
Better Approximation Ratios for the
Single-Vehicle Scheduling Problems

on Tree/Cycle Networks

Yuanxiao Wu and Xiwen Lu(B)

East China University of Science and Technology, Shanghai, China
yxwu0212@163.com, xwlu@ecust.edu.cn

Abstract. We investigate the single vehicle scheduling problems based
on tree/cycle networks. Each customer, assumed as a vertex on the given
network, has a release time and a service time requirements. The single
vehicle starts from the depot and aims to serve all the customers. The
objective of the problem is to find the relatively optimal routing schedule
so as to minimize the makespan. We provide a 16

9
-approximation algo-

rithm and a 48
25
-approximation algorithm for the tour-version and the

path-version of single vehicle scheduling problem on a tree, respectively.
For the tour-version of single vehicle scheduling problem on a cycle, we
present a 5

3
-approximation algorithm.

Keywords: Vehicle · Routing · Scheduling · Network · Approximation
algorithm

1 Introduction

The single vehicle scheduling problem (SVSP) consists of a set of customers situ-
ated at different vertices on a given network and a single vehicle initially located
at a fixed depot. Each customer has a release time before which it cannot be
served, and a service time which the vehicle has to spend in serving the cus-
tomer. The vehicle, required to serve all the customers, takes a travel time when
it travels from one customer to another. The completion time of a customer is
defined as the time by which it has been served completely, while the completion
time of the vehicle means the time by which it has served all the customers and
returned to its initial location. A permutation of the customers, which implies
the customer service order and can specify the routing of the vehicle, is con-
sidered as a schedule for the problem. The problem aims to find a schedule to
minimize the makespan. We distinguish two versions. In the first one, which is
called tour-version, the makespan is defined as the completion time of the vehi-
cle. In the other one, which is known as path-version, the makespan means the
completion time of the last served customer. For convenience, when the network
is restricted to a line (resp. tree, cycle), we denote the single vehicle scheduling
problem by L-SVSP (resp. T-SVSP, C-SVSP). When the service time of each
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 313–323, 2017.
https://doi.org/10.1007/978-3-319-71150-8_27

http://orcid.org/0000-0003-4068-7233
http://orcid.org/0000-0002-4728-6048


314 Y. Wu and X. Lu

customer is zero, SVSP is known as single vehicle routing problem (SVRP) in
some paper. Thus we denote SVRP on a line, tree and cycle by L-SVRP, T-SVRP
and C-SVRP, respectively.

There are plenty of results on VRP and VSP. [1] showed that both the
tour-version and the path version of L-SVSP are ordinarily NP-hard. [2] pre-
sented polynomial time algorithms for both versions of L-SVRP. [3] provided a
3
2 -approximation algorithm for the tour-version of L-SVSP in the case that the
vehicle initial locates at an extreme vertex, and [4] gave a 5

3 -approximation algo-
rithm for the counterpart in which the initial location of the vehicle is arbitrary.
[5,6] presented a 3

2 -approximation algorithm for the tour-version of L-SVSP and
a 5

3 -approximation algorithm for the path-version of L-SVSP with no constraint
on the initial location of the vehicle, and [6] also provided examples to show
that the performance ratios are tight. When it comes to multi-vehicle scheduling
problem (MVSP), [7] provided a 2-approximation algorithm for the path-version
of the general L-MVSP in which the initial location of each vehicle is arbitrary.
[8] showed that both the tour-version and path-version of L-MVRP can be solved
in polynomial time.

