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Abstract. We consider a scheduling game, in which both the machines
and the jobs are players. A job attempts to minimize its completion time
by switching machines, while each machine would like to maximize its
workload by choosing a scheduling policy from the given set of policies.
We consider a two-stage game. In the first stage every machine simulta-
neously chooses a policy from some given set of policies, and in the second
stage, every job simultaneously chooses a machine. In this work, we use
the price of anarchy to measure the efficiency of such equilibria where
each machine is allowed to use at most two policies. We provide nearly
tight bounds for every combination of two deterministic scheduling poli-
cies with respect to two social objectives: minimizing the maximum job
completion, and maximizing the minimum machine completion time.
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1 Introduction

Cloud provides an attractive platform for two entities: service providers (or
machine owners) and users. Clearly it is reasonable to assume that the users
are rational and are selfish. As mentioned in [1], it is now becoming common
that the service providers are controlled by different agents too. A number of
selfish users, each owning a job, aim to minimize the completion time of their
own jobs by choosing a proper machine. On the other hand, in a market setting,
the service providers get paid for running jobs, thus the service providers will
attempt to attract more jobs by specifying a scheduling policy. A scheduling
policy is an algorithm for the machine to schedule all the jobs that have been
assigned to by the users.

Most previous games [21,22] on scheduling consider only one-side, either jobs
are the players or machines are the players, but not both. To the best of our
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knowledge, Ashlagi et al. [1] were the first ones to study the model that both the
machines and the jobs are the selfish players. Actually, it is a two-stage game. In
this game, a set of scheduling policies is given at the beginning. In the first stage,
every machine picks a scheduling policy from the given set of policies with aims
to maximize the total running time. In the second stage, every job simultaneously
chooses a machine such that its own completion time is minimized. The game
reaches a Nash equilibrium if no machine would like to change its policy, and
no job has incentive to switch machines. Ashlagi et al. [1] proved that there
always exists a pure strategy Nash equilibrium if the machines are restricted to
use two deterministic strategies. Besides, they showed that there may not exist
a pure strategy Nash equilibrium if the machines are allowed to use more than
two deterministic policies.

It is worthy to note that Nash equilibrium does not always get the optimum
of the social welfare function. Actually, selfish behavior might lead to highly
inefficient outcome [10]. Moreover, there might exist many different equilibria.
It is challenging to figure out the quality of such equilibria. The quality of an
equilibrium is measured with respect to the social optimum. In this work, we
consider two social objectives: minimizing the maximum completion time of the
jobs (we call it the Min-Max model), and maximizing the minimum machine
completion time (we call it the Max-Min model).

To measure the efficiency of such a game G with respect to a social objec-
tive, we adopt the price of anarchy (PoA) or the coordination ratio that was
introduced by Koutsoupias and Papadimitriou [22]. The price of anarchy has
been extensively studied in many game-theoretic models, such as job schedul-
ing [21,25], selfish routing [27], network formation [13], facility location [29],
congestion games [26], greedy combinatorial auctions [14,24].

Let NE(G) be the set of Nash equilibria in the game G. The social cost of a
game G is a function C(v) for each v ∈ NE(G) that numerically expresses the
social objective of an outcome v of the game. The social optimum OPT (G) is the
optimal value in the corresponding optimization problem. The price of anarchy
of a game G is the worst-case ratio over all equilibria to the social optimum.
Formally, it is defined as

PoA(G) = sup
v∈NE(G)

{ C(v)
OPT (G)

},

if the social objective is a minimization function. Similarly, for a maximization
objective function, we have

PoA(G) = sup
v∈NE(G)

{OPT (G)
C(v)

}.

Related Work. To the best of our knowledge, there are not too many works
on two-stage scheduling games. Besides Ashlagi et al. [1]’s work, recently Chen
et al. [5] studied another two-stage scheduling game, in which each machine can
reject some of their jobs (to accept more valuable jobs). Most scheduling games
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focus on the scenario that the jobs are the players, where every job attempts to
switch machines to minimize its own completion time, where the completion time
of a job refers to the load of the machine it is assigned to. Immorlica et al. [21]
proved that the price of anarchies are 2 − 2/(m + 1), Θ(log m/ log log m), and
unbounded for identical parallel machine scheduling, related machine schedul-
ing, and unrelated machine scheduling, respectively, where m is the number of
machines.

