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Abstract. Let H = (V, E) be a hypergraph. A k-strong conflict-free col-
oring of H is an assignment of colors to the members of the vertex set
V such that every hyperedge E ∈ E , |E| ≥ k, contains k nodes whose
colors are pairwise distinct and different from the colors assigned to all
the other nodes in E, whereas if |E| < k all nodes in E get distinct
colors. The parameter to optimize is the total number of colors. The
need for such colorings originally arose as a problem of frequency assign-
ment for cellular networks, but since then it has found applications in a
variety of different areas. In this paper we consider a generalization of
the above problem, where one is allowed to assign more than one color
to each node. When k = 1, our generalization reduces to the conflict-
free multicoloring problem introduced by Even et al. [2003], and recently
studied by Bärtschi and Grandoni [2015], and Ghaffari et al. [2017]. We
motivate our generalized formulation and we point out that it includes a
vast class of well known combinatorial and algorithmic problems, when
the hypergraph H and the parameter k are properly instantiated. Our
main result is an algorithm to construct a k-strong conflict-free multi-
colorings of an input hypergraph H that utilizes a total number of colors
O(min{(k + log(r/k)) log Γ + k(k + log2(r/k)), (k2 + r) log n}), where
n is the number of nodes, r is the maximum hyperedge size, and Γ is
the maximum hyperedge degree; the expected number of colors per node
is O(min{k + log Γ, (k + log(r/k)) log n}). Although derived for arbi-
trary k, our result improves on the corresponding result by Bärtschi and
Grandoni [2015], when instantiated for k = 1. We also provide lower
bounds on the number of colors needed in any k-strong conflict-free
multicoloring, thus showing that our algorithm is not too far from being
optimal.

1 The Problem

A hypergraph is a pair H = (V, E), where V is a finite set of nodes and E is a
family of subsets of V. The elements of E are called the hyperedges of H. The
following concept is the main objective of our study.

Definition 1 k-Strong Conflict-Free (k-SCF) Multicoloring. Let H =
(V, E) be a hypergraph, t and k positive integers. A multicoloring of H = (V, E)
is a function C : V → 2[t] that assigns a subset of [t] = {1, . . . , t} (colors) to
each node. The multicoloring C is called a k-strong conflict-free multicoloring for
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H if every hyperedge E ∈ E contains at least μ = min{|E|, k} distinct nodes
v1, . . . , vμ, such that for each i ∈ {1, . . . , μ} it holds that C(vi) �⊆ ∪w∈E\{vi}C(w).

In words, a k-SCF multicoloring C of H is an assignment of a set of colors to each
node of V, such that every hyperedge E ∈ E contains μ = min{|E|, k} distinct
nodes v1, . . . , vμ for which the set of colors C(vi) assigned to any vi ∈ {v1, . . . , vμ}
contains at least a color that is not assigned to any other node w ∈ E\{vi}. In the
case of classical hypergraph coloring (i.e., in the case |C(v)| = 1 for each v ∈ V),
our definition of k-strong conflict-free multicoloring coincides with the classical
definition of k-strong conflict-free coloring [2,9,25]. When k = 1, our definition
reduces to that of conflict-free multicoloring introduced by Even, Lotker, Ron,
and Smorodinsky [21] and studied, independently, by Bärtschi and Grandoni [5]
and Ghaffari, Kuhn and Maus [23].

In this problem there are two parameters to optimize: the total number of
colors, that is, the number t in Definition 1, and the maximum number of colors
assigned to any node, that is, the maximum cardinality of the C(v)’s. Let t(H, k)
be the minimum integer t for which a k-SCF multicoloring exists for H with t
colors. In this paper we derive good upper and lower estimates of t(H, k) and of
maxv |C(v)|.

1.1 Motivations and Previous Work

Classical hypergraph conflict-free coloring (i.e., 1-strong conflict free coloring)
was introduced in the geometric setting by Even et al. [21], motivated by a
frequency assignment problem in cellular networks. In this scenario, a network
consists of fixed-position base stations, that can transmit at a given frequency,
and roaming clients. Roaming clients have a range of communication frequencies
and come under the influence of different subsets of base stations. Each client can
tune to one frequency and receive any message transmitted at that frequency if
exactly one station is transmitting at that frequency (if two or more such stations
transmit, then interferences destroy the message). The situation can be modeled
by means of an appropriate hypergraph coloring. The nodes of the hypergraph
correspond to the base stations and the hyperedges correspond to the different
subsets of base stations corresponding to receiving ranges of roaming clients.
A conflict-free coloring of such a hypergraph corresponds to an assignment of
frequencies to the base stations, that enables any client to connect to one of them
(the one holding the unique frequency in the client’s range), without interfering
with the other base stations. The goal is to minimize the total number of distinct
assigned frequencies.