It has been shown in [9] that both the tour-version and the path-version of
T-SVRP (and hence T-SVSP) are ordinarily NP-hard. For the tour-version of
T-SVSP, they showed that the problem can be exactly solved in O(n log n) time if
adding a constraint that the vehicle has to process all tasks in a depth-first man-
ner, and the O(n log n) time algorithm can be considered as a 2-approximation
algorithm for the T-SVSP without the depth-first constraint. [10] ultimately
proved that both versions of T-SVSP are strongly NP-hard. For the tour-version,
they provided a O(nb) time DP algorithm where b is the number of leaves.
[5] introduced an improved 11

6 -approximation algorithm for the tour-version of
T-SVSP. In their algorithm, they partitioned the set of customers into two
subsets. The vehicle first serves part of customers in one subset, and then
serves all the remaining customers. They also presented a 9

5 -approximation
algorithm with a similar method for the tour-version of C-SVSP. [11] provided
a 9

5 -approximation algorithm and a 27
14 -approximation algorithm for the tour-

version and the path-version of T-SVSP, respectively. For both tour-version
and path-version of C-SVSP, they provided a 12

7 -approximation algorithm. [12]
presented polynomial time approximation schemes for both versions of SVSP
on a tree with a constant number of leaves. [13] presented a 3-approximation
algorithm for MVSP on a tree and a (5 − 2

m )-approximation algorithm for that
on a general network.

In this paper, we consider both the tour-version and the path-version of
T-SVSP and the tour-version of C-SVSP. For each problem, we propose an
approximation algorithm and prove its performance ratio. Our algorithms are
improvements on those in [11].

The rest of this paper is structured as follows. In Sect. 2, we introduce the
formulation of T-SVSP and some notations. In Sect. 3, we present approxima-
tion algorithms for two versions of T-SVSP and analyse the performance ratio. In
Sect. 4, we describe an approximation algorithm for the tour-version of C-VSP and
prove the performance ratio. Finally we give some concluding remarks in Sect. 5.



Better Approximation Ratios 315

2 Problem Formulation and Preliminaries

The SVSP discussed in this paper is mathematically defined as follows. Let
G = (V ∪ {0}, E) be an undirected network where V = {1, 2, ..., n} is a vertex
set and E is a set of edges. An edge e ∈ E is an unordered pair (j, k) of two
vertices in V , where j, k are called the endpoints of e. The travel time of the
vehicle is tj,k ≥ 0, which is the time to traverse edge e = (j, k) from j to k, and
tk,j = tj,k. When (j, k) /∈ E, tk,j denotes the travel time for the vehicle travelling
along the shortest path from j to k. There is a unique customer i at each vertex
i ∈ V . Unless ambiguity would result, we do not distinguish between vertex
and customer. There is a vehicle initially located at the depot 0 to serve all the
costumers. Each customer i is associated with a release time ri and a service time
pi. It means that the vehicle cannot start serving customer i before ri, and needs
pi time units to finish its service. The vehicle arriving at a vertex i before ri either
waits until ri to serve the customer vi, or moves to other vertices without serving
vi if it is more advantageous (in this case, the vehicle has to come back to i later
to serve customer i). A routing schedule of the vehicle is specified by a sequence
π = (π(1), π(2), ..., π(n)) of customers to be served, i.e. the vehicle travels along
a shortest path from 0 to π(1) in G, taking the travel time of the length of
the path, waits until rπ(1) if the arrival time is before t = rπ(1) and serve the
customer π(1). After serving π(1), it immediately moves to π(2), waits until rπ(2)

if the arrival time is before t = rπ(2) and serve the customer π(2), and so on. In
the following, for any feasible schedule π, we always assume π(0) = π(n+1) = 0.
Let C[i](π) denote the service completion time of customer π(i) in π, and set
C[0](π) = 0. Then, C[i](π) equals to max{rπ(i), C[i−1](π) + tπ(i−1),π(i)} + pπ(i)

for all i = 1, 2, ..., n. The makespan of π is donoted by Ctour
max(π) in the tour-

version, and Cpath
max (π) in the path-version. Then, Ctour

max(π) = C[n](π) + t0,π(n),
Cpath

max (π) = C[n](π).
We now introduce some notations to be used throughout the article. Let

tmax = max1≤i≤nt0,i

L =
∑

(i,j)∈E ti,j
rmax = max1≤i≤nri

P =
∑n

i=1 pi

(1)

and for 0 ≤ t ≤ rmax,
V (t) = {i ∈ V | ri ≥ t}
P (t) =

∑
i∈V (t) pi

V ′(t) = {i ∈ V | ri > t}
P ′(t) =

∑
i∈V ′(t) pi

(2)

Note that P (t) and P ′(t) are piecewise constant functions of t, and different
only at rj(j = 1, 2, ..., n).

