orbits and nested invariant tori for these systems.

The numerical study of the dynamics of such three systems, including the creation

of chaotic dynamics, are presented in Sect. 4. Some concluding remarks are given in

Sect. 5.

2 Invariant Algebraic Surfaces and Polynomial First
Integrals

As we observed in the Introduction, the dynamics generated by the flow of differ-

ential systems like (1) with degree d ≥ 2 are, in general, very difficult to be stud-

ied. One of the tools used to study the dynamics of them is the determination of
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two-dimensional algebraic surfaces embedded in ℝ3
which are invariant under the

flow of these systems, called invariant algebraic surfaces, whose the precise defini-

tion is given below.

Definition 1 Let f = f (x, y, z) be a non-constant polynomial in ℂ[x, y, z]. The alge-

braic surface f = 0 is an invariant algebraic surface of differential system (1) if for

some polynomial K = K(x, y, z) in ℂ[x, y, z] we have

X (f ) = P
𝜕f
𝜕x

+ Q
𝜕f
𝜕y

+ R
𝜕f
𝜕z

= K f , (2)

where X is the vector field associated to the polynomial differential system (1). The

polynomial K is said the cofactor of the invariant algebraic surface f = 0 and f is

called Darboux polynomial. If d is the degree of system (1), then K has degree at

most d − 1.

Note that on the points of the algebraic surface f = 0 the gradient vector of f , that

is (𝜕f∕𝜕x, 𝜕f∕𝜕y, 𝜕f∕𝜕z), is orthogonal to the vector field X associated to system (1).

Hence at every point of f = 0 the vector field X is tangent to the surface f = 0, then

this surface is formed by orbits of X . In this way the existence of invariant algebraic

surfaces helps strongly the study of the dynamics of differential systems with compli-

cated behavior, as it was shown, for example, in the study of Sprott A system (Messias

and Reinol 2017b), Rikitake system (Llibre and Messias 2009), Rabinovich system

(Llibre et al. 2008), Lorenz system (Llibre et al. 2010) and Chen system (Llibre et al.

2012). Hence it is important to investigate if system (1) has invariant algebraic sur-

faces.

If the cofactor K is identically zero in Eq. (2), then f is a polynomial first integral
of differential system (1). A first integral of system (1) is a non-constant analytic

function which is constant on all solution curves (x(t), y(t), z(t)) of the system. The

knowledge of a first integral of system (1) in ℝ3
allows to reduce the study of this

system in one dimension. Moreover, if system (1) has two functionally independent

first integrals f1 and f2, then we say that the system is integrable, which means that

its phase space can be completely determined, since its orbits are on the intersection

of the level surfaces f1 = c1 and f2 = c2, for c1, c2 ∈ ℝ.

In Definition 1 we allowed the invariant algebraic surface f = 0 to be complex,

that is f ∈ ℂ[x, y, z], even in the case that the polynomial differential system (1) is

real, because even for real polynomial differential systems the existence of a real first

integral can be forced by the existence of complex invariant algebraic surfaces. For

more details about this fact see Chap. 8 of Dumortier et al. (2006).

In Messias and Reinol (2017b) it was proved that, for a = 0, NE1 system has a poly-

nomial first integral given by f (x, y, z) = x2 + y2 + z2. Consequently, its phase space

is foliated by the invariant spheres x2 + y2 + z2 = r2, with r > 0, which are formed

by an infinite set of heteroclinic orbits of south pole—north pole type, as shown in

Fig. 1. Note that the existence of concentric invariant spheres determines a compact

structure of the orbits in the phase space of NE1 system for a = 0. In Messias and

Reinol (2017a) it was proved that, for a ≠ 0, NE1 system has neither invariant alge-

braic surfaces nor polynomial first integrals.
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(a) (b)

(c)

Fig. 1 Flow of NE1 system with a = 0 restricted to the invariant spheres x2 + y2 + z2 = r2 for a
0 < r < 2, b r = 2 and c r > 2. Observe that the heteroclinic orbits on the invariant spheres connect

a pair of foci in a, improper nodes in b and nodes in c

Here we prove that NE6 system has neither invariant algebraic surfaces nor poly-

nomial first integrals for all a ∈ ℝ. In order to do it, the following lemma will be

useful.

Lemma 1 If f (x, y, z) = 0 is an invariant algebraic surface of NE6 system with cofac-
tor Kf (x, y, z), then F(X,Y ,Z) = 𝜇

nf (X,Y , 𝜇−1Z) is an invariant algebraic surface of
the rescaled differential system

Ẋ = 𝜇 Y ,
Ẏ = Z,
Ż = −𝜇2 Y − 𝜇 XZ − 𝜇 YZ − 𝜇

2 a.
(3)

with cofactor KF(X,Y ,Z) = Kf (X,Y , 𝜇−1Z).

Proof Let f (x, y, z) = 0 be an invariant algebraic surface of NE6 system with cofactor

Kf (x, y, z). From the definition of invariant algebraic surface, f satisfies

y
𝜕f
𝜕x

+ z
𝜕f
𝜕y

+ (−y − xz − yz − a)
𝜕f
𝜕z

= Kf f . (4)
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After the rescaling of time T = 𝜇
−1t in NE6 system, where T is the new time and

𝜇 ∈ ℝ ⧵ {0}, from Eq. (4) we obtain

y
𝜕f
𝜕x

+ z
𝜕f
𝜕y

+ (−y − xz − yz − a)
𝜕f
𝜕z

= 𝜇
−1 Kf f .

Note that we obtain differential system (3) from NE6 system after the rescaling of

time T = 𝜇
−1t and doing the change of variables x = X, y = Y , z = 𝜇

−1Z. Consider

F(X,Y ,Z) = 𝜇
nf (X,Y , 𝜇−1Z). Then,

𝜇Y 𝜕F
𝜕X

+ Z 𝜕F
𝜕Y

+ (−𝜇2 Y − 𝜇 XZ − 𝜇 YZ − 𝜇
2 a) 𝜕F

𝜕Z
=

= 𝜇y 𝜕F
𝜕x

dx
dX

+ 𝜇z 𝜕F
𝜕y

dy
dY

+ (−𝜇2 y − 𝜇
2 xz − 𝜇

2 yz − 𝜇
2 a) 𝜕F

𝜕z
dz
dZ

=

= 𝜇y 𝜕F
𝜕x

+ 𝜇z 𝜕F
𝜕y

+ 𝜇(−y − xz − yz − a) 𝜕F
𝜕z

=

= 𝜇
n+1

(
y 𝜕f
𝜕x

+ z 𝜕f
𝜕y

+ (−y − xz − yz − a) 𝜕f
𝜕z

)
=

= 𝜇
n+1 (𝜇−1Kf f ) = KF F.

Therefore, F = 0 is an invariant algebraic surface of system (3) with cofactor KF(X,Y ,
Z) = Kf (X,Y , 𝜇−1Z). □

Theorem 1 NE6 system has neither invariant algebraic surfaces nor polynomial first
integrals for all a ∈ ℝ.

Proof Suppose that f = 0 is an invariant algebraic surface of degree n ≥ 1 of NE6
system with cofactor K = k0 + k1 x + k2 y + k3 z, with k0, k1, k2, k3 ∈ ℂ, since NE6
system has degree 2. Take f as the sum of its homogeneous parts, that is f =

∑n
i=0 fi,

where each fi is a homogeneous polynomial of degree i, for i = 0, ..., n. At first assume

that K is not identically zero. From the definition of invariant algebraic surface, f must

satisfy equality (2), that is

y
𝜕f
𝜕x

+ z
𝜕f
𝜕y

+ (−y − xz − yz − a)
𝜕f
𝜕z

= (k0 + k1x + k2y + k3z) f . (5)

From equality of polynomials, the terms of degree n + 1 in (5) satisfy

(−xz − yz)
𝜕fn
𝜕z

= (k1x + k2y + k3z) fn. (6)

Solving the partial differential equation above we get

fn(x, y, z) = cn(x, y) zg(x,y) exp
(
−

k3z
x + y

)
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where cn is an arbitrary function in the variables x and y, and

g(x, y) = −(k1x + k2y)∕(x + y).

As fn is a homogeneous polynomial of degree n, we must have k1 = k2 = −m and k3 =
0, with 0 ≤ m ≤ n an integer. Hence fn(x, y, z) = zm cn(x, y) and cn is a polynomial of

degree n − m.

Now, note that the terms of degree n in (5) satisfy

(−xz − yz)
𝜕fn−1
𝜕z

+ z
𝜕fn
𝜕y

+ y
(
𝜕fn
𝜕x

−
𝜕fn
𝜕z

)
= k0fn − m (x + y) fn−1. (7)

Consider first m = 0 in (7). Solving the partial differential equation for fn−1, we

get

fn−1(x, y, z) =
z

x + y
𝜕fn
𝜕y

+ ln(z)
x + y

[
y
(

𝜕fn
𝜕x

−
𝜕fn
𝜕z

)
− k0fn

]
+ cn−1(x, y),

where cn−1 is an arbitrary function in the variables x and y. As fn−1 is a homogeneous

polynomial, fn must satisfy the partial differential equation

y
(
𝜕fn
𝜕x

−
𝜕fn
𝜕z

)
− k0 fn = 0,

whose solution is

fn(x, y, z) = cn(y, x + z) exp
(

k0 x
y

)
,

where cn is an arbitrary function in the variables y and x + z. As fn is a polynomial,

then k0 = 0. Hence K = 0, what is a contradiction, since we are considering K not

identically zero. Therefore, m > 0.

Now, consider m > 0 and fn(x, y, z) = zm cn(x, y) (polynomial solution of the partial

differential equation (6)) in the partial differential equation (7), that is

(−xz − yz)
𝜕fn−1
𝜕z

+ zm+1 𝜕cn

𝜕y
+ y zm−1

(
z
𝜕cn

𝜕x
− m cn

)
= k0 zm cn − m (x + y) fn−1.

Solving this equation for fn−1, we get

fn−1(x, y, z) =
zm ln(z)

x + y

(
−y

𝜕cn

𝜕x
+ k0 cn

)
+ zm−1

x + y

(
z2

𝜕cn

𝜕y
+ m y cn

)
+ zm cn−1(x, y),

where cn−1 is an arbitrary function in the variables x and y. As fn−1 is a polynomial,

cn must satisfy the partial differential equation
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−y
𝜕cn

𝜕x
+ k0 cn = 0,

whose solution is

cn(x, y) = c̃n(y) + exp
(

k0 x
y

)
,

where c̃n is an arbitrary function in the variable y. As fn is a polynomial, then k0 = 0.

In order to simplify the computations, consider the rescaling of time T = 𝜇
−1t,

where T is the new time, and the change of variables (x, y, z) → (X,Y ,Z), where x =
X, y = Y , z = 𝜇

−1Z, with 𝜇 ∈ ℝ ⧵ {0}. Then, NE6 system can be written as

Ẋ = 𝜇 X,
Ẏ = Z,
Ż = −𝜇2 Y − 𝜇 XZ − 𝜇 YZ − 𝜇

2 a.
(8)

Let

F(X,Y ,Z) = 𝜇
n f (X,Y , 𝜇−1Z) =

n∑
i=0

𝜇
n−iFi(X,Y ,Z),

where Fi is the weight homogeneous part with degree i of F and n is the weight degree

of F with weight exponents s = (0, 0,−1). By Lemma 1, F = 0 is an invariant alge-

braic surface of system (8) with cofactor K = −m (X + Y). From the definition of

invariant algebraic surface, we have

𝜇 Y
n∑

i=0
𝜇

n−i 𝜕Fi

𝜕X
+ Z

n∑
i=0

𝜇
n−i 𝜕Fi

𝜕Y
+ (−𝜇2 Y − 𝜇 XZ − 𝜇 YZ − 𝜇

2 a)
n∑

i=0
𝜇

n−i 𝜕Fi

𝜕Z

= −m (X + Y)
n∑

i=0
𝜇

n−iFi(X,Y ,Z). (9)

The terms with 𝜇
0

in (9) satisfy

Z
𝜕Fn

𝜕Y
= −m (X + Y)Fn(X,Y ,Z).

Solving this partial differential equation, we readily obtain

Fn(X,Y ,Z) = Cn(X,Z) exp
(
−mY (2X + Y)

2Z

)
,
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where Cn is an arbitrary function in the variables X and Z. As Fn is a polynomial

and m > 0, we must have Fn = 0, what is a contradiction, since F is a polynomial of

degree n as well as f . Hence system NE6 has no invariant algebraic surfaces.

Now, suppose that the cofactor K is identically zero, that is f is a polynomial first

integral of NE6 system. Then f satisfies equality (5) with k0 = k1 = k2 = k3 = 0. In

this case, the terms of degree n in Eq. (5) satisfy

(−xz − yz)
𝜕fn
𝜕z

= 0.

Then 𝜕fn∕𝜕z = 0. Computing the terms of degree n in (5) with k0 = k1 = k2 = k3 = 0
and considering 𝜕fn∕𝜕z = 0, we obtain

(−xz − yz)
𝜕fn−1
𝜕z

+ y
𝜕fn
𝜕x

+ z
𝜕fn
𝜕y

= 0.

Solving this partial differential equation for fn−1, we get

fn−1(x, y, z) =
y ln(z)
x + y

𝜕fn
𝜕x

+ z
x + y

𝜕fn
𝜕y

+ cn−1(x, y),

where cn−1 is an arbitrary function in the variables x and y. As fn−1 is a polynomial,

we must have 𝜕fn∕𝜕x = 0 and 𝜕fn∕𝜕y = (x + y) g, with g = g(x, y, z) an arbitrary poly-

nomial. As 𝜕fn∕𝜕x = 0, hence g = 0 and, consequently, 𝜕fn∕𝜕y = 0 and fn = 0, what

is a contradiction, since f is a polynomial of degree n.

Therefore, NE6 system has neither invariant algebraic surfaces nor polynomial first

integrals for all a ∈ ℝ. □

The next result is concerned with the existence of polynomial first integrals of NE8
and NE9 systems.

Theorem 2 NE8 and NE9 systems have no polynomial first integrals for all a ∈ ℝ.

Proof We start with NE8 system. Suppose that f = 0 is a polynomial first integral of

degree n ≥ 1 of NE8 system. Then, f satisfies the partial differential equation

y
𝜕f
𝜕x

+ (−x − yz)
𝜕f
𝜕y

+ (xy + 0.5x2 − a)
𝜕f
𝜕z

= 0. (10)

Take f as the sum of its homogeneous parts, that is f =
∑n

i=0 fi, where each fi is a

homogeneous polynomial of degree i, for i = 0, ..., n. The terms of degree n in Eq. (10)

satisfy

−yz
𝜕fn−1
𝜕y

+ (xy + 0.5x2)
𝜕fn−1
𝜕z

+ y
𝜕fn
𝜕x

− x
𝜕fn
𝜕y

= 0. (11)

Solving the partial differential equation above for fn, we get
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fn(x, y, z) = − 1
4
(x2 + y2)

𝜕fn−1
𝜕z

arctan
(

x
y

)
− 1

2
x2

𝜕fn−1
𝜕z

+ 1
4

x
(

y
𝜕fn−1
𝜕z

+ z
𝜕fn−1
𝜕y

)
+ cn(x2 + y2, z),

where cn is an arbitrary function in the variables x2 + y2 and z. As fn is a homoge-

neous polynomial, we must have 𝜕fn−1∕𝜕z = 0. Considering 𝜕fn−1∕𝜕z = 0 in partial

differential equation (11) and solving it for fn−1, we obtain

fn−1(x, y, z) =
y
z
𝜕fn
𝜕x

− x
z
𝜕fn
𝜕y

ln(y) + cn−1(x, z),

where cn−1 is an arbitrary function in the variables x and z. As fn−1 is a polynomial,

then 𝜕fn∕𝜕x = z g, with g = g(x, y, z) an arbitrary polynomial, and 𝜕fn∕𝜕y = 0.

Now, note that the terms of degree n + 1 in (10) satisfy

−yz
𝜕fn
𝜕y

+ (xy + 0.5x2)
𝜕fn
𝜕z

= 0.

As 𝜕fn∕𝜕y = 0, we have that 𝜕fn∕𝜕z = 0, which implies that 𝜕fn∕𝜕x = z g = 0. Hence,

fn = 0, what is a contradiction, since f is a polynomial of degree n.

Using similar arguments, we can prove that NE9 system also has no polynomial

first integrals for all a ∈ ℝ. □

Note that it remains an open problem to determine if NE8 and NE9 systems have

or no invariant algebraic surfaces. On the other hand, it follows from Theorems 1

and 2 that, differently from NE1 system, NE6, NE8 and NE9 systems do not have

their phase spaces foliated by invariant algebraic surfaces, even for a = 0. However

other facts are common in the dynamical behavior of all the considered systems: by

varying the parameter a from a = 0 to a > 0 small enough, a linearly stable periodic

orbit bifurcates from the non-isolated zero-Hopf equilibrium at the origin and nested

invariant tori are formed around it. This is the subject of the next section.

3 Periodic Orbits and Invariant Tori

The study of periodic and quasiperiodic solutions in differential systems is an impor-

tant issue in qualitative theory of dynamical systems. Some known routes to chaos,

for example, are characterized by the existence of this kind of solutions, as the cas-

cade of period doubling bifurcations and quasiperiodic or Ruelle-Takens-Newhouse

scenario, for more details about this and other known routes to chaos see for instance

Cencini and Vulpiani (2010), Lakshmanan and Rajaseekar (2003), Ott (2002).
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A periodic solution φ(t) = (x(t), y(t), z(t)) of differential system (1) is a solution

which is periodic in time, that is φ(t) = φ(t + T) for some fixed positive constant T
called the period of φ(t). A periodic orbit of differential system (1) is the orbit of any

point through which a periodic solution passes. Periodic solutions determine periodic
motions. The oscillatory motion of a pendulum, periodic oscillations of an electronic

circuit and the bounded orbits of a Kepler particle are examples of periodic motions.

A function h ∶ ℝ → ℝ3
is called quasiperiodic if it can be represented in the form

h(t) = H(ω1 t,ω2 t,ω3 t), where H(x, y, z) is a continuous function of period 2π in x,

y, z. The real numbers ω1, ω2, ω3 are called the basic frequencies. A quasiperiodic
solution φ(t) = (x(t), y(y), z(t)) of differential system (1) is a solution defined by a

quasiperiodic function with respect to the time. A quasiperiodic orbit is the orbit of

any point through which a quasiperiodic solution passes.

In Messias and Reinol (2017a) it was proved the existence of periodic and

quasiperiodic orbits in NE1 system. Indeed, for a = 0, the z–axis is a line of equi-

libria of this system and the origin is a non-isolated zero-Hopf equilibrium. By using

the averaging theory of first order, the authors proved that, for a > 0 sufficiently small,

a linearly stable periodic orbit bifurcates from the origin of NE1 system. Moreover,

around this periodic orbit there exist nested invariant tori, whose orbits are dense and

move quasiperiodically on them. The existence of such tori was also proved in Mes-

sias and Reinol (2017a) using the classical KAM Theorem, which provides a starting

point for an explanation of the transition from regular or quasiperiodic to chaotic

motion in Hamiltonian systems.

By using the same techniques, in this section we prove that there also exist periodic

and quasiperiodic orbits in NE6, NE8 and NE9 systems. In order to do it we start

with an overview about the averaging theory of first order and the classical KAM

Theorem. A general introduction about the averaging theory can be found in Sanders

et al. (2007). See also Buică et al. (2012), Llibre et al. (2014), Llibre and Novaes

(2015), Cândido et al. (2017) for recent works which extend and improve this theory.

For more details about the KAM theory see, for instance, Pöschel (2001), Chap. 15 of

Verhulst (1996), Chap. 7 of Lakshmanan and Rajaseekar (2003), Chap. 14 of Wiggins

(2003) and references therein. KAM theory is a huge area and there are hundreds of

books and papers about it. For the sake of completeness, in what follows we present

some of the main results about the averaging and KAM theories, which will be used

ahead in this section.

Averaging theory of first order. Consider the initial value problems

ẋ = ε F1(t, x) +
2
ε F2(t, x, ε), x(0) = x0, (12)

and

ẏ = ε g(y), y(0) = x0, (13)

with x, y and x0 in some open subset Ω of ℝn
, t ∈ [0,∞) and ε ∈ (0, ε0], for some

fixed ε0 > 0 sufficiently small. Assume that F1 and F2 are periodic functions of period

T in the variable t, and set
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g(y) = 1
T ∫

T

0
F1(t, y)dt.

Denote by Dxg all the first derivatives of g and by Dxxg all the second derivatives of

g. Then, we have the following result, which is proved in Guckenheimer and Holmes

(2002), Verhulst (1996).

Theorem 3 Assume that F1, D𝐱F1, D𝐱𝐱F1 and D𝐱F2 are continuous and bounded by
a constant independent of ε in [0,∞) × Ω × (0, ε0], and that 𝐲(t) ∈ Ω for t ∈ [0, 1∕ ε].
Then, the following statements hold.

1. For t ∈ [0, 1∕ ε], we have 𝐱(t) − 𝐲(t) = O(ε) as ε → 0.
2. If p ≠ 0 is an equilibrium point of system (13) such that det[D𝐲g(p)] ≠ 0, then

there exists a periodic solution φ(t, ε) of period T for system (12) which is close
to p and such that φ(0, ε) − p = O(ε) as ε → 0.

3. The stability of the periodic solution φ(t, ε) is given by the stability of the equi-
librium point p.

Classical KAM Theorem. A differential system in ℝ2n
is called Hamiltonian if there

exists a non-constant analytic function H ∶ Ω → ℝ, where Ω is an open subset of

ℝn ×ℝn
, such that

�̇� = −𝜕H
𝜕𝐲

(𝐱, 𝐲), �̇� = 𝜕H
𝜕𝐱

(𝐱, 𝐲), (14)

with (𝐱, 𝐲) ∈ ℝn ×ℝn
. In this case, we say that H is the Hamiltonian function of

system (14).

If n = 1, then the Hamiltonian system (14) is integrable, because it is planar and

has a first integral given by the Hamiltonian function H. By the Liouville-Arnold’s

Theorem (for more details about this theorem, see Chap. 14 of Wiggins (2003)), there

exists a transformation (𝐱, 𝐲) → (I,ϕ), with (I,ϕ) ∈ U × [0, 2π], where U is an open

interval of ℝ, such that, in the variables I and ϕ, the obtained system is again Hamil-

tonian. This transformation leads to the differential system

İ = 0,
ϕ̇ = ω(I), (15)

where I and ϕ are called action-angle coordinates. Let H0(I) be the Hamiltonian func-

tion of system (15). Hence ω(I) = 𝜕H0∕𝜕I. The advantage in using action-angle vari-

ables is that system (15) is easily integrable and its general solution is

I(t) = I0,
ϕ(t) = ω(I0) t + ϕ0,

where I(0) = I0 and ϕ(0) = ϕ0 are the initial condition. Then the solutions of system

(15) are straight lines which, due to the identification of the angular coordinate ϕ

modulo 2π, are winding around the invariant tori
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𝕋 1 = {I0} × [0, 2π]

with constant frequency ω(I0). Thus, the whole phase space of system (15) is foliated

by invariant tori with linear flow, which are also called Kronecker tori.
The frequency (or angular velocity) ω with which an orbit winds around an invari-

ant torus is classified as resonant or nonresonant in the following way. Let 𝕋 n
be the

n-dimensional torus whose orbits wind around it with frequency ω = (ω1, ...,ωn).
The frequency vector ω is said to be resonant (or rationally dependent) if there exists

k = (k1, ..., kn) ∈ ℤn ⧵ {0} such that k ⋅ ω = ⟨(k1, ..., kn), (ω1, ...,ωn)⟩ = 0. Otherwise

we say that ω is nonresonant (or rationally independent).
Note that, in the case n = 1, the torus 𝕋 1

is a closed curve and resonance implies

ω = 0. A torus whose orbits wind around it with nonresonant frequency has the prop-

erty that each orbit is dense on this torus. More precisely, given a point p on a nonres-

onant torus and a neighborhood Vp of that point, the orbit φp through the point p will

re-intersect Vp in a future time, after leaving it. Furthermore, given any other point

q and a neighborhood Vq of that point, the orbit φp will also intersect Vq. This is a

classical result that goes back to Kronecker (the flow on a nonresonant torus is often

referred to as Kronecker flow).

The introduction of action-angle variables is usually carried out by employing a

generating function S = S(I, y) (see Chap. 10 of Arnold (1989)). In general, we will

not be able to find such a generating function S. However, these transformations are

specially useful if system (14) is nearly-integrable in the following sense. Assume that

the Hamiltonian function H(𝐱, 𝐲) of system (14) contains a small parameter ε > 0 and

the introduction of action-angle coordinates produces the system

İ = ε f (I,ϕ),
ϕ̇ = ω(I) + ε g(I,ϕ). (16)

If ε = 0, system (16) is integrable; if ε > 0 sufficiently small, system (16) is called

nearly-integrable. Let

H0(I) + ε H1(I,ϕ) (17)

be the Hamiltonian function of system (16). The KAM theorem ensures that, under

certain hypothesis, almost all tori which exist in the integrable case ε = 0, survive

under small perturbations (that is, for ε ≠ 0 small), although possibly slightly

deformed. More precisely, the following result holds.

Theorem 4 (KAM) Consider differential system (16) induced by the Hamiltonian
function (17). If H0 is non-degenerate, i.e.,

det
(
𝜕
2H0

𝜕I2

)
≠ 0,
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then almost all invariant tori which exist for the unperturbed system (ε = 0) will
persist for ε > 0 sufficiently small, although slightly deformed. Furthermore, the
Lebesgue-measure of the complement of the set of tori tends to zero as ε → 0.

By using Theorems 3 and 4, we prove the following result about the existence of

a periodic orbit and invariant tori around it in NE6, NE8 and NE9 systems.

Theorem 5 For a > 0 small enough, NE6, NE8 and NE9 systems have a linearly sta-
ble periodic orbit, which tends to the origin as a → 0. Around the periodic orbit of
each one of these systems, there exist nested invariant tori whose orbits are dense and
move quasiperiodically on them.

Proof We start with NE6 system. Before applying Theorem 3 in order to study the

existence of periodic orbits of NE6 system, we need to write its linear part at the origin

into the real Jordan normal form. In order to do this, we consider the linear change of

coordinates (x, y, z) → (u, v,w), where x = −u + w, y = v, z = u. In the new variables

(u, v,w), NE6 system becomes

u̇ = −v − (−u + w) u − uv − a,
v̇ = u,
ẇ = −(−u + w) u − uv − a,

(18)

whose Jacobin matrix at the origin has eigenvalues 0 and ±i. Now, writing system

(18) in cylindrical coordinates (r, θ,w), where u = rcosθ, v = rsinθ, it becomes

ṙ = −cosθ [r2cosθ (sinθ − cosθ) + rwcosθ + a],
θ̇ = (−cos2θ − sinθcosθ + 1) rcosθ + wcosθsinθ + 1 + a

r
sinθ,

ẇ = r2cosθ (cosθ − sinθ) − rwcosθ − a.
(19)

We introduce the variable ε > 0 into system (19) considering a = ε2 and doing the

change of coordinates (r, θ,w) → (R, θ,W), where r = ε R, w = ε W. Then system

(19) can be written as

Ṙ = −ε cosθ [R2cosθ (sinθ − cosθ) + R Wcosθ + 1],
θ̇ = [−cos2θ − sinθcosθ + 1] ε R cosθ + ε W cosθsinθ + 1 + ε

R
sinθ,

Ẇ = ε R2cosθ (cos θ−sinθ) − ε RWcosθ − ε .

Taking θ as the independent variable and doing the Taylor expansion of order 2 of

the obtained equations at ε = 0, we get

dR
d θ

= ε h(R, θ,W)cosθ + O(ε2),
dW
d θ

= ε h(R, θ,W) + O(ε2),
(20)

where h(R, θ,W) = R2cos2θ − R Wcosθ − R2cosθsinθ − 1. Using the notation of

Theorem 3, consider in system (20)



Periodic Orbits, Invariant Tori and Chaotic Behavior in Certain Nonequilibrium . . . 315

x =
(

R
W

)
, t = θ, T = 2π, F1(θ, x) =

(
h(R, θ,W)cosθ

h(R, θ,W)

)
.

In this way,

g(y) = 1
2π ∫

2π

0
F1(θ, y) d θ =

(
−1

2
R W

1
2

R2 − 1

)
.

Hence, g(y) = 0 has the unique real solution p = (R,W) = (
√
2, 0) (remember that

R > 0), which satisfies det[Dyg(p)] = 1 ≠ 0. Then, by Theorem 3, it follows that, for

ε > 0 sufficiently small, system (20) has a periodic solution φ(θ, ε) = (R(θ, ε),W(θ, ε))
such that φ(0, ε) → (

√
2, 0) as ε → 0. Moreover, the eigenvalues of the matrix

[Dyg(p)] are ±i. Thus the obtained periodic solution is linearly stable, that is, any

solution close enough to this periodic solution remains close enough forever, with-

out tending to it.

Changing back the coordinates to NE6 system, we have that, for a > 0 sufficiently

small, such system has a periodic solution of period approximately 2π given by

x(t) = −
√
2a cost + O(a),

y(t) =
√
2a sint + O(a),

z(t) =
√
2a cost + O(a).

Note that this solution tends to the origin as a → 0. Therefore, for a > 0 small enough,

NE6 system has a linearly stable periodic orbit which emerges from the origin.

Now we shall prove that around this periodic orbit there exist nested invariant tori.

In order to use Theorem 4, we consider the changes of coordinates (x, y, z) → (u, v,w)
and (u, v,w) → (r, θ,w) as before and write NE6 system in the form (19). This time

around we introduce the variable ε > 0 into system (19) considering a = ε and doing

the change of coordinates (r, θ,w) → (r,Θ,W), where θ = εΘ, w = ε W. Then system

(19) can be written as

Ṙ = cos(εΘ) [r2 cos(εΘ) (cos(εΘ) − sin(εΘ)) + ε r W cos(εΘ) − ε],
Θ̇ = W cos(εΘ) sin(εΘ) − 1

ε
[r cos(εΘ) (sin(εΘ) cos(εΘ) + cos2(εΘ) − 1) + 1]

+1
r
sin(εΘ),

Ẇ = r W cos(ε Θ) − 1 + 1
ε

r2 cos(εΘ)[cos(εΘ) − sin(εΘ)].