Classical hypergraph conflict-free coloring has been the subject of an inten-
sive study; a survey of the main results in the area is contained in [34]. The
theoretical study of conflict-free coloring of general graphs and hypergraphs was
initiated in [31] and it has raised much interest due to the novel combinatorial
and algorithmic questions it poses; recent results in the area are contained in
[5,6,9,22–24,26].



278 L. Gargano et al.

The notion of k-strong conflict free coloring has been studied in [2,9,25]. A
k-strong conflict free coloring is a coloring that remains conflict-free after any
arbitrary collection of k−1 nodes is deleted from the node set of the hypergraph.
Thus, a k-strong conflict free coloring for k = 1 is a standard conflict free col-
oring. The principal motivation to introduce k-strong conflict free coloring was
for fault tolerance purposes.

Finally, in the paper [5] the authors introduced the notion of multicoloring
(apparently unaware of Sect. 9.2 of [21]). Their motivation was based on the fact
that classical hypergraph conflict-free coloring (usually) needs a large number of
different colors, and the observation that allowing multiple colors at each node
causes a drastic reduction in the total number of needed colors. Hypergraph
conflict-free multicoloring appears also in [23].

Additional important motivations to study k-strong conflict-free multicolor-
ing will be highlighted next, after a useful reformulation of the problem. The
reformulation of the problem will also be instrumental to put our contributions
in the proper context.

1.2 An Equivalent Formulation of Hypergraph Multicoloring

The formulation of k-strong conflict-free multicoloring given in Definition 1 is
in the footsteps of the previous nomenclature in the area, and it represents the
natural evolution of the concepts of conflict-free coloring [21], k-strong conflict-
free coloring [1], and conflict-free multicoloring [5]. In this section we find it
convenient to give an equivalent, but more manageable formulation.

Let H = (V, E) be a hypergraph, n = |V|, and C : V → 2[t] be a k-strong
conflict-free multicoloring for H. Consider the associated binary matrix M of
dimensions t×n, constructed in the following way: The columns of M are indexed
by the nodes in V and the generic column of M , indexed by node v ∈ V, cor-
responds to the t × 1 characteristic vector of subset C(v) ⊆ [t]. In other words,
M [i, j] = 1 if color i ∈ C(vj), and M [i, j] = 0 if color i /∈ C(vj). For any hyperedge
E ∈ E , let us denote by M(E) the t× |E| submatrix consisting of all columns in
M whose indices (nodes) belong to E. From Definition 1 of k-SCF multicoloring,
it is immediate to see that the matrix M enjoys the following property:

for each E ∈ E , the submatrix M(E) contains at least min{|E|, k} pairwise
different rows, each of Hamming weight1 exactly equal to 1 (we shall denote
such rows as unit rows).

Viceversa, it is also immediate to see that any t×n matrix M that satisfies above
property gives rise to a k-strong conflict-free multicoloring C for H = (V, E),
|V| = n, using a total number of colors equal to t. Indeed, the set of colors
assigned to each vj ∈ V is C(vj) = {i : M [i, j] = 1}. For the sake of brevity,
matrices with the above property will be called k-SCF matrices of size t.

1 The Hamming weight of a vector/row is the number of symbols that are different
from 0 in the vector/row.
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1.3 Our results in perspective

Our main result is presented in Theorem 2. It gives an algorithm that, for any
parameter k ≥ 1 and input hypergraph H = (V, E), |V| = n, returns a k-SCF
multicoloring of H such that:

– the total number of colors is

O(min{(k + log
r

k
) log Γ + k(k + log2

r

k
), (k2 + r) log n});

– the expected number of colors per node is O(min{k+log Γ, (k+log r
k ) log n}),

where Γ = maxE∈E |{E′ : E′ ∈ E , E ∩ E′ �= ∅}| and r = maxE∈E |E| are the
maximum hyperedge degree and hyperedge size of H, respectively. The algorithm
can be transformed into a Las Vegas algorithm that guarantees the claimed
number of colors per node with a standard argument.

