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Abstract. The girth of a directed graph is the length of its shortest
directed cycle. We consider the problem of generating all subgraphs of
girth at least g in a directed graph G with n vertices and m edges.
This generalizes the problem of generating acyclic subgraphs (i.e., with
no directed cycle), that correspond to the subgraphs of girth at least
n+1. The problem of finding the acyclic subgraph with maximum size or
weight has been thoroughly studied, however to the best of our knowledge
there is no known efficient enumeration algorithm. We propose polyno-
mial delay algorithms for listing both induced and edge subgraphs with
girth g in time O(n) per solution; both improve upon a naive solution,
respectively by a factor O(nm) and O(m2). Furthermore, this work is on
the line of existing research for extracting acyclic structures from graphs.

1 Introduction

The problem of extracting directed acyclic structures from graph has been object
of study in different forms. Some works, e.g. [5,17], consider the problem of
directing the edges of an undirected graph so that the resulting directed graph
is acyclic. Berger and Shor [1] considered the problem of finding the acyclic edge
subgraph with the largest number of edges, while Grotsche et al. [10] studied the
more general one of finding the acyclic subgraph of maximum edge weight in a
graph with weighted edges. Algorithms that find the best solution with respect
to some goal function, e.g., maximize size or weight, are often the tool of choice
when a clear goal function can be identified. In real-world situations, however,
optimizing some desired properties of the solution may negatively impact other
aspects or properties, and a rigorous goal function may not be easy to find. In
these situations, a fast enumeration algorithm can be a powerful tool. An enu-
meration algorithm will report all solutions to the user, letting him judge its
goodness with an arbitrarily complex metric. Furthermore, different goal func-
tions require ad-hoc algorithms to find the best solution, while an enumeration
algorithm may be used in combination with any such function.
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This motivates the problem considered in this work, that is efficiently finding
all connected acyclic subgraphs of a directed graph G with n vertices and m
edges. We solve this problem for both induced subgraphs (defined by a subset of
the vertices) and edge subgraphs (defined by a subset of the edges). Furthermore,
we generalize this problem to that of finding connected subgraphs with lower
bounded (directed) girth, that is the length of the shortest directed cycle in
G: a cycle may have length at most n, which makes the subgraphs with girth
lower bounded by n + 1 (i.e., at least n + 1) exactly the acyclic subgraphs of
G. Finally, we will show that the connectivity constraint can be easily dropped
from the algorithm, solving the enumeration problem also when the connectivity
is not required.

A common way to evaluate the efficiency of an enumeration algorithm is
by considering its running time with respect to the number of solutions found.
If m is the size of the input, and α the number of subgraphs found by the
algorithm, we say that the algorithm runs in polynomial total time if the running
time is poly(α,m), and amortized polynomial if the running time is α · poly(m),
i.e., poly(m) amortized time per solution. Finally, we say that an algorithm has
polynomial delay if the time elapsed between finding the i-th and i+1-th solution
is bounded by poly(m) [13].

We first describe a baseline naive approach which runs in O(n2m) and
O(m2n) time per solution respectively, for induced subgraphs and edge sub-
graphs with girth g. We then use structural properties of the problem and sup-
port data structures to produce two algorithms, for listing induced and edge sub-
graphs with girth g, both of which run in O(n) time per solution, i.e., improving
the baseline by a factor O(nm) and O(m2), respectively.

The girth of a graph is related to many fundamental graph properties,
e.g., average and minimum degree, diameter, chromatic number, and tree-
width [3,6,7]. Many studies consider properties of graphs with the given girth:
Thomassen [18] proved that a graph with girth at least five is 3-list-colorable,
and Hayes [11] proposed an efficient algorithm for finding a random k-coloring
of such graphs. Borodin et al. [2] linked the girth of a graph to its circular chro-
matic number. Furthermore, Galluccio et al. [9] showed that in graphs without
a specific minor the circular chromatic number is arbitrarily close to two if the
girth is large enough. In addition, several W[1]-hard or W[2]-hard problems, e.g.,
dominating set, independent set, and set cover become FPT if a graph has large
girth [16].

