
Improved Methods for Computing Distances
Between Unordered Trees Using Integer

Programming

Eunpyeong Hong(B), Yasuaki Kobayashi, and Akihiro Yamamoto

Kyoto University, Kyoto, Japan
ephong93@gmail.com, kobayashi@iip.ist.i.kyoto-u.ac.jp,

akihiro@i.kyoto-u.ac.jp

Abstract. Kondo et al. (DS 2014) proposed integer linear program-
ming formulations for computing the tree edit distance and its variants
between unordered rooted trees. They showed that the tree edit dis-
tance, segmental distance, and bottom-up segmental distance problems
respectively have integer linear programming formulations with O(nm)
variables and O(n2m2) constraints, where n and m are the number of
nodes of two input trees. In this work, we propose new integer linear pro-
gramming formulations for these three distances and the bottom-up dis-
tance by combining with dynamic programming. For computing the tree
edit distance, we solve O(nm) subproblems, each of which is formulated
by an integer linear program with O(nm) variables and O(n + m) con-
straints. For the other three distances, each subproblem can be reduced
to the maximum weight matching problem in a bipartite graph which is
solvable in polynomial time. In order to compute the distances from the
solutions of subproblems, we also give a unified integer linear formulation
with O(nm) variables and O(n + m) constraints. We conducted a com-
putational experiment to evaluate the performance of our methods. The
experimental results show that our methods remarkably outperformed
to the previous methods due to Kondo et al.

Keywords: Tree edit distance · Unorderd trees · Integer programming ·
Dynamic programming

1 Introduction

In machine learning applications, it is important to compare (dis)similarities
between tree-structured data such as XML and RNA secondary structures. There
are many measures of similarities between two trees. The tree edit distance
[16] is one of the most widely used measures, which is defined as the minimum
cost of edit operations to transform a tree into another. However, the tree edit
distance may not be appropriate to use in some applications. In this context,
many variants of the tree edit distance have been proposed (see [12], for example).

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part II, LNCS 10628, pp. 45–60, 2017.
https://doi.org/10.1007/978-3-319-71147-8_4

46 E. Hong et al.

The distance to be considered in this paper are the tree edit distance, segmental
distance [9], bottom-up segmental distance [9] and bottom-up distance [17].

It is known that most of distances between ordered rooted trees can be com-
puted in polynomial time. For example, Tai [16] showed that the tree edit dis-
tance between ordered rooted trees can be computed in O(n3m3) time, where
n and m are the number of nodes of input trees, and Demaine et al. [4] improved
the running time to O(nm2(1+log n

m)). If input trees are unordered, the problems
of computing the above four distances are known to be not only NP-hard [20], but
also MAX SNP-hard [9,17,19]. Akutsu et al. studied the tree edit distance prob-
lem between unordered trees from a theoretical algorithmic perspective. They
gave an approximation algorithm and exact algorithms [1–3]. From the practical
point of view, several researches for the unordered tree edit distance have been
done so far. Horesh et al. [7] proposed an A∗ algorithm for unlabeled unordered
trees and Higuchi et al. [6] extended it for labeled trees. Fukagawa et al. [5] pro-
posed a method to reduce the edit distance problem into the maximum weight
clique problem and used an algorithm due to [15] to solve it. They showed
that the clique-based method is as fast as A*-based method. Mori et al. [14]
improved it by applying a dynamic programming approach. They showed that
their method is faster than the previous clique-based method. Kondo et al. [11]
proposed a method to reduce an instance of the edit distance problem into
an instance of integer linear programming (IP) problem with O(nm) variables
and O(n2m2) constraints. However, their IP formulation has a large number of
constraints and hence their method may not be applicable to moderate-sized
instances. Although they showed that their method is faster than the clique-
based method of Mori et al. [14] when input trees have large degree nodes, their
IP-based method is not very efficient for the other case.

An advantage of IP-based method is that we can easily make an IP formu-
lation representing variations of the edit distance by adding some further con-
straints. In fact, Kondo et al. showed IP formulations which represent segmental
distance and bottom-up segmental distance by adding appropriate constraints.
Another advantage of this method is that we can use state-of-the-art IP solvers
(e.g. CPLEX, Gurobi), which can quickly solve many hard problems.

In this paper, we propose new methods to compute the edit distance, seg-
mental distance, bottom-up segmental distance and bottom-up distance between
unordered rooted trees. The improvement of computational efficiency is obtained
by applying a dynamic programming approach due to [14]. However, it is not
only sufficient to apply the dynamic programming but it is necessary to use a
structural property of rooted trees. Their dynamic programming approach with
this property allows us to drastically reduce the number of constraints in our IP
formulations for the above distances. For the edit distance problem, our method
has to solve O(nm) subproblems each of which has only O(n + m) constraints.
For the other distances, each subproblem except the problem of combining the
solutions of subproblems can be reduced to the maximum weighted matching
problem in a bipartite graph, which can be solved in polynomial time using the
Hungarian method [13].

Improved Methods for Computing Distances Between Unordered Trees 47

The rest of the paper is organized as follows. We give notations and pre-
liminary results in Sect. 2 and briefly explain the previous method in Sect. 3.
In Sect. 4, we introduce our new methods. In order to evaluate our methods, we
implemented previous and our methods and conducted experiment using Glycan
dataset [10] and CSLOGS dataset [18]. The results of our experiments are shown
in Sect. 5. Finally, we conclude our paper with some discussions.