To see the relevance of our findings, we instantiate some of them to the
particular case of k = 1 (see Theorem 3) and we compare to corresponding
results in the literature. The authors of [5] gave a Las Vegas algorithm for 1-
SCF multicoloring of a hypergraph H = (V, E), that uses O(log n log Γ ) total
number of colors and O(min{log Γ, log n log log Γ}) colors per node. Under the
same hypothesis and defining ρ = maxE∈E |E|

minE∈E |E| , our algorithm uses O(min{log(ρ+
1) log Γ, r log n}) total number of colors and O(min{log Γ, log n log(ρ+1)}) colors
per node. It is clear that our upper bound on the total number of colors is
always better than that of [5]. In general, our bound on the number of colors
per node is not confrontable with the corresponding bound of [5], in the sense
that for some values of the involved parameters ours is better, for others the
bound of [5] is better. Moreover, if the hypergraph H = (V, E) is such that Γ is
polynomial in n = |V| and ρ = O(1), our Theorem 3 implies that there exists a
1-SCF multicoloring of H with a O(log n) total number of color, implying the
corresponding result in [23].

However, and much more importantly, our framework constitutes a far reach-
ing generalization of several algorithmic and combinatorial questions widely
studied in the literature. To see this, consider the case in which H = (V, E)
is the complete r-uniform regular hypergraph. In other words, the set of hyper-
edges E coincides with all the

(
n
r

)
subsets of cardinality r of V. In this case,

one can easily see that the definition of r-SCF matrices coincides with that of
superimposed codes [27] (also known as cover-free families [20], strongly selec-
tive families [11], disjunct matrices [14]). Informally, a (r, n)-superimposed code
is a t × n binary matrix such that for any r columns of the matrix and for any
column c chosen among these r columns, there exists a row in correspondence
of which c has an entry equal to 1 and the remaining r − 1 columns have entries
equal to 0. Superimposed codes represent the main tool for the efficient solution
of problems arising in an surprising variety of areas: compressed sensing [12],
cryptography and data security [28], pattern matching [32], distributed colour-
ing [29], secure distributed computation [7], groupo testing [14,15] and circuit
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complexity [8], among the others. Additionally, k-SCF matrices for the complete
r-uniform regular hypergraph H, 1 ≤ k ≤ r, coincide with the (k, r, n)-selectors
of [10,13], another combinatorial structure that has found many applications in
several different areas. One can also see that 1-SCF matrices for the complete
r-uniform regular hypergraph H coincide with the locally thin families of [3].
The last equivalences will be used to exploit known non-existential results for
(k, r, n)-selectors and locally thin families to prove lower bounds on the number
of colors needed in k-SCF hypergraph multicoloring. Some of these obtained
lower bounds improve on the corresponding results for hypergraph multicoloring
given in [5], and they show that our results are not too far from being optimal.

We believe that this is one of the main conceptual contribution of this paper,
that is, a general framework where to formulate a host of different combinatorial
problems. For the sake of definiteness, in this version of the paper we only focus
on the hypergraph multicoloring problem.

2 Mathematical preliminaries

In this section, we give an upper bound on the number of rows (size) of a k-
SCF matrix for certain hypergraphs H = (V, E). By the observations made in
Sect. 1.2, this gives an upper bound on the minimum number of colors t(H, k) in
any k-strong conflict-free multicoloring for H. The obtained results will be used
in Sect. 3 to get a k-SCF multicoloring for a generic hypergraph.

Let r be the maximum size of any hyperedge (i.e., 2 ≤ |E| ≤ r for each E ∈ E)
and Γ = maxE∈E |{E′ : E′ ∈ E , E ∩ E′ �= ∅}| be the maximum hyperedge degree
of H. In order to prove our main results, we need to recall the celebrated Lovász
Local Lemma for the symmetric case (see [4]), as stated below.

Lemma 1. Let A1, A2, . . . , Ab be events in an arbitrary probability space. Sup-
pose that each event Ai is mutually independent of a set of all the other events
Aj except for at most d, and that Pr(Ai) ≤ P for all 1 ≤ i ≤ b. If eP (d+1) ≤ 1,
then Pr(∩n

i=1Āi) > 0, where e = 2.71828 . . . is the base of the natural logarithm.

Using Lemma 1 we can prove the following result.

Lemma 2. Let k > 1 and let H = (V, E) be a hypergraph whose hyperedges have
size at most k. There exists a k-SCF matrix M for H of size

c = �ek (log[e(Γ + 1)] + log k)�. (1)

Proof. Let M = [M(i, j)] be a random binary c × n matrix such that all entries
in M are chosen independently, with probabilities

Pr (M(i, j) = 0) = p = 1 − 1/k, and Pr (M(i, j) = 1) = 1 − p = 1/k.

