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Abstract. Mastermind is a famous two-player game introduced by M.
Meirowitz (1970). Its combinatorics has gained increased interest over
the last years for different variants.

In this paper we consider a version known as the Black-Peg AB Game,
where one player creates a secret code consisting of c colors on p ≤ c pegs,
where each color is used at most once. The second player tries to guess
the secret code with as few questions as possible. For each question he
receives the number of correctly placed colors. In the static variant the
second player doesn’t receive the answers one at a time, but all at once
after asking the last question. There are several results both for the AB
and the static version, but the combination of both versions has not
been considered so far. The most prominent case is n := p = c, where
the secret code and all questions are permutations. The main result of
this paper is an upper bound of O(n1.525) questions for this setting. With
a slight modification of the arguments of Doerr et al. (2016) we also give
a lower bound of Ω(n log n). Furthermore, we complement the upper
bound for p = c by an optimal (�4c/3� − 1)-strategy for the special case
p = 2 and arbitrary c ≥ 2 and list optimal strategies for six additional
pairs (p, c).

1 Introduction

Mastermind is a two players board game invented by Mordecai Meirowitz in
1970. In the original version the first player, called codemaker, chooses a secret
code, consisting of four pegs, each with one of six possible colors. The second
player, called codebreaker, tries to guess the secret code. Therefore, he asks ques-
tions, also in the form of four pegs in six colors. For each question, he receives an
answer in the form of black and white pegs. The number of black pegs represents
the number of correctly placed colors, whereas the number of white pegs repre-
sents the number of colors occurring both in the question and the secret code,
but on different positions. This game can be generalized for p pegs and c colors
with p, c ∈ N. In the Black-Peg Game, the codebreaker only receives the number
of black pegs. AB Game is a restriction, where the secret code and each question
contain every color at most once. This implies that p ≤ c. For the case p = c,
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the secret codes and questions can be thought of as permutations. Here, every
color is used exactly once, so the number of white pegs is the difference between
p and the number of black pegs. Hence, this can be considered as a Black-Peg
Game. In the static variant the second player doesn’t receive the answers one at
a time, but all at once after asking the last question. After that, he only has one
more try to guess the code correctly.

1.1 Previous Work

Besides its popularity as board game, Mastermind has been of large interest also
in theory (see the NP-hardness proof in [14]) and practice (see an application
in cryptography [6] and string and vector databases [1]).

Much research has been done in recent years in the area of Mastermind and
its variants. The generalized version of Mastermind has been investigated in [9]
and [4], in the latter a strategy with O(n log log n) questions is presented for the
case p = c = n and is also adaptable to the Black-Peg variant. In [10], exact
formulas are given for small p in Black-Peg Mastermind.

The best strategy known for AB Game with p = c = n needs O(n log n)
questions and is presented in [5]. They also give a lower bound of n questions
for this setting. In [11] exact values and tight bounds for small p are presented.

Doerr et al. [4] also give an asymptotically tight bound of Ω(n log n) questions
for general Static Black-Peg Mastermind using probabilistic methods.

For p = 2 an optimal number of �(4c − 1)/3� questions is proven in [3] and
an according strategy is presented in [8].

In this paper we consider a combination of these three variants, namely the
Static Black-Peg AB Game, which, to the best of our knowledge, previously
has not been considered in literature. For an overview of previous results about
Classic and Static Mastermind for the case p = c = n see Table 1. Note that all
known bounds equal the ones for the Black-Peg version.

Table 1. Known lower and upper bounds for Classic and Static Mastermind for p =
c = n.

Adaptive Static

(a) Lower bounds

Classic Ω(n) Ω(n log n) [4]

AB-Game Ω(n) Ω(n log n) (Ours)

(b) Upper bounds

Classic O(n log log n) [4] O(n log n) [4]

AB-Game O(n log n) [5] O(n1.525) (Ours)
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1.2 Our Contribution

As the main result of this paper we show that for n ∈ N there is a feasible
strategy for the Static Black-Peg AB Game on n pegs with n colors that uses
O(n1.525) questions. A modification of the arguments of Doerr et al. [4] gives a
lower bound of Ω(n log n) questions. For the proof of the upper bound, we define
the term “separation”. Let Sn be the set of permutations of the set {1, . . . , n}. We
say that a question Q separates two possible secret codes (secrets) X1,X2 ∈ Sn if
Q yields different answers for them. A set of questions, called strategy, is feasible
if every pair of possible secrets is separated by at least one question of the set.

First we show that there is a set of O(n1.525) questions such that every pair of
possible secrets with Hamming distance of at most

√
n is separated by at least

one question. For a prime n, we construct a set of O(n1.5) questions for that
matter. If n is not a prime, the problem gets slightly more complicated. Here we
start with a fairly simple feasible (2n2/3)-strategy. We then modify this strategy
to get a set of O(n1.525) questions that for a secret gives us the placement of the
last n0.525 colors and the colors of the last n0.525 pegs. A result of Baker et al. [2]
for the difference between consecutive primes reveals that for sufficiently large n
there is a prime p(n) ∈ [n − n0.525, n], so we can use the mentioned O(p(n)1.5)
questions to get the information of the first p(n) colors and pegs. Altogether for
this part we use O(n1.525) questions.

