Ensembles of Recurrent Neural Networks
for Robust Time Series Forecasting

Sascha Krstanovic®) and Heiko Paulheim®)

Research Group Data and Web Science,
University of Mannheim, Mannheim, Germany
{sascha,heiko}@informatik.uni-mannheim.de

Abstract. Time series forecasting is a problem that is strongly depen-
dent on the underlying process which generates the data sequence. Hence,
finding good model fits often involves complex and time consuming tasks
such as extensive data preprocessing, designing hybrid models, or heavy
parameter optimization. Long Short-Term Memory (LSTM), a variant
of recurrent neural networks (RNNs), provide state of the art forecast-
ing performance without prior assumptions about the data distribution.
LSTMs are, however, highly sensitive to the chosen network architecture
and parameter selection, which makes it difficult to come up with a one-
size-fits-all solution without sophisticated optimization and parameter
tuning. To overcome these limitations, we propose an ensemble archi-
tecture that combines forecasts of a number of differently parameterized
LSTMs to a robust final estimate which, on average, performs better than
the majority of the individual LSTM base learners, and provides stable
results across different datasets. The approach is easily parallelizable and
we demonstrate its effectiveness on several real-world data sets.

Keywords: Time series - Ensemble - Meta-learning - Stacking -
ARIMA - RNN - LSTM

1 Introduction

Tracking and logging information that is related to a timely dimension has been
important in a variety of sectors such as energy, biology or meteorology. Using
this data in order to estimate the future behavior is of high value since it has
an immediate impact on decision making. Hence, time series forecasting is an
established research field. State of the art solutions, among others, include recur-
rent neural networks, which have been shown to be very powerful for time series
forecasting.

On the other hand, recurrent neural networks are not easy to configure for
a given use case at hand. Configurations that work well for one setting can be
sub-optimal for another problem. To account for that problem, we propose an
approach which trains many recurrent neural networks with different parameter

© Springer International Publishing AG 2017
M. Bramer and M. Petridis (Eds.): SGAI-AI 2017, LNAI 10630, pp. 34-46, 2017.
https://doi.org/10.1007/978-3-319-71078-5_3

Ensembles of RNNs for Robust Time Series Forecasting 35

settings and combine their forecasts using ensemble methods. With that app-
roach, we can provide robust results and circumvent the problem of finding the
optimal parameters for a given dataset.

The rest of this paper is structured as follows. Section 2 gives an introduc-
tion to important concepts of time series analysis and ensemble learning that
are essential for the further sections. Section 2.2 introduces Long Short-Term
Memory, a central algorithm used in this work. We propose a concrete time
series ensemble architecture in Sect. 3 and validate its performance in the subse-
quent section, as well as discussing implications and limitations of the approach.
We show that the stacked LSTM forecasts beat, on average, the majority of the
base learners in terms of root mean squared error (RMSE). Finally, areas holding
potential for further improvement are outlined in Sect. 5.

2 Background and Related Work

Although a time series can formally be straightforwardly defined as “a set of
observations y;, each one being recorded at a specific time t” [21], it has a
number of important characteristics with implications for data sampling, model
training, and ensemble architecture.

2.1 Properties of Time Series Data

Time series forecasting is a special case of sequence modeling. This implicitly
means that the observed values correlate with their own past values. The degree
of similarity of a series with a lagged version of itself is called autocorrelation. As
a consequence, individual observations can not be considered independently of
each other, which demands the right sampling strategies when training prediction
models. Autocorrelation leads to a couple of special time series properties; first
and foremost, stationarity. A series Y is called stationary if its mean and variance
stay constant over time, i.e., the statistical properties don’t change [20]. Among
other algorithms, autoregressive (AR) models theoretically assume stationarity.