We prove that for c = �ek (log[e(Γ + 1)] + log k)�, with positive probability M
is a k-SCF matrix for H. In particular, since each edge E ∈ E has cardinality
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|E| ≤ k, we prove that with positive probability all the submatrices M(E),
E ∈ E , contain all the |E| pairwise different unit rows.

For a fixed E ∈ E , let us consider the “bad” event FE that the submatrix
M(E) does not contain all the |E| unit rows. Fix a unit vector of length |E|
(i.e., a vector of length |E| and Hamming weight 1) and an index j ∈ {1, . . . , c}.
Let Rj be the event that the row j of the submatrix M(E) does not match the
fixed unit vector; we have that

Pr(Rj) = 1 − (1 − p)p|E|−1.

The probability of the event RE that none of the rows of the submatrix M(E)
matches the fixed unit vector is then

Pr(RE) = Pr(R1 ∧ . . . ∧ Rc) = (1 − p|E|−1(1 − p))c.

Consider the event FE that the submatrix M(E) does not contain all the |E|
unit rows. In such a case there exists a unit vector that does not appear as a row
of M(E). From this, by using the union bound we can estimate the probability
of FE as

Pr(FE) ≤ |E|Pr(RE) = |E|(1 − p|E|−1(1 − p))c.

Recalling that |E| ≤ k and p = 1 − 1
k , and using the inequality (1 − 1

k )k−1 > 1
e ,

where e is the base of the natural logarithm, we get that

Pr(FE) ≤ k

(

1 −
(

1 − 1
k

)k−1 1
k

)c

< k

(
1 − 1

ek

)c

. (2)

We notice now that two events FE and FE′ , for E,E′ ∈ E , are independent
unless E ∩ E′ �= ∅. For each FE , the number of events FE′ for which E ∩ E′ �= ∅
is upper bounded by the maximum hyperedge degree Γ of H. Lemma 1 tells us
that if the upper bound k

(
1 − 1

ek

)c in (2) and the quantity Γ satisfy the relation

e

[
k

(
1 − 1

ek

)c]
(Γ + 1) ≤ 1 (3)

then the probability that none of the “bad” events FE occur, for E ∈ E , is
strictly positive. That is, there is a strictly positive probability that for each
E ∈ E the submatrix M(E) contains all the |E| pairwise different unit rows.
Computing the minimum c for which (3) holds (here we also use the well known
inequality lnx ≤ x − 1, for any x > 0), we get the desired value in (1). ��
Lemma 3. Let k ≥ 1 and i ≥ �log k�+1. Let H = (V, E) be a hypergraph where
the cardinality |E| of each hyperedge E ∈ E is such that max{k, 2i−1} < |E| ≤ 2i.
There exists a k-SCF matrix M for H of size

ci =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⌈
2ek

(
log[e(Γ + 1)] + log

(
2�log k�+1

2�log k�

))⌉
if i = �log k� + 1

⌈
e2i

2i−1 − k + 1

(
log[e(Γ + 1)] + log

(
2i

k − 1

))⌉
otherwise.

(4)
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Proof. Fix i ≥ �log k�+1. We construct a random ci×n binary matrix M , where
each element is generated independently and assumes value 0 with probability
p = (2i − 1)/2i.

Fix a hyperedge E ∈ E (recall that |E| > k). For any set R of |E| − k + 1
unit vectors of length E, let AR,E be the event that none of the vectors in R
appears as a row in M(E). The probability of such an event is

Pr(AR,E) = (1 − (|E| − k + 1)p|E|−1(1 − p))ci . (5)

Let R be the family of all the t =
( |E|
|E|−k+1

)
possible sets of exactly |E| − k + 1

unit vectors of length |E|. The probability of the event AE that the submatrix
M(E) does not contain any of the rows of some R ∈ R is

Pr(AE) = Pr

(
∨

R∈R
AR,E

)

≤
( |E|

|E| − k + 1

)
(1 − (|E| − k + 1)p|E|−1(1 − p))ci ,

(6)
where the inequality is due to the union bound and (5). From this we get

Pr(AE) ≤
(

2i

2i − k + 1

) (

1 − (|E| − k + 1)
(

1 − 1
2i

)2i−1 1
2i

)ci

(7)

<

(
2i

2i − k + 1

) (
1 − (|E| − k + 1)

1
e2i

)ci

(8)

where inequality (7) is obtained from (6) by recalling that p = (1 − 1
2i ) and

|E| ≤ 2i, (8) follows from (7) by recalling that (1 − 1
2i )

2i−1 > 1
e .

