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Abstract. In this paper, we introduce the notion of l-quasi-pyramidal
and l-pseudo-pyramidal tours extending the classic notion of pyrami-
dal tours to the case of the Generalized Traveling Salesman Problem
(GTSP). We show that, for the instance of GTSP on n cities and k clus-
ters with arbitrary weights, l-quasi-pyramidal and l-pseudo-pyramidal
optimal tours can be found in time O(4ln3) and O(2lkl+4n3), respec-
tively. Consequently, we show that, in the most general setting, GTSP
belongs to FPT for parametrizations induced by these special kinds of
tours. Also, we describe a non-trivial polynomially solvable subclass of
GTSP, for which the existence of l-quasi-pyramidal optimal tour (for
some fixed value of l) is proved.

1 Introduction

The Traveling Salesman Problem (TSP) is the famous combinatorial optimiza-
tion problem having many valuable applications in operations research and
attracting interest of scientists for decades (see e.g. [14,19,21]).

It is known that TSP is strongly NP-hard and hardly approximable in its
general setting [22]. At the same time, the problem remains intractable in metric
and Euclidean settings, but can be approximated well in these cases, admitting
fixed-ratio algorithms for an arbitrary metric [10] and Polynomial Time Approx-
imation Schemes (PTAS) for Euclidean spaces of any fixed dimension [1]. Many
generalizations of TSP, e.g. Cycle Cover Problem [13,15,16], Peripatetic Sales-
man Problem [2,12], have the similar approximation behaviour.

Algorithmic issues of finding optimal restricted tours, for several kinds of
restrictions, e.g. precedence constraints, are also actively investigated (see, e.g.
[4,5,9]). Among others, restriction of TSP to considering so called pyramidal
tours (see e.g. [8]) seems to be especially popular. A pyramidal tour respects the
initial order defined on the nodeset of a given graph and, for some r, has the
form

1 = vi1 , vi2 , . . . , vir = n, vir+1 , . . . , vin ,

where vij < vij+1 for any j ∈ {1, . . . , r − 1} and vij > vij+1 for any j ∈ {r +
1, . . . , n − 1}.
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It is widely known [18] that an optimal pyramidal tour can be found in time
of O(n2) for any weighting function. Recently it was shown [6] that, for the
Euclidean setting, an optimal pyramidal tour can be found in time O(n log2 n).
In papers [11,20], several generalizations of pyramidal tours, for which optimal
tour can also be found efficiently were introduced. Despite their fame, pyramidal
tours have one shortcoming. Known settings of TSP and its generalizations, for
which the existence of optimal pyramidal tours is proven, remain very rare so
far. Actually, they are mostly exhausted with settings satisfying the well known
sufficient conditions by Demidenko and van der Veen (see e.g. [14]) and some
other special cases [3,7,19].

The contribution of this paper is two-fold. First, we introduce (in Sect. 2)
notion of generalized pyramidal tours, we call them l-quasi- and l-pseudo-
pyramidal, extending the classic notion of pyramidal tours and results of [20]
to the case of Generalized Traveling Salesman Problem (GTSP). We show that
l-pseudo-pyramidal and l-quasi-pyramidal optimal tours can be found in time
O(2lkl+4n3) and O(4ln3), respectively. Then, in Sect. 3, we describe a non-trivial
polynomially solvable subclass of GTSP, for which the existence of on optimal
l-quasi-pyramidal tour (for some fixed l) is proved.

2 Generalized Pyramidal Tours

We proceed with the common setting of the Generalized Traveling Salesman
Problem (GTSP). An instance of the GTSP is defined by a complete edge-
weighted graph G = (V,E,w) with weighting function w : E → R+, and by a
given partition V1 ∪ . . . ∪ Vk = V of the nodeset V = V (G) of the graph G.
Feasible solutions are cyclic tours τ = (vi1 , . . . , vik) visiting each cluster Vi once.
Hereinafter, we call such routes Clustered Hamiltonian tours or CH-tours. The
problem is to find a CH-tour of the minimum weight1.

In this section, we extend the well-known notion of a pyramidal tour to the
case of partial orders defined implicitly by the orderings of clusters. Indeed,
(linearly) ordered finite set (V1, . . . , Vk) of clusters induces a partial order on the
nodeset V of the graph G as follows: For any u ∈ Vi and v ∈ Vj , u ≺ v if i < j.

