
Carlos Martín-Vide
Roman Neruda
Miguel A. Vega-Rodríguez (Eds.)

 123

LN
CS

 1
06

87

6th International Conference, TPNC 2017
Prague, Czech Republic, December 18–20, 2017
Proceedings

Theory and Practice
of Natural Computing

Lecture Notes in Computer Science 10687

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Carlos Martín-Vide • Roman Neruda
Miguel A. Vega-Rodríguez (Eds.)

Theory and Practice
of Natural Computing
6th International Conference, TPNC 2017
Prague, Czech Republic, December 18–20, 2017
Proceedings

123

Editors
Carlos Martín-Vide
Rovira i Virgili University
Tarragona
Spain

Roman Neruda
Academy of Sciences of the Czech Republic
Prague
Czech Republic

Miguel A. Vega-Rodríguez
University of Extremadura
Cáceres
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-71068-6 ISBN 978-3-319-71069-3 (eBook)
https://doi.org/10.1007/978-3-319-71069-3

Library of Congress Control Number: 2017959616

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-1670-6000
http://orcid.org/0000-0003-2364-5357
http://orcid.org/0000-0002-3003-758X

Preface

These proceedings contain the papers that were presented at the 6th International
Conference on the Theory and Practice of Natural Computing (TPNC 2017), held in
Prague, Czech Republic, during December 18–20, 2017.

The scope of TPNC is rather broad, including:

– Theoretical contributions to: amorphous computing, ant colonies, artificial chem-
istry, artificial immune systems, artificial life, bacterial foraging, cellular automata,
chaos computing, collision-based computing, complex adaptive systems, computing
with DNA, computing with words and perceptions, developmental systems, evo-
lutionary computing, fractal geometry, fuzzy logic, gene assembly in ciliates,
granular computing, intelligent systems, in vivo computing, membrane computing,
nanocomputing, neural computing, optical computing, physarum machines, quan-
tum computing, quantum information, reaction-diffusion systems, rough sets,
self-organizing systems, swarm intelligence, synthetic biology

– Applications of natural computing to: algorithmics, bioinformatics, control, cryp-
tography, design, economics, graphics, hardware, human–computer interaction,
knowledge discovery, learning, logistics, medicine, natural language processing,
optimization, pattern recognition, planning and scheduling, programming, robotics,
telecommunications, Web intelligence

TPNC 2017 received 39 submissions. Papers were reviewed by three Program
Committee members. There were also a few external reviewers consulted. After a
thorough and vivid discussion phase, the committee decided to accept 23 papers (which
represents an acceptance rate of about 59%). The conference program included three
invited talks and some poster presentations of work-in-progress as well.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and handle the preparation
of these proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their cooperation, and Springer for
its very professional publishing work.

October 2017 Carlos Martín-Vide
Roman Neruda

Miguel A. Vega-Rodríguez

Organization

TPNC 2017 was organized by the Institute of Computer Science, Czech Academy of
Sciences, Prague, Czech Republic, the Faculty of Mathematics and Physics, Charles
University, Prague, Czech Republic, and the Research Group on Mathematical
Linguistics — GRLMC, Rovira i Virgili University, Tarragona, Spain.

Program Committee

Ajith Abraham Machine Intelligence Research Labs, USA
Uwe Aickelin University of Nottingham, UK
Robert Babuska Delft University of Technology, The Netherlands
Thomas Bäck Leiden University, The Netherlands
Gilles Brassard University of Montréal, Canada
Erik Cambria Nanyang Technological University, Singapore
Carlos Coello Coello CINVESTAV-IPN, Mexico
David W. Corne Heriot-Watt University, UK
Dipankar Dasgupta University of Memphis, USA
Kalyanmoy Deb Michigan State University, USA
Marco Dorigo Université Libre de Bruxelles, Belgium
Andries Engelbrecht University of Pretoria, South Africa
Michel Gendreau Polytechnique Montréal, Canada
Deborah M. Gordon Stanford University, USA
Lawrence Hall University of South Florida, USA
Enrique Herrera-Viedma University of Granada, Spain
Licheng Jiao Xidian University, China
Janusz Kacprzyk Polish Academy of Sciences, Poland
Hamid Reza Karimi Polytechnic University of Milan, Italy
Joshua Knowles University of Birmingham, UK
Andrew Kusiak University of Iowa, USA
Vittorio Maniezzo University of Bologna, Italy
Carlos Martín-Vide Rovira i Virgili University, Spain (Chair)
Luis Martínez López University of Jaén, Spain
José M. Merigó Lindahl University of Chile, Chile
Radko Mesiar Slovak University of Technology, Slovakia
Risto Miikkulainen University of Texas, Austin, USA
Christos Ouzounis Centre for Research and Technology Hellas, Greece
Henri Prade Paul Sabatier University, France
Patrick Siarry University of Paris-Est, France
Andrzej Skowron University of Warsaw, Poland
John A. Smolin IBM Thomas J. Watson Research Center, USA
Thomas Stützle Université Libre de Bruxelles, Belgium

Ponnuthurai N. Suganthan Nanyang Technological University, Singapore
Johan Suykens KU Leuven, Belgium
Guy Theraulaz Paul Sabatier University, France
Jon Timmis University of York, UK
Xin-She Yang Middlesex University, UK
Yiyu Yao University of Regina, Canada
Lotfi A. Zadeh University of California, Berkeley, USA
Anton Zeilinger University of Vienna, Austria

Additional Reviewers

Rahul Paul
Thuy Pham Xuan
Jianbin Qiu
Josep M. Rossell

Dong Wang
Yanling Wei
Anton Zeilinger

Organizing Committee

Carlos Martín-Vide, Tarragona (Co-chair)
Roman Neruda, Prague (Co-chair)
Manuel J. Parra Royón, Granada
Martin Pilat, Prague
David Silva, London
Miguel A. Vega-Rodríguez, Cáceres

VIII Organization

Contents

Invited Talk

Recent Results and Open Problems in Evolutionary
Multiobjective Optimization . 3

Carlos A. Coello Coello

Applications of Natural Computing

A Formal Framework for Composing Qualitative Models
of Biological Systems . 25

Hanadi Alkhudhayr and Jason Steggles

A Statistical Approach to the Identification of Diploid Cellular Automata . . . 37
Witold Bołt, Aleksander Bołt, Barbara Wolnik, Jan M. Baetens,
and Bernard De Baets

Modelling Curvature Effects Using L-Systems: From Discrete
and Deterministic to Continuous and Stochastic . 49

Julia Pulwicki and Christophe Godin

Evolutionary Computation

Exploring Target Change Related Fitness Reduction
in the Moving Point Dynamic Environment . 63

David Fagan and Michael O’Neill

A Smart Discovery Service in Internet of Things
Using Swarm Intelligence . 75

Agostino Forestiero

GPU-Accelerated Evolutionary Induction of Regression Trees 87
Krzysztof Jurczuk, Marcin Czajkowski, and Marek Kretowski

Bezier Curve Parameterization Methods for Solving Optimal Control
Problems of SIR Model . 100

Tibor Kmet and Maria Kmetova

Fuzzy Logic

Learning Interval-Valued Fuzzy Cognitive Maps with PSO Algorithm
for Abnormal Stock Return Prediction . 113

Petr Hajek and Ondrej Prochazka

http://dx.doi.org/10.1007/978-3-319-71069-3_1
http://dx.doi.org/10.1007/978-3-319-71069-3_1
http://dx.doi.org/10.1007/978-3-319-71069-3_2
http://dx.doi.org/10.1007/978-3-319-71069-3_2
http://dx.doi.org/10.1007/978-3-319-71069-3_3
http://dx.doi.org/10.1007/978-3-319-71069-3_4
http://dx.doi.org/10.1007/978-3-319-71069-3_4
http://dx.doi.org/10.1007/978-3-319-71069-3_5
http://dx.doi.org/10.1007/978-3-319-71069-3_5
http://dx.doi.org/10.1007/978-3-319-71069-3_6
http://dx.doi.org/10.1007/978-3-319-71069-3_6
http://dx.doi.org/10.1007/978-3-319-71069-3_7
http://dx.doi.org/10.1007/978-3-319-71069-3_8
http://dx.doi.org/10.1007/978-3-319-71069-3_8
http://dx.doi.org/10.1007/978-3-319-71069-3_9
http://dx.doi.org/10.1007/978-3-319-71069-3_9

Fuzzy Linguistic Labels in Multi-expert Decision Making 126
Alicja Mieszkowicz-Rolka and Leszek Rolka

An Evolutionary Algorithm Based on Graph Theory Metrics for Fuzzy
Cognitive Maps Learning . 137

Katarzyna Poczeta, Łukasz Kubuś, and Alexander Yastrebov

Fuzzy Petri Nets with Linear Orders for Intervals . 150
Zbigniew Suraj and Piotr Grochowalski

Molecular Computation

Networks of Polarized Splicing Processors . 165
Henning Bordihn, Victor Mitrana, Andrei Păun,
and Mihaela Păun

Robust Combinatorial Circuits in Chemical Reaction Networks. 178
Samuel J. Ellis, Titus H. Klinge, and James I. Lathrop

Watson-Crick Partial Words . 190
Manasi S. Kulkarni, Kalpana Mahalingam, and Ananda Chandra Nayak

Topological Classification of RNA Structures via Intersection Graph 203
Michela Quadrini, Rosario Culmone, and Emanuela Merelli

Neural Networks

Splicing-Inspired Recognition and Composition of Musical Collectives
Styles . 219

Roberto De Prisco, Delfina Malandrino, Gianluca Zaccagnino,
Rocco Zaccagnino, and Rosalba Zizza

Regularized Stacked Auto-Encoder Based Pre-training
for Generalization of Multi-layer Perceptron . 232

Prasenjit Dey, Abhijit Ghosh, and Tandra Pal

Historical Markings in Neuroevolution of Augmenting Topologies
Revisited . 243

Lukas Pastorek and Michael O’Neill

Long-Short Term Memory Network for RNA Structure Profiling
Super-Resolution. 255

Pak-Kan Wong, Man-Leung Wong, and Kwong-Sak Leung

X Contents

http://dx.doi.org/10.1007/978-3-319-71069-3_10
http://dx.doi.org/10.1007/978-3-319-71069-3_11
http://dx.doi.org/10.1007/978-3-319-71069-3_11
http://dx.doi.org/10.1007/978-3-319-71069-3_12
http://dx.doi.org/10.1007/978-3-319-71069-3_13
http://dx.doi.org/10.1007/978-3-319-71069-3_14
http://dx.doi.org/10.1007/978-3-319-71069-3_15
http://dx.doi.org/10.1007/978-3-319-71069-3_16
http://dx.doi.org/10.1007/978-3-319-71069-3_17
http://dx.doi.org/10.1007/978-3-319-71069-3_17
http://dx.doi.org/10.1007/978-3-319-71069-3_18
http://dx.doi.org/10.1007/978-3-319-71069-3_18
http://dx.doi.org/10.1007/978-3-319-71069-3_19
http://dx.doi.org/10.1007/978-3-319-71069-3_19
http://dx.doi.org/10.1007/978-3-319-71069-3_20
http://dx.doi.org/10.1007/978-3-319-71069-3_20

Quantum Computing

Hamming Distance Kernelisation via Topological Quantum Computation. . . . 269
Alessandra Di Pierro, Riccardo Mengoni, Rajagopal Nagarajan,
and David Windridge

Typing Quantum Superpositions and Measurement 281
Alejandro Díaz-Caro and Gilles Dowek

Heat-Bath Algorithmic Cooling with Correlated-Qubits Relaxation 294
Raymond Laflamme, Tal Mor, Nayeli A. Rodríguez-Briones,
and Yossi Weinstein

Time-Space Complexity Advantages for Quantum Computing 305
Shenggen Zheng, Daowen Qiu, and Jozef Gruska

Author Index . 319

Contents XI

http://dx.doi.org/10.1007/978-3-319-71069-3_21
http://dx.doi.org/10.1007/978-3-319-71069-3_22
http://dx.doi.org/10.1007/978-3-319-71069-3_23
http://dx.doi.org/10.1007/978-3-319-71069-3_24

Invited Talk

Recent Results and Open Problems
in Evolutionary Multiobjective Optimization

Carlos A. Coello Coello(B)

Evolutionary Computation Group, Departamento de Computación, CINVESTAV,
Av. IPN No. 2508, Col. San Pedro Zacatenco, Mexico D.F. 07360, Mexico

ccoello@cs.cinvestav.mx

Abstract. Evolutionary algorithms (as well as a number of other meta-
heuristics) have become a popular choice for solving problems having two
or more (often conflicting) objectives (the so-called multi-objective opti-
mization problems). This area, known as EMOO (Evolutionary Multi-
Objective Optimization) has had an important growth in the last 20
years, and several people (particularly newcomers) get the impression
that it is now very difficult to make contributions of sufficient value to
justify, for example, a PhD thesis. However, a lot of interesting research is
still under way. In this paper, we will briefly review some of the research
topics on evolutionary multi-objective optimization that are currently
attracting a lot of interest (e.g., indicator-based selection, many-objective
optimization and use of surrogates) and which represent good opportu-
nities for doing research. Some of the challenges currently faced by this
discipline will also be delineated.

Keywords: Evolutionary computing · Optimization

1 Introduction

The solution of problems having two or more (normally conflicting) objectives
has attracted a considerable attention in the last few years. The solution of
these so-called multi-objective optimization problems (MOPs) gives rise to a set
of solutions representing the best possible trade-offs among the objectives. Such
solutions, defined in decision variable space constitute the so-called Pareto opti-
mal set, and their corresponding objective function values form the so-called
Pareto front.

Although a number of mathematical programming techniques have been
developed since the 1970s to solve MOPs [81], such techniques present several
limitations, from which two of the most relevant are that these algorithms are
normally very susceptible to the shape or continuity of the Pareto front and
that they tend to generate a single element of the Pareto optimal set per run.
Additionally, in some real-world MOPs, the objective functions are not provided
in algebraic form, but are the output of a black box software (which, for exam-
ple, runs a simulation to obtain an objective function value), thus limiting the
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 3–21, 2017.
https://doi.org/10.1007/978-3-319-71069-3_1

4 C. A. Coello Coello

applicability of mathematical programming techniques. Such limitations have
motivated the development of alternative approaches from which metaheuris-
tics1 have been, with no doubt, the most popular and effective choice available
so far (see for example [24]).

From the many metaheuristics in current use, Evolutionary Algorithms (EAs)
are, clearly, the most popular in today’s specialized literature. EAs are inspired
on the “survival of the fittest” principle from Darwin’s evolutionary theory [43],
and simulate the evolutionary process in a computer, as a way to solve problems.
EAs have become very popular as multi-objective optimizers because of their
ease of use (and implementation) and generality (e.g., they are less sensitive
than mathematical programming techniques to the initial points used for the
search and to the specific features of a MOP). EAs have also an additional
advantage: since they are population-based techniques, it is possible for them to
manage a set of solutions at a time, instead of only one, as normally done by
traditional mathematical programming techniques. This allows EAs to generate
several elements from the Pareto optimal set in a single run.

The first Multi-Objective Evolutionary Algorithm (MOEA) was proposed in
the mid-1980s by David Schaffer [103]. However, it was until the mid-1990s that
MOEAs started to attract serious attention from researchers. Nowadays, it is
possible to find applications of MOEAs in practically all domains.2

The remainder of this paper is organized as follows. In Sect. 2, we provide
some basic multi-objective optimization concepts required to make this paper
self-contained. Section 3 briefly describes some relevant research topics that are
worth currently being explored by EMOO researchers. In Sect. 4, we present
other challenges in the field that have been only scarcely explored. Finally, the
main conclusions of this paper are provided in Sect. 5.

2 Basic Concepts

We are interested in solving problems of the type3:

minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)

subject to:
gi(x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

1 A metaheuristic is a high level strategy for exploring search spaces by using dif-
ferent methods [14]. Metaheuristics have both a diversification (i.e., exploration of
the search space) and an intensification (i.e., exploitation of the accumulated search
experience) procedure.

2 The author maintains the EMOO repository, which currently contains over 10,850
bibliographic references related to evolutionary multi-objective optimization. The
EMOO repository is located at: https://emoo.cs.cinvestav.mx.

3 Without loss of generality, we will assume only minimization problems.

https://emoo.cs.cinvestav.mx

Recent Results and Open Problems in EMOO 5

where x = [x1, x2, . . . , xn]T is the vector of decision variables, fi : Rn → R, i =
1, ..., k are the objective functions and gi, hj : Rn → R, i = 1, ...,m, j = 1, ..., p
are the constraint functions of the problem.

To describe the concept of optimality in which we are interested, we will
introduce next a few definitions.

Definition 1. Given two vectors x,y ∈ Rk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x �= y.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ Rn is non-
dominated with respect to X , if there does not exist another x′ ∈ X such that
f(x′) ≺ f(x).

Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ Rn (F is
the feasible region) is Pareto-optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ F|x is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ Rk|x ∈ P∗}

We thus wish to determine the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (2) and (3). Note however that in practice,
not all the Pareto optimal set is normally desirable (e.g., it may not be desirable
to have different solutions that map to the same values in objective function
space) or achievable.

3 Some Open Research Topics that Are Worth Exploring

In spite of the significant development that MOEAs have experienced since their
inception, there are still some research topics that are worth exploring in the next
few years. From them, we will discuss three in this paper:

1. Algorithmic design
2. Scalability
3. Dealing with expensive objective functions

Next, we briefly discuss some of the most representative research that has
been conducted on these topics.

6 C. A. Coello Coello

3.1 Algorithmic Design

In the early days of MOEAs, the approaches that were adopted were very sim-
ple and naive. For example, it was relatively common to use linear aggregating
functions that combined all the objective functions into a single scalar value [48].
However, by the mid-1990s, several MOEAs started to adopt mechanisms such
as Pareto ranking [43] and nondominated sorting [109]. In these mechanisms, the
idea is to rank solutions based on Pareto optimality, such that nondominated
individuals obtain the highest (best) possible rank. Since diversity is an impor-
tant issue in MOEAs, in order to avoid convergence to a single solution, an addi-
tional mechanism was integrated to them: the so-called density estimator. Since
the mid-1990s, a number of density estimators have been adopted, including:
fitness sharing [44], clustering [129], adaptive grids [67], crowding [30], entropy
[88] and parallel coordinates [54].

By the end of the 1990s, another mechanism was incorporated into MOEAs:
elitism. The intuition behind the concept of elitism is that we need to retain the
solutions that remain nondominated with respect to the new individuals that are
being generated by our MOEA (otherwise, such solutions could be lost). Elitism
is important not only from a practical point of view, but also for theoretical
reasons, since this mechanism is required to guarantee convergence [99].

In spite of the large number of MOEAs that were proposed in the 1990s,
few of them were widely used. From them, clearly the Nondominated Sorting
Genetic Algorithm II (NSGA-II) [30] was the most popular (and is still being
used today).

However, a few years after NSGA-II, another interesting MOEA was pro-
posed: the Multi-Objective Evolutionary Algorithm based on Decom-
position (MOEA/D) [124]. The idea of using decomposition was originally pro-
posed in mathematical programming and it consists in transforming a multi-
objective problem into several single-objective optimization problems which, in
the case of MOEA/D are simultaneously solved, using neighborhood search.
Decomposition-based methods would eventually become very popular research
trend in algorithmic design (see for example [101]) and would influence the
design of the Nondominated Sorting Genetic Algorithm III (NSGA-III)
[29] which adopts decomposition and reference points.

Nevertheless, since 2004, a different type of algorithmic design has increas-
ingly attracted interest from researchers: indicator-based selection. The idea of
this sort of MOEA was introduced in the Indicator-Based Evolutionary
Algorithm (IBEA) [126] which consists of an algorithmic framework that allows
the incorporation of any performance indicator into the selection mechanism of
a MOEA. IBEA was originally tested with the hypervolume [128] and the binary
ε indicator [127]. Indicator-based selection has attracted a lot of interest, mainly
because this sort of mechanism is known to work properly in many-objective
optimization (i.e., MOPs having four or more objectives).

Over the years, a number of indicator-based MOEAs have been pro-
posed, but probably the most representative approach within this family has
been the S Metric Selection Evolutionary Multiobjective Algorithm

Recent Results and Open Problems in EMOO 7

(SMS-EMOA) [36]. SMS-EMOA randomly generates an initial population and
then produces a single solution per iteration (i.e., it uses steady state selection)
using the crossover and mutation operators from NSGA-II. Then, it applies
nondominated sorting (as in NSGA-II). When the last nondominated front has
more than one solution, SMS-EMOA uses hypervolume to decide which solution
should be removed. Beume et al. [11] proposed a new version of SMS-EMOA
in which the hypervolume contribution is not used when, in the nondominated
sorting process, we obtain more than one front. In this case, they use the num-
ber of solutions that dominate to a certain individual (i.e., the solution that is
dominated by the largest number of solutions is removed).

After the introduction of SMS-EMOA, most indicator-based MOEAs that
have been proposed adopt a performance indicator in their density estimator,4

and not in their selection mechanism (see for example [59]). The actual use
of a “pure” indicator-based selection mechanism has been very rare (see for
example [78]).

So, at this point, one obvious question is: why is that the hypervolume is such
an attractive choice for indicator-based selection?

The hypervolume (also known as the S metric or the Lebesgue Measure)
of a set of solutions measures the size of the portion of objective space that
is dominated by those solutions collectively. One of its main advantages are
its mathematical properties, since it has been proved that the maximization of
this performance measure is equivalent to finding the Pareto optimal set [39].
Additionally, empirical studies have shown that (for a certain number of points
previously determined) the maximization of the hypervolume does indeed pro-
duce subsets of the Pareto front which are well-distributed [36,65]. Also, the
hypervolume assesses both convergence and, to a certain extent, also the spread
of solutions along the Pareto front (although without enforcing uniform distrib-
ution of solutions).

However, there are several issues regarding the use of the hypervolume. First,
the computation of this performance measure depends of a reference point, which
can influence the results in a significant manner. Some people have proposed
to use the worst objective function values in the current population, but this
requires scaling of the objectives. Nevertheless, the most serious limitation of
the hypervolume is its high computational cost. The best algorithms known to
compute hypervolume have a polynomial complexity on the number of points
used, but such complexity grows exponentially on the number of objectives [12].
This has triggered a significant amount of research regarding algorithms that can
reduce the computational cost of computing the hypervolume5 (see for example
[15,57,120,121]).

4 In fact, the earliest use of the hypervolume into a MOEA is as a density estimator
in a secondary population (see [65]).

5 See also:
http://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start
http://people.mpi-inf.mpg.de/∼tfried/HYP/
http://iridia.ulb.ac.be/∼manuel/hypervolume.

http://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start
http://people.mpi-inf.mpg.de/~tfried/HYP/
http://iridia.ulb.ac.be/~manuel/hypervolume

8 C. A. Coello Coello

An alternative to deal with this problem is to approximate the actual hyper-
volume contributions. This is the approach adopted by the Hypervolume Esti-
mation Algorithm for Multi-Objective Optimization (HyPE) [3] in which
Monte Carlo simulations are used to approximate exact hypervolume values.
Although this is certainly a very interesting idea, in practice HyPE does not
produce results as competitive as when using exact hypervolume computations.

Another possibility is to use another performance indicator, but the fact that
the hypervolume is the only unary indicator which is known to be Pareto com-
pliant [130] has made this alternative less attractive to researchers. Nevertheless,
the use of a few other performance indicators has been reported to be successful
in practice. Examples of these alternative indicator that have been used within
MOEAs are: R2 [16,17,33,46,51,52], Δp [79,98,105] and Inverted Generational
Distance plus (IGD+) [60,74]. Also, the use of other mechanisms such as the
maximin fitness function, which seems to be related to the ε indicator are very
promising (see for example [77]). All of these MOEAs are computationally inex-
pensive and perform quite well in many-objective problems, however, their use
in practice is still very limited.

It is worth indicating that while some researchers debate if decomposition-
based MOEAs or indicator-based MOEAs will become the new algorithmic trend
in the next few years, other alternatives to the use of Pareto-based selection have
been proposed. For example, Molinet Berenguer and Coello Coello [7], proposed
an approach that transforms a multi-objective optimization problem into a linear
assignment problem using a set of weight vectors uniformly scattered. Uniform
design is adopted to obtain the set of weights, and the Kuhn-Munkres (Hun-
garian) algorithm [68] is used to solve the resulting assignment problem. This
approach was found to perform quite well (and at a low computational cost) in
many-objective optimization problems.

3.2 Scalability

In their early days, MOEAs were mainly used to solve problems having only
two or three objectives. However, once Pareto-based MOEAs became popular,
the need for solving problems having more objectives was very evident. At this
point, problems started to arise, since it was soon evident that Pareto-based
MOEAs tend to perform poorly in many-objective optimization problems [56].

Experimental [89,117] and analytical studies [26,66] have identified the fol-
lowing limitations of Pareto-based MOEAs in many-objective problems:

1. Deterioration of the Search Ability: The proportion of nondominated solutions
in a population increases rapidly with the number of objectives [37]. Accord-
ing to Bentley et al. [5] the number of nondominated k-dimensional vectors on
a set of size n is O(lnk−1 n). This implies that in problems with a large num-
ber objectives, the selection of solutions is carried out almost at random or
guided by diversity criteria. In fact, Mostaghim and Schmeck [85] have shown
that a random search optimizer achieves better results than NSGA-II [30] in
a problem with 10 objectives.

Recent Results and Open Problems in EMOO 9

2. Dimensionality of the Pareto front: Due to the ‘curse of dimensionality’ the
number of points required to represent accurately a Pareto front increases
exponentially with the number of objectives. The number of points neces-
sary to represent a k-dimensional Pareto front with resolution r is given by
O(krk−1) (e.g., see [106]). This poses a challenge both to the data structures
to efficiently manage that number of points and to the density estimators to
achieve an even distribution of the solutions along the Pareto front.

3. Visualization of the Pareto front: Clearly, with more than three objectives
is not possible to plot the Pareto front as usual. This is a serious problem
since visualization plays a key role for a proper decision making process. In
recent years, a number of visualization techniques have been proposed for
many-objective problems (see for example [113]), but this is still an active
research area.

In order to properly deal with many-objective optimization problems, three
main approaches have been normally adopted [4,70,72]:

1. As indicated before, the use of indicator-based MOEAs has been an important
research trend to deal with many-objective optimization problems, in spite of
the limitations of some performance indicators such as the hypervolume (see
for example [62]).

2. One interesting possibility that was adopted in the early days of many-
objective optimization was the use of an optimality relation that yields a
solution ordering finer than that yielded by Pareto optimality. Among these
alternative relations we can find average ranking [6,40], k-optimality [37],
preference order ranking [32], favour relation [110], and a method that controls
the dominance area [102], among others. Besides providing a richer ordering
of the solutions, these relations obtain an optimal set that it is usually a
subset of the Pareto optimal set.

3. Another interesting approach which is now rarely used is to reduce the number
of objectives of the problem during the search process or in an a posteriori
manner, during the decision making process [18,31,71]. The main goal of this
kind of reduction techniques is to identify redundant objectives (or redundant
to some degree) in order to discard them. A redundant objective is one that
can be removed without changing the dominance relation induced by the
original objective set.

In contrast with the significant interest that many-objective optimization
has attracted in recent years, scalability in decision variable space has been only
recently studied in the context of multi-objective optimization (see for example
[73,82,83,125]). This is remarkable if we consider that large-scale multi-objective
optimization problems (i.e., problems having more than 100 decision variables)
are not rare in real-world applications (see for example [119]). In this area, the
use of cooperative coevolutionary approaches (which have been very successful
in single-objective large-scale optimization) is the most common research trend.
It is worth indicating, however, that no current benchmark exists that includes
large-scale multi-objective optimization problems.

10 C. A. Coello Coello

A more challenging problem would consist in solving many-objective large-
scale problems, but no work in this direction has been reported yet, to the best
of the author’s knowledge.

3.3 Dealing with Expensive Objective Functions

In spite of the current popularity of MOEAs, one of their limitations is that,
since they are stochastic search techniques, they normally require a significant
number of objective function evaluations in order to generate a proper sampling
that allows a reasonably good approximation of the Pareto front, even when
dealing with problems of low dimensionality. This is, indeed, a serious limitation
when dealing with real-world problems, because in many cases, the cost of a
MOEA becomes prohibitive.

In general, MOEAs can be unaffordable for an application when:

– The evaluation of the fitness functions is computationally expensive (i.e., it
takes from minutes to hours).

– The fitness functions cannot be defined in an algebraic form (e.g., when the
fitness functions are generated by a simulator).

– The total number of evaluations of the fitness functions is limited by financial
constraints (i.e., there is a financial cost involved in computing the fitness
functions).

In recent years, a significant amount of research has been conducted to allow
MOEAs to properly deal with computationally expensive problems [100]. The
main approaches that have been developed in this area can be roughly divided
into three main groups:

1. Use of parallelism: This is clearly the most obvious approach given the
current access to cheap parallel architectures (e.g., GPUs [8,28,107]). It is
worth noting, however, that in spite of the existence of interesting proposals
in this area (see for example [1,84,111]), the basic research in this area has
remained scarce, since most publications involving parallel MOEAs focus on
specific applications or on parallel extensions of specific MOEAs.

2. Surrogates: In this case, knowledge of past evaluations of a MOEA is used to
build an empirical model that approximates the fitness functions to be opti-
mized. This approximation can then be used to predict promising new solu-
tions at a smaller evaluation cost than that of the original problem [63,64].
Current functional approximation models include Polynomials (response
surface methodologies [41,92]), neural networks (e.g., multi-layer percep-
trons (MLPs) [55,58,87]), radial-basis function (RBF) networks [86,114,122],
support vector machines (SVMs) [13,104], Gaussian processes [20,115], and
Kriging [35,93] models. Although frequently used in engineering applica-
tions, surrogate methods can normally be adopted only in problems of low
dimensionality, which is an important limitation when dealing with real-world
MOPs.

Recent Results and Open Problems in EMOO 11

3. Fitness inheritance: This technique was introduced by Smith et al. [108],
and its main motivation is to reduce the total number of fitness function
evaluations performed by a (single-objective) evolutionary algorithm. The
mechanism works as follows: when assigning the fitness to an individual, some
times we evaluate the objective function as usual, but the rest of the time,
we assign fitness as an average of the fitness of the parents. This saves one
fitness function evaluation, and is based on the assumption of similarity of
an offspring to its parents. Fitness inheritance must not be always applied,
since the algorithm needs to use the true fitness function several times, in
order to obtain enough information to guide the search. The percentage of
time in which fitness inheritance is applied is called inheritance proportion. If
this inheritance proportion is 1, the algorithm is most likely to prematurely
converge [23]. Extending fitness inheritance involves several issues, mainly
related to its apparent limitation for dealing with non-convex Pareto fronts
[34]. However, some researchers have managed to successfully adapt fitness
inheritance to MOEAs [94], reporting important savings on the total number
of objective function evaluations performed.

Other approaches are also possible. For example, some researchers have
adopted cultural algorithms [9,10,25,95], which obtain knowledge during the
evolutionary process and use it to perform a more efficient search at the expense
of a significantly large memory usage. Cultural algorithms were proposed by
Reynolds [96,97], as an approach that tries to add domain knowledge to an
evolutionary algorithm during the search process, avoiding the need to add it
a priori. This approach uses, in addition to the population space commonly
adopted in evolutionary algorithms, a belief space, which encodes the knowl-
edge obtained from the search points and their evaluation, in order to influence
the evolutionary operators that guide the search. However, the belief space is
commonly designed based on the group of problems that is to be solved. At
each generation, the cultural algorithm selects some exemplar individuals from
the population, in order to extract information from them that can be useful
during the search. Such an information is used to update the belief space. The
belief space will then influence the operators of the evolutionary algorithm, to
transform them in informed operators and enhance the search process. Cultural
algorithms can be an effective means of saving objective function evaluations,
but since a map of decision variable space must be kept at all times, their cost
will soon become prohibitive even for problems of moderate dimensionality.

4 Other Challenges

Several other topics remain scarcely explored in evolutionary multi-objective
optimization. For example:

1. Dynamic problems: In the real world, there are problems in which the
objective function values may vary over time (e.g., because of the presence of
noise), depending on certain events. The solution of such problems requires

12 C. A. Coello Coello

algorithms that are able to quickly “adapt” to these changes in the environ-
ment. There are relatively few MOEAs that have been designed to deal with
dynamic MOPs and the current research in this area remains relatively scarce
[21,27,49,91,118]. It is worth noting that dynamic problems require different
types of benchmarks (see for example [38]) and performance measures (see
for example [50]).

2. Hyper-heuristics: In spite of the fact that multi-objective memetic algo-
rithms (i.e., MOEAs that are hybridized with a local search engine, which
could be, for example, a gradient-based method [69] or a direct search method
[123]) have gained popularity in recent years (see for example [42,61,75]),
hyper-heuristics have been only scarcely explored in the context of multi-
objective optimization, particularly for dealing with continuous optimization
problems (see for example [45,53]). Hyper-heuristics [22] are approaches that
combine several types of heuristics, with the aim of combining their advan-
tages in a wide class of problems. Their main motivation is to have a more
general search engine that can solve a wider variety of hard optimization
problems. Hyper-heuristics have been mostly developed for discrete search
spaces and have been used to solve mainly single-objective optimization prob-
lems. However, their use in continuous multi-objective optimization problems,
although possible, has been scarcely explored (see for example [76]). The use
of other (similar) approaches that combine operators and different MOEAs
into a common framework are also promising research venues (see for example
[47,116]).

3. Automatic parameter configuration: Although some relevant work has
been conducted on parameter fine-tuning for MOEAs (see for example [2,
19,112]), it has been only recently that researchers in evolutionary multi-
objective optimization have considered the use of tools to do an automatic
calibration of MOEAs (see for example [80]). One limitation for the use of
such tools is that a scalar measure is required, but some researchers have
relied on the use of hypervolume (see for example [90]) for that sake.

5 Conclusions

In this paper, a few research trends in evolutionary multi-objective optimization
have been briefly described with the aim of encouraging more research in such
areas.

The main goal of this paper is to illustrate that, in spite of its 32 years
of existence, evolutionary multi-objective optimization still has several research
opportunities to offer to newcomers. The contents of this paper is just a small
sample of the several topics that are still available for starting a research career
in this area.

Acknowledgements. The author gratefully acknowledges support from CONACyT
grant no. 221551.

Recent Results and Open Problems in EMOO 13

References

1. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances
and new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)

2. Andersson, M., Bandaru, S., Ng, A.H.: Tuning of multiple parameter sets in evolu-
tionary algorithms. In: 2016 Genetic and Evolutionary Computation Conference
(GECCO 2016), Denver, Colorado, USA, 20–24 July 2016, pp. 533–540. ACM
Press (2016). ISBN 978-1-4503-4206-3

3. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-
objective optimization. Evol. Comput. 19(1), 45–76 (2011). Spring

4. Bechikh, S., Elarbi, M., Ben Said, L.: Many-objective optimization using evolu-
tionary algorithms: a survey. In: Bechikh, S., Datta, R., Gupta, A. (eds.) Recent
Advances in Evolutionary Multi-objective Optimization. ALO, vol. 20, pp. 105–
137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42978-6 4

5. Bentley, J., Kung, H., Schkolnick, M., Thompson, C.: On the average number
of maxima in a set of vectors and applications. J. Assoc. Comput. Mach. 25(4),
536–543 (1978)

6. Bentley, P.J., Wakefield, J.P.: Finding acceptable solutions in the pareto-optimal
range using multiobjective genetic algorithms. In: Chawdhry, P.K., Roy, R.,
Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufactur-
ing, Part 5, pp. 231–240. Springer, London (1997). https://doi.org/10.1007/
978-1-4471-0427-8 25. Presented at the 2nd On-line World Conference on Soft
Computing in Design and Manufacturing (WSC2)

7. Molinet Berenguer, J.A., Coello Coello, C.A.: Evolutionary many-objective opti-
mization based on kuhn-munkres’ algorithm. In: Gaspar-Cunha, A., Henggeler
Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 3–17. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 1

8. de Oliveira, F.B., Davendra, D., Guimarães, F.G.: Multi-objective differential
evolution on the GPU with C-CUDA. In: Snášel, V., Abraham, A., Corchado,
E.S. (eds.) SOCO 2012. AISC, vol. 188, pp. 123–132. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-32922-7 13

9. Best, C.: Multi-Objective Cultural Algorithms. Master’s thesis, Wayne State Uni-
versity, Detroit, Michigan, USA (2009)

10. Best, C., Che, X., Reynolds, R.G., Liu, D.: Multi-objective cultural algorithms.
In: 2010 IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona,
Spain, 18–23 July 2010, pp. 3330–3338. IEEE Press (2010)

11. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Europ. J. Oper. Res. 181(3), 1653–1669 (2007)

12. Beume, N., Naujoks, B., Preuss, M., Rudolph, G., Wagner, T.: Effects of 1-
Greedy S-metric-selection on innumerably large pareto fronts. In: Ehrgott, M.,
Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009.
LNCS, vol. 5467, pp. 21–35. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01020-0 7

13. Bhattacharya, M., Lu, G.: A dynamic approximate fitness based hybrid ea for
optimization problems. In: Proceedings of IEEE Congress on Evolutionary Com-
putation. pp. 1879–1886 (2003)

14. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

https://doi.org/10.1007/978-3-319-42978-6_4
https://doi.org/10.1007/978-1-4471-0427-8_25
https://doi.org/10.1007/978-1-4471-0427-8_25
https://doi.org/10.1007/978-3-319-15892-1_1
https://doi.org/10.1007/978-3-642-32922-7_13
https://doi.org/10.1007/978-3-642-01020-0_7
https://doi.org/10.1007/978-3-642-01020-0_7

14 C. A. Coello Coello

15. Bringmann, K., Friedrich, T.: The maximum hypervolume set yields near-optimal
approximation. In: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation (GECCO 2010), Portland, Oregon, USA, 7–11 July
2010, pp. 511–518. ACM Press (2010). ISBN 978-1-4503-0072-8

16. Brockhoff, D.: A bug in the multiobjective optimizer IBEA: salutary lessons for
code release and a performance re-assessment. In: Gaspar-Cunha, A., Henggeler
Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 187–201.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8 13

17. Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indica-
tor. In: 2012 Genetic and Evolutionary Computation Conference (GECCO 2012),
Philadelphia, USA, pp. 465–472. ACM Press, July 2012. ISBN: 978-1-4503-1177-9

18. Brockhoff, D., Zitzler, E.: Are all objectives necessary? on dimensionality reduc-
tion in evolutionary multiobjective optimization. In: Runarsson, T.P., Beyer, H.-
G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006.
LNCS, vol. 4193, pp. 533–542. Springer, Heidelberg (2006). https://doi.org/10.
1007/11844297 54

19. Büche, D., Milano, M., Koumoutsakos, P.: Self-organizing maps for multi-
objective optimization. In: Barry, A.M. (ed.) GECCO 2002: Proceedings of the
Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference,
pp. 152–155. AAAI, New York (2002)

20. Bueche, D., Schraudolph, N., Koumoutsakos, P.: Accelerating evolutionary algo-
rithms with gaussian process fitness function models. IEEE Trans. Syst. Man
Cybern. Part C 35(2), 183–194 (2005)

21. Bui, L.T., Nguyen, M.H., Branke, J., Abbass, H.A.: Tackling dynamic prob-
lems with multiobjective evolutionary algorithms. In: Knowles, J., Corne, D.,
Deb, K. (eds.) Multi-Objective Problem Solving from Nature: From Concepts
to Applications, pp. 77–91. Springer, Berlin (2008). https://doi.org/10.1007/
978-3-540-72964-8 4

22. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu,
R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12),
1695–1724 (2013)

23. Chen, J.H., Goldberg, D.E., Ho, S.Y., Sastry, K.: Fitness inheritance in multi-
objective optimization. In: Langdon, W., Cantú-Paz, E., Mathias, K., Roy, R.,
Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull,
L., Potter, M., Schultz, A., Miller, J., Burke, E., Jonoska, N. (eds.) Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2002), San
Francisco, California, pp. 319–326. Morgan Kaufmann Publishers, July 2002

24. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algo-
rithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007).
ISBN 978-0-387-33254-3

25. Coello Coello, C.A., Landa Becerra, R.: Evolutionary multiobjective optimiza-
tion using a cultural algorithm. In: 2003 IEEE Swarm Intelligence Symposium
Proceedings, Indianapolis, Indiana, USA, pp. 6–13. IEEE Service Center, April
2003

26. Corne, D., Knowles, J.: Techniques for highly multiobjective optimisation: some
nondominated points are better than others. In: Thierens, D. (ed.) 2007 Genetic
and Evolutionary Computation Conference (GECCO 2007), vol. 1, pp. 773–780.
ACM Press, London (2007)

27. Cruz, C., Gonzalez, J.R., Pelta, D.A.: Optimization in dynamic environments:
a survey on problems, methods and measures. Soft. Comput. 15(7), 1427–1448
(2011)

https://doi.org/10.1007/978-3-319-15934-8_13
https://doi.org/10.1007/11844297_54
https://doi.org/10.1007/11844297_54
https://doi.org/10.1007/978-3-540-72964-8_4
https://doi.org/10.1007/978-3-540-72964-8_4

Recent Results and Open Problems in EMOO 15

28. Cserti, P., Szondi, S., Gaál, B., Kozmann, G., Vassányi, I.: GPU based parallel
genetic algorithm library. In: Filipič, B., Šilc, J. (eds.) Bioinspired Optimization
Methods and Their Applications, Proceedings of the Fifth International Confer-
ence on Bioinspired Optimization Methods and their Applications, BIOMA 2012,
Bohinj, Slovenia, 24–25 May 2012, pp. 231–244. Jožef Stefan Institute (2012).
ISBN 978-961-264-043-9

29. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, Part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

30. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

31. Deb, K., Sinha, A., Kukkonen, S.: Multi-objective test problems, linkages, and
evolutionary methodologies. In: Keijzer, M. et al. (eds.) 2006 Genetic and Evo-
lutionary Computation Conference (GECCO 2006), Seattle, Washington, USA,
vol. 2, pp. 1141–1148. ACM Press, July 2006. ISBN 1-59593-186-4

32. di Pierro, F.: Many-objective evolutionary algorithms and applications to water
resources engineering. Ph.D. thesis, School of Engineering, Computer Science and
Mathematics, UK, August 2006

33. Dı́az-Manŕıquez, A., Toscano-Pulido, G., Landa-Becerra, R.: A hybrid local search
operator for multiobjective optimization. In: 2013 IEEE Congress on Evolutionary
Computation (CEC 2013), Cancún, México, 20–23 June 2013, pp. 173–180. IEEE
Press (2013). ISBN 978-1-4799-0454-9

34. Ducheyne, E., De Baets, B., De Wulf, R.: Is fitness inheritance useful for real-
world applications? In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb,
K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 31–42. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36970-8 3

35. Emmerich, M., Giotis, A., Özdemir, M., Bäck, T., Giannakoglou, K.:
Metamodel—assisted evolution strategies. In: Guervós, J.J.M., Adamidis, P.,
Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002.
LNCS, vol. 2439, pp. 361–370. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45712-7 35

36. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervol-
ume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre,
A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31880-4 5

37. Farina, M.: A neural network based generalized response surface multiobjective
evolutionary algorithm. In: Congress on Evolutionary Computation (CEC 2002),
Piscataway, New Jersey, vol. 1, pp. 956–961. IEEE Service Center, May 2002

38. Farina, M., Deb, K., Amato, P.: dynamic multiobjective optimization problems:
test cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5),
425–442 (2004)

39. Fleischer, M.: The measure of pareto optima applications to multi-objective meta-
heuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36970-8 37

40. Garza-Fabre, M., Pulido, G.T., Coello, C.A.C.: Ranking methods for many-
objective optimization. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds.)
MICAI 2009. LNCS (LNAI), vol. 5845, pp. 633–645. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05258-3 56

https://doi.org/10.1007/3-540-36970-8_3
https://doi.org/10.1007/3-540-45712-7_35
https://doi.org/10.1007/3-540-45712-7_35
https://doi.org/10.1007/978-3-540-31880-4_5
https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1007/978-3-642-05258-3_56

16 C. A. Coello Coello

41. Goel, T., Vaidyanathan, R., Haftka, R., Shyy, W., Queipo, N., Tucker, K.:
Response surface approximation of pareto optimal front in multiobjective opti-
mization. Technical report 2004–4501, AIAA (2004)

42. Goh, C.K., Ong, Y.S., Tan, K.C. (eds.): Multi-Objective Memetic Algorithms.
Springer, Berlin (2009). ISBN 978-3-540-88050-9

43. Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learn-
ing. Addison-Wesley Publishing Company, Reading (1989)

44. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization. In: Genetic Algorithms and their Applications: Proceedings
of the Second International Conference on Genetic Algorithms, Massachusetts,
USA, pp. 41–49. Lawrence Erlbaum, July 1987. ISBN 0-8058-0158-8