For 0 ≤ t ≤ rmax, let v(t) and v′(t) denote the farthest vertices from vertex
0 in V (t) and V ′(t), respectively. We also define

θ: the shortest travelling tour over V ∪ {0}
δ′
0(t): the shortest travelling path over V ′(t) ∪ {0} starting from the depot 0.



316 Y. Wu and X. Lu

When G = (V ∪ {0}, E) is a tree, for any U ⊂ V ∪ {0}, we define the spanning
subtree on U as the smallest subtree of G which contains all the vertices in U . Fur-
thermore, for 0 ≤ t ≤ rmax, we let T (t), T ′(t), T̂ (t) and T̂ ′(t) denote the spanning
subtree on the vertex sets V (t), V ′(t), V (t) ∪ {0} and V ′(t) ∪ {0}, respectively.

In the following, a symbol denoting a subgraph of G also be considered as
its length, i.e. if G′ is a subgraph of G, then G′ =

∑
(j,k)∈G′ tj,k.

3 SVSP on Tree Network

In this section we consider T-SVSP. Without loss of generality, we consider the
depot 0 as the root of the tree. A 16

9 -approximation algorithm for the tour-version
is presented in Sect. 3.1, and a 48

25 -approximation algorithm for the path-version
is provided in Sect. 3.2.

3.1 Tour-Version of T-SVSP

Karuno et al. [3] provided a 11
6 -approximation algorithm for the tour-version of

T-SVSP. They first gave several different candidate schedules and then chose the
best one as the approximation solution. Yu and Liu [6] proved that the tour ver-
sion of T-SVSP has an r-approximation algorithm if the tour version of T-SVRP
has. Then they presented a 9

5 -approximation algorithm for the tour-version of
T-SVRP. We will adopt a similar approach and show the approximation ratio
can be reduced to 16

9 .

Algorithm 1 for the tour-version of T-SVRP

Step 1. We define σ as a tour on the tree in which the vehicle starts out from the
depot 0 and visits v(0) first, and then visits other customers in a depth-first
sequence, and finally returns to the depot. Construct a schedule π1 such that
the service order of the customers is the same as the visiting order of the
customers in σ.

Step 2. Let x denote the point that is L + tmax

2 time units away from the depot
0 along σ. Let t∗ = max{2L, rmax}. Construct a schedule π2 such that the
vehicle first waits at vertex 0 for t∗−L− tmax

2 time units, and then travels along
σ without serving any customer until it arrives at v(0), and then travels along
σ from vertex v(0) to point x to serve the customers in V \V ′(t∗ − L + tmax

2 ),
and then travels to vertex 0 to serve all the remaining customers in a depth-
first sequence.

Step 3. Construct a schedule π3 such that the vehicle first waits at vertex 0 for
t∗ −L+ tmax

2 time units, and then travels reverse of σ to point x to serve the
customers in V \V ′(t∗ − L + tmax

2 ), and then travels to vertex 0 to serve all
the remaining customers in a depth-first sequence.

Step 4. Choose the best one among π1,π2 and π3 as the approximation solution π.



Better Approximation Ratios 317

In the proof of the following theorem, we first propose several upper bounds
on the makespan of π1, π2 and π3, and then prove that Algorithm 1 is a 16

9 -
approximation algorithm to the tour-version of T-SVSP. Let π∗ denote the opti-
mal schedule for the tour-version of T-SVRP.

Theorem 1. Algorithm 1 is a 16
9 -approximation algorithm to the tour-version

of T-SVRP.