2 Preliminaries

Let T be a rooted tree. The root of T is denoted by r(T). In this paper, we may
simply write T to represent the set of nodes of T . For x, y ∈ T , x ≤ y means
that x is on the unique path between the root and y. If x ≤ y and x �= y, we
write x < y and say that x is an ancestor of y and y is a descendant of x. It is
easy to see that the relation ≤ is a partial order on T . The parent of x, denoted
by p(x), is the closest ancestor of x. A node y > x is called a child of x if there
is no z with x < z < y. The set of children of x is denoted by C(x). We call
the number of children of x the degree of x. A node x is called a leaf if it has
no children. The set of all leaves of a tree T is denoted by L(T). Nodes x and
y are siblings if they have the same parent. A tree is called unordered tree if
there is no order among siblings. Let Σ be a finite alphabet and lT : T → Σ a
labeling function. A tuple (T, lT) is called a labeled tree. For x ∈ T , we use T (x)
to denote the subtree of T rooted at x. For notational convenience, we simply
write T − x to denote the subgraph of T obtained by removing a node x.

2.1 Tree Edit Distance

The tree edit distance between two trees is defined as the minimum cost of edit
operations to transform a tree into another.

Definition 1 (Edit Operations). Let T be a tree. Edit operations on T consist
of the following three operations.

Substitution. Replace the label of a node in T with a new label.
Deletion. Delete a non-root node t of T , making all children of t be the
children of p(t).
Insertion. Insert a new node t as a child of some node v in T , making some
children of v be the children of t.

Let Σε = Σ ∪ {ε}, where ε is a blank symbol not in Σ. In order to describe
costs on edit operations, we denote each of the edit operations by a pair in
Σε×Σε\{(ε, ε)}. Substituting a node labeled with a by another node labeled with
b is denoted by (a, b). Inserting a node labeled with b is denoted by (ε, b). Deleting
a node labeled with a is denoted by (a, ε). Let d : Σε × Σε \ {(ε, ε)} → R

+ be a
cost function on edit operations. Assume, in this paper, that d is a metric. In the
following, we simply write d(x, y) for (x, y) ∈ T1 ×T2 to represent d(l1(x), l2(y)),
where l1 and l2 are labeling functions on two trees T1 and T2, respectively.

Let E = 〈e1, e2, . . . , et〉 be a sequence of edit operations, where ei = (ai, bi)
for ai, bi ∈ Σε. The cost of the sequence is defined as cost(E) =

∑
1≤i≤t d(ei).

48 E. Hong et al.

Definition 2 (Tree Edit Distance [16]). Let T1 and T2 be trees and
E(T1, T2) the set of all sequences of edit operations which transform T1 into
T2. The tree edit distance between T1 and T2 is defined as DEdit(T1, T2) =
minE∈E(T1,T2) cost(E).

A mapping between T1 and T2 is a subset of T1 × T2. The set of nodes that
belongs to a mapping M is denoted by V (M). Tai [16] gave a combinatorial
characterization of the tree edit distance by means of a mapping, which is called
a Tai mapping.

Definition 3 (Tai Mapping [16]). Let T1 and T2 be trees. A mapping
M is called a Tai mapping if it satisfies the following constraints for every
(x, y), (x′, y′) in M :

One-to-one correspondence: x = x′ ⇔ y = y′,
Preserving ancestor-descendant relationship: x < x′ ⇔ y < y′.

The cost of a Tai mapping M is defined as

cost(M) =
∑

(x,y)∈M

d(x, y) +
∑

x∈T1\V (M)

d(x, ε) +
∑

y∈T2\V (M)

d(ε, y).

Let MTai(T1, T2) be the set of all Tai mappings between T1 and T2. Tai [16]
showed the following theorem.

Theorem 1 ([16]). For two trees T1 and T2, DEdit(T1, T2) = min
M∈MTai(T1,T2)

cost(M).

2.2 Variants of Edit Distance

The tree edit distance is one of the most widely used to measure a similarity
between two trees. However, it may not be appropriate for some applications
because one may need a distance on which some specific structure of trees is
reflected. Many variants of the tree edit distance have been proposed in the
literature [9,17]. We work on the following three variants, which are defined by
mappings rather than edit operations.

Definition 4 (Segmental Mapping [9]). Let T1 and T2 be trees. A Tai
mapping M between T1 and T2 is called a segmental mapping if for any
(x, y), (x′, y′) ∈ M with x < x′ and y < y′, (p(x′), p(y′)) ∈ M .

Definition 5 (Bottom-up Segmental Mapping [9]). Let T1 and T2 be trees.
A segmental mapping M between T1 and T2 is called a bottom-up segmental
mapping if for any (x, y) ∈ M , there is (x′, y′) ∈ M such that x′, y′ are leaves
with x ≤ x′ and y ≤ y′.

Definition 6 (Bottom-up Mapping [17]). Let T1 and T2 be trees. A Tai
mapping M between T1 and T2 is called a bottom-up mapping if for any (x, y) ∈
M , the submapping obtained from M by restricting to C(x) × C(y) forms a
bijection between C(x) and C(y).

Improved Methods for Computing Distances Between Unordered Trees 49

Let us note that the condition in Definition 6 can be restated in the following
way: M is a bottom-up mapping if for any (x, y) ∈ M , the submapping obtained
from M by restricting to T1(x)×T2(y) is an isomorphism mapping, ignoring the
label information.