Taking W as the independent variable and doing the Taylor expansion of order 2 of

the obtained equations at ε = 0, we get

dr
dW

= O(ε), dΘ
dW

= 1
r2

+ O(ε). (21)
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Consider ε = 0 in system (21). In this case, system (21) is Hamiltonian and its general

solution is

r(W) = r0, Θ(W) = W
r20

+ Θ0,

with r(0) = r0 andΘ(0) = Θ0. Hence, the solutions are straight lines which are wind-

ing around the invariant tori

𝕋 1 = {r0} × [0, 2π]

with constant frequency ω(r0) = 1∕r20 and the whole phase space of system (21) for

ε = 0 is foliated by Kronecker tori. Furthermore the frequencies of the orbits which

wind around these tori are nonresonant and hence each orbit is dense on them.

Using the notation of Theorem 4 we have that I = r is the action variable and

ϕ = Θ is the angle variable. Moreover

H0(r) = −1
r

and
𝜕
2H0

𝜕r2
= − 2

r3
≠ 0,

for all r > 0. By Theorem 4, almost all the invariant tori, which exist for the unper-

turbed system (ε = 0), persist, although slightly deformed, in the phase space of dif-

ferential system (21) with ε > 0 sufficiently small. Changing back appropriately the

coordinates, we have that NE6 system has invariant tori whose orbits are dense and

move quasiperiodically on them for a > 0 sufficiently small.

In a similar way, we prove the theorem for NE8 and NE9 systems. Indeed, for NE8
system, consider the rescaling of time T = −t, where T is the new time, in order to

write its linear part at the origin into the real Jordan normal form, and the changes of

coordinates (x, y, z) → (r, θ, z), where x = rcosθ, y = rsinθ, and (r, θ, z) → (R, θ,Z),
where r = ε R, z = ε Z, with a = ε2. After that, NE8 system can be written as

Ṙ = ε R Zsin2θ,
θ̇ = ε Zcosθsinθ + 1,
Ż = −1

2
ε [R2cosθ (2sinθ + cosθ) − 2].

(22)

Taking θ as the independent variable in system (22) and doing the Taylor expansion

of order 2 of the obtained equations at ε = 0, we obtain

dR
d θ

= ε R Zsin2θ + O(ε2),
dZ
d θ

− 1
2

ε [R2cosθ (2sinθ + cosθ) − 2].
(23)

Applying Theorem 3 for system (23), we obtain that, for a > 0 sufficiently small, NE8
system has a periodic solution of period approximately 2π given by
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x(t) = +2
√

a cost + O(a),
y(t) = −2

√
a sint + O(a),

z(t) = +O(a),

which tends to the origin as a → 0. Therefore, for a > 0 small enough, NE8 system

has a linearly stable periodic orbit which emerges from the origin. Considering the

same changes of coordinates, including the rescaling of time T = −t, for NE9 system

and using Theorem 3, we conclude that, for a > 0 sufficiently small, NE9 system also

has a periodic solution of period approximately 2π given by

x(t) = +1
7

√
14 a cost + O(a),

y(t) = −1
7

√
14 a sint + O(a),

z(t) = +O(a),

which tends to the origin as a → 0 and, hence, NE9 system also has a linearly stable

periodic orbit which emerges from the origin.

Now we shall prove that around the periodic orbits of NE8 and NE9 systems there

exist nested invariant tori. In order to do that for NE8 system, we consider the rescal-

ing of time T = −t and the changes of variables (x, y, z) → (r, θ, z), where x = rcosθ,

y = rsinθ, and (r, θ, z) → (r,Θ,Z), where θ = εΘ, z = εZ, with a = ε. After that, NE8
system can be written as

ṙ = εrZ (1 − cos2(εΘ)),
Θ̇ = Z cos(εΘ) sin(εΘ) + 1

ε
,

Ż = 1 − 1
2ε

R2 cos(εΘ) [2 sin(εΘ) + cos(εΘ)].
(24)

Taking Z as the independent variable in system (24) and doing the Taylor expansion

of order 2 of the obtained equations at ε = 0, we get

dr
dZ

= O(
4
ε), dΘ

dZ
= − 2

R2 + O(ε). (25)

Applying Theorem 4 for system (25), we obtain that for a > 0 sufficiently small

NE8 system has invariant tori whose orbits are dense and move quasiperiodically on

them. Considering the same changes of coordinates, including the rescaling of time,

and using Theorem 4, we get the same result for NE9 system. This concludes the proof

of the theorem. □

The existence of periodic orbits in nonequilibrium quadratic three-dimensional

differential systems was also studied in Carvalho et al. (2016), Llibre et al. (2015).

In the second column of Table 2 are drawn the phase space of NE1, NE6, NE8 and

NE9 systems for a = 10−5, in which we can observe the (small) periodic orbit and

nested invariant tori around it, for each one of these systems. Furthermore, in the third

column of Table 2 are drawn the respective Poincaré section of these systems. The

periodic orbit of the considered systems is represented in the Poincaré section by the
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Table 2 Phase space and Poincaré section of NE1, NE6, NE8 and NE9 systems for a = 10−5

Model Phase space Poincaré section

NE1

NE6

NE8

NE9

fixed point in the center of the closed curves, which in your turn represent the nested

invariant tori. In this way, the numerical simulations developed by us corroborate the

results stated in Theorem 5
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4 On the Emergence of Chaotic Behavior

As we said in the Introduction, in Jafari et al. (2013) the authors proved that, for

suitable choices of the value of parameter a, NE1, NE6, NE8 and NE9 systems present

chaotic behavior even without having any equilibrium point. The values of a for which

these systems present this kind of behavior can be found in Table 1. In this section,

taking to account the results stated and proved in Sect. 3, we perform a numerical

investigation of the dynamical consequences in the phase space of the considered

systems as the parameter value a increases from a = 0, in order to better understand

the mechanisms of emergence of chaotic behavior on them.

It was showed in Messias and Reinol (2017a) that although the periodic orbit of

NE1 system survives under small variations of the parameter a > 0, an increasing

number of invariant tori are destroyed as the parameter value a increases, being those

closest to the periodic orbit more persistent to perturbations. Consequently, due to the

destruction of some of the invariant tori, a “turbulent” region of attraction/repulsion is

formed around some remaining torus and this region leads to the creation of a homo-

clinic structure in the phase space of NE1 system for a > 0 small, as we can see in

Fig. 2. For suitable values of the parameter a > 0, as for example a = 0.4 (Messias

and Reinol 2017b) and a = 1 (Sprott 1994), it is possible to detect chaotic behavior

in NE1 system.

This numerical study was corroborated by the results stated in Messias and Reinol

(2017a), where we also studied the Poincaré section of NE1 system for different values

of the parameter a. See Fig. 3 where we can observe the formation of a new kind of

behavior in the dynamics of NE1 system: as the parameter a increases, small “loops”,

as suggested by the black points in Fig. 3b, arise around the closed curves. Regions

determined by such loops are called islands, because they are surrounded by a sea of

orbits that move randomly. This confirms the complicated dynamics of NE1 system:

around the remaining invariant tori there are regions with regular orbits (represented

Fig. 2 Homoclinic structure in the phase space of NE1 system for a = 10−4
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(a) (b)

Fig. 3 Poincaré section of NE1 system for a a = 10−5 and b a = 1

by these islands) and regions densely filled by orbits without evidence of regularity.

In Fig. 4 is drawn the phase space of NE1 system for a = 1, where we can see that

invariant tori are surrounded by a “chaotic sea”.

As commented on before, these results about NE1 system (or Sprott A system)

motivated our studies of the other NEi systems, i = 2…17, from which we observed

that, among them, NE6, NE8 and NE9 have similar dynamical behavior than NE1
system and consequently similar routes to the emergence of chaotic motion.

Indeed, let us consider one of the closed curves in the Poincaré section of NE6
system for a = 10−5 (Fig. 5a), defined by the same quasiperiodic orbit on the corre-

sponding invariant torus, and let us observe what happens with this closed curve in

the Poincaré section as the parameter value a increases. The closed curve becomes

thicker as a increases and, for a = 10−3, it determines the region drawn in Fig. 5b. In

this region can be observed strings of Hénon attractors. In the phase space of NE6
system for a = 10−3, the toric structure is preserved and the orbits jump through the

invariant tori, as we can see in Fig. 6a, where we plot the same orbit for different

future intervals of times. Increasing more the parameter value a, the toric structure is

deformed, as we can see in Fig. 6b for a = 10−2, until that the invariant tori are appar-

ently destroyed for larger values of the parameter a. A similar behavior is observed

for NE8 system.

Now we consider one of the closed curves in the Poincaré section of NE9 system

for a = 10−5 (Fig. 7a), defined by the same quasiperiodic orbit on an invariant torus.

As the parameter value a increases, the closed curve evolves into a chain of islands

in the Poincaré section of NE9 system for a = 10−2, as we can see in Fig. 7b. A more

detailed picture of the Poincaré section of NE9 system in this case can be seen in

Fig. 8. Observe that chains of islands appears between closed curves showing that

layers of orbits without evidence of regular motion are sandwiched between regular

orbits.

The study of the Poincaré section of NE1, NE6, NE8 and NE9 systems corrobo-

rates the complicated dynamics that these systems present as the parameter value a
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(a) Phase space

(b) xy–plane

(c) xz–plane

Fig. 4 (a) Phase space of NE1 system for a = 1 with an invariant torus and an orbit in the “chaotic

sea” and its projection in the (b) xy–plane and (c) xz–plane

(a) (b)

Fig. 5 Poincaré section of NE6 system associated to the same orbit, for a a = 10−5 and b a = 10−3
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(a) (b)

Fig. 6 Phase space of NE6 system for a a = 10−3 and b a = 10−2

(a) (b)

Fig. 7 Poincaré section of the same orbit of NE9 system for a a = 10−5 and b a = 10−2

Fig. 8 Poincaré section of

several orbits of NE9 system

for a = 10−2: small regular

islands between closed

curves
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increases and the nested invariant tori are destroyed, evidencing that, in each system,

the existence of a periodic orbit and invariant tori around it play an important role in

the emergence of chaotic behavior in these systems.

5 Concluding Remarks

In this note we observed that the classes of differential systems NE1, NE6, NE8 and

NE9 provided by Jafari et al. (2013) have a quite similar dynamical behavior as the

parameter value a varies. Indeed, we proved that for a = 0 all the considered systems

have a line of equilibria given by one of the coordinate axis in which the origin is a non-

isolated zero-Hopf equilibrium point. By using the averaging theory we show that for

a > 0 small enough a linearly stable periodic orbit bifurcates from the non-isolated

zero-Hopf equilibrium at the origin and nested invariant tori are formed around it.

The existence of such tori are proved using the classical KAM Theorem. Finally, a

numerical investigation of the dynamics of these systems as the parameter value a
increases from a = 0 suggests that the existence of such a periodic orbit bifurcating

from the origin and nested invariant tori around it are important dynamical elements

which leads to the emergence of chaotic motion in these systems. In particular, the

mechanisms of birth of chaos presented here are different from cascade of period

doubling bifurcations, which is suggested by the authors in Jafari et al. (2013) for the

formation of hidden attractors in the nonequilibrium differential systems considered

there.

About the integrability of NE1, NE6, NE8 and NE9 systems, it was proved in Mes-

sias and Reinol (2017a) that, for a = 0, NE1 system has a polynomial first integral

given by f (x, y, z) = x2 + y2 + z2 and, consequently, its phase space is foliated by con-

centric invariant spheres centered at origin. For a ≠ 0 the authors proved that NE1
system has neither invariant algebraic surfaces nor polynomial first integrals. Here

we proved that NE6 system has neither invariant algebraic surfaces nor polynomial

first integrals for all a ∈ ℝ, while NE8 and NE9 systems have no polynomial first inte-

grals for all a ∈ ℝ. It remains an open question to determine if NE1, NE6, NE8 and

NE9 systems have or not other kinds of first integrals, as rational or Darbouxian ones,

and if NE8 and NE9 systems have or not invariant algebraic surfaces.

From the studies developed by us until now we can say that the NEi systems, for

i ≠ 1, 6, 8, 9, have different mechanisms for the emergence of chaotic behavior from

the one described here. We are studying these mechanisms and intend to present the

results in a forthcoming paper.

Finally, we would like to thank Professor Julien Clinton Sprott for his valuable

comments through an interesting e-mail correspondence, which helped us to improve

the presentation of the results in this chapter.
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Existence and Control of Hidden Oscillations
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Abstract Studying the memristor based chaotic circuit and their dynamical analysis

has been an increasing interest in recent years because of its nonvolatile memory. It

is very important in dynamic memory elements and neural synapses. In this chapter,

the recent and emerging phenomenon such as hidden oscillation is studied by the

new implemented memristor based autonomous Duffing oscillator. The stability of

the proposed system is studied thoroughly using basin plots and eigenvalues. We

have observed a different type of hidden attractors in a wide range of the system

parameters. We have shown that hidden oscillations can exist not only in piecewise

linear but also in smooth nonlinear circuits and systems. In addition, to control the

hidden oscillation, the linear augmentation technique is used by stabilizing a steady

state of augmented system.
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1 Introduction

The new emerging fourth passive element named, memristor whose resistance

depends on its internal state variables of the system was proposed by Chua in 1971

(Chua 1971). The concept of memristor is explained by state-dependent Ohm’s law.

The dependence is entirely on its past signals (applied voltage/current) across the

memristor. The memristors have great paradigmatic usefulness for a circuit function-

ality because, it is not established with resistors, capacitors and inductors. The non-

volatile memory effect of the memristor is very important for potential applications

in dynamics memory, neural synapses, spintronic devices, ultra-dense information

storage, neuromorphic circuits, and programmable electronics (Xu et al. 2011; Mout-

tet 2008; Rajendran et al. 2010; Kim et al. 2011; Thomas 2013; Strukov 2008). This

applications leads to a new method of high performance computing. Researchers

have been motivated to investigate such memristor based oscillators from the dynam-

ical system theory point of view. In recent years, there has been increasing interest

to study the memristor based nonlinear circuits and their dynamics (Strukov 2008;

Pershin et al. 2009; Pershin and Ventra 2008, 2009). The dynamics of the memristor

based oscillator circuit systems is extraordinarily complex (Tour and He 2008). The

basic idea of a memristor is that it is a two terminal resistive device, in which when

current passes through it in one direction, the resistance increases, while when cur-

rent flows in the opposite direction the resistance decreases. This gives the concept

that a memristor maintains memory of its resistance, hence its name.

Numerous studies are available for understanding the conceptual background of

memristor. The memristor relates the functional relationship of charge (q) and flux

(φ) (Chua 1971). Memristor was considered to be the missing fourth circuit element,

before it was postulated (the other known three being resistors, capacitors and induc-

tors). Memristor was realized by Stan Williams group of HP Laboratory in 2008, is a

passive two-terminal electronic device, described by nonlinear constitutive relation

of charge and flux (Wang et al. 2009). The v − i characteristic of the memristor is

inherently nonlinear (pinched hysteresis) and is unique in the sense that no combina-

tion of nonlinear resistive, capacitive and inductive components can duplicate their

circuit properties. Memristors have generated considerable excitement among circuit

theorists. Memristor based chaotic circuit can be constructed using memristor as a

nonlinear element and can easily generate chaotic dynamics and some novel features

can be observed. Recently, the fabrication of single memristor element, memristive

system, memristor circuits, designs and analysis of memristor based application cir-

cuit systems, etc. have attracted attention in engineering and biological sciences.

Since memristors are commercially unavailable, it would be very useful to have a

specific circuit that emulates a memristor. For the simulation of memristor devices

there are different nonlinearities available in literature to mimick the feature of the

memristor, such as HP memristor model (Radwan et al. 2010; Prodromakis et al.

2011), non-smooth piecewise linearity (Ahamed and Lakshmanan 2013; Chen et al.

2014), smooth cubic nonlinearity (Cheng et al. 2011; Talukdar 2011; Muthuswamy

and Kokate 2009), smooth piecewise-quadratic nonlinearity (Bao et al. 2010), and
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so on. For the first time Itoh and Chua introduced the memristor instead of Chua

diode as a nonlinear element based canonical Chua’s oscillator (Itoh and Chua 2008).

After that many studies on memristor based nonlinear circuit systems have been

done.

Now a days numerous studies are available in the literature about the hidden

attractors with no equilibrium point. Leonov et al. studied the hidden attractors in

a Chua’s system and suggested special procedure for localization of hidden attrac-

tors (Leonov et al. 2011). After that they considered the example of a Lorenz-like

system derived from Glukhovsky-Dolghansky and Rabinovich systems, to demon-

strate the analysis of self-excited and hidden attractors, and their characteristics.

They also demonstrated the existence of a homoclinic orbit, proved the dissipativ-

ity and completeness of the system, and found absorbing and positively invariant

sets (Li et al. 2014; Leonov and Kuznetsov 2013; Leonov et al. 2015). Recently,

they investigated the hidden oscillations in dynamical systems, based on the devel-

opment of numerical methods, computers, and applied bifurcation theory (Leonov

et al. 2011). The simple four dimensional equilibrium free autonomous ODE sys-

tem showed all the attractors are hidden reported by Li et al. (Li and Sprott 2014).

Zhouchao Wei et al. found a four-dimensional (4D) non-Sil’nikov autonomous sys-

tem with three quadratic nonlinearities, which exhibits some behavior previously

unobserved: hidden hyperchaotic attractors with only one stable equilibrium (Wei

and Zhang 2014). Jafari et al. reviewed several type of new rare chaotic flows with

hidden attractors in many dynamical systems. They also explained the flows with

no equilibrium, with a line of equilibrium points, and with a stable equilibrium

(Jafari et al. 2015). Dawid Dudkowski et al. reviewed the most representative exam-

ples of hidden attractors and discussed their theoretical properties and experimental

observations. They described numerical methods which allowed the identification

of the hidden attractors (Dudkowski et al. 2016). They also discussed the use of per-

petual points for tracing the hidden and the rare attractors of dynamical systems

(Dudkowski 2015).

Kuznetsov et al. gave some rigorous nonlinear analysis and special numerical

methods which should be used for the investigation of nonlinear control systems

(Kuznetsov and Leonov 2014). He also described the formation of several different

coexisting sets of hidden attractors, including the simultaneous presence of a pair

of coinciding quasiperiodic attractors and of two mutually symmetric chaotic attrac-

tors (Kuznetsov et al. 2015). Chaudhuri et al. proposed a riddled-like complicated

basins of coexisting hidden attractors both in coupled and uncoupled systems and

a new route to amplitude death is observed in time-delay coupled hidden attractors

(Chaudhuri and Prasad 2014). Brezetskyi et al. presented different types of dynam-

ics for both the single and coupled multistable Vander Pol-Duffing oscillators that

have very small basins of attraction considered as hidden or rare (Brezetskyi et al.

2015; Zhao 2014). The control of multistability in the hidden attractor through the

scheme of linear augmentation, that can drive the multistable system to a monos-

table state was proposed by Sharma et al. (2015a, b). Kapitaniak tries to focus on

different questions of present day interest in theory and applications of systems with
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multiple attractors. The particular attention is paid to uncovering and characterizing

hidden attractors (Kapitaniak and Leonov 2015). For the real time application point

of view, Kiseleva et al. studied the hidden oscillations appearing in electromechani-

cal systems with and without equilibria (Kiseleva et al. 2016).

The above literature is devoted to the brief understanding of hidden attractors.

But only limited studies are available for finding the hidden attractor in a memristor

based dynamical systems. Chen et al. reported the hidden attractor in memristive

Chua’s circuit and also presented the coexisting hidden attractors (Chen et al. 2015).

Saha et al. studied memristor based Lorenz system with no equilibrium (Saha et al.

2015). Mo Chen et al. proposed improved memristive Chua’s circuit, from which

some hidden attractors are found (Chen et al. 2015). Pham et al. proposed memristor

based networks to elucidate the hidden attractors (Pham et al. 2015, 2014; Zhang

et al. 2015). Duffing oscillator is well known and is widely used by the researchers for

its enigmatic and simplicity. Recently the dynamics of the memristor based Duffing

oscillator was studied by Sabarathinam et al. (2017). With the best of our knowledge

none of above works studied the dynamics of memristor based autonomous form of

the Duffing oscillator. The existence of hidden attractor in the proposed system has

been found for wide range of parameters and with different initial condition.

Many physical, biological, and chemical phenomena are well modeled by coupled

nonlinear equations (Pikovsky et al. 2001; Fujisaka and Yamada 1983). In most cases

these systems are capable of displaying several types of dynamical behaviors such

as limit cycle, bistability, birhythmicity, and chaos. In many real-world situations, it

is often the case that stable output is required in spite of the nonlinear effects present

in the system. Thus, the scope of control or self-regulation in systems with complex

dynamics is of considerable interest. Generally, the stabilization of unstable fixed

points of an oscillatory system is considered to be an important problem for many

practical applications. Over the last two decades, chaos control in dynamical systems

and stabilization of unstable dynamical states of the systems have been a topic of

intense research from both the theoretical and experimental point of view (Rosa et al.

1998; Ira 1997; Triandaf and Schwartz 2000; Ott et al. 1990; Sinha 1990). Control of

chaotic dynamics or stabilization of fixed points is important in many experimental

studies; for example, removal of power fluctuation is highly desirable in coupled laser

systems (Kim et al. 2005; Kumar et al. 2008, 2009; Prasad 2003). In all previous

existing methods (Rosa et al. 1998; Ira 1997; Triandaf and Schwartz 2000; Ott et al.

1990; Sinha 1990) the stabilization of the fixed points can be obtained by changing

the accessible internal parameters of the system. However, in many real situations,

where the internal parameters of the systems are not accessible, the stabilization of

fixed points can be done by using the phenomenon of amplitude death (AD) (Prasad

2003) using interactions between the coupled oscillators.

Recently, linear augmentation has been suggested as an another practical alterna-

tive method leading to oscillator suppression, which is achieved by coupling nonlin-

ear systems to a linear system which simply consists of an exponentially decaying

function (Bar-Eli 1985) in an uncoupled state. Interestingly, the coupling structure
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of linear augmentation is quite reminiscent of indirect or environmental coupling

procedures (Sharma et al. 2011; Resmi et al. 2010; Sharma et al. 2012) which are

motivated by the observations of collective behaviors in several real world systems,

namely, behavior of chemical relaxation oscillators globally coupled through the

concentration of chemicals in a common solution (Resmi et al. 2012), dynamics of

multicell systems where the cells interact through common complex proteins (Toth

et al. 2006), and collective behavior of cold atoms in the presence of a coherent

electromagnetic field and atomic recoil (Zhang and Zou 2012; Kruse et al. 2003) for

instance. These instances therefore also serve as good examples of systems where lin-

ear augmentation can exist naturally. Lately, studies have also effectively used linear

augmentation in controlling bistability (Javaloyes et al. 2008), the dynamics of drive

response systems (Sharma et al. 2013) and in controlling hidden attractors (Sharma

et al. 2014). Motivated by the above studies in this chapter, we also applied the linear

augmentation techniques in our memristor based autonomous Duffing oscillator to

control the hidden oscillations.

The chapter is structured as follows. Section 2 explains the mathematical model-

ing of the memristor based autonomous Duffing oscillator. Section 3, investigates the

systems stability with eigenvalue analysis. Section 4, explores the hidden dynamics

with numerical results. Section 5 explains the linear augmentation technique used to

stabilize the system. Finally, the chapter concludes with the summary in Sect. 6.

2 Mathematical Model of Memristor Based Duffing
Oscillator

We all know about the six mathematical relations connecting the pairs of four fun-

damental entities namely, charge (q), current (i), flux (φ) and voltage (v) (Mohanty

2013). Three relations can be understood by the axiomatic definitions of the three

classical two terminal circuit elements, namely, resistor (relationship between

v and i), inductor (relationship between φ and i) and capacitor (relationship between

q and v). One more relationship between φ and q remained undefined. From logical

and axiomatic point of view, as well as for the sake of completeness, the necessity

for the existence of fourth basic two terminal circuit element was postulated. Chua

in 1971, suggested the fourth passive element namely ‘memristor’ (Chua 1971).

The memristor is a new passive two terminal element in which there is a func-

tional relationship between the magnetic flux (φ) and electric charge (q). The mem-

ristor is governed by the relations i = W(φ)v, and v = M(q)i, where, W(φ), M(q)
are called memductance and memristance respectively. The memristor used in this

work is a charge controlled memristor that is characterized by its incremental mem-

ristance function M(q) describing the charge-dependent rate of flux. We assume

that the memristance M(q) is characterized by a monotonically increasing and

smooth cubic nonlinearity which is defined by, φ(q) = ω2
0q + βq3, where M(q) is

defined as, M(q) = dφ(q)
dq

= ω2
0 + 3βq2 is the memristance function. Figure 1, shows
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Fig. 1 The variation of memristor nonlinearity M(q) versus x of Eq. (1) for q ∈ (0.1,1.0) shown

different slopes. The parameters of the memristor emulator consider as ω2
0 = 0.35 and β = 0.85

the nonlinearity curveM(q) as a function of charge q of the memristor emulator. With

increasing q, the slope changes clockwise (slope value changes drastically) which

indicates that the proposed system is very sensitive to q. The effect of the memristor

emulator (co-efficient’s of memristor ω, β) in a single memristive system studied by

Sabarathinam and Thamilmaran (2017). They found that the dynamics of the sys-

tem controlled by the memductance profile of the memristor emulator. Figure 2a,

shows that the schematic of the memristor emulator and its characteristic curve in

Fig. 2b which is obtained from PSpice simulation. In our case, the memristor based

Duffing oscillator is taken with the cubic nonlinearity simply replaced by the charge-

controlled memristor characteristic nonlinear system (Fig. 2). Here, we have consid-

ered the autonomous form of the Duffing oscillator, so the external force is consid-

ered as fsin(ωt) = 0 from the original Duffing equation (Sabarathinam et al. 2017).

Based on the memristance concept (Chua 1971), the state equation for the memristor

based autonomous Duffing oscillator is,

ẍ + αẋ +M(q)x = 0, (1)

For our convenience, we considered, α,ω2
0, β = a, b, c. For the stability analysis as

well as in the numerical study, the above equation is splitted into the following system

of three first order coupled equations as:
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Fig. 2 PSpice analysis: a Schematic of the memristor nonlinearity with AC sweep analysis

(1 V, 500 Hz) and b (v − i) characteristic curve of memristor. The input and output feed in to the

oscilloscope

ẋ1 = x2
ẋ2 = x3
ẋ3 = −ax3 − bx2 − 3cx21x2. (2)

Thus by replacing the cubic nonlinearity in the classical Duffing oscillator, a new

memristor based autonomous form of Duffing oscillator is designed and its dynam-

ical behavior is investigated in detail.

3 Stability Analysis

To study the stability of the above mentioned system (Eq. 2) we have used eigen-

value analysis. The system (2), is symmetric with respect to the origin and hence is

invariant under the transformation,

(x1, x2, x3) → (−x1,−x2,−x3).
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Therefore, the equilibrium point calculated using system Eq. (2) is, (x∗1, x
∗
2, x

∗
3) =

(0, 0, 0). In order, to find the eigenvalues, the stability matrix or the Jacobean matrix

J is written as,

J =
⎡
⎢
⎢
⎣

0 1 0
0 0 1

6cx10x20 −b − 3cx210 −a

⎤
⎥
⎥
⎦

(3)

In general the characteristic eigenvalue equation written as,

Det|J − λI| = 0 ⇒ −λ3 − λ2α + λ(ω + 3βx∗21 ) + 6βx∗1x
∗
2 (4)

We get eigenvalues for the above equation as, λ1 = −0.001 + 0.5916i, λ2 = 0, λ3 =
−0.001 − 0.5916i for α = 0.0001, ω = 0.35, and β = 0.85. From the eigenvalues the

system have stable equilibrium state. The potential (M(q)) depends on the parameter

b. For positive b, we get stable equilibrium points, λ1−3 = −0.001 ± 0.5916i, 0, and

negative b, we get saddle equilibrium pointS, λ1−3 = 0, 0.5916,−0.5917. Figure 3,

shows the changes in stability of the system with respect of ±b and ±x1 (detailed

stability study were made Vaibhav et al. (2017)). For positive regions of b, we get

stable fixed points (SFP) everywhere in the basin and for negative b the system have

saddle equilibrium (UFP). In this chapter we have taken, a > 0 and b > 0 case for

finding the hidden attractor. In that case, the system fall on stable fixed point. A vector

field in the plane (for instance), can be visualized as a collection of different length

of arrows which indicates the different magnitude and direction. Vector fields are

often used to model, for example, the speed and direction throughout space, or the

strength and direction of some force, as it changes from point to point. Vector fields

can usefully be thought of as representing the velocity of a moving flow in space, and

this physical intuition leads to notions such as the divergence (which represents the

rate of change of volume of a flow) and curl (which represents the rotation of a flow)

of the system. Figure 4 shown the vector field of (y − z) plane of the proposed system

in the range of±20. The different length of arrows which tells that the system stability

changes by its basin. In the zero line magnitude of eigenvalues is high enough so,

Fig. 3 Basin of (i) ±b
versus (x10) based on the real

part of the eigenvalues

(λ1−3) with fixed parameters

a, c = 0.0001, 0.85 of

system (2)
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Fig. 4 Vector fields of system (2) in the (x20 − x30) plane shows the arrows depict the field at

discrete points, however, the field exists everywhere in the systems basin

if we start the trajectory very near to zero the system drastically fall into the fixed

point in a shorter time.