Two further important properties are seasonality and trend. Seasonality
means that there is some pattern in the series which repeats itself regularly.
For example, the sales of ice cream in a year are higher in the summer months
and decrease in the winter. Therefore, the seasonal period is fixed and known.
We speak of a trend if a general change of direction in the series can be observed,
for example if the average level of the series is steadily increasing over time. Iden-
tifying and extracting components like seasonality and trend is essential when
dealing with state space model algorithms.

2.2 State of the Art Forecasting Algorithms

Very diverse application possibilities have been ensuring high interest in time
series analysis and forecasting for decades. An extensive overview is given in [19].
One can arguably divide the majority of approaches to time series forecasting
into two categories: autoregressive models for sequences generated by a linear
process and artificial neural networks (ANNSs) for nonlinear series.

36 S. Krstanovic and H. Paulheim

Autoregressive Models

For time series that are generated by a linear process, autoregressive models
constitute a popular family of algorithms used for forecasting, in particular, the
Box-Jenkins autoregressive integrated moving average (ARIMA) model [18] and
its variants. It performs well especially if the assumption that the time series
under study is generated from a linear process is met [7], but it is generally not
able to capture nonlinear components of a series. The ARIMA model has several
subclasses such as the simple autoregressive (AR), the moving average (MA)
and the autoregressive moving average (ARMA). ARIMA generated forecasts
are composed of a linear combination of most recent series values and their past
random errors, cf. [18] for mathematical details.

Artificial Neural Networks: Long Short-Term Memory

Autoregressive models are usually not suited for nonlinear time series. In this
case, ANNs are the better alternative since they are capable of modeling non-
linear relationships in the series. In fact, ANNs can approximate any continuous
function arbitrarily well [4]. Recurrent neural networks (RNNs) are naturally
suited for sequence modeling; we can think of them as forward networks with
loops in them. [12] provides a detailed explanation of the various neural network
architectures and their applications.

Although traditional RNNs can theoretically handle dependencies of a
sequence even over a longer time interval, this is practically very challenging.
The reason for this is the problem of vanishing or exploding gradients [13]. When
training an RNN with hidden layers for a series with long-term dependencies,
the model parameters are learned with the backpropagation through time and
gradient descent algorithms. These gradient calculations imply extensive mul-
tiplications due to the chain rule, and this is where gradients tend to vanish
(i.e., approach a value of zero) or explode. LSTM [1] overcomes the problem of
unstable gradients. A coherent mathematical view on this is given in [15].

Hybrid Approaches

Since autoregressive models work well for linear series and ANNs suit nonlinear
cases, it holds potential to use the two in combination. There have been several
studies combining ARIMA and ANN models in a hybrid fashion [5,6,10,11]. In
these approaches, an ARIMA model is used to model the linear component of
the series, while an ANN captures the nonlinear patterns.

2.3 Approaches to Ensemble Learning

A comprehensive introduction to ensemble learning is given in [8]. Generally,
there are different ways to combine a number of estimates to a final one. One
popular approach known as bagging works by drawing N random samples (with
replacement) from a dataset of size N. This is repeated m times such that
m datasets, each of size N, are collected. A model is then trained on each of
these data sets and the results are averaged (in case of a nominal outcome, the
majority vote is taken). The goal here is to reduce variance. A highly popular

Ensembles of RNNs for Robust Time Series Forecasting 37

and effective algorithm that incorporates bagging ideas is called Random Forest
[16]. It extends bagging in the sense that also feature selection is randomized.

In the context of time series forecasting, bagging can not be applied in the
defined manner since the values of a sequence are autocorrelated. Hence, ran-
dom sampling of observations in order to train a forecasting model is not possi-
ble. Rather than that, it is necessary to develop reasonable sampling strategies
instead of drawing random bootstrap samples.

Boosting constitutes another approach to ensembling. The core idea is that
examples that were previously poorly estimated receive higher preference over
well estimated examples. The objective is to increase the predictive strength of
the model. Thinking of a reasonable sampling strategy in the context of sequence
learning is essential for boosting. [17] combines a number of RNNs using a boost-
ing approach for time series forecasting.