45. Gonçalves, R.A., Kuk, J.N., Almeida, C.P., Venske, S.M.: MOEA/D-HH: a hyper-
heuristic for multi-objective problems. In: Gaspar-Cunha, A., Henggeler Antunes,
C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 94–108. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15934-8 7

46. Phan, D.H., Suzuki, J.: R2-IBEA: R2 indicator based evolutionary algorithm for
multiobjective optimization. In: 2013 IEEE Congress on Evolutionary Computa-
tion (CEC 2013), Cancún, México, 20–23 June 2013, pp. 1836–1845. IEEE Press
(2013). ISBN 978-1-4799-0454-9

47. Hadka, D., Reed, P.: Borg: an auto-adaptive many-objective evolutionary com-
puting framework. Evol. Comput. 21(2), 231–259 (2013). Summer

48. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design.
Struct. Optim. 4, 99–107 (1992)

49. Helbig, M., Engelbrecht, A.P.: Dynamic multi-objective optimization using PSO.
In: Alba, E., Nakib, A., Siarry, P. (eds.) Metaheuristics for Dynamic Optimization,
chap. 8, pp. 147–188. Springer, Berlin (2013). ISBN 978-3-642-30664-8

50. Helbig, M., Engelbrecht, A.P.: Performance measures for dynamic multi-objective
optimisation algorithms. Inform. Sci. 250, 61–81 (2013)

51. Hernández Gómez, R., Coello Coello, C.A.: MOMBI: a new metaheuristic for
many-objective optimization based on the R2 indicator. In: 2013 IEEE Congress
on Evolutionary Computation (CEC 2013), Cancún, México, 20–23 June, pp.
2488–2495. IEEE Press (2013). ISBN 978-1-4799-0454-9

52. Hernández Gómez, R., Coello Coello, C.A.: Improved metaheuristic based on the
R2 indicator for many-objective optimization. In: 2015 Genetic and Evolutionary
Computation Conference (GECCO 2015), Madrid, Spain, July 11–15 2015, pp.
679–686. ACM Press (2015). ISBN 978-1-4503-3472-3

53. Hernández Gómez, R., Coello Coello, C.A.: A hyper-heuristic of scalarizing func-
tions. In: 2017 Genetic and Evolutionary Computation Conference (GECCO
2017), Berlin, Germany, 15–19 July 2017, pp. 577–584. ACM Press (2017). ISBN
978-1-4503-4920-8

54. Hernández Gómez, R., Coello Coello, C.A., Alba Torres, E.: A multi-objective
evolutionary algorithm based on parallel coordinates. In: 2016 Genetic and Evolu-
tionary Computation Conference (GECCO 2016), Denver, Colorado, USA, 20–24
July 2016, pp. 565–572. ACM Press (2016). ISBN 978-1-4503-4206-3

55. Hong, Y.S., Lee, H.: Tahk, M.J.: Acceleration of the convergence speed of evolu-
tionary algorithms using multi-layer neural networks. Eng. Optim. 35(1), 91–102
(2003)

56. Hughes, E.J.: Evolutionary many-objective optimisation: many once or one many?
In: 2005 IEEE Congress on Evolutionary Computation (CEC 2005), Edinburgh,
Scotland, vol. 1, pp. 222–227. IEEE Service Center, September 2005

https://doi.org/10.1007/978-3-319-15934-8_7

Recent Results and Open Problems in EMOO 17

57. Hupkens, I., Deutz, A., Yang, K., Emmerich, M.: Faster exact algorithms for
computing expected hypervolume improvement. In: Gaspar-Cunha, A., Henggeler
Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 65–79. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 5

58. Hüscken, M., Jin, Y., Sendhoff, B.: Structure optimization of neural networks for
aerodynamic optimization. Soft. Comput. 9(1), 21–28 (2005)

59. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective
optimization. Evol. Comput. 15(1), 1–28 (2007). Spring

60. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation
in generational distance and inverted generational distance. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 8

61. Jaszkiewicz, A., Ishibuchi, H., Zhang, Q.: Multiobjective memetic algorithms. In:
Neri, F., Cotta, C., Moscato, P. (eds.) Handbook of Memetic Algorithms, chap.
13, pp. 201–217. Springer, Berlin (2012). ISBN 978-3-642-23246-6

62. Jiang, S., Zhang, J., Ong, Y.S., Zhang, A.N., Tan, P.S.: A simple and fast
hypervolume indicator-based multiobjective evolutionary algorithm. IEEE Trans.
Cybern. 45(10), 2202–2213 (2015)

63. Jin, Y., Sendhoff, B., Körner, E.: Evolutionary multi-objective optimization
for simultaneous generation of signal-type and symbol-type representations. In:
Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS,
vol. 3410, pp. 752–766. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-31880-4 52

64. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation
for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput.
10(1), 50–66 (2006)

65. Knowles, J., Corne, D.: Properties of an adaptive archiving algorithm for storing
nondominated vectors. IEEE Trans. Evol. Comput. 7(2), 100–116 (2003)

66. Knowles, J., Corne, D.: Quantifying the effects of objective space dimension
in evolutionary multiobjective optimization. In: Obayashi, S., Deb, K., Poloni,
C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 757–771.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2 57

67. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the
pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

68. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res.
Logistics Q. 2(1–2), 83–97 (1955). http://dx.doi.org/10.1002/nav.3800020109

69. Lara, A., Sanchez, G., Coello Coello, C.A., Schütze, O.: HCS: a new local search
strategy for memetic multi-objective evolutionary algorithms. IEEE Trans. Evol.
Comput. 14(1), 112–132 (2010)

70. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey.
ACM Comput. Surv. 48(1), 1–35 (2015)

71. López Jaimes, A., Coello Coello, C.A., Chakraborty, D.: Objective reduction using
a feature selection technique. In: 2008 Genetic and Evolutionary Computation
Conference (GECCO 2008), Atlanta, USA, pp. 674–680. ACM Press, July 2008.
ISBN 978-1-60558-131-6

72. von Lücken, C., Baran, B., Brizuela, C.: A survey on multi-objective evolutionary
algorithms for many-objective problems. Comput. Optim. Appl. 58(3), 707–756
(2014)

https://doi.org/10.1007/978-3-319-15892-1_5
https://doi.org/10.1007/978-3-319-15892-1_8
https://doi.org/10.1007/978-3-540-31880-4_52
https://doi.org/10.1007/978-3-540-31880-4_52
https://doi.org/10.1007/978-3-540-70928-2_57
http://dx.doi.org/10.1002/nav.3800020109

18 C. A. Coello Coello

73. Ma, X., Liu, F., Qi, Y., Wang, X., Li, L., Jiao, L., Yin, M., Gong, M.: A mul-
tiobjective evolutionary algorithm based on decision variable analyses for mul-
tiobjective optimization problems with large-scale variables. IEEE Trans. Evol.
Comput. 20(2), 275–298 (2016)

74. Manoatl Lopez, E., Coello Coello, C.A.: IGD+-EMOA: A multi-objective evo-
lutionary algorithm based on IGD+. In: 2016 IEEE Congress on Evolutionary
Computation (CEC 2016), Vancouver, Canada, 24–29 July 2016, pp. 999–1006.
IEEE Press (2016). ISBN 978-1-5090-0623-9

75. Mashwani, W.K., Salhi, A.: Multiobjective memetic algorithm based on decom-
position. Appl. Soft Comput. 21, 221–243 (2014)

76. McClymont, K., Keedwell, E.C.: Markov Chain hyper-Heuristic (MCHH): an
online selective hyper-heuristic for multi-objective continuous problems. In: 2011
Genetic and Evolutionary Computation Conference (GECCO 2011), Dublin, Ire-
land, 12–16 July 2011, pp. 2003–2010. ACM Press (2011)

77. Menchaca-Mendez, A., Coello Coello, C.A.: Selection mechanisms based on the
maximin fitness function to solve multi-objective optimization problems. Inform.
Sci. 332, 131–152 (2016)

78. Menchaca-Mendez, A., Coello Coello, C.A.: An alternative hypervolume-based
selection mechanism for multi-objective evolutionary algorithms. Soft. Comput.
21(4), 861–884 (2017)

79. Menchaca-Mendez, A., Hernández, C., Coello Coello, C.A.: Δp-MOEA: a new
multi-objective evolutionary algorithm based on the Δp indicator. In: 2016 IEEE
Congress on Evolutionary Computation (CEC 2016), Vancouver, Canada, 24–29
July 2016, pp. 3753–3760. IEEE Press (2016). ISBN 978-1-5090-0623-9

80. Menchaca-Mendez, A., Montero, E., Riff, M.-C., Coello, C.A.C.: A more effi-
cient selection scheme in iSMS-EMOA. In: Bazzan, A.L.C., Pichara, K. (eds.)
IBERAMIA 2014. LNCS (LNAI), vol. 8864, pp. 371–380. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-12027-0 30

81. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Pub-
lishers, Boston (1999)

82. Miguel Antonio, L., Coello Coello, C.A.: Use of cooperative coevolution for solv-
ing large scale multiobjective optimization problems. In: 2013 IEEE Congress on
Evolutionary Computation (CEC 2013), Cancún, México, 20–23 June 2013, pp.
2758–2765. IEEE Press (2013). ISBN 978-1-4799-0454-9

83. Miguel Antonio, L., Coello Coello, C.A.: Indicator-based cooperative coevolution
for multi-objective optimization. In: 2016 IEEE Congress on Evolutionary Com-
putation (CEC 2016), Vancouver, Canada, 24–29 July 2016, pp. 991–998. IEEE
Press (2016). ISBN 978-1-5090-0623-9

84. Mishra, B., Dehuri, S., Mall, R., Ghosh, A.: Parallel single and multiple objectives
genetic algorithms: a survey. Int. J. Appl. Evol. Comput. 2(2), 21–57 (2011)

85. Mostaghim, S., Schmeck, H.: Distance based ranking in many-objective particle
swarm optimization. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni,
C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 753–762. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87700-4 75

86. Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-assisted evo-
lutionary optimization frameworks for high-fidelity engineering design prob-
lems. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation.
STUDFUZZ, pp. 307–332. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-44511-1 15

87. Pierret, S.: Turbomachinery blade design using a Navier-Stokes solver and artifi-
cial neural network. ASME J. Turbomach. 121(3), 326–332 (1999)

https://doi.org/10.1007/978-3-319-12027-0_30
https://doi.org/10.1007/978-3-540-87700-4_75
https://doi.org/10.1007/978-3-540-44511-1_15
https://doi.org/10.1007/978-3-540-44511-1_15

Recent Results and Open Problems in EMOO 19

88. Pires, E.J.S., Machado, J.A.T., de Moura Oliveira, P.B.: Entropy diversity in
multi-objective particle swarm optimization. Entropy 15(12), 5475–5491 (2013)

89. Praditwong, K., Yao, X.: How well do multi-objective evolutionary algorithms
scale to large problems. In: 2007 IEEE Congress on Evolutionary Computation
(CEC 2007), pp. 3959–3966. IEEE Press, Singapore, September 2007

90. López-Ibáñez, M., Stützle, T.: Automatic configuration of multi-objective ACO
algorithms. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 95–106.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4 9

91. Raquel, C., Yao, X.: Dynamic multi-objective optimization: a survey of the state-
of-the-art. In: Yang, S., Yao, X. (eds.) Evolutionary Computation for Dynamic
Optimization Problems, chap. 4, pp. 85–106. Springer, Berlin (2013). ISBN 978-
3-642-38415-8

92. Rasheed, K., Ni, X., Vattam, S.: Comparison of methods for developing dynamic
reduced models for design optimization. Soft. Comput. 9(1), 29–37 (2005)

93. Ratle, A.: Accelerating the convergence of evolutionary algorithms by fitness land-
scape approximation. In: Eiben, A., Bäck, T., Schoenauer, M., Schwefel, H.P.
(eds.) Parallel Problem Solving from Nature, vol. V, pp. 87–96 (1998)

94. Reyes Sierra, M., Coello Coello, C.A.: Fitness Inheritance in Multi-Objective
Particle Swarm Optimization. In: 2005 IEEE Swarm Intelligence Symposium (SIS
2005), Pasadena, California, USA, pp. 116–123. IEEE Press, June 2005

95. Reynolds, R., Liu, D.: Multi-objective cultural algorithms. In: 2011 IEEE
Congress on Evolutionary Computation (CEC 2011), New Orleans, Louisiana,
USA, 5–8 June 2011, pp. 1233–1241. IEEE Service Center (2011)

96. Reynolds, R.G.: An Introduction to Cultural Algorithms. In: Sebald, A.V., Fogel,
L.J. (eds.) Proceedings of the Third Annual Conference on Evolutionary Pro-
gramming, pp. 131–139. World Scientific, River Edge (1994)

97. Reynolds, R.G., Michalewicz, Z., Cavaretta, M.: Using cultural algorithms for
constraint handling in GENOCOP. In: McDonnell, J.R., Reynolds, R.G., Fogel,
D.B. (eds.) Proceedings of the Fourth Annual Conference on Evolutionary Pro-
gramming, pp. 298–305. MIT Press, Cambridge (1995)

98. Rodŕıguez Villalobos, C.A., Coello Coello, C.A.: A new multi-objective evolution-
ary algorithm based on a performance assessment indicator. In: 2012 Genetic and
Evolutionary Computation Conference (GECCO 2012), Philadelphia, USA, pp.
505–512. ACM Press, July 2012. ISBN: 978-1-4503-1177-9

99. Rudolph, G., Agapie, A.: Convergence properties of some multi-objective evo-
lutionary algorithms. In: Proceedings of the 2000 Conference on Evolutionary
Computation, Piscataway, New Jersey, vol. 2, pp. 1010–1016. IEEE Press, July
2000

100. Santana-Quintero, L.V., Arias Montaño, A., Coello Coello, C.A.: A review of
techniques for handling expensive functions in evolutionary multi-objective opti-
mization. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Expen-
sive Optimization Problems, pp. 29–59. Springer, Berlin (2010). https://doi.org/
10.1007/978-3-642-10701-6 2

101. Santiago, A., Huacuja, H.J.F., Dorronsoro, B., Pecero, J.E., Santillan, C.G.,
Barbosa, J.J.G., Monterrubio, J.C.S.: A survey of decomposition methods for
multi-objective optimization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk,
J. (eds.) Recent Advances on Hybrid Approaches for Designing Intelligent Sys-
tems. SCI, vol. 547, pp. 453–465. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-05170-3 31

https://doi.org/10.1007/978-3-642-15461-4_9
https://doi.org/10.1007/978-3-642-10701-6_2
https://doi.org/10.1007/978-3-642-10701-6_2
https://doi.org/10.1007/978-3-319-05170-3_31
https://doi.org/10.1007/978-3-319-05170-3_31

20 C. A. Coello Coello

102. Sato, H., Aguirre, H.E., Tanaka, K.: Controlling dominance area of solutions and
its impact on the performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2 5

103. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algo-
rithms. In: Genetic Algorithms and their Applications: Proceedings of the First
International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum
(1985)

104. Abboud, K., Schoenauer, M.: Surrogate deterministic mutation: preliminary
results. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.)
EA 2001. LNCS, vol. 2310, pp. 104–116. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-46033-0 9

105. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged haus-
dorff distance as a performance measure in evolutionary multiobjective optimiza-
tion. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

106. Sen, P., Yang, J.B.: Multiple Criteria Decision Support in Engineering Design.
Springer, London (1998)

107. Sharma, D., Collet, P.: Implementation techniques for massively parallel multi-
objective optimization. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evo-
lutionary Computation on GPGPUs. NCS, pp. 267–286. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37959-8 13

108. Smith, R.E., Dike, B.A., Stegmann, S.A.: Fitness inheritance in genetic algo-
rithms. In: SAC 1995: Proceedings of the 1995 ACM Symposium on Applied
Computing, pp. 345–350. ACM Press, New York (1995)

109. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evol. Comput. 2(3), 221–248 (1994). Fall

110. Sülflow, A., Drechsler, N., Drechsler, R.: Robust multi-objective optimization
in high dimensional spaces. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T.,
Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 715–726. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70928-2 54

111. Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello
Coello, C.A.: Parallel approaches for multiobjective optimization. In: Branke,
J., Deb, K., Miettinen, K., S�lowiński, R. (eds.) Multiobjective Optimization.
LNCS, vol. 5252, pp. 349–372. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88908-3 13

112. Toscano Pulido, G., Coello Coello, C.A.: The micro genetic algorithm 2: towards
online adaptation in evolutionary multiobjective optimization. In: Fonseca,
C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS,
vol. 2632, pp. 252–266. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-36970-8 18

113. Tušar, T., Filipič, B.: Visualization of pareto front approximations in evolutionary
multiobjective optimization: a critical review and the prosection method. IEEE
Trans. Evol. Comput. 19(2), 225–245 (2015)

114. Ulmer, H., Streichert, F., Zell, A.: Model-assisted steady-state evolution strate-
gies. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 610–621.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6 72

115. Ulmer, H., Streichert, F., Zell, A.: Evolution startegies assisted by Gaussian
processes with improved pre-selection criterion. In: Proceedings of IEEE Congress
on Evolutionary Computation, pp. 692–699 (2003)

https://doi.org/10.1007/978-3-540-70928-2_5
https://doi.org/10.1007/3-540-46033-0_9
https://doi.org/10.1007/3-540-46033-0_9
https://doi.org/10.1007/978-3-642-37959-8_13
https://doi.org/10.1007/978-3-540-70928-2_54
https://doi.org/10.1007/978-3-540-88908-3_13
https://doi.org/10.1007/978-3-540-88908-3_13
https://doi.org/10.1007/3-540-36970-8_18
https://doi.org/10.1007/3-540-36970-8_18
https://doi.org/10.1007/3-540-45105-6_72

Recent Results and Open Problems in EMOO 21

116. Vrugt, J.A., Robinson, B.A.: Improved evolutionary optimization from geneti-
cally adaptive multimethod search. Proc. Nat. Acad. Sci. U.S.A. 104(3), 708–711
(2007)

117. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based
methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2 56

118. Wang, Y., Dang, C.: An evolutionary algorithm for dynamic multi-objective opti-
mization. Appl. Math. Comput. 205(1), 6–18 (2008)

119. Watanabe, S., Ito, M., Sakakibara, K.: A proposal on a decomposition-based evo-
lutionary multiobjective optimization for large scale vehicle routing problems. In:
2015 IEEE Congress on Evolutionary Computation (CEC 2015), Sendai, Japan,
25–28 May 2015, pp. 2581–2588. IEEE Press, ISBN 978-1-4799-7492-4

120. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervol-
umes. IEEE Trans. Evol. Comput. 16(1), 86–95 (2012)

121. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating
hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)

122. Won, K.S., Ray, T.: Performance of kriging and cokriging based surrogate mod-
els within the unified framework for surrogate assisted optimization. In: 2004
Congress on Evolutionary Computation (CEC 2004), Portland, Oregon, USA,
vol. 2, pp. 1577–1585. IEEE Service Center, June 2004

123. Zapotecas Mart́ınez, S., Arias Montaño, A., Coello Coello, C.A.: A nonlinear
simplex search approach for multi-objective optimization. In: 2011 IEEE Congress
on Evolutionary Computation (CEC 2011), New Orleans, Louisiana, USA, 5–8
June 2011, pp. 2367–2374. IEEE Service Center (2011)

124. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

125. Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: Mutation operators based
on variable grouping for multi-objective large-scale optimization. In: 2016 IEEE
Symposium Series on Computational Intelligence (SSCI 2016), Athens, Greece,
6–9 December 2016. IEEE Press (2016). ISBN 978-1-5090-4240-1

126. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30217-9 84

127. Zitzler, E., Laumanns, M., Bleuler, S.: A tutorial on evolutionary multiobjective
optimization. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.)
Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and
Mathematical Systems, vol. 535, pp. 3–37. Springer, Berlin (2004). https://doi.
org/10.1007/978-3-642-17144-4 1

128. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms-
a comparative study. In: Eiben, A.E. (ed.) Parallel Problem Solving from Nature
V, pp. 292–301. Springer, Amsterdam (1998)

129. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–
271 (1999)

130. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

https://doi.org/10.1007/978-3-540-70928-2_56
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1007/978-3-642-17144-4_1
https://doi.org/10.1007/978-3-642-17144-4_1

Applications of Natural Computing

A Formal Framework for Composing Qualitative
Models of Biological Systems

Hanadi Alkhudhayr1,2 and Jason Steggles1(B)

1 School of Computing, Newcastle University, Newcastle upon Tyne, UK
jason.steggles@ncl.ac.uk

2 Faculty of Computing and Information Technology,
King Abdulaziz University, Rabigh, Saudi Arabia

h.alkhudhayr1@ncl.ac.uk

Abstract. Boolean networks are a widely used qualitative modelling
approach which allows the abstract description of a biological system.
One issue with the application of Boolean networks is the state space
explosion problem which limits the applicability of the approach to large
realistic systems. In this paper we investigate developing a compositional
framework for Boolean networks to facilitate the construction and analy-
sis of large scale models. The compositional approach we present is based
on merging entities between Boolean networks using conjunction and we
introduce the notion of compatibility which formalises the preservation
of behaviour under composition. We investigate characterising compati-
bility and develop a notion of trace alignment which is sufficient to ensure
compatibility. The compositional framework developed is supported by
a prototype tool that automates composition and analysis.

Keywords: Qualitative models · Boolean network · Model composition

1 Introduction

In order to study and synthesize complex biological systems a range of quali-
tative modelling techniques have emerged [3,4]. Boolean networks [8,9] are one
such approach which are based on abstractly representing the state of a regu-
latory entity as a Boolean value, where 1 represents the entity is active and 0
inactive. The state of each entity is then regulated by other entities based on
a defined next–state function and their dynamic behaviour results in attractor
cycles that can then be associated with biological phenomena. Entities can either
be updated synchronously, where the state of all entities is updated simultane-
ously, or asynchronously, where entities update their state independently.

Despite their simplicity, Boolean networks have been shown to allow a range
of interesting biological analysis to be performed and have been widely consid-
ered in the literature (for example, see [1,3,10,11,13]). Indeed, it can be seen
that they have an important role to play in advancing our understanding and
engineering capability of complex biological systems. However, one important
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 25–36, 2017.
https://doi.org/10.1007/978-3-319-71069-3_2

http://orcid.org/0000-0001-7213-3919
http://orcid.org/0000-0001-9174-5531

26 H. Alkhudhayr and J. Steggles

issue that limits the scalable application of Boolean networks is the well–known
state space explosion problem.

In this paper we investigate developing a formal framework for the composi-
tion of Boolean networks to facilitate the construction and analysis of large scale
models. The compositional approach we present is based on merging entities in
Boolean networks using conjunction (though the results presented hold for other
logical connectives). We introduce the notion of compatibility which formalises
the idea of preserving the underlying behaviour of models that are composed.
The compatibility property is problematic as it references the composed model
and so we develop a notion of trace alignment which we show is sufficient to
ensure compatibility. We illustrate the alignment property by presenting results
about the compatibility of composing duplicate copies of a Boolean network.
The compositional framework developed is supported by a prototype tool that
automates the composition process and associated analysis.

This paper is organized as follows. In Sect. 2 we provide a brief introduction to
Boolean networks. In Sect. 3 we develop a compositional framework for Boolean
networks and consider the preservation of behaviour under composition which we
formalise by a notion of compatibility. In Sect. 4 we investigate characterising
compatibility and introduce the property of alignment which avoids directly
considering the composed model. Finally, in Sect. 5 we present some concluding
remarks and discuss future work.

2 Boolean Networks

Boolean networks [8,9] are a widely used qualitative modelling approach for
biological control systems (see for example [1,3,10,11,13]). In this section we
introduce the basic definitions for Boolean networks needed in the sequel and
provide illustrative examples.

A Boolean network consists of a set of regulatory entities G = {g1, . . . , gn}
which can be in one of two possible states, either 1 representing the entity is
active (e.g. a gene is expressed or a protein is present) or 0 representing the
entity is inactive (e.g. a gene is not expressed or a protein is absent). The state
of each entity is regulated by a subset of entities in the Boolean network and we
refer to this subset as the neighbourhood of an entity (an entity may or may not
be in its own neighbourhood). An entity updates its state by applying a logical
next–state function to the current states of the entities in its neighbourhood.

We can define a Boolean network more formally as follows.

Definition 1. A Boolean Network BN is a tuple BN = (G,N,F) where:

(i) G = {g1, . . . , gk} is a non-empty, finite set of entities;
(ii) N = (N(g1), . . . , N(gk)) is a tuple of neighbourhoods, such that N(gi) ⊆ G

is the neighbourhood of gi; and
(iii) F = (F (g1), . . . , F (gn)) is a tuple of next-state functions, such that the

function F (gi) : B|N(gi)| → B defines the next state of gi.

Framework for Composing Qualitative Models of Biological Systems 27

g1

g3

g2

[g1] = g2
[g2] = g1
[g3] = g1g2

000

001

010

101

011

100

110

111

(A) (B) (C)

Fig. 1. Example of a Boolean network BNEx1 consisting of: (A) Wiring diagram; (B)
Equational definition of next–state functions for BNEx1; (C) Synchronous state graph

As an example, consider the Boolean network BNEx1 = (GEx1, NEx1, FEx1)
defined in Fig. 1. It consists of three entities GEx1 = {g1, g2, g3} with neigh-
bourhoods NEx1(g1) = {g2}, NEx1(g2) = {g1}, and NEx1(g3) = {g1, g2}. The
next-state functions FEx1 are defined equational in Fig. 1(B), where we use [gi]
to represent the next state of an entity gi.

A global state of a Boolean network BN with n entities is represented by a
tuple of Boolean states (s1, . . . , sn), where si ∈ B represents the state of entity
gi ∈ BN . Note as a notational convenience we often use s1 . . . sn to represent a
global state (s1, . . . , sn). When the current state of a Boolean network is clear
from the context we allow gi to denote both the name of an entity and its
corresponding current state. The state space of a Boolean network BN , denoted
SBN , is therefore the set of all possible global states SBN = B

|G|.
The state of a Boolean network can be updated either synchronously [9,16],

where the state of all entities is updated simultaneously in a single update step,
or asynchronously [6], where entities update their state independently. In the
following we focus on the synchronous update semantics which has received
considerable attention in the literature (see for example [1,2,8,9,12,16]). Given
two states S1, S2 ∈ SBN , let S1 → S2 represent a (synchronous) update step
such that S2 is the state that results from simultaneously updating the state of
each entity gi using its associated update function F (gi) and the appropriate
neighbourhood of states from S1. As an example, consider the global state 011
for BNEx1 (see Fig. 1), where entity g1 = 0, g2 = 1, and g3 = 1. Then 011 → 101
is an update step in BNEx1.

The sequence of global states through SBN from some initial state is called a
trace. Note that in the case of the synchronous update semantics such traces are
deterministic and infinite. However, given that the global state space is finite,
this implies that a trace must eventually enter a cycle, known formally as an
attractor cycle [9,14]. Attractor cycles are very important biologically where
they are seen as representing different biological states or functions (e.g. different
cellular types such as proliferation, apoptosis and differentiation [7]). We define a
finite canonical representation for synchronous traces σ(S), for S ∈ SBN , which
specifies the infinite behaviour of a trace up to the first repeated state. The set

28 H. Alkhudhayr and J. Steggles

of all traces Tr(BN) = {σ(S) | S ∈ SBN } therefore completely characterizes the
behaviour of a Boolean network BN under the (synchronous) update semantics.
For example, in BNEx1 the trace σ(011) = 〈011, 101, 010, 101, 010, 101, . . .〉 is
denoted by

σ(011) = 〈011, 101, 010, 101〉
It can be seen that BNEx1 has three attractors: two point attractors 〈000, 000〉
and 〈110, 110〉; and a cyclic attractor 〈101, 010, 101〉.

The behaviour of a Boolean network can be concisely represented by a state
graph in which the nodes are the global states and the edges are precisely the
synchronous update steps allowed. We let SG(BN) = (SBN ,→) denote the state
graph for a Boolean network BN under the synchronous trace semantics. As an
example, consider the synchronous state graph SG(BNEx1) for BNEx1 presented
in Fig. 1(C).

3 Compositional Framework

In this section we introduce definitions for composing two Boolean networks by
merging entities and prove some simple results such as commutativity. We then
consider what it means for the behaviour of an individual Boolean network in a
composed model to be preserved and formulate a notion of compatibility.

BN 1 BN 2g

C

BN 1 BN 2gc

g

Fig. 2. Pictorial representation of composing BN 1 and BN 2 to form a new Boolean
network C by merging entities g ∈ BN 1 and g′ ∈ BN 2 into a new entity gc

In the sequel, let BN 1 = (G1, N1, F1) and BN 2 = (G2, N2, F2) be two
Boolean networks such that G1 = {g, g1, . . . , gn} and G2 = {g′, g′

1, . . . , g
′
m} are

disjoint sets, for some n,m ∈ N.
We formally define the composition of two Boolean networks BN 1 and BN 2

based on using conjunction (see Fig. 2). (Note all results presented also hold
using disjunction.)

Definition 2. (Composition) Let C (BN 1,BN 2, g, g′) denote the Boolean net-
work constructed by merging BN 1 and BN 2 on entities g and g′ defined as
follows:

Framework for Composing Qualitative Models of Biological Systems 29

1. Entities: the finite set of entities G = (G1/{g}) ∪ (G2/{g′}) ∪ {gc}, where
gc denotes the new entity created by merging g and g′.

2. Neighbourhood: for any entity hi ∈ G, the neighbourhood N(hi) is defined
as follows:

N(hi) =

⎧
⎪⎨

⎪⎩

N1(hi)[g/gc], if hi ∈ G1

N2(hi)[g′/gc], if hi ∈ G2

N1(g)[g/gc] ∪ N2(g′)[g′/gc], if hi = gc

where S[f/e] represents set S with all occurrences of element f replaced by e.
3. Functions: for any hi ∈ G, the next-state function F (hi) is defined:

F (hi) =

⎧
⎪⎨

⎪⎩

F1(hi), if hi ∈ G1

F2(hi), if hi ∈ G2

F , if hi = gc

where F : B|N(gc)| → B is defined using four cases as follows:

(i) If g /∈ N1(g) and g′ /∈ N2(g′), where N1(g) = {l1, ..., lp} and N2(g′) =
{l′1, ..., l

′
q}, then F(l1, ..., lp, l′1, ..., l

′
q) = F1(g)(l1, ..., lp) ∧ F2(g′)(l′1, ..., l

′
q);

(ii) If g ∈ N1(g) and g′ /∈ N2(g′), where N1(g) = {g, l1, ..., lp} and
N2(g′) = {l′1, ..., l

′
q}, then F(gc, l1, ..., lp, l′1, ..., l

′
q) = F1(g)(gc, l1, ..., lp) ∧

F2(g′)(l′1, ..., l
′
q);

(iii) If g /∈ N1(g) and g′ ∈ N2(g′), where N1(g) = {l1, ..., lp} and
N2(g′) = {g′, l′1, ..., l

′
q}, then F(gc, l1, ..., lp, l′1, ..., l

′
q) = F1(g)(l1, ..., lp) ∧

F2(g′)(gc, l′1, ..., l
′
q);

(iv) If g ∈ N1(g) and g′ ∈ N2(g′), where N1(g) = {g, l1, ..., lp} and N2(g′) =
{g′, l′1, ..., l

′
q}, then

F(gc, l1, ..., lp, l′1, ..., l
′
q) = F1(g)(gc, l1, ..., lp) ∧ F2(g′)(gc, l′1, ..., l

′
q).

In the sequel, we let gc denote the new entity created by merging g and g′ and
assume that C (BN 1,BN 2, g, g′) has global states (gc g1 ... gn g′

1 ... g′
m) ∈ SC .

g4 g5
[g4] = g5
[g5] = g4

00

11

01 10

Fig. 3. A second Boolean network example BNEx2 containing the wiring diagram,
next–state equations, and state graph

As an example, consider composing BNEx1 (Fig. 1) and BNEx2 (Fig. 3) on
entities g1 and g4. The resulting Boolean network C(BNEx1,BNEx2, g1, g4) is
depicted in Fig. 4.

The following results shows that composition is commutative.

30 H. Alkhudhayr and J. Steggles

g1 g4
gc

g3

g2

g5

[gc] = g2g5
[g2] = gc

[g3] = gcg2
[g5] = gc

Fig. 4. Boolean network C(BNEx1,BNEx2, g1, g4) resulting from the composition of
BNEx1 and BNEx2 on entities g1 and g4

Lemma 3. For any Boolean networks BN 1 and BN 2 and entities g ∈ BN 1 and
g′ ∈ BN 2 we have C (BN 1,BN 2, g, g′) = C(BN 2,BN 1, g

′, g).

Proof. Straightforward based on the commutativity of conjunction. 	

Composition gives a means of constructing new Boolean networks from well–

understood and analysed Boolean networks. In particular, we would like to be
able to infer properties and behaviour of a composed system from the underlying
Boolean networks that have been composed. Being able to do this would allow us
to construct large Boolean models with known properties without the limitations
imposed by the state space explosion problem. The following definitions formalize
the idea that the original behaviour of the underlying Boolean networks can be
preserved in their composition.

We begin by defining projection operators which are able to extract states
and traces from a composed system.

Definition 4. (Projections) Let C = C (BN 1,BN 2, g, g′) be the new Boolean
network constructed by composing BN 1 and BN 2 on entities g and g′. Let S =
(gc g1 ... gn g′

1 ... g′
m) ∈ SC be a global state in the composed system. Then we

define the left P1 : SC → SBN 1 and right P2 : SC → SBN 2 projection operators
by

P1(S) = (gc g1 ... gn), P2(S) = (gc g′
1 ... g′

m)

We can extend the projection operators to traces σ = 〈S1, S2, . . .〉 ∈ Tr(C) by

P1(σ) = 〈P1(S1),P1(S2), . . .〉, P2(σ) = 〈P2(S1),P2(S2), . . .〉
and let P1(Tr(C)) and P2(Tr(C)) represent the sets of projected traces derived
by projecting each trace in Tr(C).

Note that projected traces may not be well–defined traces in their corre-
sponding Boolean network, i.e. Pj(Tr(C)) �⊆ Tr(BN j) may hold, for j ∈ {1, 2}.

We are interested in situations where composing two Boolean networks pre-
serves their behaviour and define a notion of compatibility.

Definition 5. (Compatibility) Let C = C (BN 1,BN 2, g, g′) be the Boolean net-
work resulting from composing BN 1 and BN 2 on entities g and g′. Then we say
that BN 1 and BN 2 are compatible on g and g′ iff Tr(BN 1) ⊆ P1(Tr(C)) and
Tr(BN 2) ⊆ P2(Tr(C)).

Framework for Composing Qualitative Models of Biological Systems 31

To illustrate the definition of compatibility consider composing BNEx1 and
BNEx2 to produce C = C(BNEx1,BNEx2, g1, g4) (see Fig. 4). Then examples of
projected traces in P2(Tr(C)) (assuming state order (gc g2 g3 g5)) will be

P2(〈0100, 1011, 0100〉) = 〈00, 11, 00〉 P2(〈0001, 0001〉) = 〈01, 01〉
P2(〈1001, 0100, 1011, 0100〉) = 〈11, 00, 11〉 P2(〈1100, 1100〉) = 〈10, 10〉

It can be seen that Tr(BNEx2) ⊆ P2(Tr(C)) and so since we can also show
Tr(BNEx1) ⊆ P1(Tr(C)) we know BNEx1 and BNEx2 are compatible on g1
and g4.

The following results show that composition is associative and so given
Lemma 3 (commutativity) this means that the order in which multiple Boolean
networks are composed does not affect the resulting model.

Lemma 6. Let BN 1, BN 2 and BN 3 be three Boolean networks, and let g1 ∈
BN 1, g2, g3 ∈ BN 2, g2 �= g3, and g4 ∈ BN 3. Then we have

C(C (BN 1,BN 2, g1, g2) ,BN 3, g3, g4) = C(BN 1, C(BN 2,BN 3, g3, g4), g1, g2)

Proof. Let C2 = C (BN 1,BN 2, g1, g2), C3 = C(C2,BN 3, g3, g4), and let C4 =
C(BN 2,BN 3, g3, g4), C5 = C(BN 1, C4, g1, g2). Let gc2 be the entity representing
the merge of g1 and g2, and gc4 the merge of g3 and g4. Then by Definition 2 it
suffices to show: (1) FC3(g

c
2) = FC5(g

c
2); and (2) FC3(g

c
4) = FC5(g

c
4).

We prove (1) as follows. By Definition 2 we know

FC3(g
c
2) = FC2(g

c
2), and FC2(g

c
2) = F1(g1) ∧ F2(g2)

where F1(g1) ∧ F2(g2) represents the function formed by the conjunction of the
results of the two subfunctions F1(g1) and F2(g2). Then it follows from above
that

FC3(g
c
2) = F1(g1) ∧ F2(g2) (I)

Again, by Definition 2 we know

Fc4(g2) = F2(g2), and Fc5(g
c
2) = F1(g1) ∧ Fc4(g2)

and so it follows that

Fc5(g
c
2) = F1(g1) ∧ F2(g2) (II)

The result therefore follows by (I) and (II). The proof of (2) follows along similar
lines to above. 	

Lemma 7. Let BN 1, BN 2 and BN 3 be three Boolean networks, and let g1 ∈
BN 1, g2 ∈ BN 2, and g4 ∈ BN 3. Then we have

C(C (BN 1,BN 2, g1, g2) ,BN 3, g
c
2, g4) = C(BN 1, C(BN 2,BN 3, g2, g4), g1, gc4)

where gc2 is the entity representing the merge of g1 and g2, and gc4 the merge of
g2 and g4.

32 H. Alkhudhayr and J. Steggles

Proof. Let C2 = C (BN 1,BN 2, g1, g2), C3 = C(C2,BN 3, g
c
2, g4), and gc3 be the

entity representing the merge of gc2 and g4. Let C4 = C(BN 2,BN 3, g2, g4), C5 =
C(BN 1, C4, g1, g

c
4), and gc5 be the entity representing the merge of g1 and gc4. To

show that C3 = C5 we need to show that Fc3(g
c
3) = Fc5(g

c
5). By Definition 2 we

know
Fc3(g

c
3) = Fc2(g

c
2) ∧ F3(g4), and Fc2(g

c
2) = F1(g1) ∧ F2(g2)

and so it follows that

Fc3(g
c
3) = (F1(g1) ∧ F2(g2)) ∧ F3(g4) (III)

Again, by Definition 2 we know

Fc5(g
c
5) = F1(g1) ∧ Fc4(g

c
4), and Fc4(g

c
4) = F2(g2) ∧ F3(g4)

and so it follows that

Fc5(g
c
5) = F1(g1) ∧ (F2(g2) ∧ F3(g4)) (IV)

Then the result follows by (III), (IV) and the associativity of ∧. 	

4 Compatibility and Alignment

In this section we investigate how to infer compatibility without using the com-
posed model. We formalise the property of alignment which we show is sufficient
for obtaining compatibility. We use this result to show that duplicate Boolean
networks are compatible under composition of corresponding entities.

For any Boolean network BN with entities G = {g1, . . . , gn}, global state
S = (s1 . . . sn) ∈ SBN and any entity gi ∈ BN we define ρgi(S) = si. Then ρgi(σ)
denotes the projected trace of entity gi ∈ BN on trace σ = 〈S1, S2, . . .〉 ∈ Tr(BN)
defined by ρgi(σ) = 〈ρgi(S1), ρgi(S2), . . .〉. We let ρgi(Tr(BN)) = {ρgi(σ)| σ ∈
Tr(BN)}. As an example, consider projecting the traces of BNEx2 (Fig. 3) on
g4 which gives ρg4(Tr(BNEx2)) = {〈0, 1, 0〉, 〈0, 0〉, 〈1, 1〉, 〈1, 0, 1〉}.

We can now define the property of alignment as follows.

Definition 8. (Alignment) Let BN 1 and BN 2 be two Boolean networks and
let g ∈ BN 1 and g′ ∈ BN 2. Then we say that BN 1 and BN 2 are aligned on g
and g′ iff ρg(Tr(BN 1)) = ρg′(Tr(BN 2)).

Let C = C (BN 1,BN 2, g, g′), and S1 = (g g1 ... gn) ∈ SBN 1 and S2 =
(g′ g′

1 ... g′
m) ∈ SBN 2 . Then we define S1∧S2 ∈ SC by merging the state of g with

g′, that is S1 ∧ S2 = (g ∧ g′ g1 ... gn g′
1 ... g′

m). Let σ1 = 〈S1
1 , S1

2 , ...〉 ∈ Tr(BN 1)
and σ2 = 〈S2

1 , S2
2 , ...〉 ∈ Tr(BN 2) be two traces. Then we define σ1 ∧ σ2 =

〈S1
1 ∧ S2

1 , S1
2 ∧ S2

2 , ...〉. Note that for any σ1 ∈ Tr(BN 1) and σ2 ∈ Tr(BN 2) we
may have that σ1 ∧ σ2 �∈ Tr(C).

We now prove some useful results about merging aligned traces.

Lemma 9. Let BN 1 and BN 2 be Boolean networks with G1 = {g, g1, . . . , gn}
and G2 = {g′, g′

1, . . . , g
′
m}. Let C = C (BN 1,BN 2, g, g′), and let σ1 ∈ Tr(BN 1)

and σ2 ∈ Tr(BN 2) such that ρg(σ1) = ρg′(σ2). Then we have:

Framework for Composing Qualitative Models of Biological Systems 33

(i) σ1 ∧ σ2 ∈ Tr(C); and
(ii) P1(σ1 ∧ σ2) = σ1 and P2(σ1 ∧ σ2) = σ2.

Proof. Let σ1 = 〈S1, S2, ...〉 ∈ Tr(BN 1) and σ2 = 〈T1, T2, ...〉 ∈ Tr(BN 2)
such that ρg(σ1) = ρg′(σ2). In the following we consider an arbitrary syn-
chronous update step in the above traces: Si → Si+1 and Ti → Ti+1, where
Si = (si si1 ... sin), Si+1 = (si+1 si+1

1 ... si+1
n), Ti = (ti ti1 ... tim), and

Ti+1 = (ti+1 ti+1
1 ... ti+1

m). Note that by our assumption ρg(σ1) = ρg′(σ2) we
know si = ti and so by idempotency of ∧ we have

si ∧ ti = si = ti (V)

(i) To show σ1 ∧ σ2 ∈ Tr(C), it suffices to show

(si si1 ... sin) ∧ (ti ti1 ... tim) → (si+1 si+1
1 ... si+1

n) ∧ (ti+1 ti+1
1 ... ti+1

m)

is a synchronous update step in C. We do this in three stages by considering
each possible entity h ∈ C. (Note to simplify the proof we assume N1(h1) =
G1 and N2(h2) = G2, for any h1 ∈ G1 and h2 ∈ G2.)
(1) Suppose h = gj ∈ BN 1, for some j ∈ {1, . . . , n}. Then by the definition

of merging states and (V) above we have

F (gj)(si ∧ ti, si1, ..., s
i
n) = F1(gj)(si, si1, ..., s

i
n)

By definition of σ1 we know F1(gj)(si, si1, ..., s
i
n) = si+1

j and so it follows
that

F (gj)(si ∧ ti, si1, ..., s
i
n) = si+1

j

as required.
(2) Suppose h = g′

j ∈ BN 2, for some j ∈ {1, . . . , m}. Then we can prove

F (g′
j)(s

i ∧ ti, ti1, ..., t
i
m) = ti+1

j

using a similar approach to (1) above.
(3) Suppose h = gc ∈ C. Then by Definition 2 and (I) above we have

F (gc)(si ∧ ti, si1, ..., s
i
n, t

i
1, ..., t

i
m) = F1(g)(s

i, si1, ..., s
i
n) ∧ F2(g

′)(ti, ti1, ..., t
i
m)

Then by our assumptions on σ1 and σ2 we have

F1(g)(si, si1, ..., s
i
n) ∧ F2(g′)(ti, ti1, ..., t

i
m) = si+1 ∧ ti+1

and so the result follows as required.
(ii) By definition of merging traces it suffices to show that

P1(Si ∧ Ti) = Si and P2(Si ∧ Ti) = Ti

for any i ∈ N. By definition of merging states we have

P1(Si ∧ Ti) = (si ∧ ti si1 ... sin) and P2(Si ∧ Ti) = (si ∧ ti ti1 ... tim)

Then the result follows by (V) above. 	

34 H. Alkhudhayr and J. Steggles

We can now prove that alignment is a sufficient property for compatibility.

Theorem 10. Let BN 1 and BN 2 be two BNs with g ∈ BN 1 and g′ ∈ BN 2.
Then if BN 1 and BN 2 are aligned on g and g′ then BN 1 and BN 2 are compatible
on g and g′.

