
A Simple Greedy Algorithm for the
Profit-Aware Social Team Formation Problem

Shengxin Liu1 and Chung Keung Poon2(B)

1 Department of Computer Science, City University of Hong Kong,
Hong Kong, China

shengxliu2-c@my.cityu.edu.hk
2 School of Computing and Information Sciences, Caritas Institute of Higher

Education, Hong Kong, China
ckpoon@cihe.edu.hk

Abstract. Team formation in social networks has attracted much atten-
tion due to its many applications such as the online labour market. In this
paper, we focus on the problem of forming multiple teams of experts with
diverse skills in social network to accomplish complex tasks of required
skills. The goal is to maximize the total profit of tasks that these teams
can complete. We provide a simple and practical algorithm that improves
upon previous results in many situations.

1 Introduction

Team formation in a networked community of experts is concerned with forming
teams of experts to complete certain tasks. A team is qualified (or feasible) for
a task if the team as a whole possesses all the skills required by the task and
the team members are “socially compatible”, i.e., they can collaborate smoothly
according to an underlying social network. This topic has gained much attention
recently due to the many applications in social collaboration made possible by
the World Wide Web. One specific example is the online labour market. In online
platforms such as Freelancer (www.freelancer.com), Guru (www.guru.com) and
Upwork (www.upwork.com), projects with various skill requirements are posted
and freelancers who possess the required skills can bid for the projects [7]. As
observed by Greenwald [8], more and more freelancers are willing to team up with
others who have complementary skills in order to take up more complicated and
profitable projects. In parallel to this phenomenon, many major platforms (such
as Upwork) also provide team-hiring services for their enterprise customers.

In this paper, we study the following team formation problem. Imagine that
there is a collection of tasks, each specified by the set of skills it requires and the
profit gained when the task is completed. There is also a group of experts over
a social network, each possessing a certain set of skills and having a capacity
which limits the maximum number of tasks he/she can take up. Our goal is to
form multiple (possibly overlapping) feasible teams of experts to maximize the
total profit of tasks that can be solved subject to the capacity constraints.

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part II, LNCS 10628, pp. 379–393, 2017.
https://doi.org/10.1007/978-3-319-71147-8_26

www.freelancer.com
www.guru.com
www.upwork.com

380 S. Liu and C.K. Poon

Table 1. Comparison of the approximation ratios of Tang’s and our algorithms. Note

that
√∑

V ∈V c(V)/c(min) ≥ √
m. In many applications, Δ(I) is much smaller than

√
m.

Social compatibility Tang’s algorithm [17,18]
and extension

This paper

General case β min{Δ(I) +

1, 2(
√∑

V ∈V c(V)

c(min)
+ 1)}

min{Δ(I) + 1, m}

Hereditary case Same as above min{Δ(I) + 1, m, k}

The above problem, which we called the Profit-aware Social Team Formation
Problem, was first introduced by Tang [17,18]. (His version is actually slightly
different from ours but the essence is the same.) Tang’s algorithm is based on an
LP-rounding approach (see, for example, [3,9]) which runs in polynomial time
(when the value of expert’s capacity is polynomial in the input size) and produces
an approximate solution with a performance guarantee. First, he formulated a
linear programming relaxation of the problem using a modified input instance
and obtained a fractional solution by invoking an ellipsoid algorithm. Assuming
the availability of a polynomial time oracle for the Min-cost Team Selection
Problem (to be defined in Sect. 2), the ellipsoid algorithm runs in polynomial
time (when the value of expert’s capacity is polynomial with respect to the input
size). Then, a clever rounding is applied to convert the fractional solution into
an integral solution in polynomial time. To describe the approximation ratio of
Tang’s algorithm, let m be the number of experts and Δ(I) be the size of a largest
minimal feasible team for a task in the input I. A team is said to be minimal
feasible for a task if none of its members can be removed without making the
team infeasible for that task. (Obviously, Δ(I) is at most the number of total
experts, i.e., m, in the input. However, Δ(I) is usually much smaller than m
in our applications.) We also denote by V the set of experts, c(V) the capacity
of expert V ∈ V and let c(min) = minV ∈V c(V). (Formal definition will be
given in Sect. 2.) Then Tang’s algorithm guarantees an approximation ratio of
β min{Δ(I) + 1, 2

√
m + 1}, for the unit expert capacity case (i.e., c(V) = 1 for

each V ∈ V) where β is the approximation ratio of the oracle. Based on Tang’s
algorithm [17,18], a minor generalization achieves a polynomial time and an
approximation ratio of β min{Δ(I)+1, 2(

√∑
V ∈V c(V)/c(min)+1)} for general

c(V) (see Table 1). This generalization is also based on an LP-rounding method
where we first solve the LP using the original input instance and then utilize
certain generalized rounding methods. Note that

√∑
V ∈V c(V)/c(min) ≥ √

m
where equality holds when each expert V ∈ V has the same capacity c(V).
The performance of Tang’s algorithm relies on β, which, in turn, depends on the
precise problem definition. We will discuss β for different variants in Sect. 2.1. We
also remark that although Tang’s algorithm runs in polynomial time, it requires
running an ellipsoid algorithm which could be a big overhead in practice.