Definition 1. Let τ be a CH-tour

v1, vi1 , . . . , vir , vk, vjk−r−2 , . . . , vj1 , 0 ≤ r ≤ k − 2

such that vt ∈ Vt for any t. We call τ an l-quasi-pyramidal tour, if ip − iq ≤ l
and jp′ − jq′ ≤ l for any 1 ≤ p < q ≤ r and 1 ≤ p′ < q′ ≤ k − r − 2.

The following theorems extend the results proposed in [20] for the classic TSP.

Theorem 1. For any weighting function w : E → R+, a minimum cost l-quasi-
pyramidal CH-tour can be found in time of O(4ln3).

1 In this paper, we restrict ourselves to the case of undirected graphs. Nevertheless,
the analogous argument can be provided to the case of digraphs and asymmetric
weighting functions w.
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Fig. 1. Path from u to v through the clusters Vtj , tj ∈ S.

Proof. We start with some necessary notation. For any integers i > j, we use
the common shortcuts [j, i], [j, i), and (j, i) for intersections with N of the sets
{j, . . . , i}, {j, . . . , i−1}, {j +1, . . . , i−1}, respectively. For any nodes u ∈ Vi and
v ∈ Vj , i �= j, and an arbitrary subset S ⊂ [i− l, i)\{1, j} or S ⊂ [j− l, j)\{1, i},
let g(v, S, u) be the weight of a shortest (|S| + 1)-edge path from u to v visiting
all the clusters {Vt : t ∈ S} (see Fig. 1). Values of the function g can be easily
calculated recursively, since g(v, ∅, u) = w({v, u}) and

g(v, S, u)

⎧
⎨

⎩

= min
m∈S

min
v′∈Vm

{g(v, S \ {m}, v′) + w({v′, u})}, if S ⊆ [j − l, j) \ {1, i},

= min
m∈S

min
v′∈Vm

{w({v, v′}) + g(v′, S \ {m}, u)}, if S ⊆ [i − l, i) \ {1, j}.

(1)

Further, for any 1 ≤ j < i ≤ k, let f(u, v, T ) be the weight of a shortest
path P from u ∈ Vi to v ∈ Vj visiting all the clusters with numbers from
([1, i) ∪ [1, j)) \ T, where T ⊆ ([i − l, i) ∪ [j − l, j)) \ {1, i, j}, and the path P has
the form

u = vi0 , vi1 , . . . , vir = v̄ = vj0 , vj1 , . . . , vjs = v,

for pairwise defferent indexes i0, . . . , ir, j1, . . . , js, such that v̄ ∈ V1, it < i for
1 ≤ t ≤ r, jt′ < j for 0 ≤ t′ ≤ s − 1, and

iq − ip ≤ l, (0 < p < q ≤ r),
jp′ − jq′ ≤ l, (0 ≤ p′ < q′ ≤ s).

As with the function g, values of the function f can be obtained recursively.
We start with values f(u, v, (1, t)) = w({u, v}) for any u ∈ V1 and v ∈ Vt,
2 ≤ t ≤ l + 2. All other necessary values f(u, v, T ) for any u ∈ Vi, v ∈ Vj and
any T ⊂ ([i − l, i) ∪ [j − l, j)) \ {1, i, j} can be computed in ascending order by
i and j < i as follows. Let m be the maximum number of the cluster (excluding
i and j) visited by the path P . If m > j, then f(u, v, T ) can be calculated by
formula

f(u, v, T ) = min
S⊆[m−l,m)\(T∪{1,j})

min
u′∈Vm

{g(u, S, u′) + f(u′, v, T ∪ S)}, (2)
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and otherwise by

f(u, v, T ) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
S⊆[m−l,m)\(T∪{1})

min
u′∈Vm

{g(u, S, u′) + f(u′, v, T ∪ S)},

if m ∈ {i1, . . . , ir−1}
min

S⊆[m−l,m)\(T∪{1})
min

u′∈Vm

{f(u, u′, T ∪ S) + g(u′, S, v)},

if m ∈ {j1, . . . , is−1}.

(3)

Finally, we obtain f(u, v, T ) for any u ∈ Vk and v ∈ Vk−1 and for any T ⊆
[k − l − 1, k − 1). Weight of an optimal l-quasi-pyramidal tour (see Fig. 2) is
given by

min
T⊆[k−l−1,k−1)

min
u∈Vk

min
v∈Vk−1

{f(u, v, T ) + g(v, T, u)}.

