
Online Algorithms for Non-preemptive Speed
Scaling on Power-Heterogeneous Processors

Aeshah Alsughayyir and Thomas Erlebach(B)

Department of Informatics, University of Leicester, Leicester, England
{ayya1,te17}@leicester.ac.uk

Abstract. In this paper we consider non-preemptive online scheduling
of jobs with release times and deadlines on heterogeneous processors
with speed scaling. The power needed by processor i to run at speed
s is assumed to be sαi , where the exponent αi is a constant that can
be different for each processor. We require the jobs to have agreeable
deadlines, i.e., jobs with later release times also have later deadlines.
The aim is to minimize the energy used to complete all jobs by their
deadlines. For the case where the densities of the jobs differ only within
a factor of two and the same holds for their interval lengths, we present
an algorithm with constant competitive ratio. For arbitrary densities and
interval lengths, we achieve a competitive ratio that is poly-logarithmic in
the ratio of maximum to minimum density and in the ratio of maximum
to minimum interval length.

1 Introduction

Efficient use of energy is becoming increasingly important because of energy cost
and the need for sustainable use of resources. Modern processors support DVFS
(dynamic voltage and frequency scaling), or speed scaling, which means that the
speed at which a processor runs can be adjusted dynamically. The rate at which
energy is consumed by a processor is called the power. It can be represented by
a function f(s) = sα, for some constant α > 1, that maps the speed s to the
rate of energy consumption. In applications in cloud computing where jobs need
to be dispatched to servers in a data center, different servers may have different
power functions. Motivated by this, we consider heterogeneous processors where
the exponent α of the power function can be different for each processor. We
are interested in non-preemptive scheduling because preemption is undesirable
in many application settings, e.g., in high-performance computing applications
where jobs require a huge amount of data to be placed in main memory.

We study non-preemptive online scheduling of jobs with release times and
deadlines on heterogeneous processors with speed scaling. There are m processors
P1, . . . , Pm. The power function of processor Pi, 1 ≤ i ≤ m, is fi(s) = sαi

A. Alsughayyir—Partially supported by the Department of Computer Science of
Taibah University in Medina.
T. Erlebach—Supported by a study leave granted by University of Leicester.

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part II, LNCS 10628, pp. 457–465, 2017.
https://doi.org/10.1007/978-3-319-71147-8_32

458 A. Alsughayyir and T. Erlebach

for some constant αi > 1. Without loss of generality, we assume α1 ≤ · · · ≤
αm. There are n jobs J1, . . . , Jn. Each job Jj has a release time rj , a deadline
dj , and work (size) wj . The time period from rj to dj is called the interval
of job Jj , and dj − rj is called the interval length. The density of job Jj is
δj = wj

dj−rj
. Jobs arrive online at their release times. Jobs with the same release

time arrive in arbitrary order. Each job must be scheduled non-preemptively
on one of the m processors between its release time and deadline. The speed of
each processor can be changed at any time, and a processor running at speed s
performs s units of work per unit time. Our objective is to find a feasible schedule
that minimises the total energy consumption of all m processors. The total
energy consumption E(Pi) of processor Pi is the integral, over the duration of
the schedule, of the power function of its speed, i.e., E(Pi) =

∫ H

0
fi(si(t))dt,

where si(t) is the speed of processor Pi at time t and H denotes the time when
the schedule ends, i.e., when all jobs are completed. The objective value is the
total energy cost,

∑m
i=1 E(Pi). We refer to the scheduling problem with this

objective as minimum energy scheduling.
We assume that the jobs have agreeable deadlines, i.e., a job with later release

time also has a later deadline. Formally, if job Ji arrives before job Jj , then
di ≤ dj must hold. This assumption is realistic in many scenarios and helps
to schedule the jobs assigned to a processor non-preemptively. Let the density
ratio D = max δj

min δj
be the ratio between maximum and minimum job density, and

let the interval-length ratio T = max (dj−rj)
min (dj−rj)

be the ratio between maximum and
minimum interval length. In this paper, we present an online algorithm with ratio
O(�log T �αm+1�log D�αm+1) for non-preemptive online scheduling of agreeable
jobs on heterogeneous processors. As far as we are aware, this is the first result for
non-preemptive online minimum energy scheduling on heterogeneous processors.

