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Abstract

Successful dental implant placement for resto-
ration of edentulous ridges depends on the 
quality and quantity of alveolar bone available 
in all spatial dimensions. There are several 
surgical grafting techniques used in combina-
tion with natural or synthetic materials to 
achieve alveolar ridge augmentation. The 
commonly available bone tissue replacement 
materials include autografts, allografts, xeno-
grafts, and alloplasts. Polymers (natural and 
synthetic) are widely used as barrier mem-
brane materials in guided tissue regeneration 
(GTR) and guided bone regeneration (GBR) 
applications. However, there is no single ideal 
technique or graft material to choose in clini-
cal practice currently. Treatment protocols and 
materials that involve less invasive and more 
reproducible vertical and horizontal bone aug-

mentation procedures are actively sought. 
This chapter focuses on existing surgical tech-
niques, natural tissues, and synthetic biomate-
rials commonly used for bone grafting in order 
to successfully restore edentulous ridges with 
implant-supported prostheses.

9.1  Preamble

Patients who become edentulous late in their lives 
provide unique challenges to clinicians who are 
to treat them and restore their dentition. These 
elderly patients have great difficulty in getting 
used to complete dentures, and when provided 
with the option, they seem to be more reluctant 
in accepting dental implants [1]. Even when such 
patients agree to getting dental implants placed, 
there are several anatomical and surgical limita-
tions encountered. How successful dental implants 
ultimately are crucially depends upon the degree 
of osseointegration in sufficient and healthy bone 
[2, 3]. Dental implant osseointegration is depen-
dent on a wound-healing response that could be 
less successful in older than in younger patients 
[4, 5]. Bone volume and quality are almost always 
reduced due to extended time after teeth are lost 
before implant placement [6, 7]. An average alve-
olar bone loss of 1.5–2 mm (vertical) and 40–50% 
(horizontal) occurs within 6 months after teeth 
are lost [8]. If the dentition is not restored and left 
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untreated, then bone loss occurs continuously, and 
in the first 3 years, up to 60% of alveolar ridge vol-
ume is lost [9, 10]. This lack of sufficient bone vol-
ume, height, and quality poses extreme challenges 
to the final treatment outcome (Fig. 9.1) [11, 12]. 
A variety of bone grafting surgical techniques with 
and without the use of biomaterials have been 
explored to try successfully place dental implants 
in resorbed alveolar bone [13, 14]. Multiple bone 
grafting techniques and natural and synthetic graft 
materials have been tested for this purpose [14, 
15], and this chapter discusses the various bone 
grafting techniques currently available to achieve 
alveolar ridge augmentation for allowing success-
ful placement of dental implants.

9.2  Principles of Bone 
Regeneration and Various 
Grafting Techniques

Bone grafting procedures for alveolar ridge aug-
mentation are based on biological principles of 
bone tissue regeneration. The osteoblasts (bone- 
forming cells) and osteoclasts (bone-resorbing 
cells) are the two basic cellular units that play a 
role in bone tissue formation and remodeling. 
The osteoblasts are derived from the mesenchy-
mal stem cells (bone marrow stromal stem cells), 
while osteoclasts are derived from the hemato-
poietic progenitors of monocytic lineage [16]. 

The key factors involved in differentiation of 
osteoblasts are estrogen, parathyroid hormone, 
vitamin D3, fibroblast growth factors (FGFs), 
and transforming growth factor-beta (TGF-β) 
[17–19]. Whereas, osteoclast differentiation 
depends on the activation of colony-stimulating 
factor-1 receptor/macrophage colony-stimulating 
factor/CD115 (MCSF, a colony-stimulating fac-
tor receptor) and receptor activator of nuclear 
factor kappa-B (RANK) receptors [20], osteo-
blasts regulate osteoclast differentiation and acti-
vation of RANK ligand (RANKL) and its 
high-affinity decoy receptor, osteoprotegerin. 
Therefore, osteoblasts are essential to osteoclast 
differentiation by regulating the balance between 
RANKL and osteoprotegerin [21].

The presence and/or recruitment of osteoblast 
precursors and growth factors at sites of augmen-
tation are essential for bone regeneration to occur. 
Some graft materials (cancellous autogenous 
grafts) and the recipient bed can provide the 
osteoblast precursors required [22], whereas the 
growth factors come from the vasculature and 
recipient bed. Active bone resorption and forma-
tion throughout the graft dominate the early 
phase of bone regeneration at grafted sites [23]. 
The latter phase is mainly known to be character-
ized by the osteoconductive processes [24]. 
Osteoconduction is a function of a bone graft 
substrate providing a three-dimensional (3D) 
scaffold area promoting ingrowth of host capil-

Optimal Class I Class II Class III

Fig. 9.1 Alveolar bone insufficiency for dental implant 
placement. When there is adequate alveolar ridge height 
and width, this allows for successful dental implant place-
ment with optimal clinical results. In class I ridge defects, 
there is horizontal bone loss with adequate height leading 
to insufficient bone volume for successful regular diame-

ter implant placement. In class II there is vertical bone 
loss with adequate width, leading to insufficient bone vol-
ume for proper placement of regular length implants. In 
class III there is bone loss in both vertical and horizontal 
dimensions not allowing placement implants in all spatial 
dimensions
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laries and osteoprogenitor cells [25]. Biomaterials 
that imitate natural bone chemistry and structure 
closely are considered ideal for cellular osteo-
genic differentiation. Graft macroporosity and 
pore interconnection have a major impact on 
osteoinduction potential as higher levels of 
porosity, appropriate pore shape, and sufficient 
interconnectivity are essential for ingrowth of 
blood vessels and bone matrix deposition [26].