Proof. Let C = C (BN 1,BN 2, g, g′). By Definition 5 we need to show the follow-
ing: (i) Tr(BN 1) ⊆ P1(Tr(C)); and (ii) Tr(BN 2) ⊆ P2(Tr(C)).

(i) Since g aligns with g′ we know that for each trace σ1 ∈ Tr(BN 1) there
exists σ2 ∈ Tr(BN 2) such that ρg(σ1) = ρg′(σ2). Then we need to show
that σ1 ∈ P1(Tr(C)). By our assumption above on σ1 and σ2 and Lemma
9. (i) we know that σ1 ∧ σ2 ∈ Tr(C) must hold. Then by Lemma 9. (ii) we
have P1(σ1 ∧ σ2) = σ1 and so σ1 ∈ P1(Tr(C)) as required.

(ii) The proof follows along similar lines to (i) above. 	

The above result provides a means of ensuring compatibility holds without

requiring the composed system to be considered. This is important since a com-
posed model will be larger and so more affected by the state space explosion
problem. Note that while alignment is a sufficient condition for compatibility
it can be shown that it is not a necessary property for it. In future work we
intend to investigate strengthening alignment so that it completely characterises
compatibility (see Sect. 5).

We say that BN 1 and BN 2 are duplicates if they are the same Boolean net-
work up to the renaming of entities (i.e. they are isomorphic). It is interesting
to consider what happens when duplicate Boolean networks are merged on cor-
responding entities (where corresponding is defined in the obvious way based on
the underlying isomorphism). As an illustration, consider the example presented
in Fig. 5 based on composing two duplicate copies of BNEx1 (Fig. 1).

g1 g4
gc

g6

g5

g3

g2

[gc] = g2g5
[g2] = gc

[g3] = gcg2
[g5] = gc

[g6] = gcg5

Fig. 5. Composing two duplicate copies of BNEx1 on corresponding entities g1 and g4

We now use the alignment property to show that duplicate Boolean networks
are compatible when composed on corresponding entities.

Theorem 11. Let BN 1 and BN 2 be two duplicate Boolean networks and let
g ∈ BN 1 and g′ ∈ BN 2 be corresponding entities. Then BN 1 and BN 2 are
compatible on g and g′.

Framework for Composing Qualitative Models of Biological Systems 35

Proof. Since BN 1 and BN 2 are duplicates it follows (assuming a corresponding
state order) that Tr(BN 1) = Tr(BN 2). Thus by Definition 8 we know that BN 1

and BN 2 are aligned on corresponding entities g and g′, and so by Theorem 10
we have that BN 1 and BN 2 are compatible on g and g′ as required. 	

5 Conclusions

In this paper we set out to develop a compositional framework for Boolean net-
works in order to facilitate the construction and analysis of large scale models.
This work was motivated by interesting interactions with the synthetic biology
group at Newcastle1 and their search for formal tools and techniques to sup-
port their work on engineering biological systems. We have formally defined our
compositional approach and introduced the notion of compatibility to formalize
the preservation of a Boolean network’s behaviour within a composed model.
We formulated the alignment property which we showed was a sufficient con-
dition for ensuring compatibility and used it to investigate the composition of
duplicate models. Importantly, the alignment property makes no reference to
the composed model and so helps avoid potentially limiting state space explo-
sion issues. The compositional framework developed is supported by a prototype
tool that automates the composition process and associated analysis.

A range of related work on composing Boolean networks can be found in
the literature. For example, the properties of composing random Boolean net-
work by computing the attractors compositionally is considered in [5]. Other
work includes [15] in which a compositional approach is used to study a large-
scale network. Our approach based on merging entities and characterising the
preservation of model behaviour appears to be new.

In future work we intend to extend the alignment property to provide a com-
plete characterisation of compatibility. Initial work in this area has focused on
using a state graph to model the interference that can occur between Boolean
networks in a composed model. We are also interested in using our composi-
tional framework as the basis for decomposing large Boolean network models to
aid analysis. Further, we intend to undertake a series of large case studies to
investigate the applicability of the techniques and tools we have developed.

Acknowledgments. We would like to thank Will Peckham for his work on developing
tool support for our framework. We also acknowledge the financial support provided
by Faculty of Computing and Information Technology, King Abdulaziz University.

1 www.ncl.ac.uk/csbb/.

www.ncl.ac.uk/csbb/

36 H. Alkhudhayr and J. Steggles

References

1. Akutsu, T., Miyano, S., Kuhara, S., et al.: Identification of genetic networks from
a small number of gene expression patterns under the boolean network model.
Pacific Symp. Biocomputing 4, 17–28 (1999)

2. Banks, R., Steggles, L.J.: An abstraction theory for qualitative models of biological
systems. Theoret. Comput. Sci. 431, 207–218 (2012)

3. Bartocci, E., Lió, P.: Computational modeling, formal analysis, and tools for sys-
tems biology. PLoS Comput. Biol. 12(1), e1004591 (2016)

4. De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature
review. J. Comput. Biol. 9(1), 67–103 (2002)

5. Dubrova, E., Teslenko, M.: Compositional properties of random boolean networks.
Phys. Rev. E 71, 056116 (2005). http://link.aps.org/doi/10.1103/PhysRevE.
71.056116

6. Harvey, I., Bossomaier, T.: Time out of joint: attractors in asynchronous random
boolean networks. In: Proceedings of the Fourth European Conference on Artificial
Life, pp. 67–75. MIT Press, Cambridge (1997)

7. Huang, S., Ingber, D.E.: Shape-dependent control of cell growth, differentiation,
and apoptosis: switching between attractors in cell regulatory networks. Exp. Cell
Res. 261(1), 91–103 (2000)

8. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22(3), 437–467 (1969)

9. Kauffman, S.A.: The Origins of OIrder: Self Organization and Selection in Evolu-
tion. Oxford University Press, USA (1993)

10. Rosenblueth, D.A., Muñoz, S., Carrillo, M., Azpeitia, E.: Inference of boolean net-
works from gene interaction graphs using a SAT solver. In: Dediu, A.-H., Mart́ın-
Vide, C., Truthe, B. (eds.) AlCoB 2014. LNCS, vol. 8542, pp. 235–246. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07953-0 19

11. Saadatpour, A., Albert, R.: Boolean modeling of biological regulatory networks: a
methodology tutorial. Methods 62(1), 3–12 (2013)

12. Schaub, M.A., Henzinger, T.A., Fisher, J.: Qualitative networks: a symbolic app-
roach to analyze biological signaling networks. BMC Syst. Biol. 1(4) (2007)

13. Steggles, L.J., Banks,R., Shaw,O.,Wipat,A.:Qualitatively modelling and analysing
genetic regulatory networks: a petri net approach. Bioinformatics 23(3), 336–343
(2007). http://bioinformatics.oxfordjournals.org/content/23/3/336

14. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks–
II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57(2), 277–297
(1995)

15. Tournier, L., Chaves, M.: Interconnection of asynchronous boolean networks, asymp-
totic and transient dynamics. Automatica 49(4), 884–893 (2013)

16. Wuensche, A.: Basins of attraction in network dynamics: a conceptual framework
for biomolecular networks. In: Schlosser, G., Wagner, G.P. (eds.) Modularity in
Development and Evolution, chap. 13, pp. 288–311. University of Chicago Press,
Chicago (2004)

http://link.aps.org/doi/10.1103/PhysRevE.71.056116
http://link.aps.org/doi/10.1103/PhysRevE.71.056116
https://doi.org/10.1007/978-3-319-07953-0_19
http://bioinformatics.oxfordjournals.org/content/23/3/336

A Statistical Approach to the Identification
of Diploid Cellular Automata

Witold Bo�lt1(B) , Aleksander Bo�lt2 , Barbara Wolnik2, Jan M. Baetens3 ,
and Bernard De Baets3

1 Systems Research Institute, Polish Academy of Sciences, 01–447 Warsaw, Poland
witold.bolt@ibspan.waw.pl

2 Institute of Mathematics, Faculty of Mathematics, Physics and Informatics,
University of Gdańsk, 80–308 Gdańsk, Poland

3 KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics,
Ghent University, 9000 Ghent, Belgium

Abstract. In this paper, the identification problem of diploid Cellular
Automata is considered, in which, based on a series of observations, the
underlying cellular automaton rules are to be uncovered. A solution algo-
rithm based on a statistical parameter estimation method using a normal
distribution approximation is proposed. The accuracy of this method is
verified in a series of computational experiments.

Keywords: Stochastic cellular automata · Diploid Cellular Automata
Parameter estimation · Systems identification

1 Introduction

Cellular Automata (CAs) are commonly used modelling constructs for address-
ing a variety of practical and theoretical problems [5]. In order to use CAs for
a modelling task, one needs to understand the underlying mechanisms of the
phenomenon at stake, and translate them into CA rules. This hampers the use
of CAs, since there are problems for which it is hard to manually design such
rules. Many efforts have been made in the direction of developing automated
methods for constructing CAs based on observed space-time diagrams (see [1]
for a review of the key methods). Yet, in practice the problem is still not fully
solved as most of the methods are only well suited for special classes of problems,
or impose strong requirements on the observations.

In this paper we focus on the identification of a class of Stochastic CAs
(SCAs), called diploid CAs. Such SCAs recently gained a lot of attention in the
research community (see [6] for some recent results). The identification method
presented in this paper is an extension of the method presented in [3], where the
identification of α-asynchronous CAs was discussed. The presented results form
the first step towards establishing a general identification method for SCAs.

The paper is organized as follows. In Sect. 2 we present the key definitions.
The identification problem and the description of the identification algorithm are
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 37–48, 2017.
https://doi.org/10.1007/978-3-319-71069-3_3

http://orcid.org/0000-0001-6787-2100
http://orcid.org/0000-0002-4888-2722
http://orcid.org/0000-0003-4084-9992
http://orcid.org/0000-0002-3876-620X

38 W. Bo�lt et al.

given in Sect. 3. Section 4 contains the results of our computational experiments.
The paper is concluded by Sect. 5, where the results are summarized.

2 Preliminaries

In this paper, we consider 1D CAs in which the cells are arranged in a circu-
lar array, and we denote the number of cells by N . We focus on binary CAs
with a symmetric neighborhood whose radius is denoted by r. A configura-
tion of a given CA A is an element x = (x0, x1, . . . , xN−1) of {0, 1}N , and
A is identified with its global rule F : {0, 1}N → {0, 1}N , given by the for-
mula F (x) = (x′

0, x
′
1, . . . , x

′
N−1), where x′

i = f(xi−r, . . . , xi−1, xi, xi+1, . . . , xi+r)
and all operations on the indices are performed modulo N . Here, the func-
tion f : {0, 1}2r+1 → {0, 1}, called the local rule, is an update function, which
may be deterministic or not. For the sake of readability, we number the ele-
ments of {0, 1}2r+1 as follows: N0 = (0, . . . , 0, 0), N1 = (0, . . . , 0, 1), . . . ,
Ns−1 = (1, . . . , 1, 0), Ns = (1, . . . , 1, 1), where s = 22r+1 − 1. Further, xt

i will be
used to denote the value of the i-th cell after the t-th application of F starting
from the configuration x.

CAs with a unit neighborhood radius and a deterministic f are known as
Elementary CAs (ECAs) [9]. The local rule f of an ECA is a function of three
variables: f : {0, 1}3 → {0, 1} as the set {0, 1}3 has only eight elements: N0 =
(0, 0, 0), N1 = (0, 0, 1), . . . , N7 = (1, 1, 1), and the local rule f can be defined
by setting the values �k = f(Nk) ∈ {0, 1}. These values can be presented as
a lookup table (LUT) (see Table 1). Note that the order of the neighborhood
configurations is fixed, so a given LUT can be stored using its last row, i.e. the
vector (�i).

Table 1. General form of the LUT of the local rule of an ECA.

N0 N1 N2 N3 N4 N5 N6 N7

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

�0 �1 �2 �3 �4 �5 �6 �7

The number C =
∑7

k=0 f(Nk) · 2k is called its rule number. We will write
ECAC to denote an ECA with rule number C (for example ECA204 denotes
the identity CA).

If the local rule of a CA is not deterministic, we are dealing with an SCA.
Here, we consider SCAs where the local rule can be expressed as:

xt+1
i = Xt,i

(
xt

i−r, . . . , x
t
i−1, x

t
i, x

t
i+1, . . . , x

t
i+r

)
, (1)

where Xt,i(Nk) are independent Boolean random variables satisfying:

Pr (Xt,i(Nk) = 1) = pk, (2)

A Statistical Approach to the Identification of Diploid Cellular Automata 39

i.e. the probability of turning the state of a cell to 1 in the next time step depends
only on the states of the cells in its neighborhood and is independent of the time
step t and the cell number i. As a consequence of the binary nature of the state
set, it holds that:

Pr (Xt,i(Nk) = 0) = 1 − pk, (3)

which means that an SCA can be fully described by the sequence of probabilities
(p0, p1, . . . , ps), usually presented in a tabular form (pLUT). The general form
of a pLUT of an SCA with r = 1 is given in Table 2.

Table 2. General form of the pLUT of an SCA with unit radius.

N0 N1 N2 N3 N4 N5 N6 N7

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

p0 p1 p2 p3 p4 p5 p6 p7

Although Table 2 does not look different from Table 1, its entries pk are num-
bers from [0, 1], while each �k in Table 1 belongs to {0, 1}.

It is known that every SCA can be expressed as a stochastic mixture of
a finite number of deterministic CAs [2], i.e. for every SCA A, there exists a
finite sequence of deterministic CAs (A1, . . . , Am) and a vector of probabilities
(λ1, . . . , λm) satisfying

∑m
i=1 λi = 1, such that A is equivalent to independently

selecting Ai for every cell, at every time step, with probability λi. In this paper
we focus on a special class of SCAs, the so-called diploid CAs, which can be
expressed as stochastic mixtures consisting of only two deterministic CAs. Such
SCAs have been studied earlier by many authors, (e.g. [6,8]). Note that a special
class of diploid CAs is the class of α-asynchronous CAs [7], where one of the two
deterministic CAs is the identity CA.

Definition 1 (Diploid CA). Let A1 and A2 be two different deterministic
CAs with the same neighborhood radius r and with f1 and f2 as their local rules,
respectively. For any mixing rate λ ∈]0, 1[, we define the diploid CA (A1, A2)λ

as an SCA with the following probabilities:

pk = λf1(Nk) + (1 − λ)f2(Nk), (4)

for any k ∈ {0, 1, . . . , s}.
Note that any two CAs may be considered as having the same neighborhood
radius, since a CA with radius r can be considered as a CA with radius r′ for
any r′ > r. For the sake of convenience, we will also use (A1, A2)λ for the cases
λ ∈ {0, 1}. According to (4) it holds that (A1, A2)0 = A2 and (A1, A2)1 = A1,
meaning that these are deterministic CAs and not diploid CAs. Moreover, it is
easy to see that (4) gives:

40 W. Bo�lt et al.

pk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 , if f1(Nk) = f2(Nk) = 0 ,

λ , if f1(Nk) = 1 and f2(Nk) = 0 ,

1 − λ , if f1(Nk) = 0 and f2(Nk) = 1 ,

1 , if f1(Nk) = f2(Nk) = 1 .

(5)

Example 2. Let A1 = ECA57 and A2 = ECA120. The general form of the pLUT
of (A1, A2)λ is shown in Table 3. Some space-time diagrams of (A1, A2)λ evolved
from the same initial configuration for different values of λ are shown in Fig. 1.

In general, the decomposition of an SCA as a stochastic mixture of CAs is not
unique [2], yet the following proposition [6] gives a full characterization of diploid
CAs, as well as the conditions for the existence of a unique representation.

Table 3. The LUTs of ECAs 57 and 120 and the pLUT of the diploid
(ECA57, ECA120)λ.

N0 N1 N2 N3 N4 N5 N6 N7

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

ECA120 1 0 0 1 1 1 0 0

ECA57 0 0 0 1 1 1 1 0

diploid CA λ 0 0 1 1 1 1−λ 0

(a) λ = 0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8 (f) λ = 1

Fig. 1. Space-time diagrams of (ECA57, ECA120)λ for six different mixing rates λ,
evolved from the same initial configuration.

A Statistical Approach to the Identification of Diploid Cellular Automata 41

Proposition 3. Let (p0, p1, . . . , ps) be the pLUT of an SCA A. Then A is a
diploid CA if and only if there exists a λ ∈]0, 0.5] such that pk ∈ {0, λ, 1 − λ, 1}
for each k ∈ {0, 1, . . . , s}, but (p0, p1, . . . , ps) �∈ {0, 1}s+1. Moreover, if λ �= 0.5,
then there exists a unique couple (A1, A2) satisfying A = (A1, A2)λ. Otherwise,
if λ = 0.5, then there are 2d such couples, with d being the number of pk equal
to 0.5, for k = 0, 1, . . . , s.

3 Identification

We start with defining the identification problem. Our formulation is based on
the concept of an observation of a space-time diagram, which is assumed to
originate from some unknown diploid CA (A1, A2)λ. Solving the identification
problem requires finding both CAs A1 and A2 and establishing a good estimation
of λ. More formally, let I1, I2, . . . , IM be N ×T arrays with binary entries. Each
array Im, for m ∈ {1, 2, . . . ,M}, will be referred to as an observation. The
set of all observations will be denoted by I. We assume that each observation
I ∈ I is a space-time diagram of the same diploid CA (A1, A2)λ. We choose
a small α ∈]0, 1[and we take 1 − α as a confidence level. Based on the set of
observations I, we construct candidates for A1 and A2, and we estimate λ by
building a confidence interval [λL, λU]. The probability that both CAs A1 and
A2 are correctly identified and the true λ belongs to [λL, λU] is at least 1 − 2α.

Below we propose an algorithm for solving the identification problem. Fol-
lowing Proposition 3, it is obvious that it should be assumed that λ �= 0.5, but to
obtain the required confidence level, we additionally assume that λ is bounded
between known bounds a and b, i.e. 0 < a ≤ λ ≤ b < 0.5.

Based on a set of observations I, we create frequency tables L = (L0, . . . , Ls)
and K = (K0, . . . ,Ks), where Lk denotes the number of occurrence of the neigh-
borhood configuration Nk in among the observations I ∈ I, where the last row
of each observation is discarded. To build the table K, we additionally check
the state of the central cell in row t + 1 for each of the neighborhoods on row t,
and we count the number of cases it equals 1. The meaning of the numbers L
and K is following. For every k ∈ {0, 1, . . . , s}, the number Lk is the number of
occurrences of the neighborhood configuration Nk, while Kk is the number of
cases in which the application of the unknown diploid CA to this neighborhood
configuration resulted in state 1. Obviously, the number Lk − Kk is the number
of cases in which the outcome of the diploid CA’s application to Nk was 0. We
assume that the set of observations I is large enough to ensure that each neigh-
borhood configuration was observed at least once (which is always possible if we
have control over the initial configurations), so Lk > 0 for every k.

Proposition 4. Assume that the observations in I are space-time diagrams of a
diploid CA (A1, A2)λ and f1 and f2 are the local rules of A1 and A2, respectively.
Then for any k ∈ {0, 1, . . . , s} the proportion p̂k = Kk

Lk
is a random variable

following a binomial distribution with success probability pk, where pk is given
by (5).

42 W. Bo�lt et al.

The first step in the identification is to identify the deterministic CAs A1 and
A2, i.e. to find their corresponding LUTs �

(1)
k and �

(2)
k , where (�(1)0 , �

(1)
1 , . . . , �

(1)
s)

and (�(2)0 , �
(2)
1 , . . . , �

(2)
s) are the LUTs of A1 and A2, respectively. For every k =

0, . . . , s we proceed as follows:

(a) if Kk = 0, then we put �
(1)
k = �

(2)
k = 0,

(b) if Kk = Lk, then we put �
(1)
k = �

(2)
k = 1,

(c) if Kk

Lk
< 0.5, then we put �

(1)
k = 1 and �

(2)
k = 0,

(d) if Kk

Lk
> 0.5, then we put �

(1)
k = 0 and �

(2)
k = 1.

Note that if Kk = 0, (case (a)), for which we are not sure if both �
(1)
k and �

(2)
k

are equal to zero, as it is possible that pk is equal to λ or 1−λ, while there is no
sample in I with the outcome 1. Fortunately, the probability of this happening
equals (1−λ)Lk or λLk , and thus is less than (1−a)Lk . The same considerations
apply when Kk = Lk (case (b)), to verify that the probability of mistake is less
than (1−a)Lk . Hence, to achieve the desired confidence level, we will assume that
(1 − a)Lk ≤ α

2s+1 . In cases (c) and (d) the situation is a bit more complicated. If
Kk

Lk
< 0.5, then to verify if pk is really less than 0.5, we can perform a hypothesis

test on proportions with alternative hypothesis H1 : pk < 0.5. We use the
normal approximation method and a left-tailed test. If the obtained p-value is
less than α

2s+1 , then we may claim that pk is really less than 0.5. If Kk

Lk
> 0.5,

the alternative hypothesis is H1 : pk > 0.5 and the test is right-tailed. This
completes the procedure of finding A1 and A2. Given above assumptions, the
total probability of picking wrong CAs is less than α.

We now turn to the second step of the algorithm to estimate λ by constructing
a relatively small confidence interval [λL, λU] that contains the true (unknown)
λ with high probability. Let us note that if Kk

Lk
< 0.5, then we know that the

diploid CA (A1, A2)λ acted as A1 Kk times, during Lk independent transitions,
while if Kk

Lk
> 0.5, then this diploid CA acted as A1 Lk − Kk times within these

Lk independent transitions. As a consequence, we get the following proposition.

Proposition 5. Let Γ = {k ∈ {0, 1, . . . , s} | Kk

Lk
< 0.5} and Ω = {k ∈

{0, 1, . . . , s} | Kk

Lk
> 0.5}. Then, the proportion

λ̂ =
∑

k∈Γ Kk +
∑

k∈Ω(Lk − Kk)
∑

k∈Γ Lk +
∑

k∈Ω Lk
, (6)

is a random variable following a binomial distribution with success probability λ.

Following [4] there are various methods for estimating the confidence inter-
val for λ using λ̂. Here, we choose the normal distribution approximation, even
though the authors of [4] advice against it. This choice is motivated by the fact
that this method has reasonable accuracy, while its implementation is straight-
forward. Assuming that 1 − α is the chosen confidence level, then the following
holds with probability 1 − α:

A Statistical Approach to the Identification of Diploid Cellular Automata 43

λL := λ̂ − zα

√

λ̂(1 − λ̂)
L∗ ≤ λ ≤ λ̂ + zα

√

λ̂(1 − λ̂)
L∗ =: λU , (7)

where L∗ =
∑

k∈Γ Lk +
∑

k∈Ω Lk, and zα is the argument at which the cumula-
tive standard normal distribution function takes the value 1− α

2 . The above holds
if L∗ is large enough, which in our case means that L∗λ and L∗(1−λ) are greater
than five [4]. Since λ is unknown, due to the assumption λ ≥ a, we can impose
a stronger condition L∗ > 5

a , which is easy to verify. With these assumptions, it
holds that λ ∈ [λL, λU] with probability 1−α. Note that λU −λL ≤ zα√

L∗ and for
commonly used confidence levels it holds that zα < 3. Thus, if L∗ is sufficiently
large, we are sure that the interval [λL, λU] narrows as the number of observed
cells grows.

4 Results

In this section, the results of computational experiments are presented to illus-
trate the accuracy of the algorithm described in Sect. 3. They involve the identi-
fication of diploid CAs consisting of ECAs. More formally, we considered diploid
CAs (A1, A2)λ, with A1 and A2 being ECAs and λ = 0.1, 0, 2, 0.3, 0.4. Since
A1 �= A2, a total of 256 × 255 × 4 = 249900 diploid CAs were considered.
Since (A2, A1)λ is identical to (A1, A2)1−λ all diploid CAs based on ECAs, for
λ = 0.1, 0.2, . . . , 0.9 were examined, with the exception of λ = 0.5. The same
set of 100 random initial configurations was used for all considered cases. Each
of the initial configurations contained 49 cells. Using these initial configura-
tions, 100 observations, each containing 49 times steps, were generated for each
(A1, A2)λ. The identification algorithm was executed based on these observa-
tions. The process of constructing the observation set and identifying the CAs
was repeated 50 times for each of the considered diploid CAs. Consequently,
for each diploid CA (A1, A2)λ, 50 pairs of candidate CAs (A(j)

1 , A
(j)
2) and 50

confidence intervals [λ(j)
L , λ

(j)
U] for j = 1, 2, . . . , 50 were obtained.

In each run of the algorithm for each diploid CA, the obtained candidate
CAs (A(j)

1 , A
(j)
2) were matching the ones building the diploid CA in question.

More formally, for every (A1, A2)λ it turned out that A1 = A
(j)
1 and A2 = A

(j)
2

for every j, meaning that the first step of the identification algorithm always
resulted in a correct identification of the CAs making up the diploid CAs.

To verify the results of the second step of the algorithm, two error measures
were used: the maximal relative error and the maximal distance to the confidence
interval. Letting λ̂(j) = λ

(j)
L +λ

(j)
U

2 , the maximal relative error is defined as:

E(A1, A2, λ) = max
j=1,...,50

|λ̂(j) − λ|
λ

× 100% , (8)

while the maximal distance to the confidence interval is defined as:

D(A1, A2, λ) = max
j=1,...,50

d(λ, [λ(j)
L , λ

(j)
U]) , (9)

44 W. Bo�lt et al.

where:

d(x, [a, b]) =

⎧
⎪⎨

⎪⎩

0 , if x ∈ [a, b] ,
a − x , if x < a ,

x − b , if x > b .

(10)

A statistical summary containing the minimum, average, 95th-percentile,
maximum and the standard deviation of the maximal relative error E is given
in Table 4. The maximal error obtained (49.44%) may seem high. Fortunately,
as the 95th-percentile values show, in the vast majority of cases the errors are
significantly lower.

Table 4. Minimum (min.), average (avg.), 95th-percentile (perc.), maximum (max.)
and standard deviation (st. dev.) of the maximal relative error E(A1, A2, λ) for the
different values of λ.

min. avg. 95th-perc. max. st. dev.

λ = 0.1 0.89% 3.50% 10.21% 49.44% 3.46%

λ = 0.2 0.65% 2.42% 7.07% 38.20% 2.33%

λ = 0.3 0.45% 1.88% 5.49% 26.15% 1.79%

λ = 0.4 0.33% 1.51% 4.46% 20.58% 1.44%

all λs 0.33% 2.33% 6.68% 49.44% 2.49%

In Fig. 2 the histogram of the maximal relative error E is shown. In Fig. 2(a)
the overall histogram from all data points is provided, while in Figs. 2(b)–(i) we
show the results grouped by the Hamming distance (dist) between the LUTs
of the ECAs A1 and A2. As can be seen, the distributions of the relative error
for each of the distances are strictly different from each other. Note that each
of the histograms has been normalized with respect to the maximal number of
occurrences, so that the differences of the number of instances in each class could
be ignored.

To further analyze the obtained results, we define the cumulative relative
error CE(A1, A2) as:

CE(A1, A2) =
∑

λ=0.1,...,0.4

E(A1, A2, λ) +
∑

λ=0.1,...,0.4

E(A2, A1, λ) , (11)

which for each pair of ECAs combines the results for different values of λ. We
assume CE(A,A) = 0 for any ECA A. Obviously, it holds that CE(A1, A2) =
CE(A2, A1). The values of this cumulative relative error CE , normalized with
respect to the maximal cumulative error, are shown in Fig. 3. As can be inferred
from this graph, there are significant differences between the values of CE in
different areas of the ECA space. Moreover, many of symmetries can be observed,
but a more detailed analysis of these is beyond the scope of this paper.

We also grouped the values of CE according to the Hamming distance
between the LUTs of A1 and A2 (Fig. 4). As can be seen, the closer the ECAs

A Statistical Approach to the Identification of Diploid Cellular Automata 45

(a) all instances (b) dist(A1, A2) = 1 (c) dist(A1, A2) = 2

(d) dist(A1, A2) = 3 (e) dist(A1, A2) = 4 (f) dist(A1, A2) = 5

(g) dist(A1, A2) = 6 (h) dist(A1, A2) = 7 (i) dist(A1, A2) = 8

Fig. 2. Histogram of the maximal relative error E(A1, A2, λ) for all λ with bin size 0.5%
(a) for all diploid CAs and (b)–(i) grouped by the Hamming distance of the LUTs of
A1 and A2.

are to each other in terms of their LUTs, the higher CE . This can be understood
by analyzing (5). The number of positions at which the LUTs of A1 and A2

differ determines the number of neighborhoods on which the diploid CA acts
non-deterministically, and thus produces transitions that are useful for estimat-
ing. This means that CAs that are close to each other will likely produce less
samples that can be used for the estimation of λ.

We now turn to the analysis of the maximal distance from the confidence
interval D(A1, A2, λ) (Table 5). In general, the values of D are low, which shows
that in most cases the real λ either belongs to the confidence interval or is very
close to it. This shows a high accuracy in the estimation of λ, irrespective of λ.
For that reason we concentrate our analysis on the cumulative maximal distance
to the confidence interval:

CD(A1, A2) =
∑

λ=0.1,...,0.4

D(A1, A2, λ) +
∑

λ=0.1,...,0.4

D(A2, A1, λ) . (12)

46 W. Bo�lt et al.

Fig. 3. Cumulative relative error CE(A1, A2) normalized with respect to the maximal
cumulative error.

Fig. 4. Relation of the Hamming distance of the LUTs defining A1 and A2 to the
cumulative relative error CE .

A Statistical Approach to the Identification of Diploid Cellular Automata 47

Table 5. Minimum (min.), average (avg.), 95th-percentile (perc.), maximum (max.)
and standard deviation (st. dev.) of the obtained maximal distance from the confidence
interval D(A1, A2, λ) for different values of λ.

min. avg. 95th-perc. max. st. dev.

λ = 0.1 0.0 0.0008 0.0024 0.0207 0.0010

λ = 0.2 0.0 0.0010 0.0034 0.0498 0.0014

λ = 0.3 0.0 0.0012 0.0040 0.0438 0.0017

λ = 0.4 0.0 0.0013 0.0044 0.0413 0.0018

all λs 0.0 0.0011 0.0036 0.0498 0.0015

Fig. 5. The relation of the average and the standard deviation of the maximal distance
to the confidence interval Δ. The shape and the color of points is assigned according
to Wolfram’s class of the corresponding ECA. (Color figure online)

These values were then grouped, for each ECA A, as:

Δ(A) =
{

CD(A,A2) | A2 ∈ {ECA0, . . . ,ECA255}\{A}
}

. (13)

In Fig. 5 the relation between the average and the standard deviation of Δ(A)
is shown for each ECA A. Each point on this plot corresponds to a specific
ECA. The shape and the color of each of the points are assigned according
to Wolfram’s classification [9], where Class I corresponds to simple dynamics
resulting in homogenous configurations, Class II — periodic dynamics, Class III
— chaotic/random dynamics and Class IV — complex dynamics. As can be seen,
there is a strong correlation between the Wolfram class and Δ(A). In general,

48 W. Bo�lt et al.

the accuracy of the estimation of λ grows with the growing complexity of the
ECA in question.

5 Summary

In this paper the identification of a diploid CA from given space-time diagrams
has been discussed. A solution method based on a confidence interval estimation
method has been presented. The computational experiments showed that the
algorithm is very effective. The deterministic CAs constituting the analyzed
diploids CAs were always correctly identified. Moreover, the accuracy of the
estimation of λ was very high.

References

1. Adamatzky, A.: Identification of cellular automata. In: Meyers, R.A. (ed.) Computa-
tional Complexity: Theory, Techniques, and Applications, pp. 1564–1575. Springer,
New York (2012)

2. Bo�lt, W., Baetens, J.M., De Baets, B.: On the decomposition of stochastic cellular
automata. J. Comput. Sci. 11, 245–257 (2015)

3. Bo�lt, W., Wolnik, B., Baetens, J.M., De Baets, B.: On the identification of α-
asynchronous cellular automata in the case of partial observations with spa-
tially separated gaps. In: de Trė, G., Grzegorzewski, P., Kacprzyk, J., Owsiński,
J.W., Penczek, W., Zadrożny, S. (eds.) Challenging Problems and Solutions in
Intelligent Systems, pp. 23–36. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30165-5 2

4. Brown, L.D., Cai, T.T., DasGupta, A.: Interval estimation for a binomial proportion.
Stat. Sci. 16(2), 101–133 (2001)

5. Das, D.: A survey on cellular automata and its applications. In: Krishna, P.V.,
Babu, M.R., Ariwa, E. (eds.) ObCom 2011. CCIS, vol. 269, pp. 753–762. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29219-4 84

6. Fatès, N.: Diploid cellular automata: first experiments on the random mixtures of
two elementary rules. In: Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.
(eds.) AUTOMATA 2017. LNCS, vol. 10248, pp. 97–108. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-58631-1 8

7. Fatès, N., Morvan, M.: An experimental study of robustness to asynchronism for
elementary cellular automata. Complex Syst. 16, 1–27 (2005)

8. Mendonça, J., de Oliveira, M.: An extinction-survival-type phase transition in the
probabilistic cellular automaton p182 − q200. J. Phys. A: Math. Theor. 44 (2011).
Article ID 155001

9. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–
644 (1983)

https://doi.org/10.1007/978-3-319-30165-5_2
https://doi.org/10.1007/978-3-319-30165-5_2
https://doi.org/10.1007/978-3-642-29219-4_84
https://doi.org/10.1007/978-3-319-58631-1_8

Modelling Curvature Effects Using L-Systems:
From Discrete and Deterministic to Continuous

and Stochastic

Julia Pulwicki(B) and Christophe Godin

Virtual Plants Group, INRIA Montpellier, Montpellier, France
julia.pulwicki@inria.fr

Abstract. We present a new computational approach to modelling tra-
jectories on embeddable 2D Riemannian surfaces. By decomposing tra-
jectories into infinitesimal geodesic line segments and rotations, a path
through curved space can be represented as a string of basic instructions
playing out in curved space. In this way, we can catalog and quantify the
fundamental changes a system experiences when expressed in different
curvatures. Indeed, we find that curvature can modulate the behaviour
of a wide range of trajectories, from discrete and deterministic to contin-
uous and stochastic. Results in constant positive curvature 2-spaces are
given for fractals, random walks and diffusion, and we discuss potential
applications to biological systems and 4D printing.

Keywords: Fractal geometry · Riemannian geometry · L-systems
Diffusion · Random walk · Curvature · Plant development

1 Introduction

The effect of curvature on physical systems is both profound and non-intuitive.
Often, experimental and theoretical approaches to various problems in science
and engineering try to eliminate or minimize these effects by studying flat or
nearly flat varieties of more general geometries. However, even if a system can
be locally approximated as flat, curvature can still produce large-scale effects.

A common example is how we as humans move around on the Earth. Locally,
a flat map of our city or local area is completely sufficient to help us navigate
by foot, bicycle or car. However, if we start considering larger trips by airplane
or boat, then our shortest paths between two points are in fact geodesics of the
sphere, known as great circles.

In fact, many physical systems have this fundamental property: at small
scales, the system follows flat-space rules, but at large scales experiences the
effects of curvature. Formally, we can describe this type of behaviour using the
rules of Riemannian geometry, which provides the mathematical tools necessary
for incorporating curvature into basic quantities like distance, velocity and force.

Most famously, Einstein’s theory of general relativity uses a semi-Riemannian
geometry to link the curvature of space-time with gravitational forces. However,
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 49–60, 2017.
https://doi.org/10.1007/978-3-319-71069-3_4

50 J. Pulwicki and C. Godin

there are many other systems around us like curved plant leaves and meristems
(the growing tip of a plant) that are now being observed at new levels of detail,
but lack a framework for understanding the geometric aspects central to their
development [5,7].

It is for this reason that our goal is to build a computational tool that relies
on local rules being interpreted in a curved geometry. Rather than explicitly
employing the calculus of curved spaces through geodesic equations or covariant
derivatives, we seek to recover these effects by modelling how a multitude of local
actions, either deterministic or stochastic, can be altered by the global geometry
of the system. By demonstrating how the behaviour of even simple systems is
affected by curvature, we can motivate the search for such effects in natural and
engineered systems which may utilize curvature to augment processes such as
information flow or modulate basic properties like the connectivity of a structure.

An ideal tool for studying the scale-dependent nature of curvature is fractals,
which have recursive, scale-free patterns that provide a simple yet effective way
to probe curvature effects simultaneously at different length scales. Moreover,
the deterministic trajectory of a fractal shape defines a unique topology for
each shape which in flat space remains conserved at all length scales. As our
preliminary results show, the smallest length scales of a fractal retain their usual
flat-space behaviour, but at larger length scales curvature can change both the
geometry and topology of the fractal in surprising ways.

Our L-system model can also be pushed to the stochastic limit to study
phenomena like random walks and the related phenomenon of diffusion. As will
be discussed in detail later, understanding how random walks are affected by
curvature is important for many natural systems and has in fact been observed
for crystal growth [8] and particle trajectories [10] at μm scales on positively
surfaces. Our results on the 2-sphere are consistent with analytical predictions
in [4] and [3]. In the last section of this article, we identify potential ways in which
curvature effects could influence plant tissue growth as well as applications to
materials engineering.

2 Methods

The basic goal of the model developed here is to recreate as closely as possible
the notion that local rules of action are being interpreted on a curved surface.
Using L-systems, we can specify a trajectory as a string of instructions that
are executed following the rules of a curved surface. Such a model allows the
dynamics of the system to be specified separately from the space in which they
occur, thus allowing one to investigate the role curvature plays in the dynamics
of a system.

L-systems are a way to represent geometric shapes in 3D Euclidean space by
specifying the motion of a local actor called a turtle [1,9]. The turtle is given
a set of instructions in the form of an lstring for its trajectory in Euclidean
space based on its local frame of reference - what it perceives to be forward,
right and up directions (or, equivalently, unit vectors in the (x,y,z) directions).

Modelling Curvature Effects Using L-Systems 51

Those instructions, when displayed graphically, form what we observe to be a
geometric shape. In the models below, we use the programming language LPy
to generate graphical models of L-systems [2].

A simple example is a square, given by a series of forward steps of unit length
F (1) and 90◦ rotations:

lstring = F (1) + (90)F (1) + (90)F (1) + (90)F (1). (1)

More complex shapes can be formed by changing how many forward steps
are taken, the length of the forward steps, and the angle of rotation (+(β) or
−(β)).

Another way to generate more complex shapes is to provide a production rule
for F (x). These rules modify an original lstring by specifying how it should be
rewritten in a subsequent iteration. For example, a fractal can be generated by
applying the following production rule many times:

F (x) → F (x/3) + (60)F (x/3) − (120)F (x/3) + (60)F (x/3). (2)

At each iteration, the lstring is re-written using the production rule for F (x)
in the following way:

lstring0 = F (9)
lstring1 = F (3) + (60)F (3) − (120)F (3) + (60)F (3)
lstring2 = F (1) + (60)F (1) − (120)F (1) + (60)F (1) + (60)

F (1) + (60)F (1) − (120)F (1) + (60)F (1) − (120)
F (1) + (60)F (1) − (120)F (1) + (60)F (1) + (60)
F (1) + (60)F (1) − (120)F (1) + (60)F (1)

lstring3 = F (1/3) + (60)...
(3)

The result is the Koch curve, shown in Fig. 1.

Fig. 1. The first four iterations of the Koch curve as generated by the production rules
in Eq. 3. The figures have been created using the LPy programming framework [2].

The next task is to find a way to interpret this set of instructions on a curved
surface. Consider the turtle starting its path at the north pole of a sphere. To
the turtle, all directions look the same, and locally it seems no different than

52 J. Pulwicki and C. Godin

flat space (i.e. isotropic, homogeneous and locally Euclidean). So it chooses a
direction at random and takes a step forward.

An important observation here is that as outside observers (in 3D Euclidean
embedding space), we have access to the normal vector perpendicular to the
turtle’s tangent plane, but the turtle does not. This is pictured in Fig. 2 with
one dimension suppressed. Here, the turtle moves along the surface of the sphere
from position T1 to T2. Locally, it can follow the vector parallel to the surface
of the sphere. In the embedding space, what we can measure for each step on the
turtle’s path is how much the normal vector rotates and use it to interpret the
turtle’s motion on the sphere. We denote this kind of motion by the ∧ symbol.

Fig. 2. The geometry of a turtle walking along a geodesic of a curved surface (2-
sphere) from position T1 to T2, with one dimension suppressed. The arrows denote
the orientation of the turtle’s local coordinate system.

With a bit of trigonometry, it is possible to show that a step of length l on
the sphere should be interpreted by the turtle as a move that changes its normal
to the sphere as shown in Fig. 2. This rule can be added to the L-system as a
default interpretation rule for forward movements on the sphere:

F (l)sphere → ∧(α)F (2R sinα)∧(α) (4)

where 2α = l/R.
Two properties of Riemannian 2-spheres makes this possible. The first is

that any sufficiently small region of a Riemannian metric is locally Euclidean
(flat), so our turtle always has a well defined notion of orthogonality, and hence
rotation. There is no need to re-interpret rotations for a turtle on the 2-sphere.
The second is that the 2-sphere is isotropic and homogeneous, which means that

Modelling Curvature Effects Using L-Systems 53

any one step can be understood the same as the ‘first’ step described above. As
long as we can describe the first step correctly, we can describe a string of steps,
just like in Euclidean 2-space (the plane).

With F (l)sphere defined in 4 and letting the turtle start from the north pole
every time, we can see that the simplest path locally also leads to a geodesic in
the curved space. Let us define the simplest path to be a series of forward steps,
represented as a string of Fs, which in flat space simply yields a straight line.
The analog of a straight line on the 2-sphere is a great circle. Indeed, if we take
a series of Fsphere, it produces a great circle (Fig. 3).

However, geodesics are only a sub-set of all possible trajectories in a space.
Mapping out the geodesics of a Riemannian space is an important step in under-
standing the structure of the geometry, but we are also interested in the more
general case of how any 2D turtle path may look like when expressed in curved
space.

Non-geodesic paths can be seen as the turtle experiencing a force. For exam-
ple, in F + (β)F , the ‘force’ enters through the rotation angle β, which can
have any value between 0 and 360◦. Without this rotation, the turtle continues
freely around a great circle; to change this behaviour, ‘a force’ must be applied
regularly to the turtle to keep deflecting it from great circles. With infinitesi-
mal steps and rotations, we can thus generate any trajectory. An example set of
trajectories equivalent to the lines of latitude on a globe is shown in Fig. 3.

Fig. 3. On the left, a great circle formed by using only forward steps F (l)sphere inter-
preted as incremental geodesic steps on a sphere. On the right, a set of trajectories
formed by varying the ‘force’ the turtle feels at every step of its path.

3 The 2-Sphere

In this section, we present results on a range of different systems, from discrete
and deterministic (closed loops and fractals) to continuous and stochastic (ran-
dom walks). The examples are intended to illustrate how curvature influences the
fundamental properties of each system. In this way, we can catalog and quantify
the different effects curvature has and thus motivate the search for curvature
effects in both natural and engineered settings.

54 J. Pulwicki and C. Godin

These models are based on positively curved geometries and, where possi-
ble, we compare our results against other analytical or experimental work. The
geometries studied here are equivalent to the 2-sphere and provide the simplest
system to explore using the L-system scheme.

3.1 A Closed Loop

As a first example, let us go back and look at the trajectory for a square again:
lstring = F +(90)F +(90)F +(90)F . When expressed on the surface of a sphere,
we replace F with Fsphere, though in the following we simply use F for clarity.

For a sufficiently small step size, say 1/100th of the radius of curvature of
the sphere, the square will look almost identical to the flat-space interpretation.
However, we can let the turtle explore more of the curved space by adding more
steps between rotations:

lstring = FFF + (90)FFF + (90)FFF + (90)FFF, (5)

or even
lstring = F...F + (90)F...F + (90)F...F + (90)F...F (6)

Fig. 4. The lstring F + (90)F + (90)F + (90)F with increasingly longer path lengths
interpreted on a 2D spherical geometry. For short path lengths, the shape is approx-
imately a square. At intermediate lengths, the square begins to deform as each path
becomes a longer geodesic. Finally, when each side is 1/4 of the circumference of the
sphere, the path closes using only 3 geodesics.

Modelling Curvature Effects Using L-Systems 55

where the segment F...F can be many steps forward. Thus, each side of the
square becomes an increasingly longer geodesic. A sequence of these paths with
successively longer side lengths in shown in Fig. 4.

As each segment of the square becomes longer and longer, the square becomes
deformed. When each line segment is 1/4th of the circumference of the sphere,
the square appears to become a three-sided shape, thus illustrating the notion
that a closed loop in a positively curved space has a smaller perimeter than
its flat-space counterpart. This simulation also shows how internal angles of
polygons change depending on the curvature of the background space.

3.2 The Koch Curve

Let us now look at the behaviour of our first fractal structure, the Koch curve
(Fig. 1). As can be seen, the flat-space Koch curve is an open line segment.