Finding the girth of a graph is a problem that has been studied for decades,
but that continues to be object of significant advancement even in recent years.
Itai and Rodeh showed the first non-trivial algorithm for finding the girth
of an undirected graph in 1978 [12], which runs in O(mn) time. In 2000,
Djidjev [8] improved this bound to O(n5/4 log n) for planar graphs. This was
further improved by Chang et al. in 2013 [4], by providing a linear time algo-
rithm for finding the girth of planar graphs.

As for directed graphs, Pettie [15] provided an algorithm with running time
O(mn+n2 log log n) for finding the girth of weighted directed graphs, improving
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a “long standing bound obtained by using Dijkstra’s algorithm and Fibonacci
heaps”. Orlin and Sedeno-Noda further reduced this to O(mn) time in a recent
work [14]. Computing the girth of a directed graph is similar to the shortest path
problem. Indeed, Chang et al. used a single source shortest path algorithm in [4]
as a subroutine. However, using a shortest path algorithm is not efficient for our
listing problem since our problem computes distance between any two vertices
many times. Hence, instead of using a shortest path algorithm as a subroutine,
our algorithms will exploit matrices which incrementally and efficiently update
the distances and reachability among vertices and edges.

In Sect. 3 we describe algorithm g-is (for girth g - induced subgraphs),
which lists all induced subgraphs of G having girth g in O(n) time per solution.
In particular, by setting g = n + 1 g-is can be used to list all acyclic induced
subgraphs of G with the same complexity. In Sect. 4 we describe algorithm g-es,
which lists all edge subgraphs of G having girth g in O(n) time per solution.
Table 1 in Sect. 5 summarizes the contributions.

2 Preliminaries

All graphs and edges considered in this work are directed. A graph is represented
as G = (V (G), E(G)), where V (G) is the set of vertices and E(G) ⊆ (V (G) ×
V (G)) the set of edges. We denote as (a, b) the edges whose tail is a and head
is b. When edge direction is not important, we write {a, b} to refer to either the
directed edge (a, b) or (b, a). NG(v) represents the set of vertices connected to
a vertex v in G by an edge in any direction, i.e., the neighborhood of v, and
Ne

G(v) represents the set of edges having v as either tail or head, which we call
edge neighborhood. If no confusion arises, we will drop the subscripts and use a
relaxed notation, e.g. referring to the vertex and edge sets as V and E, or the
neighborhoods as N(v) and Ne(v).

An induced subgraph of G, given a set of vertices X ⊆ V (G), is the subgraph
G[X] = (X,E[X]). Here, E[X] = E(G)∩ (X ×X). In other words, the subgraph
obtained by removing all vertices in V (G) \ X and all edges incident to those
vertices from G. An edge subgraph of G, given a set of edges F ⊆ E(G), is the
subgraph G[F ] = (V [F ], F ), where V [F ] is the set of vertices incident to an edge
in F , i.e., V [F ] = {x | (x, y) ∈ F or (y, x) ∈ F}.

A cycle is a sequence of distinct vertices C = {v1, . . . , vk} such that
(vi, vi+1) ∈ E(G) for 1 < j < k − 1, and (vk, v1) ∈ E(G). We say that the
cycle C has length k, that is the number of vertices involved in C. The directed
girth, or simply girth, of a graph G is the length of its smallest cycle. A graph is
acyclic if it contains no cycle. If G is acyclic, its girth is defined to be ∞; in all
other cases, the girth of G is at most |V (G)|, i.e., the maximum possible length
of a cycle.

A basic but fundamental property of the girth is that it is hereditary, i.e.,
any subgraph G′ (both induced or edge) of a graph G with girth g has girth at
least g, as any cycle shorter than g in G′ would be present also in G. Figure 1
shows some examples of induced (b) and edge (c), (d) subgraphs of a graph (a).
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Fig. 1. A graph (a), an induced subgraph with girth 4 (b), an edge subgraph with
girth 5 (c), and an acyclic edge subgraph (d). The subgraphs correspond to the vertices
and edges in black.