During the initial first few weeks, new bone is 
synthesized by mature osteoblasts that are differ-
entiated from osteoblast precursors under the 
influence of osteoinductors. The growth factors 
involved in formation of new bone act directly on 
osteoblast and fibroblast proliferation, mesen-
chymal cell differentiation, extracellular matrix 
deposition, and vascular proliferation [27].

Early stages of induction are influenced by the 
fibroblast growth factor (FGF) and platelet- 
derived growth factor (PDGF) by stimulating 
fibroblast and osteoblast proliferation. Bone mor-
phogenetic proteins (BMPs) affect later stages of 
osteoinduction such as  vascular proliferation and 
mesenchymal cell  differentiation, whereas trans-
forming growth factor-beta (TGF-β) does not 
affect mesenchymal cell differentiation but acts 
on cellular  proliferation, matrix deposition, and 
vascularization [14]. The various bone grafting 
techniques employed for alveolar ridge augmen-
tation are discussed in subsequent sections.

9.2.1  Distraction Osteogenesis

Distraction osteogenesis (DO) is used to achieve 
alveolar bone volume gain in all dimensions. In 
DO new bone is formed by mechanical elongation 
of bone callus through progressive separation of 
two bone fragments surrounding the callus under 
tension [28]. This is achieved in three phases: (1) 
the latency phase, in which soft tissues heal after 
the distractor is placed surgically (this phase usu-
ally lasts about 7 days); (2) the distraction phase, 
in which the bone fragments are separated at a 
rate of 0.5–1 mm/day incrementally; and (3) the 
consolidation phase, where the bone formed gets 
mineralized and matured [29, 30]. Devices used 
for DO can be intraosseous or extraosseous [31]. 

However, devices with extraosseous distraction 
configuration affixed to the cortical plate are more 
frequently used than intraosseous devices [32, 
33]. There is sufficient literature reporting the 
potential of DO to achieve alveolar ridge augmen-
tation as this technique can result in significantly 
greater and stable bone height gain compared to 
other vertical augmentation techniques [34, 35]. 
High rate of complications is associated with DO 
[36, 37] with vector control being the major prob-
lem which often leads to lingual inclination of the 
transport segment in the mandible [38]. Although 
DO allows for greater alveolar bone regeneration 
from native bone, the sensitivity of the technique 
and strict anatomical requirements have limited 
its use in clinical practice.

9.2.2  Osteoperiosteal Flap 
Techniques

Vascularized segmental osteotomy performed on 
alveolar bone is used to accomplish the osteo-
periosteal flap (OPF) technique which is based 
on the biologic principles of vascularization stud-
ies and understanding of Le Fort I management 
techniques [39]. The major blood supply of the 
alveolar bone is from the bone marrow and peri-
osteum. In geriatric patients with the atrophy of 
the ridge, there is decreased bone marrow blood 
flow. In OPF technique, vascularization in bone 
fragments via the periosteum. Osteoperiosteal 
flaps through segmental osteotomies are used in 
combination with interpositional grafts in the 
gap generated by transposition of the flap in the 
desired position to achieve vertical ridge gain 
[14]. OPF combined with interpositional grafts 
via the osteotomy-based techniques are being 
used commonly for treating alveolar ridges 
with height deficiencies and allow for preserva-
tion of the attached gingiva and the papillae 
[40, 41].

9.2.3  Block Grafting Techniques

Onlay bone grafting with bone blocks was first 
introduced in the early 1990s and was used to 
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try augmenting maxillary and mandibular 
edentulous ridges [42]. In the classic block 
grafting technique, autologous bone blocks are 
immobilized to the recipient alveolar ridge by 
securing with osteosynthesis screws [43, 44]. 
Autologous bone grafting has been used for the 
treatment of severely resorbed edentulous 
mandible and maxilla [45, 46]. The mandibular 
ramus or mental region (intraoral) and the iliac 
crest (extraoral) are the most commonly used 
autologous donor sites for block grafting [47, 
48]. Autogenous bone procured from the iliac 
crest has been used to gain ridge height, but 
high resorption rate before implant placement 
and after loading is observed [49]. This is pos-
sibly due to the low cortical-to-trabecular ratio 
in the graft material, endochondral versus 
intramembranous ossification memory, and 
differing osteoblast mechanosensing memory 
between the donor and recipient sites [14]. 
Other extraoral donor sites for obtaining block 
grafts include the tibia, ribs, and cranial vault 
but are not commonly used due to the high 
donor site morbidity associated with them 
[50, 51].

The mandibular ramus and the symphysis are 
the common sites for harvesting intraoral block 
grafts [52]. Although the symphysis gives greater 
bone volume, the morbidity is significantly 
higher when compared to the ramus grafts which 
include postoperative pain, neurosensory distur-
bances in the chin region, temporary mental 
nerve paresthesia, altered sensation in mandibu-
lar anterior teeth, and risk of mandibular fracture 
[53, 54]. Hence, the symphysis is used for cases 
that require thicker block grafts that otherwise 
are not possible to obtain from other intraoral 
donor sites. Close contact and stabilization of 
block grafts to the recipient bed are crucial and 
achieved by using osteosynthesis screws [55–57]. 
Revascularization and remodeling of bone can 
also be stimulated via inlay shaping and decorti-
cation of the recipient bed [58]. Ridge augmenta-
tion with allograft onlay blocks has demonstrated 
reasonable success [59], and the use of barrier 
membranes in combination with block grafts has 
been shown to improve clinical outcome 
[60–62].