Definition 7 ([9,17]). Let T1 and T2 trees. Denote the sets of all possible
segmental mappings, bottom-up segmental mappings, and bottom-up mappings
between T1 and T2 by MSg(T1, T2),MBotSg(T1, T2), and MBot(T1, T2), respec-
tively. The segmental distance, bottom-up segmental distance, and bottom-up
distance between T1 and T2, which are denoted by DSg(T1, T2),DBotSg(T1, T2),
and DBot(T1, T2) respectively, are defined as follows:

DSg(T1, T2) = min
M∈MSg(T1,T2)

cost(M)

DBotSg(T1, T2) = min
M∈MBotSg(T1,T2)

cost(M)

DBot(T1, T2) = min
M∈MBot(T1,T2)

cost(M).

3 Previous Method [11]

In the rest of this paper, fix input trees T1 and T2, and let n = |T1| and m = |T2|.
Kondo et al. [11] proposed an integer linear programming formulation for the
tree edit distance. For the tree edit distance between T1 and T2, we introduce a
binary variable mx,y for every (x, y) ∈ T1 × T2 which takes value 1 if and only
if (x, y) ∈ MTai(T1, T2). Then, we can reformulate the cost of a Tai mapping M
as:

cost(M) =
∑

(x,y)∈M

d(x, y) +
∑

x∈T1\V (M)

d(x, ε) +
∑

y∈T2\V (M)

d(ε, y)

=
∑

(x,y)∈T1×T2

d(x, y)mx,y +
∑

x∈T1

d(x, ε)

⎧
⎨

⎩
1 −

∑

y∈T2

mx,y

⎫
⎬

⎭

+
∑

y∈T2

d(ε, y)

{

1 −
∑

x∈T1

mx,y

}

=
∑

(x,y)∈T1×T2

{d(x, y)−d(x, ε)−d(ε, y)} mx,y+
∑

x∈T1

d(x, ε)+
∑

y∈T2

d(ε, y).

The two constraints of Tai mapping are directly formulated as the following
inequalities:

∑

y∈T2

mx,y ≤ 1 for all x ∈ T1,

∑

x∈T1

mx,y ≤ 1 for all y ∈ T2,

mx,y + mx′,y′ ≤ 1 for all (x, y), (x′, y′) ∈ T1 × T2 s.t. x < x′ �⇔ y < y′.

50 E. Hong et al.

The first two constraints are equivalent to the one-to-one correspondence of Tai
mapping: For any node x ∈ T1 (resp. y ∈ T2), at most one node of T2 (resp.
T1) is allowed to be paired. The third constraint is equivalent to the ancestor-
descendant preservation: For any two pairs which do not preserve the ancestor-
descendant relationship, both of them cannot be included in M simultaneously.
This formulation contains O(nm) variables and O(n2m2) constraints.

Kondo et al. also gave IP formulations for the segmental distance and
bottom-up segmental distance. These distances can be formulated by impos-
ing additional constraints on the formulation of the tree edit distance. In regard
of the segmental mapping, the constraints of segmental mapping can be repre-
sented as follows:

mx,y + mx′,y′ ≤ mp(x′),p(y′) + 1, for all (x, y), (x′, y′) ∈ T1

× T2 s.t. x < x′ and y < y′.

The constraints of bottom-up segmental mapping can also be represented as
follows:

mx,y ≤ ∑

x′∈L(T1(x)),
y′∈L(T2(y))

mx′,y′ , for all (x, y) ∈ T1 × T2 s.t. x /∈ L(T1) and y /∈ L(T2).

The above two formulations also contain O(nm) variables and O(n2m2) con-
straints.

4 Improved Method

4.1 Improved Method for Tree Edit Distance

In this subsection, we propose a new IP formulation for the edit distance prob-
lem by combining a dynamic programming approach due to [14]. The dynamic
programming computes a minimum cost Tai mapping Mx,y between T1(x) and
T2(y) with (x, y) ∈ Mx,y for (x, y) ∈ T1 × T2 in a bottom-up manner. Once we
have the solutions for all pairs (x, y) ∈ T1 × T2, we can construct a minimum
cost Tai mapping between T1 and T2.

First, we modify the objective function

minimize
∑

(x,y)∈T1×T2

{d(x, y) − d(x, ε) − d(ε, y)}mx,y +
∑

x∈T1

d(x, ε) +
∑

y∈T2

d(ε, y)

to
maximize

∑

(x,y)∈T1×T2

wx,ymx,y,

where wx,y = d(x, ε) + d(ε, y) − d(x, y). This modification is valid since the
second and third terms do not affect the minimization. Since the solution of our

Improved Methods for Computing Distances Between Unordered Trees 51

subproblem for T1(x) and T2(y) must contain the root pair (x, y), the objective
function on the input trees T1(x) and T2(y) can be represented as

maximize
∑

(x′,y′)∈(T1(x)−x)×(T2(y)−y)

wx′,y′mx′,y′ + wx,y. (1)

We denote by Wx,y the maximum value of (1). If at least one of x and y is a leaf,
Wx,y = wx,y. Thus, in the following, we assume that neither x nor y is a leaf.
The idea for our dynamic programming is that Wx,y can be recursively computed
from the values Wx′,y′ for x < x′ and y < y′. To be precise, let M∗(T1(x), T2(y))
be the set of all Tai mappings M between T1(x) and T2(y) such that x, y /∈ V (M)
and both T1 ∩V (M) and T2 ∩V (M) are antichains in (T1(x),≤) and (T2(y),≤),
respectively. We call M ∈ M∗(T1(x), T2(y)) an incomparable mapping between
T1(x) and T2(y). For a Tai mapping M , let w(M) =

∑
(x,y)∈M wx,y and for an

incomparable mapping M , let W (M) =
∑

(x,y)∈M Wx,y. The following lemma is
a key ingredient of our formulation.