We now further refine the bound in (8) and show that for each E ∈ E it holds

Pr(AE) ≤ qi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
2�log k�+1

2�log k�

) (
1 − 1

e2�log k�+1

)c�log k�+1

if i = �log k� + 1

(
2i

k − 1

) (
1 − (2i−1 − k + 1)

1
e2i

)ci

otherwise.

(9)
If i = �log k� + 1 then for E ∈ E it holds 2�log k� ≤ k < |E| ≤ 2�log k�+1, and we
get

(
2�log k�+1

2�log k�+1−k+1

) ≤ (
2�log k�+1

2�log k�
)
. Furthermore, |E| − k + 1 ≥ 1 and (9) holds.

If i ≥ �log k� + 2, then for E ∈ E we have k < 2i−1 < |E| ≤ 2i and (9) holds.
Denote now by FE the event that the matrix M(E) does not contain at least

k pairwise different unit rows. One can see that Pr(FE) = Pr(AE). Indeed, if
M(E) did not contain at least k pairwise different unit rows, then it would exist
a set R ∈ R, made by |E| − (k − 1) unit vectors, none of them being a row of
M(E). As a consequence, we have

Pr(FE) = Pr(AE) ≤ qi.
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Moreover, two events FE and FE′ , for E,E′ ∈ E , are independent whenever
E ∩ E′ = ∅. Therefore, each event FE is dependent on at most Γ other events
(recall that Γ is the maximum hyperedge degree of H). According to Lemma 1,
if the parameters qi (defined in (9)) and Γ satisfy

eqi(Γ + 1) ≤ 1 (10)

then there is a strictly positive probability that for each E ∈ E the submatrix
M(E) contains at least k pairwise different unit rows. To conclude the proof, we
compute the minimum ci such that (10) holds.

– In case i = �log k� + 1, formula (10) becomes

e(Γ + 1)
(

2�log k�+1

2�log k�

) (
1 − 1

e2�log k�+1

)c�log k�+1

≤ 1

and we get

c�log k�+1 ≤
⌈
e2�log k�+1

(
log[e(Γ + 1)] + log

(
2�log k�+1

2�log k�

))⌉

– If i ≥ �log k� + 2 then (10) becomes

e(Γ + 1)
(

2i

k − 1

) (
1 − (2i−1 − k + 1)

1
e2i

)ci

≤ 1.

All together, we get (4). ��

3 Strong Conflict-Free Multicoloring Algorithm

In this section we present a k-SCF multicoloring algorithm for a generic hyper-
graph H = (V, E). Our algorithm works as follows: We first partition the
hypergraph H into �log r� − �log k� almost uniform sub-hypergraphs, where
r = maxE∈E |E|. Successively, we apply Lemmas 2 and 3 to construct k-SCF mul-
ticolorings for each of these sub-hypergraphs. Finally, we combine the obtained
multicolorings into a global k-SCF multicoloring for H.

We split the hypergraph H = (V, E) into appropriate sub-hypergraphs, as
follows: We partition the hyperedge set E into disjoint sets

E ′
= {E : E ∈ E , |E| ≤ k} and

E ′′
i = {E : E ∈ E \ E ′

, 2i−1 < |E| ≤ 2i}, for i = �log k� + 1, . . . , �log r�.

For each set in the resulting partition of E , we consider the associated induced
sub-hypergraph, namely:

H′
= (V, E ′

) and H′′
i = (V, E ′′

i ), for i = �log k� + 1, . . . , �log r�. (11)
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Notice that E ′ or some E ′′
i in the above partition of E could be empty; in par-

ticular, if k = 1 then E ′ is empty and the hypergraph H′ is not defined.
The results in Lemmas 2 and 3 imply the existence of k-SCF matrices (mul-

ticolorings) for the hypergraphs in (11), with number of rows (i.e., total number
of colors used) given by (1) and (4).

To convert such results into an efficient algorithm to construct a k−SCF-
multicoloring of the input hypergraph H = (V, E) we first invoke important
result of Moser and Tardos [30], summarized in the following theorem.

Theorem 1 ([30]). Let P be a finite set of mutually independent random vari-
ables in a probability space. Let A be a finite set of events determined by these
variables. For A ∈ A, let Γ (A) be a subset of A satisfying that A is independent
from the collection of events A \ ({A} ∪ Γ (A)). If there exists an assignment of
reals y : A �→ (0, 1) such that

∀A ∈ A Pr(A) ≤ y(A)
∏

B∈Γ (A)

(1 − y(B)),

then there exists an assignment of values to the variables P not violating any
of the events in A. Moreover, there exists an algorithm2 that resamples an
event A ∈ A at most an expected y(A)/(1 − y(A)) times before it finds such
an evaluation. Thus the expected total number of resampling steps is at most∑

A∈A y(A)/(1 − y(A)).