We compute a näıve upper bound for time complexity of the algorithm. At
first, we calculate the necessary values g(v, S, u) by formula (1) in time O(2ln3).
Then, the initial values f(u, v, (1, t)) can be computed in O(n2). Further, for
any fixed u, v and T , the complexity of Eqs. (2) and (3) does not exceed O(2ln).
Since, formulas (2) and (3) are invoked at most O(2ln2) times, the overall time
complexity bound is O(4ln3), which completes our proof.

Fig. 2. Constructing a minimum weight l-quasi-pyramidal tour

Remark 1. Evidently, result of Theorem 1 can be considered in the context of
parameterized complexity. Actually, Theorem 1 claims that, in the most gen-
eral setting, GTSP is fixed-parameter tractable with respect to parametrization
induced by quasi-pyramidal tours.
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In Sect. 3, we describe a subclass of geometric GTSP, each of whose instance has
l-quasi-pyramidal optimal tours for some fixed l. Nevertheless, this class seems
to be very specific, and the scheme proposed can hardly be extended to more
general settings. To overcome this gap, we propose a more common notion of
pyramidal-like tours. We call them pseudo-pyramidal.

Definition 2. Let τ be a CH-tour v1, vi1 , . . . , vir , vk, vjk−r−2 , . . . , vj1 such that
vt ∈ Vt for any t. We call τ an l-pseudo-pyramidal tour, if ip − ip+1 ≤ l and
jq − jq+1 ≤ l for any 1 ≤ p ≤ r − 1 and 1 ≤ q ≤ k − r − 3.

It easy to verify that any l-quasi-pyramidal tour is an l-pseudo-pyramidal as
well.

Theorem 2. For any weighting function w : E → R+, a minimum cost l-
pseudo-pyramidal CH-tour can be found in time of O(2lkl+4n3).

Fig. 3. Auxiliary graph Hθ,u induced by the tour θ = {1, i1, . . . , ik−1} and the node
u ∈ V1

Proof. Our argument consists of two stages.
At the first stage, we enumerate all l-pseudo-pyramidal tours in an auxiliary

complete graph H = Kk with vertex set {1, . . . , k}, which we call graph of
clusters. Denote the set of these tours by Θl.

Then, at the second stage, for any tour θ = (1, i1, . . . , ik−1) ∈ Θl and any
node u ∈ V1, we find a shortest u-u-path ρ(θ, u) in the appropriate auxiliary
(k + 1)-partite graph Hθ,u, which is defined as follows. Denote parts of Hθ,u by
π0, . . . , πk. Then, as it is shown at Fig. 3, π0 = πk = {u} and, for any j ∈ [1, k),
πj coincides with the cluster Vij of the graph G, i.e. πj = Vij . For any j ∈ [0, k),
the subgraph Hθ,u〈πj ∪ πj+1〉 induced by πj and πj+1 is a complete bipartite
graph. The edges of the graph Hθ,u inherit the edge weights of the given graph G.

Evidently, any u-u-path in the graph Hθ,u is equivalent to the appropriate
CH-tour in the graph G. Therefore, a minimum cost l-pseudo-pyramidal CH-tour
in the graph G is defined by a shortest path ρ(θ∗, u∗), i.e.

w(ρ(θ∗, u∗)) = min{w(ρ(θ, u)) : θ ∈ Θl, u ∈ V1}.
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The time complexity of both stages does not exceed the product of the com-
plexity T (Θl) of the l-pseudo-pyramidal tours enumeration procedure for the
graph H (construction of the set Θl), the size of V1, and the complexity of the
shortest-path problem in graphs H(θ, u), i.e. O(k · n2). Hence, the overall time
complexity will be at most T (Θl) · O(n3), since, without loss of generality, we
can assume that |V1| = min{|Vi| : i ∈ [1, k]} ≤ n/k.

To estimate T (Θl) we augment the dynamic programming procedure devel-
oped in [20].