A more sophisticated ensemble approach is called stacking. In this case, a
number of models are learned on various subsets of the data and a meta learner
is then trained on the base models’ forecasts. A meta-learner can theoretically be
any model, e.g. Linear Regression or a Random Forest. The motivation is that
the meta-learner successfully learns the optimal weights for combining the base
learners, and, as a consequence, produces forecasts of higher quality compared to
the individual base learners. Therefore, stacking aims at both reducing variance
and increasing forecast quality.

3 An LSTM Ensemble Architecture

Finding optimal parameters of an RNN for a given dataset is generally a hard
task, also for non-sequential tasks. Additionally, there exist no best parameters
that are optimal for all data sets. As a consequence, an LSTM that was trained
on a particular data set is very likely to perform poorly on an entirely different
time series.

We overcome this problem by proposing an LSTM ensemble architecture. We
show that the combination of multiple LSTMs enables time series forecasts that
are more robust against variations of data compared to a single LSTM.

3.1 LSTM Base Learners and Diversity Generation

The models that are included in an ensemble are called base learners. In this
work, we choose a number of differently constructed LSTMs as base learners.
It is trivial to see that creating an ensemble of models is only reasonable if the
included models sufficiently differ from one other. Otherwise, a single model
would yield results of similar quality. In other words, the generated model fore-
cast estimates should all differ significantly from one another. In our approach,
diversity is introduced in two ways:

1. When designing the architecture of an LSTM, one crucial decision is the
length of the training sequences that are fed into the network. We train one

38 S. Krstanovic and H. Paulheim

LSTM for each user-specified length of the input sequences. Since the input
sequence length directly affects the complexity of the learning problem, we
change the sizes of the hidden layers accordingly. The applied rule is that the
number of nodes in the two hidden layers is equal to the sequence length,
respectively. For evaluation, we choose S = {50, 55,60,65,70} as sequence
lengths under consideration.

2. Generally, LSTM expressibility is sensitive to parameter selection and much
time-consuming tuning is required. We overcome this by training a number
of LSTMs with different values for four parameters: dropout rate, learning
rate, number of hidden layers, and number of nodes in the hidden layers. For
each of these parameters, a set A of selected values is evaluated. For each of
these parameters, we end up with |S| - |A] LSTMs as base learners.

In order to measure the diversity and quality of the base learner forecasts, we
compare the average pairwise Pearson correlation coefficients p as well as the
mean RMSE of the individual sequence forecasts.

Training LSTMs on Temporal Data

In order to train an LSTM model for a sequence forecasting problem, it is nec-
essary to split the training data into a number of sequences whose size depends
on the input sequence length as well as the forecasting horizon. Given [past
time steps that are used in order to forecast the next k values of the series, a
sequence Y must be split into sequences of length k + [. These sequences are in
turn split into two parts, where the first one represents the LSTM input sequence
and the second one the target variable. Formally, the original training data
Yirain = (Y1, Y2, ---» y7] of the standardized sequence Y = [y1,y2,...,yn], N > T
is firstly cut into

[yla e YL Y41, e yl+k]
(Y25 +os YL 15 Y25 oo Yit kot 1]
[y37 ey Y142, Y435 -1y yl+k+2]

[yT—l—]w e Yr—k—1,Y7—k; "'7yT]

Finally, these sequences are split into LSTM input sequences (left) and LSTM
target sequences (right):

[yla "'ayl] [yl-‘rla ""yl"rk]
[y27"'7yl+1] [yl-‘r?a"'ayl—i-k-i-l]

(Y35 s Yi42) W43, s Yirht2]

[nylfkw“vnykfl] [yT—kw-wyT]

The training data is now in a suitable shape for training an LSTM. The same
procedure is applied to the holdout data in order to compute the models’ forecast
estimates.