9.2.4  Guided Bone Regeneration 
(GBR)

Guided bone regeneration (GBR) works on the 
principle of separation of particulate grafts from 
the surrounding tissues allowing for bone to 
regenerate, which naturally occurs at a rate 
slower than that of soft tissues [63, 64]. Since the 
major problem with particulate graft techniques 
is the high graft resorption rate and the anatomi-
cal limitations for graft containment [65], barrier 
membranes are commonly used in GBR tech-
nique to stabilize graft materials, to limit their 
resorption, and to serve as a separating barrier 
[64]. Local anatomy and type of bone graft tis-
sues and materials used determine the choice of a 
specific membrane used for GBR. However, in 
some specific cases, barrier membranes are not 
used as the graft material can be used alone to fill 
the defect area [66].

Initially, the principles of GBR were applied 
to atrophic alveolar ridges for implant site devel-
opment [67]. GBR has since been used to treat a 
variety of intraoral bone defect sites and is a rou-
tine technique employed in clinical practice [68]. 
GBR for alveolar ridge augmentation in the verti-
cal direction is extremely technique sensitive, 
which limits the clinical success, and failure usu-
ally occurs due to wound dehiscence [69]. 
Another limitation of vertical GBR is the ability 
for bone generation along the long axis of applied 
force [14]. Barrier membranes combined with 
particulate and/or block grafts have resulted in 
more predictable clinical outcomes [70]. It has 
been demonstrated that there is less resorption of 
block grafts when used in combination with 
expanded polytetrafluoroethylene (ePTFE) bar-
rier membranes [71].

Barrier membranes used alone for GBR are 
associated with membrane compression into the 
defect space by overlying soft tissues [72]. To 
overcome this problem, membranes made from 
still materials such as titanium or metal- 
reinforced expanded polytetrafluoroethylene 
(ePTFE) have been developed [73]. Treatment of 
complex vertical defects requires stable and stiff 
titanium or metal-reinforced PTFE membranes 
[65]. A problem associated with use of titanium 
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membranes in GBR is the fibrous ingrowth and 
exposure of the membrane [74]. GBR therapy by 
using titanium- reinforced non-resorbable mem-
branes in combination with dental implants has 
been carried out with varying levels of clinical 
success [74].

9.2.5  Minimally Invasive 
Approaches to GBR

Minimally invasive approach to perform GBR is 
preferred to prevent or reduce postoperative com-
plications and graft exposure [75]. Kent et al. in 
the late 1970s developed a subperiosteal tunnel-
ing technique which involved a relatively small 
surgical incision in the alveolar ridge to elevate 
the periosteum and inject a low viscosity 
hydroxyapatite particle paste [76]. It has been 
observed that the hydroxyapatite particles are 
usually unstable and diffuse adjacently into tis-
sues causing fibrous capsule formation which 
inhibits bone formation [77]. However, mini-
mally invasive tunneling along with screw and/or 
barrier membrane-mediated graft stabilization 
can result in relatively predictable alveolar bone 

augmentation in vertical direction [76, 78]. 
Calcium phosphates such as injectable brushite 
cement pastes with controlled viscosity have 
been investigated for minimally invasive aug-
mentation procedures [79]. Novel graft biomate-
rials with improved viscosity offer potential for 
this technique, but results are controversial with 
insufficient data (Fig. 9.2).

9.3  Natural Tissues 
and Synthetic Biomaterials 
Used for Bone Grafting

There are various graft options available and used 
for alveolar bone grafting and divided into natu-
ral transplants (autografts, allografts, and xeno-
grafts) and synthetic materials (alloplasts) 
(Table 9.1) [14]. These graft materials are used 
because they are either osteogenic, osteoinduc-
tive, or osteoconductive [80]. Most grafts undergo 
macrophage- or osteoclast-mediated resorption 
before bone deposition by osteoblasts [23, 81]. 
As discussed before, bone deposition is expe-
dited by osteoinductive ability and adequate 
blood flow throughout the graft, providing the 

Fig. 9.2 Conventional methods of horizontal bone aug-
mentation. Long-term edentulism can result in disuse 
bone atrophy resulting in residual ridge resorption of the 
alveolus. Areas with inadequate buccal-lingual represent a 
significant treatment challenge and often require horizon-
tal bone augmentation either prior to or during implant 
surgery (1). Particulate demineralized freeze-dried bone 
allograft (DFDBA) (2) and particulate mineralized freeze- 
dried bone allograft (FDBA) (3) are commonly used in 
horizontal bone augmentation. Particulate graft materials 

are packed into the defect (4) and covered with biologi-
cally compatible membranes prior to achieving primary 
closure to allow for adequate buccal-lingual width needed 
for implant therapy. Alternatively, autologous block grafts 
harvested from the patient’s chin or ramus (5, 6, 7) can be 
fixated to deficient areas using fixation screws (8) which 
allows for considerable gain in bone width following 
healing (9) (Periodontology Graduate Clinics, Faculty of 
Dentistry, University of Toronto)
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appropriate nutrients and growth factors essential 
for osteoblast differentiation and function. This 
section discusses the various graft tissues and 
biomaterials used commonly for bone grafting 
procedures.