We introduce two sets Θ+
l and Θ−

l of partial simple (possibly closed) paths
in the graph H. Each element of Θ+

l is a path θ+ = (i1, . . . , ic) such that
ip − ip+1 ≤ l for any p ∈ [1, c). Similarly, each element θ− = (j1, . . . , jd) ∈ Θ−

l

satisfies the equation jq+1 − jq ≤ l for any q ∈ [1, d).
The current state of the recursive procedure is encoded by a triple (i, S,E),

whose entries is defined as follows. The number i ∈ [1, k − 1] denotes depth of
recursion. The set S = {p1, . . . , pm} consists of signed pairs (i, j) ∈ [1, k]2 such
that

(i) p1 = (1, s)+ and p2 = (t, 1)− for some {s, t} ⊂ [1, k]
(ii) there exists a set Θ(i, S) of partial paths θ1, . . . , θm, for which

– θa is a simple path from ia to ja

– θa ∈
{

Θ+
l , if pa = (ia, ja)+

Θ−
l , if pa = (ia, ja)−

– let Ia be the nodeset of the path θa; then, I1 ∩ I2 = {1}, and Ia ∩ Ib = ∅

for any other a and b
– I1 ∪ . . . ∪ Im = [1, i].

Finally, the set E is an arcset of the l-pseudo-pyramidal tour to be constructed
(for the convenience, we store edges of this tour with their bypass directions).
Denote

Q =
⋃{{ia, ja} : pa ∈ S

}
.

The recursion starts from the following set of initial states (see Fig. 4)
{
(k − 1, {(1, s)+, (t, 1)−}, {(s, k), (k, t)}) : {s, t} ⊂ [1, k)

}
.

Any time, when i > 1, there are the following six options. Consider them
separately.

Case 1. There exists p = (i, i)+ ∈ S (or (i, i)−). In this simple case, we make a
recursive call with the state (i − 1, S \ {p}, E) immediately.

Case 2. There exists pa = (i, j)+ ∈ S. Then, in the path θa ∈ Θ+
l , the node i

has a successor t ∈ [i − l, i − 1]. We make a recursive call with the state

(i − 1, (S ∪ {(t, j)+}) \ {pa}, E ∪ {(i, t)})

for any t ∈ [i − l, i − 1] \ (Q \ {j}).
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Case 3. There exists pa = (i, j)− ∈ S. Then, in the path θa ∈ Θ−
l , there is a

successor t ∈ [1, i − 1], and we call the recursion with the state

(i − 1, (S ∪ {(t, j)−}) \ {pa}, E ∪ {(i, t)})

for each t ∈ [1, i − 1] \ (Q \ {j}).

Case 4. There is p = (j, i)+ ∈ S. This can be treated similarly to Case 3.

Case 5. There is p = (j, i)− ∈ S. This is similar to Case 2.

Case 6. In this case, i �∈ Q, and we should try iteratively all elements of the set
S. Suppose, i belongs to path θa assigned to the pair pa = (ia, ja)+ ∈ S such
that s ∈ [1, i − 1] is its predecessor, and t ∈ [i − l, i − 1] is a successor. Then we
should call the recursion with the state

(i − 1, S ∪ {(ia, s)+, (t, ja)+}, E ∪ {(s, i), (i, t)})

for each s ∈ [1, i − 1] \ (Q \ {ia}) and t ∈ [i − l, i − 1] \ (Q \ {ja}). Similarly, for
the pair pa = (ia, ja)−, we make a recursive call with states

(i − 1, S ∪ {(ia, s)−, (t, ja)−}, E ∪ {(s, i), (i, t)})

for each s ∈ [i − l, i − 1] \ (Q \ {ia}) and t ∈ [1, i − 1] \ (Q \ {ja}).
If i = 1, then S = {(1, 1)+, (1, 1)−}, and the state (1, S, E) is final. In this

case, E contains arcs of an l-pseudo-pyramidal tour, which can be decoded in
time O(k).

Since, as it is shown in [20] the time complexity of the recursive procedure
above is O(2lkl+3), the overall complexity bound of finding the minimum cost
l-pseudo-pyramidal tour is

O(2lkl+3) × O(k) × O(n3) = O(2lkl+4n3).

Thus, the theorem is proved.

Remark 2. As with Theorem 1, Theorem 2 states that, for any weighting func-
tion, GTSP belongs to FPT with respect to parameters k and l. Also, since
O(2l(log n)l+4n3) asymptotically does not exceed 2O(l3) ·O(n4), the problem has
FPT algorithms with respect to parameter l only any time when k = O(log n).