In several cases, properties of graphs with girth g apply also to graphs with
larger girth, and so it is common for studies to consider graph with girth ≥ g [11],
and even to refer to those as simply graph with girth g [18]. We adopt this
notation in this work as well, thus we will refer to subgraphs whose girth is at
least g simply as subgraphs of girth g.

3 Listing Induced Subgraphs with Girth g

Our algorithms enumerate all subgraph with girth g by a simple backtracking
procedure that adds vertices to a partial solution S ⊆ V (G) or alternatively
removes them from the graph. The vertices removed from the graph are repre-
sented by a set X. To give an accurate cost analysis, we will refer to the hypo-
thetical recursion tree of its execution, where each recursive call of the algorithm
is represented by recursive node, or simply node, and the nested recursive call
inside a recursive node correspond to its children in the recursion tree.

3.1 Basic Algorithm

The basic algorithm base is detailed in Algorithm 1. In the beginning, S = ∅;
since a subgraph made by a single vertex is acyclic, it will have girth ∞ and every
v ∈ V will be addible; the algorithm will thus consider all possible subgraphs
of a single node (procedure main), which will then be further expanded when
calling base. After a vertex is considered it is conceptually removed from the
graph by adding it to X.

The recursive procedure can be seen as a form of binary partition: we identify
the set C, called addible candidate set, all vertices that may be added to S
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Algorithm 1. Enumerating all connected induced subgraphs of girth g in
a directed graph G = (V,E)
1 Procedure main(G = (V (G), E(G)), g)
2 X ← ∅
3 foreach v ∈ V (G) do
4 base(∅, X, v, g)
5 X ← X ∪ {v}
6 Procedure base(S,X, v, g)
7 S ← S ∪ {v}
8 Output S
9 C ← {x ∈ V (G) \ (S ∪ X) | G[S ∪ {x}] is connected and has girth g}

10 for x ∈ C do
11 base(S,X, x, g) // find subgraphs containing x
12 X ← X ∪ {x} // find subgraphs not containing x

13 S ← S \ {v}; X ← X \ C // restore S and X

without violating the girth or connection constraint. For a vertex x ∈ C, we
first consider all the subgraphs of girth g extending S that contain x (Line 11).
Then, after these subgraphs have been found, we remove v from the graph by
adding it to X and iterate over the next member of C; this corresponds to the
“other branch” of the binary partition, when we consider all subgraphs of girth
g extending S that do not contain v. Thus every cycle of the for loop can be seen
as a binary partition step. However, grouping these steps in a single recursive
node will aid the analysis of the algorithm. Finally, when all vertices of C have
been considered, we output S in Line 8, which corresponds to the choice of not
adding any v ∈ C; this is also the only solution found in the case C = ∅.

Induced acyclic subgraphs. As the maximum possible length of a cycle is n,
i.e., |V (G)|, any graph with girth ≥ n + 1 is acyclic. Thus we can enumerate all
induced acyclic subgraphs by simply using base with g = n + 1.

Correctness. Proving that each output of base is an induced subgraph of girth
at least g is trivial, since every vertex added to S has passed the check in Line 9.
Is it also straightforward to see that no duplication is possible: all solutions found
in sub-calls of Line 11 will contain x, while all solutions found during following
cycles of the for loop will not contain the same x as it is added to the X set;
moreover, every call in Line 11 adds some x to S, thus none of these will output
S itself as a solution, which is output in Line 8.