A Simple Greedy Algorithm 381

In this paper, we design a simple and efficient greedy algorithm for the prob-
lem without using an ellipsoid algorithm. Our algorithm also makes use of an
oracle for the Min-cost Team Selection Problem. However, it has an approxi-
mation ratio of min{Δ(I) + 1,m} which is independent of the performance of
the oracle, i.e., β. See Table 1 for a comparison of approximation ratios. When
Δ(I) ≤ 2

√∑
V ∈V c(V)/c(min) + 1, our algorithm has better approximation

ratio than Tang’s algorithm by a factor of β. This case is common in practice,
which can be seen from the experimental part of previous studies on different
team formation algorithms (e.g., [6,10,13,15,18,19]). For example, [18] consid-
ered a dataset from Upwork in which the number of experts is of the order m =
10 million while the maximum team size is about 500. Note that both Tang’s
algorithm and ours are very general and work for any definition of social compat-
ibility as long as there is an appropriate oracle for the corresponding Min-cost
Team Selection Problem. We also consider the class of social compatibilities that
are hereditary, i.e., any sub-team of a socially compatible team is also socially
compatible. For this class of social compatibilities, our algorithm achieves an
approximation ratio of min{Δ(I) + 1,m, k} where k is the number of skills (see
also Table 1). We will discuss variants of social compatibilities in Sect. 2.1.

In summary, our greedy algorithm has the following advantages. First, our
algorithm is simple and efficient without utilizing the time-consuming ellipsoid
algorithm. Second, the approximation ratio of our algorithm is better in our
applications as verified by several studies on team formation problem. Lastly,
we are the first to characterize and study the hereditary social compatibility
and our algorithm can achieve an improved approximation ratio for this case of
social compatibilities.

1.1 Other Related Works

A number of variants of team formation problems over social networks have
been considered in the literature. In particular, there have been studies on the
problems of selecting a single team for a single task while minimizing the coor-
dination cost [10,11,14] or maximizing the social compatibility [6,15] among the
team members in the social network. Some other works generalized the binary
skill coverage model (where a skill is covered by a team if at least one team
member possesses that skill) to models where a skill may require more than one
experts [6,13,15].

For the scenario of multiple tasks, Anagnostopoulos et al. [1,2] considered
the assignment of all tasks to the experts while balancing their workload. On
the other hand, Golshan et al. [7] did not aim at covering all tasks but at maxi-
mizing the total profit of covered tasks by selecting a single team within a given
budget. This is different from the problem of multiple teams solving multiple
tasks studied in this paper.

For a discussion and comparison of various definitions of team formation in
social networks, readers are referred to the surveys by Wang et al. [19,20].

382 S. Liu and C.K. Poon

Paper Organization. The rest of this paper is organized as follows. In the next
section, we provide the problem definitions as well as some notations and a
discussion on social compatibilities, β and Δ(I). In Sect. 3, we present our greedy
algorithm and its performance analysis. We discuss the adaption of our greedy
algorithm to solve the problem considered by Tang [17,18] in Sect. 4. Finally,
Sect. 5 contains our conclusion and discusses future work.

2 Preliminaries

Throughout this paper, we denote by S the set of skills, T the set of tasks and V
the set of experts. Let k, n and m be their sizes respectively, i.e., k = |S|, n = |T |
and m = |V|. For each task T ∈ T , let s(T) ⊆ S be the set of skills required
to complete task T and p(T) be the profit gained when task T is completed.
For each expert V ∈ V, let s(V) ⊆ S be the set of skills that V possesses and
c(V) (the capacity of V) be the maximum number of tasks that V can take.
Finally, the relationship among the experts in V is captured by a social network
G, which is a graph over V. The social compatibility of a team will be defined
with respect to G. In the literature, the social network G is often a weighted
undirected graph while different definitions of social compatibilities have been
considered. In our problem definitions below, we leave the exact definition of the
social network and social compatibility open so that our results are as generally
applicable as possible. Nevertheless, we will give a discussion on variants of the
social compatibilities after defining our problems.

We adopt the binary skill coverage model so that a task T is covered by a
team V ′ if every skill in s(T) is possessed by at least one expert in V ′. A feasible
team is one that is also socially compatible:

Definition 1 (feasibility). Let T be a task in T and V ′ ⊆ V be a team. We
say that V ′ is feasible for T if and only if s(T) ⊆ ∪V ∈V′s(V) and V ′ is a socially
compatible team.

Definition 2 (minimal feasibility). Let T be a task in T and V ′ ⊆ V be a
team. We say that V ′ is minimal feasible for T if and only if V ′ is feasible for T
and no proper subset of V ′ is feasible for T .

Thus, a minimal feasible team has no obvious redundant members.

Definition 3. Given a set of skills S, a set of tasks T , a set of experts V and
the underlying social network G on the experts, the Profit-aware Social Team
Formation Problem is to form teams of experts V1,V2, . . . such that Vi is
feasible for task Tji for all i and each expert V appears in at most c(V) teams
(i.e., |{Vi|V ∈ Vi}| ≤ c(V)) while the total profit

∑
i p(Tji) is maximized.