9.3.1  Autogenous Grafts

Autogenous bone grafts (autografts) are har-
vested from a site in the same individual and 
transplanted to another site. Although these pro-
vide the most osteogenic organic materials, donor 
site morbidity, increase in postsurgical recovery 
time, and the limited amount of graft volume that 
can be obtained are the disadvantages [13]. 
Autografts used for bone alveolar bone grafting 
may be of intraoral or extraoral origin. The vari-
ous harvesting sites for autografts are the man-
dibular ramus and corpus; the tuber, spina nasalis, 
and crista zygomatico-alveolaris from the max-
illa; and the tibia and iliac crest [82]. Although 
autografts of iliac origin provide optimum osteo-
inductive, osteoconductive, and osteogenic 
potential [83], there is less morbidity associated 
with intraoral donor sites when compared to 

extraoral sites [48]. Mandibular autografts are 
used very commonly as bone blocks, chips, and/
or milled particles [48, 84]. The most common 
extraoral harvest site that provides relatively 
large amounts of autologous cortical-cancellous 
bone is the pelvic rim [85]. Cortical autografts 
have high initial strength which after about 
6 months of implantation is ~50% weaker than 
the normal bone tissue [86]. On the other hand, 
cancellous autografts are mechanically weaker 
because of their porous architecture initially but 
with time gain strength [80]. Also, the cancellous 
autografts have been shown to revascularize 
sooner than cortical grafts around the fifth day 
postimplantation due to their spongy architecture 
[80]. Alveolar bone and ridge augmentation in 
vertical and horizontal dimensions carried out 
using particulate autografts with GBR has been 
successful for placing dental implants [87, 88]. 
However, block grafts outperform particulate 
grafts with regard to revascularization, bone 
remodeling, bone-to-implant contact, and bone 
fill potential [87].

9.3.2  Allogeneic Grafts

Graft tissues obtained from genetically noniden-
tical members of the same species are known as 
allogeneic grafts (allografts). These grafts are 
available in larger quantities for use and do not 
have the usual drawbacks of autografts. 
Allografts (cortical and cancellous) of various 
particle size ranges are used routinely for bone 
augmentation procedures with minimal risk of 
disease transmission [89–91]. Allografts are 
available as cortical granules, cortical chips, cor-
tical wedges, and cancellous powder prepared as 
frozen, freeze- dried, mineralized, and deminer-
alized bone tissue [92].

9.3.2.1  Fresh or Frozen Iliac Cancellous 
Bone and Marrow Allogeneic 
Grafts

Atrophic maxillary ridges when grafted with 
human block grafts of tibia and fresh-frozen 
chips show features representative of mature and 
compact osseous tissue surrounded by marrow 

Table 9.1 Available tissue and biomaterial options for 
alveolar bone grafting

Bone replacement graft materials

1. Human bone graft tissues
   (a) Autografts
     • Extraoral
     • Intraoral
    (b) Allografts
      • Fresh and/or frozen bone
     • Freeze-dried bone allograft (FDBA)
     •  Demineralized freeze-dried bone allograft 

(FDBA)
2. Nonhuman natural tissues and materials
     (a) Xenografts
     • Bovine hydroxyapatite
     • Coralline calcium carbonate
3. Synthetic materials (alloplasts)
    (a) Bioactive glasses
    (b) Bioceramics
     • Hydroxyapatite
     •  Other calcium phosphates (tricalcium 

phosphate, brushite, monetite)
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spaces [93, 94]. Fresh and/or frozen cancellous 
bone and marrow tissues demonstrate the highest 
osteoconductive and osteoinductive potential 
among all allografts [95, 96]. However, due to 
the risk of disease transmission, use of fresh or 
frozen iliac allografts is now obsolete.

9.3.2.2  Mineralized Freeze-Dried Bone 
Allogeneic Grafts (FDBA)

Freeze-dried bone allografts (FDBA) are miner-
alized and are used commonly for the treatment 
of periodontal defects with reasonable success 
[97–100]. The process of freeze-drying affects 
the immune recognition in the host by distorting 
the 3D presentation of the human leukocyte anti-
gens on surface of graft particles [101, 102]. 
FDBA have inferior mechanical properties and 
osteoinductive potential when compared with 
fresh or frozen allografts [103]. FDBA are known 
to be osteoconductive and can be combined with 
autografts to enhance the osteogenic potential 
[104, 105]. Cortical FDBA have a higher volume 
of bone matrix, more osteoinductive potential via 
growth factors stored in the matrix [106]. The use 
of FDBA blocks for alveolar ridge grafting has 
demonstrated presence of vital bone with a lamel-
lar organization [107, 108]. FDBA used in com-
bination with resorbable barrier membranes can 
be used as a replacement to autogenous block 
grafts for ridge augmentation prior to implant 
placement [109].

9.3.2.3  Demineralized Freeze-Dried 
Bone Allogeneic Grafts 
(DFDBA)

Demineralized freeze-dried bone allografts 
(DFDBA) are used for grafting procedures alone 
or in combination with FDBA and/or autografts 
very frequently. DFDBA grafts undergo resorp-
tion quickly [110, 111] and have osteoinductive 
potential attributed to the morphogenetic proteins 
(BMPs) stored in the matrix [112]. Growth fac-
tors and differentiation factors have also been 
shown to be present in DFDBA preparations 
[113, 114]. DFDBA grafts obtained from the 
younger individuals have higher osteogenic 
potential in comparison with grafts from older 
individuals resulting in variation in BMP levels 

in different DFDBA batches [115, 116]. DFDBA 
has been shown to have less new bone formation 
in comparison to autogenous grafts used in simi-
lar grafting procedures [117].