Previous Work. The problem of minimising the total energy consumption
on a single processor using speed scaling was first posed by Weiser et al. [11],
who studied different heuristics experimentally. The pioneering work by Yao
et al. [12] analyzed algorithms for speed scaling on a single processor so as to
minimize the total energy consumption. Each job is characterized by its release
time, its deadline, and its work. It must be scheduled during the interval between
its release time and its deadline, and preemption is allowed. They presented a
polynomial-time optimal algorithm for the offline problem and two online algo-
rithms, Optimal Available (OA) and AVerage Rate (AVR). They showed that
the competitive ratio of AVR is at most αα2α−1. We will use a non-preemptive
variation of AVR to schedule the jobs that are assigned to a processor.

Table 1 gives an overview of known results for minimum energy scheduling
problems for jobs with release times and deadlines on both homogeneous (S) and
heterogeneous (S∗) parallel processors, including our new results (in bold). The
problems are identified using an adaptation of the standard three-field notation
of Graham et al. [9]. Minimum energy scheduling problems have mostly been
studied in the preemptive case where the execution of a job can be interrupted
and resumed later on the same processor (no migration) or on an arbitrary

Online Algorithms for Non-preemptive Speed Scaling 459

Table 1. Known and new (in bold) results for speed-scaling on parallel processors.
S stands for homogeneous and S∗ for heterogeneous processors

Type Problem Ratio

Online S | rj , dj , wj = 1, pmtn, no-mig | E αα24α [3]

S | agreeable, pmtn, no-mig | E αα24α [3]

S | rj , dj , pmtn, no-mig | E 24α((log P)α + αα2α−1) [7]

S | rj , dj , pmtn, no-mig | E 2(α
α−1)αeαBα (randomized) [10]

S | rj , dj , pmtn, mig | E αα [1]

S∗ | rj , dj , pmtn, mig | E (1 + ε)(αα2α−1 + 1) [2]

S∗ | rj , dj − rj = x, δj = δ | E 3αm+1(ααm
m 2αm−1 + 1)

S∗ | agreeable | E 5αm+12αm (ααm
m 2αm−1 + 1)�log D�αm+1�log T �αm+1

Offline S | agreeable, pmtn, no-mig | E αα24α [3]

S | agreeable | E (2 − 1
m

)α−1 [5]

S | rj , dj | E (mα(m√n))α−1 [5]

S | rj , dj | E Bα (randomized) [10]

S∗ | rj , dj | E B̃α((1 + ε)(1 + wmax
wmin

))α [6]

processor (if migration is allowed). The previously known results do not cover
the online problem of non-preemptive speed-scaling on heterogeneous processors,
which is the focus of this paper.

For homogeneous parallel processors, we refer to Table 1 for an overview of
known upper bounds on approximation ratios and competitive ratios. For hetero-
geneous parallel processors, Albers et al. [2] study the online version of the prob-
lem with migration and propose a ((1 + ε)(αα2α−1 + 1))-competitive algorithm
called H-AVR. It aims to assign work in each time interval according to the AVR
schedule, and for each interval it creates an offline (1 + ε)-approximate schedule
based on maximum flow computations. Bampis et al. [6] tackle the offline non-
preemptive version of the fully heterogeneous speed scaling problem, where the
work of a job can be processor-dependent, and propose a B̃α((1+ε)(1+ wmax

wmin
))α-

approximation algorithm, where B̃α is the generalised Bell number. We refer to
the recent surveys by Bampis [4] and Gerards et al. [8] for further discussion of
known results on scheduling algorithms for energy minimization.

Outline. We present the first online algorithms for the non-preemptive schedul-
ing of jobs with agreeable deadlines on heterogeneous parallel processors. In
Sect. 2, we observe that a variation of AVR can be used to schedule jobs with
agreeable deadlines non-preemptively on a single processor. In Sect. 3, we first
show that the non-preemptive speed scaling problem for heterogeneous proces-
sors can be solved optimally by a simple greedy algorithm if all jobs are
identical (i.e., have the same release time, deadline, and work). From this we
obtain a 5αm+12αm(ααm

m 2αm−1 + 1)-competitive algorithm for jobs with agree-
able deadlines whose interval lengths and densities differ by a factor of at
most 2. For jobs with equal interval lengths and equal densities, the compet-
itive ratio improves to 3αm+1(ααm

m 2αm−1 + 1). In Sect. 4, we extend the result
to arbitrary jobs with agreeable deadlines and obtain a competitive ratio of

460 A. Alsughayyir and T. Erlebach

5αm+12αm(ααm
m 2αm−1 +1)�log D�αm+1�log T �αm+1. Our algorithm classifies the

jobs based on density and interval length and allocates the jobs in each class to
processors by selecting the processor with the smallest energy cost increase.