Finally, we only need to show that every subgraph S∗ with girth at least g
is output by base. We prove this by induction: consider as base case for S∗ a
recursive call in which S ⊆ S∗ and S∗ ∩ X = ∅. This is trivially true for some
S in the beginning of the main procedure, in particular the first time a vertex
v ∈ S∗ is considered by the foreach loop, i.e., with S = ∅ and {v} ⊆ S∗ and as
no vertex of S∗ was previously considered, S∗ ∩X = ∅, thus in the corresponding
call of base we will have S = {v} ⊆ S∗ and X ∩ S∗ = ∅.
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If S∗ \ S = ∅, that is if S = S∗, then S∗ is output in Line 8. Otherwise let
v1, v2, . . . , v|C| be the order in which the vertices of C are scanned by the for
loop, and let vi be the earliest vertex in the sequence belonging to S∗. When
considering vi, vertices v1, . . . , vi−1 have been removed from C and not added
to S. When the recursive call in Line 11 considers S′ = S ∪ {vi}, all vertices
in S∗ \ S′ will still be in C ′ since any subgraph of S∗ also has girth at least
g, and adding any vertex from S∗ \ S′ to S′ will make a subgraph of S∗. Here,
C ′ is the candidate set for S′. Thus, after the recursive call in Line 11 S′ and
C ′ will still respect the inductive hypothesis S′ ⊆ S∗ and S∗ \ S′ ⊆ C ′, but
|S′ ∩S∗| > |S ∩S∗|, thus in at most |S∗| such steps there will be a recursive call
with S′ = S∗, that will finally output S∗ in Line 8.

Cost analysis. As every recursive call will output a solution in Line 8, the cost
per solution is clearly bounded by the cost of a recursive call. This corresponds
to the cost of computing C in Line 9. The trivial way to build C is to compute
the girth of G[S ∪ {x}] for each vertex x ∈ V (G); as the girth can be computed
in O(nm) time [14] this yields a total cost of O(n2m) per solution.

3.2 Improved Algorithm

We considered Algorithm 1, with its complexity of O(n2m) time per solution,
the baseline for the enumeration problem. In the following we show how modify
this algorithm to obtain g-is, which reduces the cost of base by a factor O(nm),
obtaining O(n) time per solution. First, consider the following straightforward
but fundamental property.

Observation 1. If, for any vertex x 	∈ S, �(v, S ∪ {x}) < �(v, S), then the
shortest cycle containing v in S ∪{x} must contain x. Here, �(v, S) is the length
of a shortest cycle containing v in S.

As this applies to every v ∈ S and x 	∈ S, this implies a more general property.

Observation 2. If A is a subgraph of G with girth g, and A ∪ {x} has girth
g′ < g, the shortest cycle in A ∪ {x} must involve x.

Let SP and CP be the S and C set computed in the parent call of recursive
call R, which correspond to SP = S \ {v} and CP = {x ∈ V (G) \ (SP ∪ {x}) |
G[SP ∪ {x}] is connected and has girth g}. Every addible vertex x ∈ C for R
must either be in CP or be a neighbor of v, as otherwise the subgraph G[S∪{x}]
would either have girth less than g or be disconnected.

We can use this properties to efficiently identify all vertices x ∈ C. C will be
made of all the vertices in CP that still pass the check in Line 9 after adding v
to S, and all the vertices in N(v) \ X which were not already in CP : these are
only connected to S by v and hence cannot participate in any cycle.

We will also keep in each recursive node a special distance matrix for S, that
is a matrix M of size |C| × |C| such that for each pair x, y ∈ C, M [x, y] is equal
to the distance between x and y in the induced subgraph G[S ∪ {x, y}]. Clearly,
if M [x, y] + M [y, x] < g then G[S ∪ {x, y}] has a cycle shorter than g. Thanks
to M and Observation 2, we can conclude the following.
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Lemma 1. Given CP the candidate set in the parent recursive call, and the
special distance matrix MP for SP , Line 9 can be rewritten as follows:

C ← {x ∈ CP | MP [x, v] + MP [v, x] ≥ g} ∪ (N(v) \ (X ∪ CP )) (1)

With this technique, C is computed in O(|CP |) time. After computing C we
need to compute M , i.e., the special distance matrix for S = SP ∪ {v} which
will be passed to the child recursive call. To ease this we will use the M matrix
built in the parent recursive call, which we call MP : we must simply check if the
shortest path between two vertices x and y has been improved by adding v to
S. In other words, given MP and C, we can compute M in O(|M |) = O(|C|2)
time as for each x, y ∈ C, M [x, y] = min(MP [x, y],MP [x, v] + MP [v, y]).