9.3.3  Xenogeneic Grafts

Xenogeneic grafts or xenografts are tissues used 
for bone grafting obtained from nonhuman spe-
cies. Bone xenografts were first reported in asep-
tic bone cavities in 1889 [118]. Xenograft 
materials after implantation are usually osteocon-
ductive and show variable ability to be resorbed 
and replaced by new bone over time [119, 120]. 
The commonly used xenograft in dentistry is 
Bio-Oss®, which is a commercially available 
bovine bone processed to yield natural bone min-
eral without any organic component [121]. The 
inorganic phase of bovine bone remaining after 
low-heat treatment and chemical extraction of 
organic component mainly consists of hydroxy-
apatite that retains the micro- and/or macropo-
rous structural morphology [122]. Although this 
heat and chemical treatment removes most of the 
osteogenic components from the bovine bone, it 
is extremely important as this eliminates any 
potential risk of disease transmission (bovine 
spongiform encephalopathy) and graft rejection 
[123, 124]. Bovine-derived bone particles and 
block grafts have been used for the treatment of 
human ridge augmentation procedures and intra- 
bony defect filling [125, 126]. The advantage of 
using bovine bone as graft materials is the higher 
osteoconductive potential compared with syn-
thetically derived materials. The major disadvan-
tage of these grafts is the inherent brittleness and 
lack of toughness as they routinely are prone to 
failure and breakage during the screw fixation or 
after implantation leading to less than optimal 
clinical results [126, 127].

Calcium carbonate grafts are of natural coral-
line origin and are composed mostly of aragonite 
which is more than 98% calcium carbonate. 
Having a pore size of 100–200 μm, very similar to 
that is observed in cancellous bone, and relatively 
high porosity of ~45% allows for greater resorp-
tion and new bone formation and infiltration 
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within the graft area [91, 128]. Coralline calcium 
carbonate demonstrates high osteoconductivity 
since transformation to carbonate is not required 
like most other graft materials, allowing for new 
bone deposition to occur rapidly [129].

Coralline calcium carbonate has the potential 
for greater defect fill in periodontal regeneration 
applications and does not undergo fibrous encap-
sulation [130–132].

9.3.4  Alloplasts

Alloplastic bone grafting materials are sought 
after because they provide an abundant amount 
without the problems associated with autografts 
[133]. These are fabricated in various forms and 
with varying physicochemical properties and can 
be both resorbable and non-resorbable [14, 15, 
134–136]. Alloplastic materials are usually 
osteoconductive without having any osteogenic 
and osteoinductive potential and have been used 
successfully in periodontal reconstructive appli-
cations [135]. The most routinely used alloplastic 
materials are hydroxyapatite (HA), tricalcium 
phosphates (TCP), bioactive glasses, and dical-
cium phosphates [80].

Synthetic HA is available and used in various 
forms: porous non-resorbable, solid non- 
resorbable, and resorbable (non-ceramic, porous) 
[137]. HA is non-osteogenic and mainly func-
tions as an osteoconductive graft material. The 
ability of HA to resorb is dependent upon the 
processing temperature. At higher temperatures 
the HA synthesized is very dense and non-
resorbable [138]. The dense HA grafts are osteo-
conductive and mostly used as an inert 
biocompatible filler and have been shown to 
result in defect filling greater than flap debride-
ment used alone [139, 140]. When processed at 
lower temperatures, the particulate HA produced 
is porous with a slow resorption rate [141]. Early 
implant loading studies in augmented alveolar 
ridges with nanostructured hydroxyapatite have 
shown promise [142, 143]. Also, alveolar ridge 
augmentation with HA granules alone [143] or 
in combination with autografts has shown high 
success rates [144].

TCP has two crystallographic forms, α-TCP 
and β-TCP [79], with the latter more commonly 
used partially resorbable filler allowing replace-
ment with new bone formation [135]. β-TCP 
have been shown to be inferior when compared 
with allografts in terms of resorption and bone 
formation [145]. There is strong evidence of TCP 
grafts undergoing fibrous tissue encapsulation 
[146]. There are studies that report new bone 
deposition with β-TCP [146–149] and alveolar 
ridge augmentation in vertical and horizontal 
dimensions with variable results [147–149].

Bioactive glass is composed of silicon diox-
ide, calcium oxide, sodium oxide, and phospho-
rus pentoxide [150], and when implanted as bone 
grafting materials, the pH of the local environ-
ment increases (>10), and a silicon-rich gel is 
formed on the bioactive ceramic surface with the 
outer layer serving as a bonding surface for 
osteogenic cells and collagen fibers [151]. The 
article sizes of bioactive glasses range from 
90–710 μm to 300–355 μm [150, 152], and clini-
cal reports of alveolar ridge grafting and aug-
mentation with bioglass show bone formation in 
close contact to the particles [150]. However, 
bioglass is non-resorption which limits the ability 
of bioglass to work as a bioresorptive scaffold for 
vertical alveolar bone augmentation.

Dicalcium phosphate (DCP) compounds have 
a high solubility at physiological pH, and dical-
cium phosphate dihydrate (DCPD or brushite) 
has been tested for both vertical bone augmenta-
tion and bone defect repair as injectable cements 
or as preset cement granules [153–155]. Several 
clinical studies have demonstrated that injectable 
brushite cements are capable of regenerating 
bone in buccal dehiscence defects, atrophic 
ridges, and maxillary sinus floor elevation proce-
dures [156]. The amount of vertical bone growth 
obtained with brushite cement granules is seen to 
be higher than that obtained with commercial 
bovine HA materials in vivo [157]. However, 
brushite cements undergo phase conversion to 
insoluble HA upon implantation and this limits 
their resorption [79, 158]. Dicalcium phosphate 
anhydrous (DCPA or monetite) resorbs at faster 
rates compared to brushite [159–161] and has 
been shown not to convert to HA [157, 158, 162]. 
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The clinical performance of monetite granules 
has been compared with commercially available 
bovine HA and demonstrated greater resorption 
in vivo and bone formation in the alveolar ridge 
sockets [154]. Monetite bioceramic materials 
have been investigated for alveolar bone aug-
mentation as 3D printed onlay blocks, and it has 
been shown that sufficient bone volume and 
height gain can be achieved for dental implant 
placement [155, 163].