For pairs of possible secrets with Hamming distance of at least
√

n there are
considerably more separating questions, so we can use a different approach. We
give a non-constructive proof that for every set of pairs of possible secrets with
large Hamming distance, there is a question that separates at least a fraction
of 1

18
√
n

of it. So iteratively we can choose such a question and consider the set
of pairs of possible secrets not yet separated. After O(n1.5 log n) iteration steps
every pair of possible secrets is separated by at least one question.

We complement the upper bound for p = c by an optimal (�4c/3� − 1)-
strategy for the special case p = 2 and arbitrary c ≥ 2. Furthermore, for small p
and c, we have computed tighter upper bounds and exact values via randomized
resp. brute force algorithms.

1.3 Organization of the Article

In Sect. 2, we introduce the basic definitions. A (2n2/3)-strategy is presented
in Sect. 3. Section 4 contains a non-constructive proof of the upper bound of
O(n1.525). We give a lower bound of Ω(n log n) for p = c = n in Sect. 5. Section 6
is dedicated to our optimal strategies for 2 pegs. Finally, in Sect. 7, we present
upper bounds and exact values for small p and c. We defer the proofs of some
lemmata and examples to the full version of the paper.

2 Preliminaries

Let p denote the number of pegs and c the number of colors. In the AB Game, it
holds that p ≤ c. If p and c are fixed, we call the game (p, c)-Static Black-Peg AB
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Game. The code chosen by the codemaker is called secret. The possible answers
are written as 0B, 1B, 2B, . . . , pB. For calculation purposes we often write i
instead of iB when the context is clear. Each strategy for Static Black-Peg AB
Game starts with r − 1 main questions which the codebreaker has to ask at
the beginning of the game, and one final question, which has to be correct. We
distinguish between a feasible strategy, where after the r − 1 main questions the
secret is uniquely determined and an infeasible strategy, where after the r − 1
main questions at least two secrets are possible. A strategy is called optimal
if there is no feasible strategy with fewer questions. For fixed p, c ∈ N, define
sa(p, c) as the number of questions of an optimal strategy of (p, c)-Static Black-
Peg AB Game. For a strategy we say that a peg contains l ≤ c colors if there
are exactly l colors that occur in at least one main question on that peg. In the
following let the pegs be numbered by 1, 2, . . . , p and the colors by 1, 2, . . . , c.

In our context, secrets and questions are functions, i.e., mappings of the pegs
1, . . . , p to the colors 1, . . . , c. Let Q be a question and X a possible secret. We
write C(Q,X) = i if question Q would receive the answer iB for the secret X.
Let X1,X2 be possible secrets. We say that a question Q separates X1 and X2

if C(Q,X1) �= C(Q,X2). For n ∈ N let [n] := {1, . . . , n}. The Hamming distance
Δ(X1,X2) of X1 and X2 is the number of pegs at which the corresponding
colors are different. So Δ(X1,X2) = |{i ∈ [p] | X1(i) �= X2(i)}|. Note that in the
following we consider the case p = c =: n. In this case the secrets and questions
are permutations on [n]. We use the common one-line notation for permutations
in the form (b1, b2, . . . , bp), which means that 1 is mapped to b1, 2 is mapped
to b2 and so on. For k ∈ {0, . . . , n} the Rencontres number Dn,k denotes the
number of permutations in Sn with exactly k fixpoints and has the form

Dn,k =
n!
k!

n−k∑

i=0

(−1)i

i!
(see e.g. [12]).

3 A Feasible O(n2)-Strategy for the Case n = p = c

We start presenting a feasible strategy with O(n2) questions. The technique
developed here will later be used to fill some gaps in the main strategy. We use
the following questions.

Definition 1. For n ∈ N≥3 define the following questions by starting with the
identity function and only changing the mapping of two or three elements: Let
i, j, k ∈ [n] be pairwise distinct.

P
(2)
i,j : [n] −→ [n], x 
→

⎧
⎪⎨

⎪⎩

j, if x = i,

i, if x = j,

x, otherwise.
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P
(3)
i,j,k : [n] −→ [n], x 
→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

j, if x = i,

k, if x = j,

i, if x = k,

x, otherwise.

Let I denote the identity function on [n].

Keep in mind that P
(3)
i,j,k = P

(3)
j,k,i = P

(3)
k,i,j .

When changing the mapping of two elements of a question, the difference of
the answers is at most 2, so there are five cases to consider. It is easy to see the
conditions of each case. We denote the exclusive disjunction of events A and B
by A ⊕ B := (A ∧ ¬B) ∨ (¬A ∧ B).