Lemma 1. Wx,y = max
M∈M∗(T1(x),T2(y))

W (M) + wx,y.

Proof. We first show that the left-hand side is at most the right-hand side. Let M
be a Tai mapping between T1(x) and T2(y) with (x, y) ∈ M and w(M) = Wx,y.
Then, M can be uniquely decomposed into {(x, y)},Mx1,y1 ,Mx2,y2 , . . . ,Mxk,yk

such that for any 1 ≤ i ≤ k, Mxi,yi
is a Tai mapping between T1(xi) and T2(yi)

with (xi, yi) ∈ Mxi,yi
and {(xi, yi) : 1 ≤ i ≤ k} ∈ M∗(T1(x), T2(y)). Such a

decomposition can be obtained by choosing minimal node pairs (xi, yi) ∈ M \
{(x, y)} with respect to ≤: For any (x′, y′) ∈ M either xi ≤ x′ and yi ≤ y′, or xi

and yi are not comparable to x′ and y′, respectively. For each 1 ≤ i ≤ k, we have
w(Mxi,yi

) ≤ Wxi,yi
. Therefore, Wx,y = w(M) =

∑
1≤i≤k w(Mxi,yi

) + wx,y ≤∑
1≤i≤k Wxi,yi

+ wx,y ≤ maxM∗∈M∗(T1(x),T2(y)) W (M∗) + wx,y.
To show the converse, let M be an incomparable mapping between T1(x)

and T2(y). For each (x′, y′) ∈ M , we let Mx′,y′ be a Tai mapping between
T1(x′) and T2(y′) such that Wx′,y′ = w(Mx′,y′) and (x′, y′) ∈ Mx′,y′ . Since
T1(x) ∩ V (M) and T2(y) ∩ V (M) are antichains,

⋃
(x′,y′)∈M Mx′,y′ ∪ {(x, y)} is

a Tai mapping between T1(x) and T2(y). Therefore, we haveW (M) + wx,y ≤∑
(x′,y′)∈M w(Mx′,y′) + wx,y ≤ Wx,y and hence the lemma holds. ��
By Lemma 1, our problem is to maximize

∑

(x′,y′)∈M

Wx′,y′mx′,y′ + wx,y

subject to M ∈ M∗(T1(x), T2(y)).
Mori et al. [14] reduced the problem of finding a maximum weight incompa-

rable mapping to the maximum vertex weight clique problem, which corresponds
to the maximum weight independent set problem on complement graphs. Their
reduction can be interpreted as the following constraint:

mx′,y′ + mx′′,y′′ ≤ 1 for all (x′, y′), (x′′, y′′) ∈ T1(x)
× T2(y) s.t. x′ < x′′ or y′ < y′′.

However, this formulation contains Ω(n2m2) constraints.

52 E. Hong et al.

In order to reduce the number of constraints, we will exploit a structure of
rooted trees. For a node x ∈ T and a leaf l ∈ L(T (x)), let PT

xl be the unique path
between x and l in T . Then, for any M ∈ M∗(T1(x), T2(y)) and any l ∈ L(T1(x))
(resp. l ∈ L(T2(y))), at most one node of PT1

xl (resp. PT2
yl) can be chosen in M ,

that is, ∑

x′∈P
T1
xl −x

∑

y′∈T2(y)−y

mx′,y′ ≤ 1 for all l ∈ L(T1(x)),

∑

y′∈P
T2
yl −y

∑

x′∈T1(x)−x

mx′,y′ ≤ 1 for all l ∈ L(T2(y)).

This is formalized by the following lemma.

Lemma 2. Let x ∈ T1 and y ∈ T2. Then, Wx,y can be computed by the following
IP.

maximize
∑

x′∈T1(x)−x,y′∈T2(y)−y

Wx′,y′mx′,y′ + wx,y

subject to
∑

x′∈P
T1
xl

−x

∑

y′∈T2(y)−y

mx′,y′ ≤ 1 for all l ∈ L(T1(x))

∑

y′∈P
T2
yl

−y

∑

x′∈T1(x)−x

mx′,y′ ≤ 1 for all l ∈ L(T2(y))

mx′,y′ ∈ {0, 1} for all x′ ∈ T1(x) − x, y′ ∈ T2(y) − y.

Proof. By Lemma 1, it suffices to prove that M = {(x′, y′) : x′ ∈ T1(x), y′ ∈
T2(y),mx′,y′ = 1} is an incomparable mapping if and only if m∗,∗ is a feasible
solution.

Suppose first that M ∈ M∗(T1(x), T2(y)). Since T1(x) ∩ V (M) forms an
antichain in (T1,≤), M has at most one node in PT1

xl for each l ∈ L(T1(x)).
Therefore, binary variables mx′,y′ do not violate the first type constraints. A
symmetric argument for T2(y) ∩ V (M) implies that m∗,∗ is a feasible solution
for the IP.

Suppose, for contradiction, m∗,∗ is a feasible solution and there are
(x′, y′), (x′′, y′′) in M that violate the condition of incomparable mapping. There
are two possibilities: (x′, y′) and (x′′, y′′) violate the one-to-one correspondence
of Tai mapping or at least one of x′ < x′′ or y′ < y′′ holds. For the former case,
assume without loss of generality that x′ = x′′ and y′ �= y′′. In this case, the
pairs contribute at least two to a constraint for each l ∈ T1(x′), which contradict
the feasibility of m∗,∗. For the latter case, assume without loss of generality that
x′ < x′′. In this case, there is a path PT1

xl − x that contains both x′ and x′′. The
pairs contribute at least two to a constraint for such l ∈ L(T1(x)), which also
contradict the feasibility of m∗,∗. Therefore, the lemma holds. ��

For x ∈ T1 and y ∈ T2, we can compute Wx,y by using the formulation of
Lemma 2. The remaining task is to compute DEdit(T1, T2) from the values Wx,y.