4 Hidden Attractor

From the computational point of view, attractors are classified as self excited and

hidden attractors. Self-excited attractors can be localized numerically by a standard

computational procedure, in which after a transient process a trajectory, starting from

a point of unstable manifold in the neighborhood of an equilibrium, reaches a state

of oscillation, therefore one can easily identify it (Example: Lorenz, Rösseler, Chua

oscillators, etc.) (Lakshmanan and Rajaseekar 2012). In contrast, for a hidden attrac-

tor, a basin of attraction does not intersect with any small neighborhoods of equilibria

(Dudkowski et al. 2016). Hidden attractor can be chaotic as well as periodic e.g. the

case of coexistence of the only stationary point which is stable and a stable limit

cycle. It can easily predict the existence of self-excited attractor, while for hidden

attractor the main problem is how to predict its existence in the phase space. Thus,

for localization of hidden attractors it is important to develop special procedures,

since there are no similar transient processes leading to such attractors. If the hid-

den attractor is present in the system dynamics and if coincidentally reached, then

device (airplane, electronic circuit, etc.) starts to show the quasi-cyclic behavior that

can, based on kind of device cause real disasters. In particular, to the extent that

they have been known to exist, dynamical systems with no equilibrium have mostly

been considered as nonphysical or mathematically incomplete. However, as expe-

rience shows, a system that presents hidden dynamical behaviour doesn’t need to

also display an unstable equilibrium state. In this section, the hidden attractor have
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Fig. 5 Three dimensional phase plot for hidden oscillation at (x10, x20, x30)=(0.8, 0.6, 0.0) with the

parameters fixed at a = 0.0001, b = 0.35, and c = 0.85 of system (2). FP indicates fixed point of

the system

been revealed in our proposed system (2). The parameters are fixed as a = 0.0001,

b = 0.35, and c = 0.85 with the initial conditions (x10, x20, x30) = (0, 0, 0). From

the stability, we start the system anywhere in the basin the trajectories approach

to fixed point because of the nature of its stability. For instance in a particular

range of initial conditions the system exhibit stable oscillations which does not

intersect the neighbourhood of the equilibrium of the system named hidden oscilla-
tions. Figure 5 shows three dimensional plot for the hidden oscillation for particular

set of initial conditions, (x10, x20, x30) = (0.8, 0.6, 0.0) and the parameter are fixed

as a = 0.0001, b = 0.35, and c = 0.85 of system (2). The fixed point of the sys-

tem are also replotted and its indicated as FP in Fig. 5. The different projection of

the phase portraits shown in the Fig. 6. Figure 7 shows the time series plot of (a)

(x1(t)), (b) (x2(t)), (c) (x3(t)) variables for the corresponding phase plot in Fig. 5

which indicate the periodicity of the system. We got periodic hidden attractor in

the wider range of initial conditions, We also intend to study the basin of the system.

Figure 8 shows the various type of coexisting hidden attractor for different set of ini-

tial conditions indicates as H1 − H6. This attractors obtained from the initial condi-

tions as (H1,H6):(x10, x20, x30 = ±4.0, 0.6, 0), (H2,H5):(x10, x20, x30 = ±2.0, 0.6, 0),

and (H3,H4):(x10, x20, x30 = ±0.5, 0.6, 0). The FP is the equilibrium state of the sys-

tem obtained from (x10, x20, x30 = 0, 0, 0). From this Fig. 8, we conclude that our

system have many interesting hidden attractors. The Lyapunov exponents were cal-

culated for the periodic attractor where λ1−3 = (0.00053,−0.0432, −0.00004) for

very near to the equilibrium and λ1−3 = (0.00052,−0.0232, −0.00022) far away from

the equilibrium. The phase space volume was calculated as ∇.F = −a which shows

that our system is purely dissipative.
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Fig. 8 Three dimensional phase plot for different coexisting hidden oscillations for different ini-

tial conditions as (H1,H6):(x10, x20, x30 = ±4.0, 0.6, 0), (H2,H5):(x10, x20, x30 = ±2.0, 0.6, 0), and

(H3,H4):(x10, x20, x30 = ±0.5, 0.6, 0)

5 Controlling Hidden Attractor

In the above section the existence of the hidden oscillation is presented. In this

section, the control of hidden attractor (the stabilization of fixed points) is examined.

For that we take linear augmentation technique (Resmi et al. 2010). The scheme is

generalized and can be applied to any other system as well. Here we coupled mem-

ristor based duffing oscillator Eq. (2) with the linear system to control the dynamics

of hidden attractor in it. Initially we applied the augmentation in x1. The coupled

equation is given by:

ẋ1 = x2 + εu
ẋ2 = x3
ẋ3 = −ax3 − bx2 − cx21x2
u̇ = −ku − ε(x1 − b) (5)

Here ε is the coupling strength between the oscillatory and the linear systems,

k is the decay parameter of the linear system u, and b is a control parameter of the

augmented system. Here, we have taken only one linear system, in some cases we can

take two linear systems for stabilizing both co-ordinates. We are not able to control

the dynamics by augmenting the x1 variable. The phase space plot of x1 versus x2 for

different ε for this case is shown in Fig. 9a, b. Next, we augmented the x2 variable



Existence and Control of Hidden Oscillations . . . 339

−100 −50 0 50 100
−6000

−4000

−2000

0

2000

4000

6000

x1

x 2

−40 −20 0 20 40

−600

−400

−200

0

200

400

600

x1

x 2

(a) (b)

Fig. 9 Phase space trajectories of coupled memristor based duffing oscillator x1 versus x2 for

ε = 2.0 a k = 0.01 and b k = 1.0

and dynamics is controlled by it. The equation is given by:

ẋ1 = x2
ẋ2 = x3 + εu
ẋ3 = −ax3 − bx2 − cx21x2
u̇ = −ku − ε(x2 − b). (6)

Now shown in Fig. 10 is the phase space diagram in parameter space (k − ε)

in which A is the uncontrolled region and B is the region in which dynamics is

k

ε
A

B

 0  0.4  0.8  1.2  1.6  2

 1

 2

 3

 4

 5

Fig. 10 Phase space diagram in the parameter space (k − ε), where A and B are the uncontrolled

and controlled region respectively
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Fig. 11 Phase space trajectories of coupled memristor based duffing oscillator x1 versus x2 for a
ε = 2.0 and c ε = 5.0. Time series for x1 b ε = 2.0 and d ε = 5.0

controlled. The dashed line in it is demarcated when largest Lyapunov exponent

changes its sign. The important thing to note here is that we are not getting the fixed

point of the system, but the system is going to new fixed points created due to cou-

pling. Now shown in Fig. 11 is the phase space (a) and (b) and time series (c) and (d)

showing how the system is approaching the fixed point. Left panel is for ε = 2 and

right panel is for ε = 5. It is clear from the figure that in both cases system is going

to fixed point, but transient trajectory is different in both cases. So, in this section

by augmentation technique we are able to control the dynamics of hidden attractor

in memristor based Duffing oscillator and stabilize it to a fixed point which is not a

equilibrium point of the uncoupled system.

6 Conclusion

We have observed a very interesting and emerging phenomenon of hidden oscilla-

tions in memristor based autonomous Duffing oscillator. The stability studied with

the help of eigenvalues analysis. The hidden oscillations are obtained and presented

in phase plot and its time series. We found our proposed system have wide range

of coexisting hidden oscillations in its basin. We observed periodic form of hidden

oscillation which is confirmed by Lyapunov exponents. In many applications, know-

ing the property of periodic oscillatory solutions is very interesting and valuable as

many biological and cognitive activities require repetition. But in case of periodic
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hidden oscillations which leads to the new area of research by its repetition. Con-

trolling of hidden attractors using linear augmentation technique is performed. The

linear augmentation validate for all variables of our proposed system. We found that

the linear augmentation will stabilize the system for only one variable mode (x2 of

Eq. (2)). The memristor emulator does not allows to stabilize the charge component

(x1 of Eq. (2)) of the system. In future, the detailed study of the hidden oscillations

will be made by our proposed system with different physical situation which will be

reported elsewhere (Vaibhav et al. 2017).
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A Novel 4-D Hyperchaotic Rikitake Dynamo
System with Hidden Attractor, its Properties,
Synchronization and Circuit Design
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and Aceng Sambas

Abstract Hyperchaos has important applications in physics, chemistry, biology,

ecology, secure communications, cryptosystems and many scientific branches. In

this work, we propose a novel 4-D hyperchaotic Rikitake dynamo system without

any equilibrium point by adding a state feedback control to the famous 3-D Riki-

take two-disk dynamo system (1958). Thus, the proposed novel hyperchaotic Rik-

itake dynamo system exhibits hidden attractors. We describe qualitative properties

of the hyperchaotic Rikitake dynamo system such as symmetry, Lyapunov expo-

nents, Kaplan-Yorke dimension, etc. Furthermore, an adaptive integral sliding mode

control scheme is proposed for the global hyperchaos synchronization of identical

hyperchaotic Rikitake dynamo systems. The adaptive control mechanism helps the

control design by estimating the unknown parameters. Numerical simulations using

MATLAB are shown to illustrate all the main results derived in this work. Finally,

the circuit experimental results of the hyperchaotic Rikitake dynamo system show

agreement with the numerical simulations.
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1 Introduction

A hyperchaotic system is defined as a chaotic system with at least two

positive Lyapunov exponents (Azar and Vaidyanathan 2015, 2016; Vaidyanathan

and Volos 2016a). Combined with one null exponent along the flow and one neg-

ative exponent to ensure the boundedness of the solution, the minimal dimension

for a continuous-time hyperchaotic system is four. Hyperchaotic systems have many

applications in science and engineering (Vaidyanathan and Volos 2016b, 2017; Azar

and Vaidyanathan 2017).

Some classical examples of hyperchaotic systems are hyperchaotic

Rössler system (Rössler 1979), hyperchaotic Lorenz system (Jia 2007), hyperchaotic

Chen system (Gao et al. 2006), hyperchaotic Lü system (Chen et al. 2006), etc.

Some recent examples of hyperchaotic systems are hyperchaotic

Dadras system (Dadras et al. 2012), hyperchaotic Vaidyanathan systems

(Vaidyanathan 2013, 2014b; Vaidyanathan et al. 2014, 2015a, b, d; Vaidyanathan

and Azar 2015; Vaidyanathan et al. 2015c; Vaidyanathan 2016g, b; Vaidyanathan and

Azar 2016a; Vaidyanathan 2016k, l, h; Vaidyanathan and Azar 2016b; Vaidyanathan

et al. 2016; Vaidyanathan 2016a, d, f, c, e; Vaidyanathan and Boulkroune 2016),

hyperchaotic Sampath system (Sampath et al. 2016), hyperchaotic Pham system

(Pham et al. 2016d), etc.

Recently there has been significant interest in finding and studying of infinite

number of equilibria such as equilibria located on the circle (Gotthans and Petrzela

2015), square (Gotthans et al. 2016), ellipse (Pham et al. 2016c), rounded square

Pham et al. (2016a), rounded rectangle Pham et al. (2016c), line (Jafari and Sprott

2013; Li and Sprott 2014a), two parallel lines (Li et al. 2015), two perpendicular lines

(Li et al. 2015), heart shape (Pham et al. 2017) and piecewise linear curve (Pham et al.

2016b). In addition, the chaotic system with no equilibria was also reported (Li and

Sprott 2014b, 2016; Li et al. 2016; Leonov et al. 2012, 2015).

Motivated by the above researches, a novel 4-D hyperchaotic Rikitake dynamo

system without equilibrium point is proposed in this work, which is derived by

adding a state feedback control to the famous 3-D Rikitake two-disk dynamo system

(Rikitake 1958). Thus, the proposed novel hyperchaotic Rikitake dynamo system

exhibits hidden attractors. We describe qualitative properties of the hyperchaotic

Rikitake dynamo system such as symmetry, Lyapunov exponents, Kaplan-Yorke

dimension, etc.

In this chapter, we also use adaptive integral sliding mode control for the global

hyperchaos synchronization of the identical hyperchaotic Rikitake dynamo systems.

The adaptive control mechanism helps the control design by estimating the

unknown parameters (Azar and Vaidyanathan 2015, 2016; Vaidyanathan and Volos

2016a). The sliding mode control approach is recognized as an efficient tool for
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designing robust controllers for linear or nonlinear control systems operating under

uncertainty conditions (Utkin 1977, 1993).

A major advantage of sliding mode control is low sensitivity to parameter varia-

tions in the plant and disturbances affecting the plant, which eliminates the necessity

of exact modeling of the plant (Vaidyanathan and Sampath 2011; Sundarapandian

and Sivaperumal 2011; Vaidyanathan 2011, 2012a). Sliding mode control is a pop-

ular method for the control and synchronization of chaotic systems (Vaidyanathan

2012b, 2014a; Lakhekar et al. 2016; Moussaoui et al. 2016; Vaidyanathan 2016i, j).

Next, an adaptive integral sliding mode control scheme is proposed to globally

stabilize all the trajectories of the hyperchaotic two-disk dynamo system. Further-

more, an adaptive integral sliding mode control scheme is proposed for the global

hyperchaos synchronization of identical hyperchaotic two-disk dynamo systems.

This work is organized as follows. Section 2 gives a review of the 3-D Rikitake

dynamo chaotic system and its qualitative properties. Section 3 describes the novel

4-D hyperchaotic Rikitake dynamo system and describes its phase portraits. Section 4

details the qualitative properties of the novel 4-D hyperchaotic Rikitake dynamo sys-

tem. Section 5 contains new results on the adaptive integral sliding mode controller

design for the global synchronization of the novel identical 4-D hyperchaotic Riki-

take dynamo systems. Section 6 contains a circuit simulation of the novel 4-D hyper-

chaotic Rikitake dynamo system. Section 7 contains the conclusions of this work.

2 Rikitake Two-Disk Dynamo System

In this section, we describe the two-disk dynamo chaotic system obtained by Rik-

itake (1958). The frequent and irregular reversals of the earth’s magnetic field had

inspired many early studies involving electrical currents within the earth’s molten

core. One of the first such dynamical models to report earth’s magnetic reversals

was the Rikitake two-disk dynamo model (Rikitake 1958).

The Rikitake two-disk dynamo system is modelled by the 3-D dynamics

ẋ1 = −ax1 + x2x3
ẋ2 = −ax2 + x1(x3 − b)
ẋ3 = 1 − x1x2

(1)

where x1, x2, x3 are the three states. In (1), a and b are constant, positive, parameters.

It is noted that Rikitake dynamo system (1) has the same number of terms as the

Lorenz chaotic system (Lorenz 1963), but with an additional quadratic nonlinearity.

In the Rikitake two-disk dynamo system (1), the parameter a stands for resistive

dissipation and the parameter b stands for the difference in the angular velocities of

the two disks.

In Rikitake (1958), it was established that the two-disk dynamo system depicts a

chaotic attractor when we take the parameter values as
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a = 1, b = 1 (2)

For MATLAB simulations, we take the initial state of the Rikitake two-disk dynamo

system (1) as

x1(0) = 0.4, x2(0) = 0.4, x3(0) = 0.4 (3)

Using the parameter values (2) and the initial state (3), the Lyapunov exponents

of the Rikitake two-disk dynamo system (1) are calculated using Wolf’s algorithm

(Wolf et al. 1985) as

L1 = 0.1269, L2 = 0, L3 = −2.1269 (4)

We note also that

L1 + L2 + L3 = −2 < 0 (5)

Thus, we infer that the Rikitake two-disk dynamo system (1) is chaotic and dis-

sipative.

Also, the Kaplan-Yorke dimension of the Rikitake two-disk dynamo system (1)

has been calculated as

DKY = 2 +
L1 + L2
|L3|

= 2.0597, (6)

which is fractional.

It is easy to see that the Rikitake two-disk dynamo system (1) is invariant under

the coordinates transformation

(x1, x2, x3) ↦ (−x1,−x2, x3) (7)

This establishes that the Rikitake two-disk dynamo system (1) has rotation sym-

metry about the x3-axis. Hence, any non-trivial trajectory of the Rikitake two-disk

dynamo system (1) must have a twin-trajectory.

For the parameter values (a, b) = (1, 1), the Rikitake two-disk dynamo system (1)

has two equilibrium points given by

E1 =
⎡
⎢
⎢
⎣

1.2720
0.7862
1.6180

⎤
⎥
⎥
⎦

, E2 =
⎡
⎢
⎢
⎣

−1.2720
−0.7862
1.6180

⎤
⎥
⎥
⎦

(8)

It is easy to verify that both equilibrium points E1 and E2 are marginally stable.

Figure 1 shows the phase portraits of the Rikitake two-disk dynamo chaotic sys-

tem (1). It is clear that the Rikitake two-disk dynamo system exhibits a two-scroll
chaotic attractor.
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Fig. 1 Numerical simulation results of the Rikitake two-disk dynamo system (1) with two-scroll

attractor for a = 1, b = 1, in a 𝐑3
, b (x1, x2) plane, c (x2, x3) plane, d (x1, x3) plane

3 Hyperchaotic Rikitake Two-Disk Dynamo System

In this section, we derive a new 4-D hyperchaotic Rikitake two-disk dynamo system

by adding a feedback control to the two-disk dynamo chaotic system (1).

Thus, our 4-D novel Rikitake two-disk dynamo system is given by the dynamics

ẋ1 = −ax1 + x2x3 − x4
ẋ2 = −ax2 + x1(x3 − b) − x4
ẋ3 = 1 − x1x2
ẋ4 = cx2

(9)
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where x1, x2, x3, x4 are the state variables and a, b, c are positive parameters.

In this work, we show that the 4-D novel Rikitake two-disk dynamo system (9) is

hyperchaotic when the system parameters take the values

a = 1, b = 1, c = 0.7 (10)

For MATLAB simulations, we take the initial state of the system (9) as

x1(0) = 0.4, x2(0) = 0.4, x3(0) = 0.4, x4(0) = 0.4 (11)

Fig. 2 Numerical simulation results of 2-D plots of the hyperchaotic Rikitake two-disk dynamo

system (9) with two-scroll attractor for a = 1, b = 1, in a (x1, x2) plane, b (x2, x3) plane, c (x3, x4)
plane and d (x1, x4) plane
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For the parameter values (10) and the initial values (11), the Lyapunov exponents

of the two-disk dynamo system (9) are calculated by Wolf’s algorithm (Wolf et al.

1985) as

L1 = 0.08175, L2 = 0.02350, L3 = 0, L4 = −2.10525 (12)

Since there are two positive Lyapunov exponents in the LE spectrum (12), it is

immediate that the 4-D novel two-disk dynamo system (9) is hyperchaotic.

Also, the Kaplan-Yorke dimension of the new 4-D hyperchaotic Rikitake two-disk

dynamo system (9) is obtained as

DKY = 3 +
L1 + L2 + L3

|L4|
= 3.05, (13)

Fig. 3 Numerical simulation results of 3-D plots of the hyperchaotic Rikitake two-disk dynamo

system (9) with two-scroll attractor for a = 1, b = 1, in a (x1, x2, x3) space, b (x1, x2, x4) space, c
(x1, x3, x4) space and d (x2, x3, x4) space
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which is fractional.

Figure 2 shows the 2-D phase portraits of the new hyperchaotic Rikitake two-

disk dynamo system (9). Figure 3 shows the 3-D phase portraits of the new hyper-

chaotic Rikitake two-disk dynamo system (9). It is clear from Figs. 2 and 3 that the

new hyperchaotic two-disk dynamo system (9) describes a two-scroll hyperchaotic

attractor.

4 Analysis of the New 4-D Hyperchaotic Two-Disk Dynamo
System

In this section, we give a dynamic analysis of the new 4-D hyperchaotic Rikitake

two-disk dynamo system (9). We take the parameter values as in the hyperchaotic

case (10), i.e. a = 1, b = 1 and c = 0.7.

4.1 Dissipativity

In vector notation, we express the new hyperchaotic Rikitake two-disk dynamo sys-

tem (9) as

�̇� = f (𝐱) =
⎡
⎢
⎢
⎢
⎣

f1(x1, x2, x3, x4)
f2(x1, x2, x3, x4)
f3(x1, x2, x3, x4)
f4(x1, x2, x3, x4)

⎤
⎥
⎥
⎥
⎦

, (14)

where

⎧
⎪
⎨
⎪
⎩

f1(x1, x2, x3, x4) = −ax1 + x2x3 − x4
f2(x1, x2, x3, x4) = −ax2 + x1(x3 − b) − x4
f3(x1, x2, x3, x4) = 1 − x1x2
f4(x1, x2, x3, x4) = cx2

(15)

Let 𝛺 be any region in 𝐑4
with a smooth boundary and also, 𝛺(t) = 𝛷t(𝛺), where

𝛷t is the flow of f . Furthermore, let V(t) denote the hypervolume of 𝛺(t).
By Liouville’s theorem, we know that

̇V(t) = ∫
𝛺(t)

(∇ ⋅ f ) dx1 dx2 dx3 dx4 (16)

The divergence of the hyperchaotic system (14) is found as:

∇ ⋅ f =
𝜕f1
𝜕x1

+
𝜕f2
𝜕x2

+
𝜕f3
𝜕x3

+
𝜕f4
𝜕x4

= −(a + a) = −2 < 0 (17)
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Inserting the value of ∇ ⋅ f from (17) into (16), we get

̇V(t) = ∫
𝛺(t)

(−2a) dx1 dx2 dx3 dx4 = −2V(t) (18)

Integrating the first order linear differential equation (18), we get

V(t) = exp(−2t)V(0) (19)

Thus, it is clear that Eq. (19) that V(t) → 0 exponentially as t → ∞. This shows

that the new hyperchaotic Rikitake two-disk dynamo system (9) is dissipative.

Hence, the system limit sets are ultimately confined into a specific limit set of zero

hypervolume, and the asymptotic motion of the new hyperchaotic Rikitake two-disk

dynamo system (9) settles onto a strange attractor of the system.

4.2 Equilibrium Points

We take the parameter values as in the hyperchaotic case (10).

The equilibrium points of the new hyperchaotic two-disk dynamo system (9) are

obtained by solving the following system of equations.

−ax1 + x2x3 − x4 = 0 (20a)

−ax2 + (x3 − b)x1 − x4 = 0 (20b)

1 − x1x2 = 0 (20c)

cx2 = 0 (20d)

From (20d), x2 = 0. Substituting x2 = 0 in (20c), we get a contradiction.

This shows that the system of equations (20) does not admit any solution.

In other words, the new hyperchaotic two-disk dynamo system (9) has no equilib-

rium point. Hence, we deduce that the new hyperchaotic Rikitake two-disk dynamo

system (9) exhibits hidden attractors (Li and Sprott 2014b, 2016; Li et al. 2016;

Leonov et al. 2012, 2015).

4.3 Rotation Symmetry About the x𝟑-axis

It is easy to see that the new 4-D hyperchaotic two-disk dynamo system (9) is invari-

ant under the change of coordinates

(x1, x2, x3, x4) ↦ (−x1,−x2, x3,−x4) (21)
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Since the transformation (21) persists for all values of the system parameters,

it follows that the new 4-D hyperchaotic two-disk dynamo system (9) has rotation

symmetry about the x3-axis and that any non-trivial trajectory must have a twin tra-

jectory.

4.4 Invariance

It is easy to see that the x3-axis is invariant under the flow of the 4-D novel hyper-

chaotic system (9).

The invariant motion along the x3-axis is characterized by the scalar dynamics

ẋ3 = 1, (22)

which is unstable.

4.5 Lyapunov Exponents and Kaplan-Yorke Dimension

We take the parameter values of the new hyperchaotic Rikitake two-disk dynamo

system (9) as in the hyperchaotic case (10), i.e. a = 1, b = 1 and c = 0.7.

We take the initial state of the new hyperchaotic Rikitake two-disk dynamo system

(9) as (11), i.e. xi(0) = 0.4 for i = 1, 2, 3, 4.

Then the Lyapunov exponents of the Rikitake two-disk dynamo system (9) are

numerically obtained using MATLAB as

L1 = 0.08175, L2 = 0.02350, L3 = 0, L4 = −2.10525 (23)

Since there are two positive Lyapunov exponents in (23), the new 4-D two-disk

dynamo system (9) exhibits hyperchaotic behavior.

The maximal Lyapunov exponent (MLE) of the new hyperchaotic two-disk

dynamo system (9) is obtained as L1 = 0.08175.

Since L1 + L2 + L3 + L4 = −2 < 0, it follows that the new hyperchaotic two-disk

dynamo system (9) is dissipative.

Also, the Kaplan-Yorke dimension of the new hyperchaotic two-disk dynamo sys-

tem (9) is calculated as

DKY = 3 +
L1 + L2 + L3

|L4|
= 3.05, (24)

which is fractional.

Figure 4 shows the Lyapunov exponents of the new hyperchaotic two-disk dynamo

system (9).
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Fig. 4 Lyapunov exponents of the new hyperchaotic Rikitake two-disk dynamo system (9) for the

parameter values a = 1, b = 1 and c = 0.7

5 Global Hyperchaos Synchronization of the New
Hyperchaotic Rikitake Two-Wing Dynamo Systems

In this section, we use adaptive integral sliding mode control for the global hyper-

chaos synchronization of new hyperchaotic Rikitake two-wing dynamo systems with

unknown system parameters. The adaptive control mechanism helps the control

design by estimating the unknown parameters (Azar and Vaidyanathan 2015, 2016;

Vaidyanathan and Volos 2016a).

As the master system, we consider the new hyperchaotic Rikitake two-wing

dynamo system given by

⎧
⎪
⎨
⎪
⎩

ẋ1 = −ax1 + x2x3 − x4
ẋ2 = −ax2 + (x3 − b)x1 − x4
ẋ3 = 1 − x1x2
ẋ4 = cx2

(25)

where x1, x2, x3, x4 are the states of the system and a, b, c are unknown system param-

eters.

As the slave system, we consider the controlled new hyperchaotic Rikitake two-

wing dynamo system given by
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⎧
⎪
⎨
⎪
⎩

ẏ1 = −ay1 + y2y3 − y4 + u1
ẏ2 = −ay2 + (y3 − b)y1 − y4 + u2
ẏ3 = 1 − y1y2 + u3
ẏ4 = cy2 + u4

(26)

where y1, y2, y3, y4 are the states of the system.

The synchronization error between the hyperchaotic Rikitake two-wing dynamo

systems (25) and (26) is defined as

ei = yi − xi, (i = 1, 2, 3, 4) (27)

Then we get the error dynamics as follows:

⎧
⎪
⎨
⎪
⎩

ė1 = −ae1 − e4 + y2y3 − x2x3 + u1
ė2 = −ae2 − be1 − e4 − y1y3 + x1x3 + u2
ė3 = −y1y2 + x1x2 + u3
ė4 = ce2 + u4

(28)

Based on the sliding mode control theory (Utkin 1977, 1993; Slotine and Li

1991), the integral sliding surface of each ei (i = 1, 2, 3, 4) is defined as follows:

si =
( d
dt

+ 𝜆i

) ⎛
⎜
⎜
⎝

t

∫
0

ei(𝜏)d𝜏
⎞
⎟
⎟
⎠

= ei + 𝜆i

t

∫
0

ei(𝜏)d𝜏, i = 1, 2, 3, 4 (29)

From Eq. (29), it follows that

⎧
⎪
⎨
⎪
⎩

ṡ1 = ė1 + 𝜆1e1
ṡ2 = ė2 + 𝜆2e2
ṡ3 = ė3 + 𝜆3e3
ṡ4 = ė4 + 𝜆4e4

(30)

The Hurwitz condition is realized if 𝜆i > 0 for i = 1, 2, 3, 4.

We consider the adaptive feedback control given by

⎧
⎪
⎨
⎪
⎩

u1 = â(t)e1 + e4 − y2y3 + x2x3 − 𝜆1e1 − 𝜂1 sgn(s1) − k1s1
u2 = â(t)e2 + ̂b(t)e1 + e4 + y1y3 − x1x3 − 𝜆2e2 − 𝜂2 sgn(s2) − k2s2
u3 = y1y2 − x1x2 − 𝜆3e3 − 𝜂3 sgn(s3) − k3s3
u4 = −ĉ(t)e2 − 𝜆4e4 − 𝜂4 sgn(s4) − k4s4

(31)

where 𝜂i > 0 and ki > 0 for i = 1, 2, 3, 4.

Substituting (31) into (28), we obtain the closed-loop error dynamics as
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⎧
⎪
⎨
⎪
⎩

ė1 = −[a − â(t)]e1 − 𝜆1e1 − 𝜂1 sgn(s1) − k1s1
ė2 = −[a − â(t)]e2 − [b − ̂b(t)]e1 − 𝜆2e2 − 𝜂2 sgn(s2) − k2s2
ė3 = −𝜆3e3 − 𝜂3 sgn(s3) − k3s3
ė4 = [c − ĉ(t)]e2 − 𝜆4e4 − 𝜂4 sgn(s4) − k4s4

(32)

We define the parameter estimation errors as

⎧
⎪
⎨
⎪
⎩

ea(t) = a − â(t)
eb(t) = b − ̂b(t)
ec(t) = c − ĉ(t)

(33)

Using (33), we can simplify the closed-loop system (32) as

⎧
⎪
⎨
⎪
⎩

ė1 = −eae1 − 𝜆1e1 − 𝜂1 sgn(s1) − k1s1
ė2 = −eae2 − ebe1 − 𝜆2e2 − 𝜂2 sgn(s2) − k2s2
ė3 = −𝜆3e3 − 𝜂3 sgn(s3) − k3s3
ė4 = ece2 − 𝜆4e4 − 𝜂4 sgn(s4) − k4s4

(34)

Differentiating (33) with respect to t, we get

⎧
⎪
⎨
⎪
⎩

ėa = − ̇â
ėb = − ̇

̂b
ėc = − ̇ĉ

(35)

Next, we state and prove the main result of this section.

Theorem 1 The new hyperchaotic two-wing dynamo systems (25) and (26) are glob-
ally and asymptotically synchronized for all initial conditions 𝐱(0), 𝐲(0) ∈ 𝐑4 by the
adaptive integral sliding mode control law (31) and the parameter update law

⎧
⎪
⎨
⎪
⎩

̇â = −s1e1 − s2e2
̇

̂b = −s2e1
̇ĉ = s4e2

(36)

where 𝜆i, 𝜂i, ki are positive constants for i = 1, 2, 3, 4.

Proof We consider the quadratic Lyapunov function defined by

V(s1, s2, s3, s4, ea, eb, ec) =
1
2
(
s21 + s22 + s23 + s24

)
+ 1

2
(
e2a + e2b + e2c

)
(37)

Clearly, V is positive definite on 𝐑7
.