Fig. 5. The first four iterations of a 2-sphere interpretation of a Koch curve.

The Koch curve on a sphere is shown in Fig. 5. The most striking feature of
this fractal is that it has formed closed loops when expressed on the sphere, thus
changing its topology.

A related physical phenomenon that has been observed to have similar cur-
vature effects is the formation of rigid crystals on a microsphere [8]. Here, the
authors were able to show topological defects imposed by the curvature of the
sphere that would otherwise not be present in flat space.

56 J. Pulwicki and C. Godin

3.3 The Sierpinski Carpet

Having seen the effects of curvature on a square as well as simple fractal, we
can now investigate a more complex fractal composed of many closed loops at
different length scales, the Sierpinski Carpet.

The basic, flat-space structure of this fractal is shown in the left column of
Fig. 6. Just as in the closed loop model, we can interpret the line segments as
geodesics of the sphere, thus generating the shapes seen in the right column of
Fig. 6.

We can see that the curved Sierpinski carpet has behaviours consistent with
both the closed-loop and Koch curve models. At small scales, the squares remain
relatively unchanged, while the large squares undergo the largest deformations.

Fig. 6. The first four iterations of a Sierpinski carpet. On the left, the flat space
interpretation and on the right a curved space interpretation.

Modelling Curvature Effects Using L-Systems 57

Also, line segments previously far apart in flat space may be in direct contact
on a sphere.

3.4 Random Walks

Lastly, we model a random walk which can be decomposed into a sequence of
forward steps and random rotations in the tangent plane:

+ (βrandom)F + (βrandom)F + (βrandom)F... (7)

In Fig. 7 we show a sample of what a random walk looks like on a sphere.
The step size is kept small and constant relative to the radius of curvature.

Fig. 7. A set of 20 random walks on a sphere.

A quantity that is often used to characterize a random walk is the mean
square distance from the origin. For a curved surface, we must use the mean
square geodesic distance (MSGD) as a measure of the distance from the origin
along the surface [4]. The MSGD for 800 walkers is shown in Fig. 8 for four
different radii of curvature.

In flat space and even small curvatures, the MSGD has a linear behaviour, as
expected from standard diffusion theory. However for large positive curvatures,
diffusion is no longer linear, with the MSGD becoming smaller than the expected
value in flat space. This can be interpreted as diffusion slowing down, an effect
predicted in analytical results [3,4] and confirmed by experiment [10]. The results
in Fig. 8 show that our computational approach is valid and, unlike previous
analytical results, is not restricted to small curvatures or short times.

58 J. Pulwicki and C. Godin

Fig. 8. The mean square geodesic distances for different radii of curvature based on
800 random walks.

4 Discussion

The results of these models show that curvature produces fundamental and quan-
tifiable changes in the behaviour of a wide range of systems. For simple closed-
loop shapes, our approach clearly demonstrates how the perimeter, area and
internal angles of a closed shape are affected by curvature.

In the case of fractals, the connectivity (topology) of the shapes is signifi-
cantly altered at scales similar to the radius of curvature of the geometry. How-
ever at small scales, the fractals remain relatively unchanged compared to their
flat-space counterparts. In these examples of discrete, deterministic systems, one
of the fundamental properties that changes when curvature is introduced is that
the connectivity of the shape at large scales can no longer be predicted from the
behaviour of the shape at small scales.

In the case of random walks, we can begin to see what effects curvature
has in the stochastic, continuous limit. Here, the diffusion rate of a system is
altered in a non-trivial way when curvature is introduced. Considering how uni-
versally utilized the diffusion process is in natural and engineered systems, we
can begin to formulate questions about diffusion on curved surfaces. In biology,
how has evolution harnessed curvature in processes such as signaling, patterning

Modelling Curvature Effects Using L-Systems 59

and development? How could we augment the behaviour of engineered systems
using curvature? In the next section, we present possible ways in which curvature
effects may present in these two contexts.

5 Biological and Engineering Applications

In future work on modelling the effects of geometry using L-systems, we plan
to study more general cases of curvature: non-constant curvatures, negative cur-
vatures as well as dynamically growing geometries. All of these generalizations
will help to better elucidate the basic processes at work in chemical, biological
and physical systems, which often exhibit complex geometries that may grow or
change over time.

One such example is plant tissue growth. At the tip of every growing plant
is a meristem, which is a collection of stem cells that differentiate into all the
organs of a plant such as leaves and flowers. The geometry of the meristem
has regions of dynamically changing positive and negative curvature, and it is
known that signaling hormones are transported throughout the meristem to
regulate development. Based on the preliminary results here, it is reasonable to
hypothesize that the effects of the meristem’s geometry may be two-fold.

First is the topology of the cells in the sense of how they are arranged and
connected on the meristem. As seen in the Sierpinski carpet model, the smallest
scale ‘cells’ remain relatively unaffected by the curvature of the surface, but the
curvature does influence how neighbourhoods of cells develop; for instance, how
many neighbours a cell can have. Hence, processes like genetic regulation and
cell division could be following flat-space development rules, but more global
behaviours like how many cells are in a given piece of tissue or the flux of
material into or out of a region of tissue could be affected by curvature. Indeed,
the changes in topology seen in crystal growth experiments [8] lend support that
a biological equivalent may also exist.

Secondly, as seen in the random walk model, diffusion is directly affected
by curvature. In the continuum limit, this effect could be studied by including
geometric terms in patterning models such as Turing’s reaction-diffusion equa-
tions and Wolpert’s French Flag model [6]. We expect that including curvature
in these equations will reveal an expanded set of dynamics for the transport of
chemical substances at scales representing the continuum limit of the system,
such as signaling hormones in a multicellular tissue. In future work, we also plan
to study how curvature could be an active component in the feedback processes
governing growth, rather than merely an end result.

In terms of engineering applications, one can imagine that dynamical geome-
tries may be used as ‘switches’ between different states of a system. For instance,
if a circuit is embedded into a material that can change from positive to nega-
tive curvature, then we could regulate which parts of the circuit are connected
or disconnected by changing the curvature of the surface, much like the Koch
curve becomes connected when described on a spherical surface.

60 J. Pulwicki and C. Godin

Understanding these types of curvature effects is an important part of many
systems in nature and engineering because of the impact on fundamental prop-
erties and processes. Building a tool to visualize and quantify the behaviour of
systems in curved geometries could aid in discovering new aspects of the sys-
tems around us, and help design engineering solutions in emerging fields like 4D
printing and soft robotics.

Acknowledgments. J.P. kindly acknowledges the financial support of INRIA for this
research.

References

1. Abelson, H., DiSessa, A.: Turtle Geometry: The Computer as a Medium for Explor-
ing Mathematics. MIT press, London (1986)

2. Boudon, F., Pradal, C., Cokelaer, T., Prusinkiewicz, P., Godin, C.: L-py: an l-
system simulation framework for modeling plant architecture development based
on a dynamic language. Front. Plant Sci., 3 (2012)

3. Castro-Villarreal, P.: Brownian motion meets riemann curvature. J. Stat. Mech:
Theor. Exp. 2010(08), P08006 (2010)

4. Faraudo, J.: Diffusion equation on curved surfaces. i. theory and application to
biological membranes. J. Chem. Phys. 116(13), 5831–5841 (2002)

5. Fernandez, R., Das, P., Mirabet, V., Moscardi, E., Traas, J., Verdeil, J.L.,
Malandain, G., Godin, C.: Imaging plant growth in 4d: robust tissue reconstruction
and lineaging at cell resolution. Nat. Methods 7(7), 547–553 (2010)

6. Green, J.B., Sharpe, J.: Positional information and reaction-diffusion: two big ideas
in developmental biology combine. Development 142(7), 1203–1211 (2015)

7. Gruel, J., Landrein, B., Tarr, P., Schuster, C., Refahi, Y., Sampathkumar, A.,
Hamant, O., Meyerowitz, E.M., Jönsson, H.: An epidermis-driven mechanism posi-
tions and scales stem cell niches in plants. Sci. Adv. 2(1), e1500989 (2016)

8. Meng, G., Paulose, J., Nelson, D.R., Manoharan, V.N.: Elastic instability of a
crystal growing on a curved surface. Science 343(6171), 634–637 (2014)

9. Prusinkiewicz, P.: Graphical applications of l-systems. Proc. Graph. Interface 86,
247–253 (1986)

10. Zhong, Y., Zhao, L., Tyrlik, P.M., Wang, G.: Investigating diffusing on highly
curved water-oil interface using three-dimensional single particle tracking. J. Phys.
Chem. C 121(14), 8023–8032 (2017)

Evolutionary Computation

Exploring Target Change Related Fitness
Reduction in the Moving Point

Dynamic Environment

David Fagan(B) and Michael O’Neill

Natural Computing Research and Applications Group, School of Business,
University College Dublin, Dublin, Ireland

{david.fagan,m.oneill}@ucd.ie

Abstract. Dynamic Environments present many challenges for Evolu-
tionary Computing. Frequency of change and amplitude of change, all
have dramatic effects of how a system will behave. This in conjunction
with poor search operators can lead to populations that can’t react to
change quickly, as they have become converged in the search space. This
study presents an overview of some methods to minimize the impact
of change, and allow algorithms to better react to change in Dynamic
Environments. Through the use of a bare bones tunable dynamic envi-
ronment, it is shown how the approaches implemented can provide algo-
rithms with faster responses to change. These approaches are also shown
to do this without having to redesign the algorithms search operators,
and maintaining the same computational effort.

Keywords: Evolutionary computing · Dynamic environments

1 Introduction

Dynamic Environments, while well explored in the literature [1,3,5,6,8,12,13,
15,16] still present and open issue to the evolutionary computing community [10].
What makes these environments so special and challenging is change. There are
so many degrees of freedom in an environment subject to possible change that
the combination of needed search operators, grammars, and representation can
seem daunting.

In a dynamic environment the size, shape, location, frequency of change,
amplitude of change, cyclic change patterns, and many more aspects of the
environment can be subject to variation. Knowledge of any of these variation
aspects presents an opportunity to exploit them. A system can be tuned to
compensate for high frequency changes or large amplitude changes for example.
Similarly a system designed to be robust to change can offer certain advantages
in situations such as high frequency of change or large amplitude changes.

The following study looks to utilises this approach to implement a replace-
ment operator that provides robustness to the system. For this a tunable dynamic
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 63–74, 2017.
https://doi.org/10.1007/978-3-319-71069-3_5

64 D. Fagan and M. O’Neill

environment will be needed. While others have been previously defined [1,8,14],
the recently developed moving point problem environment is selected for its
ability to be tuned to specific needs. Taking inspiration from the literature this
study presents three approaches to replacement that utilise memory, popula-
tion reload, and search space sentinels, to provide Grammatical Evolution (GE)
[9] with robustness in the environment, by minimizing change related fitness
drop-off.

The paper proceeds as follows. Section 2 looks at previous approaches to
change in Dynamic Environments. Section 3 introduces the Moving Point Prob-
lem, used as the test bed environment in this study. Section 4 outlines the
approaches used reload the population during evolution. Section 5 outlines the
experimental setup, before the results of the study are presented in Sect. 6. The
paper is then concluded with conclusions in Sect. 7, and finally future works are
stated in Sect. 8.

2 Target Change in Dynamic Environments

Change is the great unknown in Dynamic Environments. For the majority of
cases, when a change will happen, or how large a change to expect is not know a
priori. Rohlfshagen et al. [11], set about finding ways to quantify rate of change,
and magnitude of change, and to use these to determine how best to deal with
change. It was deemed that with a large magnitude of change, the algorithm
benefits from a restart as it provides the population with a reset away from
the current optimal, and allows for faster adaptation to the new target. Small
magnitudes of change benefited more from continuing from the current state
of the algorithm, using knowledge already discovered during evolution to help
guide the search.

Designing algorithms for dynamic environments has been covered in detail.
Branke [1] and Morrison [8] delve into methods to detect change as well as
methods to preserve and promote diversity in a population. Morrison explores
in detail the idea of detecting change and reacting to change. One of the pivotal
ideas put forward is using carefully placed sentinels within the search space to
provide algorithms with markers to indicate the state of the environment and
detect change, much like buoys on the ocean do. Morrison goes on to provide
heuristics for sentinel placement and the difficulties with placing sentinels in
higher dimensional spaces.

Branke [1] on the other hand provides an in depth survey of the benefits of
reloading the population when change is detected. The benefits being that the
algorithm can adapt to change faster. Branke goes further and examines the idea
of memory as a tool to aid in performance. Keeping the best previous individuals
or a library of previous good populations are examined. These individuals can
be used indirectly as sentinels to provide insights into how the environment is
changing. Dempsey et al. provide an updated overview in [2]. Branke also covers
rate of change and the effects it can have on performance. The idea behind all this
work is to be robust to change e.g., to be able to adapt to change quickly whilst
not suffering detrimental performance drop-off due to the change experienced.

Exploring Target Change Related Fitness Reduction 65

3 Moving Point Dynamic Environment

Dynamic Environments come in many differing formats, with unique aspects
such as frequency of change, size of search space etc. Dempsey et al. [2] makes
reference to a spectrum of dynamism, in a very in-depth review of the dynamic
problem domain, and examines similar ideas by Branke [1] and DeJong [4]. The
spectrum described is one from a problem where the change is predictable and
small, to a problem which is completely random.

The Moving Point Problem (MP) was developed as an easy to understand,
tunable, dynamic environment. The problem was designed to facilitate easy
analysis of the behaviour of search algorithms under varying environmental
dynamics, and provide a visualisation of the search algorithms behaviour.

The objective in MP is to track a moving point in three-dimensional space.
In its simplest form fitness is the euclidean distance between an individual in
the search population and the moving target point. The dynamics of the moving
point can be controlled for the frequency or amplitude of change. This allows for
the problem to be set up to encompass any point on the dynamism scale [2].

Frequency is determined by how often the target point moves (e.g., each
generation vs every 20th generation). Amplitude is the distance the target moves
from its current position. Amplitude can be specified in both real numbers, and
as a percentage of maximum distance of the search space.

In the default implementation changes occur at random frequency with ran-
dom amplitude. The range of possible change of frequency and amplitude is a
user controlled parameter setting. The frequency and amplitude are controlled
by setting a static value for either, whilst varying the other component. It is pos-
sible to design a number of variations of the moving point problem, for example,
adding multiple target points, moving to higher dimensional space, and allowing
the search algorithm limited visibility of the search space to name a few. Each
individual of the population is an (x,y,z) co-ordinate that maps to a point in the
search space. This is encoded in GE using the grammar below:

<xyz>::=<d><d><d><d> <d><d><d><d> <d><d><d><d>

<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

For the purposes of this study, MP will be constrained to an implemen-
tation of the problem where a single target in three-dimensional space is the
desired goal. The frequency of change in the environment will be locked, but the
amplitude of change will vary. The search population has full visibility of the
environment. Example visualisations of the population are provided in Figs. 1
and 2.

4 Approaches for Adapting to a Change in Target
in Dynamic Environments

There are many approaches to detecting change and ways to better adapt the
population to this change as mentioned in Sect. 2. This study looks specifically

66 D. Fagan and M. O’Neill

Fig. 1. A visualisation of the moving
point problem. The target is displayed
in red and the individuals in blue.
(Color figure online)

Fig. 2. A visualisation of the moving
point problem converged on the target
solution. The target within a collection
of individuals that are highlighted as
green as they are deemed to have direct
contact to the target (e.g.; their euclid-
ean distance is within 50. (Color figure
online)

at using replacement to enhance a populations reaction to change. This study
does not assume the population cannot adapt but looks to minimise the effect of
a change on the population to improve response to the change. It is important
to adapt quickly to change, as in an unknown environment there is no way to
know the frequency of change. This means that adapting quickly to change will
provide a better general performance in the environment. The three approaches
used in this study are outlined in the sections that follow. The approaches borrow
aspect from the approaches outlined in Sect. 2.

4.1 Reload

In reload the initial population is stored in memory along with the fitness of
the best initial individual. At each generation the previous generations best
individual is compared to the current generations target. If this comparison
shows the fitness has gotten worse than the best initial fitness, the population is
replaced with the initial population and the best initial population value updated
to the reloaded pops best fitness. By doing this we maintain the same number of
fitness evaluations in the run, and as variation operations are not performed in
reload generations there is a small saving computationally in this method. Reload
is dependent on the initial population having good dispersion characteristics in
the search space. Having this will provide for faster adaptation as the new target
should be closer to an initial population member after reload.

4.2 Percentage Reload

Percentage reload is essentially the same as reload with one small caveat. When a
reload is detected a user specified percentage of the initial population is randomly

Exploring Target Change Related Fitness Reduction 67

sampled and joined to the top 100−x%, where x is the user specified percentage
of the initial population, of the previous generations population. This approach is
taken to preserve some of the populations knowledge in case the target oscillates
back near its previous state quickly. Again there is no variation operations carried
out in this generation.

4.3 Persistent Grid

Persistent Grid takes inspiration from the idea of sentinels mentioned in Sect. 2.
In persistent grid a number of individuals (64 or 125 in our case) are evenly
distributed across the search space as seen in Fig. 3. The remainder of the pop-
ulation are then randomly placed using initialisation around the search space.

Fig. 3. A visualisation of the persistent grid with 125 individuals, before the remainder
of the population is placed in the search space.

Unlike reload, where the fitness is monitored and certain events triggering
a reload in the population, in persistent grid the grid individuals are always
reloaded during replacement. Assuming there is a population of 500, and a grid
of 125 individuals, every generation the top 375 are combined with the grid
individuals to form the new population during replacement. The only downside
to this grid approach is that trying to locate individuals in this grid setup in
higher dimensional spaces would require massive amounts of calculations and
require bespoke distance measurements for each search space.

5 Experimental Setup

The aim of the study is to assess the merits of different approaches to allow
the algorithm to adapt quickly to a change in environment. Grammatical Evo-
lution [9], specifically a developmental branch of PonyGE [7], was used for all
experiments. The common parameters used in PonyGE are listed in Table 1.

Several variations of setups in the MP problem are required for this study.
There are the four approaches to change minimisation as discussed in Sect. 4.

68 D. Fagan and M. O’Neill

Table 1. Experimental setup

Parameter Value used

Population 500

Generations 500

Number of runs 50

Mutation Int-Flip Per Codon

Mutation Rate 1/length of genome

Crossover Rate 0.7

Duplicates Prevented in initialised population

Tournament size 1%

Elitism 1%

Table 2. Moving point parameters

Parameter Value used

Change frequency 10 gens & 20 gens

Change amplitude Fixed Random

Fitness Euclidean Distance to Target

Reload percentages 0% 25% 50% 75% 100%

Grid size 64 & 125

The various settings for these approaches are outlined in Table 2. Certain aspects
of the MP problem have been fixed for this study. The amplitude of change,
frequency of change, and fitness measure used are also listed in Table 2.

There are three main elements to the study. Firstly what does the reload
operator add to the performance of GE in the MP domain. Secondly does the
whole population need to be reloaded or will a subset do, thus allowing for
retention of some previous knowledge uncovered during evolution. Finally does
a sentinel approach as seen in persistent grid provide a performance gain to
justify its use owing to the increased overheads of setup it requires.

6 Results

The results are present in the three sections that follow. Firstly a straight com-
parison between reload and no reload is presented, before moving on to a more
in depth look at how much of the population needs reloading. Following this a
comparison between reload and grid approaches is performed.

6.1 Reload Versus No Reload

Figure 4 displays the average best fitness over 50 runs of the moving point prob-
lem. In the graph the black line represents a standard run of GE on MP. The

Exploring Target Change Related Fitness Reduction 69

red line represents GE with reload enabled. What is very apparent is that reload
has a significant impact on the fitness drop-off when a change in target is expe-
rienced in MP. Standard GE experiences drop-offs in fitness up to above 5000,
whilst with reload enabled this drop-off is limited to below 1000 (indicated by
the blue line).

The limiting of the drop-off also provides for faster location of the new target
as can be seen in Fig. 4. The red line can be seen in most cases to reach the target
faster than the black line indicating faster adapting to the environment.

It was evident from the initial runs, with a change frequency of 20 generations,
that both approaches were able to adapt to the new target in the time period
between changes. To further see the benefits of reload a shorter frequency of
change was examined.

Figure 5 shows standard GE against reload averaged over 50 runs with a
change frequency of 10. As before the same reduction in drop-off is experienced.
However unlike in the previous experiment, where the change frequency was 20,
when the frequency is shortened to 10 it is evident that reload enables GE to
find the new target faster than standard GE. There is 48 changes in the 500
generations of a run in the experiment, and over the 50 runs conducted, on
average reload allows for better final fitness over 80% of the time.

0 100 200 300 400 500

0
10

00
20

00
30

00
40

00
50

00

No Reload versus Reload − 20 Generation Change Interval

Generation

F
itn

es
s

No Reload
Reload

Fig. 4. No Reload versus Reload of initial population over 500 generations. The
frequency of change is fixed but the amplitude is random. (Color figure online)

6.2 Reload Versus Percentage Reload

Having established the benefits of reload in the previous section, the next ques-
tion to be answered was, does a full reload have to take place, or can some of
the current population be maintained? The thinking behind this was that there
could be some useful information in the current population, or if the target

70 D. Fagan and M. O’Neill

0 100 200 300 400 500

0
10

00
20

00
30

00
40

00
50

00
No Reload versus Reload − 10 Generation Change Interval

Generation

Fi
tn

es
s

No Reload
Reload

Fig. 5. No Reload versus Reload of initial population over 500 generations. The fre-
quency of change is fixed but the amplitude is random.

was to change positions for a generation or two and then return to its previous
location, this would lead to more reloads than might be needed.

To answer this question a range of percentage of reload were examined, the
results of which are displayed in Figs. 6 and 7. The graphs have had their line
widths increased, and the approaches layered, with full reload being represented
by black. From the graph it can be seen that all approaches limit the drop-off
to below 1500. This still represents a good saving over no reload. It can also
be seen that as the percentage of reload is decreased the drop-off under change
also increases. However, the fitness rebounds in all cases to a similar level and
in some cases exceeds reloads lower bound.

0 100 200 300 400 500

0
50

0
10

00
15

00

Full Reload versus Percentage Reload − 10 Generation Change Interval

Generation

Fi
tn

es
s

Reload
Reload 75%
Reload 50%
Reload 25%

Fig. 6. Reload versus Percentage Reload over 500 generations. Four percentage levels
of reload are compared with a change frequency of 10 generations.

Exploring Target Change Related Fitness Reduction 71

0 100 200 300 400 500

0
50

0
10

00
15

00

Full Reload versus Percentage Reload − 20 Generation Change Interval

Generation

Fi
tn

es
s

Reload
Reload 75%
Reload 50%
Reload 25%

Fig. 7. Reload versus Percentage Reload over 500 generations. Four percentage levels
of reload are compared with a change frequency of 20 generations.

Across both cases 75% reload provides comparable performance to full reload.
50% reload appears to be the tipping point for drop-off in performance. It is
argued that if users wish to maintain some of the current population, any per-
centage from 50% to 100% reload would provide all the benefits of full reload,
whilst maintaining some of the current population knowledge.

6.3 Reload Versus Persistent Grid

Finally the idea of a persistent grid of individuals was explored. This approach
takes inspiration from sentinels and percentage reloads. Figures 8 and 9 display

0 100 200 300 400 500

0
50

0
10

00
15

00
20

00

Full Reload versus Stationary Grid − 10 Generation Change Interval

Generation

Fi
tn

es
s

Reload
Reload 25%
Grid 125
Grid 64

Fig. 8. Grid versus Reload over 500 generations. The frequency of change is fixed at
10 but the amplitude is random.

72 D. Fagan and M. O’Neill

0 100 200 300 400 500

0
50

0
10

00
15

00
20

00
Full Reload versus Stationary Grid − 20 Generation Change Interval

Generation

Fi
tn

es
s

Reload
Reload 25%
Grid 125
Grid 64

Fig. 9. Grid versus Reload over 500 generations. The frequency of change is fixed at
20 but the amplitude is random.

the results of this study on the two change frequencies. Grid sizes of 64 and 125
were used, and compared to full reload and 25% reload (as 25% reload is similar
to 125 grid size in terms of replaced individuals). Again the line widths in the
graph have been increased and layer as in the previous section.

From the graphs it is evident that the grid presents mixed results when com-
pared to reload. The drop-off has increased to above 2000, which is a negative,
but in some cases in Fig. 8 it can be seen that grid achieves better performance.
This indicates that there may be some merit to using a grid approach in a high
change frequency environment.

7 Conclusions

Several approaches to minimizing the impact of change were presented. From
the results it can be argued that a full reload is the most consistent performer,
and certainly provides the best resistance to big drop-offs. However it is not as
simple as that, as other factors could determine the usage of other options.

The more that is known of the problem domain the better the researcher can
select their operator. If there is no indication of how frequently the environment
may change then reload is the way to go. Cyclic environments would benefit
from the usage of the percentage reload or the grid approach, as they maintain
some memory of the previous environment which may prove beneficial if the
environment is prone to revisiting previous states.

Grid while having many benefits just has too many overheads that need to
be accounted for to become a useful approach. The approach required a specific
initialiser to be constructed, this also required the usage of a distance function
to ensure coverage of the grid. As the problem domains dimensionality increase
the overhead of this process will become very expensive.

Exploring Target Change Related Fitness Reduction 73

8 Future Work

Having established the merits of reload for the moving point problem, the authors
will look to further expand the study to include movement paths, multiple tar-
gets, and fight of flight behaviours. By increasing the complexity of the problem
it is hoped to gain a firm understanding of the measurements and search opera-
tors before tackling higher dimensional real world dynamic problems.

Acknowledgements. This research is based upon works supported by the Science
Foundation Ireland under Grant No. 13/IA/1850.

References

1. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer
Academic Publishers, Norwell (2001)

2. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for
Dynamic Environments. Studies in Computational Intelligence. Springer, Berlin
(2009). https://doi.org/10.1007/978-3-642-00314-1

3. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems:
test cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5),
425–442 (2004)

4. Jong, K.A.D.: Evolving in a changing world. In: ISMIS, pp. 512–519 (1999)
5. Karcz-Duleba, I.: Dynamics of infinite populations evolving in a landscape of uni

and bimodal fitness functions. IEEE Trans. Evol. Comput. 5(4), 398–409 (2001)
6. Karcz-Duleba, I.: Dynamics of two-element populations in the space of population

states. IEEE Trans. Evol. Comput. 10(2), 199–209 (2006)
7. McDermott, J., Hemberg, E., Byrne, J.: PonyGE. https://github.com/jmmcd/

ponyge.git. Accessed 12 Jan 2015
8. Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments.

Springer, Verlag (2004). https://doi.org/10.1007/978-3-662-06560-0
9. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-

ming in a Arbitrary Language. Genetic programming. Kluwer Academic Publish-
ers, Norwell (2003). http://www.wkap.nl/prod/b/1-4020-7444-1

10. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic
programming. Genet. Program. Evolvable Mach., 11, pp. 339–363 (2010). http://
dx.doi.org/10.1007/s10710-010-9113-2

11. Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimisation: an
analysis of frequency and magnitude of change. In: GECCO, pp. 1713–1720 (2009)

12. Sternberg, M., Reynolds, R.G.: Using cultural algorithms to support re-engineering
of rule-based expert systems in dynamic performance environments: a case study
in fraud detection. IEEE Trans. Evol. Comput. 1(4), 225–243 (1997)

13. Ursem, R.K., Krink, T., Jensen, M.T., Michalewicz, Z.: Analysis and modeling
of control tasks in dynamic systems. IEEE Trans. Evol. Comput. 6(4), 378–389
(2002)

14. Yang, S.: Non-stationary problem optimization using the primal-dual genetic algo-
rithms. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.
2246–2253. IEEE Press (2003)

https://doi.org/10.1007/978-3-642-00314-1
https://github.com/jmmcd/ponyge.git
https://github.com/jmmcd/ponyge.git
https://doi.org/10.1007/978-3-662-06560-0
http://www.wkap.nl/prod/b/1-4020-7444-1
http://dx.doi.org/10.1007/s10710-010-9113-2
http://dx.doi.org/10.1007/s10710-010-9113-2

74 D. Fagan and M. O’Neill

15. Yang, S., Yao, X.: Population-based incremental learning with associative memory
for dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

16. Yen, G.G., Lu, H.: Dynamic multiobjective evolutionary algorithm: adaptive cell-
based rank and density estimation. IEEE Trans. Evol. Comput. 7(3), 253–274
(2003)

A Smart Discovery Service in Internet of Things
Using Swarm Intelligence

Agostino Forestiero(B)

CNR - ICAR, Institute for High Performance Computing and Networking,
National Research Council of Italy, Via Pietro Bucci, 7/11 C, 87036 Rende, CS, Italy

agostino.forestiero@icar.cnr.it

Abstract. The Internet of Things (IoT) has brought to a significant
growing of data produced, and therefore, new models and approaches
are needed to investigate these “big data” in terms of volume, velocity
and variability. IoT services can be considered a dynamic content, includ-
ing data sources and middleware infrastructures. An effective solution to
manage dynamic contents are Content Delivery Networks (CDNs), but,
in dynamic and large systems as IoT environment, their limits emerge,
therefore, decentralized approaches and algorithms have to be designed
and employed. This paper proposes SmartFinder, a swarm based algo-
rithm to build a CDN based discovery service in pervasive and dynamic
environment as IoT. The CDN servers are represented with metadata
obtained through a locality preserving hash function. A swarm of mobile
agents move the metadata and, by applying of tailored probability func-
tions, achieve a logical organization of the servers. The outcome is a
sorted overlay network that allows content and services discovery opera-
tions faster. Experimental results show the effectiveness of the approach.

Keywords: Internet of Things · Content Delivery Networks
Ant-inspired agents · Overlay network

1 Introduction

With the rapid diffusion of the Internet of Things paradigm, the number of
objects connected to Internet, and therefore the amount of generated data, is
steadily growing. Managing huge quantities of data (big data) brings new issues
and challenges, and then traditional approaches, used for performance evalua-
tion and traffic engineering, have to be revised. New solutions are needed to
manage the information efficiently, in terms of volume, velocity and variabil-
ity, and it is necessary the design innovative schemes for contents and services
delivery. The applications, in such pervasive environment, have to adapt their
behavior based on the environmental context perceived by the smart objects
in the Internet of Things. The network raised from the interconnections of IoT
objects needs of connectivity and semantic data delivery across middleware ser-
vices to connect “things” and applications. IoT services can be considered a
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 75–86, 2017.
https://doi.org/10.1007/978-3-319-71069-3_6

http://orcid.org/0000-0002-3025-7689

76 A. Forestiero

dynamic content, including data sources and middleware infrastructures. Devices
provide data input and the responses to requests are performed by machine-to-
machine applications after middleware processing the requests. Dynamic con-
tents, such as a web 2.0 blog site or IoT services, can be delivered using content
distribution networks (CDNs) [15]. Content delivery in IoT environment require
realtime transmissions, lower frame loss, tolerable end-to-end delay and jitter.
CDN is based on edge servers to store contents and improve web browsing with
lower latency ensuring data consistency among them. These networks improve
the performance in terms of response time, accessibility and bandwidth. User
requests or IoT service requests can be satisfied of the best surrogate server that
store copies of the content. Obviously, a centralized mechanism to provide con-
tents and IoT services when requested, is offered. Limited size networks can be
acceptably tackled with a centralized approach owing to its poor scalability, but
the CDN paradigm shows its limits in large and dynamic systems such as IoT
environment. The large variety of the content, services and resources make the
management and discovery operations more troublesome. To perform retrieval
content or access to IoT services efficiently, centralized approaches that manage
the content and/or the IoT services are often inadequate. Low scalability and
bottlenecks of centralized mechanisms are intolerable in a dynamic environment
such as the Internet of Things networks.

Thanks to their inherent scalability and robustness, peer-to-peer paradigm
can be usefully exploited to design algorithm for managing resources in CDNs
[10,17]. Main goal of these approaches is to quickly discover CDN servers that
stores given contents. Often, content stored in CDN servers can be represented
through metadata, that is a syntactical description of contents and/or an ontol-
ogy description. Metadata are often represented as bit vectors having different
meanings. For example, each bit can represent the presence or absence of a given
topic [5,21]. This approach is particularly useful when the contents are docu-
ments, because it is possible to establish the presence of a topic in the document.
Differently, the content can be mapped through a hash function into a metadata.
If the hash function is locality preserving [3,20], neighbor/similar bit vectors will
be assigned to contents with neighbor/similar characteristics. Similarity measure
can be the cosine of the angle or the Euclidean distance between the bit vectors.

This paper proposes SmartFinder, a swarm based algorithm to build a smart
discovery service in IoT environment. SmartFinder, thanks to a swarm of ant-
inspired agents, is able to logically reorganize the CDN servers and, therefore,
to improve the efficiency of discovery operations. Each ant agent executes sim-
ple operations autonomously on the network and, at global level, a reorganized
overlay emerges. The servers are represented by metadata (bit vectors) obtained
through a locality preserving hash function applied to their content. The agents
gather, move and deposit the metadata based on tailored probability functions,
and an ordered overlay emerges. In the following, Sect. 2 shows an overview of
related works in this field, while in Sect. 3 the SmartFinder is detailed. Finally,
in Sect. 4, some experimental results are reported.

A Smart Discovery Service in Internet of Things Using Swarm Intelligence 77

2 Related Works

A wide range of researchers both from academia and industry have conducted
several studies to design new approach in Internet of Things environment based
on the CDN paradigm. In [15] the platform MobilityFirst, to handle efficiently
a content distribution network for loT services, was presented. This approach
start from the assumption that the loT services tend to be more context sensitive,
especially on locations. In [19] a content provisioning cost and the amount of net-
work traffic generated by nodes are derived in the cooperative content delivery
model in IoT, was proposed. The effect of varying the cache division ratio and
number of nodes to the content provisioning cost and network traffic was ana-
lyzed. The advances in mobile communications have enhanced the multimedia
IoT scenarios with node mobility. Those scenarios have continuously topology
changes due to failure or mobility of nodes, as well as changes in the wireless
channel conditions [22]. Paper [24] describes four caching strategies of CDN to
serve dynamic content. In order to reduce the operational cost of large amount
of data traffic over CDN, Jiang et al. [12] proposes an extension of the CDN
infrastructures to the edges of networks. Resources can be utilized through peer-
to-peer communications with smart content placement and routing to mitigate
the cross-traffic among ISPs.

Several studies has been also conducted to analyze possible hybrid approaches
between CDN and P2P technologies. [17] survey CDN-P2P-hybrid architecture
technology, including current industry efforts and academic efforts in this field
and they make a comparisons between CDN and P2P. The comparison of per-
formances of two main hybrid CDN-P2P architectures, that is CDN-P2P uncon-
nected mesh in which independent P2P mesh networks are constructed under
each CDN node, and CDN-P2P connected mesh in which CDN nodes and peers
participate in construction of a single P2P mesh network, was achieved in [23].
A novel methodology for mapping the topologies of CDN networks using two
real-world traces: a video-on-demand trace and a large-scale software update
trace, has been proposed in [11]. [2] proposes a hybrid CDN/P2P solution, that
guaranteeing an optimal quality of service, reduces the costs of infrastructure by
exploiting local caching and P2P. A multi-layer hybrid approach was proposed in
[13,26]. The system, namely LiveSky, tries to balance the shortcomings of P2P
systems by leveraging on CDN redirections. The aim is to make peer to peer
transfers network-friendly. The system has been commercially deployed by Chi-
naCache and the architecture showed promising results. To limit the radius of the
delivery graph of a P2P video streaming, in [4], a solution that exploits CDN
servers is proposed. A group-based CDN-P2P hybrid architecture (G-CP2P),
which is a location/content-aware peer selection, was proposed in [14] to reduce
service disruption latency.

Some agent systems which aims to solve very complex problems by imitating
the behavior of some in species of ants have been inspired by [1]. The idea to
reorganize the services so that the metadata descriptors of services that are
often used together are placed in neighbor peers, was introduced in [7]. This
helps a single query to find multiple basic services, which decreases the number

78 A. Forestiero

of necessary queries and, consequently, lowers the search time and the network
load. In [8,9], the performance of discovery operations are improved through the
creation of regions of the network specialized in a particular class of resources.
Whereas [25] proposes a decentralized scheme to tune the activity of a single
agent. These systems are positioned along a research avenue whose objective is
to devise possible applications of ant algorithms [1,6]. A tree-based ant colony
algorithm to support large-scale Internet-based live video streaming broadcast
in CDNs, was proposed in [16]. In this paper, differently from the traditional
solution to find paths, an algorithm to optimize the multicast tree directly and
integrate them into a multicast tree, was exploited.

3 SmartFinder Algorithm

SmartFinder aims to build an overlay network that allows discovery operations
faster. The CDN servers are represented through metadata – bit vectors with
Nb bits – obtained through a locality preserving hash function applied to the
content to guarantee that similar contents are indexed with similar metadata.
Ant-inspired agents are exploited to reorganize such metadata and build a dis-
tributed information system. The agents move among servers performing simple
operations on the basis of their state: (i) when it is unloaded, it decides whether
to gather one or more metadata from the current server; (ii) if it is loaded,
it decides whether to release one or more metadata in the local server. Two
tailored probability functions, Pg and Pd, drive the agents’ decision. The prob-
ability functions are based on a similarity function introduced in [18]. Formula
(1) reports the function that measures the similarity of a metadata d with all
the metadata located in the region R.

S(d̄, R) =
1

Nd

∑

dεR

1 − H(d, d̄)
α

(1)

The region R for each server s, is represented by s and of all server reachable
from s with a given number of hops. Here the number of hops is set to 1. Nd

is the overall number of metadata located in R, while H(d, d̄) is the Hamming
distance between d and d̄. The similarity parameter α is set to 2. The value of
S ranges from −1 to 1, but negative values are septated to 0 [18].

Intuitively, the probability function to gather metadata from a server has to
be inversely proportional to the value of S, while, the probability function of
deposit metadata has to be directly proportional to S. The probability functions
to gather a metadata Pg and the probability function to deposit a metadata Pd,
are reported in formulas (2) and (3), respectively.

Pg =
(

kg

kg + S(d̄, R)

)2

; (2)

Pd =
(

S(d̄, R)
kd + S(d̄, R)

)2

(3)

A Smart Discovery Service in Internet of Things Using Swarm Intelligence 79

The degree of similarity among metadata are tuned through the parameter
kg and kd with values comprised between 0 and 1 [1].

The steps of the algorithm performed by the mobile agents are reported
in Algorithm 1. Cyclically, the agents perform a given number of hops among
servers, and when they get to a new server decide which probability function
compute based on their condition (loaded or unloaded). In particular, if the
agent does not carries metadata, it computes Pg, otherwise, if the agent carries
metadata, Pd is computed.

while a new server is reached do
if it is unloaded then

foreach metadata d stored in the server do
compute Pg probability;
if Pg is satisfied then

gather d from the server
end

end

else
foreach carried metadata d do

compute Pd probability;
if Pd is satisfied then

deposit d in the server
end

end

end
make n hops towards a random neighbor

end
Algorithm 1. Steps performed by the mobile agents

The processing load, Pl, that is the average number of agents per second that
are processed by a server, is reported in formula (4). It does not depend neither
on the network size nor on the churn rate. The value of the processing load only
depends on the number of agents and the frequency of their movements.

Pl =
Na

Ns · Tm
=

Fg

Tm
(4)

where Na and Ns represent the number of agents and the number of servers,
respectively; Tm represents the average time between two successive movement
of an agent and Fg represents the frequency with which agents are generated by
a server.

To locate resources with given characteristics, generally, in distributed sys-
tems, each search operation collects a number of resources and the users can
choose the resources that best fit their needs. In this system, a query message
is issued by a server, on behalf of a user, to collect a set of metadata as similar
as possible to the “target metadata”. The target metadata is the metadata repre-
senting the content requested by the user. Thanks to the spatial sorting achieved

80 A. Forestiero

by the agents, the discovery procedure can be simply performed by forwarding
the request, at each step, towards the “best neighbor server”. The selected neigh-
bor server is the server that maximizes the similarity value between the target
metadata and the mean metadata calculates by each server. The mean metadata
is a bit vector composed of real numbers where the value of element is calculated
by averaging the values of the each bits, in the same position, of all the metadata
stored by the server. For example, the mean metadata of a server having the three
metadata: [0, 1, 1], [1, 0, 1] and [0, 1, 1] will be equal to [0.33, 0.67, 1].

The cosine measure, as reported in formula (5), is exploited to compute the
similarity between the target metadata and the mean metadata. Here −→u · −→v
indicates the dot-product between the vectors −→u and −→v .

cos(−→u ,−→v) =
−→u · −→v

|−→u |2 × |−→v |2 (5)

The search operation terminates whenever the best neighbor server is not
better than the server where the query has arrived so far. A reply message with
all metadata collected is forwarded to the server that has issued the request.

4 Experimental Results

An event-based simulator was implemented to evaluate the performance of the
algorithm. In our experiments, each server manages about 15 metadata represent-
ing the contents and it is linked to 8 server on average. A graphical description
of the logical reorganization is reported in Fig. 1. To each metadata is associated
a gray-scale color and the server is represented with the color of the metadata
managed with the maximum number of element. A portion of the network is pho-
tographed: (a) at Time = 0 time units, when the process is starting and the meta-
data are randomly distributed and (b) at Time = 50,000 time units, when the
process is in steady situation. Notice that similar metadata are located in the same
region and among near regions the color change gradually, which proves the spatial
sorting on the cyber layer.

The processing load, that is the number of agents that go through a server per
unit time, was calculated as in formula (4) and shown in Fig. 2. In the simulated
scenario, Tm is equals to 60 s and Fg is equals to 0.5, so that each server processes
about one agent every 120 s, which can be considered acceptable. Notice that
the processing load does not depend on other system parameters such as the
average number of metadata handled by a server or the number of server, that
confirms the scalability properties of the algorithm. The value of processing load
changes according to the maximum number of hops performed within a single
agent movement.

It was noted experimentally that the reorganization of metadata is acceler-
ated if agent movements are longer, because they can explore the network more
quickly. In order to select the right number of hops is necessary individuate a
compromise between the processing load tolerable and the rapidity and efficiency
of the reorganization process.

A Smart Discovery Service in Internet of Things Using Swarm Intelligence 81

Fig. 1. Snapshots of a portion of the network when the process is starting (a), and
when the process is in steady situation (b).

Fig. 2. The processing load generated by the algorithm when the number of hops
performed within a single agent movement ranges from 1 to 7.

The effectiveness of the algorithm was evaluated by defining of a similarity
index, SI, as reported in formula 6. The similarity index over the whole network
is obtained averaging the similarity indexes of all servers. The similarity index of
a single server s, is obtained by averaging the Hamming distance between every
couple of metadata contained in the region R related to the server s.

SI = Nb − Averaged,d̄εR(H(d, d̄)) (6)

82 A. Forestiero

If similar metadata are collected in the same region, the value of the similarity
index SI increases. Figure 3 shows the overall similarity index when Nb, i.e. the
number of bit of the metadata describing each service, is varied. Notice that the
reorganization is obtained independently of the number of bits. The scalability
nature of the algorithm is confirmed observing the behavior of the algorithm
when number of involved servers changes from 1000 to 7000, as reported in
Fig. 4. It is possible to note that the size of the network, Ns, has no detectable
effect on the performance.

Fig. 3. The similarity index of the network when Nb, i.e. the number of bit of the
metadata, ranges from 3 to 6.

The average number of results collected by a query, Nres, is reported in
Fig. 5. We can note that, the number of results collected increases with time –
the discovery operations become more efficient as metadata are organized – and
it is inversely proportional to the length of the metadata Nd, because a large
number of bit to represent the content causes a lower probability to locate a
target metadata. The value of Nd has to be tuned for each application field taking
into account that a wide classification can facilitate the discovery operations.

The resolution of “range queries” is a fundamental requirement in distributed
and large scale systems as IoT environments. A simple query is issued to find a
given metadata, while, a range query is a query in which the target metadata
contains one or more “star” bits. These bits can assume either the 0 or the 1
value.

If the target metadata contains b∗ star bits, the range query can return 2b∗

possible metadata. The discovery algorithm was modified to handle the range
queries. The neighbor selected to forward the query, is chosen by calculating the
cosine similarity between the target metadata and the mean metadata of the
neighbor server and omitting the star bits. As the simple queries, a range query

A Smart Discovery Service in Internet of Things Using Swarm Intelligence 83

Fig. 4. The similarity index, vs. time, for different values of Ns, i.e. the number of
servers.

Fig. 5. Average number of results for different values of the number of bits of the
metadata, Nb.

terminates its discovery operation when none neighbor has a similarity value
better than the current server. Figure 6 shows the effectiveness of the algorithm
to execute the range queries. The value of Nd was fixed to 4 and the number of
the star bit was varied.

A range query does not discover all possible target metadata that would be
discovered with the corresponding number of simple queries, but, in one shot,
discover much many results than a simple query.