Proof. The proof will be presented in three steps.
Step 1: We prove an upper bound on Ctour

max(π1).
In π1, the vehicle either waits at some customers for their release or doesn’t

wait at any vertex. If the vehicle waits at some customers, assume customer j is
the last customer where the vehicle waits. Because the first served customer is
v(0), the travel time of the vehicle before it arriving at j is at least t0,v(0)+tv(0),j .
The total travel time of the vehicle in π1 is 2L. Then, the travel time of the vehicle
after it serves customer j is no more than 2L − t0,v(0) − tv(0),j . Thus,

Ctour
max(π1) ≤ rj + 2L − t0,v(0) − tv(0),j

= rj + t0,j + 2L − t0,v(0) − tv(0),j − t0,j

≤ 2Ctour
max(π∗) − 2tmax

(3)

where the last equality follows rj + t0,j ≤ Ctour
max(π∗), 2L ≤ Ctour

max(π∗) and
tmax = t0,v(0) ≤ tv(0),j + t0,j .

If the vehicle doesn’t wait at any vertex, then

Ctour
max(π1) = 2L

= Ctour
max(π∗)

≤ 2Ctour
max(π∗) − 2tmax

(4)

Combing the above two cases, we conclude that

Ctour
max(π1) ≤ 2Ctour

max(π∗) − 2tmax. (5)

Step 2: We show an upper bound on min{Ctour
max(π2), Ctour

max(π3)}.
We first consider the total waiting time of the vehicle in π2 and π3. In both

π2 and π3, the time of the vehicle arriving at point x is t∗. Since t∗ ≥ rmax,
the vehicle does not wait at any customer in the later process. Thus, the total
waiting time of the vehicle in π2 is t∗ −L− tmax

2 , and that in π3 is t∗ −L+ tmax

2 .
The total waiting time of the vehicle in π2 and π3 is 2t∗ − 2L.

Now we turns to provide an upper bound of the total travel time of the vehicle
in π2 and π3. Let T1 and T2 be subtrees visited in π2 and π3, respectively. It is
easy to see that the travel times of the vehicle in π2 and π3 are no more than
2L + 2((T1\T2) ∩ T̂ ′(t∗ − L + tmax

2 )) and 2L + 2((T2\T1) ∩ T̂ ′(t∗ − L + tmax

2 )),
respectively. Since 2((T1\T2)∩T̂ ′(t∗−L+ tmax

2 ))+2((T2\T1)∩T̂ ′(t∗−L+ tmax

2 )) ≤
2T̂ ′(t∗ − L + tmax

2 ), the total travel time of the vehicle in π2 and π3 is at most
4L+2T̂ ′(t∗ −L+ tmax

2 ), which is no more than 4L+2T̂ ′(L+ tmax

2 ) for t∗ −L ≥ L.



318 Y. Wu and X. Lu

Combing the above two discussion,

Ctour
max(π2) + Ctour

max(π3) ≤ 2t∗ − 2L + 4L + 2T̂ ′(L + tmax

2 )
= 2t∗ + 2L + 2T̂ ′(L + tmax

2 )
(6)

A straightforward conclusion of the inequality above is showed as follows.

min{Ctour
max(π2), Ctour

max(π3)}
≤ 1

2 (Ctour
max(π2) + Ctour

max(π3))
≤ t∗ + L + T̂ ′(L + tmax

2 )
≤ t∗ + L + (Ctour

max(π∗) − L − tmax

2 + t0,v(L+ tmax
2 ))/2

≤ 7
4Ctour

max(π∗) + tmax

4

(7)

where the second inequality follows Ctour
max(π∗) ≥ t + 2T̂ (t) − t0,v(t) and T̂ ′(t) ≤

T̂ (t), the last inequality follows t0,v(L+ tmax
2 ) ≤ tmax and Ctour

max(π∗) ≥ t∗ ≥ 2L.
Step 3: We prove the correctness of Theorem 1.
Combining the conclusion of the above two steps,

min{Ctour
max(π1), Ctour

max(π2), Ctour
max(π3)}

≤ min{2Ctour
max(π∗) − 2tmax, 7

4Ctour
max(π∗) + tmax

4 }
≤ 16

9 Ctour
max(π∗)

(8)

This completes the proof of Theorem 1. �	
[11] showed that, in linear time, each instance I of the tour-version of

T-SVSP can be transformed into an instance I ′ of the tour-version of T-
SVRP such that any r-approximation schedule π′ of I ′ also can be transformed
into an r-approximation schedule of I. Therefore, we design the following 16

9 -
approximation algorithm for the tour-version of T-SVSP.