Using (30), (34) and (35), the time-derivative of V is obtained as
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̇V = −𝜂1|s1| − k1s21 − 𝜂2|s2| − k2s22 − 𝜂3|s3| − k3s23 − 𝜂4|s4| − k4s24
+ ea

(
−s1e1 − s2e2 − ̇â

)
+ eb

(

−s2e1 −
̇

̂b
)

+ ec
(
s4e2 − ̇ĉ

) (38)

Using the parameter update law (36), we obtain

̇V = −𝜂1|s1| − k1s21 − 𝜂2|s2| − k2s22 − 𝜂3|s3| − k3s23 − 𝜂4|s4| − k4s24 (39)

which shows that ̇V is negative semi-definite on 𝐑7
.

Hence, by Barbalat’s lemma (Khalil 2002), it is immediate that 𝐞(t) is globally

asymptotically stable for all values of 𝐞(0) ∈ 𝐑4
.

Hence, it follows that the new hyperchaotic two-wing dynamo systems (25)

and (26) are globally and asymptotically synchronized for all initial conditions

𝐱(0), 𝐲(0) ∈ 𝐑4
.

This completes the proof. ■

For numerical simulations, we take the parameter values of the new hyperchaotic

Rikitake two-disk dynamo systems (25) and (26) as in the hyperchaotic case (10),

i.e. a = 1, b = 1 and c = 0.7.

We take the values of the control parameters as

ki = 10, 𝜂i = 0.1, 𝜆i = 12, where i = 1, 2, 3, 4 (40)

We take the estimates of the system parameters as

â(0) = 5.4, ̂b(0) = 3.7, ĉ(0) = 8.9 (41)

We take the initial state of the master system (25) as

x1(0) = 5.2, x2(0) = 23.7, x3(0) = 16.3, x4(0) = 7.6 (42)

We take the initial state of the slave system (26) as

y1(0) = 14.9, y2(0) = 10.4, y3(0) = 9.1, y4(0) = 12.8 (43)

Figure 5 shows the complete synchronization between the states of the master

system (25) and the slave system (26). Figure 6 shows the time-history of the syn-

chronization errors e1, e2, e3, e4.

6 Circuit Simulation of the Hyperchaotic Rikitake
Two-Disk Dynamo System

A simple electronic circuit is designed that can be used to study chaotic phenom-

ena. In Fig. 7, the voltages of VC1,VC2,VC3 and VC4 are used as x1, x2, x3 and x4,
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Fig. 5 Numerical simulation results of the complete synchronization of the hyperchaotic Rikitake

two-disk dynamo systems (25) and (26)

respectively. By applying Kirchhoff’s laws to the electronic circuit in Fig. 7, its non-

linear equations are given as follows:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

dVC1
dt

= − 1
C1R1

VC1 +
1

10C1R2
VC2VC3 −

1
C1R3

VC4
dVC2
dt

= − 1
C2R4

VC2 +
1

10C2R5
VC1VC3 −

1
C2R6

VC1 −
1

C2R7
VC4

dVC3
dt

= 1
C3R9

V1 −
1

10C3R8
VC1VC2

dVC4
dt

= 1
C4R10

VC2

(44)
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Fig. 6 Numerical simulation results of the time-history of the synchronization error between the

hyperchaotic Rikitake two-disk dynamo systems (25) and (26)

Fig. 7 Schematic of the hyperchaotic Rikitake two-disk dynamo system by using MultiSIM 10.0

We choose R2 = R5 = R8 = 25 KΩ, R9 = 4 KΩ, R10 = 14.286 KΩ, R1 = R3 =
R4 = R6 = R7 = R11 = R12 = R13 = R14 = 10 KΩ, V1 = −1VDC and C1 = C2 = C3
= C4 = 10 nF. The power supplies of all active devices are ± 15 V.

The MultiSIM projections of chaotic behaviour with hidden attractor are pre-

sented in Fig. 8. The MultiSIM results also indicate that the circuit can emulate

the theoretical model (9). As compared with Fig. 2, a good qualitative agreement

between the numerical simulations and the MultiSIM 10.0 results of the a new 4-D

hyperchaotic Rikitake two-disk dynamo system is confirmed.



A Novel 4-D Hyperchaotic Rikitake Dynamo System . . . 361

Fig. 8 Various projections of the hyperchaotic Rikitake two-disk dynamo system using MultiSIM

for a = 1, b = 1, c = 0.7, in a (x1, x2) plane, b (x2, x3) plane, c (x3, x4) plane and d (x1, x4) plane

7 Conclusions

In this work, a hyperchaotic Rikitake two-disk dynamo system with hidden attrac-

tor was presented. The fundamental properties of the system such as dissipativity,

symmetry, Lyapunov exponents and Kaplan-Yorke dimension as well as its phase

portraits were described in detail. Also, an adaptive integral sliding mode con-

trol for the global hyperchaos synchronization of new hyperchaotic Rikitake two-

disk dynamo systems with unknown system parameters was designed. Finally, the
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MultiSIM implementation of the Hyperchaotic Rikitake two-disk dynamo system

was presented for confirming the feasibility of the theoretical chaotic system.
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A Six-Term Novel Chaotic System
with Hidden Attractor and Its Circuit Design

Aceng Sambas, Sundarapandian Vaidyanathan, Mustafa Mamat
and W. S. Mada Sanjaya

Abstract In this work, we propose a six-term novel 3D chaotic system with hid-

den attractor. The novel 3D chaotic system consists of six terms and two quadratic

nonlinearities. We show that the novel chaotic system has no equilibrium point and

hence it exhibits hidden attractor. A detailed qualitative analysis of the 3D chaotic

system is presented such as phase portrait analysis, Lyapunov exponents, bifurcation

diagram and Poincaré map. The mathematical model of the novel chaotic system is

accompanied by an electrical circuit implementation, demonstrating chaotic behav-

ior of the strange attractor. Finally, the circuit experimental results of the chaotic

attractors show agreement with numerical simulations.

1 Introduction

In 1963, Lorenz constructed a 3-D model for weather prediction (Lorenz 1963). In

1976, Rössler proposed a low dimensional dissipative dynamical systems (Rössler

1976). In 1994, Sprott suggested 19 cases of simple chaotic flows (Sprott 1994). In

2000, Malasoma presented the simplest dissipative jerk equation that is parity invari-

ant (Malasoma 2000). Some classical 3-D autonomous chaotic systems in the litera-
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ture are Chen system (Chen and Ueta 1999), Lü system (Lü and Chen 2002), etc. In

the last few decades, many new chaotic systems have been found in various applica-

tions in science and engineering (Azar and Vaidyanathan 2015, 2016; Vaidyanathan

and Volos 2016a, b; Azar and Vaidyanathan 2017; Vaidyanathan and Volos 2017).

Chaos has been widely applied to many scientific disciplines such as ecology

(Mada Sanjaya et al. 2012), biology (Mada Sanjaya et al. 2011), economics (Bouali

et al. 2012; Tacha et al. 2016), lasers (Li et al. 2014), chemical reaction (Nakajima

and Sawada 1979), robotics (Sambas et al. 2016b; Islam and Murase 2005), image

encryption (Andreator and Leros 2013), voice encryption (Abdulkareem and Abdul-

jaleel 2013), secure communication systems (Sambas et al. 2016a, 2013a, 2012,

2015b, 2013b, 2015a), etc.

Recently there has been significant interest in finding and studying of infinite

number of equilibria such as equilibria located on the circle (Gotthans and Petrzela

2015), square (Gotthans et al. 2016), ellipse (Pham et al. 2016c), rounded square

(Pham et al. 2016a), rounded rectangle (Pham et al. 2016c), line (Jafari and Sprott

2013; Li and Sprott 2014a), two parallel lines (Li et al. 2015), two perpendicular lines

(Li et al. 2015), heart shape (Pham et al. 2017) and piecewise linear curve (Pham et al.

2016b). In addition, the chaotic system with no equilibria was also reported (Li and

Sprott 2014b, 2016; Li et al. 2016; Leonov et al. 2012, 2015).

Motivated by the above researches, a novel 3-D chaotic system without equilib-

rium and with only two quadratic nonlinearities is proposed in this work. In Sect. 2,

we present novel 3D chaotic system without equilibrium with only two quadratic

nonlinearities, numerical results in evolving phase portraits, Lyapunov exponents

analysis, bifurcation diagram analysis, and Poincaré map analysis. In Sect. 3, we

present an electronic circuit that implements the nonlinear system. Finally, Sect. 4

contains the conclusion of this work.

2 A Six-Term Novel Chaotic System

A classical example of a chaotic system with hidden attractor is the conservative

chaotic system discovered by Sprott (1994), and known as the Sprott-A hidden

attractor:

⎧
⎪
⎨
⎪
⎩

ẋ = y
ẏ = −x + yz
ż = 1 − y2

(1)

where x, y, z are the state variables. It is well-known that Sprott-A hidden attractor

(1) is a special case of the Nose-Hoover oscillator (Nosé 1991) and describes many

natural phenomena (Posch et al. 1986). The Sprott-A hidden attractor (1) is a con-

servative system and it does not have attractors. A recent study by Jafari, Sprott and

Nazarimehr describes many rare flows without any equilibria (Jafari et al. 1986).

Based on system (1), we design a novel chaotic system as follows:
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⎧
⎪
⎨
⎪
⎩

ẋ = ay
ẏ = −x − yz
ż = by2 − cx − d

(2)

In system (2), a, b, c and d are constant parameters. It is clear that when d ≠ 0,

the system (2) does not have any equilibrium point. The system (2) is chaotic when

the parameter values are taken as

a = 0.8, b = 0.5, c = 0.1, d = 1 (3)

Thus, for the chaotic case (3), the system (2) does not have any equilibrium point

and hence it exhibits hidden attractor.

For numerical simulation, we take the initial conditions of the system (2) as (0.1,

0.1, 0.1). The system’s dynamic behavior is investigated numerically by employing

a fourth order Runge-Kutta algorithm. Figure 1 shows the phase portraits of the six-

term novel chaotic system (2) with hidden attractor.

The dynamics behavior of the six-term novel 3D chaotic system with hidden

attractor can be characterized with its Lyapunov exponents which are computed

numerically by Wolf algorithm proposed in Ref (wolf et al. 1985). The Lyapunov

exponents of the six-term novel 3D chaotic system (2) are found to be LE1 =
0.0344,LE2 = 0 and LE3 = −0.0400 (Fig. 2a). The system has a relatively high

Kaplan-Yorke dimension of DKY = 2.86. For b ≤ 0.5 a strange attractor is displayed

as the system has one positive Lyapunov exponent and b ≥ 0.5 is a transition to

periodic behavior (Fig. 2b). In order to get detailed view of the six-term novel 3D

chaotic system with hidden attractor (2), its dynamics behavior with respect to the

bifurcation parameter b is investigated. A MATLAB program was written to obtain

the bifurcation diagrams for novel 3D chaotic system (2) of Fig. 2c. For the chosen

value of b ≤ 0.5 the system displays the expected chaotic behavior and b ≥ 0.5 a

periodic behavior is presented. In addition, the Poincaré map of the system (2) in

Fig. 2d also reflects properties of chaos.

3 Circuit Realization of the Six-Term Novel Chaotic System

In this section, we design an electronic circuit modeling of the six-term novel

3D chaotic system with hidden attractor. The electronic circuit in Fig. 3 has been

designed following an approach based on operational amplifiers (Vaidyanathan and

Volos 2016a, b, 2017) where the state variables x, y, z of the system (2) are associ-

ated with the voltages across the capacitors C1,C2 and C3, respectively. By applying

Kirchhoffs circuit laws in to the circuit in Fig. 3, we get its circuital equations as

follows:
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(a) (b)

(c) (d)

Fig. 1 Numerical simulation results of the novel chaotic system (2) with hidden attractor for

a = 0.8, b = 0.5, c = 0.1, d = 1, in a x − y plane, b x − z plane, c y − z plane, d 𝐑3

dVC1
dt

= 1
C1R1

VC2
dVC2
dt

= − 1
C2R2

VC1 −
1

10C2R3
VC2VC3

dVC3
dt

= 1
10C3R4

V2
C2 −

1
C3R5

VC1 −
1

C3R6
V1

(4)

Based on known parameters of system (4), the values of the electronic com-

ponents in Fig. 3 are selected as follows: R2 = R7 = R8 = 10 KΩ, R1 = 12.5 KΩ,

R3 = 40 KΩ, R4 = 80 KΩ, R5 = 100 KΩ, R6 = 2.5 KΩ, C1 = C2 = C3 = C4 = 10
nF and V1 = 1VDC.

The circuit has three integrators by using Op-amp TL082CD in a feedback loop

and two multipliers IC AD633. We use the electronic simulation package MultiSIM

to implement the proposed circuit. The obtained phase portraits are shown in Fig. 4.
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(a) (b)

(c) (d)

Fig. 2 Analysis of the nonlinear dynamics (2) using MATLAB 2010, for a = 0.8, c = 0.1, d = 1,

in a Lyapunov exponents of the novel chaotic system for b = 0.5, b Lyapunov exponents versus

the parameter control b ∈ [0.1, 0.8] c Bifurcation diagram of x versus the control parameter b ∈
[0.1, 0.8] d Poincaré map in the x-y-z space

A good agreement has been obtained between these circuital results and numerical

simulation using MATLAB.
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Fig. 3 Schematic of the proposed novel 3-D chaotic system by using MultiSIM 10

4 Conclusion

In this paper, a six-term novel 3-D chaotic system with hidden attractor is constructed

and analyzed. The fundamental properties of the system such as Lyapunov expo-

nents, bifurcation diagram and Poincaré map as well as its phase portraits were

described in detail. By varying the value of the parameter b, the proposed system

exhibits periodic and chaotic behaviors. An electronic circuit has been designed to

realize the differential equations of the chaotic system proposed. Comparison of the

numerical simulation MATLAB and designed circuit with MultiSIM, showed good

qualitative agreement. Potential technological applications include robotics, encryp-

tion and random bit generator.
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(b)

(a)

(c)

Fig. 4 Various projections of the six-term novel 3-D chaotic system with hidden attractor using

MultiSIM 10.0, in a x − y plane, b x − z plane, and c y − z plane
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Synchronization Phenomena in Coupled
Dynamical Systems with Hidden
Attractors

C. K. Volos, Viet-Thanh Pham, Ahmad Taher Azar, I. N. Stouboulos
and I. M. Kyprianidis

Abstract Recently, Leonov and Kuznetsov introduced a new class of nonlinear
dynamical systems, which is called systems with hidden attractors, in contrary to
the well-known class of systems with self-excited attractors. In this class, dynamical
systems with infinite number of equilibrium points, with stable equilibria, or
without equilibrium are classified. Since then, the study of chaotic systems with
hidden attractors has become an attractive research topic because this new class of
dynamical systems could play an important role not only in theoretical problems but
also in engineering applications. In this direction, the proposed chapter presents the
bidirectional and unidirectional coupling schemes between two identical dynamical
chaotic systems with no-equilibrium points. As it is observed, when the value of the
coupling coefficient is increased in both coupling schemes, the coupled systems
undergo a transition from desynchronization mode to complete synchronization.
Also, the simulation results reveal the richness of the coupled system’s dynamical
behavior, especially in the bidirectional case, showing interesting nonlinear
dynamics, with a transition between periodic, quasiperiodic and chaotic behavior as
the coupling coefficient increases, as well as synchronization phenomena, such as
complete and anti-phase synchronization. Various tools of nonlinear theory for the
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study of the proposed coupling method, such as bifurcation diagrams, phase por-
traits and Lyapunov exponents have been used.

Keywords Complete synchronization ⋅ Anti-phase synchronization
Chaos ⋅ Hidden attractors ⋅ Bifurcation diagram ⋅ Lyapunov exponent

1 Introduction

In the past three decades, the phenomenon of synchronization between coupled
nonlinear systems and especially of systems with chaotic behavior has attracted the
interest of the research community because it is an interesting phenomenon with a
broad range of applications, such as in various complex physical, chemical and
biological systems (Holstein-Rathlou et al. 2001; Mosekilde et al. 2002; Pikovsky
et al. 2003; Szatmári and Chua 2008; Tognoli and Kelso 2009; Wang et al. 2009;
Liu and Chen 2010), in secure and broadband communication system (Kocarev
et al. 1992; Cuomo et al. 1993; Wu and Chua 1993; Feki et al. 2003; Sheng-Hai and
Ke 2004; Dimitriev et al. 2006; Jafari et al. 2010) and in cryptography
(Annovazzi-Lodi et al. 1997; Baptista 1998; Grassi and Mascolo 1999; Dachselt
and Schwarz 2001; Klein et al. 2005; Alvarez and Li 2006; Volos et al. 2006;
Banerjee 2010).

The concept of synchronization of two or more systems with chaotic behavior is
the phenomenon in which the coupled systems can adjust a given of their motion
property to a common behavior (equal trajectories or phase locking), due to forcing
or coupling (Luo 2013). However, having two chaotic systems being synchronized,
it is a major surprise, due to the exponential divergence of the nearby trajectories of
the systems. Nevertheless, nowadays the phenomenon of synchronization of cou-
pled chaotic oscillators is well-studied theoretically and proven experimentally
(Ouannas et al. 2017a, b; Azar and Vaidyanathan 2015a, b, c, 2016; Vaidyanathan
et al. 2015a, b, c, 2017a, b, c; Boulkroune et al. 2016a, b; Vaidyanathan and Azar
2015a, b, c, d, 2016a, b, c, d, e, f; Ouannas et al. 2016a, b).

Synchronization theory has begun studying in the 1980s and early 1990s by
Fujisaka and Yamada (1983), Pikovsky (1984), Pecora and Carroll (1990).
Onwards, a great number of research works based on synchronization of nonlinear
systems has risen and many synchronization schemes depending on the nature of the
coupling schemes and of the interacting systems have been presented. Complete or
full chaotic synchronization (Maritan and Banavar 1994; Kyprianidis and Stou-
boulos 2003a, b; Woafo and Enjieu Kadji 2004; Kyprianidis et al. 2006a, 2008),
phase synchronization (Dykman et al. 1991; Parlitz et al. 1996), lag synchronization
(Rosenblum et al. 1997; Taherion and Lai 1999), generalized synchronization
(Rulkov et al. 1995), antisynchronization (Kim et al. 2003; Liu et al. 2006),
anti-phase synchronization (Cao and Lai 1998; Astakhov et al. 2000; Zhong et al.
2001; Blazejczuk-Okolewska et al. 2001; Kyprianidis et al. 2006b; Tsuji et al. 2007),
projective synchronization (Mainieri and Rehacek 1999; Ouannas et al. 2017c),

376 C. K. Volos et al.



anticipating (Voss 2000), inverse lag synchronization (Li 2009) and fractional order
synchronization (Tolba et al. 2017; Azar et al. 2017a, b; Pham et al. 2017c, d;
Ouannas et al. 2017d, e, f, g, h, i, j, k) are the most interesting types of synchro-
nization, which have been investigated numerically and experimentally by many
research groups.

However, the most interesting and the most studied case of synchronization is
the Complete or Full synchronization. In this case the interaction between two
coupled identical nonlinear circuits leads to a perfect coincidence of their chaotic
trajectories, i.e.

x1 tð Þ= x2 tð Þ, as t→∞. ð1Þ

Also, in 1998, another interesting type of synchronization between mutually
coupled identical autonomous nonlinear systems was observed. In this new type of
synchronization, which is called Anti-phase synchronization, each one of the
uncoupled systems produces chaotic attractors (Wang et al. 2017). This synchro-
nization phenomenon is observed when the coupled system is in a phase locked
(periodic) state, depending on the coupling factor and it can be characterized by a
π-phase delay. So, the periodic signals (x1 and x2) of each coupled circuits have a
time lag τ, which is equal to T/2, where T is the period of the signals x1 and x2.

x1 tð Þ= x2 t+ τð Þ, where τ= T ̸2. ð2Þ

The anti-phase synchronization was also observed by Volos et al. (2013) in the
case of two mutually coupled identical non-autonomous Duffing-type systems,
which as it is known, have symmetry, because the transformation:

S: x, y, tð Þ→ − x, − y, t+ T ̸2ð Þ ð3Þ

leaves Duffing’s system equations invariant.
It is well-known that chaotic dynamical systems exhibit high sensitivity on initial

conditions or system’s parameters and if they are identical and start from almost the
same initial conditions, they follow trajectories which rapidly become uncorrelated.
That is why many techniques exist to obtain chaotic synchronization. So, many of
these techniques for coupling two or more nonlinear chaotic systems can be mainly
divided into two classes: unidirectional coupling and bidirectional or mutual
coupling (Gonzalez-Miranda 2004). In the first case, only the first system, the
master system, drives the second one, the slave system, while in the second case,
each system’s dynamic behavior influences the dynamics of the other.

Recently, a great interest for dynamical systems with hidden attractors has been
raised. The term hidden attractor is referred to the fact that in this class of systems
the attractor is not associated with an unstable equilibrium and thus often remains
undiscovered because it may occur in a small region of parameter space and with a
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small basin of attraction in the space of initial conditions (Kuznetsov et al. 2010;
Leonov et al. 2011a, b, 2012; Pham et al. 2014a, b). In 2010, for the first time, a
chaotic hidden attractor was discovered in the most well-known nonlinear circuit, in
Chua’s circuit, which is described by a three-dimensional dynamical system
(Kuznetsov et al. 2010).

The problem of analyzing hidden oscillations arose for the first time in the
second part of Hilbert’s 16th problem (1900) for two-dimensional polynomial
systems. The first nontrivial results were obtained in Bautin’s works (Bautin 1939,
1952), which were devoted to constructing nested limit cycles in quadratic systems
and showed the necessity of studying hidden oscillations for solving this problem.
Later, in the middle of the 20th century, Kapranov studied (Kapranov 1956) the
qualitative behavior of Phase-Locked Loop (PLL) systems, which are used in
telecommunications and computer architectures, and estimated stability domains. In
that work, Kapranov assumed that in PLL systems there were self-excited oscil-
lations only. However, in 1961, (Gubar 1961) revealed a gap in Kapranov’s work
and showed analytically the possibility of the existence of hidden oscillations in
two-dimensional system of PLL, thus, from a computational point of view, the
system considered was globally stable, but, in fact, there was only a bounded
domain of attraction.

Also, in the same period, the investigations of the widely known
Markus-Yamabe (1960) and Kalman (1957) conjectures on absolute stability have
led to the finding of hidden oscillations in automatic control systems with a unique
stable stationary point and with a nonlinearity, which belongs to the sector of linear
stability (Bernat and Llibre 1996; Fitts 1966; Leonov and Kuznetsov 2013).

Furthermore, systems with hidden attractors have received attention due to their
practical and theoretical importance in other scientific branches, such as in
mechanics (unexpected responses to perturbations in a structure like a bridge or in
an airplane wing) (Lauvdal et al. 1997). So, the study of these systems is an
interesting topic of a significant importance.

So, from the introduction of dynamical systems with hidden attractors a great
number of systems belonging in this category has been reported. All these systems
can be classified in three families of systems depending on the kind of systems’
equilibria (Pham et al. 2017a). The first family is the systems without equilibrium
points. The works of Nosé (1984) and Hoover (1985) in 1984–1985 have led the
study of the aforementioned family of dynamical systems. Since then, many 3D or
4D dynamical systems of this family have been studied (Jafari et al. 2013; Wei
2011; Wang et al. 2012a; Wang and Chen 2013; Wei et al. 2014; Maaita et al. 2015;
Tahir et al. 2015; Pham et al. 2016a, b; Wang et al. 2016; Zuo and Li 2016). The
second family is the systems with stable equilibria (Wang and Chen 2012b; Molaie
et al. 2013; Wei and Wang, 2013; Kingni et al. 2014; Lao et al. 2014; Pham et al.
2017b), while the third is the systems with an infinite number of equilibria (Jafari
and Sprott 2013; Li and Sprott 2014; Gotthans and Petržela 2015; Gotthans et al.
2016; Pham et al. 2016c, d, e).

In the present chapter, the study of various synchronization phenomena between
bidirectionally or unidirectionally coupled dynamical systems with hidden
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attractors is presented. For this reason, a no-equilibrium chaotic system, introduced
by Pham et al. has been used (Pham et al. 2014c). Especially, in the case of the
mutually coupled systems, except of the complete chaotic synchronization, the
existence of anti-phase synchronization is also confirmed from the simulation
results.

The rest of the chapter is organized as follows. Section 2 provides the mathe-
matical model as well as the dynamics and properties of the proposed system with
hidden attractors. Section 3 describes the coupling schemes of two identical
no-equilibrium chaotic systems, while the simulation results of the coupled systems
are thoroughly presented in Sect. 4. Finally, conclusions are drawn in Sect. 5

2 Description and Dynamics of the System Without
Equilibrium

In 2013, Jafari and Sprott have introduced nine simple chaotic flows with a line
equilibrium by using an exhaustive computer search (Jafari and Sprott 2013). These
systems belong to the family of systems with hidden attractors because it is
impossible to verify the chaotic attractor by choosing an arbitrary initial condition
in the vicinity of the unstable equilibria.

As an example, the first of these systems, which is described by the following
system

x ̇= − y
y ̇= − x+ yz
z ̇= − x− axy− bxz

8<
: ð4Þ

where a, b are real positive parameters, has a line of equilibria E(0, 0, z).
In the third equation of system (5) (Pham et al. 2014c) added a real parameter

c in order to obtain the following new system

x ̇= − y
y ̇= − x+ yz
z ̇= − x− axy− bxz+ c

8<
: ð5Þ

which possesses no equilibrium points. So, it belongs to the family of dynamical
systems without equilibrium.

Next, in order to discover system’s (5) dynamics well-known tools of nonlinear
theory, such as phase portrait, bifurcation diagram and Lyapunov spectrum, are
used. For this reason the proposed system is integrated numerically using the
classical fourth-order Runge-Kutta integration algorithm. For each set of parameters
used in this work, the time step is always Δt = 0.002 and the calculations are
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performed using variables and parameters in extended precision mode. For each
parameter settings, the system is integrated for a sufficiently long time and the
transient is discarded.

To study the type of scenario giving rise to chaos by considering the parameter
a in system (5), as the main control parameter, the bifurcation diagram in Fig. 1a is
obtained, while the other parameters remain fixed as b = 1 and c = 0.001 and the
initial conditions are chosen as (x0, y0, z0) = (0, 0.5, 0.5). The bifurcation diagram
is obtained by plotting the variable x when the trajectory cuts the plane y = 0 with
dy/dt < 0, as the control parameter a is decreased in tiny steps in the range of
14 ≤ a ≤ 23. From the bifurcation diagram of Fig. 1a it is possible to verify that
the system (5) is driven to chaos through a period-doubling route as the control

Fig. 1 a Bifurcation diagram
of system (5) for decreasing
values of a and b the graph of
the maximal Lyapunov
exponent plotted in the range
of 14 ≤ a ≤ 23, with b = 1,
c = 0.001 and initial
conditions
(x0, y0, z0) = (0, 0.5, 0.5)
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Fig. 2 Simulation phase portraits and Poincaré maps of system (5) for a a = 23 (period-1),
b a = 19 (period-2), c a = 17.5 (period-4), d a = 17.3 (period-8), e a = 15 (chaos), f a = 14.5
(period-1), with b = 1, c = 0.001 and initial conditions (x0, y0, z0) = (0, 0.5, 0.5)
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parameter is decreased and through a crisis is resulted to a period-1 steady state.
Furthermore, the corresponding spectrum of the three Lyapunov exponents is
shown in Fig. 1b. It can be seen that the bifurcation diagram well coincides with the
spectrum of the Lyapunov exponents. Figure 2 depicts a series of phase portraits of
y versus x and the respective Poincaré maps of z versus x, for various values of the
parameter a, showing the route to chaos.

3 The Coupling Schemes

Generally, there are various methods of coupling between coupled nonlinear sys-
tems available in the literature. However, two are the most interesting. In the first
method due to Pecora and Carroll (1990), a stable subsystem of a chaotic system
could be synchronized with a separate chaotic system under certain suitable con-
ditions. In the second method, chaos synchronization between two nonlinear sys-
tems is achieved due to the effect of coupling without requiring to construct any
stable subsystem (Chua et al. 1992; Kyprianidis et al. 2005; Volos et al. 2006).

This second method can be divided into two classes: drive-response or unidi-
rectional coupling and bidirectional or mutual coupling. In the first case, one
system drives another one called the response or slave system. The system of two

Fig. 2 (continued)
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unidirectional coupled identical systems is described by the following set of dif-
ferential equations:

x ̇1 =F(x1)
x2̇ =F(x2) +C(x1 − x2)

�
ð6Þ

where F(x) is a vector field in a phase space of dimension n and C a matrix of
constants, which describes the nature and strength of the coupling between the
oscillators. It is obvious from (6) that only the first system influences the dynamic
behavior of the other.

In the second case, both the coupled systems are connected and each one
influences the dynamics of the other. This is the reason for which this method is
called mutual (or bidirectional). The coupled system of two mutually coupled
chaotic oscillators is described by the following set of differential equations:

x1̇ =F(x1) +C(x2 − x1)
x2̇ =F(x2) +C(x1 − x 2)

�
ð7Þ

In the last twenty years, many research groups approached the coupling methods
between coupled chaotic systems, with the intention to study not only the cases of
synchronization but also the various desynchronization phenomena. In this direc-
tion, the desynchronization in connection with a parameter mismatch between two
coupled electronic oscillators has been studied (Astakhov et al. 1998). Furthermore,
in (Yanchuk et al. 2001), the bifurcation sequence associated with desynchro-
nization of a pair of coupled identical Rössler systems as the coupling parameter
being reduced, has been followed. Starting with the transverse destabilization of a
periodic orbit embedded in the fully synchronized chaotic state, this sequence
proceeds via a torus bifurcation and regimes of anti-phase periodic and chaotic
dynamics to asynchronous chaos.

4 Simulation Results

In this chapter, the study of the dynamic behavior of the bidirectionally and uni-
directionally coupled systems with hidden attractors has been investigated numer-
ically by employing the fourth order Runge-Kutta algorithm. Due to the fact that
each one of the three system’s variables and especially the variables y and z holds
different order of nonlinearity the synchronization phenomena as well as the
threshold for complete synchronization can be dependent on the selection of cou-
pling variable. For this reason, in this work, the variable y has been preferred as the
coupling variable because a great variety of phenomena can be observed.
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So, the system of differential equations that describes the bidirectionally coupled
systems’ dynamics is:

x ̇1 = − y1
y1̇ = − x1 + y1z1 + ξ(y2 − y1)
z1̇ = − x1 − ax1y1 − bx1z1 + c
x2̇ = − y2
y2̇ = − x2 + y2z2 + ξ(y1 − y2)
z2̇ = − x2 − ax2y2 − bx2z2 + c

8>>>>>><
>>>>>>:

ð8Þ

The first three equations of system (8) describe the first of the two coupled
identical systems with hidden attractors, while the other three describe the second
one. Also, the parameter ξ is the coupling coefficient and it is present in the
equations of both systems, since the coupling between them is mutual.