Observation 1. Let n ∈ N≥3 and i, j ∈ [n] be distinct. Let Q,X be permuta-
tions on [n].

(i) C
(
P

(2)
Q(i),Q(j) ◦ Q,X

)
= C(Q,X) + 2 ⇐⇒ Q(i) = X(j) ∧ Q(j) = X(i)

(ii) C
(
P

(2)
Q(i),Q(j) ◦ Q,X

)
= C(Q,X) + 1 ⇐⇒ Q(i) = X(j) ⊕ Q(j) = X(i)

(iii) C
(
P

(2)
Q(i),Q(j) ◦ Q,X

)
= C(Q,X) + 0 ⇐⇒ Q(i), Q(j) /∈ {X(i),X(j)}

(iv) C
(
P

(2)
Q(i),Q(j) ◦ Q,X

)
= C(Q,X) − 1 ⇐⇒ Q(i) = X(i) ⊕ Q(j) = X(j)

(v) C
(
P

(2)
Q(i),Q(j) ◦ Q,X

)
= C(Q,X) − 2 ⇐⇒ Q(i) = X(i) ∧ Q(j) = X(j)

We will show that with the questions of Definition 1 a feasible strategy can
be constructed. The next lemmata provide some criteria to determine for given
i, j whether peg i has color j.

Lemma 1. Let n ∈ N and i ∈ [n]. Let X be a possible secret on [n]. Then,
X(i) = i if and only if C(P (2)

i,j ,X) < C(I,X) for all j ∈ [n]\{i}.
Lemma 2. Let n ∈ N≥3 and i, j, k ∈ [n] be pairwise distinct. Let X be a possible
secret on [n]. Then, X(i) = j if and only if one of the following conditions holds:

(i) C(P (2)
i,j ,X) = C(I,X) + 2,

(ii) C(P (2)
i,j ,X) = C(I,X) + 1 and C(P (3)

i,j,k,X) ≥ C(P (2)
i,j ,X),

(iii) C(P (2)
i,j ,X) = C(I,X)+1, C(P (3)

i,j,k,X) = C(P (2)
i,j ,X)−1 and C(P (2)

i,k ,X) <
C(I,X).

In the following lemma we show that the same result can be achieved with
the question P

(3)
j,i,k instead of the question P

(3)
i,j,k.

Lemma 3. Let n ∈ N≥3 and i, j, k ∈ [n] be distinct. Let X be a possible secret
on [n]. Then, X(i) = j if and only if one of the following conditions holds:

(i) C(P (2)
i,j ,X) = C(I,X) + 2,
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(ii) C(P (2)
i,j ,X) = C(I,X) + 1 and C(P (3)

j,i,k,X) = C(P (2)
i,j ,X) − 2,

(iii) C(P (2)
i,j ,X) = C(I,X)+1, C(P (3)

j,i,k,X) = C(P (2)
i,j ,X)−1 and C(P (2)

i,k ,X) ≥
C(I,X).

Combining Lemmata 2 and 3 we construct a first feasible strategy.

Theorem 1. For n ∈ N≥5 there is a feasible strategy with at most 2n2/3 ques-
tions, so sa(n, n) ≤ 2n2/3.

Proof. If for every distinct i, j ∈ [n] the permutation P
(2)
i,j is a question and there

is a k ∈ [n]\{i, j} such that P
(2)
i,k and P

(3)
i,j,k

(
or P

(3)
j,i,k

)
are questions, this set of

questions together with I forms a feasible strategy, because for every secret X
and every i ∈ [n] we get X(i) by Lemmata 1, 2 and 3. Hedlund and Fort [7]
showed that for every n ∈ N≥3 there is a set {T1, . . . , Tt} with t ≤ n2/6+1/3 and
|Tt̃| = 3 for all 1 ≤ t̃ ≤ t such that for every pair {i, j} ⊂ [n] there is a t̃ ∈ [t] with
{i, j} ⊂ Tt̃. So, there is a set T of questions with |T | ≤ n2/6 + 1/3 such that for
every i, j ∈ [n] there is a k ∈ [n]\{i, j} with P

(3)
i,j,k ∈ T or P

(3)
j,i,k ∈ T . Combined

with the final question, the identity function I and the n(n−1)/2 questions P
(2)
i,j ,

we get a feasible r-strategy with r ≤ 1 + 1 + n(n − 1)/2 + n2/6 + 1/3 ≤ 2n2/3,
where n ≥ 5. ��
Remark 1. Such a set T and thus the strategy can be easily drafted. For further
details on how to construct the question set we refer to Theorem 1 of [7].

4 A Feasible O(n1.525)-Strategy for the Case n = p = c

For improving the upper bound of O(n2), we use this strategy just for a fraction
of the number of colors and pegs. Lemmata 2 and 3 give clues about the colors of
specific pegs. Since we need the concept of “separating pairs of possible secrets”
in the following lemmata, we modify the result accordingly.