9.4  Barrier Membranes Used 
in Bone Grafting Procedures

The turnover rate of soft tissues is faster than that 
of bone tissue formation, so using barrier mem-
branes during bone grafting ensures that soft tis-
sues are prevented from infiltrating and occupying 
the defect space where new bone is to be regener-
ated. If used in combination with bone grafts, then 
the membranes serve to stabilize the graft materi-
als [73]. Also, the membranes also function as 
graft preservation devices by reducing the rate of 
graft resorption [64, 164]. The natural or synthetic 
tissues and materials the barrier membranes get 
fabricated from are required to be biocompatible 
and not evoke any immune reactions or cytotoxity 
once implanted [165]. If these membranes are 
resorbable, then ideally they should biodegrade 
without leaving any residues, and the degradation 
rate should match with the tissue regeneration 
rate. The mechanical properties of these mem-
branes should be adequate to withstand the surgi-
cal placement and their function in vivo. The 
barrier membranes used for alveolar bone grafting 
can be non-resorbable or resorbable.

9.4.1  Non-resorbable Barrier 
Membranes

The first non-resorbable barrier membranes inves-
tigated experimentally were fabricated using cel-
lulose acetate filters (Millipore®) [166]. Following 
this, commercial membranes were later produced 
from Teflon® which is polytetrafluoroethylene 
(PTFE) [167]. The function of these non-resorb-

able membranes is temporary as they maintain 
their structural integrity upon placement and are 
later retrieved via surgery. This second procedure 
for retrieval increases the risk of surgical site mor-
bidity and renders the regenerated tissues suscep-
tible to damage and postsurgery bacterial 
contamination [168]. Membrane exposure due to 
flap sloughing during healing is also a frequent 
postsurgical complication observed [169]. As evi-
dence of resorbable membranes being effective 
increases, non- resorbable membranes are losing 
their popularity in clinical practice, and their use 
is being limited to specific applications [170]. 
Two non- resorbable barrier membranes that are 
commonly used are the expanded (ePTFE) and 
the titanium- reinforced polytetrafluoroethylene 
(Ti-PTFE). PTFE is a nonporous inert and bio-
compatible fluorocarbon polymer [171]. The 
ePTFE is chemically similar to PTFE and has 
been used in vascular surgeries for several decades 
[172]. ePTFE is made by subjecting PTFE to high 
tensile stresses which results in expansion and the 
formation of a porous microstructure [173]. 
Barrier membranes fabricated with ePTFE are 
highly stable in biological systems and resist 
breakdown by host responses. The clinical effec-
tiveness of ePTFE barrier membranes has been 
studied in numerous studies [174]. There is evi-
dence of periodontal regeneration when ePTFE 
membranes are used, and these membranes gained 
popularity and were used routinely in the past 
[170]. In clinical situations which require larger 
areas of space maintenance, Ti-PTFE can be used 
which are stiffer having a central portion rein-
forced with titanium to prevent collapse [175]. An 
alternative approach is using a double layer of 
PTFE membrane with a titanium framework 
interposed (Cytoplast® Ti-250) which has shown 
to be successful for ridge augmentation and treat-
ment of large defects in the alveolar process [176].

9.4.2  Resorbable Barrier 
Membranes

Clinical studies in the early 1990s reported the 
successful use of resorbable membranes for GBR 
[177–179]. In the last few decades, research has 
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been focused upon development of bioresorbable 
barrier membranes that overcome the inherent 
limitations of their non-resorbable counterparts. 
Both natural and synthetic polymers have been 
investigated for this purpose with collagen and 
aliphatic polyesters being the mostly researched 
[180]. Currently, most commonly used resorb-
able membranes are made of collagen or by poly-
glycolide and/or polylactide or copolymers of 
them [181]. The available resorbable barrier 
membranes are mostly incapable in maintaining 
defect space on their own due to their lack of 
rigidity. For this reason these membranes are rou-
tinely used in combination with autogenous or 
synthetic bone graft substitutes [182, 183] with 
or without the support screws, reinforcements, 
and pins [184].

9.4.2.1  Natural Resorbable Barrier 
Membranes

Natural resorbable barrier membranes are fabri-
cated mostly using collagen from tissues from 
human or animal sources. Collagen is used exten-
sively in biomedical applications and can be 
acquired from animal skin, tendons, or intestines 
[180]. Collagen has numerous desirable biologi-
cal properties such as having low immunogenic-
ity, attracting and activating gingival fibroblast 
cells, and being hemostatic [185]. It has been 
shown that collagen membranes stimulate the 
fibroblast DNA synthesis [178]. Also, osteoblasts 
show higher levels of adherence to collagen 
membrane surfaces in comparison to other bar-
rier membrane surfaces [186]. The biodegrada-
tion of commercially available collagen 
membranes is accomplished by endogenous col-
lagenases into carbon dioxide and water [185]. 
These enzymes are produced mainly by the mac-
rophages and polymorphonuclear leukocytes 
(PMNs) [23]. The degree of cross-linking of col-
lagen fibers directly affects the rate of degrada-
tion with the relationship being inversely 
proportional [187].