One can see that the events FE defined in Lemmas 2 and 3 satisfy the hypothesis
of Theorem 1 with y(FE) = 1

Γ+1 . We are then ready to present our algorithm
to produce a k-SCF multicoloring algorithm for a general hypergraph H. The
algorithm is described below:

1. We first partition the input hypergraph H = (V, E) into the sub-hypergraphs
defined in (11), namely:

H′
= (V, E ′

), H′′
�log k�+1 = (V, E ′′

�log k�+1), . . . ,H
′′
�log r� = (V, E ′′

�log r�).

2. Successively, we generate the respective k-SCF matrices:

M
′
, M

′′
�log k�+1, . . . ,M

′′
�log r�

according to Theorem 1.
(We recall that some of the matrices can be non existent in case the corre-
sponding hypergraph contains no hyperedge and that their sizes, denoted by
c

′
, c

′′
�log k�+1, . . . , c

′′
�log r� are bounded according to Lemmas 2 and 3).

The obtained matrices are now “juxtaposed” one on top of the others, to
obtain a matrix M . It is not hard to see that M is a k-SCF matrix for the
original hypergraph H = (V, E).

2 Essentially, the algorithm works as follows: After a first random evaluation of P , it
keeps resampling violated events A ∈ A until none remains.



On k-Strong Conflict–Free Multicoloring 285

3. The set of colors assigned to each v ∈ V is then obtained from the column
corresponding to v in each of the matrices M

′
,M

′′
�log k�+1, . . . ,M

′′
�log r�, col-

lecting the indices of the rows in which 1 appears. Hence, the set of colors
C(v) assigned to each node v ∈ V is

C(v) =

⎧
⎪⎪⎨

⎪⎪⎩

⋃�log r�
i=�log k�+1

{(
c′ +

∑i−1
j=�log k�+1

c
′′
j

)
+ h | M ′′

i [h, v] = 1
}

∪
{
h | M ′

[h, v] = 1
}

if k > 1,
⋃�log r�

i=�log k�+1

{(∑i−1
j=�log k�+1

c
′′
j

)
+ h | M ′′

i [h, v] = 1
}

otherwise.

Theorem 2. Given a hypergraph H = (V, E), the above algorithm returns a
k-SCF multicoloring for H such that

(i) the expected number of resampling steps is at most |E|/Γ ,
(ii) the total number of colors is

c(H) = O
(
min

{(
k + log

r

k

)
log Γ + k

(
k + log2

r

k

)
, (k2 + r) log n

})
,

(iii) the expected number of colors per node is O(min{k + log Γ, (k +
log

r

k
) log n}).

where n = |V|, r = maxE∈E |E|, and Γ is the maximum hyperedge degree.

Proof. Recall that E = (∪�log r�
i=�log k�+1E ′′

i ) ∪ E ′ and y(FE)/(1 − y(FE)) = 1/Γ , for
each E ∈ E . Theorem 1 implies that the sum over each sub-hypergraph of the
expected number of resampling steps is at most |E′|

Γ +
∑�log r�

i=�log k�+1
|E′′

i |
Γ = |E|

Γ .

We evaluate now the number of colors c(H) = c′ +
∑�log r�

i=�log k�+1 c
′′
i that the

algorithm uses. Here, Γ ′ and Γi, for i = �log k� + 1, . . . , �log r�, denote the
maximum hyperedge degree of H′

and H′′
i , respectively.

– By (1) we get
c′ < ek (log[e(Γ ′ + 1)] + log k) + 1. (12)

– For i = �log k� + 1, by (4) and noticing that log
(
2�log k�+1

2�log k�
) ≤ 2�log k�+1 ≤ 2k,

we get
c

′′
�log k�+1 < 2ek

(
log[e(Γ�log k�+1 + 1)] + 2k

)
+ 1. (13)

– For i = �log k� + 2, by (4) we get

c
′′
�log k�+2 < 2ek

(
log[e(Γ�log k�+2 + 1)] + (k − 1) log 8e

)
+ 1. (14)

– For any i = �log k� + 3, . . . , �log r�, by Lemma 3 we have

ci

′′
=

⌈
e2i

2i−1 − k + 1

(
log[e(Γi + 1)] + log

(
2i

k − 1

))⌉

< 1 +
e2i

2i−1 − k + 1

(
log[e(Γi + 1)] + (k − 1) log

e2i

k − 1

)