Remark 2. Let n, r ∈ N and T = (Q1, . . . , Qr) ∈ (Sn)r be a strategy. There
exist X1,X2 ∈ Sn with X1 �= X2 such that C(Qi,X1) = C(Qi,X2) for all i ∈ [r]
if and only if the strategy is infeasible. Hence, we can prove T to be a feasible
r-strategy by showing that for every X1,X2 ∈ Sn with X1 �= X2 there is an
i ∈ [r] such that Qi separates X1 and X2.

Lemma 4. Let n ∈ N≥3 and t ∈ [n]. Let T (2) :=
{

P
(2)
i,j | i ∈ {t + 1, . . . , n}, j ∈

[n], i �= j
}
, T (3) :=

{
P

(3)
i,j,1 | i ∈ {t + 1, . . . , n}, j ∈ {2, . . . , n}, i �= j

}
and T :=

{I} ∪ T (2) ∪ T (3). Let X1,X2 ∈ Sn with at least one of the following properties:

(i) There is an i ∈ {t + 1, . . . , n} with X1(i) �= X2(i).
(ii) There is a j ∈ {t + 1, . . . , n} with X−1

1 (j) �= X−1
2 (j).

Then at least one question of T separates X1 and X2.
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4.1 Possible Secrets with Low Hamming Distance

In this subsection we depict how to separate pairs of possible secrets with low
Hamming distance, i.e. a Hamming distance ≤ √

n. Let t ∈ {0, . . . , n − 1} be a
prime.

Definition 2. For m,n ∈ N with m ≥ n we denote by remn(m) (remainder) the
unique integer r ∈ {0, . . . , n − 1} such that there exists q ∈ N with m = q · n + r.
Let n ∈ N, t ≤ n be a prime, k ∈ [t − 1] and l ∈ [t]. Define the question
P (n, t, k, l) : [n] −→ [n] as

P (n, t, k, l)(b) =

{
remt(k · b + l) + 1, if b ≤ t

b, if b > t.

Lemma 5. For n, t, k, l as above, P (n, t, k, l) is a bijective function, i.e., a per-
mutation.

The separation of a pair of possible secrets will be achieved as follows:

Lemma 6. Let n ∈ N and X1,X2 ∈ Sn be possible secrets with h := Δ(X1,X2).
Let a1, . . . , ah be the pegs on which X1 and X2 have different colors. Let Q ∈ Sn

be a question with Q(a1) = X1(a1) and Q(ai) �= X2(ai) for all i ∈ [h]. Then Q
separates X1 and X2.

If we have a pair of possible secrets X1, X2 with low Hamming distance and
a prime t ≤ n such that no condition of Lemma 4 is fulfilled, there is a suitable
P (n, t, k, l) that separates X1 and X2.

Lemma 7. Let n ∈ N, t ∈ {�√n�, . . . , n} be a prime and X1,X2 ∈ Sn be
possible secrets with 2 ≤ h := Δ(X1,X2) ≤ √

n. If X−1
1 (b) = X−1

2 (b) for every
b ∈ {t + 1, . . . , n} and there is a peg a ∈ [t] with X1(a) �= X2(a), then there exist
k ∈ [�√n�] and l ∈ [t] such that P (n, t, k, l) separates X1 and X2.

With the questions from Definitions 1 and 2 we can construct a strategy for
separating pairs of possible secrets with low Hamming distance.

Strategy 1. (for n ∈ N sufficiently large)

1. Determine the largest prime p(n) in [n].
2. Take the identity function I as question.
3. For every i ∈ {p(n) + 1, . . . , n}, j ∈ [i − 1] take question P

(2)
i,j .

4. For every i ∈ {p(n) + 1, . . . , n}, j ∈ {2, . . . , i − 1} take question P
(3)
i,j,1.

5. For every k ∈ [�√n�] and l ∈ [p(n)] take question P (n, p(n), k, l).

Lemma 8. Let n ∈ N be sufficiently large. Let p(n) ∈ [n] be the largest prime in
[n]. Then Strategy 1 has O (max{√

n · p(n), n · (n − p(n))}) questions and every
pair X1,X2 ∈ Sn with 2 ≤ Δ(X1,X2) ≤ √

n is separated by at least one question.
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Proof. In steps 2–4 of Strategy 1 we use less than 1 + (n − p(n)) · 2n ques-
tions. In step 5 we add �√n� · p(n) questions. Overall the number of questions
is in O (max{√

n · p(n), n · (n − p(n))}). The claimed property of the strategy
follows by Lemmata 4 and 7: Let X1,X2 be a pair of possible secrets with
2 ≤ Δ(X1,X2) ≤ √

n. There are two cases: If there is an i ∈ {p(n) + 1, . . . , n}
with X1(i) �= X2(i) or X−1

1 (i) �= X−1
2 (i), by Lemma 4 the questions of steps

2–4 are sufficient. Otherwise, there exists a color a ∈ [p(n)] with X1(a) �= X2(a),
because X1 �= X2. So, X1 and X2 fulfill the properties of Lemma 7. Hence, at
least one question of step 5 separates X1 and X2. ��

For further specifying the bound mentioned in Lemma 8 we need an upper
bound on the difference of consecutive primes. For the next theorem we use the
following result of Baker et al.