The price of anarchy is to measure the inefficiency of equilibrium points. In
order to reduce the price of anarchy for selfish users, coordination mechanism
was first proposed by Christodoulou et al. [6]. A coordination mechanism for a
game is a set of local policies, one for each machine, such that the completion
time of a job is determined by the policy of the machine that the job has been
assigned to.

The scheduling policies can be Makespan (M), ShortestFirst (S), LongestFirst
(L), Randomized (R) et al. (detailed definitions are given in Sect. 2). In contrast
to our model, each machine in a coordination mechanism game does not change
its policy during the whole game. Note that a coordination mechanism game
with all machines use the policy Makespan (M) is exactly the classic scheduling
game. The motivation of the makespan policy is that in some scenario all jobs
in a machine will be completed at the time. Here the notation of Makespan is a
bit overused. Sometimes it refers to the scheduling policy, sometimes it refers to
the social objective. Anyway, we will point it out explicitly when we use it.

If the social objective is to minimize the makespan, i.e. minimizing the longest
completion time of jobs, the price of anarchies in various coordination mechanism
games are given as below. For identical parallel machines, the PoA of the game
with the policies Makespan, ShortestFirst, LongestFirst, Randomized are 2 −
2/(m + 1) [15,21], 2 − 1/m [17,21], 4/3 − 1/(3m) [6,18], 2 − 2/(m + 1) [15],
respectively, where m is the number of machines. For related machines, the
PoA of the game with the ShortestFirst policy is Θ(log m) [21], the PoA of
the game with the LongestFirst policy is at least 1.52 and at most 1.59 [9,16],
the PoAs of the game with Makespan policies and Randomized policies are
Θ(log m/ log log m) [22]. For unrelated machines, there are a number of results,
see e.g. [2,3,21]. We refer to surveys [19,25] for the study of selfish scheduling.

There were also many studies of scheduling games on the social objective
of maximizing the minimum machine load. Deuermeyer et al. [8] investigated
a coordination mechanism scheduling game with all machines using the policy
LongestFirst. They showed the upper bound is of at most 4/3−1/3m for identical
parallel machines. The scheduling game with policy Makespan were studied in [4,
11], it was shown that the PoA is bounded in 1.691 and 1.7. Furthermore, it was
mentioned in [4,12] that the PoA was unbounded in the related machine model.
Some restricted cases of the related machine scheduling game where the speed
ratio is of at most two was studied in [12,23,28].

Finally, we mention that there are some works on the social objective of
minimizing the (or weighted) sum of completion time. Cole et al. [7] showed
that the PoA is 4 for unrelated machines. Hoeksma and Uetz [20] studied the
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related machine scheduling under the SPT (shortest processing time first) rule,
and presented an upper bound of 2 and a lower bound of e/(e − 1) ≈ 1.58.

Our Contribution. We concentrate on the pure strategies case where each user
selects one machine to assign his job, and each machine selects one policy to
schedule his jobs. In this work, the local policies for machines are limited to
ShortestFirst, LongestFirst, and Makespan. As indicated in [1], there might not
exist an equilibrium if machines are allowed to use more than two policies. They
claimed that there exists Nash equilibrium when machines are limited to use two
deterministic policies. However, this claim is inaccurate. Hence, we first show
the existence of Nash equilibrium under a necessary assumption, even if the
machines are restricted to use only two policies. Then, we give detailed analysis
of the performance via price of anarchy. If the two policies are ShortestFirst
and LongestFirst, we denote it as an (S,L)-game. Similarly, we can define the
(S,M)-game and the (L,M)-game, respectively. Table 1 summarizes the results
of the three games, where a single number presents a tight bound and an interval
presents a lower bound and an upper bound.

Table 1. The PoAs of different games

Model (S, L) (S, M) (L, M)

Min-Max m = 2 9/7 3/2 7/6

Min-Max m ≥ 3 2m/(m + 1) 2 − 1/m 2m/(m + 1)

Max-Min m ≥ 2 [2 − 2/(m − 1), 2 − 1/m] m [1.691, 1.7]

In the remaining part of the paper, we first present the problem statement
and settings in Sect. 2. Then we address the analysis of the price of anarchy on
two social objectives in Sects. 3 and 4, respectively. We conclude the paper with
open questions in Sect. 5.

2 The Game Settings

Let M = {1, 2, . . . ,m} be the set of identical machines, and N = {1, 2, . . . , n} be
the set of jobs. Both jobs and machines are selfish players. Each job j, associated
with a processing time (or size) aj , attempts to minimize his own completion
time. Each machine can select a local scheduling policy to maximize the work-
load, which is the total processing time of all the jobs that have been assigned
to that machine.