In the case of unidirectionally coupled systems (5) the following system of
differential equations is produced.

x1̇ = − y1
y1̇ = − x1 + y1z1
z1̇ = − x1 − ax1y1 − bx1z1 + c
x2̇ = − y2
y2̇ = − x2 + y2z2 + ξ(y1 − y2)
z2̇ = − x2 − ax2y2 − bx2z2 + c

8>>>>>><
>>>>>>:

ð9Þ

The coupling coefficient ξ is present only in the second coupled system, since
only the first system affects the dynamics of the second.

The parameters of the system are chosen as: a = 15, b = 1, c = 0.001. With
these values each one of the coupled systems with hidden attractors are in chaotic
mode.

So, by solving the coupled systems’ Eqs. (8) and (9) the bifurcation diagrams of
the signal’s difference (x2 − x1) versus the coupling factor ξ are produced. In
details, these diagrams are produced by increasing the coupling factor ξ, from ξ = 0
(uncoupled systems) with step Δξ = 0.0002, in two different ways. In the first, the
initial conditions in each iteration have the same values (x10, y10, z10, x20, y20,
z20) = (0, 0.5, 0.5, 0.1, 0.6, 0.6), while in the second case the initial conditions in
each iteration have different values. This occurs because the last values of the state
variables in the previous iteration become the initial values for the next iteration.
The second type of bifurcation diagram is more close to the experimental obser-
vation of coupled systems’ dynamic behavior in many scientific fields, such as
electronics, economy, biology etc.
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4.1 Same Initial Conditions in Each Iteration

In the first case, as it is mentioned, the initial conditions have the same values in
each iteration and the bifurcations diagrams in the cases of bidirectional and uni-
directional coupling schemes have been produced (Figs. 3a and 10).

The bifurcation diagram of the bidirectionally coupling system (8) shows that the
coupled system undergoes from full desynchronization, for ξ < 0.048, where each
system is in a chaotic state and lays on its own manifold, to complete chaotic
synchronization, for ξ ≥ 0.39, where their manifolds coincide, through an inter-
mediate region where the system shows a more complex dynamic behavior. This is
a typical transition from full desynchronization to complete synchronization.
Simulation phase portraits of x2 versus x1 of the bidirectionally coupled systems (8)
are depicted in Fig. 4, for various values of the coupling coefficient.

Fig. 3 a Bifurcation diagram
of (x2 − x1) versus ξ and b the
spectrum of Lyapunov
exponents of the
bidirectionally coupling
system (8), with the same
initial conditions in each
iteration. The parameters are
a = 15, b = 1, c = 0.001 and
initial conditions (x10, y10, z10,
x20, y20, z20) = (0, 0.5, 0.5,
0.1, 0.6, 0.6)
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The intermediate region of the bifurcation diagram of Fig. 3a is more compli-
cated and it can be divided in three discrete regions:

• Region I: 0.048 < ξ ≤ 0.063 (Quasiperiodic state). This type of behavior is
confirmed from the spectrum of Lyapunov exponents (Fig. 3b), which i.e. for

Fig. 4 Simulation phase portraits of x2 versus x1 of the bidirectionally coupled system (8) with the
same initial conditions in each iteration, for a ξ = 0.01 (chaotic state), b ξ = 0.055 (quasiperiodic
state), c ξ = 0.075 (period-4 steady state), d ξ = 0.38 (chaotic state), e ξ = 0.5 (complete chaotic
synchronization). The parameters are a = 15, b = 1, c = 0.001 and initial conditions (x10, y10, z10,
x20, y20, z20) = (0, 0.5, 0.5, 0.1, 0.6, 0.6)
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ξ = 0.055 are LE1 = 0.0094, LE2 = 0.0063, LE3 = –0.2398, LE4 = –0.7223,
LE5 = –0.7590, LE6 = –0.7894.

• Region II: 0.063 < ξ ≤ 0.093 (Period-4 steady state). In this region the coupled
system shows the phenomenon of anti-phase synchronization. This occurs
because each one of the coupled circuits remains in the same periodic state.
Figures 5 show the simulation phase portraits of y1,2 versus x1,2, for ξ = 0.075,
respectively. In this figure the coincidence of circuits’ attractors in the phase
plain is presented. Furthermore, in Fig. 6, the time-series of the state variables x1
and x2 of the coupled circuits are shown. It is obvious that the two signals x1 and
x2 are identical with a time lag.

To quantify this time lag we have used the well-known Similarity Function S
(Rosenblum et al. 1997).

Fig. 5 Simulation phase
portrait of y1,2 versus x1,2, for
ξ = 0.075 (anti-phase
synchronization)

Fig. 6 Time-series of x1, x2,
for ξ = 0.075
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S(t) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟨ x2(t+ τ)− x1(t)½ �2⟩

⟨ x1(t)ð Þ2⟩ ⋅ ⟨ x2(t)ð Þ2⟩
h i1 ̸2

vuuut ð11Þ

Let Smin be the minimum value of the Similarity function S(τ) and let τmin be the
amount of time lag, when Smin is achieved. The time lag τmin between the variables
x1 and x2 is found, when the conditions Smin = 0 and τmin ≠ 0 are fulfilled. The
calculation of the similarity function for ξ = 0.075 (Fig. 7) shows that the expected
time lag τmin = 6.39 n.u., is equal to T/2, where T is the period of x1 and x2.

Furthermore, the same time lag is found for every value of coupling coefficient
(ξ) in the Region II. So, the value of time lag remains always the same in this region
and equals to the half of the period of the external voltage source. Moreover the fact
that the difference of [x1(t) − x2(t + T/2)] is equal to zero (Fig. 8), confirms that the
coupled system demonstrates π phase delay, which is defined as anti-phase

Fig. 7 The similarity
function (S) versus time (t),
for ξ = 0.075. Smin = 0
means lag with time shift of
τmin = 6.39 = T/2. So, the
phenomenon of anti-phase
synchronization is confirmed

Fig. 8 Time-series of
x1(t) − x2(t + T/2), for
ξ = 0.075
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synchronization or π-lag synchronization. Finally, Fig. 9 shows the time-series of
(x1 − x2) in the case of system’s intermittent behavior for ξ = 0.38.

• Region III: 0.093 < ξ ≤ 0.39 (Hyperchaotic state). This type of behavior is
confirmed from the two positive Lyapunov exponents in Fig. 3b. For example
the Lyapunov exponents for this type of behavior, for a value of the coupling
coefficient ξ = 0.2, are LE1 = 0.113, LE2 = 0.0521, LE3 = 0, LE4 = –0.2788,
LE5 = –0.7416, LE6 = −0.8867. Especially, in the region 0.31 < ξ ≤ 0.39 the
system has an intermittent behavior as it is observed from the time-series of
x1 − x2 for ξ = 0.38.

The bifurcation diagram of Fig. 10, in the case of unidirectionally coupling
system (9), shows that the coupled system undergoes from full desynchronization,
for ξ < 0.76 (Fig. 11a) directly to complete chaotic synchronization (Fig. 11b).

Fig. 9 Time-series of
(x1 − x2), for ξ = 0.38

Fig. 10 a Bifurcation
diagram of (x2 − x1) versus ξ
of the unidirectionally
coupled system (9), with the
same initial conditions in each
iteration. The parameters are
a = 15, b = 1, c = 0.001 and
initial conditions (x10, y10, z10,
x20, y20, z20) = (0, 0.5, 0.5,
0.1, 0.6, 0.6)
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This occurred because only the first system affects the dynamics of the second. So,
there is no any complex behavior and the value of the synchronization threshold
(ξ = 0.76) is significant higher than in the case of bidirectional coupling (ξ = 0.39).

4.2 Different Initial Conditions in Each Iteration

In the second case of study, the initial conditions have different values in each
iteration and the bifurcation diagrams in the cases of bidirectional and unidirec-
tional coupling schemes have been produced (Figs. 12a and 14).

The bifurcation diagram in the case of bidirectionally coupling scheme (8) shows
that the coupled system undergoes from full desynchronization, for ξ < 0.048, to
complete chaotic synchronization, for ξ ≥ 0.277, through an intermediate region
where the system shows a more complex dynamic behavior than in the respective
case of bidirectional coupling of the previous case. Simulation phase portraits of x2
versus x1 of the bidirectionally coupled systems (8) are depicted in Fig. 13, for
various values of the coupling coefficient.

In the intermediate region of the bifurcation diagram of Fig. 12a, the coupled
system can be characterized by three different dynamical behavior:

• Quasiperiodic state. This type of behavior is observed in three different distinct
regions (ξ ∈ (0.054, 0.061], ξ ∈ (0.1670, 0.1684] and ξ ∈ (0.2620, 0.2664])
and is confirmed by the spectrum of Lyapunov exponents of Fig. 12b.

• Periodic state. In the following five regions of the bifurcation diagram of
Fig. 13 the system is in a periodic state. In more details:

1. For ξ ∈ (0.0491, 0.0518] the system is in a period-12 steady state.
2. For ξ ∈ (0.061, 0.093] the system is in a period-4 steady state.

Fig. 11 Simulation phase portraits of x2 versus x1 of the unidirectionally coupled system (9) with
the same initial conditions in each iteration, for a ξ = 0.4 (chaotic state) and b ξ = 0.8 (complete
chaotic synchronization). The parameters are a = 15, b = 1, c = 0.001 and initial conditions
(x10, y10, z10, x20, y20, z20) = (0, 0.5, 0.5, 0.1, 0.6, 0.6)
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3. For ξ ∈ (0.1684, 0.1710] the system is in a period-8 steady state.
4. For ξ ∈ (0.250, 0.252] the system is in a period-22 steady state.
5. For ξ ∈ (0.2664, 0.2760] the system is in a period-8 steady state.

In all these windows of periodic behavior the coupled system shows the phe-
nomenon of anti-phase synchronization. By calculating the Similarity function S(τ)
in each case we find that the expected time lag τmin is equal to T/2, where T is the
period of x1 and x2.

• Hyperchaotic state. In the rest of this intermediate region the system displays an
hyperchaotic behavior, as it is observed from the respective phase portraits of
Fig. 13a, f, and i, as well as from the spectrum of the Lyapunov exponents of
Fig. 12b.

Fig. 12 a Bifurcation
diagram of (x2 − x1) versus ξ
and b the spectrum of
Lyapunov exponents of the
bidirectionally coupling
system (9), with different
initial conditions in each
iteration. The parameters are
a = 15, b = 1, c = 0.001
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Fig. 13 Simulation phase portraits of x2 versus x1 of the bidirectionally coupled system (9) with
different initial conditions in each iteration, for a ξ = 0.03 (hypechaotic state), b ξ = 0.05
(periodic state), c ξ = 0.055 (quasiperiodic state), d ξ = 0.075 (periodic state), e ξ = 0.10
(hyperchaotic state), f ξ = 0.14 (hyperchaotic state), g ξ = 0.1678 (quasiperiodic state),
h ξ = 0.17 (periodic state), i ξ = 0.2 (chaotic state), j ξ = 0.251 (periodic state) k ξ = 0.263
(quasiperiodic state), l ξ = 0.27 (periodic state), m ξ = 0.28 (complete chaotic synchronization).
The parameters are a = 15, b = 1, c = 0.001
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Finally, from the bifurcation diagram (Fig. 14) in the case of unidirectionally
coupling system (9) we can conclude that the coupled system undergoes from full
desynchronization, for ξ < 0.55 directly to complete chaotic synchronization,
without appearing any complex dynamical behavior, while the value of the syn-
chronization threshold (ξ = 0.55) is significant higher than in the case of bidirec-
tional coupling (ξ = 0. 0.277).

Fig. 13 (continued)

Synchronization Phenomena in Coupled Dynamical Systems … 393



5 Conclusion

In the present chapter, a gallery of various synchronization phenomena between
resistively coupled identical nonlinear systems with hidden attractors was pre-
sented. For this reason, two coupling schemes were adopted. The first one was the
well-known bidirectional coupling while the second one was the unidirectional
coupling. In each coupling scheme two different study cases related with systems’
initial conditions were also adopted. The initial conditions in each iteration had the
same values in the first case, while in the second one the initial conditions in each
iteration had different values.

In more details, in the bidirectional coupling scheme, with the same initial
conditions in each iteration, the coupled systems undergone from full desynchro-
nization, where each system was in a chaotic state to complete chaotic synchro-
nization, through an intermediate region where the coupled systems were in a
periodic states showing the phenomenon of anti-phase synchronization. In the case
of unidirectionally coupled systems, the coupled system undergone from full
desynchronization directly to complete chaotic synchronization, without showing
any other complex dynamics.

Similarly, the coupling schemes (bidirectional and unidirectional), with different
initial conditions in each iteration, appeared the same route from desynchronization
to complete chaotic synchronization. However, in the bidirectional coupling
scheme, a more complex dynamics was arisen as the system had more periodic
windows where the phenomenon of anti-phase synchronization was presented.

As a future work, a more exhaustive study of coupling schemes between
identical dynamical systems with other types of hidden attractors will be done.

Fig. 14 a Bifurcation
diagram of (x2 − x1) versus ξ
of the unidirectionally
coupled system (10), with
different initial conditions in
each iteration. The parameters
are a = 15, b = 1, c = 0.001
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4-D Memristive Chaotic System
with Different Families of Hidden Attractors

Dimitrios A. Prousalis, Christos K. Volos, Viet-Thanh Pham,
Ioannis N. Stouboulos and Ioannis M. Kyprianidis

Abstract The design of systems without equilibrium or with line of equilibrium

points is a subject which has started to attract the interest of the research commu-

nity the last decade. In this direction, various chaotic systems with hidden attractors,

which are based on memristors or memristive systems, have been proposed. In this

chapter a new 4-D memristive system is presented. The peculiarity of the model is

that it displays a line of equilibrium points for a range of the parameters as well

as no-equilibrium for another range of the parameters. System in both occasions

presents a chaotic behavior with hidden attractors. The behavior of the proposed

system is investigated through numerical simulations, by using phase portraits, Lya-

punov exponents and bifurcation diagrams. The adaptive control scheme of the sys-

tem is presented in order to prove that the memristive system’s dynamical behavior

can be controlled. Also, we have designed an electronic circuit to confirm the feasi-

bility of the system in both cases.
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1 Introduction

The forth missing curcuit element, the memristor, was introduced for the first time

in 1971 (Chua 1971). A general concept of memristive systems expanded in 1976,

(Chua and Kang 1976). In 2008 the realization of a two terminal memristor was

announced (Strukov et al. 2008). This announcement influenced many researchers

and paved the way for various scientific fields. n 2009, other elements with memory

from the nano-world, memcapacitor and meminductor was introduced (Ventra et al.

2009).

There are systems, such as thermistors, with phenomena in which internal state

depends on the temperature (Sapoff and Oppenheim 1963), spintronic devices in

which resistance varies according to their spin polarization (Pershin and Di Ventra

2008) and molecules in which resistance changes according to their atomic configu-

ration (Chen et al. 2003), could be explained now with the use of the memristor. Also,

electronic circuits with memory could simulate processes typical of biological sys-

tems, such as the adaptive behavior of unicellular organisms (Pershin et al. 2009) and

the learning and associative memory (Pershin and Di Ventra 2010). Mem-elemets

also are used in order to replace nonlinear parts of the electrical circuits.

At present, many applications of memristors based on their properties, such as

memristor-based neural networks, memristor-based chaotic oscillators, memristor-

based charge pump locked loops etc. have been introduced (Itoh and Chua 2008;

Zhao et al. 2013; Wu et al. 2011). Research on memristor-based chaotic systems

becomes a focal research topic in both the technological and the application domain

(Volos et al. 2011; Yang et al. 2013; Driscoll et al. 2010; Wang et al. 2012; Shang

et al. 2012; Shin et al. 2011; Cepisca et al. 2008; Cepisca and Bardis 2011; Bog-

dan et al. 2011; Corinto and Ascoli 2012a, b). Also, the design of memristor- based

chaotic oscillators, by replacing the nonlinear part of chaotic dynamical systems with

memristors has been introduced (Sabarathinam et al. 2016; Chen et al. 2015; Bao

et al. 2016; Wu et al. 2016).

The last decades researchers introduced some memristor-based hyperchaotic sys-

tems, motivated by the complex dynamical behaviors of hyperchaotic systems and

the special features of memristor in order to investigate whether there exists a

memristor-based system that is hyperchaotic. Hyperchaos was generated by combin-

ing a memristor with its non-linear characteristics and a chaotic oscillator (Biswas et

al. 2016; Ponomarenko et al. 2013; Özkaynak and Yavuz 2013; Ye and Wong 2013;

Banerjee et al. 2012a, b; Banerjee and Biswas 2013).

Leonov and Kuznetsov (Kuznetsov et al. 2010; Leonov et al. 2011) in their

research categorized periodic and chaotic attractors as either self-excited or hidden.

A self-excited attractor has a basin of attraction that is associated with an unstable

equilibrium, whereas a hidden attractor (HA) has a basin of attraction that does not

intersect with small neighborhoods of any equilibrium points. The classical attractors

of Lorenz, Rössler, Chen, Sprott (cases B to S), and other widely-known attractors

are those excited from unstable equilibria. From a computational point of view this

allows one to use a numerical method in which a trajectory started from a point on
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the unstable manifold in the neighborhood of an unstable equilibrium, reaches an

attractor and identifies it. Hidden attractors cannot be found by this method and are

important in engineering applications because they allow unexpected and potentially

disastrous responses to perturbations in a structure like a bridge or an airplane wing.

Furthermore, the last two decades the subject of chaos control has attracted the

interest of the research community. The control of a chaotic system aims to sta-

bilize or regulate the system with the help of feedback control. There are many

methods available for controlling a chaotic system such as active control (Sundara-

pandian 2010; Vaidyanathan 2011, 2016), adaptive control (Sundarapandian 2013;

Vaidyanathan 2012, 2013, 2014; Azar and Vaidyanathan 2015), sliding mode con-

trol (Vaidyanathan 2012) and backstepping control (Njah and Sunday 2012; Vincent

et al. 2007). Adaptive control is an active field in the design of control systems,

especially of systems with hidden attractors (Vaidyanathan and Volos 2012; Wei

et al. 2014; Pham et al. 2016), and deal with uncertainties. The key difference

between adaptive controllers and linear controllers is the adaptive controller’s abil-

ity to adjust itself in order to handle unknown model’s uncertainties. Recently, much

effort has been placed in adaptive control in both theory and applications. New con-

troller design techniques are introduced to handle nonlinear and time-varying uncer-

tainties. Broader systems with larger nonlinear uncertainties can be covered by these

developments. As a result, adaptive control is used in various real world applications

(Cao et al. 2012; Vaidyanathan 2015).

This research work is organized as follows. In Sect. 2 the model of the memristive

system, as well as the new system are presented. In Sect. 3 the simulation results of

the memristive system are also presented. The adaptive control scheme of the system

is studied in Sect. 4. In Sect. 5 the circuit realization of the system is described in

detail, while Sect. 6 concludes this work with a summary of the main results.

2 The Memristive System with Hidden Attractors

In this section a new memristive system with different families of hidden attractors

is presented. First of all, the model of the memristive device will be analyzed, while

next the mathematical description of the 4-D system will be introduced.

2.1 Model of the Memristive Device

As it is mentioned, Chua and Kang introduced the memristive device by generalizing

the original definition of a memristor (Chua and Kang 1976). A memristive system

can be described by:

ẇm = F(wm, um, t),
fm = G(wm, um, t)um

(1)
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where wm, fm and um denote the state of memristive system, output and input, respec-

tively. The function G is a continuous and n-dimensional scalar function and F is

a vector function. Based on the definition of memristive system (1), a memristive

device is introduced in this section and used in our whole paper. This memristive

device is described by the following equations:

ẇm = um, (2a)

fm = (1 + 0.25w2
m − 0.002w4

m)um. (2b)

In order to investigate the behavior of the memristive system an external sinu-

soidal signal um is applied. The form of um is:

um = Asin(2π ν t) (3)

where A is the amplitude and ν is the frequency. From the first equation of the system

(3) we can find wm:

wm = wm(0) +
A

2π t
(1 − cos(2𝜋 ν t)) (4)

where wm(0) = ∫ 0
−∞ um(𝜏)d𝜏 is the initial condition of the internal state wm.

Substituting Eqs. (3) and (4) into Eq. (2b) it is easy to derive the output of the

memristive device. Therefore, the output fm depends on frequency and amplitude of

the applied input stimulus.

The figures below show the hysteresis loops of the proposed memristive system

driven by a sinusoidal stimulus, when it is driven by a periodic signal (4).

∙ Figure 1 with A = 1, w0 = 0 while ν = 0.1 (green line), ν = 0.2 (blue line) and

ν = 0.5 (red line).

∙ Figure 2 for ν = 0.1, w0 = 0 while A = 0.5 (green line), A = 1 (blue line) and A =
1.5 (red line).

∙ Figure 3 for ν = 0.1, A = 1 while w0 = −1 (green line), w0 = 0 (blue line) and

w0 = 1 (red line).

Obviously, the proposed memristive device exhibits a pinched hysteresis loop in the

input-output plane.

2.2 The New Memristive System

Finally, based on the aforementioned memristive device, the following new dynam-

ical system can be obtained.
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Fig. 1 Hysteresis loops of the proposed memristive device driven by a sinusoidal stimulus with

A = 1 and w0 = 0, for frequencies ν = 0.1 (green line), ν = 0.2 (blue line), ν = 0.5 (red line)

Fig. 2 Hysteresis loops of the proposed memristive device driven by a sinusoidal stimulus with

ν = 0.1 and w0 = 0, for amplitude A = 0.5 (red line), A = 1 (blue line), A = 1.5 (green line)
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Fig. 3 Hysteresis loops of the proposed memristive device driven by a sinusoidal stimulus with

A = 1 and ν = 0.1, for w0 = −1 (green line), w0 = 0 (blue line) and w0 = 1 (red line)

ẋ = − α x + γ f (y,w)
ẏ = β x − δ xz + 𝜀

ż = − ζ z + xy
ẇ = y

(5)

where y = um the input, w = wm the state, f (y,w) = fm = (1 + 0.25w2 −
0.002w4)y the output of the memristor device and α, β, γ, δ, 𝜀, ζ are real positive

parameters. So, the fourth-order memristive system (5) is obtained and used in the

following sections.

2.2.1 Analysis of the New Hyperchaotic Memristive System

The equilibria of system (5) can be derived by solving the following equations:

− α x + γ f (y,w) = 0
β x − δ xz + 𝜀 = 0
− ζ z + xy = 0
y = 0

(6)

The 4-D memristive system (5) for 𝜀 = 0 and for every α, β, γ, δ, ζ set of values

has line of equilibrium E(0, 0, 0,w). Moreover for 𝜀 ≠ 0 and for every α, β, γ, δ, ζ has

no equilibria. As a result, this memristive hyperchaotic system can be considered as a
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dynamical system with hidden attractors because it is impossible to verify the chaotic

attractor by choosing an arbitrary initial condition in the vicinity of the unstable

equilibria. This system’s feature is noteworthy especially in the case of using these

systems in applications, such as chaos encryption, because of its complexity.

The Jacobian of the system (5), J at any point is calculated as:

J =
⎛
⎜
⎜
⎜
⎝

− α γQ 0 γR
β− δ z 0 − δ x 0

y x − ζ 0
0 1 0 0

⎞
⎟
⎟
⎟
⎠

(7)

where,

Q =
𝜕f (y,w)

𝜕y
= 1 + 0.25w2 − 0.002w4

R =
𝜕f (y,w)
𝜕w

= 0.5wy − 0.008w3y

For the case of 𝜀 = 0 there are infinite equilibrium points. In this case the eigen-

values of the matrix of Eq. (7), for α = 1, γ = 1, β = 7, δ = 1, ζ = 1, are:

𝜆1 = −1
𝜆2 = 0

𝜆3 = 0.5(−1 − (29 + 7w2 − 0.056w4)1∕2)
𝜆4 = 0.5(−1 + (29 + 7w2 − 0.056w4)1∕2)

(8)

As it is clear the eigenvalue 𝜆1 = −1 shows that there is a stable multiplicity, 𝜆2 = 0
is as expected because the system has a line equilibrium and the eigenvalues 𝜆3 and

𝜆4 of the Jacobian Matrix depend on the variable w. So, it is difficult to determine

the stability of the equilibrium points.

For the case of 𝜀 ≠ 0 there are no equilibrium points. As a result there cannot be

analysis of the equilibrium points.

The chaotic attractor in the (x, y, z) phase space, for 𝜀 = 0, α = 1, γ = 1, β = 8.5,
δ = 1, ζ = 1 is depicted in Fig. 4.

The chaotic attractor in the (x, y, z) phase space, for 𝜀 = 0.01, α = 1, γ = 1, β = 7,
δ = 2, ζ = 1 is depicted in Fig. 5.

According to system (5), the divergence of the system is

∇V = 𝜕ẋ
𝜕x

+ 𝜕ẏ
𝜕y

+ 𝜕ż
𝜕z
+ 𝜕ẇ

𝜕w
= − α− ζ (9)

where ∇V < 0 for α and ζ positive.

The Lyapunov exponents for 𝜀 = 0.1 have been calculated as: L1 = 0.01044, L2 =
0.05774, L3 = 0 and L4 = −2.95934. There are two positive Lyapunov exponents, so

the system is hyperchaotic. In addition the Kaplan-Yorke dimension of the system is

found as:
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Fig. 4 Chaotic attractor in

(x, y, z) phase space, for

𝜀 = 0, α = 1, γ = 1, β = 8.5,
δ = 1, ζ = 1

Fig. 5 Chaotic attractor in

(x, y, z) phase space, for

𝜀 = 0.01, α = 1, γ = 1,
β = 7, δ = 2, ζ = 1

DKY = 3 + L1+L2+L3
|L4|

= 3.023038 (10)

3 Simulation Results

In order to study the behavior of the new system, usual tools of the theory of dynam-

ical systems such as phase portaits, bifurcation diagrams, continuation diagrams and

diagram of Lyapunov exponents have been used.

Firstly, the bifurcation diagram of y versus β, for various values of the parameter

𝜀, is obtained by plotting the variable x when the trajectory cuts the plane w = 0
with dy∕dt < 0, as the control parameter β is decreased in tiny steps in the range of

7 ≤ β ≤ 10. Also, the continuations diagrams of y versus β, in which the initial con-

ditions in each iteration have different values, and the diagram of system’s (5) Lya-

punov exponents versus β are presented for different sets of values of the system’s

parameters. At the Lyapunov diagrams the fourth Lyapunov exponent is ignored
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Fig. 6 The bifurcation diagram of y versus β for 𝜀 = 0, α = 1, γ = 1, δ = 2, ζ = 1

because it takes negative values far from the zero value. Especially, the hyperchaotic

behavior is shown in the Lyapunov diagrams in the region where two Lyapunov

exponents become positive and one zero.

For values of the parameters 𝜀 = 0, α = 1, γ = 1, δ = 1, ζ = 1 in Figs. 6, 7 and 8

the bifurcation diagram of y versus β, the continuation diagram of y versus β and the

diagram of systems Lyapunov exponents versus β are presented.

In more details, system (5) presents the following dynamical behavior, in respect

to β for 𝜀 = 0, α = 1, γ = 1, δ = 2, ζ = 1:

∙ A region of periodic behavior for β < 7.162
∙ A region of chaotic behavior for 7.162 < β < 7.204
∙ A region of quasi-periodic behavior for 7.204 < β < 7.216
∙ A region of chaotic behavior for 7.216 < β < 7.228
∙ A region of quasi-periodic behavior for 7.228 < β < 7.246
∙ A region of chaotic behavior for 7.246 < β < 7.294
∙ A region of quasi-periodic behavior for 7.294 < β < 7.306
∙ A region of chaotic behavior for 7.306 < β < 8.134
∙ A region of hyperchaotic behavior for 8.134 < β < 8.152
∙ A region of chaotic behavior for 8.152 < β < 8.212
∙ A region of hyperchaotic behavior for 8.212 < β < 8.224
∙ A region of chaotic behavior for 8.224 < β < 8.242
∙ A region of hyperchaotic behavior for 8.242 < β < 8.254
∙ A region of chaotic behavior for 8.254 < β < 9.472
∙ A region of hyperchaotic behavior for 9.472 < β < 10.
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Fig. 7 The continuation diagram of y versus β for 𝜀 = 0, α = 1, γ = 1, δ = 2, ζ = 1

Fig. 8 The Lyapunov diagram of Lyapunov exponents versus β for 𝜀 = 0, α = 1, γ = 1, δ = 2,

ζ = 1
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Fig. 9 The bifurcation diagram of y versus β for 𝜀 = 0.0001, α = 1, γ = 1, δ = 1, ζ = 1

For values of the parameters 𝜀 = 0.0001, α = 1, γ = 1, δ = 1, ζ = 1 in Figs. 9, 10

and 11 the bifurcation diagram of y versus β, the continuation diagram of y versus β

and the diagram of systems Lyapunov exponents versus β are presented.

In more details, system (5) presents the following dynamical behavior, in respect

to β for 𝜀 = 0.0001, α = 1, γ = 1, δ = 1, ζ = 1:

∙ A region of periodic behavior for β < 7.216
∙ A region of chaotic for 7.216 < β < 8.11
∙ A region of hyperchaotic behavior for 8.11 < β < 8.158
∙ A region of chaotic behavior for 8.158 < β < 9.49
∙ A region of hyperchaotic behavior for 9.49 < β < 10.

For values of the parameters 𝜀 = 0.001, α = 1, γ = 1, δ = 1, ζ = 1 in Figs. 12, 13

and 14 the bifurcation diagram of y versus β, the continuation diagram of y versus β

and the diagram of systems Lyapunov exponents versus β are presented.