Theorem 2. Let opt be the optimal value of the following IP. Then,
DEdit(T1, T2) =

∑

x∈T1

d(x, ε) +
∑

y∈T2

d(ε, y) − opt.

Improved Methods for Computing Distances Between Unordered Trees 53

maximize
∑

x∈T1,y∈T2

Wx,ymx,y

subject to
∑

x∈P
T1
r(T1)l

∑

y∈T2

mx,y ≤ 1 for all l ∈ L(T1)

∑

y∈P
T2
r(T2)l

∑

x∈T1

mx,y ≤ 1 for all l ∈ L(T2)

mx,y ∈ {0, 1} for all x ∈ T1, y ∈ T2.

The proof of Theorem 2 is analogous to those of Lemmas 1 and 2. Our
method has O(nm) subproblems, each of which contains O(nm) variables and
only O(|L(T1) + |L(T2)|) constraints.

4.2 Improved Methods for Variants of Edit Distance

We have seen that the tree edit distance can be computed by the following two
steps: (1) for each x ∈ T1 and y ∈ T2, compute Wx,y, and (2) combine the
solutions Wx,y of subproblems to obtain the tree edit distance between T1 and
T2 as in Theorem 2. In this subsection, we show that the segmental distance,
bottom-up segmental distance, and bottom-up distance can be computed in the
same manner.

Segmental Distance. Let x and y be nodes of two trees T1 and T2, respectively.
We denote here by Wx,y the maximum weight, that is the maximum value of
(1), of segmental mappings Mx,y between T1(x) and T2(y) with (x, y) ∈ Mx,y.
If either x or y is a leaf, we have Wx,y = wx,y. Thus, we suppose otherwise.
Suppose Wx′,y′ have already computed for each (x′, y′) ∈ (T1(x) × T2(y)) \
{(x, y)}. Observe that for any segmental mapping Mx,y with (x, y) ∈ Mx,y, if a
child of x is in V (Mx,y), it must be paired with a child of y in V (Mx,y). Moreover,
if a descendant x′ of x that is not a child of x is in V (Mx,y), the child of x that
is an ancestor of x′ must be in V (Mx,y). These observations imply that Mx,y

can be constructed by a disjoint union of mappings Mx′,y′ for x′ ∈ C(x) and
y′ ∈ C(y), where Mx′,y′ is a segmental mapping between T1(x′) and T2(y′) with
(x′, y′) ∈ Mx′,y′ . Therefore, in order to compute Wx,y, we construct a bipartite
graph Gx,y as follows. For each z ∈ C(x) ∪ C(y), we create a vertex vz and
for each x′ ∈ C(x) and y′ ∈ C(y), add an edge between vx′ and vy′ whose
weight equals Wx′,y′ . The maximum weight of a matching in Gx,y is exactly
Wx,y. It is well-known that a maximum weight bipartite matching can be solved
in polynomial time using Hungarian method [13].

When Wx,y is computed for each x ∈ T1 and y ∈ T2, we can compute the
segmental distance between T1 and T2 by using the IP formulation described in
Theorem 2.

Bottom-Up Segmental Distance. Since any bottom-up segmental mapping is
a segmental mapping, the above observations also hold and each subproblem can
be reduced to a maximum weight matching problem in a bipartite graph as well.

54 E. Hong et al.

The only difference from the case of segmental distance is that for every node
z in V (Mx,y), there is a leaf that is a descendant of z in V (Mx,y). To this end,
we need to exclude the following two cases from our solution. If exactly one of
x and y is a leaf, then Wx,y must be zero since (x, y) violates the condition
of bottom-up segmental mapping. The other case is that neither x nor y is a
leaf and the solution of the maximum weight matching equals zero. This implies
that an optimal mapping between T1(x) and T2(y) consists of a single pair (x, y),
which also violates the condition of bottom-up segmental mapping. Therefore,
we set Wx,y = 0 in this case.

Bottom-Up Distance. First, we propose a naive IP formulation for computing
bottom-up distance. A straightforward implication from Definition 6 is that if
(x, y) ∈ M , the mapping between C(x) and C(y) must be a bijection. A naive
formulation can be obtained from that of Tai mapping by adding the following
constraints:

mx,y ≤ ∑

y′∈C(y)

mx′,y′ for all (x, y) ∈ T1 × T2 and for all x′ ∈ C(x),

mx,y ≤ ∑

x′∈C(x)

mx′,y′ for all (x, y) ∈ T1 × T2 and for all y′ ∈ C(y).

This formulation contains O(nm) variables and O(n2m2) constraints.
Since bottom-up mapping is a subclass of bottom-up segmental mapping, we

can apply the technique used for the bottom-up segmental distance as well. All
we have to do is consider the case when two trees T1(x) and T2(y) are structurally
isomorphic, i.e., they are isomorphic ignoring the labels. Thus, for x ∈ T1 and
y ∈ T2, we set Wx,y = 0 if two subtrees T1(x) and T2(y) are not structurally
isomorphic.

Our improved methods for the above three distances contain O(nm) sub-
problems, each of which can be solved in polynomial time. For combining the
solutions of these subproblems, we need to solve an integer program in Theo-
rem 2. Such IPs also have O(nm) variables and O(n + m) constraints.