3 Polynomial Time Solvable Subclass of GTSP on Grid
Clusters

In this section, we describe a polynomially solvable subclass of the Generalized
Traveling Salesman Problem on Grid Clusters, GTSP-GC for short. In this spe-
cial case of the GTSP, an undirected edge-weighted graph G = (V,E,w) is given
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Fig. 4. Example of the initial recursion state

Fig. 5. An instance of the Euclidean GTSP-GC and its optimal solution

where the set of vertices V correspond to a set of points in the planar rectan-
gular grid. Every nonempty 1 × 1 cell of the grid forms a cluster. The weighting
function is induced by distances between the respective points with respect to
some metric. To simplify it, we consider Euclidean distances, but similar results
can be easily obtained for some other metrics, e.g. for l1. In Fig. 5, we present
an instance of the Euclidean GTSP-GC with 6 clusters.

For two special cases of the problem, when the number k of clusters is O(log n)
or n−O(log n), polynomial time approximation schemes (PTAS) were proposed
in [17]. Meanwhile, the question of a systematic description of polynomial time
solvable subclasses of GTSP-GC, which is closely related to complexity analysis
of the Hamiltonian cycle problem on grid graphs, is still far from its complete
answer.

Let H and W be height and width (number of rows and columns) of the given
grid, respectively. We consider a special case of the GTSP-GC, for which one of
these parameters, say H does not exceed 2 (while the other one is unbounded).
We call this case GTSP-GC(H2). We show that any instance of GTSP-GC(H2)
has an l-quasi-pyramidal optimal CH-tour for some l independent on n. There-
fore, this subclass of GTSP-GC is polynomially solvable due to Theorem 1.
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Our argument is based on the Tour straightening transformation (Algorithm
1), which is closely related to the well-known class of local search heuristics and
is introduced in the following.

Algorithm 1. Tour straightening transformation
Outer Parameter: t.
Input: an instance of GTSP-GC(H2) and a CH-tothe τ .
Output: a CH-tour τ ′ without t-zigzags.

1: set τ ′ := τ
2: while τ ′ has t-zigzag do
3: assume that equation (5) is valid (without loss of generality, we assume that

cp − cq = t − 1), the case of (6) can be treated similarly;
4: let C be the set of columns with numbers cq, . . . , cp (see Fig. 6);
5: let Y = (y1, . . . , y2t+4) be ordinate sequence of the nodes visited by τ in C

augmented by ordinates of left and right crossing points;
6: find an optimal 2-medians the clustering for Y with medians m1 and m2;
7: replace segments of tour τ ′ belonging to C by horizontal lines at height m1 and

m2 connected to all points mentioned in Step 5 by line segments (Fig. 7)
8: end while
9: output the CH-tour τ ′.

To describe the transformation, assign to columns of the grid defining the
given instance of GTSP-GC(H2), integer numbers 1, 2, . . . , W (from the left to
the right). Consider an arbitrary CH-tour τ . Assigning to each node vi of τ the
number ci of the column it belongs to, obtain a sequence σ of column numbers
presented in the order induced by the tour τ . Without loss of generality, assume
that σ has the form

1 = c1, c2, . . . , cr = W, cr+1 . . . , cs (4)

for some appropriate numbers r and s.

Fig. 6. Segment of τ with t-zigzag
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Suppose, for some integer number t, whose value will be specified later, there
exist indices

1 ≤ p < q ≤ r, such that cp − cq ≥ t − 1, or (5)
r + 1 ≤ p′ < q′ ≤ s, such that cq′ − cp′ ≥ t − 1. (6)

In this case, we say that the tour τ has a t-zigzag (Fig. 6). Obviously, any l-
quasi-pyramidal tour contains no t-zigzags, for t ≥ l. Algorithm 1 replaces all
segments of the tour τ having t-zigzags with subtours of a special kind.

Fig. 7. Replacing t-zigzag with tour segments of the special kind

To specify the value of t, notice that the weight of eliminated segments of τ
has an evident lower bound

t + 2(t − 1) + t − 2 = 4t − 4.

Meanwhile, the weight of their replacement in Step 7 at any iteration of Algo-
rithm 1 is at most 2t + 2F (Y, S2), where F (Y, S2) is an optimum value of the
2-medians clustering objective function for a sample Y taken from the line seg-
ment S2 = {y : 0 ≤ y ≤ 2}.

To estimate an upper bound for F (Y, S2) we need the following technical
lemma.