Algorithm 2 for the tour-version of T-SVSP

Step 1. Given an instance I = (T = (V ∪ {0}, E), r, t, p) of T-SVSP, construct
an auxiliary instance I ′(T ′ = (V ′ ∪ {0}, E′), r′, t′) of T-SVRP as follows.
V ′ = V ∪ ⋃n

i=1 n + i, E′ = E ∪ ⋃n
i=1 (i, n + i), t′j,k = tj,k for each edge

(j, k) ∈ E, t′i,n+i = pi

2 , r′
i = ri and r′

n+i = ri + pi

2 for each i ∈ V .
Step 2. Call Algorithm 1 to solve auxiliary instance I ′ of T-SVRP and obtain a

schedule π′.
Step 3. Construct a schedule π such that customer i is served before customer j

if customer n + i is served before customer n + j in π′ for each pair i, j ∈ V .

Theorem 2. Algorithm 2 is a 16
9 -approximation algorithm to the tour-version

of T-SVSP.

Proof. Theorem 2 is a direct inference of Theorem 1. �	



Better Approximation Ratios 319

3.2 Path-Version of T-SVSP

When it comes to the path-version of T-SVSP, notice that the gap between
the makespan of a schedule for the tour-version of T-SVSP and that of the
same schedule for the path-version of T-VSP is no more than tmax. Therefore,
the approximation algorithm for the tour-version of T-VSP can also be used to
solve the path-version of T-SVSP.

Algorithm 3 for the path-version of T-SVSP

Step 1. Call Algorithm 2 to obtain a schedule π1 for the corresponding tour-
version of T-SVSP.

Step 2. Let P0,v(0) indicate the unique path between the vertices 0 and v(0) in
the tree G. It is easy to see that t0,v(0) = tmax. We assume that there are m+2
vertices 0, 1, 2, ...,m + 1 = v(0) on path P0,v(0). Then, deleting the edges in
P0,v(0), we obtain m+2 subtrees, which can be described as T i(0 ≤ i ≤ m+1)
such that T i is connected with vertex i. Let V i denote the vertex set of T i.
Solving the auxiliary L-SVRP on the path P0,v(0), where the release time
of vertex i is redefined as max{rj | j ∈ V i}, by the dynamic programming
algorithm of [2], we obtain a service order of V is. Then, serving the customers
in each V i in an arbitrary depth-first order, we obtain a schedule π2.

Step 3. Choose the best one between π1 and π2 as the approximate solution π.

In the proof of the following theorem, we first propose several upper bounds
on the makespan of π1 and π2, and then prove that Algorithm 3 is a 48

25 -
approximation algorithm to the path-version of T-SVSP. Let π′ and π∗ denote
the optimal schedule for the tour-version of T-SVSP and the path-version of
T-SVSP, respectively.

Theorem 3. Algorithm 3 is a 48
25 -approximation algorithm to the path-version

of T-SVSP.

Proof. The proof will be presented in three steps.
Step 1. We prove an upper bound on Cpath

max (π1).
Let j denote the last customer served by the vehicle in π∗. It is easy to see

that Ctour
max(π∗)−Cpath

max (π∗) ≤ t0,j , and t0,j ≤ tmax. Then, we obtain Ctour
max(π∗) ≤

Cpath
max (π∗) + tmax. Thus,

Cpath
max (π1) ≤ Ctour

max(π1) ≤ 16
9 Ctour

max(π′)
≤ 16

9 Ctour
max(π∗)

≤ 16
9 Cpath

max (π∗) + 16
9 tmax

(9)

Step 2. We show an upper bound on Cpath
max (π2).