In this work, we consider three scheduling policies, namely ShortestFirst (S),
LongestFirst (L), and Makespan (M). The ShortestFirst policy (the LongestFirst
policy) executes jobs in the non-decreasing (non-increasing) order of processing
times. The Makespan policy processes the jobs in a batch such that all the jobs
complete at the same time, i.e. the processing time of every job is the workload
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of the machine that has been assigned to. Actually, every policy determines a
priority for each job that has been assigned to that machine. In ShortestFirst
policy, a job with a shorter processing time has a higher priority. In LongestFirst
policy, a job with a longer processing time has a higher priority. In Makespan
policy, all jobs have the same priorities.

In policies mentioned above, ties are broken in favor of the job with the lowest
index. This means that if two jobs have the same length then the one with the
lower index has a higher priority.

The scheduling game can be described in two stages. At the first stage the
machines publicize their own scheduling policies to all the jobs. Then in the
second stage each job selects a machine such that its own completion time is
minimized. A job may migrate to another machine if its completion time can
be reduced. A job (or a machine) is called satisfied if a job (or a machine) does
not have an incentive to move. Once all the jobs (or machines) get satisfied, we
called it a job equilibrium (a machine equilibrium).

We say that the game reaches a pure Nash equilibrium if it is both in a
job equilibrium and in a machine equilibrium. Ashlagi et al. [1] claimed that
they have proved that there exists a pure Nash equilibrium if the machines are
restricted to use any two deterministic policies. However, this claim is inaccu-
rate. Figure 1 illustrates a scenario that the algorithm in [1] did not find an
equilibrium. In details, there are two machines and four jobs with processing
times 2, 3, 4, 5, respectively. Each sub-figure shows a job equilibrium. Initially,
both the machines use the policy S, illustrated in sub-figure (a) of Fig. 1. There
is a loop demonstrating the change of machine policies. Along the loop there is
always a job equilibrium so that exactly one machine can get better by changing
the current policy.

Fig. 1. An example to illustrate that there is no Nash equilibrium if each machine will
change its policy once it benefits in one job equilibrium.

Note that the problem arises in above example is that given a profile of the
machines, there might exist several job equilibria. To find an equlibrium for our
problem, we need to make a assumption that a machine has an incentive to
alter its policy if and only if its workload will strictly increase in all resulting
job equilibria after the change. Violating this assumption, the existence of an
equilibrium cannot be guaranteed. Under this assumption, this given example
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reaches an equilibrium. As we know, sub-figures (b) and (e) of Fig. 1 are both
job equilibria when one machine in sub-figure (a) changes its policy from S to
L. In the sub-figure (e), the load of the machine with policy L is 5, which is
less than the equilibrium in (a) with load of 6 or 8. Therefore, no machines in
sub-figure (a) have incentive to change their policies under our assumption.

In the following, we will show the existence of a pure Nash equilibrium with
an additional assumption, and the formal proof will be deferred to the full version
of this paper.

Theorem 2.1. In the two-stage game, there exists a pure Nash equilibrium, if
machines are only allowed to use two deterministic policies, and a machine has
an incentive to change its policy only if its workload will strictly increase in all
resulting job equilibria after the change.

3 The PoA in the Min-Max Model

In this section, we study the game with the social objective to minimize the
makespan. The selfish action of machines may result in a high social cost, because
the machines attempt to increase their workloads. The (S,M)-game, the (S,L)-
game, and the (L,M)-game are considered respectively.

3.1 The (S,M)-game

In this game, the machines are only allowed to use either the ShortestFirst policy
or the Makespan policy. The idea of analysis is similar as the list scheduling [17]
by Graham. The detailed proof is deferred to the full version of this paper.

Theorem 3.1. The price of anarchy of the (S,M)-game is 2 − 1/m.

3.2 The (S, L)-game

We show that the price of anarchy for the (S,L)-game is 2m/(m+1) for m ≥ 3,
while it becomes 9/7 for m = 2.

Theorem 3.2. The price of anarchy of the (S,L)-game is at most 2m/(m+1),
for m ≥ 3.

Proof. Denote by Φ the set of machines that use the policy S, and Ψ the set of
machines that use the policy L, respectively. Note that Φ can be empty (or Ψ is
empty) which represents that all the machines use the same policy L (or S).