2 Non-preemptive AVR

Our algorithms decide for each job on which processor it should be run, and then
each processor uses an adaptation of the AVR algorithm, which was proposed
for online preemptive scheduling by Yao et al. [12], to schedule the allocated
jobs. AVR works as follows. We call a job Jj active at time t if rj ≤ t ≤ dj . At
any time t, AVR sets the speed of the processor to the sum of the densities of
the active jobs. Conceptually, all active jobs are executed simultaneously, each
at a speed equal to its density. On an actual processor, this is implemented
using preemption, i.e., each of the active jobs runs repeatedly for a very short
period of time and is then preempted to let the next active job execute. To get
a non-preemptive schedule for jobs with agreeable deadlines, we modify AVR as
follows to obtain NAVR (non-preemptive AVR): The speed of the processor at
any time t is set in the same way as for AVR, i.e., it is equal to the sum of the
densities of all active jobs (even if some of these jobs have completed already).
However, instead of sharing the processor between all active jobs, the jobs are
executed non-preemptively in the order in which they arrive, which is the same
as earliest deadline first (EDF) order because we have agreeable deadlines. We
remark that the idea of a transformation of AVR schedules into non-preemptive
schedules for jobs with agreeable deadlines was already mentioned in [5] in the
context of offline approximation algorithms.

AVR:

NAVR:

speed

time

time

J3
J2

J1

Fig. 1. AVR and NAVR schedules for an example with 3 jobs

An example comparing AVR and NAVR on an instance with 3 jobs is shown
in Fig. 1. Each job is shown as a rectangle whose width is its interval length and
whose height is its density. AVR shares the processor at each time among all
active jobs. NAVR uses the same speed as AVR at any time, but dedicates the
whole processor first to J1, then to J2, and finally to J3.

Observation 1. For scheduling jobs with agreeable deadlines on a single proces-
sor, the schedule produced by NAVR is non-preemptive and feasible. It has the
same energy cost as the schedule produced by AVR.

Online Algorithms for Non-preemptive Speed Scaling 461

To analyze algorithms for minimum energy scheduling, we will compare the
schedule produced by an algorithm with the optimal schedule that uses AVR (or
equivalently NAVR for jobs with agreeable deadlines) on each processor and does
not use migration. By applying Lemma 8 in [2] to NAVR instead of AVR, we
get that, for instances with agreeable deadlines, there exists a schedule that uses
NAVR on each processor and uses energy at most (max1≤i≤m{ρi} + 1)OPT ,
where ρi is the competitive ratio of AVR on processor Pi. Let OPTA denote
the energy cost of the optimal NAVR schedule for a given instance of minimum
energy scheduling with agreeable deadlines, and OPT the energy cost of an
optimal schedule. As AVR is αα2α−1-competitive for a single processor with
power function sα [12], we get the following corollary:

Corollary 1. OPTA ≤ (ααm
m 2αm−1 + 1)OPT.

3 Small Density Ratio and Interval-Length Ratio

Jobs with Equal Release Time, Deadline, and Density. First, consider the special
case where all the jobs are identical, i.e., have the same release time, deadline,
and density. We show that a simple greedy algorithm for allocating the jobs
to processors, combined with NAVR on each processor, produces an optimal
schedule. We need the following auxiliary result that shows that the extra power
required by increasing the speed of a processor by δ grows with the current speed
of the processor.

Lemma 1. Let α > 1, let x, y be real values satisfying 0 ≤ x ≤ y, and let δ > 0.
Then (x + δ)α − xα ≤ (y + δ)α − yα.

For a given instance with identical jobs, we propose Algorithm EQ that
assigns the jobs one by one as they arrive, always picking a processor that min-
imises the increase in power needed to accommodate the extra job.

Lemma 2. Algorithm EQ produces an optimal schedule for identical jobs.