It is easy to see that the optimal makespan of the auxiliary L-SVRP is a
lower bound of Cpath

max (π∗). Compared with the optimal makespan of L-SVRP,



320 Y. Wu and X. Lu

the makespan of π2 increases at most 2(L − tmax) + P time units for travelling
the subtrees T 0, T 1, ..., Tm+1 and serving all the customers. Then, we obtain

Cpath
max (π2) ≤ Cpath

max (π∗) + 2(L − tmax) + P
≤ 2Cpath

max (π∗) − tmax
(10)

Step 3. We prove the correctness of Theorem 3.

min{Cpath
max (π1), Cpath

max (π2)}
≤ min{ 16

9 Cpath
max (π∗) + 16

9 tmax, 2Cpath
max (π∗) − tmax}

≤ 48
25Cpath

max (π∗)
(11)

This completes the proof of Theorem 3. �	

4 SVSP on Cycle Network

We now turn to the tour version of C-SVSP. Let G = (V ∪{0}) be a cycle, where
the vertices in V ∪{0} are numbered increasingly in the counterclockwise order.
In the following of this section, we consider vertex n + 1 as vertex 0.

Recall the definitions of L, θ, δ′
0(t) in Sect. 2. We assume that there is no

edge (i, i + 1) such that ti,i+1 ≥ 1
2L. Otherwise there exists an optimal schedule

which never goes through the edge (i, i+1), thus the tour-version of C-SVSP can
be considered as a tour-version of L-SVSP. Since [6] showed a 3

2 -approximation
algorithm for the tour-version of L-SVSP, we focus on the situation satisfying
ti,i+1 < 1

2L for all i = 0, 1, ..., n, which implies θ = L. Suppose that V ′(t) =
{i1, i2, ..., ik} with i1 < i2 < ... < ik, and i0 = ik+1 = 0. Then δ′

0(t) is the
shortest one among the following paths:

(i) for 0 ≤ j ≤ k − 1, the paths first from i0 to ij in the counterclockwise
direction, and then from ij to ij+1 in the clockwise direction;

(ii) for 2 ≤ j ≤ k + 1, the paths first from i0 to ij in the clockwise direction,
and then from ij to ij−1 in the counterclockwise direction.

Then, we provide a 5
3 -approximation algorithm for the tour-version of C-SVSP

as follows.

Algorithm 4 for the tour-version of C-SVSP

Step 1. Solve the corresponding C-SVRP by the dynamic programming algorithm
of [10] to generate a schedule π1.

Step 2. Find t∗(0 ≤ t∗ ≤ rmax) such that P ′(t∗) + δ′
0(t

∗) ≤ 2t∗ ≤ P (t∗) +
δ0(t∗). Partition the customers into V \V ′(t∗) and V ′(t∗). Let vδ′

0(t
∗) denote

the other end point differing from vertex 0 in path δ′
0(t

∗). Construct π2 in
which the vehicle first travels to vδ′

0(t
∗) and waits until t∗(if necessary), then

goes through the cycle to serve all the customers in V \V ′(t∗) before it arrives
vδ′

0(t
∗) again, and travels along δ′

0(t
∗) to serve the customers in V ′(t∗).

Step 3. Choose the best one among π1 and π2 as the approximate solution π.



Better Approximation Ratios 321

In the proof of the following theorem, we first propose several upper bounds
on the makespan of π1 and π2, and then prove that Algorithm 4 is a 5

3 -
approximation algorithm to the tour-version of T-SVSP. Let π∗ denote the opti-
mal schedule for the tour-version of C-SVSP.

Theorem 4. Algorithm 4 is an 5
3 -approximation algorithm to the tour-version

of C-SVSP.

Proof. The proof will be presented in three steps.
Step 1. We show that Ctour

max(π1) ≤ Ctour
max(π∗) + P .