5 Experiments

To compare the experimental performance of our methods and the previous
methods, we applied them to real tree-structured data. We used glycan data
obtained from KEGG/Glycan database [10] and CSLOGS dataset [18] which
consists of web log files. In our experiments, we adopt the unit cost for the cost
function, which is defined as:

d(x, y) =
{

0 if l1(x) = l2(y)
1 otherwise .

We implemented the previous methods for computing edit distance (IP Edit),
segmental distance (IP Sg), and bottom-up segmental distance (IP BotSg) given

Improved Methods for Computing Distances Between Unordered Trees 55

by Kondo et al. [11] and a naive method for computing bottom-up distance
(IP Bot) described in the previous section. We also implemented our meth-
ods for computing these four distances (DpIP Edit, DpIP Sg, DpIP BotSg, and
DpIP Bot). In addition to the above implementations, we intended to compare
our methods with the algorithm due to Mori et al. [14]. Their algorithm reduces
the tree edit distance problem to the maximum weight clique problem and uses
the maximum weight clique algorithm due to [15]. However, the purpose of our
experiments is to compare formulations or reductions rather than the perfor-
mance of specific IP or other solvers. Therefore, we used an ordinary IP formu-
lation of the maximum weight clique problem instead of the algorithm of [15],
which is denoted by IP DpClique E.

We implemented the methods mentioned above in Java 1.8 combined with
IBM ILOG CPLEX 12.7. We have forced CPLEX to run in sequential mode,
setting parameter IloCplex.IntParam.Threads to one. Every implementation
of the presented methods is also single-threaded. The experiments were per-
formed using a computer with 3.7 GHz Quad-Core Intel Xeon E5 and 32 GB
RAM, under the Mac OS X.

5.1 Glycan Dataset

The results for edit distance with Glycan dataset are shown in Table 1. “# of
nodes” in the table means the total number of nodes of two input trees. We
randomly selected at most 100 input tree pairs from the Glycan dataset for each
range of total number of nodes. Avg and t.o. stand for average execution time (in
seconds) of successfully computed within 30 s and the number of instances timed
out, respectively. “*” means that all instances in the range timed out. The table
shows that DpIP Edit is much faster than IP Edit. IP DpClique E is slightly
faster than IP Edit. It is shown that DpIP Edit also outperforms IP DpClique E.
It implies that it is not sufficient to adopt a dynamic programming approach for

Table 1. Experimental results with Glycan for edit distance

of nodes # of
instances

IP Edit DpIP Edit IP DpClique E

avg t.o avg t.o avg t.o

50–54 100 2.393 0 0.308 0 0.994 0

55–59 100 4.661 0 0.417 0 1.576 0

60–64 88 11.661 6 0.576 0 2.894 0

65–69 36 17.774 4 0.669 0 3.433 0

70–74 100 13.209 7 0.654 0 11.799 7

75–79 29 20.771 9 0.823 0 11.411 7

80–84 9 18.705 8 1.094 0 14.941 6

85–89 5 0 5 1.330 0 21.838 3

90–94 4 0 4 1.442 0 0 4

56 E. Hong et al.

Table 2. Experimental results with Glycan for segmental distance, bottom-up seg-
mental distance, and bottom-up distance

of nodes # of
instances

IP Sg DpIP Sg IP BotSg DpIP BotSg IP Bot DpIP Bot

avg t.o avg t.o avg t.o avg t.o avg t.o avg t.o

50–54 100 5.306 0 0.135 0 1.545 0 0.136 0 0.569 0 0.131 0

55–59 100 9.070 5 0.135 0 2.539 0 0.139 0 0.785 0 0.131 0

60–64 88 13.983 41 0.137 0 4.767 0 0.142 0 1.258 0 0.132 0

65–69 36 23.813 27 0.140 0 6.219 0 0.147 0 1.544 0 0.133 0

70–74 100 20.408 97 0.145 0 10.252 4 0.150 0 1.453 0 0.134 0

75–79 29 21.274 27 0.148 0 12.794 5 0.154 0 2.021 0 0.137 0

80–84 9 0 9 0.152 0 17.606 3 0.160 0 3.002 0 0.137 0

85–89 5 0 5 0.157 0 29.157 4 0.163 0 3.869 0 0.142 0

90–94 4 0 4 0.161 0 0 4 0.166 0 4.476 0 0.145 0

improving on the practical performance, and the revised IP formulation derived
from the dynamic programming is of great importance for reducing the running
time on the tree edit distance problem.

Table 2 shows the results for the variants of edit distance. For segmental
distance and bottom-up segmental distance, the proposed methods (DpIP Sg
and DpIP BotSg) finished computing within 1 s while the naive methods (IP Sg
and IP BotSg) take longer than 30 s if the total size of input trees is large. For
bottom-up distance, the naive method (IP Bot) successfully computed within
30 s for all instances. However, our improved method (DpIP Bot) is still much
faster than the naive method.

Table 3. Experimental results with SUBLOG3 for edit distance

of nodes # of
instances

IP Edit DpIP Edit IP DpClique E

avg t.o avg t.o avg t.o

50–54 100 2.478 0 0.435 0 3.853 0

55–59 100 3.892 0 0.510 0 5.393 2

60–64 100 6.641 0 0.633 0 8.243 17

65–69 100 9.921 1 0.760 0 7.191 34

70–74 100 15.077 9 0.917 0 8.244 44

75–79 100 16.534 29 1.112 0 6.352 47

80–84 100 19.024 45 1.247 0 5.144 44

85–89 100 21.249 70 1.449 0 4.711 48

90–94 100 23.946 91 1.872 0 6.863 59

95–99 100 26.599 92 2.136 0 7.971 61

Improved Methods for Computing Distances Between Unordered Trees 57

5.2 CSLOGS Dataset

We divided CSLOGS dataset into two subsets: SUBLOG3 and SUBLOG49.
Every tree in SUBLOG3 (resp. SUBLOG49) is restricted to have the maximum
degree at most 3 (resp. 49). We randomly selected at most 100 pairs from each
dataset with a specified range of the total number of nodes.