Both Tang’s algorithm and ours for the above problem make use of an oracle
for the Min-cost Team Formation Problem which we defined as follows:

A Simple Greedy Algorithm 383

Definition 4. Given a set of skills S, a task T , a set of experts V with a weight
w(V) on each expert V ∈ V and a social network G on the experts, the Min-cost
Team Selection Problem is to select a feasible team V ′ ⊆ V for task T while
the sum of weights for team members in V ′, i.e.,

∑
V ∈V′ w(V), is minimized.

Specifically, both algorithms require the oracle to run in polynomial time and
return a minimal feasible team whenever a feasible team exists.

2.1 Variants of Social Compatibility

Different definitions of social compatibility give rise to different variants of the
above problems. A natural requirement on social compatibility is to require all
team members to be connected. One can distinguish two models of connec-
tivity, namely, the Explicitly Connected Team (ECT) model and the Implicitly
Connected Team (ICT) model [2]. In the former model, we require that the team
members are connected in the induced subgraph over the team members. On the
other hand, the latter model just requires the team members to be connected
within the original social network G.

In the ECT model, Lappas et al. [11] were the first to consider two types of
coordination cost, namely, the diameter (i.e., the maximum distance between a
pair of team members) and the weight of a minimum spanning tree that connects
all the team members in the social network. In the ICT model, Anagnostopoulos
et al. [2] studied the problem using the diameter, weight of minimum Steiner tree
as well as sum of pairwise distances in a team as coordination cost. Kargar and
An [10] studied the problem in which each required skill of a task should be
assigned an expert. (Thus a versatile expert may contribute to multiple skills in
a task.) They then considered two definitions of coordination cost: (1) the sum
of distances among the assigned expert of each skill and (2) the leader distance,
i.e., the sum of distances between the leader and the assigned expert of each
skill. Instead of minimizing a coordination cost, [6,15] maximizes the team’s
compatibility measured by the density of the subgraph induced by the team. In
general, any reasonable definition on community [5,12] can be used here.

Recall that β is the approximation ratio of an oracle for the Min-cost Team
Selection Problem. Clearly, β depends on the definition of the social compatibil-
ity. For example, when the social compatibility requirement is absent (i.e., any
team is considered socially compatible), the corresponding Min-cost Team Selec-
tion Problem can be reduced to the Weighted Set Cover Problem. In this case,
the oracle A can be the classic greedy algorithm for the Weighted Set Cover
Problem, which admits an approximation ratio of β = O(log k). As another
example, suppose the social compatibility requires the selected team to form
a connected subgraph in the ECT model. Then, we can apply algorithms for
the directed Steiner tree problem as the oracle [4,16] with β = O(kε) for any
constant ε > 0. We also point out that β = Ω(log k) since the Min-cost Team
Selection Problem generalizes the Weighted Set Cover Problem.

Besides β, the precise definition of social compatibility also affects Δ(I).
Recall that Δ(I) is the size of a largest minimal feasible team for a task in the

384 S. Liu and C.K. Poon

input I. So, Δ(I) depends on the input I and obviously Δ(I) ≤ m. It can be
proved that Δ(I) ≤ k when the social compatibility is measured by the diameter,
weight of minimum Steiner tree or sum of pairwise distances in the ICT model.
In fact, these social compatibilities are examples of the class of hereditary social
compatibilities which we defined below.

Definition 5 (hereditary social compatibility). A social compatibility prop-
erty is said to be hereditary if any team V ′ possessing this social compatibility
property implies that every subset V ′′ ⊆ V ′ also possesses this compatibility.

We will prove that Δ(I) ≤ k if the social compatibility property is hereditary
in Sect. 4. Most previously studied social compatibilities are hereditary [2,20].
On the other hand, any social compatibility on the ECT model does not have
the hereditary property. This is because a subgraph of a connected graph is not
necessarily connected. In this case, Δ(I) is not necessarily always less than k for
the worst case instance I. For example, consider a social network which is a line
of m vertices (i.e., experts) and a task that can only be completed by a team
that includes the two end vertices of the social network due to the required skill
set. Assume that m > k and the social compatibility requires the selected team
should form a connected subgraph on the ECT model. In order to connect these
two end vertices, a feasible team should include all the m vertices which results
in Δ(I) = m. Thus, Δ(I) > k in this case.

3 Our Greedy Algorithm

Our algorithm, called GREEDY, is shown in Algorithm1. The high-level idea of
our algorithm is to process the tasks one by one in non-increasing order of their
profit and for each task, select a suitable team using an oracle A for the Min-
cost Team Selection Problem. In each instance of the Min-cost Team Selection
Problem, all experts will have the same cost. The oracle A can return an exact
or approximate solution. However, we require that the oracle runs in polynomial
time (so that our algorithm also runs in polynomial time) and will return a
minimal feasible team whenever a feasible team exists.

In Sect. 3.1, we present a simple charging scheme that proves the following
result.

Theorem 1. GREEDY is (Δ(I) + 1)-competitive.

Since Δ(I) ≤ m, it follows from Theorem 1 that GREEDY is (m + 1)-
competitive. In Sect. 3.2, by adjusting the charging scheme carefully, we will
show that:

Theorem 2. GREEDY is m-competitive.