In more details, system (5) presents the following dynamical behavior, in respect

to β for 𝜀 = 0.001, α = 1, γ = 1, δ = 1, ζ = 1:

∙ A region of periodic behavior for β < 7.138
∙ A region of quasi-periodic behavior for 7.144 < β < 7.204
∙ A region of chaotic behavior for 7.204 < β < 7.234
∙ A region of quasi-periodic behavior for 7.234 < β < 7.246
∙ A region of chaotic behavior for 7.246 < β < 8.164
∙ A region of hyperchaotic behavior for 8.164 < β < 8.254
∙ A region of chaotic behavior for 8.254 < β < 9.502
∙ A region of hyperchaotic behavior for 9.502 < β < 10.
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Fig. 10 The continuation diagram of y versus β for 𝜀 = 0.0001, α = 1, γ = 1, δ = 1, ζ = 1

Fig. 11 The Lyapunov Diagram of Lyapunov exponents versus β for 𝜀 = 0.0001, α = 1, γ = 1,
δ = 1, ζ = 1
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Fig. 12 The bifurcation diagram of y versus β for 𝜀 = 0.001, α = 1, γ = 1, δ = 1, ζ = 1

Fig. 13 The continuation diagram of y versus β for 𝜀 = 0.001, α = 1, γ = 1, δ = 1, ζ = 1
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Fig. 14 The Lyapunov Diagram of Lyapunov exponents versus β for 𝜀 = 0.001, α = 1, γ = 1,
δ = 1, ζ = 1

For values of the parameters 𝜀 = 0.01, α = 1, γ = 1, δ = 1, ζ = 1 in Figs. 15, 16

and 17 the bifurcation diagram of y versus β, the continuation diagram of y versus β

and the diagram of systems Lyapunov exponents versus β are presented.

In more details, system (5) presents the following dynamical behavior, in respect

to β for 𝜀 = 0.01, α = 1, γ = 1, δ = 2, ζ = 1:

∙ A region of periodic behavior for β < 7.048
∙ A region of chaotic behavior for 7.048 < β < 7.06
∙ A region of quasi-periodic behavior for 7.06 < β < 7.066
∙ A region of chaotic behavior for 7.066 < β < 7.732
∙ A region of periodic behavior for 7.732 < β < 7.75
∙ A region of chaotic behavior for 7.732 < β < 9.508
∙ A region of hyperchaotic behavior for 9.508 < β < 10.

For values of the parameters 𝜀 = 0.1, α = 1, γ = 1, δ = 1, ζ = 1 in Figs. 18, 19

and 20 the bifurcation diagram of y versus β, the continuation diagram of y versus β

and the diagram of systems Lyapunov exponents versus β are presented.

In more details, system (5) presents the following dynamical behavior, in respect

to β for 𝜀 = 0.1, α = 1, γ = 1, δ = 2, ζ = 1.:

∙ A region of periodic behavior for 7.108 < β < 7.126
∙ A region of quasi-periodic behavior for 7.126 < β < 7.156
∙ A region of periodic behavior for 7.156 < β < 7.258
∙ A region of chaotic behavior for 7.258 < β < 8.83
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Fig. 15 The bifurcation diagram of y versus β for 𝜀 = 0.01, α = 1, γ = 1, δ = 2, ζ = 1

Fig. 16 The continuation diagram of y versus β for 𝜀 = 0.01, α = 1, γ = 1, δ = 2, ζ = 1
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Fig. 17 The Lyapunov Diagram of Lyapunov exponents versus β for 𝜀 = 0.01, α = 1, γ = 1, δ = 2,

ζ = 1

Fig. 18 The bifurcation diagram of y versus β for 𝜀 = 0.1, α = 1, γ = 1, δ = 2, ζ = 1
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Fig. 19 The continuation diagram of y versus β for 𝜀 = 0.1, α = 1, γ = 1, δ = 2, ζ = 1

Fig. 20 The Lyapunov diagram of Lyapunov exponents versus β for 𝜀 = 0.1, α = 1, γ = 1, δ = 2,

ζ = 1
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∙ A region of periodic behavior for 8.83 < β < 8.842
∙ A region of quasi-periodic behavior for 8.842 < β < 8.854
∙ A region of periodic behavior for 8.854 < β < 8.872
∙ A region of chaotic behavior for 8.872 < β < 8.896
∙ A region of periodic behavior for 8.896 < β < 8.902
∙ A region of quasi-periodic behavior for 8.902 < β < 8.92
∙ A region of chaotic behavior for 8.92 < β < 9.46
∙ A region of hyperchaotic behavior for 9.46 < β < 10.

4 Adaptive Control of the 4-D Hyperchaotic Memristive
Dynamical System

From the results of the simulations it is shown that the memristor adds an extra

complexity to the system’s dynamical behavior. So it is useful to see if the new 4-D

memristive system can be controlled by using the adaptive control method, in order

to derive an adaptive feedback control law for globally stabilization of the system

with unknown parameters.

The controlled 4-D hyperchaotic memristive dynamical system given by follow-

ing state equilibrium for γ = 1, 𝜀 = 0, ζ = 1:

ẋ = − α x + f (y,w) + u1
ẏ = β x − δ xz + u2
ż = −z + xy + u3
ẇ = y + u4

(11)

where x, y, z, w are the states and u1, u2, u3, u4 are the adaptive controls and α, β and

δ are the unknown parameters of the system.

The problem is finding the adaptive controls u1, u2, u3, u4 so as to regulate the

variables x, y, z,w.

Consider the adaptive feedback control law:

u1 = α̂(t)x − f (y,w) − k1x
u2 = − ̂β(t)x + ̂δ(t)xz − k2y
u3 = z − xy − k3z
u4 = −y − k4w

(12)

where k1, k2, k3, k4 are the positive gain constants.

Substituting Eq. (12) into Eq. (11), the closed-loop plant dynamics is given as:
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ẋ = −(α−α̂(t))x − k1x
ẏ = (β− ̂β(t))x − (δ−̂δ(t))xz − k2y
ż = −k3z
ẇ = −k4w

(13)

The parameter estimation errors are defined as:

e
𝛼

= α−α̂(t)
e
𝛽

= β− ̂β(t)
e
𝛿

= δ−̂δ(t)
(14)

Differentiating the Eq. (14) with respect to t

̇eα = − ̇α̂(t)
ėβ = − ̇

̂β(t)
ėδ = − ̇

̂δ(t)
(15)

In the view of Eq. (15) the plant dynamics can be simplified as:

ẋ = −eαx − k1x
ẏ = eβx − eδxz − k2y
ż = −k3z
ẇ = −k4w

(16)

Next the adaptive control theory is used in order to find an update law for the

parameter estimates. Consider the quadratic candidate Lyapunov function defined

by

V(x, y, z,w, eα, eβ, eδ) =
= 1

2
(x2 + y2 + z2 + w2) + 1

2
(e2

α
+ e2

β
+ e2

δ
) (17)

Differentiating the Eq. (17) with respect to t

̇V = xẋ + yẏ + zż + wẇ + eα ̇eα + eβėβ + eδėδ (18)

Finally,

̇V = −k1x2 − k2y2 − k3z2 − k4w2+
+eα(x2 − ̇α̂) + eβ(xy −

̇

̂β) − eδ(zxy
̇

̂δ)
(19)

From Eq. (19) the parameter update law is

̇α̂(t) = −x2
̇

̂β(t) = xy
̇

̂δ(t) = −zxy
(20)
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Theorem 1 The states x, y, z, w of the 4-D hyperchaotic memristive dynamical sys-
tem (5) with unknown system parameters are globaly and exponentially regulated
for all initial conditions to the desired constant values α, β, δ by the adaptive control
law (11) and the parameter update law (19), where k1, k2, k3 and k4 are positive gain
constants.

Proof This result will be prooved by applying Lyapunov stability theory (Khalil

2001).

The quadratic Lyapunov function defined by Eq. (17), which is a positive definite

function on ℜ7
, is considered.

By substituting the Eq. (15) into Eq. (14) the time derivative of V is obtained as:

̇V = −k1x2 − k2y2 − k3z2 − k4w2
(21)

From the above equation (21) it is obvious that the derivative of V respect to t,
dV
dt

< 0 is a negative semi-definite function on ℜ7
. So the state vector x(t) and the

parameter estimation error can be concluded that are globally bounded, i.e.

[x y z w eα(t) eβ(t) eδ(t)]
T ∈ L∞

where the function space L∞ consists of all functions of the form h(t) that satisfies

∣ h(⋅, t) ∣< ∞ for all t.
If k = min{k1, k2, k3, k4}, then it follows from the Eq. (16) that

̇V ≤ −k||x(t)||2 (22)

Thus

k||x(t)||2 ≤ ̇V (23)

Integrating the inequality (23)

k ∫ t
0 ||x(t)||

2d𝜏 ≤ V(0) − V(t) (24)

From Eq. (24) it follows that x, y, z,w ∈ L2, where the function space L2 consists

of all functions h(t) with properties such that the integral ∫ ∞
0

√
h(t)2 exists for all t.

By using Barbalat’s lemma (Khalil 2001), the x, y, z,w → 0 exponentially as t → ∞
for all initial conditions x(0), y(0), z(0), w(0) ∈ ℜ4

. Then it follows that ths states

x, y, z,w of the system with the unknown parameters α, β, δ are globally exponen-

tially regulated for all the initial conditions, by the adaptive control laws (12) and

the parameter update law (20).

Here the proof is completed.

For the numerical simulations the parameter values are α = 1, β = 8, δ = 2 as

used before. Also the positive gain constants are chosen k1 = k2 = k3 = k4 = 5.
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Fig. 21 Time-series of the controlled states x, y, z, w

Futhermore the initial conditions are x(0) = −1.1, y(0) = 0.6, z(0) = −1.5, w(0) =
0.2, and α̂(0) = −0.5, ̂β(0) = −0.2, ̂δ(0) = −0.1. In Fig. 21 the exponential conver-

gence of the controlled states of the system, is depicted.

Fig. 22 Time-series of the controlled states x, y, z, w
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Fig. 23 Time-series of the controlled states x, y, z, w

In Fig. 22 the parameter values are α = 1, β = 8, δ = 2, while the initial conditions

are x(0) = −1.1, y(0) = 1, z(0) = −0.5, w(0) = 0.7, and α̂(0) = −0.5, ̂β(0) = −0.2,

̂δ(0) = −0.1.

In Fig. 23 the parameter values are α = 1, β = 8, δ = 2, while the initial conditions

are x(0) = 1.1, y(0) = 0.8, z(0) = −1.5, w(0) = 0.2, and â(0) = −0.5, ̂b(0) = −0.2,

̂

𝛿(0) = −0.1.

5 Circuit Realization

The classical approach for the verification of the feasibility of theoretical chaotic

models is the physical realization through electronic circuits (Borah et al. 2016;

Bouali et al. 2012; Kingni et al. 2016; Wu et al. 2015; Zhou et al. 2015). Furthermore,

the circuital realization of chaotic systems has been applied in numerous engineer-

ing applications, for example in secure communications (Banerjee 2010; Cicek et al.

2010), liquid mixing (Sahin and Guzelic 2013), robotics (Volos et al. 2012), image

encryption process (Volos et al. 2013), audio encryption scheme (Liu et al. 2016),

target detection (Wang et al. 2015) or random signal generation (Fatemi-Behbahani

et al. 2016; Yalcin et al. 2004). For this reason, analog and digital approaches have

been applied to realize chaotic oscillators by using different kinds of electronic

devices such as common off-the-shelf electronic components (Elwakil and Ozoguz

2003; Piper and Sprott 2010), integrated circuit technology (Trejo-Guerra et al. 2012,



4-D Memristive Chaotic System with Different Families . . . 425

2013), microcontroller (Pano-Azucena et al. 2017) or field-programmable gate array

(FPGA) (Koyuncu et al. 2014; Tlelo-Cuautle et al. 2015).

Therefore, in this section, we will confirm the feasibility of the proposed mem-

ristive system by discussing its circuital realization by using the general operational

amplier–based approach. The third state variable (z) of the memristive system has

been rescaled as Z = z∕2, in order to avoid the limitations problems of the compo-

nents of our electronic circuit. Therefore, the memristive system is transformed into

the following equivalent system:

̇X = −X + F(Y ,W)
̇Y = 𝛽X − 2𝛿XZ + 𝜀

̇Z = −Z + 1
2
XY

̇W = Y

(25)

where F(Y ,W) = (1 + 0.25W2 − 0.002W4)Y the output of the memristive device.

Figure 24 shows the schematic of the circuit for realizing the system (5). As shown

in this figure, the circuit includes sixteen resistors, four capacitors, seven operational

amplifiers (TL081) and five analog multipliers (AD633). By applying Kirchhoffs

circuit laws into the designed circuit, we get the following circuital equation:

ẋ = 1
R⋅C

[−X + F(Y ,W)]y + R
10V⋅R1

y ⋅ z]
ẏ = 1

R⋅C
[ R
R
𝛽

X − R
10V⋅R

𝛿

XZ + V + 𝜀]

ż = 1
R⋅C

[−Z + R
10V⋅R1

X ⋅ Y]
ẇ = 1

R⋅C
Y

(26)

where

F(Y ,W) = [ R
10V⋅Ra

Vf +
R

(10V)2⋅Rb
W2 − R

(10V)4⋅Rc
W4]y (27)

is the output of the memristive circuit in the dotted frame of the schematic in Fig. 16,

which implements the opposite of the memristive function of Eq. (2).

In system (26), X,Y ,Z and W correspond to the voltages on the integrators (U1–

U4), respectively, while the power supply is ±15VDC. System (26) is normalized by

using 𝜏 = t∕RC. It can thus be suggested that system (26) is equivalent to system

(5), with a = R
10V⋅Ra

, b = R
(10V)2⋅Rb

, c = R
(10V)4⋅Rc

, d = R∕R
𝛿

, 2e = R
10V⋅Re

, m = Vm and

R
10V⋅R1

= 0.5. So, the values of circuit components are: R = 10 kΩ, Ra = 1 kΩ, Rb =
0.4 kΩ, Rc = 0.5 kΩ, R

𝛿

= 1 kΩ, Re = 0.5 kΩ, R1 = 2 kΩ, C = 10 nF, Vf = 1V and

V
𝜀

= 0V (for the case of 𝜀 = 0). The designed circuit has been implemented in Mul-

tisim and PSpice results are reported in Fig. 24. It is easy to see the good agreement

between the circuit’s simulation results (Figs. 25, 26 and 27) and numerical results

(Fig. 2).
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Fig. 24 Schematic of the circuit including sixeteen resistors, four capacitors, seven operational

amplifiers and five analog multipliers. The power supplies of all operational amplifiers and analog

multipliers are ±15VDC
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(b)(a)

Fig. 25 a PSpice chaotic attractors of the designed circuit in (a) X − Y plane, b X − Z plane for

𝜀 = 0

(a) (b)

Fig. 26 a PSpice chaotic attractors of the designed circuit in (a) X −W plane, b Y − Z plane for

𝜀 = 0
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(a) (b)

Fig. 27 a PSpice chaotic attractors of the designed circuit in (a) Y −W plane, b Z −W plane for

𝜀 = 0

6 Conclusion

The existence of a memristor-based hyperchaotic system with line of equibria and

with no equilibria has been studied in this paper. Although 4-D memristive systems

often only generate chaos, the presence of a memristive device leads the proposed

system to a hyperchaotic system with hidden attractors. The system has rich dynam-

ical behavior as confirmed by the reported example of attractor and by the presented

numerical bifurcation diagrams and Lyapunov exponents. It is worth noting that the

possibilities of control of such system with unknown parameters is verified by con-

structing an adaptive controller. Also, the designed circuit emulates very well the

proposed hyperchaotic memristive system. Because there is little knowledge about

the special features of such systems, future works will continue focusing on their

dynamical behaviors, as well as the possibility of synchronization of such systems.

Furthermore, the robustness of the control technique with respect to noise is very

crucial especially in practical applications. For this reason, the investigation of noise

effect on the control scheme will be taken as a future work.
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Hidden Chaotic Path Planning and Control
of a Two-Link Flexible Robot Manipulator

Kshetrimayum Lochan, Jay Prakash Singh, Binoy Krishna Roy
and Bidyadhar Subudhi

Abstract Robotics is an emerging and interesting area in many fields of technical

science. In general, a robot manipulator (rigid/flexible) is a more focused research

direction in comparison with other areas of robotics. Specifically, flexible manip-

ulators are more applicable in many fields when compared with its rigid counter-

parts because of many advantages like lightweight, more workspace, lower energy

consumption, smaller in size, mobility, etc. These advantages give rise to many

control challenges like underactuation, nonminimum phase, noncollocation, con-

trol spillover, uncertainties, nonlinearities, complex dynamical behaviours, etc. Path

planning or trajectory tracking problem is considered as an interesting and challeng-

ing control problem for a flexible manipulator in comparison with the regulation

problem. In recent decades, the theory of chaos is used in various technical fields.

Aperiodic long time, highly sensitive to initial conditions, unpredictable behaviours,

etc. are the fundamental properties of a chaotic signal arising out of a deterministic

nonlinear system. Many continuous/discrete/fractional order autonomous and non-

autonomous chaotic dynamical systems are available in the literature. In the recent

past, more attention has been given to the design and applications of hidden chaotic

dynamical systems. The path planning problem of a flexible manipulator requires

a reference signal. Various reference signals are used in the literature. Recently, a

chaotic signal is used as a reference signal for path planning. However, we have not

found any paper wherein a reference signal using a hidden chaotic system is used
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for path planning. The use of a signal from a hidden chaotic attractor for path plan-

ning of a flexible manipulator can provide a new domain of research. Hidden chaotic

path planning/trajectory tracking of a two-link flexible manipulator is the aim of this

chapter. Use of hidden chaotic attractors as a path/trajectory reference creates extra

challenges and complexity in controlling the flexible manipulator. Thus, controlling

a flexible manipulator in such a scenario is a challenging task. The dynamics of a

two-link flexible manipulator is first modelled using assumed modes method and

divided into two parts using two-time scale separation principle (singular perturba-

tion). One subsystem is called as the slow subsystem involving with the rigid parts

and another subsystem is called as the fast subsystem which incorporates the flexible

dynamics. Separate control techniques are applied to each subsystem. An adaptive

sliding mode control technique is designed for the slow subsystem which tackles the

uncertainties and helps in fast tracking of the desired hidden chaotic trajectory. A

backstepping controller is designed for the fast subsystem system for quick suppres-

sion of tip deflections and vibration suppressions. The proposed control techniques

are validated using a reference chaotic signal generated from a 3-D hidden attractors

chaotic system in MATLAB simulation environment and results are demonstrated.

The results reveal that the objective of the chapter is achieved successfully by the

proposed control techniques.

Keywords Hidden chaotic attractors ⋅ Chaotic path planning ⋅ Singular

perturbation ⋅ Adaptive SMC ⋅ Backstepping control ⋅ Two-link flexible

manipulator

1 Introduction

Aperiodic long time behaviour in a nonlinear deterministic dynamical system is con-

sidered as the chaotic phenomenon (Pham et al. 2016a). In the last two decades,

many chaotic systems have been reported in the literature based on their vari-

ous behaviours and characteristics (Pham et al. 2014a, b, 2016a, c, e, g, 2017a, b;

Vaidyanathan et al. 2015; Wang et al. 2017). Recently, dynamical chaotic systems

are used for various applications like secure communication (Tlelo-Cuautle et al.

2015), information theory (Esteban et al. 2016), image processing (Tlelo-Cuautle

et al. 2015), structural engineering (Nichols et al. 2003), security (Pham et al. 2014b),

economics (Andrievskii and Fradkov 2004), biomedical (Andrievskii and Fradkov

2004), robotics (Tlelo-Cuautle et al. 2014; Lochan et al. 2016c), etc. But, the use

of these chaotic systems in many areas of technical sciences are still less explored

and require consideration. The use of a chaotic signal as the desired trajectory for

path planning/trajectory tracking of a flexible manipulator is the motivation of this

chapter.

The nature of an equilibrium point of a chaotic system plays an important role in

its classification. Various chaotic systems are reported based on the different nature

of its equilibrium points (Pham et al. 2014a, b, 2016a, e, g, 2017a; Vaidyanathan

et al. 2015; Wang et al. 2017). In recent years, chaotic systems are mainly classified
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into two groups: (i) chaotic systems (Vaidyanathan and Volos 2016; Hoppensteadt

2000; Azar et al. 2017) with self-excited attractors and (ii) chaotic systems with

hidden attractors (Leonov et al. 2011a, b, 2012, 2014, 2015; Leonov and Kuznetsov

2013). Chaotic system with (a) stable equilibrium points (Pham et al. 2016d; Chen

et al. 2017; Molaie et al. 2013), (b) no equilibrium point (Kiseleva et al. 2016; Pham

et al. 2016f; Leonov et al. 2011a; Kingni et al. 2016; Singh and Roy 2017a) and (c)

infinitely many equilibrium points (Pham et al. 2016b; Jafari and Sprott 2013; Singh

and Roy 2017b) satisfy the requirement of the hidden attractors chaotic systems and

hence, belong to the category of hidden attractors. The conventional chaotic systems

like Lorenz (1963), Chen (1999), Lü (2002), Sprott (1994), systems in Singh and Roy

(2015a, b, 2016a, b, c), Singh et al. (2014) are classified under the category of self-

excited chaotic system. Hidden attractors are also seen in many electromechanical

systems like in induction motor (Leonov et al. 2011a), drilling system (Leonov et al.

2014), and many others.

Flexible manipulators are used in many applications like aerospace (Sabatini et al.

2012), industry (Lochan et al. 2016a), medical science (Bruno et al. 2014; Arora

et al. 2014), home (Nakamura et al. 2003), education (Lochan et al. 2014, 2016a;

Suklabaidya et al. 2015), etc., (Lochan et al. 2016a; Kiang et al. 2014). The above-

stated applications of flexible manipulators (Suklabaidya et al. 2014a, b) are grad-

ually increasing as compared with their rigid counterpart (Lochan and Roy 2015a)

because of their inherent advantages (Lochan et al. 2016a). Many control problems

are considered in the literature for a flexible manipulator. The most commonly used

control problems are path planning/trajectory tracking (Lochan and Roy 2016) for

the hub angle and path planning/trajectory tracking for the tip position (Lochan et al.

2016a). Various desired paths/trajectories are considered in the literature. The avail-

able desired signals used in the literature are listed in Table 1. It is seen from Table 1

that the use of a signal generated from a hidden attractors chaotic system as the

desired trajectory for a flexible manipulator is not found in the literature. Hence, this

work uses a hidden attractors chaotic signal as the desired trajectory for the path

planning/trajectory tracking control of a two-link flexible manipulator.

Table 1 Type of desired trajectories used for the trajectory tracking control of a flexible manipu-

lator

Sl. no. Desired trajectories References of papers

1. Bang-bang Aoustin and Formal’sky (1999)

Pradhan and Subudhi (2014)

2. Circular Masoud et al. (2010)

Zhang and Liu (2012)

3. Exponentially varying Lee and Lee (2002)

Pradhan and Subudhi (2012)

4. Straight Link Li et al. (2005)

5. Chaotic signal Lochan et al. (2016b, c)

6. Hidden attractors chaotic signal This work
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The design of a controller largely depends on the modelling method used to model

a system. Many modelling methods are available in the literature for modelling of

a flexible manipulator. The commonly used modelling methods are assumed modes

method (Subudhi and Morris 2002), lumped parameter method (Lochan et al. 2016c;

Lochan and Roy 2015b) and finite element method (Lochan et al. 2016a; Korayem

and Haghpanahi 2009). Among these three modelling methods, assumed modes

method is widely used (Lochan et al. 2016a). It gives the desirable response of the

dynamics by selecting a suitable choice of the number of modes. Another interesting

modelling method is the singular perturbation (SP) technique (Lochan et al. 2016a).

In singular perturbation, a two-time scale separation principle is used. Using this,

dynamics is divided into two parts: slow and fast subsystem dynamics (Subudhi and

Morris 2002; Siciliano and Book 1986). In the case of flexible manipulators, the sin-

gular perturbation is used to divide the system dynamics into a slow subsystem con-

sisting of the rigid dynamics and a fast subsystem consisting of the flexible dynamics

(Siciliano and Book 1986). Thus, it is easy to design the control inputs separately

for each subsystem and the desired performances can be achieved.

Link deflection is another important control problem considered in the field of

flexible manipulators. Various control techniques are reported in the literature for the

quick suppression of link deflection (Özer and Semercigil 2010; Chu and Cui 2015;

Karagulle et al. 2015). The use of a singular perturbation (SP) modelling method

for the design of a control technique for quick suppression of link deflection is more

worthy as compared with other methods. Because in SP, the dynamics of the fast

subsystem representing the flexible dynamics of the FM can be used to design a

separate control technique for the quick suppression of the links deflection. Different

types of flexible manipulators are available in the literature like single link FM, two-

link FM and flexible joint FM, multi-link FM (Lochan et al. 2016a). But, two-link

flexible manipulators are mainly used and considered in this paper for the design of

a controller (Lochan et al. 2016a).

Many control techniques including classical and robust are reported in the liter-

ature for controlling two-link flexible manipulators like backstepping control, state

feedback control (Lochan et al. 2016a), observer based control (Zhang and Liu 2012),

extended state observer (Yu et al. 2015), adaptive control (Pradhan and Subudhi

2014), sliding mode control (SMC) (Lochan and Roy 2015b; Lochan et al. 2015a, b,

2016c), adaptive SMC (Lochan et al. 2015b, 2016b), hybrid control technique

(Pradhan and Subudhi 2012), intelligent control techniques like fuzzy logic control

(Subudhi and Morris 2009), artificial neural network (Subudhi and Morris 2009),

genetic algorithm (Subudhi and Morris 2009), etc. Most of the reported control tech-

niques on TLFMs use assumed modes modelling method for designing their con-

trollers. But, designing of a controller for a two-link flexible manipulator with sin-

gular perturbation modelling method is found to be predominately less. The reported

papers using SP on the dynamics of a TLFM are classified in Table 2. It is seen from

Table 2, that the use of singular perturbation for designing a controller of a TLFM

is still less explored. Motivated with the above discussion, this chapter attempts to

broaden the literature by the use of singular perturbation for designing a controller

for a TLFM.
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Table 2 Categorisation of controllers applied on a singular perturbation model of two-link flexible

manipulators

References of paper Modelling method Types of control (Slow

subsystem)

Types of control (Fast

subsystem)

Khorrami et al. (1994) AMM PID feedback control PID

Khorrami and Jain

(1993)

AMM Feedback linearisation Linear quadratic

regulator (LQR)

Subudhi and Morris

(2002)

FEM Computed torque

control

LQR based state

feedback

Bo and Bakakawa

(2004)

AMM PD Feedback control

Lee and Lee (2002) AMM VSC Virtual force control

Li et al. (2005) AMM without

gravitational force

PID+ANN H∞ control

Zhang et al. (2005) AMM Adaptive Normal

SMC with H∞

LQR

Matsuno and

Yamamoto (1994)

AMM PID Feedback control PID

Wang et al. (2008) PDE model Fuzzy non-singular

TSMC

Reduced

order-observer based

LQR

Ashayeri and Farid

(2008)

AMM without

Disturbance matrix

PD type inverse

dynamic based control

Lyapunov based

control

Li et al. (2010) AMM Normal SMC H∞

Mirzaee et al. (2010) AMM VSC Lyapunov based

controller

Yue-jiao et al. (2010) AMM without

gravitational force

NN LQR

Wang et al. (2014) AMM Continuous

non-singular TMC

Reduced

order-observer based

LQR

This work AMM Adaptive SMC Backstepping

In this chapter, an adaptive SMC is designed for the path planning/tracking con-

trol of the desired signal generated from a hidden attractors chaotic system and a

backstepping control for tip deflection suppression of a two-link flexible manipula-

tor. An adaptive SMC and backstepping control techniques are designed for the slow

subsystem and fast subsystem, respectively.

The contributions of the chapter are given below:

1. A signal of a hidden chaotic attractors system is considered as the desired signal

for path planning/ trajectory tracking of a two-link flexible manipulator.

2. The designed controllers (adaptive-SMC and backstepping) offer faster path plan-

ning/trajectory tracking and quicker suppression of link deflection.
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3. The robustness of the proposed controller is evaluated in the presence of param-

eter uncertainties and variation of payloads.

4. The performance of the designed controller is compared with the controller

reported in Mirzaee et al. (2010). The proposed controller is found to be better

than the controller in Mirzaee et al. (2010).

The organisation of the chapter is as follows. The concept of the dynamic modelling

is briefly discussed in Sect. 2. Section 3 introduces the design of composite control.

In Sect. 4, a hidden attractor chaotic system is used to generate the desired signal for

tracking. The results and discussion are presented in Sect. 5 followed by conclusions

in Sect. 6.

2 Modelling of a TLFM

The schematic representation of a planar two-link flexible manipulator (TLFM) is

shown in Fig. 1. In Fig. 1, (X0,Y0) represents the generalised coordinated frame.

( ̂Xi,
̂Yi) is the inertial frame and (Xi,Yi) gives the rigid body moving frame asso-

ciated with the ith link. Whi and Jhi are the mass and inertia, respectively of the ith
hub whereas 𝜏i represents the actuated torque. ui(xi, t) represents the elastic deflec-

tion of the ith link. Mp and Jp are the mass and inertia, respectively of the payload

attached at the end of the final link. 𝜃i is the ith joint angle of the ith link.

The rigid body motion is described with the help of joint angle 𝜃i and flexi-

ble motion is described with ui(li, t). The dynamical model of a planar TLFM is

derived by using Euler-Bernoulli beam theory in the form of a partial differential

equation (PDE) along with the boundary conditions representing the motion of the

Fig. 1 Physical representation of a two-link flexible manipulator
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links. Equation of system energies in the dynamics of a TLFM is obtained by using

the Lagrangian formation approach along with assumed modes modelling (AMM)

method (Pradhan and Subudhi 2014; Subudhi and Morris 2002). The Lagrangian

dynamics of the flexible motion is described as

d
dt

𝛿((EKE)i − (EPE)i)
𝛿qi

−
𝛿((EKE)i − (EPE)i)

𝛿qi
= 𝜏i (1)

where (EKE)i and (EPE)i are the total kinetic and potential energy, respectively, of the

ith link and qi is the generalised coordinate consists of joint angles, joint velocities

and modal coordinates (Subudhi and Morris 2002). The total kinetic energy (EKE)i
can be obtained as (EKE)i = (total KE due to ith joint) + (total KE due to ith link) +

(total KE due Mp) in the absence of gravity. The partial differential equation of the

link deflection can be modelled as

(EI)i
𝛿

4ui(li, t)
𝛿l4i

+ 𝜌i
𝛿

2ui(li, t)
𝛿l2i

= 0 (2)

where

i ith link
(EI)i Flexural rigidity
li Length
𝜌i Density
t Time
ui(li, t) Deflection

A solution of (2) can be obtained by applying proper boundary conditions.