Now let us go back to the proof of this theorem. We consider the job k
with processing time y, which is the last job on machine i that determines the
makespan. Denote Li to be the load of machine i. Let x = Li − y be the load
of the machine i without job k. Again, denote COPT and CNE to be the social
cost of the optimal solution and the cost of the equilibrium, respectively.
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One can easily check that the theorem follows immediately if y ≤ m/(m +
1)COPT . In the following we assume that y > m/(m + 1)COPT and the proof
is done by contradiction. Actually, we can also assume that y + x > 2m/(m +
1)COPT , since otherwise the theorem follows trivially. Now we have max{y, x} >
m/(m + 1)COPT .

Case 1. Machine i uses the policy S, i.e., i ∈ Φ. We know that the load of each
machine in Φ other than i is not less than y. Otherwise this machine will change
its policy to L and its load will be at least y, which contradicts with the fact
that the current schedule is an equilibrium. We also note that Lj ≥ x from the
point that job k does not move to machine j for any j �= i. On the other hand,
the load of each machine in Ψ is at least y, otherwise the job k will move that
machine. Hence, we have Lj ≥ max{y, x} ≥ m/(m + 1)COPT for any j �= i. The
total load of all machines is at least

∑

j �=i

Lj + Li > ((m − 1)m/(m + 1) + 2m/(m + 1))COPT

= mCOPT ,

which is a not true since COPT is at least the average of total loads.

Case 2. Machine i uses the policy L, i.e., i ∈ Ψ . We get that x ≥ y ≥ m/(m +
1)COPT . On the other hand, Lj ≥ x for any j �= i due to the equilibrium. Again,
we have the total load is larger than mCOPT , which is a contradiction. ��

The preceding upper bound is valid for m ≥ 3 machines, and we will provide
the upper bound for two machines and lower bounds for general m machines in
the full version of this paper.

Theorem 3.3. The price of anarchy of the (S,L)-game for two machines is at
most 9/7.

Theorem 3.4. The price of anarchy of the (S,L)-game is at least 2m/(m + 1)
for m ≥ 3 and at least 9/7 for m = 2.

3.3 The (L,M)-game

We consider the (L,M)-game, where machines can use the policy LongestFirst
or Makespan.

Theorem 3.5. The price of anarchy of the (L,M)-game is 2m/(m + 1) for
m ≥ 3.

Proof. To prove the lower bound, we are given (m−1)(m−2) jobs of processing
times 1, (m−1) jobs of processing time 2, one job of processing time m−ε, and one
job of processing time m, and the profile of machine policies is (M,M, . . . ,M).
All the machines use the policy M. The job configuration in Fig. 2(a) is an
equilibrium. This is because all the jobs cannot reduce their completion times
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if only one of them is moving. On the other hand, if one machine change to L,
Fig. 2(b) is an equilibrium, in which the load of machine with policy L is m.
Hence, Fig. 2(a) is an equilibrium for the (L,M)-game, which indicates that the
PoA is at least 2m/(m + 1) for m ≥ 3.

m

2 2 2

1 11

m

M MM Mm machines

m-ε m

1 1

1 1

m+1

M LM Mm machines

m-ε

(a) (b)

1 1 1

2 2 2

Fig. 2. job configuration in the profile (L,M)-game

The proof for the upper bound is shown as below. Again let us consider
the job J ′ with processing time y that determines the makespan locates on the
machine i. Let x = Li − y be the load on machine i without counting J ′.

Each machine with policy M has load at least y, otherwise it will increase its
load by changing to policy L. On the other hand, we know the load in machines
with policy L is at least y. Similar as Theorem 3.2, if y > m/(m + 1)COPT and
x+y > 2m/(m+1)COPT , where COPT is the optimal social solution, we will get
a contradiction with total optimal load is within mCOPT . Then we have either
y ≤ m/(m + 1)COPT or x + y ≤ 2m/(m + 1)COPT , which therefore the PoA is
at most 2m/(m + 1). ��

From the construction of the lower bound for the (L,M)-game, we know that
the result of Theorem 3.3 does not valid for m = 2. In the following, we obtain
a new result when m = 2. The detailed proof will be given in the full version of
this paper.

Theorem 3.6. The price of anarchy of the (L,M)-game is 7/6 for m = 2.

4 The PoA for Maximizing the Minimum Load

In this section, we study the game with the social objective of maximizing the
minimum load among machines. The change of social objective does not affect
the existence of equilibria. However, the price of anarchy might be very different.
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4.1 The (S, L)-game

Theorem 4.1. The lower bound of the price of anarchy of the (S,L)-game is
at least 2 − 2/(m − 1), and the upper bound is at most 2 − 1/m, where m is the
number of machines.