AlloDerm® Regenerative Tissue Matrix 
(RTM) is a collagen Type I derived from human 
skin (cadavers). AlloDerm® has been shown to 
support tissue regeneration by allowing rapid 
revascularization and white cell migration. The 

membrane thickness ranges from 0.9 to 1.6 mm, 
and clinical applications include gingival aug-
mentation, root coverage, soft tissue ridge aug-
mentation, and soft tissue augmentation around 
dental implants [188]. AlloDerm GBR® RTM is 
manufactured utilizing the same process used 
for AlloDerm® RTM, and the membrane thick-
ness ranges from 0.5 to 0.9 mm used for graft 
protection, containment, and flap extension to 
achieve adequate primary closure [189]. 
Paroguide® is a collagen Type I membrane 
enriched with chondroitin sulfate. There are 
reports of periodontal ligament regeneration and 
alveolar bone regeneration, with no signs of 
inflammation [182, 190]. Avitene® is a microfi-
brillar hemostatic collagen Type I membrane 
derived from bovine corium. Histological evalu-
ation after a clinical study has shown that this 
membrane was not very effective and is difficult 
to handle during the surgery [191]. Bio-Gide® is 
a barrier membrane synthesized from collagen 
Types I and III derived from porcine skin source. 
Bio-Gide® has been seen to resorb in about 
8 weeks with studies demonstrating their regen-
erative potential [192]. BioMend Extend® is 
fabricated from Type I collagen derived from 
bovine Achilles tendon. The membrane is semi-
occlusive, having a pore size 0.004 μm, and 
resorbs in 4–8 weeks after implantation. Clinical 
results have revealed limited clinical effective-
ness, dependent upon form and size of the defect 
[193]. Cytoplast RTM® is synthesized with 
 collagen Type I derived from bovine tendon 
and is a multilayered membrane which takes 
26–38 weeks for complete resorption. It has an 
organized fiber orientation providing good han-
dling and high tensile strength [194, 195]. 
Collagen membrane cross-linked by diphe-
nylphosphoryl azide is a Type I collagen mem-
brane, derived from calf pericardium and 
cross-linked by diphenylphosphoryl azide. 
Although histology reveals significant inflam-
matory reaction [196], clinical studies have 
shown effective tissue regeneration outcomes 
[190]. Collistat® is another collagen Type I 
material which has demonstrated guided regen-
eration potential with the membrane completely 
resorbing 7 days after implantation [197].
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9.4.3  Synthetic Resorbable Barrier 
Membranes

The most commonly used biomaterials used to 
fabricate barrier membranes are the poly-α- 
hydroxy acids, which include polylactic polyg-
lycolic acid and their copolymers [198]. The 
advantage of using polyhydroxy acids are that 
they undergo complete hydrolysis to water and 
carbon dioxide, which allows for complete 
removal from the implantation site [195]. 
However, the degradation rate varies depending 
on the presence glycols and lactides in the con-
stitutional makeup [199]. Resolut LT® is a bar-
rier membrane made of glycolide and lactic 
copolymer and a porous network of polygly-
colide fiber that completely resorbs in about 
5–6 months [171, 200]. Atrisorb® is a barrier 
membrane that is prepared chairside during the 
surgical procedure because it is made up of a 
polylactic polymer in a flowable form, dissolved 
in poly-dl-lactide and a solvent. This is flowed 
into a cassette containing 0.9% saline for ~5 min, 
after which the membrane having a thickness of 
600–750 μm is obtained and cut to desired shape. 
Studies have reported its efficacy in the treat-
ment of periodontal defects [201], and it resorbs 
completely in 6–12 months [202]. Epi-Guide® is 
a porous three-layered and three-dimensional 
barrier membrane fabricated using polylactic 
acid polymers (d,d-l,l-polylactic acid) and is 
completely resorbed in 6–12 months. The three- 
layered construction of the membrane attracts, 
traps, and retains fibroblasts and epithelial cells 
while maintaining space around the defect. Epi- 
Guide® is a self-supporting barrier membrane 
and can be used in situations without support 
from bone grafting materials [182, 203]. Guidor® 
is a double-layered resorbable barrier membrane 
composed of both polylactic acid and a citric 
acid ester known as acetyl tributylcitrate. The 
external layer of the barrier membrane is 
designed with rectangular perforations allowing 
the integration of the overlying gingival flap. 
This surface design successfully promotes tissue 
integration, and only limited gingival recession 
after usage has been reported [181, 204]. 
Between the internal and external layers, inter-

nal spacers are present that create space for tis-
sue ingrowth. The internal layer has smaller 
circular perforations and outer spacers for main-
taining the space between the membrane and the 
root surface. Studies have shown this membrane 
to be successful in the treatment of various peri-
odontal defects [204]. Vicryl periodontal mesh® 
is made up of polyglactin 910 fibers which are 
copolymers of glycolide and l-lactide which 
form a tight woven mesh [205]. This barrier 
membrane has been shown to start resorbing 
after 2 weeks of implantation and completely 
resorbs in about 4 weeks [206]. Mempol® is a 
membrane manufactured from polydioxanon 
(PDS) with a bilayer structure. The first layer is 
covered with PDS loops 200 μm long to be used 
on the gingival side and is completely non-per-
meable [207, 208].