Theorems 1 and 2 will complete our result stated for the general case in
Table 1. We also study the class of hereditary social compatibilities in Sect. 3.4
and prove the following result below:

A Simple Greedy Algorithm 385

Algorithm 1. The GREEDY Algorithm
1 Sort the set of tasks T in non-increasing order of profit. Without loss of

generality, we assume that p(T1) ≥ p(T2) ≥ · · · ≥ p(Tn).

2 for each task Ti from i = 1 to n do
3 Apply the polynomial-time β-approximation oracle A for the Min-cost

Team Selection Problem to find a team V ′ ⊆ V.
4 if there exists such a team V ′ then
5 Complete Ti by using V ′.
6 Decrease the capacity c(Vj) of each expert Vj ∈ V ′ by 1.
7 Remove the experts with zero capacity from V.

8 else // The current set of available experts V cannot cover Ti.

9 Leave Ti uncompleted.

Theorem 3. GREEDY is k-competitive when the social compatibility property
is hereditary.

We now introduce some more definitions and notations for the analysis. Fix
an arbitrary input I. Let ZO and ZG be the set of tasks completed by OPT and
GREEDY respectively. An expert is called a common expert if he/she is used
by both OPT and GREEDY (but not necessarily for the same task).

To simplify the analysis, we will first modify the set of experts in the solutions
by GREEDY and OPT. Consider the sequence of tasks T1, T2, . . . , Tn sorted in
non-increasing order of profit. For each GREEDY’s team (and OPT’s team) and
for each expert V , we create the i-th copy V i of V with identical skill set to
replace V if expert V is involved in GREEDY’s teams (and OPT’s teams) the i-
th time. Clearly, each expert V has at most c(V) copies of V . However, the social
network G remains unchanged. (So, the different copies of V are represented by
the same vertex in G.) In the analysis, we treat each copy as an expert with
unit capacity while the number of experts may be increased to m′. Observe that
any two copies of the same expert will not join the same minimal feasible team.
Hence we still have Δ(I) ≤ m (not m′). With this modification, we can describe
the following charging schemes more easily.

3.1 A Simple Charging Scheme

The charging scheme maps each task in ZO to some task in ZG. For each task
T ∈ ZO, if T is also present in ZG, we construct a pointer from T in ZO to T
in ZG, meaning that we charge the profit of T in ZO to T in ZG. We call this a
“task” pointer (or T-pointer for short). Otherwise T is not in ZG. This happens
only if some expert in OPT’s team for T has been used by GREEDY for some
task before T . In that case, let Ta ∈ ZG be the earliest task in which GREEDY’s
team shares some common expert with OPT’s team for T . (Thus Ta also has
the largest profit among all tasks by GREEDY that shares common expert with
OPT’s team for T .) We construct a pointer from T ∈ ZO to Ta ∈ ZG. (So, we

386 S. Liu and C.K. Poon

ZO: · · ·

Ti

· · ·

ZG: · · ·

Ti

· · ·

(a) A T-pointer from Ti ∈ ZO to Ti ∈ ZG.

Tk

Y
Tj

X
Ti

ZG: · · · · · ·

XY
Tk

ZG: · · · · · · · · · · · ·

(b) An E-pointer from Tk ∈ ZO to Ti ∈
ZG. Ti, Tj and Tk are in non-increasing
order of their profit which implies i < j <
k. The GREEDY’s teams for Ti and Tj

share the experts X and Y with the OP-
T’s team for Tk, respectively. Note that
Tk Z∈� G.

Fig. 1. Examples for T-pointer and E-pointer in the simple charing scheme.

charge the profit of T in ZO to Ta in ZG.) We call this an “expert” pointer (E-
pointer). For convenience, we denote by (Ta, Tb) the pointer from task Ta to task
Tb. Notice that each pointer (Ta, Tb), whether a T-pointer or E-pointer, always
points from a task Ta in ZO to a task Tb in ZG. See Fig. 1 for an example.

Lemma 1. The above charging scheme has the following properties:

M1. Every task T in ZG receives at most Δ(I) + 1 pointers.
M2. For every pointer from Ta to Tb, we have p(Ta) ≤ p(Tb).

Proof. The first property M1 can be seen as follows. Clearly a task T in ZG can
receive at most one T-pointer. By definition, any team chosen by GREEDY has
at most Δ(I) experts. Hence, any task T in ZG has at most Δ(I) E-pointers.

The second property M2 is also obvious. It clearly holds for T-pointers. For
an E-pointer (Ta, Tb), notice that Ta is not completed by GREEDY. It must be
the case that some expert in OPT’s team for Ta has been used by GREEDY for
some task before Ta. Therefore, p(Tb) ≥ p(Ta).

Theorem 1 directly follows from the above lemma.

3.2 A Modified Charging Scheme

We next show a modified charging scheme by adjusting the pointers care-
fully. This modified charging scheme shows that GREEDY is m-competitive.
To explain in detail, we need more definitions:

Definition 6 (overloaded task). A task T ∈ ZG is overloaded if it has m+1
pointers. Otherwise, it is said to be normal.