The commonly used different boundary conditions are shown in Fig. 2. The third

boundary condition in Fig. 2, also called as pseudo pinned, is locked in the vertical

direction but is free to move in the angular direction (DeLuca and Siciliano 1991).

Fig. 2 Different boundary conditions
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Considering that the mass of the links is negligible compared with the mass of the

payload, we can write as in (DeLuca and Siciliano (1991), Subudhi et al. (2011),

Subudhi and Pradhan (2016)):

⎧
⎪
⎨
⎪
⎩

(EI)i
𝛿

4ui(li,t)
𝛿l2i

= −Jeqi
d2

dt2
( 𝛿ui(li,t)

𝛿li
)

(EI)i
𝛿

3ui(li,t)
𝛿l3i

= −Meqi
d2

dt2
(ui(li, t)

(3)

where Jeqi and Meqi are the moment of inertia and mass, respectively, at the end of the

ith link. Finite dimensional expression of the links flexibility ui(li, t) can be written

using AMM (DeLuca and Siciliano 1991) as

ui(li, t) =
n∑

j=1
𝜙ij(li)𝛿ij(t) (4)

where

𝜙ij jth mode shapes (spatial coordinates)

𝛿ij jth modal coordinates (time coordinates)

n Number of assumed modes.

The general solution of (1) can be obtained using (4) in the form of time harmonic

function and space eigen function as in first equation of (5) and second equation of

(5), respectively (DeLuca and Siciliano 1991).

{
𝛿ij(t) = ej𝜙ij t

𝜙ij = C1,i sin(𝛼i, li) + C2,i cos(𝛼i, li) + C3,i sinh(𝛼i, li) + C4,i cosh(𝛼i, li)
(5)

where 𝜙i is the natural frequency and (𝛼)4i =
(𝜙)4i 𝜌i
(EI)i

. Using the first and the second

boundary conditions shown in Fig. 2a, b, the constants in (5) can be obtained as

⎧
⎪
⎨
⎪
⎩

C3,i = −C1,i,C4,i = −C2,i

[f (𝛼i, li)]

(
C1,i
C2,i

)

= 0
(6)

The values of 𝛼i can be obtained by solving second equation of (6), using first

equation of (6), and second equation of (5). Similarly, the finite solution of the link

deflection using (2) can be obtained. Finally, using the Lagrangian expression (1),

dynamic model equation of a TLFM using AMM can be written as in (Subudhi and

Morris (2002), DeLuca and Siciliano (1991))

B(𝜃i, 𝛿i)
(

̈
𝜃i
̈
𝛿i

)

+
(
H1(𝜃i, 𝛿i, ̇𝜃i, ̇𝛿i)
H2(𝜃i, 𝛿i, ̇𝜃i, ̇𝛿i)

)

+ K
(

0
𝛿i

)

+ D
(

̇
𝜃i
̇
𝛿i

)

=
(
𝜏i
0

)

(7)



Hidden Chaotic Path Planning and Control of a Two-Link . . . 441

where

𝜏i Actuated torques

𝛿i,
̇
𝛿i Modal displacements and velocities

𝜃i,
̇
𝜃i Joint angle and velocity

B Positive definite mass inertia matrix

H1,H2 Vectors of coriolis and centrifugal forces

K Positive definite stiffness matrix

D Positive definite damping matrix

2.1 Singular Perturbation Modelling of a TLFM

This subsection describes the dynamic decomposition of a TLFM dynamics into a

slow and a fast subsystem. This is achieved by using the singular perturbation tech-

nique using two-time scale property. The slow subsystem consists of the rigid body

dynamics of the manipulator and the fast subsystem consists of the flexible mode

dynamics of the manipulator. Therefore, the dynamics of a two-link flexible manipu-

lator (TLFM) given in (8) is separated into a slow subsystem (18) which corresponds

to rigid dynamics of the manipulator and a fast subsystem (21) which represents the

flexible dynamics of the manipulator. It is seen that two separate controllers can be

designed for these two subsystems to obtain the desired performances.

The dynamics model (7) of a TLFM can be rewritten as

B
(

̈
𝜃

̈
𝛿

)

+
(

Hr + Dr
̇
𝜃

Hf + Df
̇
𝛿 + K𝛿

)

=
(
𝜏i
0

)

(8)

or in simplified form as

̈
𝜃 = −M11(Hr + Dr

̇
𝜃) −M12(Hf + Df

̇
𝛿 + K𝛿) +M11𝜏i (9)

̈
𝛿 = −M21(Hr + Dr

̇
𝜃) −M22(Hf + Df

̇
𝛿 + K𝛿) +M21𝜏i (10)

where

𝜃 = [𝜃1, 𝜃2]T ]𝜖R2
Vector of joint angle

𝛿 = [𝛿11, 𝛿12, 𝛿21, 𝛿22]T𝜖R4
Vector of flexible modes

Dr𝜖R2X2
,Df 𝜖R4X4

Damping matrices

K𝜖R4X4
Stiffness matrix

Hr𝜖R2
,Hf 𝜖R4

Matrices of gravitational, coriolis and centripetal forces

B𝜖R6X6
Inertia matrix
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The inertial matrix B can be represented as

M =
(
M11 M12
M21 M22

)

=
(

Br Brf
(Brf )T Bf

)−1

(11)

where M11𝜖R2X2
,M12𝜖R2X4

,M21𝜖R4X2
,M22𝜖R4X4

and

Br = [M11 −M12(M22)−1M21]−1 (12)

Considering new state variables 𝛿 = 𝜀q and Ks = 𝜀K, where 𝜀 is the singular

perturbation parameter which is defined as 𝜀 = 1∕Km, Km is the value of smallest

stiffness. Using new state variables, the singularly perturbed model of the flexible

manipulator dynamics (8) can be written as

̈
𝜃 = −M11(Hr + Dr

̇
𝜃) −M12(Hf + Df 𝜀q̇ + Ksq) +M11𝜏i (13)

𝜀q̈ = −M21(Hr + Dr
̇
𝜃) −M22(Hf + Df 𝜀q̇ + K𝛿) +M21𝜏i (14)

A composite control 𝜏i is described as

𝜏i = 𝜏s + 𝜏f (15)

where 𝜏s and 𝜏f are the control inputs for the slow and fast subsystems, respectively.

2.2 Dynamics of a Slow Subsystem

The slow subsystem dynamics of the manipulator can be obtained by considering

𝜀 = 0 in (14), and solving for q as

q̄ = K−1
s ( ̄M22)−1( ̄M21 ̄Dr

̇
̄
𝜃 + ̄M21 ̄Hr + ̄M22 ̄Hf − ̄M21𝜏s) (16)

where over bar represents the quantity with 𝜀 = 0.

Substituting (16) in (13), we can write as

̈
̄
𝜃 = ( ̄M11 − ̄M12( ̄M22)−1 ̄M21)(− ̄Hr − ̄Dr

̇
̄
𝜃 + 𝜏s) (17)

which represents the rigid body dynamics of the manipulator. Using (12), the slow

subsystem dynamics can be written as

̈
̄
𝜃 = ( ̄Br)−1(− ̄Hr − ̄Dr

̇
̄
𝜃 + 𝜏s) (18)
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The state space dynamics of the slow subsystem (18) represents the linear system

with ̄
𝜃 as the parameter. In order to obtain the dynamics of the fast subsystem, two-

time scale method is used. Consider a fast time scale t = 𝜏

√
𝜀 and boundary correc-

tion terms y1 = q − q̄ and y2 =
√
𝜀
̇q̄. Thus, using (14), the boundary layer system

can be written as

{ dy1
d𝜏

= y2
dy2
d𝜏

= −M21(Hr + Dr
̇
𝜃) −M22(Hf + Df 𝜀q̇ + K𝛿) +M21𝜏i

(19)

2.3 Dynamics of a Fast Subsystem

Using the property of two-time scale separation, the slow dynamics variables can be

treated as frozen parameters (Siciliano and Book 1986), thus
dq̄
d𝜏

=
√
𝜀
̇q̄ = 0. Using

(16) into (19) with 𝜀 = 0, we can write as

dy2
d𝜏

= − ̄M22Ksy1 + ̄M21𝜏f (20)

Now, the dynamics of the fast subsystem in state space form can be written as

ẏ = Af y + Bf 𝜏f (21)

where y = [y1, y2]T𝜖R8

Af =
(

0 1
− ̄M22Ks 0

)

,Bf =
(

0
̄M21

)

(22)

3 Design of a Composite Control

This section describes the design of a composite control input 𝜏i = 𝜏s + 𝜏f for the

TLFM dynamics (11). This is achieved by designing separate controllers 𝜏s and 𝜏f
for the fast and the slow subsystems, respectively.

3.1 Adaptive Sliding Mode Control for the Slow Subsystem

In order to track the desired trajectory by the TLFM dynamics (11) in the pres-

ence of bounded matched disturbances, an adaptive sliding mode control (A-SMC)

is designed. The controller is designed with the help of slow subsystem dynamics of

the TLFM (18).
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The designing of A-SMC is achieved in two steps. The first step is the design of

a suitable sliding surface and the second step is the determination of sliding mode

control law.

Suppose, the slow subsystem dynamics of the TLFM is affected by the bounded

and matched disturbances 𝛥f (𝜃).

̈
̄
𝜃 = −( ̄B)−1(− ̄Hr − ̄Dr

̇
̄
𝜃 + 𝜏s) + 𝛥f (𝜃) (23)

It is assumed that the system uncertainties 𝛥f (𝜃) is bounded as |𝛥f (𝜃)| ≤ L. Sup-

pose, 𝜃d be a twice differentiable desired trajectory. Here, the desired signal 𝜃d is

considered as a signal generated from a hidden attractors chaotic system. The track-

ing error for the slow subsystem is defined as

es = −𝜃d + ̄
𝜃 (24)

where ̄
𝜃 is the states of the slow subsystem. The sliding surface is defined as

s = ės + cses (25)

where cs is a positive definite constant gain matrix. When the system operates on the

sliding mode, it satisfies the conditions s = ṡ = 0, i.e.

{
s(t) = ės + cses = 0
ṡ(t) = ës + csės = 0

(26)

Therefore, the equivalent sliding mode dynamics can be written as

ës = −csės, esy = ės, ėsy = −csesy (27)

Now, we show the stability analysis of the equivalent sliding mode dynamics (26)

using Lyapunov stability theory. A Lyapunov function candidate is selected as

V1s(esy) =
1
2
(esy(esy)T ). The time derivative of the Lyapunov function candidate using

(26) can be written as ̇V1s(t) = −cs(e2sy). Thus, according to Lyapunov stability the-

ory, we can say that sliding motion on the sliding surface is stable and ensures the

asymptotical convergence of error dynamics to zero.

After stabilising the sliding surface designed in (25), next step is to design sliding

mode control to drive the system trajectory onto the sliding mode s = 0.

When the system is in the sliding mode, it satisfies ṡ = 0 and during the reaching

phase, it satisfies

ṡ < −𝜌 tanh(s) (28)

Gain 𝜌 is selected such that the reaching condition is satisfied and the sliding mode

motion occurs. Now the control torque 𝜏s is designed to guarantee that the system

trajectory hits s = 0. Using (18) and (27), the control torque 𝜏s can be obtained as
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𝜏s = ( ̄Br)[−csės + ̈
𝜃d + ( ̄Br)−1( ̄Hr + ̄Dr

̇
̄
𝜃) − 𝜌 tanh(s)] (29)

The ability of the control torque 𝜏s defined in (29) to drive the system (19) to the

sliding mode s = 0, can be expressed using Theorem 1.

Theorem 1 Consider the uncertain slow system dynamics of the TLFM given in
(18) and is controlled by 𝜏s in (29). Then, the trajectory of the slow subsystem (18)
converges to the sliding surface, s = 0.

Proof Consider another Lyapunov function candidate as V(s) = 1
2
ssT , then its time

derivative can be written as

̇V(s) = sT ṡ = sT{( ̄Br)−1(− ̄Hr − ̄Dr
̇
̄
𝜃 + 𝜏s) + 𝛥f (𝜃) − ̈

𝜃d + csės} (30)

Using control input (29), (30) can be written as

̇V(s) = sT ṡ = sT{−𝜌 tanh(s) + 𝛥f (𝜃)} (31)

Now, using the boundness of the uncertainties |𝛥f (𝜃)| ≤ L, (31) can be written as,

̇V(s) ≤ −𝜌|s| + L|s| ≤ −|s|(𝜌 − L) (32)

With a suitable choice of 𝜌 > L, we can ensure the negative definiteness of the

Lyapunov function V(s). Therefore, the closed loop system (slow subsystem of the

TLFM (18)) is asymptotically stable.

Now, it is assumed that the system uncertainties 𝛥f (𝜃) are unknown and satisfy

the condition |𝛥f (𝜃)| ≤ L < 𝜌. In real-life, the upper bound of the uncertainties is

unknown and challenging to determine. Then, the control law (29) is modified as:

𝜏s = ( ̄Br)[−csės + ̈
𝜃d + ( ̄Br)−1( ̄Hr + ̄Dr

̇
̄
𝜃) − �̂� tanh(s)] (33)

where �̂� is the estimate of 𝜌. To calculate the parameter �̂�, following adaptation law

is defined

̇
�̂� = k−1|s| (34)

where k > 0 is the adaptation gain matrix. Considering �̃� = �̂� − 𝜌, above adaptation

law can be written as

̇
�̃� = ̇

�̂� = k−1|s| (35)

The stability of the adaptation law of the parameter �̂� can be proved by considering

the following Lyapunov function candidate as

V2s(s, 𝜌) =
1
2
(ssT + k�̃��̃�T ) (36)

Taking time derivative of (36) and using (33) and (35), we can write as
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̇V2s(s, 𝜌) = sT ṡ + k�̃�T ̇
�̃� = sT{−�̂�|s| + 𝛥f (𝜃)} + �̃�|s| (37)

Using the boundness condition |𝛥f (𝜃)| ≤ L < 𝜌, we can write as

̇V(s) = −𝜌|s| + sT{𝛥f (𝜃)} ≤ L|s| − 𝜌|s| ≤ −(𝜌 − L)|s| (38)

Since L > 0, we can say that (38) is a negative definite function. Therefore, we can

say that the trajectory of the slow subsystem dynamics converge towards the sliding

surface and remains on it.

3.2 Design of Backstepping Control for the Fast Subsystem

In this subsection, a backstepping control technique is designed for controlling the

fast subsystem. Dynamics of the fast subsystem of the flexible manipulator can be

written as: {
ẏ1 = y2
ẏ2 = −Af3y1 + Bf2𝜏f

(39)

where Af3 = ̄M22Ks and Bf2 = ̄M21. Suppose, yd is a twice differentiable desired link

deflection, and v is a virtual control variable. The link deflection error is defined as

e1f = yd − y1 (40)

e2f = v − y2 (41)

The error dynamics can be obtained as

ė1f = ẏd − y2 (42)

ė2f = v̇ + Af3y1 − Bf2𝜏f (43)

The control law designed for controlling the fast subsystem is obtained by using

Theorem 2.

Theorem 2 Suppose the backstepping control law is defined in (44) using the error
variable (42) and (43), then the fast subsystem of the manipulator dynamics (39)
follows the desired trajectory yd, i.e. the links deflection of the manipulator are sup-
pressed to zero properly.

𝜏f = (Bf2)−1(v̇ + Af3y1 + k2e2f ) (44)

Proof Designing of a backstepping controller for the fast subsystem of the TLFM

(8) is achieved using the following steps:

Step 1: Consider a Lyapunov function candidate as
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V1f =
1
2
e21f (45)

Time derivative of (45) using (42) and (43), we get

̇V1f = e1f (ẏd + e2f − v) = e1f ẏd − e1f v + e1f e2f (46)

Now, consider the virtual control variable v as

v = ẏd + k1e1f + e2f (47)

where k1 > 0 is a positive definite matrix. Using (47), the time derivative of

Lyapunov function candidate (46) can be written as

̇V1f = −k1e21f (48)

It is seen from (48) that the time derivative of Lyapunov function ̇V1f is a negative

definite. Thus, the first state variable of the fast subsystem (39) is stabilised. The next

step is to show the stability of the second state variable and to obtain the control input

𝜏f for the fast subsystem.

Step 2: Consider another Lyapunov function candidate as

V2f = V1f +
1
2
e22f (49)

Using (43) and (48) in time derivative of (49), we can write as

̇V2f = −k1e21f + e2f (v̇ + Af3y1 − Bf2𝜏f ) (50)

Now, we can obtain the actual torque input as

𝜏f = (Bf2)−1(v̇ + Af3y1 + k2e2f ) (51)

Using (51), ̇V2f in (50) is written as

̇V2f = −(k1e21f + k2e22f ) (52)

Since k1, k2 are the positive definite constant matrices, then using Lyapunov stability

theory, we can say that (52) is a negative definite function. Thus, the error variables

e1f and e2f asymptotically converge to the origin with a suitable choice of constant

matrices k1, k2. Therefore, the link deflections of the fast subsystem of the TLFM

are suppressed to their desired values, i.e. at origin.

The structure of the composite control technique designed for the hidden chaotic

path planning is shown in Fig. 3.
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Fig. 3 Structure of the composite control technique

4 Hidden Chaotic Attractor as a Desired Signal

The dynamics of a hidden attractors chaotic system whose signal is used as the

desired trajectory for the TLFM is described as Molaie et al. (2013)

⎧
⎪
⎨
⎪
⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = −x1 − 2.9x23 + x1x2 + 1.1x1x3 − 1

(53)

System (53) is chaotic with initial conditions x(0) = (−2.2, 0.6, 0)T where Lyapunov

exponents of the system are Li = (0.0638, 0,−1.0638). The system has the equilib-

rium points at E = (−1, 0, 0) and stable eigenvalues corresponding to this equilib-

rium points. Thus, the system given in (53) qualifies to be in the category of hidden
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Fig. 4 Hidden chaotic attractors of system (53)
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Fig. 5 Hidden chaotic signals of system (53)

chaotic attractors (Molaie et al. 2013). The chaotic attractors and chaotic signals

of system (53) with initial conditions x(0) = (−2.2, 0.6, 0)T are shown in Fig. 4 and

Fig. 5, respectively.

In this chapter, the signals x1, x2, x3 are used as the desired trajectories for the

TLFM as 𝜃d1 = 𝜃d2 = x1, ̇
𝜃d1 = ̇

𝜃d2 = x2 and ̈
𝜃d1 = ̈

𝜃d2 = x3.

5 Results and Discussion

This section discusses the results and discussion for the tracking control of the hidden

chaotic desired signal. The parameters of the physical TLFM used for simulating the

flexible manipulator dynamics (7) are given in Table 3.

All the simulations in this chapter are carried out using ode-45 solver in MAT-

LAB 14-a simulation environment. The initial conditions used for the simulation

Table 3 Symbols and its descriptions

Mass of link-1, m1 = 0.15268 kg Coefficients of viscous damping, Beq1 = 4
Nms/rad, Beq2 = 1.5 Nms/rad

Mass of link-2, m2 = 0.0535 kg Efficiency of gear boxes, 𝜂g1 = 0.85, 𝜂g2 = 0.9
Length of link-1, L1 = 0.202 m Efficiency of motors, 𝜂m1 = 0.85, 𝜂m2 = 0.85
Length of link-2, L2 = 0.2018 Constants of back e.m.f, Km1 = 0.119 v/rad,

Km2 = 0.0234 v/rad

Resistance of armatures, Rm1 = 11.5Ω,

Rm2 = 2.32Ω
Gear ratio, Kg1 = 100, Kg2 = 50

Equivalent MI at load, Jeq1 = 0.17043 kgm
3

Motor torque constants Kt1 = 0.119 Nm/A,

Kt2 = 0.0234 Nm/A

Equivalent MI at load, Jeq2 = 0.0064387 kgm
3

Stiffness of the links, Ks1 = 22 Nm/rad,

Ks2 = 2.5 Nm/rad

Link-1 MI, Jarm1 = 0.002035 kgm2
Link-2 MI, Jarm2 = 0.0007204 kgm

2
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of two-link flexible manipulator dynamics (7) and adaptation laws (34) are consid-

ered as 𝜃(0), 𝛿(0) = (0.1, 0.1, 0.0, 0.0, 0.0, 0.0)T , ̇
𝜃(0), ̇𝛿(0) = (0, 0, 0, 0, 0, 0)T . The

system uncertainties added in the manipulator dynamics are given as

𝛥f (𝜃) = [0.1 sin(𝜃) sin( ̇𝜃), 0.1 sin(𝜃) sin( ̇𝜃)]T (54)

The values of the sliding surface constant gains and adaptation constant gains used

for adaptive SMC are cs =
(
20 0
0 20

)

and k =
(
14 0
0 14

)

, respectively, and the gains

of the backstepping controller are considered as k1 = k2 =
⎛
⎜
⎜
⎜
⎝

10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

⎞
⎟
⎟
⎟
⎠

. These

gains are considered in a manner to achieve better tracking performances and require

less control efforts.

5.1 Simulation Results with a Nominal Payload (0.145 kg)

Hidden chaotic path planning for the two-link flexible manipulator (7) is first dis-

cussed here with a nominal payload (0.145 kg) and in the presence of system uncer-

tainties (54). The trajectory tracking errors for both the links are shown in Fig. 6.

It is observed from Fig. 6 that the chaotic trajectory tracking for both the links are

achieved within 6 s. The modes of the first and second flexible link with 0.145 kg

payload are shown in Fig. 7 and Fig. 8, respectively. It is apparent from Figs. 7 and 8

that the modes of the links are suppressed within values [10−3, 10−5] and [10−4,

10−6]mm, respectively. The behaviour of tip deflection for both the links are shown

in Fig. 9. It is noted from Fig. 9 that the tip deflections of the first and second link

are suppressed within the values 10−2 mm and 10−3 mm, respectively. Responses
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Fig. 6 Chaotic path following errors of the joint angles with nominal payload: a link-1 and b link-2
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Fig. 7 Modes with nominal payload condition: a mode-1 for link-1 and b mode-2 for link-1
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Fig. 8 Modes with nominal payload condition: a mode-1 for link-2 and b mode-2 for link-2

of the sliding surfaces designed for the slow subsystem of both the links are shown

in Fig. 10. The required control torque inputs in the slow subsystem are shown in

Fig. 11. It is seen from Figs. 10 and 11 that the chattering is not present in the slid-

ing surfaces and control inputs. Responses of the control input required in the fast

subsystem are shown in Fig. 12. Responses of the composite control input designed

for the two-link flexible manipulator are shown in Fig. 13. It is noted from Fig. 13

that the required control torques using the composite control for both the links are

initially high but after sometime, these torques decay within small values. It is also

seen from Fig. 13 that the variation in control inputs is low.
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Fig. 9 Response of tip deflections of both the links for chaotic path planning with nominal payload
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Fig. 11 Required control torque during chaotic trajectory tracking for the slow subsystem with the

nominal payload
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Fig. 12 Required control torque for the fast subsystem with the nominal payload

t

0

100

200

τ 1

0 5 1 0 1 5 2 0 2 5 30

0 5 1 0 1 5 2 0 2 5 30
t

-40

-20

0

τ 2

(a)

(b)

Fig. 13 Composite control torque for the two-link flexible manipulator during chaotic trajectory

tracking with the nominal payload

5.2 Simulation Results with 𝟎.𝟑 kg Payload

This subsection describes the robustness of the controllers for chaotic tracking results

of two-link flexible manipulator (7) with a payload of 0.3 kg. The chaotic path plan-

ning errors for both the links with 0.3 kg payload are shown in Fig. 14. It is apparent

from Fig. 14 that with the addition of payload, the settling time (8 s) of the track-

ing error increases as compared with the nominal payload (6 s). Behaviours of the

modes of both the links are shown in Figs. 15 and 16, respectively. The responses of

the tip deflection of both the links are shown in Fig. 17. It is noted from Fig. 17 that

with an increase of payload there is a small increase in the magnitude of deflection
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Fig. 14 Chaotic path tracking errors of the joint angles with 0.3 kg payload: a link-1 and b link-2
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Fig. 15 Modes with 0.3 kg payload condition: a mode-1 for link-1 and b mode-2 for link-2

for both the links. The behaviours of the sliding surfaces designed for the slow sub-

system with 0.3 kg payload are shown in Fig. 18. It is seen from Fig. 18 that there

is an increase of reaching time (3 s) for the sliding surfaces with 0.3 kg payload as

compared with the nominal payload. Responses of the composite control inputs gen-

erated for the two-link flexible manipulator with 0.3 kg payload are shown in Fig. 19.

It is visible from Fig. 19 that due to increase in the payload on the tip of the second

link, it requires more control efforts as compared with the nominal payload.
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Fig. 17 Responses of the tip deflections of link-1 and link-2 for chaotic path planning with 0.3 kg

payload

5.3 Comparison of the Proposed Composite Controller with
the Controller of (Mirzaee et al. 2010)

Chaotic trajectory tracking performances of the proposed composite controller with

a nominal payload for the TLFM given in (7) are compared with the composite con-

troller available (Mirzaee et al. 2010). Tracking errors using the proposed composite

controller and the controller of (Mirzaee et al. 2010) for both the links are shown

in Fig. 20. It is apparent from Fig. 20 that the reaching time for the proposed con-

troller is greater than (Mirzaee et al. 2010). But, the steady state error using the
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Fig. 18 Response of sliding surfaces with 0.3 kg payload
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Fig. 19 Composite control torque for the two-link flexible manipulator during chaotic trajectory

tracking with 0.3 kg payload

proposed composite controller is lower as compared with the controller of (Mirzaee

et al. 2010). The behaviour of the tip deflections using both the composite controllers

are shown in Fig. 21. It is observed from Fig. 21 that tip deflection using the pro-

posed controller is lower as compared with controller of (Mirzaee et al. 2010). The

natures of the proposed composite control technique and composite controller of

(Mirzaee et al. 2010) are shown in Fig. 22. It is noted from Fig. 22 that the required

control efforts using the proposed composite controller is comparatively less than

that of the controller of (Mirzaee et al. 2010) in link-2 and is comparatively same in

link-1. The comparison on the performances of the controller are given in Table 4.
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Fig. 20 Chaotic path tracking errors of the joint angles with nominal payload: a link-1 and b link-2

using the proposed composite controller and controller of (Mirzaee et al. 2010)
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Fig. 21 Responses of the tip deflections of both the links for chaotic path planning with nominal

payload using the proposed composite controller and controller of (Mirzaee et al. 2010)

The 2-norm and integral square error (ISE) are the two performance indices consid-

ered for comparison. It is seen from the Table 4 that the proposed control technique

required less control efforts and has less ISE in the case of links deflection. More-

over, from the results of Figs. 20, 21 and 22, we can say that the proposed composite

controller performs better than the controller of (Mirzaee et al. 2010) in terms of

steady state tracking error, tip deflection and control efforts.
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Fig. 22 Comparison of nature of composite control torques for the two-link flexible manipulator

during chaotic trajectory tracking with nominal payload

Table 4 Comparison on performances of controllers

Performances of controllers

Control techniques Proposed controller Controller in (Mirzaee

et al. 2010)

Performance Indices Link-1 Link-2 Link-1 Link-2

Control energy (‖u‖2) 98.0413 45.7030 176.6112 555.5637

ISE of tip deflections 0.058 0.0047 0.164 0.011

6 Conclusions

In this chapter, hidden chaotic trajectory tracking of a two-link flexible manipulator

is proposed. A chaotic system with hidden chaotic attractor is used for the genera-

tion of the desired signals. Since, the dynamics of a TLFM is very nonlinear and

complex, trajectory tracking of such a system is a challenging task. To meet the

challenge, the dynamics of the TLFM is decomposed into two subsystems consist-

ing of the slow and the fast subsystems. The slow subsystem consists of the rigid

dynamics of the manipulator and the fast subsystem consists of the flexible mode

dynamics of the manipulator. This is achieved by the singular perturbation method.

Then, a composite controller consisting of controller of both subsystems is designed.

The composite control technique consists of adaptive sliding mode control (A-SMC)

for slow subsystem and a backstepping controller for the fast subsystem. It is shown

using MATLAB simulation that the proposed composite controller works effectively.

The performances of the proposed composite controller are compared with the con-

troller available in (Mirzaee et al. 2010). The simulation results confirm that the

proposed composite controller has better performances than the controller given in
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(Mirzaee et al. 2010). The proposed controller has smaller steady state errors, quick

and smaller tip deflection and required lesser control efforts when compared with

the controller in (Mirzaee et al. 2010).
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5-D Hyperchaotic and Chaotic Systems
with Non-hyperbolic Equilibria and Many
Equilibria

Jay Prakash Singh and Binoy Krishna Roy

Abstract In the present decade, chaotic systems are used and appeared in many
fields like in information security, communication systems, economics, bioengi-
neering, mathematics, etc. Thus, developing of chaotic dynamical systems is most
interesting and desirable in comparison with dynamical systems with regular
behaviour. The chaotic systems are categorised into two groups. These are (i) sys-
tem with self-excited attractors and (ii) systems with hidden attractors.
A self-excited attractor is generated depending on the location of its unstable
equilibrium point and in such case, the basin of attraction touches the equilibria.
But, in the case of hidden attractors, the basin of attraction does not touch the
equilibria and also finding of such attractors is a difficult task. The systems with
(i) no equilibrium point and (ii) stable equilibrium points belong to the category of
hidden attractors. Recently chaotic systems with infinitely many equilibria/a line of
equilibria are also considered under the cattegory of hidden attractors. Higher
dimensional chaotic systems have more complexity and disorders compared with
lower dimensional chaotic systems. Recently, more attention is given to the
development of higher dimensional chaotic systems with hidden attractors. But, the
development of higher dimensional chaotic systems having both hidden attractors
and self-excited attractors is more demanding. This chapter reports three hyper-
chaotic and two chaotic, 5-D new systems having the nature of both the self-excited
and hidden attractors. The systems have non-hyperbolic equilibria, hence, belong to
the category of self-excited attractors. Also, the systems have many equilibria, and
hence, may be considered under the category of a chaotic system with hidden
attractors. A systematic procedure is used to develop the new systems from the
well-known 3-D Lorenz chaotic system. All the five systems exhibit multistability
with the change of initial conditions. Various theoretical and numerical tools like
phase portrait, Lyapunov spectrum, bifurcation diagram, Poincaré map, and fre-
quency spectrum are used to confirm the chaotic nature of the new systems.
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The MATLAB simulation results of the new systems are validated by designing
their circuits and realising the same.