84 A. Forestiero

Fig. 6. Average number of results of range queries with Nd = 4 and different numbers
star bits

5 Conclusions

In this paper a swarm based algorithm to build a smart discovery service CDN
based in IoT, was proposed. Thanks to the features boasted by the swarm intelli-
gence based systems, the proposed algorithm offers fully decentralization, adap-
tivity and self-organization. Swarm agents move and reorganize the metadata
representing the contents. Agent’s operations are driven by simple probabil-
ity functions that are evaluated when the agent gets to a new server. Similar
metadata representing similar contents are placed in the same region, that is in
neighbor server. This global reorganization allows discovery operation faster and
efficient. Moreover, the reorganization of metadata spontaneously adapts to the
ever changing environment as the joins and departs of servers and the changing
of the characteristics of the contents. The experimental results have proved the
effectiveness of the algorithm.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems, vol. 4. Oxford University Press, New York (1999)

2. Bronzino, F., Gaeta, R., Grangetto, M., Pau, G.: An adaptive hybrid CDN/P2P
solution for content delivery networks. In: Visual Communications and Image
Processing (VCIP), pp. 1–6. IEEE, November 2012

3. Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: a multi-attribute addressable
network for grid information services. J. Grid Comput. 2(1), 3–14 (2004)

4. Cho, S., Cho, J., Shin, S.J.: Playback latency reduction for internet live video
services in CDN-P2P hybrid architecture. In: 2010 IEEE International Conference
on Communications (ICC), pp. 1–5, May 2010

A Smart Discovery Service in Internet of Things Using Swarm Intelligence 85

5. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems
(ICDCS 2002), pp. 23–33 (2002)

6. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future
Gener. Comput. Syst. 16(8), 851–871 (2000)

7. Forestiero, A., Mastroianni, C., Papuzzo, G., Spezzano, G.: A proximity-based
self-organizing framework for service composition and discovery. In: 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing
(CCGrid), pp. 428–437. IEEE (2010)

8. Forestiero, A., Mastroianni, C., Spezzano, G.: Building a peer-to-peer information
system in grids via self-organizing agents. J. Grid Comput. 6(2), 125–140 (2008)

9. Forestiero, A., Mastroianni, C., Spezzano, G.: Reorganization and discovery of grid
information with epidemic tuning. Future Gener. Comput. Syst. 24(8), 788–797
(2008)

10. Fortino, G., Mastroianni, C.: Next generation content networks. J. Netw. Comput.
Appl. 32(5), 941–942 (2009)

11. Huang, C., Wang, A., Li, J., Ross, K.W.: Understanding hybrid CDN-P2P: why
limelight needs its own red swoosh. In: Proceedings of the 18th International Work-
shop on Network and Operating Systems Support for Digital Audio and Video, pp.
75–80. ACM (2008)

12. Jiang, W., Ioannidis, S., Massoulie, L., Picconi, F.: Orchestrating massively dis-
tributed CDNs. In: Proceedings of the 8th International Conference on Emerging
Networking Experiments and Technologies (CoNEXT 2012), pp. 133–144. ACM,
New York (2012)

13. Kang, S., Yin, H.: A hybrid CDN-P2P system for video-on-demand. In: Second
International Conference on Future Networks (ICFN 2010), pp. 309–313, January
2010

14. Kim, T.N., Jeon, S., Kim, Y.: A CDN-P2P hybrid architecture with con-
tent/location awareness for live streaming service networks. In: 2011 IEEE 15th
International Symposium on Consumer Electronics (ISCE), pp. 438–441, June 2011

15. Li, J., Shvartzshnaider, Y., Francisco, J.A., Martin, R.P., Nagaraja, K.,
Raychaudhuri, D.: Delivering internet-of-things services in mobilityfirst future
internet architecture. In: 2012 3rd International Conference on the Internet of
Things (IOT), pp. 31–38. IEEE (2012)

16. Liu, X., Dobrian, F., Milner, H., Jiang, J., Sekar, V., Stoica, I., Zhang, H.: A case
for a coordinated internet video control plane. In: Proceedings of the ACM SIG-
COMM 2012 Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication (SIGCOMM 2012), pp. 359–370. ACM, New
York (2012)

17. Lu, Z., Wang, Y., Yang, Y.R.: An analysis and comparison of CDN-P2P-hybrid
content delivery system and model. J. Commun. 7(3), 232–245 (2012)

18. Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants.
In: Proceedings of the Third International Conference on Simulation of Adaptive
Behavior: From Animals to Animats 3: From Animals to Animats 3 (SAB 1994),
pp. 501–508. MIT Press (1994)

19. Nam, Y., Park, J.H., Chung, J.M.: Performance analysis of cooperative content
delivery in wireless IoT networks. In: The 18th IEEE International Symposium on
Consumer Electronics (ISCE 2014), pp. 1–2. IEEE (2014)

86 A. Forestiero

20. Oppenheimer, D., Albrecht, J., Patterson, D., Vahdat, A.: Design and implemen-
tation tradeoffs for wide-area resource discovery. In: Proceedings of the 14th IEEE
International Symposium on High Performance Distributed Computing (HPDC
2005). Research Triangle Park, NC, USA, July 2005

21. Platzer, C., Dustdar, S.: A vector space search engine for web services. In: Pro-
ceedings of the Third European Conference on Web Services (ECOWS 2005), p.
62. IEEE Computer Society, Washington, DC (2005)

22. Rosário, D., Zhao, Z., Santos, A., Braun, T., Cerqueira, E.: A beaconless oppor-
tunistic routing based on a cross-layer approach for efficient video dissemination
in mobile multimedia iot applications. Comput. Commun. 45, 21–31 (2014)

23. Seyyedi, S., Akbari, B.: Hybrid CDN-P2P architectures for live video streaming:
comparative study of connected and unconnected meshes. In: 2011 International
Symposium on Computer Networks and Distributed Systems (CNDS), pp. 175–
180, February 2011

24. Sivasubramanian, S., Pierre, G., Van Steen, M., Alonso, G.: Analysis of caching and
replication strategies for web applications. IEEE Internet Comput. 11(1), 60–66
(2007)

25. Van Dyke Parunak, H., Brueckner, S.A., Matthews, R., Sauter, J.: Pheromone
learning for self-organizing agents. IEEE Trans. Syst. Man Cybern. Part A Syst.
Hum. 35(3), 316–326 (2005)

26. Yin, H., Liu, X., Min, G., Lin, C.: Content delivery networks: a bridge between
emerging applications and future IP networks. IEEE Netw. 24(4), 52–56 (2010)

GPU-Accelerated Evolutionary Induction
of Regression Trees

Krzysztof Jurczuk(B), Marcin Czajkowski, and Marek Kretowski

Faculty of Computer Science, Bialystok University of Technology,
Wiejska 45a, 15-351 Bialystok, Poland

{k.jurczuk,m.czajkowski,m.kretowski}@pb.edu.pl

Abstract. In the paper, we investigate the speeding up of the evo-
lutionary induction of decision trees, which is an emerging alterna-
tive to greedy top-down solutions. In particular, we design and imple-
ment graphics processing units (GPU)-based parallelization to generate
regression trees (decision trees employed to solve regression problems)
on large-scale data. The most time consuming part of the algorithm,
which is parallelized, is the evaluation of individuals in the population.
Other parts of the algorithms (like selection, genetic operators) are per-
formed sequentially on a CPU. A data-parallel approach is applied to
split the dataset over the GPU cores. After each assigned chunk of
data is processed, the results calculated on all GPU cores are merged
and sent to the CPU. We use a Compute Unified Device Architecture
(CUDA) programming model, which supports general purpose compu-
tation on a GPU (GPGPU). Experimental validation of the proposed
approach is performed on artificial and real-life datasets. A computa-
tional performance comparison with the traditional CPU version shows
that GPU-accelerated evolutionary induction of regression trees is signif-
icantly (even up to 1000 times) faster and allows for processing of much
larger datasets.

Keywords: Evolutionary Algorithms · Decision trees
Parallel computing · Graphics processing unit (GPU) · Regression trees
Large-scale data

1 Introduction

Evolutionary Algorithms (EAs) [21] are naturally prone to parallelism. The arti-
ficial evolution process can be parallelized using various strategies [6] and differ-
ent implementation platforms [13]. Recently, GPGPU has been widely used in
EAs parallelization due to its high computational power at a relatively low cost
[2]. It allows us to reduce the CPU load on the most time-consuming operations.
The paper covers the parallelization of the evolutionary induction of decision
trees (DT)s [18], which represents one of the major and frequently applied tech-
niques for discriminant analysis prediction in data mining [12]. Traditionally,

c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 87–99, 2017.
https://doi.org/10.1007/978-3-319-71069-3_7

88 K. Jurczuk et al.

DTs are induced with greedy top-down strategy, however, in the recent past
an evolutionary approach for the tree induction has attracted a great deal of
interest. The evolutionary induced DTs [3] are much simpler than the ones gen-
erated by a greedy strategy [24] with at least comparable prediction performance.
The main downside of the evolutionary approach is the relatively higher com-
putational costs due to EA itself. Thus, evolutionary induction of DTs using
large-scale data become very time-demanding.

In this paper, we focus on speeding up the evolutionary induction of regres-
sion trees that are considered as a variant of DTs, designed to approximate real-
valued functions instead of being used for classification tasks [5]. The proposed
GPU parallelization handles the most computing intensive jobs like fitness cal-
culation, leaving the evolutionary flow control and communication to the CPU.
It is applied to a framework called Global Decision Tree (GDT) that can be
used for evolutionary induction of classification [19] and regression [9] trees. The
manuscript can be seen as a continuation of previous study on GPU-based app-
roach to evolutionary induced classification trees [16]. It extends the research to
regression trees which demand a more advanced parallelization schema (e.g. for
predictions calculation in the leaves, dipole mechanism) to evaluate and evolve
individuals.

The paper is organized as follows. The next section provides a brief back-
ground. Section 3 describes our approach for GPU-accelerated evolutionary
induction of regression trees. The experimental evaluation is performed in Sect. 4
on artificial and real-life datasets. In the last section, the paper is concluded and
possible future works are outlined.

2 Background

In this section, we present some background information on evolutionary induced
regression trees, GPGPU computing model and recent related works.

2.1 Evolutionary Induced Regression Trees

There are different variants of DTs in the literature [10]. They can be grouped
according to the type of problem they are applied to and the way they are
induced. In classification trees, a class label is assigned to each leaf. Regression
trees may be considered as a variant of decision trees designed to approximate
real-valued functions instead of being used for classification tasks. In a basic
variant of a regression tree, each leaf contains a constant value, usually equal
to an average value of the target attribute of all training instances that reach
that particular leaf. To predict the value of the target attribute, the new tested
instance is followed down the tree from a root node to a leaf using its attribute
values to make routing decisions at each internal node. Next, the predicted value
for the new instance is evaluated based on prediction associated with the leaf.
Although regression trees are not as popular as classification ones, they are
highly competitive with different machine learning algorithms [23].

GPU-Accelerated Evolutionary Induction of Regression Trees 89

Traditionally, DTs are induced with a greedy procedure known as recursive
partitioning [24]. In this top-down approach the induction algorithm starts from
a root node where the locally optimal split of the data is found according to
the given optimality measure. Next, the training instances are redirected to
newly created nodes, and this process is repeated for each node until a stopping
condition is met. Additionally, post-pruning is usually applied after the induction
to avoid the problem of over-fitting the training data.

An alternative concept for the decision tree induction focuses on a global
approach which limits the negative effects of locally optimal decisions. It tries
to simultaneously search for the tree structure and the tests in the internal
nodes. This process is obviously much more computationally complex but can
reveal hidden regularities that are often undetectable by greedy methods. Global
induction is mainly represented by systems based on an evolutionary approach
[3]. In the literature, there are relatively fewer evolutionary approaches for the
regression trees than for the classification ones. Popular representatives of EA-
based regression trees are the TARGET solution [11] that evolves a CART–
like regression tree with basic genetic operators and a strongly typed genetic
programming approach called STGP [15].

2.2 GPGPU

A general-purpose computation on GPUs (GPGPU) stands for the use of graph-
ics hardware for generic problems. One of the most popular frameworks to facili-
tate GPGPU is a Compute Unified Device Architecture (CUDA) [27] created by
the NVIDIA Corporation. In the CUDA programming model, a GPU is consid-
ered as a co-processor that can execute thousands of threads in parallel to handle
the tasks traditionally performed by the CPU. This CPU load reduction using
GPGPU is recently widely applied in many computational intelligence methods
[26]. Application of GPUs in evolutionary data mining usually focuses on boost-
ing the performance of the evolutionary process which is relatively slow due to
high computational complexity, especially for the large scale data [2].

When the CPU delegates a job to the GPU, it calls a kernel that is a function
run on the device. Then, a grid of (threads) blocks is created and each thread
executes the same kernel code in parallel. The GPU computing engine is an array
of streaming multiprocessors (SMs). Each SM consists of a collection of simple
streaming processors (called CUDA cores). Each block of threads is mapped to
one of the SMs, and the threads inside the block are mapped to CUDA cores.

There are two decomposition techniques that are most commonly used to
parallelize EAs [1]: a data approach and a control approach. The first decom-
position strategy, which is also applied in this paper, focuses on splitting the
dataset and distributing its chunks across the processors of the parallel system.
The second approach focuses on population decomposition as individuals from
the population are evaluated at the same time on different cores [14]. The main
drawback of this approach is relatively weak scalability for large-scale data.

90 K. Jurczuk et al.

2.3 Related Works

Speeding up the DT induction has so far been discussed mainly in terms of
classification problems. In the literature, we may find some attempts at paral-
lelization the tree building process, however, most of the implementations focus
on either a greedy approach [20] or random forests [25]. Despite the fact that
there is a strong need for parallelizing the evolutionary induced DT [3], the topic
has not yet been adequately explored. One of the reasons is that the straightfor-
ward application of GPGPU to EA may be insufficient. In order to achieve high
speedup and exploit the full potential of such parallelization, there is a need to
incorporate knowledge about DT specifically and its evolutionary induction.

In one of the few papers that cover parallelization of evolutionary induced
DT, a hybrid MPI+OpenMP approach is investigated for both classification [7]
and regression [8] trees. The algorithms use the master-slave paradigm, and the
most time-consuming operations, such as fitness evaluation and genetic oper-
ators, are executed in parallel on slaves nodes. The authors apply the control
parallelization approach in which the population is evenly distributed to the
available nodes and cores. The experimental validation shows that the possible
speedup of such a hybrid parallelization is up to 15 times for 64 CPU cores.

To the best of our knowledge, in the literature there is one study that covers
GPGPU parallelization of evolutionary induced DTs [16]. Experimental valida-
tion on artificial and real-life datasets showed that it was capable of inducing
trees two orders of magnitude faster in comparison to the traditional CPU ver-
sion. However, it concerned only classification trees.

3 GPU-Accelerated Induction of Regression Trees

In this section, we briefly describe the original evolutionary tree induction and
next, we propose an efficient acceleration of it using GPGPU.

3.1 Global Decision Tree Induction Framework

The general structure of the GDT system follows a typical EA framework [21]
with an unstructured population and a generational selection. GDT allows evolv-
ing different kinds of tree representations [10], however; in our description we
focus on univariate trees in which each split in the internal node is based on a
single attribute. Individuals are represented in their actual form as regression
trees and initialized using a simple top-down greedy algorithm on a random sub-
sample of the training data. The tests in the internal nodes are found on random
subsets of attributes.

Tree-based representation requires developing specialized genetic operators
corresponding to classical mutation and crossover. The GDT framework [9] offers
several specialized variants that can modify simultaneously the tree structure
and tests in internal nodes. The mutation operator makes random changes in
nodes of the selected individuals by e.g. replacing the test, shifting its threshold,

GPU-Accelerated Evolutionary Induction of Regression Trees 91

pruning the non-terminal nodes or expanding the leaves. To construct a new test
in the internal node GDT uses a locally optimized strategy called ‘long dipole’
[9]. At first, an instance that will constitute the dipole is randomly selected
from the set of instances from a current node. The rest of the objects are sorted
in decreasing order according to the difference between the dependent variable
values and the selected instance. Next, the second instance that constitutes the
dipole with possibly a much different dependent variable value is searched for
using a mechanism similar to the ranking linear selection [21]. Finally, the test
that splits the dipole is constructed based on a randomly selected attribute.
The threshold value is randomly selected from a range defined by the pairs that
constitute the dipole.

The crossover operator attempts to combine elements of two existing individ-
uals (parents) to create a new solution. Randomly selected nodes may exchange
the tests, branches or even the subtrees in asymmetrical manner [9]. Both oper-
ators are applied with a given probability to a tree (default value is 0.8 for
mutation and 0.2 for crossover). Selecting the point of mutation or crossover
depends on the location (level) of the node in the tree and its average predic-
tion error per instance. This way the weak nodes (with high error value) and
the ones from the lower parts of the tree are selected with higher probability.
Successful application of any operator results in the necessity for relocation of
the learning instances between tree parts rooted in the modified nodes. In addi-
tion, in every node, information about training instances currently associated
with the node is stored. This makes it faster to perform local structure and test
modifications during applications of genetic operators. However, it increases the
memory consumption.

Fitness function is one of the most important and sensitive elements in the
design of EAs. It drives the evolutionary search process by measuring how good
a single individual is in terms of meeting the problem objective. GDT frame-
work offers different multi-objective strategies like weight formula, lexicographic
analysis or Pareto dominance. Here, we use the first strategy and apply the
following expression for the fitness function:

Fitness(T) = [1 − 1/(1 + RMSE(T))] + α(S(T) − 1.0), (1)

where S is the tree size expressed as a number of nodes, RMSEs is root-mean-
square error, α is the relative importance of the complexity term and a user
supplied parameter (default value is 0.0005).

The selection mechanism is based on a ranking linear selection [21] with
the elitist strategy, which copies the best individual founded so far to the next
population. Evolution terminates when the fitness of the best individual in the
population does not improve during a fixed number of generations (default: 1000)
or maximum number of generations is reached (default: 5000).

3.2 GPU-Based Approach

The proposed algorithm is based on a data decomposition strategy. In this app-
roach, each GPU thread operates on a small fraction of the dataset. The general

92 K. Jurczuk et al.

flowchart of our GPU-based approach is illustrated in Fig. 1. It can be seen that
only the most time consuming operation of EA, the evaluation of the individuals,
is performed in parallel on GPU. The parallelization does not affect the behavior
of the original EA as the evolutionary induction flow is driven by the CPU in a
sequential manner.

Fig. 1. Flowchart of a GPU-accelerated algorithm.

The first modification of the GDT framework concerns the initialization
phase that begins by sending and saving the whole dataset from CPU to the
global GPU memory. This way the GPU threads have constant access to the
data and the heaviest data transfer is performed only once. The following oper-
ations: initialization of the population as well as selection of the individuals
remain unchanged compared to original GDT system. The reason why these ini-
tial steps are not parallelized is that the initial population is created only once on
small fractions of the dataset. In the evolutionary loop, CPU is also involved in
relatively fast operations like genetic operators and selection. After successfully
application of crossover or mutation, there is a need to evaluate the individuals.
For calculating RMSE and fitness, all objects in the training dataset need to be
passed through the tree starting from the root node to an appropriate leaf. As
this is a time-consuming operation and can be performed in parallel, it is dele-
gated to the GPU which performs all necessary objects relocations and fitness
calculation.

The cooperation between CPU and GPU is organized in four kernel calls
that can be grouped into two sets: Kernel1pre/post and Kernel2pre/post (Fig. 2).
They cover the decomposition phase (pre) and gathering phase (post) which
is illustrated in Fig. 2. The role of the first function named Kernel1pre is to
propagate objects from the root of the tree to the leaves. Each GPU block makes
a copy of the evaluated individual that is later loaded into the shared memory
that is visible in all threads within the block. The dataset is spread into smaller
parts, first between different GPU blocks and then further between the threads.
This way the threads can process the same individual but perform calculations
on different chunks of the data. In each tree leaf the sum of predictions for the

GPU-Accelerated Evolutionary Induction of Regression Trees 93

Fig. 2. Four kernel functions responsible finally for fitness info calculation for each
individual.

training instances that reach that particular leaf as well as the number of the
objects are stored. Next, the gathering function Kernel1post merges information
from multiple copies of the individual allocated in each GPU block (see Fig. 2).
For each individual, information that was calculated by the threads and stored
in the leaves is combined.

The role of the Kernel2 functions is to enable the fitness calculation of
the individual. In order to do that, the tree error must be determined using
the information calculated by the Kernel1 functions and stored in the leaves.
Kernel2pre function again splits the dataset into small parts and next in each
GPU block its threads propagate and assign objects to the tree leaves. This oper-
ation is necessary to calculate the squared error of each tree leaf in Kernel2pre
function and finally overall sum of squared residuals in the Kernel2post call.
Like in Kernel1pre function, each GPU block stores a copy of the individ-
ual. The threads within the blocks calculate the prediction (mean value) for
every leaf of every individual in the population from the information gathered
in Kernel1 function. Next, each thread sums the squared differences between
assigned objects predictions and the leaf prediction. The Kernel2post function
gathers and merges the information of the squared error for each leaf from GPU

94 K. Jurczuk et al.

blocks, determines sum of squared residuals and propagates the tree error from
the leaves to the root node.

To improve the algorithm’s performance, during the evolutionary induction
CPU does not have access to the objects that fall into particular nodes of the tree
as the propagation of the instances is performed on GPU. However, some variants
of the mutation operator, that searches for the ‘long dipole’, require at least two
objects to construct a new test in the internal node. That is why, in our GPU-
accelerated approach each tree node contains additional information about two
instances that may constitute ‘long dipole’. First instance is randomly selected
in the Kernel1pre function and the second one is set during gathering phase in
the Kernel2post function. When the multiple copies of the tree are merged, in
each node the second instance is searched from available set of instances in other
GPU blocks according to the differences in the dependent variable value. As both
instances are selected randomly and should have much different target values,
the general concept of the ‘long dipole’ used in CPU version is maintained.

4 Experimental Validation

In this section, the performance analysis of the GPU-accelerated algorithm is
verified, both on large-scale artificial and real-life datasets. As we are focused
in this paper only on speeding up the GDT system, the results for the pre-
diction performance are not included. For detailed information about the GDT
prediction performance please see our previous papers [9,10].

4.1 Setup

In all experiments a default set of parameters from the sequential version of
the GDT system is used and the results correspond to averages of 10 runs. We
have tested two artificially generated datasets called armchair and chess (1,
5, 10 and 20 millions of instances, 2 real-valued attributes) [7,8] and two large
real-life publicly available datasets: Suzy (5 millions of instances, 17 real-valued
attributes) and Y ear (515 345 instances, 90 real-valued attributes) available in
the UCI Machine Learning Repository [4]. Due to the lack of publicly available
large-scale regression datasets, Suzy which originally concerned classification
was transformed in such a way that in performed experiments the value of the
last attribute is predicted instead of the class label. The only purpose of this
operation was to investigate the algorithm’s speedup and not the prediction
performance.

All the experiments were performed on a regular PC equipped with a proces-
sor Intel Xeon E5-2620 v4 (20 MB Cache, 2.10 GHz), 64 GB RAM, and a single
graphics card. We used a 64-bit Ubuntu Linux 16.04.02 LTS as an operating
system. The sequential algorithm was implemented in C++ and compiled with
the use of gcc version 5.4.0. The GPU-based parallelization was implemented in
CUDA-C and compiled by nvcc CUDA 8.0 [22] (single-precision arithmetic was
applied). We tested three NVIDIA GeForce GTX graphics cards:

GPU-Accelerated Evolutionary Induction of Regression Trees 95

– 780 (2304 CUDA cores, clock rate 863 MHz, 3 GB of memory with 288.4
GB/s bandwidth),

– Titan Black (2880 CUDA cores, clock rate 889 MHz, 6 GB of memory with
336.0 GB/s bandwidth),

– Titan X (3072 CUDA cores, clock rate 1000 MHz, 12 GB of memory with
336.5 GB/s bandwidth).

4.2 Results

Table 1 shows the obtained speedup of the proposed GPU-accelerated algorithm
in comparison to its sequential version. Speedup for three GPUs and different
datasets are included. It is clearly visible that the proposed GPU-acceleration
provides a significant decrease in computation time. NVIDIA GTX Titan X
GPU is able to speed up the evolutionary induction even more than ×1000,
while other GPUs allow us to decrease the computation time at least ×100.

The scale of the improvement is even more visible when comparing the exe-
cution time between the sequential and parallel version of the GDT system
(Table 2). For large data, the tree induction time for the proposed solution can
be counted in minutes, while the original sequential algorithm often needs at
least a few days. Moreover, the achieved speedup is much higher than the one
obtained by a computer cluster of 16 nodes each equipped with 2 quad-core
CPUs (Xeon 2.66 GHz) (128 CPU cores in total) and 16 GB RAM [8].

Table 1. Mean speedup for different datasets and various GPUs.

Dataset GTX 780 GTX Titan Black GTX Titan X

Armchair1M ×470 ×496 ×1189

Armchair5M ×572 ×535 ×1328

Armchair10M ×529 ×546 ×1372

Armchair20M ×505 ×458 ×1349

Chess1M ×140 ×121 ×232

Chess5M ×176 ×192 ×300

Chess10M ×181 ×188 ×249

Chess20M ×163 ×129 ×259

Year ×421 ×512 ×885

Suzy ×344 ×324 ×760

The results suggest that with the proposed approach even a regular PC with
a medium-class graphics card is enough to significantly accelerate the GDT tree
induction time. As it is expected, better graphics cards manage to achieve much
better accelerations. However, the NVIDIA GTX 780 GPU is much cheaper
(about 10 times) than NVIDIA GTX Titan X GPU and it provides only 2 or 3
times lower speedup.

96 K. Jurczuk et al.

Fig. 3. The mean speedup for a few blocks × threads configurations and the different
size of the dataset (1, 5, 10, and 20 million instances), successively for: (a) Geforce
GTX 780, Chess, (b) Geforce GTX Titan X, Chess, (c) Geforce GTX 780, Armchair,
(d) Geforce GTX Titan X, Armchair.

There is also a difference in speedup between datasets and/or their size.
The highest acceleration was when using the Armchair dataset. This dataset is
the simplest one and the induced trees are the smallest. This can suggest that
the size of the generated regression trees (problem difficulty) influences time
performance due to CUDA thread/branch divergence [27]. More investigation is
needed here, e.g. detailed time profiling of both CPU and GPU.

We also experimentally verified whether different sizes of the data processed
in each block/thread influences the algorithm time. For this purpose, we tested
various blocks × threads configurations using two datasets (Chess and Arm-
chair) and the slowest/quickest GPU (GTX 780 and GTX Titan X). Figure 3

GPU-Accelerated Evolutionary Induction of Regression Trees 97

Table 2. Mean execution time of the sequential algorithm as well as its GPU-
accelerated version on the fastest GPU (in seconds and days/hours/minutes).

Dataset Sequential GPU-accelerated

Armchair1M 74 783 s ≈ 21 h 63 s ≈ 1 min

Armchair5M 404 388 s ≈ 4.5 days 304.5 s ≈ 5min

Armchair10M 781 668 s ≈ 9 days 570 s ≈ 9.5 min

Armchair20M 1 492 440 s ≈ 17 days 1106 s ≈ 18.5 min

Chess1M 102 599 s ≈ 1 days 4 h 442 s ≈ 7 min

Chess5M 550 915 s ≈ 6 days 9 h 1 834 s ≈ 30.5 min

Chess10M 1 050 515 s ≈ 12 days 4 219 s ≈ 1 h 10.5 min

Chess20M 2 076 507 s ≈ 24 days 8 020 s ≈ 2 h 13.5 min

Year 90 360 s ≈ 25 h 102 s ≈ 1.5 min

Suzy 710 000 s ≈ 8 days 5 h 934 s ≈ 15 min

shows that for all larger datasets (starting with 10M), the configuration with
more blocks/threads fits the best, whereas for smaller datasets configurations
with less blocks/threads gives noticeably better results. There are at least two
reasons that may explain the described algorithm behavior. Too small data por-
tions per thread could cause more overhead as there are more threads to create,
manage, and so on. On the other hand, the problem with load balancing can
exist when the chunks of data are too big.

5 Conclusion

This paper focuses on GPU-accelerated evolutionary induction of regression
trees. Proposed implementation takes an advantage of the specificity of evo-
lutionary DT induction to exploit the full potential of GPGPU approach. Pre-
sented results show that our solution is fast, scalable and can easily explore
large-scale data.

We see many promising directions for future research. In particular, we are
currently working on extending our approach on regression trees with linear
models in the leaves (model trees) and multi-GPU platforms. There are also
many interesting ideas for optimization the proposed algorithm like processing
only the modified by the genetic operators part of the tree instead of propagation
all dataset objects. We also plan to verify the influence of various GPU specific
memory improvements [17] in order to speed up the algorithm further.

Acknowledgments. This work was supported by the grants S/WI/2/13 (first and
third author) and W/WI/1/2017 (second author) from Bialystok University of Tech-
nology founded by Ministry of Science and Higher Education.

98 K. Jurczuk et al.

References

1. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans.
Evol. Comput. 6(5), 443–462 (2002)

2. Bacardit, J., Llor, X.: Large-scale data mining using genetics-based machine learn-
ing. WIRE Data Min. Knowl. Discov. 3(1), 37–61 (2013)

3. Barros, R.C., Basgalupp, M.P., Carvalho, A.C., Freitas, A.A.: A survey of evolu-
tionary algorithms for decision-tree induction. IEEE Trans. SMC Part C 42(3),
291–312 (2012)

4. Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases
(1998). http://www.ics.uci.edu/∼mlearn/MLRepository.html

5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth and Brooks, Monterey (1984)

6. Chitty, D.: Fast parallel genetic programming: multi-core CPU versus many-core
GPU. Soft Comput. 16(10), 1795–1814 (2012)

7. Czajkowski, M., Jurczuk, K., Kretowski, M.: A parallel approach for evolution-
ary induced decision trees. MPI+OpenMP implementation. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 340–349. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19324-3 31

8. Czajkowski, M., Jurczuk, K., Kretowski, M.: Hybrid parallelization of evolu-
tionary model tree induction. In: Rutkowski, L., Korytkowski, M., Scherer,
R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS
(LNAI), vol. 9692, pp. 370–379. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-39378-0 32

9. Czajkowski, M., Kretowski, M.: Evolutionary induction of global model trees with
specialized operators and memetic extensions. Inf. Sci. 288, 153–173 (2014)

10. Czajkowski, M., Kretowski, M.: The role of decision tree representation in regres-
sion problems an evolutionary perspective. Appl. Soft Comput. 48, 458–475 (2016)

11. Fan, G., Gray, J.B.: Regression tree analysis using TARGET. J. Comput. Graph.
Stat. 14(1), 206–218 (2005)

12. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in
Knowledge Discovery and Data Mining. AAAI Press, Menlo Park (1996)

13. Gong, Y.J., Chen, W.N., Zhan, Z.H., Zhang, J., Li, Y., Zhang, Q., Li, J.J.: Dis-
tributed evolutionary algorithms and their models: a survey of the state-of-the-art.
Appl. Soft Comput. 34, 286–300 (2015)

14. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Comput-
ing. Addison-Wesley, Boston (2003)

15. Hazan, A., Ramirez, R., Maestre, E., Perez, A., Pertusa, A.: Modelling expressive
performance: a regression tree approach based on strongly typed genetic program-
ming. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp.
676–687. Springer, Heidelberg (2006). https://doi.org/10.1007/11732242 64

16. Jurczuk, K., Czajkowski, M., Kretowski, M.: Evolutionary induction of a decision
tree for large-scale data: a GPU-based approach. Soft Comput. (2017, in press)

17. Jurczuk, K., Kretowski, M., BezyWendling, J.: GPU-based computational mod-
eling of magnetic resonance imaging of vascular structures. Int. J. High Perform.
Comput. Appl. (2017, in press)

18. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39(4), 261–283
(2013)

http://www.ics.uci.edu/~mlearn/MLRepository.html
https://doi.org/10.1007/978-3-319-19324-3_31
https://doi.org/10.1007/978-3-319-39378-0_32
https://doi.org/10.1007/978-3-319-39378-0_32
https://doi.org/10.1007/11732242_64

GPU-Accelerated Evolutionary Induction of Regression Trees 99

19. Kretowski, M., Grześ, M.: Global learning of decision trees by an evolutionary algo-
rithm. In: Saeed, K., Pejaś, J. (eds.) Information Processing and Security Systems,
pp. 401–410. Springer, Boston (2005). https://doi.org/10.1007/0-387-26325-X 36

20. Lo, W., Chang, Y., Sheu, R., Chiu, C., Yuan, S.: CUDT: a CUDA based decision
tree algorithm. Sci. World J. 1–12 (2014)

21. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, London (1996). https://doi.org/10.1007/978-3-662-03315-9

22. NVIDIA: CUDA C programming guide. Technical report (2017). https://docs.
nvidia.com/cuda/cuda-c-programming-guide/

23. Ortuno, F.M., Valenzuela, O., Prieto, B., Saez-Lara, M.J., Torres, C., Pomares,
H., Rojas, I.: Comparing different machine learning and mathematical regression
models to evaluate multiple sequence alignments. Neurocomputing 164, 123–136
(2015)

24. Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers - a survey.
IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 35(4), 476–487 (2005)

25. Strnad, D., Nerat, A.: Parallel construction of classification trees on a GPU. Con-
curr. Comput. Pract. Exp. 28(5), 1417–1436 (2016)

26. Tsutsui, S., Collet, P.: Massively Parallel Evolutionary Computation on GPGPUs.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37959-8

27. Wilt, N.: CUDA Handbook: A Comprehensive Guide to GPU Programming.
Addison-Wesley, Boston (2013)

https://doi.org/10.1007/0-387-26325-X_36
https://doi.org/10.1007/978-3-662-03315-9
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://doi.org/10.1007/978-3-642-37959-8

Bezier Curve Parameterization Methods
for Solving Optimal Control Problems of SIR

Model

Tibor Kmet(B) and Maria Kmetova

Department of Mathematics and Informatics, J. Selye University,
Bratislavska cesta 3322, 945 01 Komarno, Slovakia

{kmett,kmetovam}@ujs.sk
http://www.ujs.sk

Abstract. In this paper the optimal control strategies with two con-
trol variable of an SIR (susceptible-infected-recovered) epidemic model
are introduced. The effect of dispersion of the population in a bounded
habitat has been taken into consideration. The aim of this work is to min-
imize the infective and susceptible individuals and to maximize the total
number of recovered individuals by using the possible control variables.
To solve optimal control problem we use direct and indirect methods,
Bernstein-Bezier parametrisation of control variable and invasive weed
optimization of objective function, and adaptive critic design with echo
state networks, respectively. Our results indicate that these two methods
are able to solve optimal control problems.

Keywords: Bernstein-Bezier parametrisation
Invasive weed optimization · Adaptive critic design
Echo state networks · SIR model · Optimal control problem

1 Introduction

There are two general approaches to solve optimal control problems given math-
ematically as follows:

min F (u) = ψ(x(tf)) +
∫ tf

t0

f0(t, x(t), u(t)) (1)

subject to

ẋ(t) = f(t, x(t), u(t)) (2)

with initial condition x(t0) = x0, where x ∈ Rm, u ∈ Rd and f = (f1, . . . , fm).
These are often labeled as indirect and direct methods. In indirect methods
there are some numerical methods to solve the challenges of obtaining an opti-
mal control û and optimal trajectory x̂(t) [9,14]. The first indirect methods is

c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 100–110, 2017.
https://doi.org/10.1007/978-3-319-71069-3_8

Bezier Curve and Optimal Control Problems 101

based on solving the optimal systems, state x(t) and co-state equations λ(t),
which consist of 2m differential equations and boundary conditions in time also.
The second indirect method starting with an initial guess for the co-state equa-
tion, then the state equation and the control equation are solved by a forward
method in time. These state and control values are used to solve the co-state
equations by backward methods in time. In 1977, Werbos [15] introduced an app-
roach for approximate dynamic programming which later became known under
the name of adaptive critic design (ACD). A typical design of ACD consists of
three modules: action, model (plant), and critic. The action consists of a para-
metrised control law. The critic approximates the value-related function and
captures the effect that the control law has on the future cost. At any given time
the critic provides a guidance on how to improve the control law. In return, the
action can be used to update the critic. An algorithm that successively iterates
between these two operations converges to the optimal solution over time. The
plant dynamics are discrete, time-invariant, and deterministic, and they can be
modelled by a difference equation. The action and critic networks are chosen as
neural networks, for example feed forwards or echo state networks (ESNs). For
detailed explanation see [10,11,13]. In the direct methods, optimal control is seen
as a standard optimization problems: perform a search for the control function
u(t) that optimize the objective functional F (u). However, optimization routines
do not operate on infinite dimensional space, we used straightforward discretiza-
tion of continues space [4]. To approximate optimal control u(t) we use Bezier
curve which can parameterize smooth, non-oscillatory function with minimum
epistasis with minimum number of parameters. Given a large enough number
of properly selected control points, any smooth function can be approximated
by Bezier curve to arbitrary accuracy [3]. Here, Bezier Control Parameterization
(BCP) is used to determine optimal control function. In this paper, using SIR
model we compare direct method including Invasive Weed Optimization (IWO)
and Bezier curve approximation with indirect method based on Pontryagin’s
maximum principle or on necessary conditions for the optimal control problem,
ACD and ESNs. Rest of the paper is organized in the following way. Section 2
describes Berstein-Bezier parameterization. Section 3 elaborates the IWO algo-
rithm. In Sect. 4, we present a mathematical model describing the population
dynamics of infectious disease and optimal control problem of vaccine coverage
threshold needed for disease control and eradication. Section 5 includes some
numerical results of optimal control problem solving by BCP-IWO and ACD-
ESNs methods. Finally, Sect. 6 concludes the paper.

2 Bernstein-Bezier Parameterisation

The first approach to Bezier curves was introduced by Paul de Casteljau in early
1960s at car company Citroen to modelling car shapes. He could not publish
his results until 1986. De Casteljau algorithm is based on the repeated linear
interpolation between pairs of control points. Linear interpolation between two
distinct points A, B is the set of points X(z) = (1−z)A+zB which, for z ∈ [0, 1]

102 T. Kmet and M. Kmetova

is a line segment AB interpreted as the affine image of the unit interval. We can
also interpret the line segment AB as the affine image of any interval [t0, tf].
The interval [t0, tf] may itself be obtained by an affine map from the interval
[0, 1] and vice versa. The mentioned map (with z ∈ [0, 1] and t ∈ [t0, tf]) is given
by z = (t − t0)/(tf − t0). The interpolated point X on AB is now given by both
X(z) = (1 − z)A + zB and X(t) = (tf − t)A/(tf − t0) + (t − t0)B/(tf − t0).

Fig. 1. General form of Bezier curve with control points C0, . . . , C5.

For creating a Bezier curve of degree n, let us given n + 1 control points
Ci ∈ Rd, i = 0, 1, . . . , n and a parameter z ∈ [0, 1]. Set Cr

i (z) = (1−z)Cr−1
i (z)+

zCr−1
i+1 (z), r = 1, . . . , n, i = 0, . . . , n−r and C0

i (z) = Ci. Then Cn
0 (z) ∈ Rd is the

point with parameter value z on the Bezier curve Cn, hence Cn(z) = Cn
0 (z). The

general layout of Bezier curve is illustrated in Fig. 1. Now we give the example
of the cubic case. Control points are Ci, i = 0, 1, 2, 3. According to de Casteljau
algorithm we create Bezier Curve, see Fig. 2.

Fig. 2. Cubic Bezier curve construction via de Casteljau algorithm.

We got a point on the curve as affine combination of the origin control points.
(Figure 2 shows the process and the result of linear interpolation for z = 0.6.)
One can realize that the coefficients of the affine combination are Berstein poly-
nomials. Bezier curves of degree n can be expressed also in terms of Berstein
polynomials of degree n : Cn(z) =

∑n
i=0 CiB

n
i (z), where Bn

i (z) =
(
n
i

)
zi(1−z)n−i

are Bernstein polynomials defined explicitly. Cn(z) =
∑n

i=0 CiB
n
i (z), One of

the important properties of Bernstein polynomials is the following recursion:
Bn

i (z) = (1 − z)Bn−1
i (z) + zBn−1

i−1 (z). The property that Bernstein polynomials
of degree n forms a partition of unity

∑n
i=0 Bn

i (z) = 1 is necessary for using them
as coefficients of affine combination of control points of a Bezier curve. The fol-
lowing property is also important:

∑n
i=0

i
nBn

i (z) = z. Bezier curves are invariant

Bezier Curve and Optimal Control Problems 103

under affine parameter transformation. Previous definition of Bezier curve was
given over the interval [0, 1]. This is done because it is convenient, not because it
is necessary [3]. The curve can be defined over the arbitrary interval t0 ≤ t ≤ tf
of the real line. After the introduction of local coordinates z = (t− t0)/(tf − t0),
the algorithm proceeds as usual. This property is inherited from the linear inter-
polation process. The corresponding generalized de Casteljau algorithm is of the
form Cr

i (t) = (tf − t)/(t − t0)Cr−1
i (t) + (t − t0)/(tf − t0)Cr−1

i+1 (t). Thus alge-
braic expression for Bezier curve Cn over the interval [t0, tf] is the following
Cn(t) =

∑n
i=0 CiB

n
i ((t − t0)/(tf − t0)). In our model, we use Bezier curve in

(t, u) space to estimate optimal control u(t). Given a fixed set of t components of
the control points ti = t0+hi, i = 0, . . . , n, where h = tf−t0

n and the parameters
ui, i = 0, . . . , n, the Bezier curve for u(t) is

(
t

u(t)

)
=

n∑
i=0

(
n

i

)
zi(1 − z)n−i

(
ti
ui

)
(3)

with control points Ci =
(

ti
ui

)
and binomial coefficients

(
n
i

)
, i = 0, . . . , n. A fixed

regular mesh is used on the t-axis to make the curve single valued and to reduce
the dimension of the optimization vectors to n+1. The BCP with control points
Ci =

(
ti
ui

)
, i = 0, . . . , n completely encodes the control function u(t) as the n-th

order parametric Bezier curve.

3 Invasive Weed Optimization Algorithm

Usually the parameters governing the optimization problem are presented as
a vector u = (u1, . . . , ud) To measure the quality of each solution, an objec-
tive function or fitness function is used for single objective optimization. The
task of optimization is to search for the parameter vector u∗ to minimize the
objective function F (u). Invasive Weed Optimization (IWO) is a stochastic opti-
mization algorithm inspired from colonizing weeds which was first introduced by
Mehrabian and Locus in [1]. Since its invention, IWO has been used in many
applications like the design and optimization of antenna array, solving optimal
control problems [4], training neural networks [5]. In the basic IWO, weeds rep-
resent the feasible solutions of problems and population is the set of all weeds. A
finite number of weeds is being dispread over the search area. Every weed pro-
duces new weeds depending on its fitness. The generated weeds are randomly
distributed over the search space by normally distributed random numbers with
a mean equal to zero. This process continues until maximum number of weeds is
reached. Only the weeds with better fitness can survive and produce seed, oth-
ers are being eliminated. The process continues until maximum iterations are
reached or hopefully the weed with best fitness is closest to optimal solution.
The process is addressed in detail as follows:

– Step 1: Initialize a population
Set the maximum and the least value of a weed smax, smin, respectively. A
population of initial solutions is being dispread over the d dimensional search
space with random positions.

104 T. Kmet and M. Kmetova

– Step 2: Reproduction
The higher the weed’s fitness is, the more seeds it produces. The formula of
weeds producing seeds is wn = f−fmin

fmax−fmin
(smax − smin + smin, where f is the

current weed’s fitness. fmax and fmin respectively represent the maximum
and the least fitness of the current population.

– Step 3: Spatial dispersal
This step ensures that the produced seeds will be generated around the par-
ent weed, leading to a local search around each plant. The generated seeds
are randomly spread out around the parent weeds according to a normal dis-
tribution with mean equal to zero and variance σ2. The standard deviation
of the seed dispersion σ decreases as a function of the number of iterations it.
The equation for determining the standard deviation for each generation is
presented in equation σit = (Itmax−it)n

(Itmax)m
(σinit − σfinal) + σfinal, where Itmax

is the maximum number of iterations. σit is the standard deviation at the
current iteration and m is the nonlinear modulation index.

– Step 4: Competitive exclusion
After a number of iterations, the population reaches its maximum and an
elimination mechanism is adopted: the seeds and their parents are ranked
together and only those with better fitness can survive and become reproduc-
tive. Others are being eliminated.