Proof. Let r be the common release time, d the common deadline, and δ the
common density of the jobs. Observe that if k jobs are assigned to a processor
Pi, then the optimal schedule for these k jobs will be to run Pi at speed kδ
from time r to time d and complete the jobs one by one in arbitrary order,
with a total energy usage of (d − r)(kδ)αi for Pi. For 1 ≤ i ≤ m, let ki be the
number of jobs allocated to Pi by the algorithm, and let oi be the number of
jobs allocated to Pi by the optimal solution. Let ALG denote the total energy
cost of Algorithm EQ, and OPT the total energy cost of the optimal schedule.
We have ALG = (d − r)

∑m
i=1(kiδ)αi and OPT = (d − r)

∑m
i=1(oiδ)αi .

Assume that ALG > OPT . Then there must be at least one Pi with ki > oi

and at least one Ph with kh < oh. Consider the last job, say job Jj , that the
algorithm allocated to Pi. At the time the algorithm allocated Jj to Pi, the
load of Ph was some k′

h ≤ kh. As the algorithm allocated Jj to Pi and not to
Ph, we know that (k′

hδ + δ)αh − (k′
hδ)αh ≥ (kiδ)αi − (kiδ − δ)αi . If we change

462 A. Alsughayyir and T. Erlebach

C ← 0 ; /* current time period is [C, C + y
2
) */

δ ← x ; /* treat all jobs as if their density was x */

while not all jobs allocated do
for i ← 1 to m do

Li ← 0

while next job Jj has rj < C + y
2
do

for i ← 1 to m do
Zi ← (Li + δ)αi − Lαi

i ; /* power increase on Pi */

imin ← argminiZi ; /* smallest power increase */

Limin ← Limin + δ ; /* assign job Jj to processor Pimin */

C ← C + y
2

Algorithm 1. Jobs with interval length in [y, 2y] and density in [x, 2x]

the optimal schedule by moving one job from Ph to Pi, the energy cost of that
schedule increases by d−r multiplied with (oiδ+δ)αi −(oiδ)αi −((ohδ)αh −(ohδ−
δ)αh). By Lemma 1, we have (oiδ + δ)αi − (oiδ)αi ≤ (kiδ)αi − (kiδ − δ)αi and
(ohδ)αh −(ohδ−δ)αh ≥ (k′

hδ+δ)αh −(k′
hδ)αh . This implies (oiδ+δ)αi −(oiδ)αi −

((ohδ)αh −(ohδ−δ)αh) ≤ 0. As we started with the optimal schedule, the change
in energy cannot be negative, so the new schedule must have the same energy
cost and again be optimal. This operation can be repeated, without increasing
the energy cost, until the optimal schedule and the schedule produced by the
algorithm are identical. ��

Interval Lengths and Densities within a Factor of Two. Assume that the interval
lengths of all jobs are in [y, 2y] and the densities of all jobs in [x, 2x]. The
algorithm, shown as Algorithm 1, assigns each job to one of the m processors.
It treats the jobs as if their density was equal to δ = x and proceeds in time
periods of length y

2 . Jobs arriving in a time period are handled independently of
those arriving in other time periods. On each processor, the allocated jobs are
scheduled using NAVR.

Algorithm 1 allocates the jobs arriving in the time period [C,C + y
2) to

machines in the same way as Algorithm EQ would allocate them if they were
identical jobs with density δ. Furthermore, all these jobs are active in the whole
interval [C + y

2 , C + y) because their interval length is at least y.

Lemma 3. Consider the allocation that Algorithm 1 produces for jobs arriving
in the time period [C,C + y

2). Then the energy use for those jobs alone in the
time period [C + y

2 , C + y) is at most 2αm times the optimal energy cost that any
AVR schedule for the same jobs incurs in that period.

Let ALGC be the total energy cost of the algorithm in the time interval
[C,C + y

2), and let OPTA
C be the total energy cost of an optimal AVR schedule

in the time interval [C,C + y
2). For the schedule of Algorithm 1, let AC be the

total energy cost incurred during the time period [C,C + y
2) for jobs that are

released in the time interval [C − y
2 , C). Let KC,i be the set of jobs that are

Online Algorithms for Non-preemptive Speed Scaling 463

released in [C − y
2 , C) and assigned to Pi by the algorithm. We have AC =

y
2

∑m
i=1(

∑
Jj∈KC,i

δj)αi . By Lemma 3 we have that AC ≤ 2αmOPTA
C .