Keywords Non-hyperbolic equilibria ⋅ Many equilibria ⋅ A line of equilibria
Hyperchaotic system ⋅ Chaotic system ⋅ 5-D chaotic system
5-D hyperchaotic system ⋅ Hidden attractors

1 Introduction

Recently, the development and applications of chaotic systems are seen in many
fields like in communication theory (Xiong et al. 2016), image processing
(Tlelo-Cuautle et al. 2015a, b), information theory (Esteban et al. 2016; Valtierra
et al. 2016), robotics (Lochan and Roy 2015, 2016; Lochan et al. 2016a, b, c;
Tlelo-Cuautle et al. 2014; Singh et al. 2017a, b; Andrievskii and Fradkov 2004),
etc. Based on the desired behaviours and responses, many hyperchaotic/chaotic
systems are reported in the last decade (Pham et al. 2014, 2016g; Vaidyanathan
et al. 2015). An equilibrium point plays an important role in the generation of the
desired behaviour and responses. Recently, many hyperchaotic/chaotic systems are
reported based on different nature of equilibrium points (Pham et al. 2016e, f, h,
2017a, b; Wang et al. 2017; Sharma et al. (2015)). Higher dimensional (4-D/5-D)
hyperchaotic/chaotic systems are more important from the application point of view
as compared with the lower dimensional systems (Pham et al. 2016b; Shen et al.
2014a, b). This is because of their more complex and disorder behaviour as com-
pared with the lower dimensional systems (Shen et al. 2014a, b). Thus, develop-
ment of higher dimensional (5-D) hyperchaotic/chaotic systems with unique and
interesting nature of equilibrium points is the motivational background of this work.

Many control techniques are proposed in the literature and used in the last
decade for the applications of hyperchaotic/chaotic systems. Some of these are
sliding mode control (SMC) (Singh and Roy 2015a), backstepping control (Yu
et al. 2012), feedback control (Pang and Liu 2011), nonlinear active control (Singh
et al. 2014a, 2017a, b), adaptive control (Effati et al. 2014), H∞ (Wang et al. 2013),
sampled data control (Lam and Li 2014), etc.

The reported hyperchaotic/chaotic systems can be classified into two major cat-
egories. These are: (i) hyperchaotic/chaotic systems with hidden attractors and
(ii) self-excited attractors hyperchaotic/chaotic systems (Leonov and Kuznetsov
2013; Leonov et al. 2011a, b, 2012, 2014; Singh and Roy 2017a; Singh and Roy
(2016a); Singh et al. (2015)). Some of the conventional chaotic systems like Lorenz
system (Lorenz 1963), Rössler (1976), Chen and Ueta (1999), Lü et al. (2002),
Bhalekar-Gejji systems (Singh et al. 2014a) and systems in Singh and Roy (2015a, b,
2016a, b), etc., are grouped under the category of self-excited attractors. The family
of the hyperchaotic/chaotic systems with hidden attractors is grouped with the
systems having (i) only stable equilibrium points (Kingni et al. 2014), (ii) no
equilibrium point (Lin et al. 2016; Singh and Roy 2017a) and (iii) an infinite number
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of equilibria (Jafari and Sprott 2013; Wang and Chen 2012). The chaotic systems
with an infinite/line/many equilibria belong to the category of hidden attractors
(Leonov et al. 2014, 2015; Pham et al. 2016a, b, c, d, e, f, g, h). In a hyperchaotic/
chaotic system with hidden attractors, the basin of attraction does not intersect with
small neighbourhoods of its equilibria (Leonov et al. 2011a, b, 2012). However, in a
chaotic system with infinitely many equilibria, the basin of attraction may intersect
the equilibrium surface in some sections. Since there are usually uncountable
sections/points on the surface of equilibria which are outside the basin of attraction
and from a computational point of view, these attractors of hyperchaotic/chaotic
systems with many equilibria also belong to the family of hidden attractors (Barati
et al. 2016; Pham et al. 2016a, b). Because the knowledge about the locations of
equilibria in such systems does not help in the generation of attractors.

Very less attention is given to the development of 5-D hyperchaotic/chaotic
systems (Kemih et al. 2013; Ojoniyi and Njah 2016; Vaidyanathan et al. 2014,
2015, 2016). Recently, many hyperchaotic/chaotic systems with an infinite number
of equilibria are reported. The systems with infinitely many equilibria are the
systems with a line of equilibria (Singh and Roy 2017b), plane of equilibria (Jafari
et al. 2016a), surface of equilibria (Jafari et al. 2016b), sphere of equilibria (Qi and
Chen 2015), square shaped equilibria (Qi and Chen 2015; Gotthans et al. 2016;
Pham et al. 2016a, b, c, d, e, f, g, h), etc. The reported systems with an infinite
number of equilibria are classified in Table 1.

It is seen from Table 1 that very few 5-D hyperchaotic/chaotic systems are
reported with infinitely many equilibria. Motivated by this finding, an attempt is
made in this chapter to construct five new 5-D hyperchaotic/chaotic systems with
infinitely many equilibria. Multistability in a hyperchaotic/chaotic system is defined
as the coexistence of various possible steady states/attractors of the system (Pis-
archik and Feudel 2014; Sharma et al. 2015; Kiseleva et al. 2017). The occurrence
of multistability is governed by the choice of initial conditions, hence, creates a
complicated basin of attraction (Pisarchik and Feudel 2014; Sharma et al. 2015).
Multistability is seen in several areas (Sharma et al. 2015), like in an electronic
circuit, a laser system, chaotic/hyperchaotic system, etc., (Chen et al. 2017;
Chudzik et al. 2011; Leonov and Kuznetsov 2013; Pisarchik and Feudel 2014;
Sharma et al. 2015).

Most of the reported chaotic systems have hyperbolic nature of equilibria. Very
few hyperchaotic/chaotic systems are reported with non-hyperbolic nature of
equilibria (Sprott 2015; Wei et al. 2015a, b; Yang et al. 2010; Li and Xiong 2017).
Higher dimensional hyperchaotic/chaotic systems with non-hyperbolic nature of
equilibria are rare in the literature. Thus, developing higher dimensional
hyperchaotic/chaotic systems with some fascinating attributes like non-hyperbolic
equilibria and multistability is also a worthy motivation of this chapter.

In this chapter, three new 5-D hyperchaotic and two chaotic systems are
reported. Out of these five systems, four of them have many equilibria and thus
qualify to be chaotic systems with hidden attractors. Again, all the five systems
exhibit non-hyperbolic equilibria and hence behave like a chaotic system with
self-attractors. Therefore, four new chaotic systems have both the self-attractor and
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hidden attractor. The three new systems have hyperbolic curve of equilibria and one
system has a line of equilibria. All the five new systems depict multistability. The
systems have various dynamical behaviours like hyperchaotic, chaotic, periodic,
quasi-periodic, etc. Various numerical tools are used to find the different dynamical
behaviour of the systems like phase portrait, Lyapunov spectrum, bifurcation dia-
gram, Poincaré map, frequency spectrum. Chaotic natures of the systems are val-
idated by circuit design and implementation. Circuit implementation results of the
two systems have good agreement with the MATLAB simulation results.

The rest part of the chapter is organised as follows. Section 2 describes the
development of the new systems. The findings of different dynamic behaviour of
the systems are shown in Sect. 3. Circuit design and implementations of the sys-
tems are discussed in Sect. 4. Section 5 presents the conclusions of the chapter.

Table 1 Categorisation of the reported chaotic and hyperchaotic systems with an infinite number
of equilibria

Sl.
no.

3-D/4-D
system

Nature of systems References of papers

1. 3-D chaotic
system

Line of equilibria Jafari and Sprott (2015, 2013), Kingni
et al. (2016a, b)

Many equilibria Wang and Chen (2012)
Circle of equilibria Gotthans and Petržela (2015), Gotthans

et al. (2016), Kingni et al. (2016a, b),
Pham et al. (2016d, f)

Surface of equilibria Jafari et al. (2016b)
Curve of equilibria Barati et al. (2016), Pham et al. (2016c)
Square shaped equilibria Gotthans et al. (2016), Pham et al.

(2016b, d, f)
Ellipse shaped equilibria Pham et al. (2016d)
Sphere of equilibria Qi and Chen (2015)

2. 4-D chaotic
system

Plane of equilibria Jafari et al. (2016a, b)
Line of equilibria Singh and Roy (2017b), Pham et al.

(2016c)
3. 4-D

hyperchaotic
system

Line of equilibria Li et al. (2014a, b), Zhou and Yang
(2014)

Curve of equilibria Chen and Yang (2015)
4. 4-D memristive

hyperchaotic
system

Line of equilibria Li et al. (2014a, b), Ma et al. (2015)

5. 5-D
hyperchaotic/
chaotic system

Line of equilibria Vaidyanathan (2016)
Line of equilibria with
coexistence of attractors

This work

Hyperbolic curve of
equilibria with
coexistence of attractors

This work
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2 Development of the Systems with Non-hyperbolic
Equilibria and a Line of Equilibria

The dynamics of the 3-D Lorenz chaotic system with linear control inputs is
described as (Lorenz 1963):

x1̇ = a x2 − x1ð Þ+ u1
x2̇ = rx1 − x2 − x1x3 + u2
x3̇ = x1x2 + cx3 + u3

8
<

:
ð1Þ

Table 2 Three hyperchaotic and two chaotic systems with non-hyperbolic and many equilibria

Case System dynamics LEs and nature DKY Initial conditions

NHE1 ẋ1 = a x3 − x1ð Þ
ẋ2 = b− x1x3 + x4
ẋ3 = x1x2 + x5
ẋ4 = cx3
ẋ5 = − cx2x3
a=10, b=45, c=0.0183

LE=
0.1632,
0.0124,

0,
− 0.0069,
− 11.6351

0

BBBB@

1

CCCCA

and hyperchaotic

4.014 x 0ð Þ=
0.001,
0.002,
0.003,
0.001,
0.001

0

BBBB@

1

CCCCA

T

NHE2 ẋ1 = a x3 − x1ð Þ
ẋ2 = b− x1x3 + x4
ẋ3 = x1x2 + x5
ẋ4 = cx3
ẋ5 = − cx2x5
a=10, b=45, c=0.0105

LE=
0.9470,
0.0011,

0,
− 0.0129,
− 10.9316

0

BBBB@

1

CCCCA

and hyperchaotic

4.085 x 0ð Þ=
0.001,
0.002,
0.003,
0.001,
0.001

0

BBBB@

1

CCCCA

T

NHE3 ẋ1 = a x3 − x1ð Þ
ẋ2 = b− x1x3 + x4
ẋ3 = x1x2 + x5
ẋ4 = − cx2
ẋ5 = − cx2x3
a=10, b=45, c=0.0198

LE=
2.0149,
0.0120,

0,
− 0.0012,
− 12.0229

0

BBBB@

1

CCCCA

and hyperchaotic

4.168 x 0ð Þ=
0.001,
0.002,
0.003,
0.001,
0.001

0

BBBB@

1

CCCCA

T

NHE4 ẋ1 = a x3 − x1ð Þ
ẋ2 = b− x1x3 + x4
ẋ3 = x1x2 + x5
ẋ4 = − cx2
ẋ5 = − dx3x5
a=10, b=45, c=0.01, d=0.001

LE=
1.0288,
0.0,

− 0.0004,
− 0.0007,
− 11.0212

0

BBBB@

1

CCCCA

and chaotic

4.093 x 0ð Þ=
0.001,
0.002,
0.003,
0.001,
0.001

0

BBBB@

1

CCCCA

T

NHE5 ẋ1 = a x3 − x1ð Þ
ẋ2 = b− x1x3 + x4
ẋ3 = x1x2 + x5
ẋ4 = − cx2
ẋ5 = − cx1x2
a=10, b=45, c=0.001

LE=
1.0513,
0.0,
0.0,
0.0,

− 11.0461

0

BBBB@

1

CCCCA

and chaotic

4.095 x 0ð Þ=
0.001,
0.002,
0.003,
0.001,
0.001

0

BBBB@

1

CCCCA

T

5-D Hyperchaotic and Chaotic Systems with Non-hyperbolic … 469



where a, r, c are the parameters, x1, x2, x3 are the state variables and u1, u2, u3 are the
control inputs. Selecting control inputs u1, u2, u3 as in the form of (2) (Yuhua et al.
2010), we get (3).

u1 = a x3 − x2ð Þ
u2 = b− rx1 + x2
u3 = − cx3

8
<

:
ð2Þ

Using (2), the dynamics of the Lorenz system can be written as in (3).

Table 3 Stability analysis of equilibrium points of the systems

System Equilibrium points Shape of equilibria Eigenvalues Nature

NHE1 E1= 0, 0, 0, − 45, 0ð Þ Constant λ= − 10, 0, 0, 0, 0ð Þ Non-hyperbolic

E2= 0, x2, 0, − 45, 0ð Þ Line of equilibria The system has non-hyperbolic, stable focus
and saddle nature of eigenvalues for different
values of state variables x2

NHE2 E1= 0, 0, 0, − 45, 0ð Þ Constant λ= ð0.2653, ±0.2653i,
− 0.2653, − 10Þ

Non-hyperbolic

NHE3 E1= 0, 0, 0, − 45, 0ð Þ Constant λ= − 10, 0, 0, ±0.1407ið Þ Non-hyperbolic

E2= x1, 0, x1, x21 − 45, 0
� �

Hyperbolic curve
of equilibria

The system has non-hyperbolic and saddle
nature of eigenvalues for different values of
state variables x1

NHE4 E1= 0, 0, 0, − 45, 0ð Þ Constant λ= − 10, 0, 0, ±0.10ið Þ
E2= x1, 0, x1, x21 − 45, 0

� �
Hyperbolic curve
of equilibria

The system has non-hyperbolic and saddle
nature of eigenvalues for different values of
state variables x1

NHE5 E1= 0, 0, 0, − 45, 0ð Þ Constant λ= − 10, 0, 0, ±0.0316ið Þ
E2= x1, 0, x1, x21 − 45, 0

� �
Hyperbolic curve
of equilibria

The system has non-hyperbolic and saddle
nature of eigenvalues for different values of
state variables x1

Fig. 1 Hyperchaotic attractors of the NHE1 system with a=10, b=45, c=0.0183
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x1̇ = a x3 − x1ð Þ
x2̇ = b− x1x3
x3̇ = x1x2

8
<

:
ð3Þ

System (3) is chaotic with a=10, b=45 (Yuhua et al. 2010).
Using the above system (3), this chapter presents five new 5-D self-attractor/

hidden attractor hyperchaotic/chaotic systems with non-hyperbolic and many
equilibria. A known and widely used systematic search procedure is used to
develop the systems as used in the paper (Munmuangsaen et al. 2011; Pham et al.
2016f; Sprott 1993, 2000, 2010). The procedure considers various combinations of
states to generate hyperchaotic/chaotic systems with largest Lyapunov exponents at
least greater than 0.9. The general expression of the new 5-D hyperchaotic or
chaotic systems is considered as:

Fig. 2 Hyperchaotic attractors of the NHE2 system with a=10, b=45, c=0.0105

Fig. 3 Hyperchaotic attractors of the NHE3 system with a=10, b=45, c=0.0198

5-D Hyperchaotic and Chaotic Systems with Non-hyperbolic … 471



x1̇ = a x3 − x1ð Þ
x2̇ = b− x1x3 + x4
x3̇ = x1x2 + x5
x4̇ = f1 x1, x2, x3ð Þ
x5̇ = f2 x1, x2, x3, x4, x5ð Þ

8
>>>><

>>>>:

ð4Þ

where f1 x1, x2, x3ð Þ and f2 x1, x2, x3, x4, x5ð Þ are linear and nonlinear functions,
respectively. Different choices of f1 x1, x2, x3ð Þ and f2 x1, x2, x3, x4, x5ð Þ lead to sys-
tems with various type of equilibria.
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Fig. 4 Chaotic attractors of the NHE4 system with a=10, b=45, c=0.01, d=0.001

Fig. 5 Chaotic attractors of the NHE5 system with a=10, b=45, c=0.001
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With suitable choices of f1 x1, x2, x3ð Þ and f2 x1, x2, x3, x4, x5ð Þ, five different types
of hyperchaotic or chaotic systems are developed. There are named as NHE1 to
NHE5 and the details are shown in Table 2. The first three systems (NHE1 to
NHE3) have hyperchaotic behaviour and the rest two systems (NHE4 and NHE5)
have chaotic behaviour. Table 2 describes the dynamics of the systems, Lyapunov
exponents (LEs), nature of the systems, Lyapunov dimension/Kaplan-Yorke
dimension (DKY ) and initial conditions used for simulation of these systems.

Stability analysis of the equilibrium points of the systems given in Table 2 is
discussed in Table 3. It is seen from Table 3 that all the systems have
non-hyperbolic nature of equilibria. All the systems have many equilibria except the
system NHE2.

3 Numerical Findings of the Proposed Systems Given
in Table 2

This section discusses various numerical tools like time series plot, phase portrait,
Lyapunov spectrum, bifurcation diagram, frequency spectrum, Poincaré maps used
for finding different dynamical behaviour of the new systems given in Table 2.
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Fig. 6 Chaotic signals of the NHE1 system with a=10, b=45, c=0.0183
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3.1 Time Series and Phase Portrait

Chaotic behaviour of the systems given in Table 2 is confirmed by plotting their
time responses and phase portraits. Figures 1, 2, 3, 4 and 5 show the hyperchaotic
and chaotic attractors of the new systems. The irregular shape of the phase portraits
of the systems in Figs. 1, 2, 3, 4 and 5 depicts their chaotic behaviours. Time
responses of the systems NHE1 and NHE3 are shown in Figs. 6 and 7, respectively.
Aperiodic nature of the responses confirms the chaotic behaviour of the systems
(Singh and Roy 2015a, b, 2016a, b, 2017a, b, c; Singh et al. 2017a, b). All the time
responses and phase portraits of the systems are generated using the fixed initial
conditions and value of the parameters which are given in Table 2.

3.2 Lyapunov Spectrum and Bifurcation Diagram

Different dynamical behaviour of the systems given in Table 2 are calculated using
Lyapunov spectrum and bifurcation diagram. Lyapunov spectrums of all the sys-
tems are calculated by finding Lyapunov exponents using Wolf algorithm (Wolf
et al. 1985) with the observation time T =20000, step size Δt=0.01 and fixed
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Fig. 7 Chaotic signals of the NHE3 system with a=10, b=45, c=0.0198
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initial conditions x 0ð Þ= 0.001, 0.002, 0.003, 0.001, 0.001ð ÞT . In MATLAB, the time
variable is selected as T =0:Δt: 1000, where Δt is the step size and 1000 is the
total observation time. It may be noted that T does not reflect the actual time of
calculation. Lyapunov spectrum and bifurcation diagram of the systems are shown
with the variation of one parameter and keeping other fixed. Here, Lyapunov
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Fig. 18 Lyapunov spectrum of the NHE3 system with a=10, b=45 and c∈ 0.0001, 0.02½ �

Fig. 19 Bifurcation diagram of the NHE3 system with a=10, b=45 and c∈ 0.0001, 0.02½ �
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spectrums and bifurcation diagrams of systems NHE1 and NHE3 are only shown.
These figures for the other systems can also be calculated in a similar manner and
are not shown here to avoid the repetition. However, Lyapunov exponents of
systems NHE2, NHE4 and NHE5 are given in Table 2.

Lyapunov spectrum and bifurcation diagram of the NHE1 system with the
variation of one parameter, out of a, b or c, and keeping the rest two fixed are
shown in Figs. 8, 9, 10, 11, 12 and 13. Similarly, Lyapunov spectrum and bifur-
cation diagram of the NHE3 system are shown in Figs. 14, 15, 16, 17, 18 and 19. It
is observed from Figs. 8, 10, 12, 14, 16 and 18 that NHE1 and NHE3 systems,
respectively, have different dynamical behaviours like hyperchaotic, chaotic, peri-
odic and quasi-periodic. It is also observed from Figs. 9, 11, 13, 15, 17 and 19 that
NHE1 and NHE3 systems, respectively, have various dynamical behaviours like
chaotic and periodic.

Periodic nature of the NHE1 system with a=1.1, b=45, c=0.0183 and
a=4.25, b=45, c=0.0183 is shown in Figs. 20 and 21, respectively. Periodic
nature of the NHE3 system with a=1.1, b=45, c=0.0198 is shown in Fig. 22. The
NHE2 system shows transient chaotic behaviour with trajectory going to infinity for
smaller values of parameter b. The transient chaotic behaviour of the NHE2 system
with a=10, b=10, c=0.0105 is shown in Fig. 23. It is apparent from Fig. 23 that

-10 -5 0 5 10
x1

-20

0

20

x 3

-10 -5 0 5 10
x1

-20

0

20

x 2

-20 0 20
x3

-1

0

1

2

x 5

-0.1 0 0.1 0.2
x1

-1

0

1

2

x 2

a = 1.1

(a) (b)

(c) (d)

Fig. 20 Periodic attractors of the NHE1 system with a=1.1, b=45, c=0.0183 and
x 0ð Þ= 0.001, 0.002, 0.003, 0.001, 0.001ð ÞT
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the NHE2 system has chaotic behaviour approximately for t<1500 and trajectory
going to infinity at t>1600 approximately.

3.3 Coexistences of Attractors

All the proposed systems show multistability (i.e. coexistences of attractors) with
the change of initial conditions. Coexistence of chaotic attractors of NHE1, NHE2
and NHE3 systems are shown in Figs. 24, 26 and 27, respectively. Coexistences of
the quasi-periodic behaviour of the NHE2 system is shown in Fig. 25. Other two
systems, i.e. NHE4 and NHE5 also show the coexistences of attractors with the
changes of initial conditions. Their results are not shown here to avoid the
repetition.

3.4 Frequency Spectrum and Poincaré Maps

Frequency spectra of x2 tð Þ and x3 tð Þ signals of NHE1 and NHE3 systems are shown
in Fig. 28 and Fig. 29, respectively. Aperiodic continuous natures of the spectra
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Fig. 21 Periodic attractors of the NHE1 system with a=4.25, b=45, c=0.0183 and
x 0ð Þ= 0.001, 0.002, 0.003, 0.001, 0.001ð ÞT
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(Figs. 28 and 29) indicate the chaotic behaviour of the systems. Poincaré maps
across different section of planes of NHE1 and NHE3 systems are shown in Fig. 30
and Fig. 31, respectively. Random locations of dots in the maps indicate the chaotic
behaviour of the systems (Singh and Roy 2015a, b, 2016a, b, 2017a, b, c; Singh
et al. 2017a, b). Frequency spectra and Poincaré maps of other systems can also be
shown in a similar way but avoided here.

4 Circuit Implementation

This section describes the circuit design and realisation of NHE1 and NHE3 sys-
tems. Circuit realisations of other systems can also be done in a similar manner and
are not shown here to avoid repetition.

Circuit realisation of a chaotic system represents its practical applicability
(Trejo-Guerra et al. 2011, 2012; Nunez et al. 2015; Valtierra et al. 2015;
Tlelo-Cuautle et al. 2016a). Circuit realisation of various chaotic/hyperchaotic
systems are achieved by FPGA tool (Tlelo-Cuautle et al. 2015a, b, 2016b; Esteban
et al. 2016), Cadence OrCAD (Trejo-Guerra et al. 2011) and NI Multisim
(Ruo-Xun and Shi-ping 2010; Lao et al. 2014; Xiong et al. 2016) software. In this
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Fig. 22 Periodic attractors of the NHE3 system with a=1.1, b=45, c=0.0198 and
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Fig. 23 Transient chaotic behaviour of the system NHE2 with a=10, b=10, c=0.0105 and
x 0ð Þ= 0.001, 0.002, 0.003, 0.001, 0.001ð ÞT
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Fig. 24 Coexistences of chaotic attractors of the NHE1 system with a=10, b=100, c=0.0183
and x 0ð Þ= ±0.001, ±0.002, ±0.003, ±0.001, ±0.001ð ÞT
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chapter, the circuit realisation of NHE1 and NHE3 systems are achieved using NI
Multisim v12 software. Chaotic attractors of the NHE1 system obtained using the
circuit implementation are shown in Figs. 32 and 33. The circuit designed for the
implementation of the NHE1 system is shown in Fig. 34. The circuit which is
shown in Fig. 34 has five integrators (U9A, U1A, U3A, U5A, and U7A) and use to
realise the five states of the NHE1 system. The circuit consists of capacitors

Fig. 25 Coexistences of the quasi-periodic behaviour of the NHE2 system with
a=10, b=25, c=0.0105 and x 0ð Þ= ±0.001, ±0.002, ±0.003, ±0.001, ±0.001ð ÞT
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Fig. 26 Coexistences of chaotic attractors of NHE2 system with a=10, b=35, c=0.0105 and
x 0ð Þ= ±0.001, ±0.002, ±0.003, ±0.001, ±0.001ð ÞT
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(C1, C2, C3, C4, C5), resistances (R1,…, R19), Op-Amp (LF353D) and multi-
pliers (AD633). The circuit equations of the NHE1 system can be written by using
Kirchhoff’s laws as:

Fig. 27 Coexistences of chaotic attractors of NHE3 system with a=100, b=45, c=0.0198,
x 0ð Þ= ±0.001, ±0.002, ±0.003, ±0.001, ±0.001ð ÞT (blue, brown) and x 0ð Þ= 0.001, 0.002,ð
0.003, − 0.001, − 0.001ÞT (red)
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Fig. 28 The frequency spectrum of the NHE1 system with a=10, b=45 and c=0.0183
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Fig. 29 The frequency spectrum of the NHE3 system with a=10, b=45 and c=0.0198
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where the variables x1, x2, x3, x4 and x5 are the outcome of U9A, U1A, U3A, U5A
and U7A, respectively. The system in (5) is equivalent to the NHE1 system with
τ= t ̸RC, R1=R2= bR=40 kΩ, R6=R11= 40 kΩ, R5=R10= 400 kΩ,R7= bR=
8.88 kΩ, R14= cR=21857.92 kΩ, R17= 0.1Rc=2185.79 kΩ, C1=C2=C3=
C4=C5= 10 nF, a=10, b=45, c=0.0183.

The circuit designed for implementation of the NHE3 system is shown in
Fig. 35. The circuit in Fig. 35 consists of five integrators (U9A, U1A, U3A, U5A
and U7A) which are used to realise the five states of the NHE3 system. The circuit
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Fig. 31 Poincaré maps of the NHE3 system with a=10, b=45 and c=0.0198 for: x1 = 0 in (a),
(b) and x2 = 0 in (c), (d)

Fig. 32 Chaotic attractors of the NHE1 system obtained using circuit implementation with
a=10, b=45 and c=0.0183
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consists of capacitors (C1, C2, C3, C4, C5), resistors (R1,…, R19), Op-Amp
(LF353D) and multipliers (AD633). The circuit equations of the NHE3 system can
be written as:
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where the variables x1, x2, x3, x4 and x5 are the outcome of U9A, U1A, U3A U5A
and U7A, respectively. The system in (6) is equivalent to the NHE3 system with
τ= t ̸RC, R1=R2= bR=40 kΩ, R6=R11= 40 kΩ, R5=R10= 400 kΩ,R7=
bR=8.88 kΩ, R14= cR=20202.02 kΩ, R17= 0.1R c=2020.20 kΩ, C1=C2=
C3=C4=C5= 10 nF, a=10, b=45, c=0.0198. The chaotic attractors of the
NHE3 system are shown in Figs. 36 and 37.

It is apparent from Figs. 31, 33, 36 and 37 that the attractors of NHE1 and NHE3
systems obtained using circuit implementation match with the MATLAB simula-
tion results. It is visible from Figs. 32 and 33 that the ranges of state variables are
different from the MATLAB simulation results. This is because of difference in
time constants considered. Relation between the time constant of system for
MATLAB simulation and time used for circuit implementation is
τ= t

RC ,where R=400 kΩ,C=10 nF.

Fig. 33 Chaotic attractors of the NHE1 system obtained using circuit implementation with
a=10, b=45 and c=0.0183
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Fig. 34 Designed circuit of the system NHE1
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Fig. 35 Designed circuit of the NHE3 system
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5 Conclusions

In this chapter, three new 5-D hyperchaotic systems and two new 5-D chaotic
systems with the nature of self-excited attractors are reported. Four of these systems
may behave as hidden chaotic attractors. Such chaotic systems having both the
self-excited and hidden attractors are rare in the literature. All the five systems have
non-hyperbolic equilibria and hence belong to the category of self-excited attrac-
tors. NHE1, NHE3, NHE4 and NHE5 systems have many equilibria along with
non-hyperbolic nature of equilibria. Hence, these four systems may be considered
under the category of both self-excited and hidden attractors chaotic systems. The
new systems are developed from the well-known 3-D Lorenz chaotic system with
some transformation. All the five systems exhibit multistability. Various numerical
tools like phase portrait, Lyapunov spectrum, bifurcation diagram, Poincaré map,
and frequency spectrum are used to find different dynamic behaviour of the new
systems. These behaviours confirm the chaotic nature of the proposed systems. The

Fig. 36 Chaotic attractors of the NHE3 system obtained using circuit implementation with
a=10, b=45 and c=0.0198

Fig. 37 Chaotic attractors of the NHE3 system obtained using circuit implementation with
a=10, b=45 and c=0.0198
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results obtained using MATLAB simulations are validated by using circuit reali-
sation. The proposed 5-D systems can have better application in the field of secure
communications.
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