9.5  Considerations for Bone 
Grafting in Older Patients

Although there are studies that demonstrate suc-
cess of dental implantation in elderly patients, the 
major limitations of these studies are that a rela-
tively small number of patients are involved and 
almost no or very few comparisons are made 
between groups with respect to gender, implanta-
tion site, implant type, implant length, numbers, 
systemic health, smoking, alveolar ridge volume 
and height (quality and quantity), and occlusal 
load considerations [5]. Although these limita-
tions exist, still it can be concluded that the age of 
the patient does not seem to be the major factor in 
determining the prognosis of dental implants. 
Alveolar bone quantity and quality and the use of 
appropriate surgical and prosthetic techniques by 
a skillful team are definitely more critical to a 
favorable outcome. Older patients undergoing 
implant therapy including bone augmentation 
require a thorough evaluation for systemic condi-
tions that may affect and potentially compromise 
bone healing and osseointegration [209]. Success 
of bone grafting procedures and ultimately dental 
implantation has been known to be affected by 
diabetes mellitus, postmenopausal estrogen 
replacement therapy, and long-term smoking 
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habits [5]. Additionally, patients may be using 
medications such as steroids and bisphospho-
nates that affect bone metabolism and can alter 
the clinical outcomes [210, 211].

Osseointegration of dental implants is cru-
cially dependent on the bone healing response. 
Osteoporotic bone is characterized by a general 
reduction in bone quality and quantity and there-
fore can be expected to affect the success of den-
tal implants in older patients. However, studies 
have not shown any strong evidence directly 
implicating osteoporosis as being a risk factor for 
implant failure in elderly patients [5]. There are 
strong reservations regarding surgical interven-
tions in patients who have osteoporosis and are 
receiving long-term oral bisphosphonate therapy 
[212–214]. Also, it has been noted that implants 
placed in atrophic maxilla which has trabecular 
bone are at a greater risk for undergoing compli-
cations [215]. Soft tissue response in older 
patients is another major concern especially if 
oral hygiene is not maintained and deteriorates 
over time. Inability to remove plaque has been 
shown to lead to peri-mucositis and peri- 
implantitis [5]. Although autogenous bone grafts 
remain the gold standard for augmenting atrophic 
jaws and repairing bone defects, it has to be taken 
into consideration that autografting in older indi-
viduals leads to more complications and should 
be chosen after careful consideration. There are 
doubts over the bone quality available, donor site 
morbidity, and impaired healing response to be 
taken into consideration [215, 216].

9.6  Future Directions 
for Achieving Successful 
and More Predictable Bone 
Grafting

Currently, research on newer methodologies for 
bone grafting is focused on molecular, cellular, 
and gene therapeutics [217]. There is great poten-
tial for platelet-derived growth factor (PDGF) for 
use in bone regeneration [218]. Recombinant 
human PDGF-BB (rhPDGF-BB) and inorganic 
bone blocks have been investigated for bone aug-
mentation in vertical dimensions and have shown 

increased vertical gain compared to controls 
[219]. PDGF in combination with ePTFE barrier 
membranes used around implants in preclinical 
animal models has also resulted in rapid and 
increased bone formation [218]. Promising 
results have also been observed by using colla-
gen membranes and chitosan sponges with PDGF 
for achieving vertical ridge augmentation [220, 
221]. Ideal dosing of PDGF and their appropriate 
carriers are still under research and extensive 
long-term studies are essential.

Separating platelet-rich plasma (PRP) from 
patient blood and added to the bone grafting tis-
sues and materials is a new approach [222–224]. 
Initial results using this technique have shown 
greater volume and denser bone compared to 
autografts used alone for bone augmentation 
[225]. However, using PRP with other graft 
materials and its usefulness is still inconclusive 
[226, 227]. Bone morphogenetic proteins (BMPs) 
have generated a lot of interest recently and have 
shown promising results for intraoral applica-
tions such as sinus augmentation and alveolar 
ridge preservation [228–232]. The most com-
monly used and researched BMPs for bone 
regeneration applications are BMP-2 and BMP- 
7. BMP-2 has been approved by the FDA for 
clinical use in spinal fusion therapy [232, 233]. 
However, the dosage and carrier methods are still 
undergoing the regulatory approval process. 
Gene therapy is based on the principle of deliver-
ing to cells modified genetic material to boost 
their regenerative potential by increased produc-
tion and concentration of differentiation factors 
and growth factors [234, 235]. A cellular tissue 
engineering approach is being investigated 
through which in vitro amplification of osteo-
blasts or osteoprogenitor cells grown on 3D con-
structs is carried out to increase the regenerative 
potential of bone [236–238]. Cell seeding of con-
structs with mesenchymal stem cells also has 
great potential to be used in the future [239, 240]. 
All these approaches have the potential for pro-
viding improved tissue regenerative results in 
alveolar ridge grafting and augmentation [235].

There are a variety of surgical techniques with 
various combinations of graft materials that can 
be utilized for achieving alveolar ridge augmen-
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tation. Currently, there is no single ideal tech-
nique or graft material that exists to choose from 
in clinical practice, and individualized approach 
to ridge grafting is followed. The development of 
novel synthetic bone graft materials is a chal-
lenge from an engineering and biological per-
spective. The next generation of graft materials is 
expected to demonstrate improvements in 
implant and biological tissue interfacing based 
on the recent gain in knowledge. Treatment pro-
tocols that are less invasive and technique sensi-
tive and more reproducible need to be developed 
and require constant revisions in light of new 
developments in bone regeneration therapeutics.
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