As all jobs have interval length in [y, 2y], the jobs that are executed by the
algorithm at some point in the time period [C,C + y

2) are released in one of the
five intervals [C − 2y, C − 3y

2), [C − 3y
2 , C − y), [C − y, C − y

2), [C − y
2 , C), or

[C,C+ y
2). With UC,i = KC− 3y

2 ,i∪KC−y,i∪KC− y
2 ,i∪KC,i∪KC+ y

2 ,i, the speed of
the processor Pi in the interval [C + y

2 , C + y) is at most
∑

Jj∈UC,i
δj . Therefore,

we have ALGC ≤ y
2

∑m
i=1(

∑
Jj∈UC,i

δj)αi ≤ y
2

∑m
i=1(5max{∑

Jj∈K
C− 3y

2 ,i

δj ,

. . . ,
∑

Jj∈KC+ y
2 ,i

δj})αi . This is at most y
25αm

∑m
i=1

(
max{(

∑
Jj∈K

C− 3y
2 ,i

δj)αi ,

. . . , (
∑

Jj∈KC+ y
2 ,i

δj)αi}
)
, which can be bounded by 5αm(AC− 3y

2
+ AC−y +

AC− y
2

+ AC + AC+ y
2
). The total energy cost ALG of Algorithm 1 can then be

bounded by ALG =
∑

C≥0 ALGC ≤ ∑
C≥0 5αm(AC− 3y

2
+AC−y +AC− y

2
+AC +

AC+ y
2
) ≤ 5αm+1

∑
C≥0 AC ≤ 5αm+1

∑
C≥0 2αmOPTA

C = 5αm+12αmOPTA ≤
5αm+12αm(ααm

m 2αm−1+1)OPT . Here, the third inequality follows from Lemma 3
and the last inequality holds by Corollary 1. Thus, we get the following theorem.

Theorem 1. Algorithm 1 is 5αm+12αm(ααm
m 2αm−1+1)-competitive for jobs with

agreeable deadlines and density ratio at most two and interval-length ratio at
most two.

For the special case where all jobs have the same interval length and the
same density, the analysis can be improved, because the factor 2αm of Lemma 3
can be avoided and only jobs arriving in the three time periods [C − y, C − y

2),
[C − y

2 , C) and [C,C + y
2) have intervals that overlap [C,C + y

2).

Corollary 2. For minimum energy scheduling of jobs with equal interval lengths
and equal densities, there is an online algorithm that achieves competitive ratio
3αm+1(ααm

m 2αm−1 + 1).

4 Arbitrary Interval Lengths and Densities

We now consider jobs with arbitrary interval lengths and densities, only requiring
that the jobs have agreeable deadlines. Recall that D denotes the density ratio
and T the interval-length ratio. Let Δ = maxj δj denote the maximum job
density, and let Λ = maxj(dj − rj) be the maximum interval length. For ease of
presentation, we assume that the algorithm knows Δ and Λ, but it is not difficult
to adapt the algorithm so that it can work without this assumption.

The interval lengths of all jobs are in [Λ/T,Λ] and their densities are in
[Δ/D,Δ]. We classify the jobs into groups such that within each group the inter-
val lengths and densities vary only within a factor of two. Each group is scheduled
independently of the others using a separate copy of Algorithm 1, but of course
all the jobs run on the same set of processors. A job is classified into group
gt,d if its interval length is in [Λ/2t, Λ/2t−1] and its density in [Δ/2d,Δ/2d−1],

464 A. Alsughayyir and T. Erlebach

where t ∈ {1, . . . , �log T �} and d ∈ {1, . . . , �log D�}. Jobs that lie at group
boundaries can be allocated to one of the two relevant groups arbitrarily. We
refer to this algorithm as Algorithm CA.

Let �(gt,d, i, t
′) be the load (sum of densities of active jobs) of group gt,d on

processor Pi at time t′, and let Agt,d
be the total energy cost of Algorithm CA

for group gt,d, assuming that it is the only group running. Let H denote the
time when the schedule ends, i.e., the deadline of the last job, and let OPT (gt,d)
denote the energy cost of the optimal schedule for gt,d. From Theorem 1 we
get Agt,d

≤ 5αm+12αm(ααm
m 2αm−1 + 1)OPT (gt,d). We have OPT (gt,d) ≤ OPT

and thus
∑

t,d OPT (gt,d) ≤ �log T ��log D�OPT . Using that the total energy

cost ALG of Algorithm CA is ALG =
∑m

i=1

∫ H

0

(∑
t,d �(gt,d, i, t

′)
)αi

dt′, we can
complete the analysis and show the following theorem.