Lemma 9 [2]. There exists an x0 such that for all x ≥ x0 the interval [x −
x0.525, x] contains at least one prime number.

Theorem 2. Let n ∈ N be sufficiently large.

a) There exists a set T of O(n1.525) questions such that every pair X1,X2 ∈ Sn

with 2 ≤ Δ(X1,X2) ≤ √
n is separated by at least one question from T .

b) If n is a prime, T has O(n1.5) questions.

Proof. Lemma 8 shows that Strategy 1 contains O
(

max
{√

n·p(n), n(n−p(n))
})

questions. If n is a prime, we have n − p(n) = 0, so there are O (
n1.5

)
questions.

In general,
√

n · p(n) ≤ n1.5 and n · (n − p(n)) ≤ n1.525 because of Lemma 9. ��

4.2 Possible Secrets with High Hamming Distance

We have yet to separate pairs of possible secrets with Hamming distance of
h ≥ √

n. We depict this case as a problem on hypergraphs.
A hypergraph is a pair H = (V, E), where V is a finite set and E is a set

of subsets of V . We call elements of V vertices and the elements of E edges. A
vertex cover is a subset U ⊆ V such that every edge e ∈ E contains at least one
vertex of U . For a detailed description see e.g. [13].

We start by showing that for every pair X1,X2 there is a relatively large
number of separating questions. Let n ∈ N. We define the hypergraph H = (V, E)
as follows:

– V is the set of questions, so V := Sn.
– For every pair of possible secrets X1,X2 with Δ(X1,X2) ≥ √

n, we create an
edge called HX1,X2 . So, E := {HX1,X2 | X1,X2 ∈ Sn,Δ(X1,X2) ≥ √

n}.
– An edge HX1,X2 consists of all questions Q separating X1 and X2. So, for all

HX1,X2 ∈ E we have HX1,X2 = {Q ∈ Sn | C(Q,X1) �= C(Q,X2)}.

Lemma 10. Let n ≥ 6. Let X1,X2 ∈ Sn with Δ(X1,X2) ≥ √
n and e :=

HX1,X2 ∈ E. Then |e| ≥ n! · 1
18

√
n
.
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Similarly, there is always a question that separates a relatively large number
of pairs of possible secrets with large Hamming distance.

Lemma 11. Let n ≥ 6. For every subset ∅ �= F ⊆ E, there is a vertex Q ∈ V
with |{e ∈ F | Q ∈ e}| ≥ 1

18
√
n

· |F|.

We can iteratively pick such questions to separate as many pairs of possi-
ble secrets as possible. After O(n1.5 log n) iteration steps every pair with high
Hamming distance is separated.

Theorem 3. Let n ≥ 6. There exists a set of O(n1.5 log n) questions such that
every pair X1,X2 ∈ Sn with Δ(X1,X2) ≥ √

n is separated by at least one
question.

Proof. We prove that a vertex cover T of H with O(n1.5 log n) vertices exists.
This translates to a set T̃ of questions with the needed property, because for every
distinct pair X1,X2 ∈ Sn there is a vertex Q ∈ T that covers the edge HX1,X2 ∈
E , so the corresponding question separates X1 and X2. With Lemma 11, for every
subset ∅ �= F ⊆ E there is a vertex Q ∈ V with |{e ∈ F | Q ∈ e}| ≥ 1

18
√
n

· |F|.
Hence, for every subset ∅ �= F ⊆ E we can pick a vertex Q ∈ V that leaves at
most

(
1 − 1

18
√
n

)
· |F| uncovered. Now we can start with the empty set T = ∅,

and iteratively add vertices to T , which at the time are in at least a fraction
of 1

18
√
n

of the uncovered edges. After t steps the fraction of uncovered edges is

at most
(
1 − 1

18
√
n

)t

. With t := 36 ln(n) · n1.5, the fraction of uncovered edges
after t steps is at most

(
1 − 1

18
√

n

)36 ln(n)·n1.5

=
(

1 − 1
18

√
n

)18
√
n·(2 ln(n)·n)

≤
(

1
e

)2 ln(n)·n

=
(

1
n

)2n

≤ 1
(n!)2

.

Since |E| < (n!)2, after about t iteration steps T is a vertex cover of H. So,
O(n1.5 log(n)) questions suffice for separating every pair X1,X2 ∈ Sn with
Δ(X1,X2) ≥ √

n. ��
Finally, we can prove our main result.