As for the first recursive call, with S = ∅ and C = V (G), M is computed in
O(|M |) = O(|C|2) time, since for each x, y ∈ C, M [x, y] = 1 if (x, y) ∈ E(G),
and 0 otherwise. The improved algorithm g-is is built by modifying recursive
calls of base as follows:

– The first recursive call initializes M .
– The C and M are passed to child recursive calls as CP and MP .
– The C and M are built using CP and MP .
– Line 9 is modified as in Lemma 1.

Cost analysis. Every recursive node of g-is will take O(|CP | + |C|2) time to
compute C and M . While this is trivially bounded by O(n2), we show that it can
be further improved by means of amortized analysis: we shift parts of the cost
of each recursive node onto other nodes, obtaining a better complexity bound.

Let R be an arbitrary recursive node, which has built the sets SR, XR, CR,
and the matrix MR. Note that R will have exactly |CR| child recursive nodes
and will take O(|CP | + |CR|2) time to execute. However, R will subdivide the
O(|CR|2) portion of the cost equally among its |CR| children, for a total of |CR|
each. Every recursive node thus will retain a cost of O(|CP |) time, and be charged
only from its parent of an additional O(|CP |) time, for a total of O(|CP |) = O(n)
time per each recursive node, i.e., O(n) time per solution found.

Considering the space usage, S, C, and X may be efficiently stored by keeping
track of just the difference between the parent and child recursive nodes for an
amortized space usage of O(n). As for M , we do not actually need to compute a
separate matrix in each recursive node. We simply update the cells of MP and
use MP as M , accessing only the cells corresponding to indices in C. The depth
of the recursion tree, i.e., the number of changes we need to keep track of, is
O(|S|) = O(n); the total space usage will thus be O(|M | · |S|) = O(n3).

As g does not impact the cost, g-is can enumerate acyclic subgraphs, i.e.,
subgraphs with girth at least n + 1, in O(n) time per solution as well. Fur-
thermore, distance is meaningless in acyclic subgraphs, as we only care about
whether x can reach y or not. Each cell of M will thus be updated at most once,
for a total space usage of O(|M |) = O(n2). We can finally state the correctness
and complexity of g-is.
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Theorem 1. g-is lists the induced subgraphs of a graph G with girth at least g
exactly once, using O(n) time per solution and O(n3) space.

Theorem 2. g-is lists the acyclic induced subgraphs of a graph G exactly once,
using O(n) time per solution and O(n2) space.

3.3 Weighted Case and Non-connected Case

g-is is given for unweighted graphs. However, it should be remarked that it is
trivially adapted to weighted graphs by simply initializing M [x, y] in the first
recursive call to the weight of the edge (x, y), rather than 1, as long as g > 0.
The approach works in the presence of negative edges and even negative cycles,
as a negative cycle can never be added to S since it would cause g < 0. g-is can
also be trivially modified to drop the connectivity constraint, by simply setting
C = V (G) in the first recursive call, so that every vertex can be immediately
considered for addition (we can then also ignore the addition of vertices in N(v)
to C, see Lemma 1). Similar trivial adaptations are possible for all the algorithms
proposed in the remainder of the paper.

4 Listing Edge Subgraphs with Girth g

In this section we describe an algorithm for listing all edge subgraphs of girth
at least g, The algorithm, which we call g-es, is detailed in Algorithm 2. The
structure of g-es is in essence that of g-is, but with two key differences. Firstly,
the solution S, the set of addible candidates C, and excluded elements X are
sets of edges rather than vertices. Secondly, the order in which candidate edges
are selected in g-es will play an important role in the complexity of g-es.
The baseline algorithm, obtained by trivially adapting Algorithm 1 for edge
subgraphs, has a complexity of O(m2n) time per solution. We will show that g-es
will improve this bound by a factor O(m2), obtaining O(n) time per solution.