1 1 1

1 1 1

m-1

m-2

1

S S SS

1 1

1 1

m-1

m-1

S SSS(a) (b)

1

1
L

m-1 m-1 m-1

Fig. 3. Illustration of the lower bound for the (S,L)-game in the Max-Min model

Proof. The job instance is m(m−2)+1 jobs of processing time 1 and m−1 jobs
of processing time m − 1. Since all the machines use the policy S, we know that
a job configuration in Fig. 3(a) is a job equilibrium. Figure 3(b) shows that no
machine has incentive to change its policy to L. From this instance, CNE = m−1
and COPT = 2m − 4, therefore we obtain that PoA ≥ 2 − 2/(m − 1).

The upper bound is shown as below. Denote Lj to be the load of machine j.
Suppose that the machine i has the minimum load. Thus CNE = Li. Suppose
that the machine k reaches the makespan and let y = Lk − Li. Denote by
J ′ the latest job on the machine k, whose processing time is z, then z ≥ y,
otherwise job J ′ would move to the machine i. Similar as Theorem 3.2, we know
Li ≥ max{z, Lk − z}. Thus, for any other machine j �= i, we obtain that

Lj ≥ Li ≥ max{z, Lk − z} ≥ y,

which implies that y ≤ Li. On the other hand,

mCOPT ≤ mLi +
∑

j �=i

(Lj − Li)

≤ mLi + (m − 1)y
≤ (2m − 1)Li = (2m − 1)CNE ,

which gives PoA = COPT /CNE ≤ 2 − 1/m. ��
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4.2 The (S,M)-game

Lemma 4.2. The price of anarchy of the (S,M)-game in the Max-Min model
is at least m.

Proof. There are total m jobs of processing time 1 and m − 1 jobs of processing
times m. All the machines use the policy S. From Fig. 4, no machine has incentive
to change its policy to M. In this equilibrium, CNE = 1, while COPT = m. ��

1 1

m

S S

11111

· · ·

Fig. 4. Illustration of the lower bound for the (S,M)-game in the Max-min model

Theorem 4.3. The price of anarchy of the (S,M)-game in the Max-Min model
is at most m.

Proof. Let j be the machine with the minimum load, and suppose its load is 1.
Hence CNE = 1. Denote yk to be the size of the latest job in the machine k.
Hence the load in machine k �= j is at most 1 + yk, otherwise that job with size
yk will switch to the machine j.

Suppose that we keep the last job of all that m−1 machines other than j, and
move the other jobs to the machine j. In this case, machine j has load at most
of m, and the other machines contain a single job. It is easy to check that the
load of machine j is an upper bound of the optimal solution. As a consequence,
COPT ≤ m. ��

4.3 The (L,M)-game

If all the machines are only allowed to use policy L, Deuermeyer et al. [8] showed
the upper bound is at most of 4/3 − 1/3m. Epstein et al. [11] proved that if all
the machines use the policy M, the price of anarchy is bounded by 1.691 and
1.7. In this section, we prove that the price of anarchy of the (L,M)-game is
also between 1.691 and 1.7. The technique for the upper bound proof is based on
Epstein et al. [11], some analysis in that paper will be adopted as a black-box.
The detailed proofs will be given the full version of this paper.

Theorem 4.4. The lower bound of the price of anarchy for the (L,M)-game in
the Max-Min model approaches to 1.691 when m is sufficiently large.

Theorem 4.5. The upper bound for the price of anarchy of the (L,M)-game in
the Max-Min model is at most 1.7.
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5 Concluding Remarks

In this paper we have addressed the price of anarchy in two-stage identical paral-
lel machine scheduling games. In these games, both the machines and the jobs are
selfish players. The PoAs were explored with respect to two social objectives, the
minimum of the makespan and the maximum of the minimum machine comple-
tion time. We provided nearly tight bounds of the (S,L)-game, the (S,M)-game,
and the (L,M)-game, respectively, for these two social objectives.

Many directions for future work arise from these two-stage games. It is inter-
esting to consider different individual value functions of the agents or different
social objectives. In particular, one may consider the case that each machine
attempts to minimize its load because each machine might get more profit in
the long run since agents prefer a machine with the lightest load. One can extend
our work to other measure of efficiencies, such as strong price of anarchy or price
of stability. Another direction might be the extension work on uniformly related
machine scheduling, or unrelated machine scheduling.

Acknowledgment. The authors thank anonymous referees for helpful comments and
suggestions to improve the presentation of this paper.
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