Algorithm 1. Pseudo-code for the IWO algorithm [15].
Input: Generate random population W of M solution (weeds) over the d−

dimensional search space; Set maximum size of population Mmax,
maximum number of iteration Itmax, smin and smax

Output: Weed with best fitness (optimal solution)
1 for i ← 0 to Itmax do
2 Calculate the fitness of each weed based on the problem objective function
3 Compute the best and worst fitness in the population
4 Compute the standard deviation std depending on iteration
5 for each weed w in the population W do
6 Compute the number of seed for w depending on its fitness
7 Select the seeds from the feasible solutions around the parent weed w in

a neighborhood with normal distribution having mean = 0 and
standard deviation = σit

8 Add seeds produced to the population W

9 if |W | > Mmax then
10 Sort the population W according to their fitness
11 Truncate population W with worse fitness till N = Mmax.

12 return Weed with best fitness (optimal solution)

4 SIR Model

Mathematical models describing the population dynamics of infectious disease
have played an important role in better understanding epidemiological patterns

Bezier Curve and Optimal Control Problems 105

and disease control. One of the most popular models of the infectious diseases is
the classical SIR model [2,16,17]. In this model, the whole population is divided
into three compartments which describe separated groups of individuals: sus-
ceptible which are able to contract the disease (denoted by S, x1), infective
which are capable of transmitting the disease (marked by I, x2) and recovered
which are permanently immune (denoted by R, x3). The letters represent the
number of individuals in each compartment at a particular time t and space p,
and the whole population size N, x4 is the sum of above fractional groups, i.e.
S + I + R = N. For the optimal control problem we consider the control vari-
able u(t) = (u1(t), u2(t)) ∈ U relative to the state variables x1, . . . , x4, where
U = {(u1, u2), ui(t) is measurable, 0 ≤ ui(t) ≤ bi}, says an admissible con-
trol set. The effect of dispersion of the population in a bounded habitat has
been taken into consideration, and in this situation the governing equations for
the population densities become a system of differential equations. The aim of
this work is to minimize the infective and susceptible individuals and to max-
imize the total number of recovered individuals by using the possible minimal
control variables u1(t) and u2(t). Susceptible individuals induce an optimal con-
trol vaccine u1(t) before the infection and an optimal control treatment u2(t)
should be provided to infected individuals. The time evolutions of the popula-
tions compartments in the SIR model is described by four nonlinear differential
equations:

ẋ1(t) =
(

b − μ
rx4(t)

Kc

)
x4(t) − βx1(t)x2(t)

x4(t)
+

+ωu2(t)
x2(t)
x4(t)

−
(

c + (1 − μ)
rx4(t)

Kc

)
x1(t) − u1(t)x1(t)

ẋ2(t) =
βx1(t)x2(t)

x4(t)
− u2(t)

x2(t)
x4(t)

−
(

c + (1 − μ)
rx4(t)

Kc

)
x2(t) − αx2(t)

ẋ3(t) = αx2(t) + (1 − ω)u2(t)
x2(t)
x4(t)

+ u1(t)x1(t)

ẋ4(t) = rx4(t)
(

1 − x4(t)
Kc

)
(4)

with initial conditions

xi (0) = x0i, i = 1, . . . , 4. (5)

Here t denotes the time, b > 0, c > 0, α > 0 and β > 0 are the birth, death,
recovery and contact rate, respectively. r = b − c is the intrinsic growth rate,
μ is the convex combination constant, Kc is the carrying capacity of the popu-
lation, and u = (u1, u2) is the vaccination coverage of susceptible and infected
individuals. Let us consider the whole population size x4 given by the following
equation:

ẋ4(t) = rx4(t)
(

1 − x4(t)
Kc

)
. (6)

106 T. Kmet and M. Kmetova

Equation (6) has two equilibrium N̄1 = 0, N̄2 = Kc, where N1 is unstable and
N2 is asymptotically stable.

4.1 Optimal Control Problem

We set an optimal control problem in the SIR model to control the spread of
diseases. The main goal of this problem is to investigate the optimal vaccine
coverage threshold needed for disease control and eradication [8]. From these
facts, our optimal control problem is given by the following. Find a control u(t)
to minimise the objective functional

J (u) =
∫ tf

t0

a1x1(t) + a2x2(t) +
1
2
u1(t)2 +

1
2
u2(t)2dt, (7)

subject to the state system (4), where a1, a2 are small positive constants to keep
a balance in the size of S and I, respectively. The theory of necessary conditions
for the optimal control problem of form (7) is well developed, see e.g. [6,12]. The
augmented Hamiltonian function for problem (7) is given by

H(x, u, λ) = a1x1(t) + a2x2(t) +
1
2
u1(t)2 +

1
2
u1(t)2 +

4∑
j=1

λjFj(x, u) =

1
2
u2(t)2 + u2(t)

x2(t)
x4(t)

(ωλ1(t) − λ2(t) + (1 − ω)λ3(t)) +

1
2
u1(t)2 + u1(t)x1(t)(λ3(t) − λ1(t)) + G(p, t), (8)

where λ ∈ R4 is the adjoint variable. Let (x̂, û) be an optimal solution for (7).
Then the necessary optimality condition for (7) implies [6] that there exists a
piecewise continuous and piecewise continuously differentiable co-state function
λ : Q → R4 satisfying

λ̇ = −∂H
∂x

(x̂, x̂τ , û, λ) (9)

λ(tf) = 0, (10)

0 =
∂H
∂u

(x̂, û, λ) . (11)

According to the optimality condition (11), we have

∂H(x̂, û, λ)
∂u1

= û1(t) + x1(t) (λ3(t) − λ1(t)) = 0

∂H(x̂, û, λ)
∂u2

= û2(t) +
x̂2(t)
x̂4(t)

(ωλ1(t) − λ2(t) + (1 − ω)λ3(t)) = 0.

Bezier Curve and Optimal Control Problems 107

Now, using the property of the control space ui ∈ 〈0, uimax〉, we get

û1(t) = 0, if, (λ3(t) − λ1(t)) ≤ 0,

û1(t) = x1(t) (λ3(t) − λ1(t)) , (12)
if, 0 ≤ x1(t) (λ3(t) − λ1(t)) < u1max,

û1(t) = u1max, if, x1(t) (λ3(t) − λ1(t)) ≥ u1max

û2(t) = 0, if,
x2(t)
x4(t)

(−ωλ1(t) + λ2(t) − (1 − ω)λ3(t)) ≤ 0,

û2(t) =
x2(t)
x4(t)

(−ωλ1(t) + λ2(t) − (1 − ω)λ3(t)) , (13)

if, 0 ≤ x2(t)
x4(t)

(−ωλ1(t) + λ2(t) − (1 − ω)λ3(t)) < u2max,

û2(t) = uimax, if,
x2(t)
x4(t)

(−ωλ1(t) + λ2(p, t) − (1 − ω)λ3(t)) ≥ u2max.

To solve optimal control problem indirectly (7) we use ACD and ESNs,
where state x and co-state variables λ are solved forward in time. In 1977, Werbos
[15] introduced an approach for approximate dynamic programming, which later
became known under the name of adaptive critic design. A typical design of ACD
consists of three modules: action, model (plant), and critic. The action consists
of a parametrised control law. The critic approximates the value-related function
and captures the effect that the control law has on the future cost. At any given
time the critic provides a guidance on how to improve the control law. In return,
the action can be used to update the critic. An algorithm that successively
iterates between these two operations converges to the optimal solution over
time. The plant dynamics are discrete, time-invariant and deterministic, and
they can be modelled by a difference equation. The action and critic networks
are chosen as echo state networks [7]. For detail explanation see [11].

5 Numerical Simulation

The solution of optimal control problem (7) using Bezier curves approximation
and adaptive critic neural network are displayed in Figs. 3, 4, 5 and 6. As follows
from these figures optimal control û(t) = (û1(t), û2(t)) and optimal trajectory
x̂(t) are very closed. For Besier curve approximation and ESNs approximation
the values of objective function are J(u) = 1106 and J(u) = 593, and J(u) =
1114 and J(u) = 598, for initial conditions x(0) = (60, 30, 10, 100) and x(0) =
(8, 3, 1, 13), respectively. We have plotted susceptible, infected and recovered
individuals by considering values of parameters [17] as b = 0.07, c = 0.0123, α =
0.0476, β = 0.21, μ = 0.014, ω = 0.35,Kc = 140, a1 = 1, a2 = 1. The
numerical results show that the number of susceptible and infected individuals
decrease after the optimal control treatment and small number of individuals are
infected from population x4(t), which converges to equilibrium Kc. The number
of recovered individuals increase.

108 T. Kmet and M. Kmetova

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

O
pt

im
al

 c
on

tro
l u

1 u
2

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100
Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

O
pt

im
al

 c
on

tro
l u

1 u
2

Fig. 3. Adaptive critic neural network and Bezier curve simulation of optimal controls
û1(t) (line) and û2(t) (dosh line) and its control points with initial condition x(0) =
(2, 3, 8, 13).

0 10 20 30 40 50 60 70 80 90 100
Time

0

20

40

60

80

100

120

140

O
pt

im
al

 tr
aj

ec
to

ry
 S

, I
, R

0 10 20 30 40 50 60 70 80 90 100
Time

0

20

40

60

80

100

120

140

O
pt

im
al

 tr
aj

ec
to

ry
 S

, I
, R

Fig. 4. The plot represents the population of susceptible (line), infected (dosh line)
and recovered (dotted line) individuals with initial condition x(0) = (2, 3, 8, 13) for
adaptive critic neural network and Bezier curve simulation.

0 10 20 30 40 50 60 70 80 90 100
Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

O
pt

im
al

 c
on

tro
l u

1 u
2

0 10 20 30 40 50 60 70 80 90 100
Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

O
pt

im
al

 c
on

tro
l u

1 u
2

Fig. 5. Adaptive critic neural network and Bezier curve simulation of optimal controls
û1(t) (line) and û2(t) (dosh line) and its control points with initial condition x(0) =
(60, 30, 10, 100).

Bezier Curve and Optimal Control Problems 109

0 10 20 30 40 50 60 70 80 90 100
Time

0

20

40

60

80

100

120

140
O

pt
im

al
 tr

aj
ec

to
ry

 S
, I

, R

0 10 20 30 40 50 60 70 80 90 100
Time

0

20

40

60

80

100

120

140

O
pt

im
al

 tr
aj

ec
to

ry
 S

, I
, R

Fig. 6. The plot represents the population of susceptible (line), infected (dosh line)
and recovered (dotted line) individuals with initial condition x(0) = (60, 30, 10, 100)
for adaptive critic neural network and Bezier curve simulation.

Our results are quite similar for two presented methods but the computation
time for direct methods is very high.

6 Conclusion

In this paper, we have studied optimal control strategies to prevent the spread of
infected individuals. Using MATLAB, we present a comparison between direct
and indirect methods, respectively. Direct methods is based on Berstein-Bezier
parametrisation of control variable u(t) and invasive weed optimization. The
second, indirect method is based on necessary conditions for the optimal control
problem with adaptive critic design and echo state networks. It is easy to see that
the optimal control is much more effective for reducing the number of susceptible
and infected individuals. In order to illustrate the overall picture of the epidemic,
the numbers of infected, susceptible and recovered individuals under the optimal
control are shown in figures. We have shown that this approaches are applicable
to a wide class of nonlinear systems.

References

1. Mehrabian, A.R.: A novel numerical optimization algorithm inspired from weed
colonization. Ecol. Inform. 1(4), 355–366 (2006)

2. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biol-
ogy and Epidemiology. Springer, New York (2001). https://doi.org/10.1007/
978-1-4614-1686-9

3. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design — A Prac-
tical Guide. Academic Press Professional, San Diego (1993)

4. Ghosh, A., Das, S., Chowdhury, A., Giri, R.: An ecologically inspired direct search
method for solving optimal control problems with Bezier parameterization. Eng.
Appl. Artif. Intell. 24, 1195–1203 (2011)

https://doi.org/10.1007/978-1-4614-1686-9
https://doi.org/10.1007/978-1-4614-1686-9

110 T. Kmet and M. Kmetova

5. Giri, R., Chowdhury, A., Ghosh, A., Das, S., Abraham, A., Snasel, V.: A modified
invasive weed optimization algorithm for training of feed-forward neural networks.
In: IEEE International Conference on Systems Man and Cybernetics, pp. 3166–
3173. IEEE (2010)

6. Gollman, L., Kern, D., Mauer, H.: Optimal control problem with delays in state
and control variables subject to mixed control-state constraints. Optim. Control
Appl. Meth. 30, 341–365 (2006)

7. Jaeger, H.: The “Echo State” approach to analysing and training recurrent neural
networks. Technical report GMD 148, German National Research Institute for
Computer Science, Bonn (2001)

8. Kar, T.K., Batabyal, A.: Stability analysis and optimal control of an SIR epidemic
model with vaccination. BioSyst. Sci. 104, 127–135 (2011)

9. Kirk, D.E.: Optimal Control Theory: An Introduction. Dover Publications, New
York (1989)

10. Kmet, T., Kmetova, M.: Neural networks simulation of distributed control prob-
lems with state and control constraints. In: Villa, A.E.P., Masulli, P., Pons Rivero,
A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 468–477. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44778-0 55

11. Kmet, T., Kmetova, M.: Echo state networks simulation of sir distributed control.
In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 86–96. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59063-9 8

12. Mittelmann, H.D.: Solving elliptic control problems with interior point and SQP
methods: control and state constraints. J. Comput. Appl. Math. 120, 175–195
(2000)

13. Padhi, R., Unnikrishnan, N., Wang, X., Balakrishnan, S.N.: Adaptive-critic based
optimal control synthesis for distributed parameter systems. Automatica 37, 1223–
1234 (2001)

14. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R., Mischenko, E.F.: Freshwater
Ecosystems. Modelling and Simulation, Developments in Environmental Modelling.
Nauka (in Russian), Moscow (1983)

15. Werbos, P.J.: Approximate dynamic programming for real-time control and neural
modelling. In: White, D.A., Sofge, D.A. (eds.) Handbook of intelligent control:
Neural Fuzzy, and Adaptive Approaches, pp. 493–525. Van Nostrand, New York
(1992)

16. Yoshida, N., Hara, T.: Global stability of a delayed SIR epidemic model with
density dependent birth and death rates. J. Comput. Appl. Math. 201, 339–347
(2007)

17. Zaman, G., Kang, Y.H., Jung, I.H.: Optimal treatment of an SIR epidemic model
with time delay. BioSystems 98, 43–50 (2009)

https://doi.org/10.1007/978-3-319-44778-0_55
https://doi.org/10.1007/978-3-319-59063-9_8

Fuzzy Logic

Learning Interval-Valued Fuzzy Cognitive
Maps with PSO Algorithm for Abnormal Stock

Return Prediction

Petr Hajek(&) and Ondrej Prochazka

Faculty of Economics and Administration, Institute of System Engineering
and Informatics, University of Pardubice, Studentska 84, 532 10 Pardubice,

Czech Republic
petr.hajek@upce.cz, st47576@student.upce.cz

Abstract. Stock return prediction is considered a challenging task in financial
domain. The existence of inherent noise and volatility in daily stock price
returns requires a highly complex prediction system. Generalizations of fuzzy
systems have shown promising results for this task owing to their ability to
handle strong uncertainty in dynamic financial markets. Moreover, financial
variables are usually in difficult to interpret causal relationships. To overcome
these problems, here we propose an interval-valued fuzzy cognitive map with
PSO algorithm learning. This system is suitable for modelling complex non-
linear problems through causal reasoning. As the inputs of the system, we
combine causally connected financial indicators and linguistic variables
extracted from management discussion in annual reports. Here we show that the
proposed method is effective for predicting abnormal stock return. In addition,
we demonstrate that this method outperforms fuzzy cognitive maps and adaptive
neuro-fuzzy rule-based systems with PSO learning.

Keywords: Stock market � Interval-valued fuzzy cognitive map
PSO algorithm � Abnormal stock return

1 Introduction

Soft computing methods have recently attracted increasing attention in stock market
prediction problems. This is mainly associated with the existence of inherent noise and
volatility in stock market prices. On one hand, highly complex prediction systems are
required to address this issue. On the other hand, these systems should not only be
accurate but also easy to interpret. Developing transparent prediction models has
become crucial especially after the recent financial crisis.

To capture the nonlinear behaviour of stock markets, intelligent systems such as
neural networks [1], fuzzy systems [2] and evolutionary algorithms [3] have been
extensively applied. Lately, hybrid systems have received increased interest because
they integrate the advantages of multiple methods [4]. Thus, a high prediction accuracy
can be achieved, without neglecting the interpretability of the system. Fundamental and
technical financial indicators are usually used as the inputs of these systems. In addi-
tion, sentiment and other textual analyses have been rapidly developed to predict stock

© Springer International Publishing AG 2017
C. Martín-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 113–125, 2017.
https://doi.org/10.1007/978-3-319-71069-3_9

market movements [5, 6]. It has been shown that the combination of financial indicators
and linguistic analysis of firm-related documents, such as news stories and corporate
annual reports, may result in more accurate stock market predictions. This is mainly
because these textual sources carry complementary information about the stock’s
current and future prospects, which is reflected by market participants in stock prices
[7]. Thus, financial and linguistic indicators are causally related. On one hand, the
linguistic indicators reflect the past financial performance. On the other hand, the
linguistic indicators inform about future financial performance, affecting the expecta-
tions of market participants. Despite this empirical evidence, no one as far as we know
has proposed a prediction system that incorporates these causal relationships. Here we
attempt to fill this gap and propose an interval-valued fuzzy cognitive map (IVFCM)
with particle swarm optimization (PSO) learning. Financial and linguistic indicators
extracted from corporate annual reports are used as the inputs of this prediction system.

In traditional fuzzy cognitive maps (FCMs), causal relationships between variables
are represented by directed edges labelled with fuzzy weights. Using interval-valued
fuzzy sets (IVFSs) instead of fuzzy sets enables the incorporation of a higher level of
uncertainty. Various learning algorithms have been proposed to automatically develop
FCMs [8]. The set of variables is usually provided by an expert and the learning
algorithm is then used to compute the weight matrix that best fits the data. Evolutionary
approaches such as genetic algorithms (GAs) [9], particle swarm optimization
(PSO) [10] and memetic algorithms (MAs) [11] have been particularly effective in
learning FCMs. A comprehensive survey of nature-inspired metaheuristic algorithms
was conducted in [12]. Interactive evolutionary computing has used partial expert
estimations to handle incompleteness and natural uncertainty in expert evaluation [13].
Moreover, the learned FCM model was further improved by a multi-local and balanced
local MA search algorithm in [14]. Chi and Liu [15] proposed a multi-objective
evolutionary algorithm to address the issue of the high density of learned FCMs.

The problem of conventional FCMs in financial markets is that the precise values of
a weight matrix must be determined under strong uncertainty in the dynamic envi-
ronment of financial markets. This can be overcome by extending the concept of fuzzy
sets in recently introduced FCM generalizations, such as IVFCMs [16], fuzzy grey
cognitive maps (FGCMs) [17, 18], intuitionistic FCMs [19], interval-valued intu-
itionistic FCMs [20] and granular FCMs [21]. These systems all enable additional
freedom in assigning the membership degrees to variables and causal relationships, but
they have different motivation and inference mechanisms. Here we use FCMs based on
IVFSs because in financial domain intervals are used to express the uncertainty related
to the context or to the lack of model accuracy [16]. In the proposed prediction system,
causal relationships in IVFCMs are estimated by using PSO. PSO was selected because
it was effective in the dynamic optimization of FCMs in related time series forecasting
problems [22]. We demonstrate that the proposed method is effective for
one-day-ahead prediction of abnormal stock return. We also show that this method
outperforms conventional FCMs [10], and the generalization of an adaptive
neuro-fuzzy inference system (ANFIS) [23] with PSO learning.

The remainder of this paper is organized as follows. Section 2 briefly reviews
previous literature on stock market prediction using fuzzy systems and their general-
izations. In Sect. 3, we first provide the theoretical background on IVFCMs, and then

114 P. Hajek and O. Prochazka

we propose an IVFCM with PSO learning. Section 4 presents the data used for
abnormal stock return prediction. In Sect. 5, we show the experimental results and
compare the prediction accuracy with several neuro-fuzzy methods, such as conven-
tional FCMs, adaptive neuro-fuzzy inference systems and intuitionistic neuro-fuzzy
networks with PSO learning. Finally, we discuss the results and conclude this paper.

2 Related Literature on Stock Market Prediction

Here we briefly review hybrid soft computing systems that have been applied to stock
market prediction. These systems usually incorporate the uncertainty processing and
interpretability of fuzzy systems and integrate it with the learning capacity of neural
networks or evolutionary algorithms.

ANFIS represents a typical neuro-fuzzy rule-based architecture applied for the task
of stock market prediction. ANFIS was adopted by [24] to predict stock market return
on the ISE National 100 Index. It was reported that the performance of stock price
prediction can be significantly improved by using ANFIS. A similar architecture of
Takagi-Sugeno fuzzy rule-based system was presented by [2], where a linear combi-
nation of the significant technical index was applied as a consequent to predict the
stock price. A fuzzy rule-based expert system developed by [25] for portfolio managers
performed superior relative to the benchmark stock market indexes. Short-term stock
trends during turbulent stock market periods were predicted by using two ANFISs, one
used as the controller and the other one as the stock market process [26].

To model additional uncertainty associated with stock market environment, interval
type-2 fuzzy rule-based systems have been proposed. The empirical analyses showed
that type-2 fuzzy systems outperform conventional type-1 fuzzy systems in predicting
stock prices. Technical and fundamental indexes were used as the input variables of the
proposed type-2 fuzzy rule based expert system in [27]. Type-2 fuzzy rules were
generated automatically by a self-constructing clustering method and the obtained
type-2 fuzzy rules were refined by a PSO learning algorithm for TAIEX and NASDAQ
stock price prediction [28]. This approach outperformed conventional regression
models, neural networks, fuzzy time series, and support vector regression. An inte-
grated functional link interval type-2 fuzzy-neural system was presented by [29] for
predicting stock market indexes. The model used a Takagi-Sugano type fuzzy rule base
with type-2 fuzzy sets in the antecedent parts and the outputs from the functional link
artificial neural network (FLANN) in the consequent parts. The parameters of all the
prediction models were optimized by PSO. This approach performed better than
FLANN, type-1 fuzzy logic system and local linear wavelet neural network irrespective
of the time horizons spanning from 1 day to 1 month. An evolutionary interval-valued
fuzzy rule-based classification system was developed by [30] for the prediction of
real-world financial applications with imbalanced data. The proposed system outper-
formed C4.5 decision tree, type-1, and interval-valued fuzzy counterparts that use the
synthetic minority oversampling technique.

Learning Interval-Valued Fuzzy Cognitive Maps with PSO Algorithm 115

3 IVFCMs with PSO Learning

3.1 FCMs

To effectively model nonlinear causal relationships, an FCM combines recurrent neural
networks and fuzzy logic. It can be defined as a signed fuzzy weighted digraph with
N nodes, where every node represents a concept. Fuzzy value cki , usually within the
range of [0, 1], is assigned to the i-th concept, where k denotes the index of iteration.
The sign and strength of the causal relationship from concept j to concept i is expressed
by using fuzzy weight wji in the range of [−1, 1]. Thus, the positive and negative
relationships between the concepts can be represented. In other words, in the case of
positive (negative) fuzzy weight wji, an increase in ckj will cause an increase (decrease)

in ckþ 1
i . When calculating the new value of the i-th concept, multiple edges connected

to this concept usually have to be considered. Nonlinear activation function f (usually a
sigmoid-type function) is then used to transform the linear values of the concepts. The
new value of the i-th concept can be calculated as follows:

ckþ 1
i ¼ f cki þ

XN

j ¼ 1
j 6¼ i

ckj � wji

0
BBBB@

1
CCCCA
; ð1Þ

where i and j denote the i-th and j-th concepts, respectively, k is the index of iteration
and N is the number of concepts in the FCM. This recurrent neural network consists of
N neurons organized in one layer and connected with each other, this is with N �
(N − 1) synapses.

3.2 Inference in IVFCMs

To reformulate reasoning in conventional FCMs, interval-valued fuzzy sets are used
instead of fuzzy sets. In interval-valued fuzzy set A, the membership degree of an
element x 2 X is defined by an interval as follows:

A ¼ x;MAðxÞh i x 2 Xjf g; ð2Þ

where the interval function MA: X ! D [0, 1] such that x ! MA xð Þ ¼ lLA xð Þ; lUA xð Þ� �
denotes the lower and upper extremes, respectively, of the interval
MA xð Þ; 0� lLA xð Þ� 1; 0� lUA xð Þ� 1:The degree of uncertainty of x can be expressed as:

pAðxÞ ¼ lUA ðxÞ � lLAðxÞ ð3Þ

and this represents the length of the interval MA xð Þ ¼ lLA xð Þ; lUA xð Þ� �
:

116 P. Hajek and O. Prochazka

Generally, reasoning in IVFCMs can be expressed as [16]:

ckþ 1
i ¼f½lLAðcÞ; lUA ðcÞ�gkþ 1

i ¼ f ðf½lLAðcÞ; lUA ðcÞ�gki�
ð �N
j ¼ 1

j 6¼ i

ðf½lLAðcÞ; lUA ðcÞ�gkj � f½lLAðwÞ; lUA ðwÞ�gjiÞÞÞ ð4Þ

Let A and B be interval-valued fuzzy sets. The addition, subtraction and multipli-
cation operators for A and B used in this study are based on pseudo-t-representable
t-norms, see [31] for more details. Specifically, the operators used in Eq. (4) can be
defined as follows:

A� B ¼ x; ½minðlLAðxÞþ lUB ðxÞ; lUA ðxÞþ lLBðxÞÞ; lUA ðxÞþ lUB ðxÞ�
� �

x 2 Xj� �
; ð5Þ

A� B ¼ x; ½lLAðxÞ � lUB ðxÞ;maxðlLAðxÞ � lLBðxÞ; lUA ðxÞ � lUB ðxÞÞ�
� �

x 2 Xj� �
; ð6Þ

A� B ¼ x; ½lLAðxÞ � lLBðxÞ;maxðlLAðxÞ � lUB ðxÞ; lUA ðxÞ � lLBðxÞÞ�
� �

x 2 Xj� �
: ð7Þ

3.3 PSO Learning of IVFCMs

Here we use PSO algorithm [32] to learn the weight matrix W = {wji}, j 6¼ i, of an
IVFCM. The traditional variant of PSO was used to obtain results comparable to those
produced by different neuro-fuzzy methods. PSO is a population based stochastic
optimization algorithm that finds the global best solution by adjusting the trajectory
(velocity and position) of individual particle towards its best location and towards the
best particle of the entire population according to the following equations:

vi;jðtþ 1Þ ¼ xivi;jðtÞþ c1r1;j½pi;jðtÞ � xi;jðtÞ�þ c2r2;j½pg;jðtÞ � xi;jðtÞ�; ð8Þ

xi;jðtþ 1Þ ¼ xi;jðtÞþ vi;jðtþ 1Þ; ð9Þ

where xi is the inertia weight for the i-th particle, c1 and c2 are constants (cognitive and
social parameter, respectively), r1,j and r2,j are uniformly distributed random numbers
in the range [0, 1], pi,j(t) is the best position of the i-th particle remembered, and pg,
j(t) is the best swarm position. The particle velocity at any instant is usually limited to
vmax.

The weight matrix W comprises N(N – 1) variables, where N is the number of
concepts in the IVFCM. Each particle encodes a set of 2N(N – 1) variables because
both lower and upper bounds lLA wji

� 	
; lUA wji

� 	
;

� �
have to be learned. In other words,

each particle represents a candidate IVFCM. Root mean squared error (RMSE), used as
the fitness function, was calculated as the difference between the actual abnormal stock
return of training data ym, k = 1, 2, …, M, and output ȳk predicted by the IVFCM.
Sigmoid function was used as activation function f. To avoid overfitting, the number of
iterations in the IVFCM reasoning was fixed and set to 10 [9]. To obtain defuzzified

Learning Interval-Valued Fuzzy Cognitive Maps with PSO Algorithm 117

output ȳk, we adopted the approach of [33] and calculated the average of the output
interval-valued fuzzy set as ȳk = �yLK þ�yUK

� 	
=2. As a result, the fitness function can be

expressed as:

RMSE ¼
ffi
1
M

XM
m¼1

ðym � ymÞ2:
vuut ð10Þ

The PSO learning of IVFCMs can be defined as follows:

4 Data

In this study, we used data for 1380 U.S. firms listed on the New York Stock Exchange
(NYSE) or Nasdaq. To reduce the contribution of bid/ask bounce in reaction to annual
report filing (10-K filing), we followed [5] and used only the firms with a reported
stock price of at least 3 USD before the filing date. To reduce the effect of risk factors
for stocks, we also removed firms with market capitalisation less than 100 million
USD. Publicly available EDGAR system was used as the source of corporate annual
reports. All data were downloaded for the year 2013. In previous literature, the log of
the market capitalisation (lnMC) was an important financial determinant of abnormal
stock returns [34]. We therefore collected data for this fundamental financial indicator
the Marketwatch database.

118 P. Hajek and O. Prochazka

To perform textual analysis of the corporate annual reports, we first extracted themost
important textual source of insider information from 10-K filings, this is management
discussion and analysis section. This section provides a comprehensive overview of the
firm’s business and financial condition from the management point of view. Increasing
interest in the analysis of firm-related narratives can be partly attributed to the require-
ments of theU.S. Securities andExchangeCommission for electronicfilings. Tomaintain
the interpretability of the prediction system, we used dictionary-based approach to cal-
culate overall sentiment in the texts. More precisely, a finance-specific dictionary
developed by [5] was used to measure the sentiment. Following previous studies [6], we
used the raw term frequency of positive and negative word categories. The overall sen-
timent was defined as the count of positive words minus the count of negative words,
divided by the sum of both positive and negative word counts.

This study also used the readability of the texts as another input. Specifically,
Gunning fog index was applied as the most commonly applied readability measure.
The Gunning fog index can be calculated as 0.4 � (words per sentence + percent of
complex words), where complex words are words with three syllables or more.

To analyse the semantic content of the texts, we first identified top 2000 terms
(without stop-words) in terms of traditional term frequency inverse document fre-
quency weighting scheme. Then, latent semantic analysis (LSA) combined with cosine
similarity was performed [35]. The LSA was carried out using singular value
decomposition to transform the original feature space to a low-dimensional semantic
space. Documents with the same semantic concepts can then be detected. The number
of concepts was 26. The weights of these concepts were then used to calculate cosine
similarity to documents separately for two classes, one with positive and the other one
with negative abnormal return (note that this was performed on training data only).

Following previous studies [5, 6], abnormal returns were calculated as accumulated
returns in excess of the return on the Center for Research in Security Prices
equal-weighted market portfolio. In agreement with these studies, we adopted a
three-day event window (prediction horizon), from day t − 1 to t + 1, where t represents
the 10-K filing day. Basic descriptive statistics of the data are presented in Table 1.

Table 1. Descriptive statistics of the data.

Category Variable Mean ± St. Dev.

Financial lnMC 7.82 ± 1.70
Sentiment of annual report Overall sentiment

(Sent)
−0.34 ± 0.10

Readability of annual report Gunning fog index
(Fog)

10.53 ± 0.82

Cosine distance of concepts to stocks with
positive abnormal return

LSApos 0.161 ± 0.109

Cosine distance of concepts to stocks with
negative abnormal return

LSAneg 0.168 ± 0.105

Predicted output Abnormal stock
return in t + 1

0.004 ± 0.072

Learning Interval-Valued Fuzzy Cognitive Maps with PSO Algorithm 119

5 Experimental Results

PSO algorithm was used to learn the weight matrix of the IVFCM. The setting of the
PSO was as follows: population size Psize = 40, cognitive parameter c1 = 2, social
parameter c2 = 2, inertia weight xi = 0.8, maximum particle velocity vmax = 0.4, and
maximum number of function evaluations = 20000 as termination criteria. To avoid
overfitting, all experiments were performed by using 10-fold cross-validation (90%
selected as the training set, the remaining 10% used as the testing set, repeated 10 times).
Hereinafter, we report RMSE and MAPE (mean absolute percentage error) on testing
data. All the values of the input variables in the IVFCM were transformed to a range of
[0, 1] using center of gravity defuzzification method applied to regularly distributed
lower and upper Gaussian membership functions with 0.1 and 0.15 spread, respectively.
For example, Fig. 1 shows these functions for the overall sentiment variable. The initial
value of abnormal stock return were collected from day t − 3 to t − 1.

Table 2 presents the average values of the interval-valued fuzzy weights in the
trained IVFCMs. The large differences between the lower and upper bounds of the
weights denote strong uncertainty in the causal relationships between LSAneg and ASR
(abnormal stock return) and lnMC and ASR, respectively. For the sake of inter-
pretability [9], the weights in the interval [−0.1, 0.1] were not included in Table 2. In
agreement with theoretical assumptions, lnMC had a strongly negative effect on ASR.
Similarly, the effect of LSApos and LSAneg on ASR was positive and negative,
respectively. In contrast, the effect of readability (Fog) was rather weak. To demon-
strate the increase in the uncertainty of the concept values, Fig. 2 shows the average
values of the target concept ASR on the testing data. The increase corresponds to
financial reality, as the degree of uncertainty is larger in the long run.

To compare the performance of the IVFCM-PSO, we employed conventional linear
regression and three neuro-fuzzy methods with PSO learning: (1) FCM-PSO [10];

Fig. 1. Interval-valued membership functions for overall sentiment

120 P. Hajek and O. Prochazka

(2) ANFIS-PSO [23]; and (3) intuitionistic neuro-fuzzy network (INFN-PSO) [23]. In
the traditional FCM-PSO, each population comprises N(N − 1) particles, thus having
lower computational complexity compared with the IVFCM-PSO. In the experiments
with the FCM-PSO, we used the same setting of the PSO parameters.

The ANFIS-PSO and INFN-PSO are rule-based neuro-fuzzy systems trained by
using PSO. Here, we adopted the Pittsburgh approach to evolutionary-based fuzzy
systems, where each particle encodes a set of M if-then rules. The PSO was used to
tune the parameters of membership (and in the case of the INFN also non-membership)
functions in the antecedent and parameters of the linear functions in the consequents of
the if-then rules. Therefore, the dimension of each particle depends on both the length
of if-then rules N and the number of if-then rules M, as each particle in the PSO
comprises M(4N + (N + 1)) variables [23]. The learning of the ANFIS and INFN was
performed in two steps. First, cluster centers (and thus also the number of
membership/non-membership functions and number M of if-then rules) were found by
using the subtractive clustering algorithm. To control complexity (granularity) and
avoid the potential overfitting risk, we tested various numbers of
membership/non-membership functions and if-then rules, M = {2, 3, 5, 7, 9}, for each
training dataset. Thus, interpretability at the rule base and fuzzy partition levels was
preserved. In the second step, the premise and consequent parameters of the ANFIS

Table 2. Weight matrix of the IVFCM trained with PSO (average over 10 experiments).

lnMC Sent Fog LSApos LSAneg ASR

lnMC [−0.11, 0.06] [−0.17, 0.13] [−1.00, 0.06]

Sent [−0.12, 0.01] [−0.12, 0.04] [−0.11, 0.09] [−0.41, 0.04]

Fog [−0.14, 0.08] [−0.11, 0.04]

LSApos [−0.15, 0.09] [−0.02, 0.11] [−0.26, 0.31] [−0.06, 0.14]

LSAneg [−0.26, 0.11] [−0.23, 0.08] [−0.26, 0.12] [−0.18, 0.15] [−1.00, −0.26]

ASR [−0.10, 0.11] [−0.12, −0.04] [−0.54, −0.05]

Fig. 2. Average lower and upper bounds of ASR in IVFCM iterations

Learning Interval-Valued Fuzzy Cognitive Maps with PSO Algorithm 121

and INFN were optimized by using PSO with the following setting: population size
Psize = 40, cognitive parameter c1 = 2, social parameter c2 = 2, inertia weight xi = 0.8,
maximum particle velocity vmax = 0.4, and number of iterations = 500 as termination
criteria.

The results in Table 3 demonstrate that the IVFCM-PSO performed best with an
average RMSE of 0.051. This suggest that the causal relationships among the concepts
improved prediction accuracy. Moreover, the neuro-fuzzy generalizations performed
better than the standard FCMs and ANFIS, respectively, indicating strong uncertainty
in the causal relationships. To test the statistical differences in the RMSE performance,
we conducted the nonparametric Friedman test and two post-hoc procedures (Holm and
Finner). We tested the null hypothesis that all the methods have equal ranks. Although
the lowest average ranking was achieved by the IVFCM-PSO, significant differences
between the evaluated methods were not detected at p < 0.05 (the Friedman p-value
was 0.207). In the post-hoc procedures, the IVFCM-PSO was used as a control method.
Significant differences at p < 0.05 were detected between the IVFCM-PSO and other
methods by using the post-hoc procedures.

6 Conclusion

In this study, we demonstrate that the proposed novel IVFCM with PSO learning can
be effectively used to the one-day-ahead prediction of abnormal stock returns. Similar
to other economic and business domains, the interpretability of the relationships in
terms of IVFSs is also appropriate for predicting abnormal stock returns. In addition,
the degree of uncertainty increased over time, which is in agreement with financial
expectations. We also demonstrate that the reasoning based on IVFSs can be for this
task more effective than that based on traditional fuzzy sets or rule-based neuro-fuzzy
inference systems.

Several important limitations need to be considered regarding the present study.
Alternative evolutionary approaches can be used to learn FCMs. Specifically, the
variants of GAs [36] and other optimization algorithms such as enhanced PSO, MA,
differential evolution and artificial bee colony can be used to learn IVFCMs. Moreover,
the current study only examined the learning of an IVFCM weight matrix. This may be
noted as the main weakness of this study. Further experimental investigations are

Table 3. Results for the IVFCM-PSO vs. comparative methods (Mean ± St.Dev. over 10
experiments).

Method Measure Mean ± St. Dev. Method Measure Mean ± St. Dev.

IVFCM-PSO RMSE 0.051 ± 0.042 INFN-PSO RMSE 0.055 ± 0.047
MAPE 2.45 ± 0.45 MAPE 2.51 ± 0.42

FCM-PSO RMSE 0.061 ± 0.045 Linear Regr. RMSE 0.072 ± 0.054
MAPE 2.52 ± 0.49 MAPE 2.79 ± 0.62

ANFIS-PSO RMSE 0.059 ± 0.048
MAPE 2.61 ± 0.56

122 P. Hajek and O. Prochazka

therefore needed to optimize the slope parameter of each sigmoid activation function. It
would also be interesting to vary the IVFCM densities by using a multi-objective
evolutionary algorithm. In fact, small weights can be excluded as no real-life map
considers weak relationships. Finally, more complex prediction problems should be
examined to investigate the scalability of IVFCMs with PSO learning.

Acknowledgments. This article was supported by the scientific research project of the Czech
Sciences Foundation Grant No: 16-19590S.