Lemma 1. For any sample ξ = (p1, . . . , pn), pi ∈ S1 = {p : 0 ≤ p ≤ 1} there
exist numbers m1 and m2 ∈ S1 such that

F (ξ, S1) =
n∑

i=1

min{|pi − m1|, |pi − m2|} ≤ n/6. (7)

We give a short sketch of the proof of Lemma 1 postponing its full version to
the forthcoming paper. Without loss of generality, we assume that any sample
ξ = (p1, . . . , pn) contains points pi in ascending order. Moreover, we assume that
any cluster C = {i1, . . . , iμ} ⊂ [1, n] inherites this property, i.e. pi1 ≤ . . . ≤ piµ

and pi ≤ pj holds for any partition C1 ∪ C2 = [1, n] and any i ∈ C1 and j ∈ C2.
Then, for the median m of a μ-points cluster C we obtain

μ∑

t=1

|pit − m| =
�μ/2	∑

t=1

(m − pit) +
μ∑

t=
μ/2�+1

(pit − m) = −
�μ/2	∑

t=1

pit +
μ∑

t=
μ/2�+1

pit .
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Therefore, for a given sample ξ, the value F (ξ, S1) depends on the choice of a
partition C1 ∪ C2 = [1, n] ultimately and obeys the equation

F (ξ, S1) = min

{
∑

i∈C1

|pi − m1| +
∑

i∈C2

|pi − m2| : C1 ∪ C2 = Nn

}

= min

⎧
⎨

⎩
−

�μ1/2�∑

i=1

pi +

μ1∑

i=�μ1/2�+1

pi −
�μ2/2�∑

i=1

pi+μ1 +

μ2∑

i=�μ2/2�+1

pi+μ1 : μ1 + μ2 = n

⎫
⎬

⎭
.

Thus, supξ∈Sn
1

F (ξ, S1) coincides with an optimum value q∗(n, S1) of linear
program (8)

q∗(n, S1) = max q
s.t.

−
�μ1/2	∑

i=1

pi +
μ1∑

i=
μ1/2�+1

pi

−
�μ2/2	∑

i=1

pi+μ1 +
μ2∑

i=
μ2/2�+1

pi+μ1 ≥ q, (μ1 + μ2 = n),

0 ≤ p1 ≤ . . . ≤ pn ≤ 1.
(8)

Applying to program (8) the recurrent variable elimination technique, it is easy
to verify that q∗(n, S1) ≤ n/6, which completes the sketch of our proof.

Getting back to discussion of Algorithm 1, we obtain from Lemma 1 that

F (Y, S2) ≤ 2 · q∗(2t + 4, S1) ≤ 2 · (2t + 4)/6.

Therefore, at any iteration of Algorithm 1, the tour τ ′ becomes cheeper if

2t + 4t/3 + 8/3 ≤ 4t − 4, i.e. t ≥ 10.

Fig. 8. Cluster ordering

Further, let the cells of the grid be ordered as in Fig. 8 (i.e., top-down and
left-right). For t = 10, any CH-tour of the given GTSP-GC(H2) instance can
be transformed to l-quasi-pyramidal CH-tour for l = 20 without increasing its
weight. Hence, we have proved the following theorem.
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Theorem 3. Any instance of GTSP-GC(H2) has an optimal 20-quasi-pyrami-
dal CH-tour.

As a consequence of Theorems 1 and 3, we obtain that GTSP-GC(H2) can
be solved to optimality in time O(n3).

4 Conclusion

In this paper, the new notions of l-quasi-pyramidal and l-pseudo-pyramidal tours
extending the classic notion of pyramidal tours are introduced. We show that,
similar to the case of pyramidal tours and TSP, an optimal l-quasi-pyramidal
tour for the Generalized Traveling Salesman Problem can be found efficiently (for
an arbitrary weighting function). Also, we describe a non-trivial polynomially
solvable geometric special case of GTSP. Each instance of the problem in question
has an l-quasi-pyramidal tour as an optimal solution. Actually, an instance of
this problem is defined by the unit 2-row rectangular grid on the Euclidean plane.
However, the trick with 2-medians can not be applied straightforward even to
the case h = 3, we believe that we can soon prove the existence of l-pseudo-
pyramidal optimal tours for the case of GTSP-GC(Hh) defined by a grid of an
arbitrary fixed height h.
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