Ensembles of RNNs for Robust Time Series Forecasting 39

3.2 Meta-Learning with Autocorrelation

After the individual LSTMs are trained, the key question is how to combine
their individual forecast estimates. We use two approaches to combining;:

1. Mean forecast: For each step in the forecasting horizon, take the mean of the
base learners’ forecasts for each future point.

2. Stacking: First, 70% of the holdout data Y},o1g40us is used to generate the base
learners’ forecasts. In order to achieve this, the data is prepared as explained
in Sect. 3.1. Since the true values of the forecasts are available, the forecasts
(i.e., features of the meta-learners) are interpreted as the explanatory vari-
ables of the meta-learner and the true values are the target variable. We apply
(1) Ridge Regression, (2) the Random Forest algorithm and (3) the xgboost
algorithm as meta-learners, such that both linear relationships as well as non-
linear ones can be modeled.

Ridge Regression can be interpreted as linear least squares with L2 reg-
ularization of the coefficients. It is particularly effective if the number of
predictors is high and if multicollinearity between the features is high. It is,
however, a linear model, therefore suited for the case where the relationship
between input features and target is linear.

Random Forest constructs an ensemble of m decision trees, where each tree
is trained on a bootstrap sample of the original training data. In addition to
this, different random subsets of features are considered at each tree split.
The trees usually remain unpruned such that they have high variance. Ulti-
mately, individual tree predictions are averaged to a final estimate. This way,
random forests can model non-linear relationships.

Extreme Gradient Tree Boosting (xgboost) combines trees in a boost-
ing manner and currently provides state of the art performance amongst
several prediction challenges.

Independent of the combiner, all approaches are evaluated on the exact same
data, i.e., the latter 30% of Y}o1d0ut, in order to ensure result comparability.

3.3 Constructing the Ensemble

Concisely, the combined forecasts estimates for a univariate, continuous series
Y ={y1,v2,...,yn} are generated as follows:

1. Split Y into Yirain (85%) and Yhordour (15%).
2. Standardize training and test data:

M=

_ Yhotdout —Ytrain

_ Yirain—Utrain ~ _ 1
thrain = = Sdtrai:z) Yholdout - Sdirain) where Ytrain = T Yi and
i=1
T
Sirain = % > (Yyi — Utrain)?- This step is essential when training neural
i=1

networks due to gradient descent. ¥irqin and Sdiqin are used to standardize
both Yirain and Yioidout SinNCe Ynoidouwt and Sdpoidout are unknown in a real-
word scenario.

40 S. Krstanovic and H. Paulheim

3. Split the standardized holdout data Yieidout int0 Yinetatrain (first 70% of
Yhotdout) and Yiest (last 30% of Yioidout) data. Yietatrain is used to generate
the training data for the meta-learners, and Y;.s; is unseen data that will be
used for the final model evaluations.

4. Train |S|-|A| LSTMs on the training data Y;.qi, with given ensemble parame-
ters S = {seqleny, seqlens, ...} and A = {41, 09, ...} as elaborated in Sect. 3.1.

5. Compute the individual LSTM forecasts on all sequences of the Y, ciatrain
holdout data.

6. Train the meta-learners (Ridge Regression and Random Forest), where the
individual LSTM forecasts serve as input features. The target variable is given
by the actual values of the sequence forecasts.

7. Determine the sequence forecasts on the Y;.s; holdout data. Do this for the
individual LSTMs as well as the stacking models. Further, calculate a mean
forecast which, for each forecasted future point, takes the average of the
LSTMs’ individual forecasts for that point.

8. Transform all forecasts back to the original scale, i.e. FC = FC' - sdipqin +
Ytrain Tor each forecast vector F'C.

Since the LSTMs in step 4 are independent of each other, they can be trained
in parallel.

4 Experimental Analysis

We test the performance of the approach by applying it to four datasets of dif-
ferent size, shape and origin. The experimental analysis shows that the ensemble
of LSTMs gives robust results across different data sets. Even more impressive
is that stacking outperforms all other models, both base LSTM learners and
baselines, in any considered case.