Like in g-is, at any time we consider the current solution as a set of edges
S ⊆ E(G), corresponding to a subgraph with girth g, a set X of excluded edges
(i.e., conceptually removed from the graph), and the set C ⊆ E(G) \ (S ∪ X) of
edges that are addible to S without violating the girth constraint. In addition,
we will subdivide C into Cin and Cext: let SN be the set of vertices incident to
edges in S, ∀e = {x, y} ∈ C, e ∈ Cin if {x, y} ⊆ SN , and e ∈ Cext otherwise.
Again, we find all solutions in a binary partition fashion by selecting an edge
e ∈ C, and first considering all subgraphs with contain S ∪ {e}, then removing
e from C and considering those that contain S but not e.

We call this algorithm g-es, and we can reconstruct its structure by simple
modifications of g-is: in particular, each cycle of the for loop in Line 10 in
Algorithm 1 considers an edge e ∈ Cin rather than a vertex. Furthermore, the
updated C (Line 9) should be computed as C ← {e′ ∈ E(G) \ (S ∪ X) | and
G′ = (V [S ∪ {e′}], S ∪ {e′}) is connected has girth g}. Finally, g-es will select
e from Cext only if Cin = ∅. For brevity, we omit the correctness proof which
consists in simply retracing that of g-is.
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Again, we employ a special distance matrix M for S; let CN be the set
of vertices incident to at least one edge in C: in this case M will have size
|CN |×|CN |, and for each pair x, y ∈ CN , M [x, y] is equal to the distance between
x and y in the edge subgraph G′ = (V [S], S). For two edges e1 = (x, y) and e2 =
(w, z) in C, if there is a cycle shorter than g in G′′ = (V [S∪{e1, e2}], S∪{e1, e2}),
then we will have M [y, w] + M [z, x] + 2 < g, since any cycle involving e1 and e2
must traverse the vertices y, w, z, and x in this order. After adding e = {a, b}
to S, the edges in Ne(a) ∪ Ne(b) but not in X may enter C, which can thus be
computed similarly to how done in Lemma 1 for the induced case, i.e.

C ← {e′ = {c, d} ∈ CP ∪ (Ne(a) ∪ Ne(b)) \ X | M [b, c] + M [a, d] + 2 ≥ g}, (2)

where the 2 is added to account using the edges e and e′ and can be replaced
by their weight for the weighted case. The values of M can also be similarly
updated, as after adding e = {a, b} ∈ C to S, we have that M [y, w], i.e., the
distance “from” e1 to e2 in G′ = (V [S ∪ {e}, S ∪ {e}), was either improved by
using e or is unchanged. That is M [y, w] = min(M [y, w],MP [y, a]+MP [b, z]+1),
where the 1 is added to account for using e. Note that we replaced by the weight
of e when weighted case. Thus, g-es will also follow the structure in Algorithm 1,
modifying recursive calls of base as follows:

– The first recursive call initializes M .
– The sets Cin, Cext, CN , SN and M are passed to child recursive calls.
– C, CN , SN and M are updated using those passed from the father recursive

call.
– The candidates in Cext will be selected only after Cin is empty.
– Line 10 is modified as in Eq. (2).

Cost analysis. By implementing the updates in Line 10 similarly to how done
in g-is, and performing the same amortized analysis, one could easily find that
g-es has a complexity of O(m) time per solution, which is a factor O(mn) faster
than the baseline. In the following, however, we will further reduce the cost of
Line 10 and obtain O(n) time per solution.

In particular, let us focus on the update of the Cin and Cext sets. When g-es
selects e ∈ Cext, updating the sets can trivially be done in O(m) time by testing
each edge f ∈ E(G)\(S∪X) with M as in Eq. 2. However, this can be simplified
by means of the following:

Lemma 2. Let e = {a, b} ∈ Cext be the edge selected and added to S by g-es,
with Cin = ∅. Without loss of generality let a ∈ SN and b 	∈ SN . Then

– The updated Cin is contained Ne(b) \ (S ∪ X).
– The updated Cext is contained in Cext ∪ Ne(b) \ (S ∪ X).
– Both Cin and Cext can be updated in O(Δ) time.