We note that any task can have at most m + 1 pointers. It is obvious that
each task can have at most one T-pointer. For E-pointer, we observe that each
team is composed of at most m (not m′) experts since any two copies of the
same expert will not join the same minimal feasible team.

A Simple Greedy Algorithm 387

Definition 7 (universal task). A task T ∈ ZO is universal if OPT’s team
for T possesses all possible skills, i.e., the union of all experts’ skill sets.

Then we observe the relationship between an overloaded task and a universal
task as follows:

Lemma 2. If a task T is overloaded, T must be universal.

Proof. In this proof, an “original expert” refers to an expert in the original
input. Since T is overloaded, it must have one T-pointer and m E-pointers. This
implies that T ∈ ZO and GREEDY’s team for T consists of m experts where
the latter is due to that each E-pointer corresponds to an expert. Note that
each expert in GREEDY’s team for T corresponds to a distinct original expert.
That is, GREEDY’s team for T corresponds to the set of all m original experts.
Recall that the oracle A will return a minimal feasible team whenever a feasible
team exists. By Definition 2, OPT’s team for T must not correspond to a proper
subset of the m original experts. In other words, OPT’s team for T possesses all
possible skills. This completes the proof.

We will repeatedly apply a procedure, which we called the Chaining Proce-
dure, to convert all the overloaded tasks into normal ones. Some of its useful
properties are stated in the lemma below. Details of the procedure and the proof
of the lemma will be given in the next subsection.

Lemma 3. When given an overloaded task Ta as input, the Chaining Procedure
will locate another task Tb in ZG and replace one of the E-pointers to Ta (say
(Tc, Ta)) by a pointer (Tc, Tb) to Tb such that

R1. Tb in ZG has at most m pointers after the change, and
R2. p(Tb) ≥ p(Tc).

Moreover, no other pointers are affected.

By Lemma 3, it is clear that each application of the Chaining Procedure will
reduce the number of overloaded tasks by one. Moreover, due to property R2
(Lemma 3) and property M2 (Lemma 1), we know that every pointer points from
a task to another task with higher profit after each application of the Chaining
Procedure. Thus by applying it sufficiently many times, each task T ∈ ZG will
have at most m pointers from tasks in ZO with profit no more than p(T). Hence
GREEDY is m-competitive and Theorem 2 follows.

3.3 The Chaining Procedure

Given an overloaded task Ta, the Chaining Procedure will take one or more
iterations to locate a task Tb that can receive an extra pointer without becoming
overloaded. Let T0 = Ta. In the i-th iteration (i ≥ 1), we begin with a task Ti−1,
which has at least m pointers and thus has no room to receive an extra pointer.
We try to locate a candidate task Ti in ZG as follows. We choose Ti to be the

388 S. Liu and C.K. Poon

earliest task in ZG that shares some common expert(s) with OPT’s team for
Ti−1. If Ti has at least m pointers, then Ti cannot receive any extra pointer. So
we increase i by one and go to the next iteration. Otherwise, Ti has at most
m − 1 pointers. In this case, Ti can serve as the required Tb. So, we replace an
E-pointer (say, (Tc, Ta)) by a new pointer (Tc, Ti) and the Chaining Procedure
ends. We call the newly created pointer an N-pointer. Note that only one N-
pointer is installed in each application of the Chaining Procedure. We refer to
the sequence of tasks, T0, T1, . . . , Tb, the chain involved in this application of the
Chaining Procedure and say that each task Ti−1 links to the next one Ti via one
or more common experts between Ti−1 ∈ ZO and Ti ∈ ZG.

We now proceed to prove Lemma 3. To provide some intuition, consider the
overloaded task T0. Lemma 2 shows that T0 is also in ZO and universal. From
this, we will be able to show that OPT’s team for T0 must share some experts
with GREEDY’s team for some task. Hence the Chaining Procedure must be able
to locate T1. Now, if T1 has m pointers, we will show that T1 is also in ZO and
universal. Hence we can locate T2, etc. The proof of universality uses a similar
argument as in Lemma 2, which involves proving that GREEDY’s team for T1

consists of m experts. This is relatively straightforward when we only have E-
and T-pointers. For subsequent applications of the Chaining Procedure, we need
to deal with N-pointers as well and the argument becomes more complicated.
To handle the complication, we introduce the following definitions:

Definition 8 (experts associated with E-pointers). For each E-pointer
(Ta, Tb), we define the set of experts associated with this E-pointer to be the
set of common experts between OPT’s team for Ta and GREEDY’s team for Tb.

Definition 9 (linking experts). For every application of the Chaining Proce-
dure and for every i ≥ 1, we define the set of linking experts between the two
tasks Ti−1 and Ti to be the set of common experts between them.

Lemma 4. For every application of the Chaining Procedure and every integer
i ≥ 1, the following properties hold at the beginning of the i-th iteration:

C1. For any E-pointer (Tc, Ta), we have p(Tc) ≤ p(Ti−1).
C2. The experts associated with the E-pointers and the linking experts are all

distinct.
C3. Ti−1 is universal and has a T-pointer from Ti−1 in ZO.

We will prove Lemma 4 by induction on the total number of iterations accu-
mulated over all applications of the Chaining Procedure.