References

1. Guresen, E., Kayakutlu, G., Daim, T.U.: Using artificial neural network models in stock
market index prediction. Expert Syst. Appl. 38(8), 10389–10397 (2011). https://doi.org/10.
1016/j.eswa.2011.02.068

2. Chang, P.C., Liu, C.H.: A TSK type fuzzy rule based system for stock price prediction.
Expert Syst. Appl. 34(1), 135–144 (2008). https://doi.org/10.1016/j.eswa.2006.08.020

3. Majhi, R., Panda, G., Majhi, B., Sahoo, G.: Efficient prediction of stock market indices using
adaptive bacterial foraging optimization (ABFO) and BFO based techniques. Expert Syst.
Appl. 36(6), 10097–10104 (2009). https://doi.org/10.1016/j.eswa.2009.01.012

4. Hadavandi, E., Shavandi, H., Ghanbari, A.: Integration of genetic fuzzy systems and
artificial neural networks for stock price forecasting. Knowl. Based Syst. 23(8), 800–808
(2010). https://doi.org/10.1016/j.knosys.2010.05.004

5. Loughran, T., Mcdonald, B.: When is a liability not a liability? Textual analysis, dictionaries,
and 10-Ks. J. Fin. 66, 35–65 (2011). https://doi.org/10.1111/j.1540-6261.2010.01625.x

6. Hajek, P.: Combining bag-of-words and sentiment features of annual reports to predict
abnormal stock returns. Neural Comput. Appl. 1–16 (2017). https://doi.org/10.1007/s00521-
017-3194-2

7. Hagenau, M., Liebmann, M., Neumann, D.: Automated news reading: stock price prediction
based on financial news using context-capturing features. Decis. Support Syst. 55, 685–697
(2013). https://doi.org/10.1016/j.dss.2013.02.006

8. Papageorgiou, E.I.: Learning algorithms for fuzzy cognitive maps – a review study. IEEE
Trans. Syst. Man Cybern. 42(2), 150–163 (2012). https://doi.org/10.1109/TSMCC.2011.
2138694

9. Stach, W., Kurgan, L.A., Pedrycz, W., Reformat, M.: Genetic learning of fuzzy cognitive
maps. Fuzzy Sets Syst. 153(3), 371–401 (2005). https://doi.org/10.1016/j.fss.2005.01.009

10. Papageorgiou, E.I., Parsopoulos, K.E., Stylios, C.S., Groumpos, P.P., Vrahatis, M.N.: Fuzzy
cognitive maps learning using particle swarm optimization. J. Intell. Inform. Syst. 25(1), 95–
121 (2005). https://doi.org/10.1007/s10844-005-0864-9

11. Acampora, G., Pedrycz, W., Vitiello, A.: A competent memetic algorithm for learning fuzzy
cognitive maps. IEEE Trans. Fuzzy Syst. 23(6), 2397–2411 (2015). https://doi.org/10.1109/
TFUZZ.2015.2426311

12. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2010)
13. Mls, K., Cimler, R., Vascak, J., Puheim, M.: Interactive evolutionary optimization of fuzzy

cognitive maps. Neurocomputing 232, 58–68 (2017). https://doi.org/10.1016/j.neucom.
2016.10.068

14. Salmeron, J.L., Ruiz-Celma, A., Mena, A.: Learning FCMs with multi-local and balanced
memetic algorithms for forecasting industrial drying processes. Neurocomputing 232, 52–57
(2017). https://doi.org/10.1016/j.neucom.2016.10.070

Learning Interval-Valued Fuzzy Cognitive Maps with PSO Algorithm 123

http://dx.doi.org/10.1016/j.eswa.2011.02.068
http://dx.doi.org/10.1016/j.eswa.2011.02.068
http://dx.doi.org/10.1016/j.eswa.2006.08.020
http://dx.doi.org/10.1016/j.eswa.2009.01.012
http://dx.doi.org/10.1016/j.knosys.2010.05.004
http://dx.doi.org/10.1111/j.1540-6261.2010.01625.x
http://dx.doi.org/10.1007/s00521-017-3194-2
http://dx.doi.org/10.1007/s00521-017-3194-2
http://dx.doi.org/10.1016/j.dss.2013.02.006
http://dx.doi.org/10.1109/TSMCC.2011.2138694
http://dx.doi.org/10.1109/TSMCC.2011.2138694
http://dx.doi.org/10.1016/j.fss.2005.01.009
http://dx.doi.org/10.1007/s10844-005-0864-9
http://dx.doi.org/10.1109/TFUZZ.2015.2426311
http://dx.doi.org/10.1109/TFUZZ.2015.2426311
http://dx.doi.org/10.1016/j.neucom.2016.10.068
http://dx.doi.org/10.1016/j.neucom.2016.10.068
http://dx.doi.org/10.1016/j.neucom.2016.10.070

15. Chi, Y., Liu, J.: Learning of fuzzy cognitive maps with varying densities using a
multiobjective evolutionary algorithm. IEEE Trans. Fuzzy Syst. 24(1), 71–81 (2016). https://
doi.org/10.1109/TFUZZ.2015.2426314

16. Hajek, P., Prochazka, O.: Interval-valued fuzzy cognitive maps for supporting business
decisions. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pp. 531–536. IEEE, Vancouver (2016). https://doi.org/10.1109/FUZZ-IEEE.2016.7737732

17. Salmeron, J.L.: Modelling grey uncertainty with fuzzy grey cognitive maps. Expert Syst.
Appl. 37(12), 7581–7588 (2010). https://doi.org/10.1016/j.eswa.2010.04.085

18. Papageorgiou, E., Iakovidis, D.K.: Intuitionistic fuzzy cognitive maps. IEEE Trans. Fuzzy
Syst. 21(2), 342–354 (2013). https://doi.org/10.1109/TFUZZ.2012.2214224

19. Froelich, W., Salmeron, J.L.: Evolutionary learning of fuzzy grey cognitive maps for the
forecasting of multivariate, interval-valued time series. Int. J. Approx. Reason 55(6), 1319–
1335 (2014). https://doi.org/10.1016/j.ijar.2014.02.006

20. Hajek, P., Prochazka, O.: Interval-valued intuitionistic fuzzy cognitive maps for supplier
selection. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) IDT 2017. SIST, vol. 72,
pp. 207–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59421-7_19

21. Pedrycz, W., Homenda, W.: From fuzzy cognitive maps to granular cognitive maps. IEEE
Trans. Fuzzy Syst. 22(4), 859–869 (2014). https://doi.org/10.1109/TFUZZ.2013.2277730

22. Salmeron, J.L., Froelich, W.: Dynamic optimization of fuzzy cognitive maps for time series
forecasting. Knowl. Based Syst. 105, 29–37 (2016). https://doi.org/10.1016/j.knosys.2016.
04.023

23. Hajek, P., Olej, V.: Intuitionistic neuro-fuzzy network with evolutionary adaptation. Evol.
Syst. 8(1), 35–47 (2017). https://doi.org/10.1007/s12530-016-9157-5

24. Boyacioglu, M.A., Avci, D.: An adaptive network-based fuzzy inference system (ANFIS)
for the prediction of stock market return: the case of the Istanbul stock exchange. Expert
Syst. Appl. 37(12), 7908–7912 (2010). https://doi.org/10.1016/j.eswa.2010.04.045

25. Yunusoglu, M.G., Selim, H.: A fuzzy rule based expert system for stock evaluation and
portfolio construction: an application to Istanbul stock exchange. Expert Syst. Appl. 40(3),
908–920 (2013). https://doi.org/10.1016/j.eswa.2012.05.047

26. Atsalakis, G.S., Protopapadakis, E.E., Valavanis, K.P.: Stock trend forecasting in turbulent
market periods using neuro-fuzzy systems. Oper. Res. 16(2), 245–269 (2016). https://doi.
org/10.1007/s12351-015-0197-6

27. Zarandi, M.F., Rezaee, B., Turksen, I.B., Neshat, E.: A type-2 fuzzy rule-based expert
system model for stock price analysis. Expert Syst. Appl. 36(1), 139–154 (2009). https://doi.
org/10.1016/j.eswa.2007.09.034

28. Liu, C.F., Yeh, C.Y., Lee, S.J.: Application of type-2 neuro-fuzzy modeling in stock price
prediction. Appl. Soft Comput. 12(4), 1348–1358 (2012). https://doi.org/10.1016/j.asoc.
2011.11.028

29. Chakravarty, S., Dash, P.K.: A PSO based integrated functional link net and interval type-2
fuzzy logic system for predicting stock market indices. Appl. Soft Comput. 12(2), 931–941
(2012). https://doi.org/10.1016/j.asoc.2011.09.013

30. Sanz, J.A., Bernardo, D., Herrera, F., Bustince, H., Hagras, H.: A compact evolutionary
interval-valued fuzzy rule-based classification system for the modeling and prediction of
real-world financial applications with imbalanced data. IEEE Trans. Fuzzy Syst. 23(4), 973–
990 (2015). https://doi.org/10.1109/TFUZZ.2014.2336263

31. Deschrijver, G.: Arithmetic operators in interval-valued fuzzy set theory. Inform. Sci. 177
(14), 2906–2924 (2007). https://doi.org/10.1016/j.ins.2007.02.003

32. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE World Congress
on Computational Intelligence, pp. 69–73. IEEE, Anchorage (1998). https://doi.org/10.1109/
ICEC.1998.699146

124 P. Hajek and O. Prochazka

http://dx.doi.org/10.1109/TFUZZ.2015.2426314
http://dx.doi.org/10.1109/TFUZZ.2015.2426314
http://dx.doi.org/10.1109/FUZZ-IEEE.2016.7737732
http://dx.doi.org/10.1016/j.eswa.2010.04.085
http://dx.doi.org/10.1109/TFUZZ.2012.2214224
http://dx.doi.org/10.1016/j.ijar.2014.02.006
http://dx.doi.org/10.1007/978-3-319-59421-7_19
http://dx.doi.org/10.1109/TFUZZ.2013.2277730
http://dx.doi.org/10.1016/j.knosys.2016.04.023
http://dx.doi.org/10.1016/j.knosys.2016.04.023
http://dx.doi.org/10.1007/s12530-016-9157-5
http://dx.doi.org/10.1016/j.eswa.2010.04.045
http://dx.doi.org/10.1016/j.eswa.2012.05.047
http://dx.doi.org/10.1007/s12351-015-0197-6
http://dx.doi.org/10.1007/s12351-015-0197-6
http://dx.doi.org/10.1016/j.eswa.2007.09.034
http://dx.doi.org/10.1016/j.eswa.2007.09.034
http://dx.doi.org/10.1016/j.asoc.2011.11.028
http://dx.doi.org/10.1016/j.asoc.2011.11.028
http://dx.doi.org/10.1016/j.asoc.2011.09.013
http://dx.doi.org/10.1109/TFUZZ.2014.2336263
http://dx.doi.org/10.1016/j.ins.2007.02.003
http://dx.doi.org/10.1109/ICEC.1998.699146
http://dx.doi.org/10.1109/ICEC.1998.699146

33. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans.
Fuzzy Syst. 8(5), 535–550 (2000). https://doi.org/10.1109/91.873577

34. Price, S.M., Doran, J.S., Peterson, D.R., Bliss, B.A.: Earnings conference calls and stock
returns: the incremental informativeness of textual tone. J. Bank Fin. 36, 992–1011 (2012).
https://doi.org/10.1016/j.jbankfin.2011.10.013

35. Egozi, O., Markovitch, S., Gabrilovich, E.: Concept-based information retrieval using
explicit semantic analysis. ACM Trans. Inf. Syst. 29, 1–34 (2011). https://doi.org/10.1145/
1961209.1961211

36. Hajek, P., Prochazka, O.: Interval-valued fuzzy cognitive maps with genetic learning for
predicting corporate financial distress. In: Frontiers in Artificial Intelligence and Applica-
tions (FAIA). IOS Press (2017)

Learning Interval-Valued Fuzzy Cognitive Maps with PSO Algorithm 125

http://dx.doi.org/10.1109/91.873577
http://dx.doi.org/10.1016/j.jbankfin.2011.10.013
http://dx.doi.org/10.1145/1961209.1961211
http://dx.doi.org/10.1145/1961209.1961211

Fuzzy Linguistic Labels in Multi-expert
Decision Making

Alicja Mieszkowicz-Rolka and Leszek Rolka(B)

Department of Avionics and Control, Rzeszów University of Technology,
Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland

{alicjamr,leszekr}@prz.edu.pl

Abstract. This paper presents an approach to modeling multi-expert
decision systems. The proposed method is based on the idea of fuzzy
linguistic label, which is suitable for analyzing real life decision-making
process under uncertainty, where subjective criteria play an important
role. A modified form of information system for modeling the action of a
group of experts is introduced. The notions of dominating, boundary, and
negative linguistic values are adopted. Furthermore, a novel definition of
the fuzzy linguistic label, the measure of certainty of a linguistic label,
and the compatibility function between elements of the universe and
a linguistic label are given. Finally, a way of aggregating the experts’
knowledge for selecting a set of objects that best fit the preference of
a decision-maker is proposed. Independent vectors of preference degrees
for both the attributes and their linguistic values are applied. A simple
illustrating example is provided, which presents an analysis of a decision
process performed by three experts.

Keywords: Information systems · Decision making · Fuzzy sets

1 Introduction

Multiple criteria decision making plays an important role in different areas of
human activity. Many approaches have been proposed to obtain optimal solution,
when several precisely defined criteria are taken into account. In a typical case,
a single criterion is a function of several decision variables, which has to be
minimized (cost criterion) or maximized (quality criterion). However, it is not
always possible to formulate an objective quantitative measure of suitability in
the form of an explicit mathematical function for various phenomena in real life.
Evaluation and acceptance is often a matter of personal choice or feeling that
can be expressed with vague linguistic terms only, such as “very attractive” or
“comfortable”. The fuzzy set theory [17] founded by Zadeh is a significant and
successful attempt to deal with this kind of uncertainty. It has attracted interest
of many researchers over recent decades. Many sophisticated extensions of the
original fuzzy set concept were proposed, such as intuitionistic or hesitant fuzzy
sets [1,16], which allow a refined representation of knowledge and help to achieve
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 126–136, 2017.
https://doi.org/10.1007/978-3-319-71069-3_10

http://orcid.org/0000-0003-4563-7112
http://orcid.org/0000-0003-0083-8893

Fuzzy Linguistic Labels in Multi-expert Decision Making 127

a more human-oriented nature of decision making. Moreover, several fuzzy-based
variants of the well-known methods for multi-objective optimization, e.g., SAW,
TOPSIS [3,4,6,8] were introduced.

The issue of subjective decision making becomes even more complicated,
because we should, in general, consider the opinion of many human experts in
order to find out a compromise or avoid taking extreme decisions. This involves
the problem of discovering similarity, inconsistency, and contradiction between
different decision models or information systems of particular experts. In this
respect, the rough set theory [11] introduced by Pawlak seems to be a suitable
tool which has been successfully combined with other methods in the form of a
hybrid framework. It can also be applied to multi-criteria decision analysis, e.g.,
[7,15], in many works that were based on a dominance relation and preferences.

In this paper, we propose a solution of the multi-expert decision mak-
ing problem, which could be classified as a fuzzy linguistic approach, e.g.,
[2,5,12–14]. The labeled fuzzy rough set approach, which we developed more
recently [9,10], constitutes a simpler method of describing a decision model of
a human expert with the help of attributes with fuzzy linguistic values. The
crucial point of this method is the assumption that human experts try to build
up and refine a set of fuzzy linguistic terms, which are then used for comparing
and classifying all new objects or situations. Therefore, our goal is to identify an
appropriate set of dominating fuzzy linguistic labels and to construct a system
of consistent decision rules. Hence, we define new notions needed for extend-
ing the method to attain the ability of studying the properties of a complex of
information systems obtained from a group of experts.

2 Multiple Information Systems with Fuzzy Attributes

Formal description and analysis of multi-expert decision making can be made
more effectively, when we divide this process into two consecutive stages.

In the first stage, a group of experts E performs a task of evaluating particular
objects from a finite universe U . The experts assign to every element x of the
universe U , a value of membership degree in the linguistic values of all fuzzy
attributes (criteria). Dominating linguistic values of attributes form a kind of
linguistic labels, which represent the decision model of every expert.

In the second stage, a decision-maker selects a subset of certain linguistic
labels obtained from the experts, and imposes a preference order on the fuzzy
attributes (and their linguistic values) by applying suitable vectors of preference
degrees. With the help of a ranking procedure, a set of objects is obtained that
best fit the preference of the decision-maker, basing on the knowledge of experts.

By an appropriate selection of free parameters that are present in both stages
of multi-expert decision making, one can meet requirements and restrictions in
different real world applications.

128 A. Mieszkowicz-Rolka and L. Rolka

For a given group E of experts, we define a fuzzy information system EISF
of the experts group E, as a 5-tuple

EISF = 〈E,U,A,V, f〉, (1)

where:

E – is a finite set of experts,
U – is a nonempty set, called the universe,
A – is a finite set of fuzzy attributes,
V – is a set of fuzzy (linguistic) values of attributes, V =

⋃
a∈A Va,

Va is the set of linguistic values of an attribute a ∈ A,
f – is an information function, f : E × U × V → [0, 1],

f(e, x, V) ∈ [0, 1], for all e ∈ E, x ∈ U , and V ∈ V.

For every fuzzy attribute ai ∈ A, where i = 1, 2, . . . , n, we should specify a
family of its linguistic values, denoted by Ai = {Ai1, Ai2, . . . , Aini

}. The mem-
bership degree (in the interval [0, 1]) of each element x ∈ U , in every linguistic
value of all fuzzy attributes, will be assigned by the experts. However, this task
should be performed by respecting the following requirements:

∃Aik (Aik ∈ Ai, μAik
(x) � 0.5) , (2)

power (Ai(x)) =
ni∑

k=1

μAik
(x) = 1. (3)

The requirements (2) and (3) can be perceived as a fuzzy counterpart of the
properties of crisp decision systems, for which every element x ∈ U must have
a (unique) value of every attribute. In the case of fuzzy decision systems, more
linguistic values are possible, and there must be a dominating linguistic value
for any element x ∈ U .

Fuzzy generalization of the standard crisp rough set theory involves the issue
of determining the degree of similarity between compared elements of a universe
U . There are many different fuzzy connectives that can be used to this end.
Moreover, there is no unique way to determine fuzzy rough approximations.
This is why we introduced the labeled fuzzy rough set approach, assuming a
simplified method of comparing the elements in a fuzzy information system. A
human expert does not perform a comparison of objects with the help of a fuzzy
similarity relation, but rather tries to assess how similar a new object is to a
known prototype, which is a label that can be expressed using a tuple of linguistic
values of fuzzy attributes. Therefore, the starting point of our method consists
in identifying fuzzy labels used by the expert. It is necessary to find out those
linguistic values of attributes, which are dominating in the decision process. In
order to formally express domination of linguistic values, we use a level β which
fulfills the following inequality

0.5 < β � 1. (4)

Fuzzy Linguistic Labels in Multi-expert Decision Making 129

One has to apply a suitable value of the parameter β to distinguish different
kinds of linguistic values of fuzzy attributes for any element of the universe U .
Given a fuzzy information system EISF, we define, for an expert e ∈ E, an
element x ∈ U , and a fuzzy attribute a ∈ A, the set V̂a(e, x) ⊆ Va of dominating
linguistic values

V̂a(e, x) = {V ∈ Va : f(e, x, V) � β} , (5)

the set Va(e, x) ⊆ Va of boundary linguistic values

Va(e, x) = {V ∈ Va : 0.5 � f(e, x, V) < β} , (6)

and the set qVa(e, x) ⊆ Va of negative linguistic values

qVa(e, x) = {V ∈ Va : 0 � f(e, x, V) < 0.5} . (7)

Due to the requirement (2), every element x ∈ U can possess at most one dom-
inating linguistic value, i.e., card

(
V̂a(e, x)

)
� 1. By combining those positive

linguistic values of attributes that are dominating for an element x ∈ U , a con-
cise characteristic is obtained, which we call a linguistic label of the element x.
For an expert e ∈ E and a subset of fuzzy attributes P ⊆ A, we define the set of
linguistic labels L̂

P (e, x) of an element x ∈ U , as the Cartesian product of the
sets of dominating linguistic values V̂p(e, x), for an attribute p ∈ P

L̂
P (e, x) =

∏

p∈P

V̂p(e, x). (8)

For every e ∈ E, and every x ∈ U , it does hold: card
(
L̂

P (e, x)
)

� 1.

In the following, we will denote by:

– LP (e, x), the linguistic label (if it exists) for e ∈ E, and x ∈ U ,
– L

P (e), the set of linguistic labels for e ∈ E, and for all x ∈ U ,
– L

P , the set of linguistic labels for all e ∈ E, and all x ∈ U .

Clearly, the cardinality of the set L
P (e) is depending on the parameter β,

i.e., the number of linguistic labels belonging to the set LP (e) can be restricted,
when the value of β is increased.

By inspecting the decision table of a single expert e ∈ E, we determine which
elements of the universe U do have a common linguistic label LP (e, x) ∈ L

P (e).
We denote by XLP (e) the subset of elements of the universe U that correspond
to a linguistic label LP ∈ L

P (e), for selected fuzzy attributes P ⊆ A

XLP (e) =
{
x ∈ U : LP (e, x) = LP

}
. (9)

XLP (e) is called the set of characteristic elements of a linguistic label LP ∈
L

P (e).

130 A. Mieszkowicz-Rolka and L. Rolka

Any linguistic label LP (e, x) ∈ L
P can be also represented in the form of an

ordered tuple of dominating linguistic values, for all attributes p ∈ P

LP (e, x) =
(
V̂p1 , V̂p2 , . . . , V̂p|P |

)
. (10)

For determining the resulting membership degree of x ∈ U in the linguistic
label LP (e, x) ∈ L

P , we should aggregate the membership degrees of dominating
linguistic values for selected attributes. To this end, a T-norm operator, e.g., min
can be used

μLP (e,x)(x) = min
(
μV̂p1

(x), μV̂p2
(x), . . . , μV̂p|P |

(x)
)

. (11)

By calculating the membership degree for all elements of a universe U (con-
taining N elements) in a linguistic label LP (e, x) ∈ L

P , we obtain a fuzzy simi-
larity class denoted by L̃P (e, x)

L̃P (e, x) =
{
μLP (e,x)(x1)/x1, μLP (e,x)(x2)/x2, . . . , μLP (e,x)(xN)/xN

}
. (12)

We need a measure of agreement between the experts, who may not always
apply the same dominating linguistic values, when making their judgment about
particular elements of the universe U . Hence, we define the certainty factor
cer

(
x,LP

)
of a label LP ∈ L

P , in evaluating an element x ∈ U , as follows

cer
(
x,LP

)
= card

(
e : LP (e, x) = LP

)
/card(E). (13)

The certainty factor cer
(
x,LP

)
will be equal to 1, only if all the experts regard x

as characteristic element of the linguistic label LP . When the linguistic label LP

is not used by any expert during evaluation of the element x, then the certainty
factor cer

(
x,LP

)
is equal to 0.

The linguistic labels which have a high value of certainty factor, constitute the
most important part of the experts’ knowledge. Therefore, they will be used at
the second stage of decision-making for finding the most appropriate elements
of the universe U . To this end, we construct a function which expresses the
compatibility between an element x ∈ U and a linguistic label. An independent
threshold α, satisfying the inequality: 0.5 < α � 1, will be applied for selecting
the most certain linguistic labels. Thus, we define the α-compatibility function
compatα(x,LP) between the element x ∈ U and the linguistic label LP , as
follows

compatα

(
x,LP

)
= agre∈E

(
μLP (e,x)(x) : LP (e, x) = LP , cer

(
x,LP

)
� α

)
,

(14)
where agre∈E denotes an aggregation operator on the domain E.

It is an open question how to choose a suitable aggregation operator. It
depends on a particular application, whether one prefers to take into account
the opinion of the most pessimistic expert (mine∈E), the most optimistic expert
(maxe∈E), or uses an averaging operator.

Fuzzy Linguistic Labels in Multi-expert Decision Making 131

In the next stage, a decision-maker should specify his or her preferences con-
cerning the linguistic values of particular attributes. For a given fuzzy attribute,
we can interpret a preference degree of a linguistic value as membership in a
special fuzzy set (on the domain of linguistic values), which could be called “the
most preferred linguistic value”.

Let us denote by pref (Aik), the preference degree of the linguistic value Aik

of an attribute attribute ai ∈ A, where i = 1, 2, . . . , n, and k = 1, 2, . . . , ni.
Furthermore, we denote by LP (x, ai), the (dominating) linguistic value of the
attribute ai ∈ A, which appears in the tuple describing the linguistic label LP

for an element x ∈ U .
The decision-maker should also specify a vector [w(a1), w(a2), . . . , w(an)] of

weights, representing preference for each fuzzy attribute, which satisfy the stan-
dard requirement imposed on weights:

∑n
i=1 w(ai) = 1.

Finally, we should apply a suitable function for ranking all elements of the
universe U . Certainly, there is no unique way of defining such a function. We
calculate the rank of a given element x ∈ U as follows

rank(x) = compatα

(
x,LP

) × cer
(
x,LP

) ×
n∑

i=1

w(ai) × pref
(
LP (x, ai)

)
. (15)

In the formula (15), we make use of both the certainty factor of the linguistic
label LP connected with a particular x ∈ U and the α-compatibility function
between x and the linguistic label LP .

3 Example

Let us consider a process of decision making performed by a group of three
experts: E = {e1, e2, e3}. They evaluate a universe of discourse consisting of six
objects: U = {x1, x2, x3, x4, x5, x6}. The objects are described by three fuzzy
attributes: A = {a1, a2, a3}, and each attribute has three linguistic values. We
will make use of all fuzzy attributes: P = A.

Table 1. Decision table of the expert e1

a1 a2 a3

A11 A12 A13 A21 A22 A23 A31 A32 A33

x1 0.80 0.20 0.00 0.20 0.80 0.00 0.60 0.40 0.00

x2 0.00 0.70 0.30 0.30 0.70 0.00 0.00 0.80 0.20

x3 0.00 0.10 0.90 0.00 0.20 0.80 0.00 0.30 0.70

x4 0.00 0.30 0.70 0.00 0.50 0.50 0.00 0.20 0.80

x5 0.70 0.30 0.00 0.00 0.70 0.30 0.80 0.20 0.00

x6 0.00 0.90 0.10 0.00 0.90 0.10 0.25 0.75 0.00

132 A. Mieszkowicz-Rolka and L. Rolka

Every expert decides how to assign the membership in the linguistic values for
all elements of the universe U (Tables 1, 2, and 3). Observe that the assignments
of the experts satisfy the requirements (2) and (3).

In the first step, we seek out dominating linguistic values in the decision
tables of all experts, and determine the linguistic labels for all elements x ∈ U .
We assume a value of the level β equal to 0.55. The results are given in Tables 4, 5,
and 6, which contain linguistic labels and their fuzzy similarity classes, according
to the formulae (10), (11), and (12).

In the case of the expert e1, we notice that the object x4 is not a characteristic
element of any linguistic label, because A22 and A23 are boundary linguistic
values for that element. The linguistic labels (A11, A22, A31), and (A12, A22, A32)
have two characteristic elements, whereas the linguistic label (A13, A23, A33) has
only one.

Table 2. Decision table of the expert e2

a1 a2 a3

A11 A12 A13 A21 A22 A23 A31 A32 A33

x1 0.90 0.10 0.00 0.30 0.70 0.00 0.00 0.20 0.80

x2 0.00 0.75 0.25 0.20 0.80 0.00 0.00 1.00 0.00

x3 0.00 0.00 1.00 0.00 0.25 0.75 0.00 0.25 0.75

x4 0.00 0.20 0.80 0.00 0.60 0.40 0.00 1.00 0.00

x5 1.00 0.00 0.00 0.00 0.80 0.20 1.00 0.00 0.00

x6 0.00 0.90 0.10 0.00 1.00 0.00 0.20 0.80 0.00

From the decision table of the expert e2, we obtain five linguistic labels. By
comparison with the expert e1, we discover that x1 is now a characteristic ele-
ment of a different linguistic label: (A11, A22, A33), and the element x4 becomes
a characteristic element of the linguistic label (A13, A22, A32).

Table 3. Decision table of the expert e3

a1 a2 a3

A11 A12 A13 A21 A22 A23 A31 A32 A33

x1 0.70 0.30 0.00 0.30 0.70 0.00 0.70 0.30 0.00

x2 0.00 0.90 0.10 0.20 0.80 0.00 0.00 1.00 0.00

x3 0.00 0.20 0.80 0.00 0.40 0.60 0.00 0.40 0.60

x4 0.00 0.00 1.00 0.00 0.70 0.30 0.00 0.90 0.10

x5 0.80 0.20 0.00 0.00 0.90 0.10 0.00 1.00 0.00

x6 0.00 1.00 0.00 0.20 0.80 0.00 0.00 0.90 0.10

Fuzzy Linguistic Labels in Multi-expert Decision Making 133

Table 4. Fuzzy similarity classes obtained for the expert e1

(A11, A22, A31) (A12, A22, A32) (A13, A23, A33)

x1 0.60 0.20 0.00

x2 0.00 0.70 0.00

x3 0.00 0.10 0.70

x4 0.00 0.20 0.50

x5 0.70 0.20 0.00

x6 0.00 0.75 0.00

Table 5. Fuzzy similarity classes obtained for the expert e2

(A11, A22, A31) (A11, A22, A33) (A12, A22, A32) (A13, A23, A33) (A13, A22, A32)

x1 0.20 0.70 0.10 0.00 0.00

x2 0.00 0.00 0.75 0.00 0.25

x3 0.00 0.00 0.00 0.75 0.25

x4 0.00 0.00 0.20 0.00 0.60

x5 0.80 0.00 0.00 0.00 0.00

x6 0.00 0.00 0.80 0.00 0.10

Table 6. Fuzzy similarity classes obtained for the expert e3

(A11, A22, A31) (A11, A22, A32) (A12, A22, A32) (A13, A23, A33) (A13, A22, A32)

x1 0.70 0.30 0.30 0.00 0.00

x2 0.00 0.00 0.80 0.00 0.10

x3 0.00 0.00 0.20 0.60 0.40

x4 0.00 0.00 0.00 0.10 0.70

x5 0.00 0.80 0.20 0.00 0.00

x6 0.00 0.00 0.80 0.00 0.00

Table 7. Characteristic elements of linguistic labels

(A11, A22, A31) (A12, A22, A32) (A13, A23, A33) (A13, A22, A32) (A11, A22, A32) (A11, A22, A33)

e1 {x1, x5} {x2, x6} {x3} ∅ ∅ ∅

e2 {x5} {x2, x6} {x3} {x4} ∅ {x1}
e3 {x1} {x2, x6} {x3} {x4} {x5} ∅

The expert e3 assigns the element x1 to the same linguistic label as the expert
e1, and x4 to the linguistic label (A13, A22, A32), as the expert e2. We also get a
new linguistic label (A11, A22, A32) with the characteristic element x5.

To facilitate a comparison of decision models of the experts, a summary of
results is collected in Table 7. All the experts are in perfect agreement, when
assigning objects to the linguistic labels (A12, A22, A32), and (A13, A23, A33).

134 A. Mieszkowicz-Rolka and L. Rolka

The expert e1 shares common characteristic elements with the other experts, for
the linguistic label (A11, A22, A31). However, we observe a strong disagreement
with respect to the linguistic labels (A11, A22, A32), and (A11, A22, A33).

In the next step, the opinions of the experts are being aggregated for deter-
mining the compatibility between particular elements of the universe U and
those linguistic labels, which have a degree of certainty factor above a threshold
α. We set the value of α equal to 0.65. The operator min was chosen as the
aggregation operator (agre∈E), in the α-compatibility function compatα(x,LP),
according to the formula (14).

We observe that only the expert e2 did not assign the element x1 to the lin-
guistic label L1 = (A11, A22, A31), so the certainty factor of that label, in evaluat-
ing the element x1, is equal to 0.67. The value of the function compat0.65(x1, L1),
between x1 and L1, is equal to 0.6. The results of analysis for all elements of the
universe U are presented in Table 8.

Table 8. Compatibility between the elements x ∈ U and selected linguistic labels

LP cer x, LP compatα x, LP

x1 L1 = (A11, A22, A31) 0.67 0.60

x2 L2 = (A12, A22, A32) 1.00 0.70

x3 L3 = (A13, A23, A33) 1.00 0.70

x4 L4 = (A13, A22, A32) 0.67 0.60

x5 L1 = (A11, A22, A31) 0.67 0.70

x6 L2 = (A12, A22, A32) 1.00 0.75

As we can see, the linguistic labels (A11, A22, A32), and (A11, A22, A33) are
missing, because a lower value of certainty factor, equal to 0.33, was obtained
for them. Summarizing, four linguistic labels: L1, L2, L3, and L4, with a high
level of certainty factor, can be used in further considerations.

The degrees of preference of a decision-maker, which express his or her pref-
erences with respect to the linguistic values of particular attributes, are given in
Table 9. In the case of the attribute a1, we notice that the linguistic value A11 is
the most preferred one, A12 is a significantly worse choice, whereas A13 is rather
not acceptable.

Table 9. The degrees of preference of the linguistic values of attributes

a1 a2 a3

A11 A12 A13 A21 A22 A23 A31 A32 A33

1.0 0.5 0.25 1.0 0.5 0.25 0.25 0.5 1.0

Fuzzy Linguistic Labels in Multi-expert Decision Making 135

Let us assume that the vector of weights specified by the decision-maker for
all used attributes is equal to [0.5 0.35 0.15]. We see that the attribute a1 is the
most important one, a2 is slightly less important, and a3 plays the smallest role
in the decision process.

In the final step, we calculate the value of the ranking function for every
element x ∈ U , with the help of the formula (15). Table 10 contains the results of
ranking. The element x6 turns out to be the most appropriate object, satisfying
the preference of the decision-maker.

Table 10. Ranking of all elements x ∈ U

rank(x) Order of element

x1 0.285 4

x2 0.350 2

x3 0.254 5

x4 0.225 6

x5 0.333 3

x6 0.375 1

4 Conclusions

It is possible to describe and analyze the decision process of a group of experts
basing on fuzzy linguistic labels, which have the form of tuples of dominating
linguistic values of attributes. The proposed approach is straightforward and
computationally not demanding. It can be implemented in real-world applica-
tions, where a set of subjective criteria is used for selecting objects according to
preference of a decision-maker. In the future work, the presented approach will
be further extended and combined with the most popular multi-criteria decision
making methods.

References

1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)
2. Cabrerizo, F., Pedrycz, W., Perez, I., Alonso, S., Herrera-Viedma, E.: Group deci-

sion making in linguistic contexts: an information granulation approach. Proce-
dia Comput. Sci. 91, 715–724 (2016). www.sciencedirect.com/science/article/pii/
S1877050916312455

3. Chen, C.T.: Extensions of the TOPSIS for group decision making under fuzzy
environment. Fuzzy Sets Syst. 114, 1–9 (2000)

4. Chou, S.Y., Chang, Y.H., Shen, C.Y.: A fuzzy simple additive weighting sys-
tem under group decision-making for facility location selection with objec-
tive/subjective attributes. Eur. J. Oper. Res. 189, 132–145 (2008)

www.sciencedirect.com/science/article/pii/S1877050916312455
www.sciencedirect.com/science/article/pii/S1877050916312455

136 A. Mieszkowicz-Rolka and L. Rolka

5. Chuu, S.J.: Interactive group decision-making using a fuzzy linguistic approach for
evaluating the flexibility in a supply chain. Eur. J. Oper. Res. 213(1), 279–289
(2011)

6. Deni, W., Sudana, O., Sasmita, A.: Analysis and implementation fuzzy multi-
attribute decision making SAW method for selection of high achieving students in
faculty level. Int. J. Comput. Sci. 10(1), 674–680 (2013)

7. Greco, S., Matarazzo, B., S�lowiński, R.: Rough sets theory for multicriteria decision
analysis. Eur. J. Oper. Res. 129, 1–47 (2001)

8. Kahraman, C., Onar, S.C., Oztaysi, B.: Fuzzy multicriteria decision-making: a
literature review. Int. J. Comput. Intell. Syst. 8(4), 637–666 (2015)

9. Mieszkowicz-Rolka, A., Rolka, L.: A novel approach to fuzzy rough set-based analy-
sis of information systems. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świ ↪atek,
J. (eds.) Information Systems Architecture and Technology: Proceedings of 36th
International Conference on Information Systems Architecture and Technology –
ISAT 2015 – Part IV. AISC, vol. 432, pp. 173–183. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-28567-2 15

10. Mieszkowicz-Rolka, A., Rolka, L.: Labeled fuzzy rough sets versus fuzzy flow
graphs. In: Proceedings of the 8th International Joint Conference on Computa-
tional Intelligence, FCTA, vol. 1, pp. 115–120. SCITEPRESS Digital Library - Sci-
ence and Technology Publications, Lda (2016). www.scitepress.org/DigitalLibrary

11. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Boston, Dordrecht, London (1991)

12. Rodŕıguez, R.M., Labella, Á., Mart́ınez, L.: An overview on fuzzy modelling of
complex linguistic preferences in decision making. Int. J. Comput. Intell. Syst.
9(1), 81–94 (2016)

13. Rodŕıguez, R.M., Mart́ınez, L.: An analysis of symbolic linguistic computing mod-
els in decision making. Int. J. Gen. Syst. 42(1), 121–136 (2013)

14. Skorupski, J.: Interactive group decision-making using a fuzzy linguistic approach
for evaluating the flexibility in a supply chain. Expert Syst. Appl. 41, 7406–7414
(2014)

15. Sun, B., Ma, W.: Rough approximation of a preference relation by multi-decision
dominance for a multi-agent conflict analysis problem. Inf. Sci. 315, 39–53 (2015)

16. Yu, D., Zhang, W., Xu, Y.: Group decision making under hesitant fuzzy envi-
ronment with application to personnel evaluation. Knowl. Based Syst. 52, 1–10
(2013)

17. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

https://doi.org/10.1007/978-3-319-28567-2_15
https://doi.org/10.1007/978-3-319-28567-2_15
www.scitepress.org/DigitalLibrary

An Evolutionary Algorithm Based on Graph
Theory Metrics for Fuzzy Cognitive Maps

Learning

Katarzyna Poczeta(B), �Lukasz Kubuś, and Alexander Yastrebov

Kielce University of Technology, al. Tysi ↪aclecia Państwa Polskiego 7,
25-314 Kielce, Poland

{k.piotrowska,l.kubus,a.jastriebow}@tu.kielce.pl

Abstract. Fuzzy cognitive map (FCM) is an effective tool for modeling
dynamic decision support systems. It describes the analyzed phenom-
enon in the form of key concepts and causal connections between them.
The main aspect of building of the FCM model is concepts selection. It
is usually based on the expert knowledge. The aim of this paper is to
introduce a new evolutionary algorithm for fuzzy cognitive maps learn-
ing. The proposed approach allows to select key concepts based on graph
theory metrics and determine the connections between them. A simula-
tion analysis was done with the use of synthetic and real-life data.

Keywords: Fuzzy cognitive maps · Evolutionary learning
Graph theory metrics

1 Introduction

Fuzzy cognitive map (FCM) is an effective tool for representing causal reason-
ing [7]. The advantage of fuzzy cognitive map is its graph-based representation.
It allows to visualize the analyzed phenomenon in a clear and readable form of
the collection of concepts (nodes) and causal connections (links) between them.
The FCM model has the ability to describe the dynamics of the analyzed prob-
lems and can be used in a what-if analysis [1]. Fuzzy cognitive maps have been
widely applied in modeling dynamic decision support systems, e.g. for decision
making in radiation therapy [15], for time series prediction [5,14,19], for pattern
recognition [16] or for forecasting of work of complex systems [24].

Fuzzy cognitive map can be initialized based on expert knowledge [15].
Experts determine the most significant concepts and weights of the connec-
tions between them. The second way to construct the FCM model are super-
vised [6] and evolutionary [2,22,23] learning algorithms that allow to determine
the weights of the connections based on available data. Concepts are created
for all data attributes. However, fuzzy cognitive maps with the large number of
concepts are difficult to analyze and interpret. With the growth of the number
of concepts, the number of connections between them that should be determined
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 137–149, 2017.
https://doi.org/10.1007/978-3-319-71069-3_11

138 K. Poczeta et al.

increases quadratically. So reduction of the number of concepts is very important
issue that should be taken into consideration. Various approaches for reduction
of fuzzy cognitive map have recently been proposed.

Concepts clustering techniques were used to merge related or similar con-
cepts into the same cluster of nodes [13]. The resulting FCM models are easier
to interpret and more readable. Homenda et al. [5] introduced a time series mod-
eling framework based on simplifying complex FCM models using a priori nodes
rejection criteria in order to achieve a reasonable balance between complexity
and modeling accuracy. Selvin and Srinivasaraghavan applied the feature selec-
tion techniques to reduce the number of the input concepts of fuzzy cognitive
map, however the influences of the connections between the concepts were not
taken into consideration [20]. Salmeron and Froelich proposed the dynamic opti-
mization of the FCM structure for univariate time series forecasting [19]. In [14]
randomly selection of the most significant concepts and connections between
them during learning process was proposed.

The aim of this paper is to introduce a new evolutionary algorithm for fuzzy
cognitive maps learning that allows to select key concepts based on two metrics
from the area of graph theory: the degree of the node and the total influence
of the concept. The preliminary results of this approach were shown in [17].
This paper presents the improved version of the algorithm and more detailed
analysis based on synthetic and real-life data. We carried out a comparison
of the developed approach with the standard method for FCMs learning [22],
the approach based on density evaluation [23], the approach based on system
performance indicators [10] and the algorithm for random selection of FCM
concepts [14]. Experiments confirm that the degree of the node and the total
influence of the concept can be useful metrics to improve the learning process
compared to the other techniques.

The paper is organized as follows. In Sect. 2, fuzzy cognitive maps with the
selected metrics from the area of graph theory are described. Section 3 introduces
the evolutionary algorithm based on graph theory metrics for fuzzy cognitive
maps learning. Section 4 presents results of the experiments of the proposed
approach. Finally, conclusions are covered in Sect. 5.

2 Fuzzy Cognitive Maps

Fuzzy cognitive map is a graph structure which nodes are variable concepts and
edges are causal connections [7]. Model that contains n concepts is described
by the n state vector X and a n × n connection matrix W . Each element wj,i

of the matrix W determine the weight of the connection between concepts. A
positive weight of the connection wj,i means node Xj causally increases node
Xi. A negative weight of the connection wj,i means node Xj causally decreases
node Xi. Figure 1 presents a sample FCM model to determine the risk of crisis
in a country [1].

Fuzzy cognitive map is a useful tool for modeling behavior of the dynamic
systems and can be used in a what-if analysis [1]. The state of the system is

An Evolutionary Algorithm for Fuzzy Cognitive Maps Learning 139

Fig. 1. Fuzzy cognitive map to determine the risk of crisis in a country

described by the vector X and contains values of the concepts at a t-th itera-
tion. An initial state vector is required and next the values of the concepts are
calculated according to the selected dynamic model. Some of the concepts can
be determine as the output (decision) concepts and taken into account in the
analysis.

In this paper, the most commonly used dynamic model was applied [22,23]:

Xi(t + 1) = F

⎛
⎝

n∑
j=i

wj,i · Xj(t)

⎞
⎠ (1)

where Xi(t) is the value of the i-th concept at the t-th iteration, i = 1, 2, ..., n,
n is the number of concepts, t = 0, 1, 2, ..., T , T is the end time of simulation, wj,i

is the weight of the connection between the j-th concept and the i-th concept,
taking on the values from the range [−1, 1], F (x) is a logistic transformation
function used to normalize values of the concepts to the range [0, 1].

The advantage of fuzzy cognitive map in modeling complex systems is its
graph-based representation. Various metrics from the area of graph theory can
be used to analyze the structure and behavior of the modeled system [25]. In
this paper we analyzed two metrics: the degree of the node degi [4] and the total
influence of the concept infi [3,21].

The degree of the node (2) denotes its significance based on the number of
concepts it affects [4]:

degi =

∑n
j=1,j �=i θ(wi,j)

n − 1
,

θ(wi,j) =
{

1, wi,j �= 0
0, wi,j = 0

(2)

where n is the number of concepts; wj,i is the weight of the connection between
the j-th and the i-th concept; i, j = 1, 2, ..., n.

140 K. Poczeta et al.

The total influence of the concept denotes the maximum direct or indirect
impact of the concept on other nodes in the system [3,21]:

infi =

∑n
j (pi,j)
n

(3)

where n is the number of the concepts, pi,j is the total (direct and indirect)
influence between the i-th concept and the j-th concept calculated on the basis
of the total causal effect path between nodes [10], i, j = 1, 2, ..., n.

To calculate the total possible influence between concepts, connection matrix
W passes to matrix R size 2n × 2n with positive relationships according to the
following formulas [3,21]:

if wi,j > 0 then r2i−1,2j−1 = wi,j , r2i,2j = wi,j

if wi,j < 0 then r2i−1,2j = −wi,j , r2i,2j−1 = −wi,j
(4)

Next, operation of transitive closure of the matrix R is used [3,21]:

R∗ = R ∨ R2 ∨ R3 ∨ ... (5)

where ∨ means maximum operation, Rk is calculated according to the max-
product composition:

Rk = Rk−1 ◦ R (6)

Elements of the matrix R∗ are transformed into elements of the matrix
V [3,21]:

vi,j = max(r2i−1,2j−1, r2i,2j)
v′
i,j = −max(r2i−1,2j , r2i−1,2j)

(7)

Based on the matrix V the total influence between concepts can be calculated
according to the formula [3,21]:

for vi,j �= v′
i,j

pi,j = sign(vi,j + v′
i,j)max(|vi,j |, |v′

i,j |) (8)

3 Evolutionary Algorithm for FCMs Learning

Fuzzy cognitive map can be initialized based on expert knowledge or automatic
constructed using learning algorithms and available data. The aim of the devel-
oped evolutionary algorithm for fuzzy cognitive maps learning is

– to reduce the number of concepts by selecting the most significant (key) nodes
using metrics from the area of graph theory: the degree of the node and the
total influence of the concept,

– to determine the weights of the connections between them,
– to approximate the input data.

An Evolutionary Algorithm for Fuzzy Cognitive Maps Learning 141

The main steps of the developed algorithm for fuzzy cognitive maps learning
are described below.

STEP 1. Initialize population.
First, the population of individuals is randomly initialized. Each individual

is described by the vectors: W ′ and C. Vector W ′ describes values of the weights
between concepts [22]:

W ′ = [w1,2, ..., w1,n, w2,1, w2,3, ..., w2,n, ..., wn,n−1]T (9)

where wj,i ∈ [−1, 1] is the weight of the connection between the j-th and the
i-th concept, i, j = 1, 2, ..., n and n is the number of concepts.

The second vector (10) describes the state of each concept:

C = [c1, c2, ..., cn,]T

ci ∈ {AS, IAS,AAS} (10)

where ci is the state of the i-th concept and n is the number of concepts.
Each concept can be in one of the three states: active (AS), inactive (IAS)

and always active (AAS). The proposed solution requires determination of the
output (decision) concepts. Each output concept is always active. This mean,
that obtained model always contains decision concepts. The concepts with states:
AS and AAS make a collection of key concepts.

During the first step, the elements of the W ′ vector are initialized with the
random values form the interval [−1, 1]. The state for each node is active for
all individuals in the initial population. For this reason, the elements of the C
vector are equal to AAS for the output concepts and AS for the other concepts.

STEP 2. Select key concepts.
Each individual in the population is decoded into the candidate FCM and

next the selected graph theory metrics are calculated. The most significant con-
cepts (key concepts) are selected in two ways: based on the degree of the node
and based on the total influence of the concept.

1. Key concepts are selected based on the degree of the node (DEG).
Values of the degree are calculated for each node (excluding output concepts)
in the candidate FCM. Next, the state of each node is modified according to
the following formula:

if degi ≤ a then ci = IAS
else ci = AS (11)

where i = 1, 2, ..., n, n is the number of the concepts; a is a parameter deter-
mining an intensity of reduction of the number of concepts, it is selected
experimentally, a > 0.

2. Key concepts are selected based on the total influence of each concept (INF).
Values of the total influence are calculated for each concept (excluding output

142 K. Poczeta et al.

concepts) in the candidate FCM. Next, the state of each node is modified
according to the following formula:

if infi ≤ a then ci = IAS
else ci = AS (12)

where i = 1, 2, ..., n, n is the number of the concepts; a is a parameter deter-
mining an intensity of reduction of the number of concepts, it is selected
experimentally, a > 0.

In order to compare the proposed approach for concepts selection based on
graph theory metrics, a random selection was implemented similar to [14] (RND).
In this approach, the state of each concept can be changed with a certain proba-
bility described by the parameter a. The value of this parameter is in the range
(0, 1).

STEP 3. Evaluate population.
The fitness function evaluates the candidate FCM based on its ability to

approximate the input data and is described as follows:

fitness(Error) = −Error (13)

where Error is the objective function signifying the learning data error calcu-
lated for the output concepts:

Error =
T∑

t=1

nd∑
i=1

|Zi(t) − Xi(t)| (14)

where Xi(t) is the value of the i-th output concept at iteration t of the candidate
FCM, Zi(t) is the value of the i-th output concept at iteration t in the input
data, t = 0, 1, 2, ..., T , T is the input data length, i = 1, ..., nd and nd is the
number of the output concepts.

STEP 4. Check stop condition.
If the number of current generation is greater than generationmax then the

learning process is stopped.

STEP 5. Select new population.
The temporary population is created from a current base population using

roulette-wheel selection with dynamic linear scaling of the fitness function. Addi-
tionally, elite strategy is applied [11].

STEP 6. Apply genetic operators.
To receive a new generation one of the most popular algorithms in fuzzy

cognitive maps learning: Real-Coded Genetic Algorithm (RCGA) [11] and the
developed Individually Directed Evolutionary Algorithm (IDEA) were used [9].
The genetic operators were applied only to the W ′ vector. For the RCGA method
an uniform crossover and non-uniform mutation were used. For the IDEA algo-
rithm a directed non-uniform mutation was applied.

An Evolutionary Algorithm for Fuzzy Cognitive Maps Learning 143

STEP 7. Analyze population.
The values of weights from the interval [−0.05, 0.05] are rounded down to

0 as suggested in [22]. Next the potential solutions are analyzed according to
the previously developed approach [10]. Values of the total influence between
concepts pj,i are calculated. If the value of pj,i is in the interval [−0.1, 0.1], the
corresponding weight value wj,i is rounded down to 0. Go to STEP 2.

STEP 8. Choose the best individual and calculate evaluation criteria.
To evaluate performance of the developed algorithm, we used two criteria

that are commonly used in fuzzy cognitive maps learning:

1. Initial error allowing calculation of similarity between the input learning data
and the data generated by the FCM model for the same initial state vector:

initialerror =
1

T · nd

T∑
t=1

nd∑
i=1

|Zi(t) − Xi(t)| (15)

where Xi(t) is the value of the i-th decision concept at iteration t of the
candidate FCM, Zi(t) is the value of the i-th decision concept at iteration t
of the input model, t = 0, 1, 2, ..., T , T is the input data length, i = 1, ..., nd,
nd is the number of decision concepts.