< 1 +
e2i

2i−1 − k + 1

(
log[e(Γi + 1)] + (k − 1) log

2er

k − 1

)
.
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By noticing that �log k� + 3 ≤ i implies that 2i

2i−1−k+1 < 4, we obtain

ci

′′
< 1 + 4e

(
log[e(Γi + 1)] + (k − 1) log

e2r

k − 1

)
(15)

Summarizing form (12), (13), (14) and (15) we have

c(H) = c′ + c
′′
�log k�+1 + c

′′
�log k�+2 +

�log r�∑

i=�log k�+3

c
′′
i (16)

< ek (log[e(Γ ′ + 1)] + log k) + 2ek(log[e(Γ�log k�+1 + 1)] + 2k)
+2ek(log[e(Γ�log k�+2 + 1)] + (k − 1) log 8e)

+4e

�log r�∑

i=�log k�+3

log[e(Γi + 1)] + O(k log2
r

k
)

In order to get (ii), we derive two upper bounds on c(H).

– We first notice that both

Γ ′ ≤ Γ and Γi ≤ Γ, for i = �log k� + 1, . . . , �log r�. (17)

Hence, from (16) we get c(H) = O
((

log
r

k
+ k

)
log Γ + k

(
log2

r

k
+ k

))
.

– On the other hand, each hyperedge in E ′ has size at most k and those in E ′′
i ,

for i = �log k� + 1, . . . , �log r�, have size at most 2i. This implies that

Γ ′ ≤ |E ′| ≤ nk and Γi ≤ |E ′′
i | ≤ n2i for i = �log k� + 1, . . . , �log r�. (18)

As a consequence, all the quantities log Γ ′, log(Γ�log k�+1) and log(Γ�log k�+2)
are bounded above by k log n. Additionally

�log r�∑

i=�log k�+3

log[e(Γi + 1)] ≤
�log r�∑

i=�log k�+3

log[e(n2i + 1)] = O(r log n).

By this and (16), we obtain the bound c(H) = O((k2 + r) log n).

Finally we prove (iii). Consider any node v ∈ V . Recalling that in Lemma 2
we set Pr(M

′
[h, v] = 1) = 1/k and in Lemma 3 we set Pr(M

′′
i [h, v] = 1) = 1/2i,

for i = �log k�+1, . . . , �log r�, we have that the expected number of colors |C(v)|
assigned to v is

|C(v)| = c′ 1
k

+
�log r�∑

i=�log k�+1

c
′′
i

1
2i

≤ 1
k

�ek (log[e(Γ ′ + 1)] + log k)� +
1
k

�2ek(log[e(Γ�log k�+1 + 1)] + 2k)�
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+
1
2k

�2ek(log[e(Γ�log k�+2 + 1)] + (k − 1) log 8e)�

+
�log r�∑

i=�log k�+3

1
2i

⌈
e2i

2i−1 − k + 1

(
log[e(Γi + 1)] + log

(
2i

k − 1

))⌉

≤ e (log[e(Γ ′ + 1)] + log k) + e2(log[e(Γ�log k�+1 + 1)] + 2k)

+e(log[e(Γ�log k�+2 + 1)] + (k − 1) log 8e) +
3
k

+
�log r�∑

i=�log k�+3

1
2i

[
2 + 4e

(
log[e(Γi + 1)] + (k − 1) log

e2i

k − 1

)]

From this, by using the bound in (17) we get |C(v)| = O(k + log Γ ). Moreover,
by (18) we get |C(v)| = O

((
k + log r

k

)
log n

)
. ��

3.1 1-SCF Multicoloring

In case of 1-SCF Multicoloring, from Lemma 3 we get that for any i ≤ �log r�,
there exists a 1-SCF matrix, for the sub-hypergraph induced by the edges of size
in {2i−1 + 1, . . . , 2i}, of size �2e (log(Γi + 1) + 1)� . From this, we have that the
number of colors that the algorithm uses in such a case is

c(H) =
�log r�∑

i=�log k�+1

c
′′
i =

�log r�∑

i=1
E′′
i 	=∅

�2e (log(Γi + 1) + 1)� . (19)

Furthermore, the expected number of colors assigned to an arbitrary node v is

|C(v)| =
�log r�∑

i=�log k�+1

1
2i

c
′′
i =

�log r�∑

i=1
E′′
i 	=∅

1
2i

�2e (log(Γi + 1) + 1)� . (20)

By using (17) and (18) to bound (19) and (20), we have the following result.