(Base Case). At the beginning of the first iteration of the first application of the
Chaining Procedure, properties C1 and C3 are true since T0 = Ta is overloaded.
Property C2 is also trivially true.

(Induction Step). Assume C1, C2 and C3 are true at the beginning of the i-
th iteration of the j-th application of the Chaining Procedure. The following
lemmas show that C1, C2 and C3 remain true at the beginning of the next
iteration, if exist.

A Simple Greedy Algorithm 389

Lemma 5. Ti as described in the Chaining Procedure is well-defined and for
any E-pointer, (Tc, Ta), we have p(Tc) ≤ p(Ti).

Proof. By property C3, Ti−1 is universal. If OPT’s team for Ti−1 does not share
any expert with GREEDY’s teams for any other task T in ZG, then OPT’s team
for Ti−1, which can complete any task, is always available for GREEDY. Then
GREEDY must have completed all input tasks. This contradicts the fact that
Ta has an E-pointer (Tc, Ta) for some Tc in ZO (which implies that Tc is not
completed by GREEDY). Hence the first part of the lemma follows.

To prove the second part of the lemma, we consider the following two cases.
Case (1): Ti comes before Ti−1. Then p(Ti−1) ≤ p(Ti). By C1, p(Tc) ≤

p(Ti−1). Thus p(Tc) ≤ p(Ti).
Case (2): Ti comes after Ti−1. Note that Ti−1 is universal and OPT’s team

for Ti−1 is available for GREEDY until the first expert is used in Ti. Therefore,
Tc must arrive no earlier than Ti (or else GREEDY would have completed Tc

and there would have been a T-pointer (Tc, Tc) instead of an E-pointer (Tc, Ta)).
Hence p(Tc) ≤ p(Ti).

Thus, if the j-th application of the Chaining Procedure goes to the (i+1)-st
iteration, C1 continues to hold. Otherwise, if the j-th application ends in the i-th
iteration, C1 is also true at the beginning of the first iteration of the (j + 1)-st
application of the Chaining Procedure due to the same reasoning mentioned in
the base case.

Lemma 6. Any linking expert between Ti−1 ∈ ZO and Ti ∈ ZG is distinct from
any expert associated with the current E-pointers and any linking expert found
so far in the current and previous applications of the Chaining Procedure.

Proof. Let V be a linking expert between Ti−1 ∈ ZO and Ti ∈ ZG. Clearly,
V is distinct from any E-pointers because Ti−1 has a T-pointer (which implies
that Ti−1 is completed by both OPT and GREEDY) and there cannot be an
E-pointer from Ti−1 to Ti.

Suppose to the contrary that expert V is also a previous linking expert
between T ′

j−1 ∈ ZO and T ′
j ∈ ZG. (T ′

j−1 and T ′
j can be in the chain of tasks,

T ′
0, T

′
1, . . ., involved in a previous application of the Chaining Procedure or an

earlier part of the chain, T0, T1, . . ., involved in the current application of the
Chaining Procedure.) Note that V appears in only one task in ZG and only one
task in ZO. Therefore, Ti−1 = T ′

j−1 and Ti = T ′
j . We will show some contradic-

tions in all possible cases.
Case (1): Both Ti−1 and T ′

j−1 have preceding tasks Ti−2 and T ′
j−2 in their

respective chains. Then Ti−1 has at least m−1 E/N-pointers and a linking expert
U between Ti−2 and Ti−1. Note that each N-pointer to Ti−1 is due to a previous
chain that terminates at Ti−1. By C2, each such previous chain located Ti−1

via one or more linking experts distinct from any previous linking experts. Note
also that T ′

j−1 has the same set of E/N-pointers as Ti−1 has. This is because
T ′

j−1 has a preceding T ′
j−2, T ′

j−1 has m pointers and hence no change is made on
the pointers of T ′

j−1 by that (and any subsequent) application of the Chaining

390 S. Liu and C.K. Poon

Procedure. Since each task is completed by a team with at most m experts, we
can deduce that U is both the linking expert between Ti−2 and Ti−1 and between
T ′

j−2 and T ′
j−1, contradicting C2.

Case (2): Ti−1 is the beginning of its chain (i.e., Ti−1 = T0) and T ′
j−1 has

preceding T ′
j−2. Then Ti−1 has m E-pointers. By C2, it has at least m distinct

experts associated with these E-pointers. Hence it cannot have any linking expert
and T ′

j−2 cannot link to T ′
j−1 (i.e., Ti−1) via a linking expert.

Case (3): T ′
j−1 is the beginning of its chain (i.e., T ′

j−1 = T ′
0) and Ti−1 has

preceding Ti−2. If T ′
j−1 and Ti−1 belong to the same chain, T ′

j−1 has exactly m
E-pointers. It is obvious that Ti−2 cannot link to Ti−1 (i.e., T ′

j−1) via a linking
expert. Now consider the case that T ′

j−1 and Ti−1 belong to different chains. So,
T ′

j−1 is the beginning of a previous application of the Chaining Procedure. After
completion of that Chaining Procedure, T ′

j−1 has m − 1 E-pointers and exactly
one expert not associated with any of these E-pointers. This expert, say, U , was
originally associated with the E-pointer that was replaced by an N-pointer. Thus
Ti−2 cannot link to Ti−1 (i.e., T ′

j−1).
Case (4): Both Ti−1 and T ′

j−1 are the beginning. This case is impossible since
after the previous application of the Chaining Procedure, T ′

j−1 (i.e., Ti−1) is no
longer overloaded.