4.1 Setup

Figure 1 depicts the four datasets in their original shape, Table 1 describes their
basic properties.

The algorithm specified in Sect. 3.3 is applied to each of the datasets. The
following forecasting approaches are evaluated and compared:

— LSTM base models

— LSTM ensemble variants: mean forecast, stacking forecast via Ridge Regres-
sion (RR), Random Forest (RF) and xgboost (XGB)

— Simple moving average, predicting a constant value which is the mean of the
input sequence

— Simple exponential smoothing. Here, the i-th forecasted value is given by

Yiri = oy Fa(l —)y + ol —a)y_o + ... +a(l —a)Py_g (1)

- ARIMA

Ensembles of RNNs for Robust Time Series Forecasting 41

Internet Traffic (Hourly) Number of Births (Daily)

9000

w
&
3

8000

7000

w
8
3

6000

)

its (Mio,

5000

No. Births
N
b
3

@ 4000

N
3
3

3000

2000

-
&
3

1000

0 2000 4000 6000 8000 10000 12000 14000 [1000 2000 3000 4000 5000
Timestep Timestep
(a) Internet Traffic of a European ISP (b) Daily Births in Quebec
Maximum Temp. in Melbourne
5 Number of Sunspots
40 250
35
200
30
£ 150

Sunspots

o
3
3

ol
3

o

0 500 1000 1500 2000 2500 3000 3500
Timestep 0 500 1000 1500 2000 2500
Timestep

1(\?6 fg(i;lium Temperature in (d) Number of Sunspots

Fig. 1. Four time series in scope for the experimental analysis

— xgboost. Out-of-the-box xgboost is not capable of sequence forecasting. In
order to account for this, we generate an additional variable which encodes
forecasting step 1,2,...,50 of each example. Therewith, the feature matrix
X and target variable y for the xgboost algorithm are

Yi—19(51) Ye—as(s1) ... ye(s1) 1 Yeg1(s1)
Yi—a9(51) yi—ag(s1) ... ye(s1) 2 Yera(s1)
yt—4f;(31) yt—4.8(51> yt(.sl) 5.0 yt+5;J(81)
Yi—ao(s2) ys—ag(s2) .. ye(s2) 1 Yer1(s2)
Yi—a9(52) Yr—as(s2) ... y(s2) 2 Yrr2(52)

X = : : : : L y= : (2)
Yi—19(52) Ye—as(s2) ... y¢(s2) 50 Yi+50(s2)
yt749'(3N) yt748.(3N) cy(sw) 1 yt+1k3N)
Yt—19(SN) Yt—as(sn) ... ye(sn) 2 Yi+2(sN)

Yr—a9(SN) Yt—as(sn) ... y¢(sn) 50 Ye4+50(SN)

42 S. Krstanovic and H. Paulheim

Table 1. Data description, number of examples N, mean p, and standard deviation o

Data N n o
Births in Quebec [26] 5,113|250.8 | 41.9
Internet Traffic (Mio. bits) [25] 14,772 13,811 | 2,161
Maximum Temperature in Melbourne® | 3,650 | 20.0 | 6.1
Number of Sunspots® 2,820 | 51.3 |43.4

*http://datamarket.com, accessed July 7 2017.

where y;(s;) is the i-th value of input sequence s; for ¢ < t. In case of i > ¢,
y; should be interpreted as the i-th actual value of the respective sequence
forecast.

For training and forecasting with LSTMs, the keras implementation [27] is used.
xgboost is applied for extreme gradient boosting. A functional implementation
of the entire experimental setup is available on GitHub®.