The optimal makespan of the C-SVRP is a lower bound of Ctour
max(π∗). As a

solution to C-SVSP, π1 increases at most P time units in makespan than as an
optimal solution to C-SVRP. Then, Ctour

max(π1) ≤ Ctour
max(π∗) + P .

Step 2. We prove that Ctour
max(π2) ≤ max{ 7

3Ctour
max(π∗) − P, 5

2Ctour
max(π∗) −

3
2P, 5

3Ctour
max(π∗)}.

The vehicle does not wait at any customer in V \V ′(t∗), because it starts out
from vertex vδ′

0(t
∗) at or later than time t∗. If the vehicle does not wait at any

customer in V ′(t∗), we have

Ctour
max(π2) ≤ max{t∗, t0,vδ′

0(t∗)
} + θ + δ′

0(t
∗) + P

≤ max{ 1
3Ctour

max(π∗), 1
2θ} + 2θ + P

≤ max{ 7
3Ctour

max(π∗) − P, 5
2Ctour

max(π∗) − 3
2P}

(12)

where the second inequality follows from Ctour
max(π∗) ≥ t∗ + δ0(t∗) + P (t∗) ≥ 3t∗,

t0,v′(t∗) ≤ 1
2θ and δ′

0(t
∗) ≤ θ, and the last inequality follows from Ctour

max(π∗) ≥
θ + P .

If the vehicle waits at some customer in V ′(t∗), let k be the last customer
where the vehicle waits. Then we have

Ctour
max(π2) ≤ rk + P ′(t∗) + δ′

0(t
∗)

≤ 5
3Ctour

max(π∗) (13)

where the last inequality follows from Ctour
max(π∗) ≥ ri + t0,i, for any i ∈ V and

Ctour
max(π∗) ≥ t∗ + δ0(t∗) + P (t∗) ≥ 3

2 (δ′
0(t

∗) + P ′(t∗)).
Step 3. We prove the minimum one between the makespans of π1 and π2 is

at most 5
3Ctour

max(π∗).

min{Ctour
max(π1), Ctour

max(π2)}
≤ min{Ctour

max(π∗) + P,max{ 7
3Ctour

max(π∗) − P, 5
2Ctour

max(π∗) − 3
2P, 5

3Ctour
max(π∗)}}

= 5
3Ctour

max(π∗)
(14)

This completes the proof. �	

5 Conclusions

In this paper, we consider the single-vehicle scheduling problems on a tree and a
cycle, and all of these problems are known to be NP-hard. For the tour-version



322 Y. Wu and X. Lu

and the path-version of T-SVSP, we present a 16
9 -approximation algorithm and

a 48
25 -approximation algorithm, respectively. We also consider the tour-version of

single-vehicle scheduling problem on a cycle, and give a 5
3 -approximation algo-

rithm. Our algorithms improve the previous best results in the literature. The
main idea used in the improved algorithms is to utilize the structure character-
istics of tree and cycle to antedate the department time of the vehicle.

There are some issues that are still unsolved. We would like to know whether
the approximation bounds obtained in this paper are tight. As a natural exten-
sion of this paper, researchers may study SVSP on a general network. If the
general network satisfies the triangle inequality, it is straightforward to design a
5
2 -approximation algorithm. A better approximation bound is desirable.

Acknowledgement. The authors would like to thank the associated editor and the
anonymous referees for their constructive comments and kind suggestions. This research
was supported by the National Natural Science Foundation of China under Grant No.
11371137.