Therefore, V cannot be a previous linking expert and the lemma follows.

Note that Lemma 6 together with C2 implies that C2 is maintained in the
next iteration (or the first iteration of the next application of the Chaining
Procedure).

Lemma 7. For integer i ≥ 1, if Ti ∈ ZG has at least m pointers, then Ti has a
T-pointer and is universal.

Proof. Note that Ti has at least m− 1 E/N-pointers since each task can have at
most one T-pointer. Each E-pointer is associated with at least one expert. Each
N-pointer is due to an application of the Chaining Procedure that terminates
at Ti and hence can be associated with the corresponding set of linking experts.
There is also at least one linking expert between Ti−1 ∈ ZO and Ti ∈ ZG in the
current application of the Chaining Procedure. By C2 and Lemma6, all these
experts are distinct. In other words, there are at least m experts in GREEDY’s
team. On the other hand, each task is completed by a minimal feasible team
with at most m experts. Therefore, we conclude that GREEDY’s team for Ti

has exactly m experts; and that Ti has exactly m − 1 E/N-pointers and a T-
pointer. Similar to the proof of Lemma2, OPT’s team for Ti also has m experts,
each corresponding to a distinct expert in the original input. This implies that
Ti is universal.

By Lemma 7, property C3 remains true in the next iteration. Again, if the
current application of the Chaining Procedure ends in the i-th iteration, property
C3 is true in the first iteration of the (j + 1)-st application of the Chaining
Procedure due to the same reasoning mentioned in the base case.

A Simple Greedy Algorithm 391

Notice that property C2 implies that in each new iteration, some experts are
designated as linking experts. However, there can be at most m′ linking experts.
Hence each application of the Chaining Procedure will always terminate. Upon
termination, Ta becomes a normal task while the last task in the chain still has
at most m pointers. Thus, property R1 is guaranteed. By C1, property R2 is
also guaranteed. This completes the proof of Lemma4.

3.4 Hereditary Social Compatibility

We consider the class of hereditary social compatibilities. Our greedy algorithm
can achieve a better approximation ratio (Theorem3) by the critical observation
of the following lemma:

Lemma 8. For any hereditary social compatibility and for any input I, Δ(I)≤k.

Proof. Recall that Δ(I) is the size of a largest minimal feasible team on input I.
Suppose to the contrary that Δ(I) > k for some input I. We assume that a task
T can be completed by a minimal feasible team V ′ of size Δ(I). For each skill
required in T , we pick a representative expert in team V ′ that possesses this skill.
Since T requires at most k skills, we can form a team V ′′ ⊆ V ′ of size at most
k that covers T . At the same time, team V ′′ satisfies the social compatibility
requirement due to the hereditary property. Thus V ′′ is a feasible team for task
T , contradicting the assumption that V ′ is a minimal feasible team for task T .
This completes the proof of Lemma 8.

Now we need to define the overloaded task a bit differently for the hereditary
social compatibility.

Definition 10 (overloaded task for hereditary case). Consider the hered-
itary social compatibility. A task T ∈ ZG is overloaded if it has k + 1 pointers.
Otherwise, it is said to be normal.

Then we can obtain the following lemma, which is similar to Lemma 2.

Lemma 9. Consider the hereditary social compatibility. If a task T is over-
loaded, T must be universal.

Proof. Since T is overloaded for the hereditary social compatibility, it must
have one T-pointer and k E-pointers by Lemma 8. This implies that T ∈ ZO

and GREEDY’s team for T consists of k experts. Recall that the oracle A will
return a minimal feasible team whenever a feasible team exists. By Definition 2,
each expert in GREEDY’s team for T is a representative for a skill. Thus task
T requires all possible skills and OPT’s team for T possesses all possible skills.

Based on Lemmas 8 and 9, and an analogous proof of Lemma4, Theorem 3 is
thus complete.

392 S. Liu and C.K. Poon

4 Handling Task Multiplicity

We consider Tang’s problem where each task T is also associated with a multi-
plicity g(T), i.e., the maximum number that T can be completed. Our greedy
algorithm can be easily adapted to solve Tang’s problem in polynomial time.
Specifically, for each task T in an instance of Tang’s problem, we repeatedly find a
minimal feasible team of experts V ′ to complete task T min{minV ∈V′ c(V), g(T)}
times. Notice that for each task T , the greedy algorithm invokes the oracle at
most min{m,n} times since each application of the oracle will result in either
an expert’s capacity being used up or T being completed g(T) times. This also
implies that in our algorithm, each task can be completed by at most m different
minimal feasible teams. Thus the adapted algorithm runs in polynomial time.
In the performance analysis, we create g(T) copies of the same task T in the
corresponding instance for our problem. This only increases the number of tasks
and our greedy algorithm will achieve the same approximation ratio.