Theorem 2. For non-preemptive minimum energy scheduling of jobs with
agreeable deadlines on heterogeneous processors, the competitive ratio of Algo-
rithm CA is at most 5αm+12αm(ααm

m 2αm−1 + 1)�log D�αm+1�log T �αm+1.

References

1. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with
migration. J. Comput. Syst. Sci. 81(7), 1194–1209 (2015). https://doi.org/10.1016/
j.jcss.2015.03.001

2. Albers, S., Bampis, E., Letsios, D., Lucarelli, G., Stotz, R.: Scheduling on power-
heterogeneous processors. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN
2016. LNCS, vol. 9644, pp. 41–54. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49529-2 4

3. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. Algo-
rithmica 68(2), 404–425 (2014). https://doi.org/10.1007/s00453-012-9678-7

4. Bampis, E.: Algorithmic issues in energy-efficient computation. In: Kochetov,
Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016.
LNCS, vol. 9869, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44914-2 1

5. Bampis, E., Kononov, A.V., Letsios, D., Lucarelli, G., Nemparis, I.: From preemp-
tive to non-preemptive speed-scaling scheduling. Discrete Appl. Math. 181, 11–20
(2015). https://doi.org/10.1016/j.dam.2014.10.007

6. Bampis, E., Letsios, D., Lucarelli, G.: Speed-scaling with no preemptions. In: Ahn,
H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 259–269. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13075-0 21

7. Bell, P.C., Wong, P.W.H.: Multiprocessor speed scaling for jobs with arbitrary sizes
and deadlines. J. Comb. Optim. 29(4), 739–749 (2015). https://doi.org/10.1007/
s10878-013-9618-8

8. Gerards, M.E.T., Hurink, J.L., Hölzenspies, P.K.F.: A survey of offline algorithms
for energy minimization under deadline constraints. J. Sched. 19(1), 3–19 (2016).
https://doi.org/10.1007/s10951-015-0463-8

9. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approxi-
mation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math.
5, 287–326 (1979)

https://doi.org/10.1016/j.jcss.2015.03.001
https://doi.org/10.1016/j.jcss.2015.03.001
https://doi.org/10.1007/978-3-662-49529-2_4
https://doi.org/10.1007/978-3-662-49529-2_4
https://doi.org/10.1007/s00453-012-9678-7
https://doi.org/10.1007/978-3-319-44914-2_1
https://doi.org/10.1007/978-3-319-44914-2_1
https://doi.org/10.1016/j.dam.2014.10.007
https://doi.org/10.1007/978-3-319-13075-0_21
https://doi.org/10.1007/s10878-013-9618-8
https://doi.org/10.1007/s10878-013-9618-8
https://doi.org/10.1007/s10951-015-0463-8

Online Algorithms for Non-preemptive Speed Scaling 465

10. Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multi-
processor scheduling. Theor. Comput. Syst. 54(1), 24–44 (2014). https://doi.org/
10.1007/s00224-013-9477-9

11. Weiser, M., Welch, B.B., Demers, A.J., Shenker, S.: Scheduling for reduced CPU
energy. In: Proceedings of the First USENIX Symposium on Operating Systems
Design and Implementation (OSDI 1994), pp. 13–23. USENIX Association (1994)

12. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy.
In: 36th Annual Symposium on Foundations of Computer Science (FOCS 1995),
pp. 374–382. IEEE Computer Society (1995). https://doi.org/10.1109/SFCS.1995.
492493

https://doi.org/10.1007/s00224-013-9477-9
https://doi.org/10.1007/s00224-013-9477-9
https://doi.org/10.1109/SFCS.1995.492493
https://doi.org/10.1109/SFCS.1995.492493

	Online Algorithms for Non-preemptive Speed Scaling on Power-Heterogeneous Processors
	1 Introduction
	2 Non-preemptive AVR
	3 Small Density Ratio and Interval-Length Ratio
	4 Arbitrary Interval Lengths and Densities
	References