Theorem 4. Let n ∈ N be sufficiently large. There exists a set T of O(n1.525)
questions such that every pair X1,X2 ∈ Sn is separated by at least one question
from T . Therefore, T is a feasible strategy.

Proof. Remark 2 states that a strategy is feasible if every pair of possible secrets
is separated by at least one question. Theorem 2 implies that there are O(n1.525)
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questions separating every pair of possible secrets with low Hamming distance.
Because of Theorem 3, O(n1.5 log n) questions are sufficient for separating pairs
of possible secrets with high Hamming distance. Altogether, there exists a fea-
sible strategy with O(n1.525) questions. ��

5 A Lower Bound of Ω(n logN) for the Case n = p = c

In this section we present a lower bound of Ω(n log n) questions for Static Black-
Peg AB Game for n = p = c. The technique is based on information theory and
adopted from [4]. Note that in the following we use the logarithm to the base 2
and denote it by “log”.

We introduce a few notions and results from information theory.

Definition 3. Let X be a discrete random variable on a domain D. The entropy
of X is defined as

H(X) :=
∑

x∈D

Pr[X = x] log
(

1
Pr[X = x]

)
.

Intuitively speaking, the entropy is a measure on how much information X will
reveal in expectation.

We need the following well-known properties of entropy:

Lemma 12. Let X,Y be discrete random variables.

(i) H((X,Y )) ≤ H(X) + H(Y ).
(ii) If X = f(Y ) for some deterministic function f , then H(X) ≤ H(Y ).

Consider a possible secret X ∈ Sn chosen uniformly at random (so H(X) =
log(|Sn|) = log(n!)). Let s be the size of a feasible strategy. For i ∈ [s]
let Yi be the answer to the i-th question. Since our strategy is feasible, the
sequence Y = (Y1, . . . , Ys) determines X and hence we have H(Y ) ≥ H(X)

by Lemma 12 (ii). On the other hand, H(Y ) = H(Y1, . . . , Ys) ≤
s∑

i=1

H(Yi) by

Lemma 12 (i). Recalling the definition of the Rencontres number Dn,k, for any

i ∈ [s] we have H(Yi) =
n∑

k=0

Dn,k

n! log
(

n!
Dn,k

)
. Note that

Dn,k =
n!
k!

n−k∑

i=0

(−1)i

i!
≤ n!

2k!
for any k < n (1)

and on the other hand

Dn,k ≥ n!
3k!

for any k < n − 1. (2)
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Moreover Dn,n = 1 and Dn,n−1 = 0, so for any i ∈ [s] and n ≥ 4 we get

H(Yi) =
n∑

k=0

Dn,k

n!
log

(
n!

Dn,k

)

=
log(n!)

n!
+

n−2∑

k=0

Dn,k

n!
log

(
n!

Dn,k

)

≤ log(n!)
n!

+
1
2

n−2∑

k=0

log(3k!)
k!

(Eq. (1),(2))

=
log(n!)

n!
+

1
2

n−2∑

k=0

log 3
k!

+
1
2

n−2∑

k=2

log(k!)
k!

≤ n log n

n!
+

log 3
2

e +
1
2

n−2∑

k=2

log(k!)
k!

≤ e

5
+

4e

5
+

1
2

n−2∑

k=2

log(k!)
k!

(n ≥ 4)

≤ e +
1
2

n−2∑

k=2

1
(k − 2)!

≤ 3
2
e.

So altogether we have log(n!) = H(X) ≤ H(Y ) ≤ 3se
2 and hence s ≥

2 log(n!)/3e = Ω(n log n).

6 An Optimal (�4c/3� − 1)-Strategy for p = 2

In this section we present a (�4c/3� − 1)-strategy for the case of p = 2 pegs
and arbitrarily many colors c ≥ 2. In the following let p = 2. Observe that a
feasible strategy for Static Black-Peg Mastermind is automatically also a feasible
strategy for the Static Black-Peg AB Game if in each question no color occurs
twice. The idea of the following strategies for the Static Black-Peg AB Game
and arbitrarily many colors c ≥ p = 2 is to use the strategy for Static Black-Peg
Mastermind for p = 2 pegs from [8] as basis, apply it to c−2 colors and add two
further main questions to this strategy, namely the questions (c − 2, c − 1) and
(c − 1, c). In the following we introduce a (�4c/3� − 1)-strategy for each c ≥ 3
except c = 4, 5. We distinguish between the cases c ≡ 0mod 3, c ≡ 1mod 3,
c≡ 2mod 3. For the number k := (�4c/3� − 2) of main questions it holds that

k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4
3

· c − 2 = 4 · c

3
− 2 ≡ 2 mod 4 for c ≡ 0 mod 3

4
3

· c − 4
3

= 4 · c − 1
3

≡ 0 mod 4 for c ≡ 1 mod 3

4
3

· c − 5
3

= 4 · c − 2
3

+ 1 ≡ 1 mod 4 for c ≡ 2 mod 3

(3)
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Strategy 2. ((�4c/3� − 1)-strategy for p = 2 and arbitrary c ≡ 0 mod 3)

1. Divide the k main questions into three blocks of questions, the first (k − 2)/2
questions and the second (k − 2)/2 questions, and two additional questions
(c − 2, c − 1) and (c − 1, c).