4.2 Results

All trained models are evaluated on the same test set and performance is mea-
sured in terms of RMSE. The chosen forecasting horizon is 50, i.e., the models are
trained and tested to estimate the next 50 values of given input sequences. The
average performance across all test sequences in the respective test set is shown
in Tables 2 and 3. The first column indicates the diversity-generating parameter.
For our experiments, we evaluate dropout values {0.1,0.2,0.3,0.4,0.5}, a num-
ber of hidden layers in {2,3,4,5}, the number of nodes in the input and hidden
layers varies between the length of the input sequence, half of the length, and
quarter of the length. Learning rate is set to values {0.01,0.001, 0.0001, 0.00001}.

As default values, we choose RMSProp [23] as optimizer, the learning rate
is set to 0.001, the loss function is the mean squared error (MSE), batch size is
32 and training is performed over 15 epochs per LSTM. One LSTM input layer
and two LSTM hidden layers are used, whose number of nodes is equal to the
current sequence input length. Further, a dropout [22] of 0.3 is added to the
LSTM layers in order to prevent model overfitting.

The second column represents the metric under consideration. We compare
the model performance is terms of RMSE. Results are transformed back to their
original scale prior to computing the RMSE for better interpretability. The cases
where an ensemble beats all other tested models are marked in bold and the
best performing combiner algorithm is stated in parentheses (RF: Random For-
est, RR: Ridge Regression, XGB: xgboost). Additionally, we provide the aver-
age pairwise Pearson correlation p between the forecasts of the base LSTMs.
The more the model forecasts differ from one another, the higher the potential
improvement gained by an ensemble. The key observations are:

! https://github.com /saschakrs/TSensemble, accessed July 7 2017.

http://datamarket.com
https://github.com/saschakrs/TSensemble

Ensembles of RNNs for Robust Time Series Forecasting 43

Table 2. Result summary for “Births” and “Traffic” datasets
Varied parameter | Performance measure Dataset
Births Traffic
- Simple mean RMSE 42.19 1380.53
- Exp. smoothing RMSE 49.36 1389.90
- ARIMA RMSE 38.13 1224.83
- xgboost RMSE 40.55 1033.65
Dropout p between base LSTM 0.94 0.91
forecasts
Dropout Avg. base LSTM RMSE 27.76 991.41
Dropout Best base LSTM RMSE 25.23 826.42
Dropout Best ensemble RMSE 25.45 (XGB) |652.42 (RF)
#Hidden L p between base LSTM 0.95 0.91
forecasts
#Hidden L Avg. base LSTM RMSE 27.77 726.20
#Hidden L Best base LSTM RMSE 25.31 811.35
#Hidden L Best ensemble RMSE 25.62 (XGB) |656.97 (RF)
#Nodes p between base LSTM 0.95 0.91
forecasts
#Nodes Avg. base LSTM RMSE 28.55 944.92
#Nodes Best base LSTM RMSE 25.65 826.42
#Nodes Best ensemble RMSE 25.57 (XGB) | 630.85 (RF)
Learning rate p between base LSTM 0.56 0.80
forecasts
Learning rate Avg. base LSTM RMSE 42.85 1578.64
Learning rate Best base LSTM RMSE 25.65 826.41
Learning rate Best ensemble RMSE 25.37 (RR) |667.26 (RF)

In 81% of all cases, an LSTM stacking model outperforms all other
approaches. In the other cases, there is only one LSTM model (respectively)
that slightly outperforms the stacked LSTMs.

Although the ensemble architecture is identical for all data sets, there is no
single best meta-learner for all data sets.

Model diversity is essential: p is correlated to the best ensemble RMSE by
more than 70%, i.e., a low p between forecasts tends to increase ensemble per-
formance. This becomes visible especially in the context of the Sunspots data,
where the stacked LSTMs outperform their base learners by more than 50%
RMSE. Hence, combining many comparably weak LSTM predictors results
in a greater performance win than the combination of a few good learners.