Proof. Since b is the only new vertex in SN , the new edges in Cin and Cext must
be adjacent to b. Any new edge in Cin must be removed from Cext. Cin and Cext

can be computed by scanning Ne(b) and testing each edge {b, x} not in S or X
in constant time using M , adding the edges that pass the girth test to Cin if
x ∈ SN and to Cext otherwise. This takes O(Δ) time. �
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Algorithm 2. g-es: Enumerating all connected edge subgraphs of girth g
in a directed graph G = (V,E)
1 Procedure main(G = (V (G), E(G)), g)
2 X ← ∅
3 foreach e = {x, y} ∈ E(G) do
4 g-es(∅, X, v, g)
5 X ← X ∪ {v}
6 Procedure g-es(S,Cin, Cext, CN , SN ,M,X, e, g)

// let e = {a, b}
7 S ← S ∪ {e}
8 SN ← SN ∪ {a, b}
9 Output S

10 Update CN , Cin, Cext,M for the new S and X
11 for f ∈ Cin do
12 g-es(S,Cin, Cext, CN , SN ,M,X, f, g) // subgraphs containing f
13 X ← X ∪ {f} // subgraphs not containing f

14 for f ∈ Cext do
15 g-es(S,Cin, Cext, CN , SN ,M,X, f, g) // subgraphs containing f
16 X ← X ∪ {f} // subgraphs not containing f

17 S ← S \ {v}; X ← X \ C // restore S and X

18 Restore CN , Cin, Cext,M for the restored S and X

Note that g-es only selects e from Cext once Cin is empty, and otherwise it
will select it from Cin. Selecting e from Cin always decreases |Cin| by at least
1: indeed no new edge may enter Cin since SN is unchanged, but e itself is
removed. When Cin is empty and we select e from Cext, |Cin| may become at
most Δ (Lemma 2). We can thus state that

Lemma 3. At any time in g-es, |Cin| ≤ Δ.

When g-es selects the edge e from Cin, thanks to Lemma 3 we can also
update Cin and Cext faster than in O(m) time:

Lemma 4. Let e = {a, b} ∈ Cin be the edge selected and added to S by g-es.
Then the updated Cin is included in Cin \{e} and can be computed in O(Δ), and
Cext is unchanged.

Proof. As SN is unchanged, no edge enters Cin, but e is removed. Whether each
edge remains in Cin can be tested in constant time using M , which takes O(Δ)
time as |Cin| ≤ Δ by Lemma 3. Finally, as every edge in Cext still exactly one
extreme in SN , it may not participate in any cycle in G(V [SN ], S), and since
SN is unchanged no edge is either removed from or added to Cext. �


We can now proceed to give the complexity g-es: consider any recursive call
P , with its sets SP , XP , CinP , CextP , CNP and the matrix MP as computed in
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Line 10, and R, a child recursive call of P (performed in either Line 12 or 15)
with its sets SR, XR, CinR, CextR, CNR and the matrix MR.

Thanks to Lemmas 2 and 4, we can update CinP and CextP to obtain CinR

and CextR in O(Δ) time. Furthermore, CNR can be obtained in constant time,
and using MP and CNR we can update MP to obtain MR in O(|CNR|2) time.
The total cost of Line 10 will thus be O(Δ + |CNR|2).

However, we have that for each edge in CinR and CextR there are two vertices
in CNR, which means |CNR| ≤ 2(|CinR| + |CextR|). As R has |CinR| + |CextR|
children recursive calls, and |CNR| = O(|CinR| + |CextR|), we can give the same
amortized analysis as for g-is: R will subdivide equally among its children the
O(|CNR|2) time component of its cost, for a total of O(|CNR|) = O(n) for each
child. Each recursive node will thus maintain the O(Δ) time component of the
cost, and receive an additional O(n) time component from its parent call, for a
total cost of O(n) time per recursive node, i.e., O(n) time per solution.