The results of computation for SUBLOG3 are shown in Tables 3 and 4.
Tables 5 and 6 shows the results for SUBLOG49. Compared to the results
in SUBLOG3, the naive methods (IP Edit, IP Sg, IP BotSg, and IP Bot) in
SUBLOG49 works faster. This property is what has been observed in the pre-
vious work by Kondo et al. In regard of IP DpClique E, it outperforms IP Edit

Table 4. Experimental results with SUBLOG3 for segmental distance, bottom-up
segmental distance and bottom-up distance

of nodes # of
instances

IP Sg DpIP Sg IP BotSg DpIP BotSg IP Bot DpIP Bot

avg t.o avg t.o avg t.o avg t.o avg t.o avg t.o

50–54 100 5.978 0 0.136 0 1.970 0 0.140 0 0.568 0 0.131 0

55–59 100 10.208 7 0.136 0 2.922 0 0.141 0 0.764 0 0.132 0

60–64 100 13.791 31 0.141 0 5.245 0 0.145 0 1.076 0 0.134 0

65–69 100 18.372 57 0.144 0 6.562 1 0.148 0 1.390 0 0.135 0

70–74 100 20.195 75 0.146 0 8.513 15 0.151 0 1.856 0 0.137 0

75–79 100 22.485 87 0.149 0 11.003 10 0.154 0 2.372 0 0.138 0

80–84 100 22.865 91 0.150 0 12.489 18 0.157 0 3.031 0 0.139 0

85–89 100 26.028 94 0.154 0 14.864 25 0.160 0 3.746 0 0.140 0

90–94 100 26.866 98 0.158 0 17.244 48 0.167 0 4.861 0 0.144 0

95–99 100 0 100 0.160 0 18.644 57 0.170 0 5.808 0 0.147 0

Table 5. Experimental results with SUBLOG49 for edit distance

of nodes # of
instances

IP Edit DpIP Edit IP DpClique E

avg t.o avg t.o avg t.o

50–54 100 1.275 0 0.263 0 1.643 0

55–59 100 2.323 0 0.317 0 3.014 0

60–64 100 4.032 0 0.395 0 5.452 3

65–69 100 4.756 0 0.402 0 6.721 6

70–74 100 6.231 1 0.450 0 7.188 10

75–79 100 8.808 10 0.567 0 9.787 19

80–84 100 11.850 6 0.583 0 10.037 28

85–89 100 12.429 21 0.665 0 10.145 34

90–94 100 13.595 33 0.678 0 11.228 34

95–99 100 15.711 30 0.829 0 12.084 39

58 E. Hong et al.

Table 6. Experimental results with SUBLOG49 for segmental distance, bottom-up
segmental distance and bottom-up distance

of nodes # of
instances

IP Sg DpIP Sg IP BotSg DpIP BotSg IP Bot DpIP Bot

avg t.o avg t.o avg t.o avg t.o avg t.o avg t.o

50–54 100 2.130 0 0.143 0 0.739 0 0.142 0 0.376 0 0.130 0

55–59 100 4.704 0 0.147 0 1.521 0 0.145 0 0.514 0 0.133 0

60–64 100 6.795 11 0.151 0 2.863 3 0.150 0 0.707 0 0.153 0

65–69 100 7.741 8 0.162 0 2.544 1 0.154 0 0.830 0 0.135 0

70–74 100 9.277 19 0.158 0 3.257 2 0.159 0 1.036 0 0.139 0

75–79 100 12.421 38 0.162 0 5.143 6 0.162 0 1.376 0 0.139 0

80–84 100 12.707 39 0.167 0 5.788 7 0.169 0 1.644 0 0.142 0

85–89 100 14.817 46 0.170 0 7.136 3 0.176 0 2.129 0 0.144 0

90–94 100 13.267 65 0.175 0 8.479 8 0.179 0 2.361 0 0.147 0

95–99 100 16.752 65 0.181 0 8.776 16 0.184 0 2.881 0 0.148 0

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

of nodes

0

10

20

30

E
xe

cu
tio

n
tim

e[
se

c]

Fig. 1. The crosses, triangles, circles and squares represent the instances of the edit
distance, segmental distance, bottom-up distance, and bottom-up segmental distance
problem, respectively.

when the degrees of trees are small, though their performances are scarcely dif-
ferent with high-degree inputs.

We can observe that the proposed methods (DpIP Edit, DpIP Sg,
DpIP BotSg, and DpIP Bot) remarkably outperformed the previous methods
(IP Edit, IP Sg, IP BotSg, and IP Bot) as most of instances are computed within
2 s. In order to measure the scalability of the proposed methods, we used the
wide range of dataset. We selected input tree pairs so that the number of total
nodes ranges from around 0 to around 850. The results are shown in Fig. 1.
For segmental distance and bottom-up segmental distance, the smallest instance

Improved Methods for Computing Distances Between Unordered Trees 59

which exceeds our time limit of 30 s appears when the total number of nodes
belongs to range 450–500 whereas it appears for the tree edit distance when the
number of nodes belongs to range 150–200. For bottom-up distance, all instances
selected in this experiments are solved within 7 s.