For the special case where g(T) is infinite, i.e., task T can be completed
infinitely many times, Tang’s algorithm achieves an approximation ratio of
β min{Δ(I), 2

√∑
V ∈V c(V)/c(min)}. For our algorithm adaption, we observe

that we only need to create m copies of the same task since each task can be
completed by at most m different minimal feasible teams.

Tang [17,18] also gave a worst-case lower bound of Ω(log k) when the task
multiplicity is infinite (and m = k). Here, we point out that a similar lower
bound holds when the task multiplicity is bounded (instead of infinite). To see
this, observe that a γ-approximation algorithm for the bounded case can be used
to solve the unbounded case with the same ratio γ by creating m copies for each
task. This is because each task can be completed by at most m different minimal
feasible teams even for the unbound task multiplicity case. With this polynomial
adaption, the lower bound for the unbounded case carries over to the bounded
case.

5 Conclusion

In this paper, we study the Profit-aware Social Team Formation Problem and
provide a simple greedy algorithm that improves upon previous results in many
situations. There are a number of interesting open problems related to this prob-
lem, including the design of improved algorithms for this problem and the char-
acterization of different definitions of social compatibility. Another direction is
to consider the online version of the problem.

References

1. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Power
in unity: Forming teams in large-scale community systems. In: Proceedings of
the ACM International Conference on Information and Knowledge Management
(CIKM), pp. 599–608 (2010)

A Simple Greedy Algorithm 393

2. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online
team formation in social networks. In: Proceedings of the International Conference
on World Wide Web (WWW), pp. 839–848 (2012)

3. Carr, R., Vempala, S.: Randomized metarounding. Random Struct. Algorithms
20(3), 343–352 (2002)

4. Charikar, M., Chekuri, C., Cheung, T.-Y., Dai, Z., Goel, A., Guha, S., Li, M.:
Approximation algorithms for directed steiner problems. J. Algorithms 33(1), 73–
91 (1999)

5. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
6. Gajewar, A., Sarma, A.D.: Multi-skill collaborative teams based on densest sub-

graphs. In: Proceedings of the SIAM International Conference on Data Mining
(SDM), pp. 165–176 (2012)

7. Golshan, B., Lappas, T., Terzi, E.: Profit-maximizing cluster hires. In: Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 1196–1205 (2014)

8. Greenwald, R.: Freelancers find it pays to team up. Wall Street J. 3 February 2014.
https://www.wsj.com/articles/freelancers-find-it-pays-to-team-up-1389267711

9. Jain, K., Mahdian, M., Salavatipour, M.R.: Packing steiner trees. In: Proceedings
of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 266–
274 (2003)

10. Kargar, M., An, A.: Discovering top-k teams of experts with/without a leader in
social networks. In: Proceedings of the ACM International Conference on Informa-
tion and Knowledge Management (CIKM), pp. 985–994 (2011)

11. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In: Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pp. 467–476 (2009)

12. Lee, V.E., Ruan, N., Jin, R., Aggarwal, C.: A survey of algorithms for dense sub-
graph discovery. In: Aggarwal, C., Wang, H. (eds.) Managing and Mining Graph
Data. Advances in Database Systems, vol. 40, pp. 303–336. Springer, Boston
(2010). https://doi.org/10.1007/978-1-4419-6045-0 10

13. Li, C.-T., Shan, M.-K., Lin, S.-D.: On team formation with expertise query in
collaborative social networks. Knowl. Inf. Syst. 42(2), 441–463 (2015)

14. Majumder, A., Datta, S., Naidu, K.V.M.: Capacitated team formation problem on
social networks. In: Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pp. 1005–1013 (2012)

15. Rangapuram, S.S., Bühler, T., Hein, M.: Towards realistic team formation in social
networks based on densest subgraphs. In: Proceedings of the International Confer-
ence on World Wide Web (WWW), pp. 1077–1088 (2013)

16. Rothvoß, T.: Directed steiner tree and the lasserre hierarchy. CoRR, abs/1111.5473
(2011)

17. Tang, S.: Profit-aware team grouping in social networks: a generalized cover decom-
position approach. CoRR, abs/1605.03205 (2016)

18. Tang, S.: Profit-driven team grouping in social networks. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pp. 45–51 (2017)

19. Wang, X., Zhao, Z., Ng, W.: A comparative study of team formation in social
networks. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA
2015. LNCS, vol. 9049, pp. 389–404. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18120-2 23

20. Wang, X., Zhao, Z., Ng, W.: USTF: a unified system of team formation. IEEE
Trans. Big Data 2(1), 70–84 (2016)

https://www.wsj.com/articles/freelancers-find-it-pays-to-team-up-1389267711
https://doi.org/10.1007/978-1-4419-6045-0_10
https://doi.org/10.1007/978-3-319-18120-2_23
https://doi.org/10.1007/978-3-319-18120-2_23

	A Simple Greedy Algorithm for the Profit-Aware Social Team Formation Problem
	1 Introduction
	1.1 Other Related Works

	2 Preliminaries
	2.1 Variants of Social Compatibility

	3 Our Greedy Algorithm
	3.1 A Simple Charging Scheme
	3.2 A Modified Charging Scheme
	3.3 The Chaining Procedure
	3.4 Hereditary Social Compatibility

	4 Handling Task Multiplicity
	5 Conclusion
	References