The space complexity of g-es, similarly, is dominated by the space needed
to store S,Cin, Cext and X, which can be stored in amortized O(m) space (by
keeping track of the differences between parent and children recursive calls), and
CN and SN , which can similarly be stored in O(n) space. Finally, M has O(n2)
cells, and for each cell we must keep track of at most n changes. Indeed, while
the depth of the recursion is bounded by m, each value M [i, j] corresponds to a
distance between two vertices i and j, which is bounded by n; as the distance is
only updated when it is reduced, and each reduction is of at least 1, there can
be no more than n updates, which lead to a total space usage of O(n3)1.

As for acyclic edge subgraphs, there are only two possible values for M [i, j]:
can reach and cannot reach. As we only need to keep track of one update, the
space usage will be O(n2). We can finally state the cost of g-es:

Theorem 3. Given a graph G = (V,E), g-es lists the edge subgraphs of G with
girth at least g exactly once, in time O(n) per solution and space O(n3).

Theorem 4. Given a graph G = (V,E), g-es lists the acyclic edge subgraphs
of G, in time O(n) per solution and space O(n2).

5 Delay and Final Remarks

While the cost per solution of g-is and g-es is O(n), their delay, i.e., the
maximum elapsed time between the output of a solution and the following one,
is higher, unless we employ additional techniques. By outputting the solution at
the beginning of every recursive call (e.g., moving Line 8 of Algorithm 1 to the
top), a solution will be output whenever a recursive call is performed. In this case
the delay will be bounded by the cost of updating M in Line 9 in Algorithm 1
for g-is (using Lemma 1), and Line 10 in Algorithm 2 for g-es, i.e., O(n2).

1 This is different in the weighted case, in which distances can be reduced by less
than 1, and will thus require using O(n2m) space.
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However, we can reduce the delay by employing the output queue and alter-
native output techniques [19]: Let X be an arbitrary recursion node, T ∗ be an
upper bound on the cost of X, and T̄ an upper bound for the ratio

(cost of processing the subtree of X)/(solutions found in the subtree) (3)

Table 1. Time and space complexity of the proposed enumeration algorithms, includ-
ing the output queue technique preprocessing cost.

subgraph type algorithm delay pre-processing space usage

induced with girth g g-is O(n) O(n3) O(n3)

induced acyclic g-is O(n) O(n3) O(n2)

edge with girth g g-es O(n) O(n3) O(n3)

edge acyclic g-es O(n) O(n3) O(n2)

To reduce the delay, we will need to use a buffer which stores �2 · T ∗/T̄ � + 1
solutions. First, we fill the buffer until it is full, then we will out a solution every
O(T̄ ) time, obtaining O(T̄ ) delay.

By means of our amortized cost analysis (see Sect. 3) we have that T̄ corre-
sponds exactly to the cost per solution, that is O(n) for both g-is and g-es.

Thus we will have T ∗ = O(n2) and T̄ = O(n), meaning that we will obtain
delay O(n), at the cost of storing Θ(n) solutions. As a solution of g-is is defined
by a set of vertices, this translates to a space usage of O(n2) and a delay of O(n).

As for g-es, we would need to store solutions corresponding to sets of edges,
which have size O(m) and take O(m) to output. We address this problem with
the alternative output technique: this consists in performing the output of a
solution as the first operation in each recursive node of even depth, and as the
last operation in each recursive node of odd depth.

Thanks to this structure, consecutive outputs of the algorithm are performed
by recursive nodes at distance at most 3 in the recursion tree (see Fig. 3 in [19]).
As each recursive call outputs a solution that differs by 1 edge from those output
by its parent and children, consecutively output solutions will differ by at most
3 edges. We can thus output each solution by giving only the difference with
the last output solution, which takes constant space (and time), thus the buffer
size will take only O(m) space for the first solution, and O(n) space for the
subsequent n ones, for a total cost of O(n) delay and O(m) space usage.

In both cases, the space required by the solution buffer does not increase the
O(n2) space usage of g-is and g-es. However, the output queue technique will
add a pre-processing time, that is the time required to fill the buffer: as without
the output queue technique the algorithm guarantee a delay of O(n2) time, the
time required to fill a buffer of Θ(n) solution, that is O(n3).

Table 1 summarizes the performances of the proposed algorithms.
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