6 Conclusion and Discussion

We have proposed improved methods for computing the tree edit distance and
its variants. While the naive IP formulation proposed by Kondo et al. [11] has
O(n2m2) constraints, our efficient IP formulation, though it has O(nm) subprob-
lems, only has O(n + m) constraints. In case of segmental distance, bottom-up
segmental distance and bottom-up distance, each subproblem, except for the
problem combining the solutions of subproblems, can be reduced to the maxi-
mum weighted matching problem in a bipartite graph, which can be solved in
polynomial time.

We performed some experiments using real tree-structured dataset. While
the previous method only works for small-sized trees, our methods are still effec-
tive for large-sized trees. In particular, for segmental distance and bottom-up
segmental distance, our methods are available for trees whose total size is up to
450, and for bottom-up distance, every instance is solved within 7 s.

An advantage of IP-based method is that we can easily give an IP formula-
tion for another distance by adding some constraints to the IP formulation for
edit distance. Therefore, extending our method to another important distance
measure between unordered trees such as tree alignment distance [8] would be
our future work. It would be interesting to develop practical algorithms for com-
puting those distances without using general purpose solvers such as IP solvers
or SAT solvers.

References

1. Akutsu, T., Fukagawa, D., Halldorsson, M.M., Takasu, A., Tanaka, K.: Approxima-
tion and parameterized algorithms for common subtrees and edit distance between
unordered trees. Theor. Comput. Sci. 470, 10–22 (2013)

2. Akutsu, T., Fukagawa, D., Takasu, A., Tamura, T.: Exact algorithms for computing
the tree edit distance between unordered trees. Theor. Comput. Sci. 412(4–5),
352–364 (2011)

3. Akutsu, T., Tamura, T., Fukagawa, D., Takasu, A.: Efficient exponential-time algo-
rithms for edit distance between unordered trees. J. Discrete Algorithms 25, 79–93
(2014)

4. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. ACM Trans. Algorithms 6(1), 1–19 (2009)

5. Fukagawa, D., Tamura, T., Takasu, A., Tomita, E., Akutsu, T.: A clique-based
method for the edit distance between unordered trees and its application to analysis
of glycan structures. BMC Bioinform. 12(Suppl 1), S13 (2011)

60 E. Hong et al.

6. Higuchi, S., Kan, T., Yamamoto, Y., Hirata, K.: An A* algorithm for computing
edit distance between rooted labeled unordered trees. In: Okumura, M., Bekki, D.,
Satoh, K. (eds.) JSAI-isAI 2011. LNCS (LNAI), vol. 7258, pp. 186–196. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32090-3 17

7. Horesh, Y., Mehr, R., Unger, R.: Designing an A* algorithm for calculating edit
distance between rooted-unordered trees. J. Comput. Biol. 13(6), 1165–1176 (2006)

8. Jiang, T., Wang, L., Zhang, K.: Alignment of trees — an alternative to tree edit.
Theor. Comput. Sci. 143(1), 137–148 (1995)

9. Kan, T., Higuchi, S., Hirata, K.: Segmental mapping and distance for rooted
labeled ordered trees. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012.
LNCS, vol. 7676, pp. 485–494. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-35261-4 51

10. Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Res. 28(1), 27–30 (2000)

11. Kondo, S., Otaki, K., Ikeda, M., Yamamoto, A.: Fast computation of the tree edit
distance between unordered trees using IP solvers. In: Džeroski, S., Panov, P.,
Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS, vol. 8777, pp. 156–167. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11812-3 14

12. Kuboyama, T.: Matching and Learning in Trees. Ph.D. thesis, The University of
Tokyo (2007)

13. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logis-
tics Q. 2(1–2), 83–97 (1955)

14. Mori, T., Tamura, T., Fukagawa, D., Takasu, A., Tomita, E., Akutsu, T.: A clique-
based method using dynamic programming for computing edit distance between
unordered trees. J. Computat. Biol. 19(10), 1089–1104 (2012)

15. Nakamura, T., Tomita, E.: Efficient algorithms for finding a maximum clique
with maximum vertex weight. Technical report, the University of Electro-
Communications (2005). (in Japanese)

16. Tai, K.C.: The tree-to-tree correction problem. J. ACM 26(3), 422–433 (1979)
17. Valiente, G.: An efficient bottom-up distance between trees. In: Proceedings Eighth

Symposium on String Processing and Information Retrieval. IEEE (2001)
18. Zaki, M.: Efficiently mining frequent trees in a forest: algorithms and applications.

IEEE Trans. Knowl. Data Eng. 17(8), 1021–1035 (2005)
19. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled

trees. Inf. Process. Lett. 49(5), 249–254 (1994)
20. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered

labeled trees. Inf. Process. Lett. 42(3), 133–139 (1992)

https://doi.org/10.1007/978-3-642-32090-3_17
https://doi.org/10.1007/978-3-642-35261-4_51
https://doi.org/10.1007/978-3-642-35261-4_51
https://doi.org/10.1007/978-3-319-11812-3_14

	Improved Methods for Computing Distances Between Unordered Trees Using Integer Programming
	1 Introduction
	2 Preliminaries
	2.1 Tree Edit Distance
	2.2 Variants of Edit Distance

	3 Previous Method [11]
	4 Improved Method
	4.1 Improved Method for Tree Edit Distance
	4.2 Improved Methods for Variants of Edit Distance

	5 Experiments
	5.1 Glycan Dataset
	5.2 CSLOGS Dataset

	6 Conclusion and Discussion
	References