References

1. Tsitsiklis, J.N.: Special cases of traveling salesman and repairman problems
with time windows. Networks 22, 263–282 (1992). https://doi.org/10.1002/net.
3230220305

2. Psaraftis, H.N., Solomon, M.M., Magnanti, T.L., Kim, T.-U.: Routing and schedul-
ing on a shoreline with release times. Manage. Sci. 36, 212–223 (1990). https://
doi.org/10.1287/mnsc.36.2.212

3. Karuno, Y., Nagamochi, H., Ibaraki, T.: Better approximation ratios for the single-
vehicle scheduling problems on line-shaped networks. Networks 39(4), 203–209
(2002). https://doi.org/10.1002/net.10028

4. Gaur, D.R., Gupta, A., Krishnamurti, R.: A 5
3
-approximation algorithm for

scheduling vehicles on a path with release and handling times. Inform. Process.
Lett. 86, 87–91 (2003). https://doi.org/10.1016/S0020-0190(02)00474-X

5. Bhattacharya, B., Carmi, P., Hu, Y., Shi, Q.: Single vehicle scheduling problems
on Path/Tree/Cycle Networks with release and handling times. In: Hong, S.-H.,
Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 800–811.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0 70

6. Yu, W., Liu, Z.: Single vehicle scheduling problems with release and service times
on a line. Networks 57, 128–134 (2011). https://doi.org/10.1002/net.20393

7. Karuno, Y., Nagamochi, H.: 2-approximation algorithms for the multi-vehicle
scheduling prbolem on a path with release and handling times. Discrete Appl.
Math. 129, 433–447 (2003). https://doi.org/10.1016/S0166-218X(02)00596-6

8. Yu, W., Liu, Z.: Vehicle routing problems on a line-shaped network with release
time constraints. Oper. Res. Lett. 37, 85–88 (2009). https://doi.org/10.1016/j.orl.
2008.10.006

9. Karuno, Y., Nagamochi, H., Ibaraki, T.: Vehicle scheduling on a tree with release
and handling times. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin,
F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 486–495. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-57568-5 280

https://doi.org/10.1002/net.3230220305
https://doi.org/10.1002/net.3230220305
https://doi.org/10.1287/mnsc.36.2.212
https://doi.org/10.1287/mnsc.36.2.212
https://doi.org/10.1002/net.10028
https://doi.org/10.1016/S0020-0190(02)00474-X
https://doi.org/10.1007/978-3-540-92182-0_70
https://doi.org/10.1002/net.20393
https://doi.org/10.1016/S0166-218X(02)00596-6
https://doi.org/10.1016/j.orl.2008.10.006
https://doi.org/10.1016/j.orl.2008.10.006
https://doi.org/10.1007/3-540-57568-5_280


Better Approximation Ratios 323

10. Nagamochi, H., Mochizuki, K., Ibaraki, T.: Complexity of the single vehicle
scheduling problem on graphs. Inform. Syst. Oper. Res. 35, 256–276 (1997).
https://doi.org/10.1080/03155986.1997.11732334

11. Bao, X., Liu, Z.: Approximation algorithms for single vehicle scheduling problems
with release and service times on a tree or cycle. Theoret. Comput. Sci. 434, 1–10
(2012). https://doi.org/10.1016/j.tcs.2012.01.046

12. Augustine, J.E., Seiden, S.S.: Linear time approximation schemes for vehicle
scheduling problems. Theoret. Comput. Sci. 324, 147–160 (2004). https://doi.org/
10.1016/j.tcs.2004.05.013

13. Bhattacharya, B., Hu, Y.: Approximation algorithms for the multi-vehicle schedul-
ing problem. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS,
vol. 6507, pp. 192–205. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-17514-5 17

https://doi.org/10.1080/03155986.1997.11732334
https://doi.org/10.1016/j.tcs.2012.01.046
https://doi.org/10.1016/j.tcs.2004.05.013
https://doi.org/10.1016/j.tcs.2004.05.013
https://doi.org/10.1007/978-3-642-17514-5_17
https://doi.org/10.1007/978-3-642-17514-5_17

	Better Approximation Ratios for the Single-Vehicle Scheduling Problems on Tree/Cycle Networks
	1 Introduction
	2 Problem Formulation and Preliminaries
	3 SVSP on Tree Network
	3.1 Tour-Version of T-SVSP
	3.2 Path-Version of T-SVSP

	4 SVSP on Cycle Network
	5 Conclusions
	References