2. The first peg contains the colors 1, 2, . . . , (k − 2)/2 in the first block and the
colors (k − 2)/2 + 1, (k − 2)/2 + 1, (k − 2)/2 + 2, (k − 2)/2 + 2 . . . , 3(k −
2)/4, 3(k − 2)/4(= c − 3) in the second block.

3. In the first two blocks, the second peg is received from the first peg by switching
the role of the two blocks.

4. Finally, the secret has to be asked as final question Qk+1.

Strategy 3. ((�4c/3� − 1)-strategy for p = 2 and arbitrary c ≡ 1 mod 3, c �=
1, 4)

1. Divide the k main questions into three blocks of questions, the first (k − 2)/2
questions and the second (k − 2)/2 questions, and two additional questions
(c − 2, c − 1) and (c − 1, c).

2. The first peg contains the colors 1, 2, . . . , (k − 2)/2 in the first block and the
colors (k − 2)/2 + 1, (k − 2)/2 + 1, (k − 2)/2 + 1, (k − 2)/2 + 2, (k − 2)/2 +
2 . . . , 3(k − 4)/4 + 1, 3(k − 4)/4 + 1(= c − 3) in the second block (note that
the first number (k − 2)/2 + 1 occurs three times, not only twice).

3. In the first two blocks, the second peg is received from the first peg by switching
the role of the two blocks.

4. Finally, the secret has to be asked as final question Qk+1.

Strategy 4. ((�4c/3� − 1)-strategy for p = 2 and arbitrary c ≡ 2 mod 3, c �=
2, 5)

1. Divide the k main questions into three blocks of questions, the first (k − 3)/2
questions and the second (k − 1)/2 questions, and two additional questions
(c − 2, c − 1) and (c − 1, c).

2. The first peg contains the colors 1, 2, . . . , (k − 3)/2 in the first block and the
colors (k − 1)/2, (k − 1)/2, (k − 1)/2 + 1, (k − 1)/2 + 1, . . . , 3(k − 1)/4 −
1, 3(k − 1)/4 − 1(= c − 3) in the second block.

3. The second peg contains the colors (k − 1)/2 + 1, (k − 1)/2 + 1, (k − 1)/2 +
1, (k − 1)/2 + 2, (k − 1)/2 + 2, . . . , 3(k − 1)/4 − 1, 3(k − 1)/4 − 1 in the first
block and the colors 1, 2, . . . , (k−1)/2 in the second block (note that the first
number (k − 1)/2 + 1 occurs three times, not only twice).

4. Finally, the secret has to be asked as final question Qk+1.

Remark 3. Note that in all three strategies the colors c and c − 2 are not used
in the first peg and second peg, respectively, of the main questions at all.

As examples, the main questions of Strategy 2 for p = 2 and c = 12 with
k = 14 questions (the first 12 questions can be found in Table 1(b) of [8]),
Strategy 3 for p = 2 and c = 13 with k = 16 questions (the first 14 questions can
be found in Table 1(c) of [8]), and Strategy 4 for p = 2 and c = 11 with k = 13
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Table 2. Examples for Strategies 2, 3 and 4 with p = 2.

Peg 1 2
Q1 1 7
Q2 2 7
Q3 3 8
Q4 4 8
Q5 5 9
Q6 6 9
Q7 7 1
Q8 7 2
Q9 8 3
Q10 8 4
Q11 9 5
Q12 9 6
Q13 10 11
Q14 11 12

(a) c = 12, k = 14.

Peg 1 2
Q1 1 8
Q2 2 8
Q3 3 8
Q4 4 9
Q5 5 9
Q6 6 10
Q7 7 10
Q8 8 1
Q9 8 2
Q10 8 3
Q11 9 4
Q12 9 5
Q13 10 6
Q14 10 7
Q15 11 12
Q16 12 13

(b) c = 13, k = 16.

Peg 1 2
Q1 1 7
Q2 2 7
Q3 3 7
Q4 4 8
Q5 5 8
Q6 6 1
Q7 6 2
Q8 7 3
Q9 7 4
Q10 8 5
Q11 8 6
Q12 9 10
Q13 10 11

(c) c = 11, k = 13.

questions (the first 11 questions can be found in Table 1(a) of [8]) are listed in
Tables 2a, b and c, respectively.