44

S. Krstanovic and H. Paulheim

Table 3. Result summary for “Melbourne” and “Sunspots” datasets

Varied parameter | Performance measure Dataset

Melbourne | Sunspots
- Simple mean RMSE 7.44 74.88
- Exp. smoothing RMSE 7.47 47.88
- ARIMA RMSE 7.41 54.50
- xgboost RMSE 5.90 47.09
Dropout p between base LSTM forecasts | 0.76 0.40
Dropout Avg. base LSTM RMSE 6.94 79.39
Dropout Best base LSTM RMSE 6.51 70.82
Dropout Best ensemble RMSE 6.10 (RR) | 33.74 (RR)
#Hidden L p between base LSTM forecasts | 0.69 0.39
#Hidden L Avg. base LSTM RMSE 6.90 79.90
#Hidden L Best base LSTM RMSE 6.70 67.53
#Hidden L Best ensemble RMSE 6.11 (RR) | 31.69 (XGB)
#Nodes p between base LSTM forecasts | 0.75 0.51
#Nodes Avg. base LSTM RMSE 7.01 81.58
#Nodes Best base LSTM RMSE 6.69 67.53
#Nodes Best ensemble RMSE 6.13 (RR) | 32.91 (RR)
Learning rate p between base LSTM forecasts | 0.59 0.59
Learning rate Avg. base LSTM RMSE 7.36 85.42
Learning rate Best base LSTM RMSE 5.91 67.53
Learning rate Best ensemble RMSE 597 (RR) |31.35 (XGB)

For all ensembles, it holds that its forecasts are significantly different from all

baseline estimates. This result is based on the paired t-test for significance.

Out of the four investigated LSTM parameters, varying the learning rate
leads to greatest diversity generation. The reason for this is that the learning
rate has a strong effect on the local minimum that is reached. Varying the
values for dropout, hidden layers and nodes tends to generate forecasts with

higher correlation and less diversity.

5 Future Work and Conclusion

The experiments suggest that the LSTM ensemble forecast is indeed a robust
estimator for multi-step ahead time series forecasts. Although there exist single
models that perform better in terms of RMSE, the proposed ensemble approach

small, this shows that the results are still significant.

2 Note that even if for smaller datasets, like the Sunspot dataset, the test set is fairly

Ensembles of RNNs for Robust Time Series Forecasting 45

enables users to achieve solid forecasts without the need to focus on heavy para-
meter optimization. An interesting observation is that the outstanding perfor-
mance of the ensemble forecast is valid across multiple datasets from entirely dif-
ferent domains. There remains, however, significant potential to further improve
some aspects of the algorithm, especially with regard to the fundamental design
of the ensemble.

The proposed LSTM ensemble architecture opens the door to lots of further
potential. First and foremost, the meta-learner of the stacking model could be
improved in two ways. One is to generate more features describing the dynamics
of the series, especially that part immediately preceding the forecasting horizon.
Additionally, the meta-learners’ parameters could be tuned more heavily, or it
could be replaced by an entirely different meta-learning algorithm.

Another area of improvement lies in the design of the ensemble itself. The
selection of values for sequence lengths S and LSTM parameters A could further
influence the final result, especially if some domain specific knowledge regarding
the series is available.

Lastly, configuring the individual LSTMs may increase the general quality
of the base learners. This can be achieved by tuning the LSTM parameters.
It must be ensured, however, that the diversity between these models remains
sufficiently large.

References

1. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735-1780 (1997)

2. Tsukamoto, K., Mitsuishi, Y., and Sassano, M.: Learning with multiple stacking
for named entity recognition. In: Proceedings of the 6th Conference on Natural
Language Learning, vol. 20, pp. 1-4. Association for Computational Linguistics
(2002)

3. Lai, K.K., Yu, L., Wang, S., Wei, H.: A novel nonlinear neural network ensem-
ble model for financial time series forecasting. In: Alexandrov, V.N., van Albada,
G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 790-793.
Springer, Heidelberg (2006). https://doi.org/10.1007/11758501_106

4. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5), 359-366 (1989). Elsevier, Amsterdam

5. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network
model. Neurocomputing 50, 159-175 (2003). Elsevier, Amsterdam

6. Adhikari, R., Agrawal, R.K.: A linear hybrid methodology for improving accuracy
of time series forecasting. Neural Comput. Appl. 25(2), 269-281 (2014). Springer,
London, UK

7. Adhikari, R.: A neural network based linear ensemble framework for time series
forecasting. Neurocomputing 157, 231-242 (2015). Elsevier, Amsterdam

8. Armstrong, J.S.: Combining forecasts. In: Armstrong, J.S. (ed.) Principles of Fore-
casting. ISOR, pp. 417-439. Springer, Boston (2001). https://doi.org/10.1007/
978-0-306-47630-3_19

9. Babu, C.N., Reddy, B.E.: A moving-average filter based hybrid ARIMA-ANN
model for forecasting time series data. Appl. Soft Comput. 23, 27-38 (2014). Else-
vier, Amsterdam

https://doi.org/10.1007/11758501_106
https://doi.org/10.1007/978-0-306-47630-3_19
https://doi.org/10.1007/978-0-306-47630-3_19

46

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

S. Krstanovic and H. Paulheim

Wang, L., Zou, H., Su, J., Li, L., Chaudhry, S.: An ARIMA-ANN hybrid model
for time series forecasting. Syst. Res. Behav. Sci. 30(3), 244-259 (2013)

Aladag, C.H., Egrioglu, E., Kadilar, C.: Forecasting nonlinear time series with a
hybrid methodology. Appl. Math. Lett. 22(9), 1467-1470 (2009)

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Netw. 5(2), 157-166 (1994)

Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for
anomaly detection in time series. In: Proceedings of the 23rd European Symposium
on Artificial Neural Networks. Computational Intelligence and Machine Learning,
pp. 89-94. Presses universitaires de Louvain (2015)

Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: Proceedings of the 30th International Conference on Machine Learn-
ing, ICML 2013, vol. 28, pp. 13101318 (2013)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

Assaad, M., Boné, R., Cardot, H.: A new boosting algorithm for improved time-
series forecasting with recurrent neural networks. Inf. Fusion 9(1), 41-55 (2008)
Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods, vol. 38.
Oxford University Press, Oxford (2012)

Hamilton, J.D.: Time Series Analysis, vol. 2. Princeton University Press, Princeton
(1994)

Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications: with R
Examples. Springer Science & Business Media, Heidelberg (2010)

Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd
edn. Springer, New York (2010)

Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929-1958 (2014)

Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2),
26-31 (2012)

Lichman, M.: UCI Machine Learning Repository. University of California, School
of Information and Computer Science, Irvine, CA (2013). http://archive.ics.uci.
edu/ml

Cortez, P., Rio, M., Rocha, M., Sousa, P.: Multi-scale Internet traffic forecasting
using neural networks and time series methods. Expert Syst. 29(2), 143-155 (2012)
Hipel, K.W., McLeod, A.L.: Time Series Modelling of Water Resources and Envi-
ronmental Systems, vol. 45. Elsevier, Amsterdam (1994)

Chollet, F.: Keras (2015). https://github.com/fchollet /keras

http://www.deeplearningbook.org
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://github.com/fchollet/keras

	Ensembles of Recurrent Neural Networks for Robust Time Series Forecasting
	1 Introduction
	2 Background and Related Work
	2.1 Properties of Time Series Data
	2.2 State of the Art Forecasting Algorithms
	2.3 Approaches to Ensemble Learning

	3 An LSTM Ensemble Architecture
	3.1 LSTM Base Learners and Diversity Generation
	3.2 Meta-Learning with Autocorrelation
	3.3 Constructing the Ensemble

	4 Experimental Analysis
	4.1 Setup
	4.2 Results

	5 Future Work and Conclusion
	References