Theorem 3. Let H = (V, E) and ρ = maxE∈E |E|
minE∈E |E| . The hypergraph H admits a

1-SCF multicoloring with O(min{log(ρ + 1) log Γ, r log n}) total number colors
and O(min{log Γ, log n log(ρ + 1)}) colors per node.

4 Lower Bounds

In this section we provide some lower bounds on the minimum integer t for
which a k-strong conflict-free multicoloring C : V → 2[t] exists for the hypergraph
H = (V, E). In other words, we seek lower bounds on the parameter t(H, k).

Denote by Hn
r = (V, E) the complete r-uniform hypergraph on n nodes. We

recall that in this case E coincides with all the
(
n
r

)
subsets of cardinality r of

V, n = |V|. Bärtschi and F. Grandoni [5] proved that t(Hn
r , 1) = Ω(log n). By
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using a deep theorem from [3], we can improve the above result. We first recall
the following definition from [3]. A family F of subsets of the ground set [t] is
r-locally thin if for any r of its distinct member sets at least one point i ∈ [t]
is contained in exactly one of them. Let N(r, t) be the maximum cardinality of
any r-locally thin family over the ground set [t]. Alon et al. [3] proved that for
any r > 2 it holds

lim sup
t→∞

1
t

log N(r, t) ≤
{

2/r if r is even,
(2 log r)/r otherwise.

(21)

An alternative way to see r-locally thin families is the following. Let us associate
to the family F the binary matrix M whose columns are the characteristic vectors
of the sets F ∈ F . It is clear that the matrix M enjoys the following property:
For each r-tuple A of columns of M there exists a unit row in M(A). By using
the equivalence between k-SCF multicoloring and k-SCF matrices, that we have
established in Sect. 1.2, and formula (21), we get that for any r > 2 it holds

t(Hn
r , 1) =

⎧
⎪⎪⎨

⎪⎪⎩

Ω (r log n) if r is even,

Ω

(
r

log r
log n

)
otherwise.

(22)

Formula (22) improves on the bound t(Hn
r , 1) = Ω(log n) given in [5]. Remark-

ably, for Hn
r our Theorem 3 recovers the result of [3] that t(Hn

r , 1) = O(r log n),
for any r > 2.

On the other hand, using the equivalence between r-SCF matrices for Hn
r

and superimposed codes [27], and directly employing the non-existential bounds
by [17,33], we get that t(Hn

r , r) = Ω
(

r2

log r log n
)
. In this case our Lemma 2

allows us to recover (asymptotically) the best known upper bounds [20] given
by t(Hn

r , r) = O(r2 log(n/r)).
Closing the gap in the above lower and upper bounds is equivalent to solve an

outstanding combinatorial problem that has been open for decades. Recently, a
solution was announced in [18], however this claim has now been retracted [19].

5 Conclusion

We have introduced the problem of k-strong conflict free multicoloring of hyper-
graphs. We have shown that it represents a common framework for many algo-
rithmic and combinatorial problems that arise in a variety of areas. Despite its
generality, we have been able to present significant results that, when instanti-
ated on particular classes of graphs, either improve on previously known results
or match the best known ones.

There are many interesting possible extensions of our findings. For instance,
one could allow a small fraction of the hyperedges to be not correctly colorated,
in the hope of further reducing the total number colors. Another possible relax-
ation of our problem arises when the requirement that a number of units rows
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must appear in some submatrices of a k-SCF matrix is substituted with the
requirement that a number of rows with “few ones” appear. This is motivated
by the advent of new technologies that allow successful transmission in wireless
networks, despite a limited number of possible collision (e.g., see [16]).
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5. Bärtschi, A., Grandoni, F.: On conflict-free multi-coloring. In: Dehne, F., Sack,
J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 103–114. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21840-3 9

6. de Berg, M., Leijsen, T., van Renssen, A., Roeloffzen, M., Markovic, A., Woeginger,
G.: Dynamic and kinetic conflict-free coloring of intervals with respect to points,
arXiv preprint arXiv:1701.03388 (2017)

7. Blundo, C., Galdi, C., Persiano, P.: Randomness recycling in constant-round pri-
vate computations. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 140–149.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48169-9 10

8. Chaudhuri, S., Radhakrishnan, J.: Deterministic restrictions in circuit complexity.
In: Proceedings of 28th STOC, pp. 30–36 (1996)

9. Cheilaris, P., Gargano, L., Rescigno, A.A., Smorodinsky, S.: Strong conflict-free
coloring for intervals. Algorithmica 70(4), 732–749 (2014)

10. Chlebus, B.S., Kowalski, D.R.: Almost optimal explicit selectors. In: Lískiewicz, M.,
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