This idea works for all c ≥ 2 except for c = 2, 4, 5. The case c = 2 is trivial.
Regarding the case c = 4, one optimal strategy for Static Black-Peg Mastermind
for c − 2 = 2 contains the main question (1, 1) which is forbidden in the AB
Game. Analogously, regarding the case c = 5, one optimal strategy for Static
Black-Peg Mastermind for c−2 = 3 contains the forbidden main question (2, 2).
These cases are considered in the following observation.

Observation 2. (a) For c = 2, the strategy which consists only of the main
question (1, 2) is a feasible strategy which needs (�4 · c/3� − 1) = 2 questions.

(b) For c = 4, the strategy which consists of the four main questions (1, 2),
(1, 3) (2, 1), (3, 1) is a feasible strategy for Static Black-Peg AB Game. It
needs (�4 · c/3� − 1) = 5 questions.

(c) For c = 5, the strategy which consists of the five main questions (1, 2), (1, 3),
(2, 1), (3, 1), (4, 5) is a feasible strategy for Static Black-Peg AB Game. It
needs (�4 · c/3� − 1) = 6 questions.
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Theorem 5. The strategy of [8] for Static Black-Peg Mastermind for c−2 colors
plus the additional main questions (c−2, c−1), (c−1, c) is a feasible and optimal
(�4c/3� − 1)-strategy for p = 2 and for the corresponding c ≥ 3, c �= 4, 5. I.e.,
sa(2, c) = (�4c/3� − 1) for arbitrary c ≥ 2.

We obtain the following interesting relations in comparison to the strategies
of [8].

Remark 4. (a) For c ≡ 0 mod 3, the strategies of Theorem 5 for the Static
Black-Peg AB Game need one question less than Strategy 1 from [8] for
Static Black-Peg Mastermind.

(b) For c ≡ 1 mod 3, the strategies of Theorem 5 and Observation 2 for the
Static Black-Peg AB Game need the same number of questions as Strategy 2
from [8] for Static Black-Peg Mastermind.

(c) For c ≡ 2 mod 3, the strategies of Theorem 5 and Observation 2 need one
question less than Strategy 3 from [8] for Static Black-Peg Mastermind.

7 Optimal and Random Strategies and Future Work

In Sect. 6 we computed exact values for sa(2, c) for all c ≥ 2 by giving optimal
strategies. However, for pairs (p, c) with 3 ≤ p ≤ c it seems rather difficult to
construct strategies that are optimal, or at least close to optimum with sensible
computing effort. We tackled this problem using random strategies, i.e. strategies,
where each main question is chosen randomly and uniformly distributed over all
possible questions to compute tighter upper bounds on sa(p, c) for pairs (p, c)
with larger p, c.

For this purpose we used a computer program which for small p, c finds
optimal strategies by brute-force search and for larger p, c generates a random
strategy of a given length and checks, whether the computed strategy is feasi-
ble. The program was implemented in the programming language C++, and all
experiments were done on a standard desktop in a Unix-based system. Its source
code is available online at [15].

The results for 1 ≤ p ≤ c ≤ 8 can be found in Table 3.
In addition to the values for p = 2 we were able to compute exact values for

sa(pc) for six additional pairs and upper bounds for several other cases.
Further, note that for all pairs (p, c), where we could (theoretically or by the

program) validate exact values, at least one of 10, 000 tested random strategies
were optimal. The computed upper bounds turn out to be remarkably smaller
than the strategy constructed in Sect. 3 (e.g. 18 questions vs. 41 questions for
p = c = 8).

Regarding future work, this motivates both to theoretically investigate the
behavior of random strategies and to improve the known upper bounds for the
case p = c, but also for the case p < c.
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Table 3. Summary of results for values sa(p, c) for p ≤ c ≤ 8

c p

1 2 3 4 5 6 7 8

1 1 – – – – – – –

2 2 2 – – – – – –

3 3 3 5 – – – – –

4 4 5 5 5 – – – –

5 5 6 7 7 7 – – –

6 6 7 ≤8 ≤10 ≤11 ≤9 – –

7 7 9 ≤10 ≤13 ≤16 ≤15 ≤13 –

8 8 10 ≤12 ≤15 ≤17 ≤19 ≤20 ≤18
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4. Doerr, B., Doerr, C., Spöhel, R., Thomas, H.: Playing Mastermind With Many
Colors. J. ACM 63(5), 42:1–42:23 (2016). ACM

5. El Ouali, M., Glazik, C., Sauerland, V., Srivastav, A.: On the query complexity
of black-peg AB-mastermind. CoRR, abs/1611.05907 2016) http://arxiv.org/abs/
1611.05907

6. Focardi, R., Luccio, F.L.: Guessing bank PINs by winning a mastermind game.
Theory Comput. Syst. 50(1), 52–71 (2012)

7. Fort, M.K., Hedlund, G.A.: Minimal coverings of pairs by triples. Pac. J. Math.
8(4), 709–719 (1958)
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