2. Behavior error evaluating generalization capabilities of the candidate FCM.
It enables calculation of similarity between the input testing data and the
data generated by the FCM model for the same initial state vectors:

behaviorerror =
1

P · T · nd

P∑
p=1

T∑
t=1

nd∑
i=1

|Zp
i (t) − Xp

i (t)| (16)

where Xp
i (t) is the value of the i-th decision concept at iteration t of the

candidate FCM started from the p-th initial state vector, Zp
i (t) is the value

of the i-th decision concept at iteration t of the input model started form the
p-th initial state vector, i = 1, ..., nd, nd is the number of decision concepts,
p = 1, 2, ..., P , P is the number of initial testing state vectors.

4 Experiments

The experiments were performed in order to analyze the performance of the pro-
posed approach for fuzzy cognitive maps learning. Similarly as in [2,10,22,23]
we used synthetic and real-life models to generate the input data, which are
next used by the learning process to determine the weights of the connections.
The evaluation was done based on the number of concepts nc, initialerror and
behaviorerror calculated for the candidate FCMs. The learning process was done
with the use of the RCGA and the IDEA algorithms. We carried out a compar-
ison of the developed approach based on the degree of the node (DEG) and
the total influence of the concept (INF) with other methods for learning FCMs:
the standard approach (STD) [22], the approach based on density evaluation
(DEN) [23], the approach based on system performance indicators (SPI) [10]
and the algorithm for random selection of FCM concepts (RND) [14].

144 K. Poczeta et al.

4.1 Data Sets

Synthetic data were obtained based on 3 randomly generated FCM models: with
5 concepts (1 output concept) and density 30% (S1), with 10 concepts (2 output
concepts) and density of 30% (S2), with 20 concepts (3 output concepts) and
density of 30% (S3).

Real-life data were obtained on the basis of three fuzzy cognitive maps
reported in literature [8,12,18]. The first model is a decision support system
in radiotherapy (R1) [12]. It contains 16 concepts: the factor-concepts, that rep-
resent the depth of tumor, the size of tumor, the shape of tumor, the type of the
irradiation and the amount of patient thickness irradiated, the selector-concepts,
representing size of radiation field, multiple field arrangements, beam directions,
dose distribution from each field, stationery vs. rotation-isocentric beam ther-
apy, field modification, patient immobilizing and use of 2D or 3D conformal
technique, respectively and the three output-concepts: dose given to treatment
volume, amount of irradiated volume of healthy tissues and amount of irra-
diated volume of sensitive organs. The next fuzzy cognitive map is a notional
model for the evaluation of mining jurisdiction investment favorability (R2) [18].
It contains 12 concepts: national gov. stability, regional gob. stability, support
for mining industry, workforce education, workforce skills/experience, infrastruc-
ture availability, permitting delays, gov. royalty rates, tax rates, environmental
activism, union activism and output node investment favorability. The last map
for modeling the behavior of soldiers (R3) consists of 10 concepts: cluster, prox-
imity of enemy, receive fire, presence of authority, fire weapons, peer visibility,
spread out, take cover, advance and fatigue [8]. Nodes: fire weapons, take cover
and advance were chosen as the output concepts.

The input data for the learning process were generated starting from the one
random initial state vector for every FCM model. The resulting fuzzy cognitive
maps were tested on the basis of 10 testing state vectors (P = 10) and evaluated
with the use of criteria (15), (16) and the number of concepts n.

4.2 Learning Parameters

The learning parameters were chosen experimentally based on the minimization
of the average values of the initial and behavior error. The following parameters
were used in simulations presented in the paper:

– the population size equal 100 and the maximum number of generations equal
100,

– RCGA: the number of elite individuals: 10, crossover probability: 0.75, muta-
tion probability: 0.01,

– IDEA: mutation probability: 1
n2−n .

Additionally, we analyzed the parameter a that is responsible for the intensity
of the concepts reduction. Results for the a = 0.1 (RND I, DEG I, INF I),
a = 0.2 (RND II, DEG II, INF II) and a = 0.3 (RND III, DEG III, INF III)
were presented.

An Evolutionary Algorithm for Fuzzy Cognitive Maps Learning 145

Table 1. Average results with synthetic data

Approach nc

Avg

initialerror
Avg ± Std

behaviorerror
Avg ± Std

nc Avg initialerror
Avg ± Std

behaviorerror
Avg ± Std

S1 IDEA RCGA

STD 5 0.0084 ± 0.0016 0.0107 ± 0.0038 5 0.0059 ± 0.0015 0.0079 ± 0.0026

DEN 5 0.0051 ± 0.0014 0.0051 ± 0.0014 5 0.0048 ± 0.0017 0.0046 ± 0.0031

SPI 5 0.0078 ± 0.0023 0.0086 ± 0.0033 5 0.0068 ± 0.0027 0.0085 ± 0.0054

RND I 4.4 0.0063 ± 0.0014 0.0079 ± 0.0020 4.5 0.0041 ± 0.0007 0.0042 ± 0.0014

DEG I 4.2 0.0061 ± 0.0017 0.0072 ± 0.0037 4.9 0.0046 ± 0.0016 0.0048 ± 0.0030

INF I 4.2 0.0052 ± 0.0018 0.0063 ± 0.0043 3.7 0.0054 ± 0.0021 0.0050 ± 0.0022

RND II 4.2 0.0063 ± 0.0010 0.0069 ± 0.0022 4.5 0.0043 ± 0.0008 0.0045 ± 0.0016

DEG II 4.4 0.0052 ± 0.0016 0.0053 ± 0.0029 4.8 0.0046 ± 0.0013 0.0044 ± 0.0013

INF II 3.5 0.0077 ± 0.0022 0.0081 ± 0.0035 3.3 0.0068 ± 0.0023 0.0072 ± 0.0038

RND III 4.1 0.0065 ± 0.0018 0.0071 ± 0.0023 4.6 0.0041 ± 0.0007 0.0051 ± 0.0019

DEG III 3.1 0.0066 ± 0.0028 0.0074 ± 0.0047 4 0.0052 ± 0.0012 0.0051 ± 0.0023

INF III 3.5 0.0085 ± 0.0029 0.0094 ± 0.0042 3.1 0.0072 ± 0.0024 0.0085 ± 0.0051

S2 IDEA RCGA

STD 10 0.0141 ± 0.0028 0.0157 ± 0.0035 10 0.0121 ± 0.0025 0.0164 ± 0.0043

DEN 10 0.0095 ± 0.0009 0.0096 ± 0.0010 10 0.0079 ± 0.0010 0.0083 ± 0.0015

SPI 10 0.0090 ± 0.0017 0.0099 ± 0.0024 10 0.0073 ± 0.0014 0.0073 ± 0.0016

RND I 7.7 0.0120 ± 0.0017 0.0153 ± 0.0029 7.2 0.0093 ± 0.0021 0.0109 ± 0.0032

DEG I 9.6 0.0097 ± 0.0014 0.0098 ± 0.0016 10 0.0074 ± 0.0021 0.0088 ± 0.0026

INF I 9.2 0.0111 ± 0.0018 0.0109 ± 0.0024 7.1 0.0085 ± 0.0010 0.0081 ± 0.0013

RND II 6.7 0.0131 ± 0.0019 0.0128 ± 0.0028 6.5 0.0086 ± 0.0018 0.0104 ± 0.0030

DEG II 8.1 0.0089 ± 0.0014 0.0093 ± 0.0023 9.3 0.0066 ± 0.0010 0.0072 ± 0.0019

INF II 8 0.0099 ± 0.0015 0.0097 ± 0.0020 5.9 0.0082 ± 0.0015 0.0081 ± 0.0017

RND III 7.1 0.0129 ± 0.0015 0.0149 ± 0.0031 6.6 0.0091 ± 0.0020 0.0103 ± 0.0022

DEG III 6 0.0083 ± 0.0018 0.0085 ± 0.0022 8.7 0.0060 ± 0.0014 0.0062 ± 0.0013

INF III 7.1 0.0101 ± 0.0014 0.0099 ± 0.0026 5.5 0.0076 ± 0.0013 0.0075 ± 0.0016

S3 IDEA RCGA

STD 20 0.0299 ± 0.0048 0.0342 ± 0.0065 20 0.0259 ± 0.0030 0.0312 ± 0.0039

DEN 20 0.0187 ± 0.0035 0.0216 ± 0.0029 20 0.0158 ± 0.0021 0.0189 ± 0.0027

SPI 20 0.0181 ± 0.0038 0.0211 ± 0.0033 20 0.0164 ± 0.0016 0.0208 ± 0.0024

RND I 14.1 0.0222 ± 0.0022 0.0264 ± 0.0042 11.7 0.0219 ± 0.0030 0.0255 ± 0.0048

DEG I 19.5 0.0176 ± 0.0024 0.0222 ± 0.0031 19.9 0.0157 ± 0.0023 0.0204 ± 0.0029

INF I 19.7 0.0195 ± 0.0019 0.0195 ± 0.0023 18.8 0.0151 ± 0.0023 0.0203 ± 0.0026

RND II 12 0.0225 ± 0.0031 0.0260 ± 0.0054 12.4 0.0253 ± 0.0025 0.0285 ± 0.0041

DEG II 15.5 0.0172 ± 0.0040 0.0197 ± 0.0035 19.1 0.0145 ± 0.0017 0.0192 ± 0.0028

INF II 19.4 0.0204 ± 0.0023 0.0214 ± 0.0043 19.4 0.0149 ± 0.0023 0.0205 ± 0.0033

RND III 13 0.0250 ± 0.0032 0.0280 ± 0.0057 11.8 0.0260 ± 0.0028 0.0301 ± 0.0039

DEG III 12.1 0.0158 ± 0.0023 0.0191 ± 0.0025 16.3 0.0152 ± 0.0021 0.0194 ± 0.0029

INF III 18.5 0.0180 ± 0.0034 0.0207 ± 0.0040 19.5 0.0156 ± 0.0025 0.0198 ± 0.0029

146 K. Poczeta et al.

Table 2. Average results with real-life data

Approach nc

Avg

initialerror
Avg ± Std

behaviorerror
Avg ± Std

nc Avg initialerror
Avg ± Std

behaviorerror
Avg ± Std

S1 IDEA RCGA

STD 16 0.0131 ± 0.0017 0.0138 ± 0.0019 16 0.0104 ± 0.0010 0.0131 ± 0.0020

DEN 16 0.0107 ± 0.0021 0.0096 ± 0.0016 16 0.0083 ± 0.0011 0.0091 ± 0.0012

SPI 16 0.0106 ± 0.0020 0.0108 ± 0.0013 16 0.0088 ± 0.0016 0.0096 ± 0.0015

RND I 10.4 0.0113 ± 0.0018 0.0114 ± 0.0022 10.2 0.0117 ± 0.0020 0.0116 ± 0.0019

DEG I 15.9 0.0099 ± 0.0021 0.0099 ± 0.0015 16 0.0096 ± 0.0011 0.0098 ± 0.0015

INF I 15.9 0.0105 ± 0.0031 0.0104 ± 0.0022 15.7 0.0088 ± 0.0013 0.0097 ± 0.0012

RND II 11.2 0.0119 ± 0.0019 0.0117 ± 0.0021 10.6 0.0131 ± 0.0016 0.0136 ± 0.0012

DEG II 14.8 0.0168 ± 0.0231 0.0168 ± 0.0240 16 0.0085 ± 0.0016 0.0101 ± 0.0013

INF II 15.8 0.0092 ± 0.0011 0.0095 ± 0.0015 15 0.0090 ± 0.0013 0.0091 ± 0.0012

RND III 10.9 0.0143 ± 0.0016 0.0127 ± 0.0014 10 0.0136 ± 0.0018 0.0135 ± 0.0016

DEG III 13.7 0.0183 ± 0.0289 0.0196 ± 0.0291 14.8 0.0087 ± 0.0011 0.0092 ± 0.0009

INF III 15.7 0.0101 ± 0.0014 0.0099 ± 0.0018 15.1 0.0086 ± 0.0018 0.0090 ± 0.0019

R2 IDEA RCGA

STD 12 0.0147 ± 0.0029 0.0133 ± 0.0038 12 0.0079 ± 0.0021 0.0118 ± 0.0044

DEN 12 0.0089 ± 0.0013 0.0095 ± 0.0038 12 0.0050 ± 0.0011 0.0069 ± 0.0028

SPI 12 0.0096 ± 0.0020 0.0100 ± 0.0041 12 0.0059 ± 0.0014 0.0079 ± 0.0015

RND I 7.5 0.0091 ± 0.0024 0.0104 ± 0.0031 7.6 0.0051 ± 0.0010 0.0075 ± 0.0010

DEG I 10.2 0.0089 ± 0.0009 0.0099 ± 0.0018 12 0.0046 ± 0.0017 0.0069 ± 0.0012

INF I 11 0.0097 ± 0.0027 0.0096 ± 0.0030 8.3 0.0067 ± 0.0016 0.0077 ± 0.0021

RND II 7.5 0.0085 ± 0.0019 0.0117 ± 0.0032 7.7 0.0057 ± 0.0010 0.0083 ± 0.0023

DEG II 8.5 0.0091 ± 0.0018 0.0106 ± 0.0042 11.7 0.0057 ± 0.0014 0.0066 ± 0.0011

INF II 10.6 0.0084 ± 0.0018 0.0089 ± 0.0025 7.3 0.0072 ± 0.0016 0.0083 ± 0.0010

RND III 7.2 0.0075 ± 0.0025 0.0090 ± 0.0019 7.5 0.0055 ± 0.0012 0.0071 ± 0.0017

DEG III 6.6 0.0091 ± 0.0020 0.0093 ± 0.0015 11.1 0.0057 ± 0.0013 0.0061 ± 0.0015

INF III 9 0.0086 ± 0.0013 0.0099 ± 0.0025 8.7 0.0076 ± 0.0017 0.0086 ± 0.0028

R3 IDEA RCGA

STD 10 0.0170 ± 0.0025 0.0214 ± 0.0025 10 0.0165 ± 0.0022 0.0212 ± 0.0027

DEN 10 0.0134 ± 0.0016 0.0178 ± 0.0017 10 0.0124 ± 0.0015 0.0179 ± 0.0029

SPI 10 0.0153 ± 0.0018 0.0195 ± 0.0019 10 0.0127 ± 0.0007 0.0177 ± 0.0017

RND I 7.3 0.0161 ± 0.0017 0.0208 ± 0.0020 7.4 0.0163 ± 0.0026 0.0219 ± 0.0019

DEG I 9.6 0.0130 ± 0.0007 0.0176 ± 0.0013 10 0.0126 ± 0.0009 0.0179 ± 0.0012

INF I 9 0.0147 ± 0.0016 0.0194 ± 0.0019 7.1 0.0128 ± 0.0008 0.0179 ± 0.0012

RND II 7.7 0.0168 ± 0.0019 0.0205 ± 0.0018 6.9 0.0156 ± 0.0014 0.0202 ± 0.0022

DEG II 8.5 0.0135 ± 0.0013 0.0189 ± 0.0010 9.4 0.0125 ± 0.0010 0.0181 ± 0.0008

INF II 8.3 0.0140 ± 0.0016 0.0189 ± 0.0019 6.5 0.0130 ± 0.0006 0.0179 ± 0.0010

RND III 7.2 0.0159 ± 0.0018 0.0212 ± 0.0030 6.6 0.0167 ± 0.0017 0.0221 ± 0.0030

DEG III 6.7 0.0140 ± 0.0010 0.0190 ± 0.0018 8.9 0.0124 ± 0.0010 0.0183 ± 0.0017

INF III 8.3 0.0140 ± 0.0011 0.0190 ± 0.0022 5.4 0.0137 ± 0.0007 0.0185 ± 0.0010

An Evolutionary Algorithm for Fuzzy Cognitive Maps Learning 147

4.3 Results

Table 1 presents the average results of the experiments with the synthetic data:
the number of concepts for the resulted FCM models nc, the initial and the
behavior error. The columns with the number of concepts nc and the initial error
were averaged over the 10 experiments performed for every set of the learning
parameters, whereas the behavior error was additionally averaged over the 10
simulations performed with different initial state vectors. The highlighted values
in bold show the best average values of the initial and behavior error obtained
for the analyzed FCM models. For the first map S1, the proposed approaches
allowed to slightly reduce the number of nodes keeping similar level of the initial
and behavior error. However, for larger FCM models S2 and S3, in most of the
cases the methods of concepts selection based on the degree of the node (DEG)
and the total influence of the concepts (INF) reduced the number of concepts nc

giving the lowest or very close to the lowest values of initial and behavior error.
Table 2 summarizes the average results of the experiments with the real-life

data. In most of the cases, the standard approaches (STD, DEN, SPI) and the
approach based on random selection of key concepts (RND) gave higher errors
than the developed algorithms (DEG, INF). The appropriate determination of
the parameter a allows to control the number of removed nodes and obtain some
compromise between the number of concepts (nc) and data errors (initialerror
and behaviorerror).

5 Conclusion

This paper presents the evolutionary algorithm for fuzzy cognitive maps learn-
ing. Graph theory metrics: the degree of the node and the total influence of the
concepts were used to select key concepts during learning process. The RCGA
and IDEA were used to determine the weights of the connections between con-
cepts. Experiments were performed on the basis of synthetic and real-life data.
The obtained results confirm that the degree of the node and the total influence
of the concept can be useful metrics to improve the learning process compared
to the standard approach based on all available concepts or the approach based
on random selection of the concepts. The developed approach allows to reduce
the number of concepts of the FCM model and determine the weights of the
connections between them keeping the lowest or very close to the lowest values
of the initial error and the behavior error. We plan to continue analysis of the
developed approach using historical data.

148 K. Poczeta et al.

References

1. Aguilar, J.: Dynamic random fuzzy cognitive maps. Computación y Sistemas 7(4),
260–270 (2004)

2. Ahmadi, S., Forouzideh, N., Alizadeh, S., Papageorgiou, E.I.: Learning fuzzy cog-
nitive maps using imperialist competitive algorithm. Neural Comput. Appl. 26(6),
1333–1354 (2015)

3. Borisov, V.V., Kruglov, V.V., Fedulov, A.C.: Fuzzy Models and Networks. Pub-
lishing House Telekom, Moscow (2004). (in Russian)

4. Christoforou, A., Andreou, A.S.: A framework for static and dynamic analysis of
multi-layer fuzzy cognitive maps. Neurocomputing 232, 133–145 (2017)

5. Homenda, W., Jastrzebska, A., Pedrycz, W.: Nodes selection criteria for fuzzy
cognitive maps designed to model time series. In: Filev, D., et al. (eds.) Intelligent
Systems’2014. AISC, vol. 323, pp. 859–870. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-11310-4 75

6. Jastriebow, A., Pocz ↪eta, K.: Analysis of multi-step algorithms for cognitive maps
learning. Bullet. Polish Acad. Sci. Tech. Sci. 62(4), 735–741 (2014)

7. Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24(1), 65–75 (1986)
8. Kosko, B.: Fuzzy Engineering. Prentice-Hall, Englewood Cliffs (1997)
9. Kubuś, �L.: Individually directional evolutionary algorithm for solving global opti-

mization problems - comparative study. IJISA 7(9), 12–19 (2015)
10. Kubuś, �L., Pocz ↪eta, K., Yastrebov, A.: A new learning approach for fuzzy cogni-

tive maps based on system performance indicators. In: 2016 IEEE International
Conference on Fuzzy Systems, Vancouver, Canada, pp. 1398–1404 (2016)

11. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9

12. Papageorgiou, E.: A novel approach on constructed dynamic fuzzy cognitive maps
using fuzzified decision trees and knowledge-extraction techniques. In: Glykas,
M. (ed.) Fuzzy Cognitive Maps: Advances in Theory. Methodologies, Tools and
Applications, pp. 43–70. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-03220-2 3

13. Papageorgiou, E.I., Hatwágner, M.F., Buruzs, A., Kóczy, L.T.: A concept reduction
approach for fuzzy cognitive map models in decision making and management.
Neurocomputing 232, 16–33 (2017)

14. Papageorgiou, E.I., Poczeta, K.: A two-stage model for time series prediction
based on fuzzy cognitive maps and neural networks. Neurocomputing 232, 113–121
(2017)

15. Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: An integrated two-level hier-
archical system for decision making in radiation therapy based on fuzzy cognitive
maps. IEEE Trans. Biomed. Eng. 50(12), 1326–1339 (2003)

16. Papakostas, G.A., Boutalis, Y.S., Koulouriotis, D.E., Mertzios, B.G.: Fuzzy cog-
nitive maps for pattern recognition applications. Int. J. Pattern Recognit. Artif.
Intell. 22(8), 1461–1468 (2008)

17. Poczeta, K., Kubuś, �L., Yastrebov, A.: concepts selection in fuzzy cognitive map
using evolutionary learning algorithm based on graph theory metrics. In: FedCSIS
2017 (2017)

18. Rickard, J.T., Aisbett, J., Yager, R.R.: A new fuzzy cognitive map structure based
on the weighted power mean. IEEE Trans. Fuzzy Syst. 23(6), 2188–2201 (2015)

19. Salmeron, J.L., Froelich, W.: Dynamic optimization of fuzzy cognitive maps for
time series forecasting. Knowl. Based Syst. 105, 29–37 (2016)

https://doi.org/10.1007/978-3-319-11310-4_75
https://doi.org/10.1007/978-3-319-11310-4_75
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-3-642-03220-2_3
https://doi.org/10.1007/978-3-642-03220-2_3

An Evolutionary Algorithm for Fuzzy Cognitive Maps Learning 149

20. Selvin, N.N., Srinivasaraghavan, A.: Dimensionality reduction of inputs for a fuzzy
cognitive map for obesity problem. In: 2016 International Conference on Inventive
Computation Technologies (ICICT) (2016)

21. Silov, V.B.: Strategic decision-making in a fuzzy environment. INPRO-RES,
Moscow (1995). (in Russian)

22. Stach, W., Kurgan, L., Pedrycz, W., Reformat, M.: Genetic learning of fuzzy cog-
nitive maps. Fuzzy Sets Syst. 153(3), 371–401 (2005)

23. Stach, W., Pedrycz, W., Kurgan, L.A.: Learning of fuzzy cognitive maps using
density estimate. IEEE Trans. Syst. Man Cybern. Part B 42(3), 900–912 (2012)

24. S�loń, G.: Application of models of relational fuzzy cognitive maps for predic-
tion of work of complex systems. In: Rutkowski, L., Korytkowski, M., Scherer,
R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS
(LNAI), vol. 8467, pp. 307–318. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07173-2 27

25. Wilson, R.J.: An Introduction to Graph Theory. Pearson Education, Delhi (1970)

https://doi.org/10.1007/978-3-319-07173-2_27
https://doi.org/10.1007/978-3-319-07173-2_27

Fuzzy Petri Nets with Linear Orders
for Intervals

Zbigniew Suraj(B) and Piotr Grochowalski

Chair of Computer Science, University of Rzeszów, Rzeszów, Poland
{zbigniew.suraj,piotrg}@ur.edu.pl

Abstract. Recently, an extended class of generalized fuzzy Petri nets
(GFP -nets) called type-2 generalized fuzzy Petri nets (T2GFP-nets)
were proposed. This class extends the existing GFP -nets by introduc-
ing a triple of operators (In,Out1, Out2) in a T2GFP-net in the form
of interval triangular norms, which are supposed to function as substi-
tute for the triangular norms in GFP -nets. In this paper we enrich the
T2GFP-net model by adding to it instead of the usual partial order
relation between interval numbers some of the most used examples of
total orders that appear in the literature. This addition has significant
influence on extending the use of T2GFP-nets in many different fields.
In particular, the proposed approach can be used in intelligent control
design, approximate reasoning, decision making or classification.

Keywords: Fuzzy Petri nets · Decision making · Classification
Approximate reasoning · Expert systems

1 Introduction

Petri nets are being widely accepted by the research community for modeling
and simulation of a broad class of systems. As a computational paradigm for
intelligent systems, they provide a graphical language to visualize, communicate
and interpret engineering problems [3].

In 1988, Looney proposed in [6] so called fuzzy Petri nets. In his model logi-
cal propositions can be associated with Petri nets allowing for logical reasoning
about the modeled system and its behavior. The application of fuzzy Petri nets
includes the design and implementation of decision support systems. In partic-
ular, they can be used for knowledge representation and modeling of reasoning
processes in such systems. In this class of Petri net models not only crisp but also
imprecise, vague and uncertain information is admissible and taken into account.
Several authors have proposed different classes of fuzzy Petri nets [2,5,11,14,15].
These models are based on different approaches combining Petri nets and fuzzy
sets introduced by Zadeh in 1965 [17].

In 2013, the generalized fuzzy Petri nets (GFP -nets) were proposed [14]. How-
ever, an extended class of GFP -nets called generalized fuzzy Petri nets of type
2 (T2GFP -nets) is provided in the paper [15]. T2GFP -nets extend the existing
generalized fuzzy Petri nets by introducing a triple of operators (In,Out1, Out2)
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 150–161, 2017.
https://doi.org/10.1007/978-3-319-71069-3_12

http://orcid.org/0000-0001-9544-9561
http://orcid.org/0000-0002-4124-412X

Fuzzy Petri Nets with Linear Orders for Intervals 151

in a T2GFP -net in the form of interval triangular norms, which are supposed
to function as substitute for the t-norms and s-norms operators in GFP -nets.
Therefore the T2GFP -net model gives a faithful extension of the GFP -net one
as in the former class the user has the chance to define the input/output oper-
ators being interval triangular norms. Moreover, this extension has significant
influence on presentation and analysis of the modeled system by the T2GFP -
nets on generalized level abstraction. The choice of suitable operators for the
modeled system in more generalized form is very important, especially in sys-
tems described by incomplete, imprecise and/or vague information using fuzzy
sets. In classical situation a fuzzy set is defined in terms of a function from
a universe to the unit interval [0,1]. That is, the membership of each element
belonging to a fuzzy set is a single value between 0 and 1. In practical applica-
tions, there is also a need to represent the membership of an element by using
a fuzzy set in [0,1], instead of a single value. The T2GFP -net model gives such
possibility. Nevertheless, in general, some interval numbers can be incomparable
by means of the usual partial order which was used in the definition of T2GFP -
nets presented in the paper [15]. In order to avoid such situation, we enrich the
T2GFP -net model by adding to it instead of the usual partial order relation
between interval numbers some of the most used examples of total orders that
appear in the literature [1]. This addition has significant influence on extending
the use of T2GFP -nets in many different fields such as intelligent control design
[10], decision making [5] or classification [13].

The structure of this paper is the following: we start with some preliminaries
and, in Sect. 3, we present the main result of the paper, including an extension of
the T2GFP -net model. Then, in Sect. 4, we present both a method for transform-
ing production rules into a T2GFP -net as well as an algorithm for construction
of a T2GFP -net on the base of a set of production rules. Next, an example com-
ing from the domain of train traffic control illustrating our methodology we give
in Sect. 5. We finish with some conclusions and the references.

2 Preliminaries

We start recalling some well-known concepts that will be useful for subsequent
developments in the paper.

2.1 Interval Computation

An interval number [a, a′] with a ≤ a′ is the set of real numbers defined by
[a, a′] = {x : a ≤ x ≤ a′}. Degenerate intervals of the form [a, a] are equivalent
to real numbers. One can perform arithmetic operations with interval numbers
through the arithmetic operations on their members.

Let A = [a, a′] and B = [b, b′] be two interval numbers, and let +, −, ·,
/, and = denote arithmetic operations (addition, subtraction, multiplication,
division, respectively) and arithmetic equality relation on pairs of real numbers.
The arithmetic operations with real numbers may be easily extended to pairs

152 Z. Suraj and P. Grochowalski

of interval numbers in the following way: A + B = [a + b, a′ + b′], A − B =
[a − b′, a′ − b], A · B = [min(a · b, a · b′, a′ · b, a′ · b′),max(a · b, a · b′, a′ · b, a′ · b′)],
A/B = [a, a′] · [1/b′, 1/b] for 0 /∈ [b, b′]. We shall write A = B ⇔ a = a′ and
b = b′. In the special case where both A and B are non-negative intervals, the
multiplication can be simplified to A · B = [a · b, a′ · b′], 0 ≤ a ≤ a′, 0 ≤ b ≤ b′.

2.2 Ordering of Intervals

Let L be a non-empty set and � be a binary relation on L. The relation � is a
partial order on the set L if the following three conditions are satisfied: (1) it is
reflexive, i.e., for each a ∈ L, a � a, (2) it is antisymmetric, i.e., for all a, b ∈ L,
if a � b and b � a, then a = b, (3) it is transitive, i.e., for all a, b, c ∈ L, if a � b
and b � c, then a � c. We will write a ≺ b if a couple (a, b) is in a relation � but
a �= b. A set L with a partial order � is called a partially ordered set (poset) and
denoted by (L,�). If in a poset (L,�) any two elements a, b are comparable,
i.e., either a � b or b � a, the partial order � is called a linear order (and then
a pair (L,�) is called a totally ordered set).

Let us denote by L([0, 1]) the set of all closed subintervals of the unit interval,
i.e., L([0, 1]) = {[a, b] : 0 ≤ a ≤ b ≤ 1}. Now we recall four well known order
relations on L([0, 1]): (i) [a, a′] �Upo [b, b′] ⇔ a ≤ b and a′ ≤ b′ (the usual
partial order), (ii) [a, a′] �Lex1 [b, b′] ⇔ a < b or a = b and a′ ≤ b′ (the first
lexicographical order), (iii) [a, a′] �Lex2 [b, b′] ⇔ a′ < b′ or a′ = b′ and a ≤ b
(the second lexicographical order), (iv) [a, a′] �Y X [b, b′] ⇔ a + a′ < b + b′ or
a + a′ = b + b′ and a′ − a ≤ b′ − b (the order introduced by Xu and Yager in
[16]). It is easy to see that the order (i) is partial, but the orders defined by
(ii)–(iv) are linear. In the sequel we shall write [a, a′] ≺i [b, b′] ⇔ [a, a′] �i [b, b′]
and [a, a′] �= [b, b′], where i denotes one of the orders presented above.

For further details, the reader is referred to [1].

2.3 Triangular Norms

A triangular norm (t-norm for short) is a binary operation t on the unit interval
[0,1], i.e., a function t : [0, 1]2 → [0, 1], such that for all a, b, c ∈ [0, 1] the following
four conditions are satisfied: (1) it has 1 as the unit element, i.e., t(a, 1) = a;
(2) it is monotone, i.e., if a ≤ b then t(a, c) ≤ t(b, c); (3) it is commutative, i.e.,
t(a, b) = t(b, a); (4) it is associative, i.e., t(t(a, b), c) = t(a, t(b, c)).

More relevant examples of t-norms are ZtN(a, b) = min(a, b) (minimum,
Zadeh t-N orm), GtN(a, b) = a · b (algebraic product, Goguen t-N orm), and
LtN(a, b) = max(0, a + b − 1) (Lukasiewicz t-N orm). Since t-norms are just
functions from the unit square into the unit interval, the comparison of t-norms
is done in the usual way, i.e., pointwise. For the three basic t-norms and for each
(a, b) ∈ [0, 1]2 we have the following order LtN(a, b) ≤ GtN(a, b) ≤ ZtN(a, b).

An s-norm is a binary operation s on the unit interval [0, 1], i.e., a function
s : [0, 1]2 → [0, 1] such that for all a, b, c ∈ [0, 1] the following four conditions are
satisfied: (1) it has 0 as the unit element, i.e., s(a, 0) = a, (2) it is monotone,

Fuzzy Petri Nets with Linear Orders for Intervals 153

i.e., if a ≤ b then s(a, c) ≤ s(b, c), (3) it is commutative, i.e., s(a, b) = s(b, a),
and (4) it is associative, i.e., s(s(a, b), c) = s(a, s(b, c)).

However, the examples of s-norms corresponding respectively to the three
basic t-norms presented above are ZsN(a, b) = max(a, b) (maximum, Zadeh
s-N orm), GsN(a, b) = a + b − a · b (probabilistic sum, Goguen s-N orm), and
LsN(a, b) = min(1, a + b) (bounded sum, Lukasiewicz s-N orm). As in the case
of t-norms, we also have for the three basic s-norms and for each (a, b) ∈ [0, 1]2

the following order: ZsN(a, b) ≤ GsN(a, b) ≤ LsN(a, b).
For further details, the reader is referred to [4].

2.4 Interval Triangular Norms

The notion of t-norms on single values in [0,1] can be extended to subintervals
of [0,1]. Moreover, basic properties of interval t-norms can be obtained from
t-norms.

Let A = [a, a′] and B = [b, b′] be two interval real numbers such that 0 ≤ a ≤
a′, 0 ≤ b ≤ b′. Then for a given t-norm t, an extended t-norm T is defined by:
T (A,B) = {t(x, y) : x ∈ A, y ∈ B}. Similarly, an extended s-norm S is defined
by: S(A,B) = {s(x, y) : x ∈ A, y ∈ B}. Moreover, the following facts are true
for any continuous t-norm or s-norm: (1) The interval t-norm T of a continuous t-
norm t produces the interval T (A,B) = [t(a, b), t(a′, b′)]. (2) The interval s-norm
S of a continuous s-norm s produces the interval S(A,B) = [s(a, b), s(a′, b′)].

Interval t-norms corresponding to ZtN , GtN , and LtN can be computed
by the following formulas: iZtN(A,B) = [min(a, b),min(a′, b′)] (interval min-
imum, interval Zadeh t-N orm), iGtN(A,B) = [a · b, a′ · b′] (interval algebraic
product, interval Goguen t-N orm), iLtN(A,B) = [max(0, a+b−1),max(0, a′+
b′ − 1)] (interval Lukasiewicz t-N orm). The corresponding interval s-norms are:
iZsN(A,B) = [max(a, b),max(a′, b′)] (interval maximum, interval Zadeh s-
N orm), iGsN(A,B) = [a + b − a · b, a′ + b′ − a′ · b′] (interval probabilistic sum,
interval Goguen s-N orm)), iLsN(A,B) = [min(1, a + b),min(1, a′ + b′)] (inter-
val bounded sum, interval Lukasiewicz s-N orm). With the order relation ≤Upo,
defined in the Subsect. 2.2, the counterpart of the order for the three basic t-
norms presented above can be expressed as: iLtN �Upo iGtN �Upo iZtN.
Similarly as for interval t-norms with the relation �Upo, the counterpart of
the order for the three basic s-norms presented above can be expressed as:
iZsN �Upo iGsN �Upo iLsN .

For further details, the reader is referred to [9].

3 Type-2 Generalized Fuzzy Petri Net

In this paper, we assume that the reader is familiar with the basic notions of
Petri nets [3,12].

Let L([0, 1]) be the set of all closed subintervals of the unit interval. A type-2
generalized fuzzy Petri net (T2GFP -net) [15] is a tuple N = (P, T, S, I,O, α, β, γ,
Op, δ,M0) with (1) P = {p1, p2, . . . , pn} is a finite set of places; (2) T =

154 Z. Suraj and P. Grochowalski

{t1, t2, . . . , tm} is a finite set of transitions; (3) S = {s1, s2, . . . , sn} is a finite
set of statements; (4) the sets P , T , S are pairwise disjoint; (5) I : T → 2P is
the input function; (6) O : T → 2P is the output function; (7) α : P → S is the
statement binding function; (8) β : T → L([0, 1]) is the truth degree function; (9)
γ : T → L([0, 1]) is the threshold function; (10) Op is a union of interval t-norms
and interval s-norms called the set of operators; (11) δ : T → Op×Op×Op is the
operator binding function; (12) M0 : P → L([0, 1]) is the initial marking, where
2P denotes a family of all subsets of the set P .

As for the graphical representation, places are denoted by circles and transi-
tions by rectangles. The function I describes the oriented arcs connecting places
with transitions, and the function O describes the oriented arcs connecting tran-
sitions with places. If I(t) = {p} then a place p is called an input place of a
transition t, and if O(t) = {p′}, then a place p′ is called an output place of
t. The initial marking M0 is an initial distribution of interval numbers in the
places. It can be represented by a vector of dimension n of interval numbers from
L([0, 1]). For p ∈ P , M0(p) can be interpreted as a truth value of the statement
s bound with a given place p by means of the statement binding function α.
Pictorially, the tokens are represented by means of suitable closed subintervals
of [0, 1] placed over the circles corresponding to appropriate places.

The interval numbers corresponding to values of β(t) and γ(t) functions are
placed in a net picture under the transition t. The first interval number is inter-
preted as the truth degree of an implication corresponding to a given transition
t. The role of the second one is to limit the possibility of transition firings, i.e.,
if the input operator In value for all values corresponding to input places of
the transition t is less than a threshold value γ(t) then this transition cannot
be fired (activated). The operator binding function δ connects transitions with
triples of operators (In,Out1, Out2). The first operator in the triple is called
the input operator, and two remaining ones are the output operators. The input
operator In concerns the way in which all input places are connected with a
given transition t (more precisely, statements corresponding to those places).
However, the output operators Out1 and Out2 concern the way in which the
next marking is computed after firing the transition t. In the case of the input
operator we assume that it can belong to one of two classes, i.e., interval t- or
interval s-norms, whereas the second one belongs to the class of interval t-norms,
and the third to the class of interval s-norms.

In the T2GFP -net model its elements from (8) to (12) are more general in
comparing to the corresponding elements in the GFP -net [14]. Moreover, in this
paper we enrich a description of the T2GFP -net behavior replacing the usual
partial order relation between interval numbers by the most used examples of
total orders that appear in the literature (see Subsect. 2.2. This issue is more pre-
cisely discussed further on. The T2GFP -net dynamics defines how new markings
are computed from the current marking when transitions are fired.

Let N be a T2GFP -net and (L([0, 1]),�i) be a i-poset, where i denotes one
of the orders presented in Subsect. 2.2. A marking of N is a function M : P →
L([0, 1]). We assume that if M(p) = [0, 0] then the token does not exist in the
place p.

Fuzzy Petri Nets with Linear Orders for Intervals 155

A transition t ∈ T is i-enabled for marking M and i = Upo, Lex1, Lex2, Y X,
if the number interval produced by input operator In for all input places of the
transition t by M is (strictly) greater than [0,0] and greater than, or equal to
the number interval being a value of threshold function γ corresponding to the
transition t w.r.t. the order relation �i, i.e., In(M(pi1),M(pi2), . . . , M(pik)) 	i

γ(t)
i [0,0]. Only enabled transitions can be fired. Firing the enabled transition
t in practice consists of removing the tokens from its input places I(t) and adding
the tokens to all its output places O(t) without any alteration of the tokens in
other places.

Let N = (P, T, S, I,O, α, β, γ,Op, δ,M0) be a T2GFP -net and (L([0, 1]),	i)
be an i-poset, where i = Upo, Lex1, Lex2, Y X, t ∈ T , I(t) = {pi1, pi2, . . . ,
pik} be a set of input places for a transition t and β(t) ∈ L((0, 1]). (0 does
not belong to the unit interval.) Moreover, let In be an input operator and
Out1, Out2 be output operators for the transition t. If M is a marking of N i-
enabling transition t and M ′ is the marking derived from M by firing transition
t, then for each p ∈ P : M ′(p) = [0, 0] if p ∈ I(t); Out2(Out1(In(M(pi1),M(pi2),
. . . ,M(pik)), β(t)),M(p)) if p ∈ O(t); and M(p) otherwise.

Example 1. Consider a type-2 generalized fuzzy Petri net in Fig. 1(a). For the
net we have: the set of places P = {p1, p2, p3}, the set of transitions T = {t1},
the input function I and the output function O in the form: I(t1) = {p1, p2},
O(t1) = {p3}, the set of statements S = {s1, s2, s3}, the statement binding
function α : α(p1) = s1, α(p2) = s2, α(p3) = s3, the truth degree function
β : β(t1) = [0.5, 0.8] and the threshold function γ: γ(t1) = [0.3, 0.4]. More-
over, there are: the set of operators Op = {iZtN, iGtN, iZsN}, the operator
binding function δ: δ(t1) = (iZtN, iGtN, iZsN) and the initial marking M0:
M0(p1) = [0.2, 0.5], M0(p2) = [0.7, 0.8], M0(p3) = [0, 0]). The transition t1
is Lex2-enabled by the initial marking M0, since iZtN (M0(p1),M0(p2)) =
[min(0.2, 0.7),min(0.5, 0.8)] = [0.2, 0.5] 	Lex2 [0.3, 0.4] = γ(t1). Firing tran-
sition t1 by the marking M0 with the order relation Lex2 transforms M0 to
the marking M ′ = ([0, 0], [0, 0], [0.1, 0.4]), because iGtN(iZtN(M0(p1),M0(p2)),
β(t1)) = iGtN([0.2, 0.5], [0.5, 0.8]) = [0.2 · 0.5, 0.5 · 0.8] = [0.1, 0.4] and iZsN

Fig. 1. A T2GFP-net with: (a) the initial marking, (b) the marking after firing t1

156 Z. Suraj and P. Grochowalski

(M0(p3), iGtN(iZtN(M0(p1),M0(p2)), β(t1)) = iZsN([0, 0], [0.1, 0.4]) = [max
(0, 0.1),max(0, 0.4)] = [0.1, 0.4] (see Fig. 1(b)). It is easy to see that t1 by the
marking M ′ is already disabled. In a similar way as above one can check that
transition t1 is Y X-enabled by M0 too. However, it is not i-enabled by the initial
marking M0 with i = Upo, Lex1.

For further details, the reader is referred to [15].

4 Transformation of Production Rules into T2GFP-net

A production rule is an important and fruitful approach to knowledge represen-
tation and a fuzzy Petri net is a very useful way to represent this production
rule graphically [14]. In the paper, we consider three structural forms of produc-
tion rules. The transformation of production rules into a T2GFP -net is realized
depending on the form of a transformed rule.
Type 0: IF s THEN s′ (CF = [c, c′]), where s, s′ denote statements, [a, a′], [b, b′]
are the interval numbers corresponding to their values, and CF is a certainty
factor. The truth values of s, s′, and CF belong to L([0, 1]).

A T2GFP -net structure of this rule is shown in Fig. 2.

Fig. 2. A T2GFP-net representation of rule type 0

If the antecedence or the consequence of a production rule contains AND or
OR (classical propositional connectives), it is called a composite production rule.
Below, two types of composite production rules are presented together with their
T2GFP -net representation (see Fig. 3).
Type 1: IF s1 AND/OR s2 . . . AND/OR sk THEN s′ (CF = [c, c′]), where s1,
s2, ..., sk, s′ denote statements.
Type 2: IF s′ THEN s1 AND s2 . . . AND sn (CF = [c, c′]), where s′, s1, s2, ...,
sn denote statements.

Remark: We omit the following rule-type: IF s′ THEN s1 OR s2 . . . OR sn
since this one does not make specific implication. Due to technical reasons the
names of functions β, γ in Figs. 2 and 3 are represented by b and g, respectively.

Now we are ready to present an algorithm which constructs a Petri net on
the base of a given set of production rules.

For further details, the reader is referred to [14].

Fuzzy Petri Nets with Linear Orders for Intervals 157

Fig. 3. A T2GFP-net representation of production rule: (a) type 1, (b) type 2

Algorithm 1. Construction of T2GFP -net using a set of production rules
Input : A finite set R of production rules
Output: A T2GFP-net N
F ← ∅; (* The empty set. *)
for each r ∈ R
if r is a rule of type 0 then

construct a subnet Nr as shown in Fig. 2;

if r is a rule of type 1 then
construct a subnet Nr as shown in Fig. 3(a);

if r is a rule of type 2 then
construct a subnet Nr as shown in Fig. 3(b);

F ← F ∪ {Nr};
integrate all subnets from a family F on joint places and create a result net N ;
return N ;

5 Example

In order to illustrate our methodology, let us discuss a simple example coming
from the domain of train traffic control.

Consider the following situation: a train B waits at a certain station for a
train A to arrive in order to allow some passengers to change train A to train B.
Now, a conflict arises when the train A is late. In this situation, the following
alternatives can be taken into account: (1) Train B waits for train A to arrive.
In this case, train B will depart with delay. (2) Train B departs in time. In this
case, passengers disembarking train A have to wait for a later train. (3) Train B
departs in time, and an additional train is employed for the train A’s passengers.
In order to describe the traffic conflict, we propose to consider the following four
production rules: (1) IF s2 THEN s6; (2) IF s3 THEN s6; (3) IF s1 AND s4
AND s6 THEN s7; (4) IF s4 AND s5 THEN s8, where: s1 = ‘Train B is the last
train in this direction today’, s2 = ‘The delay of train A is huge’, s3 = ‘There
is an urgent need for the track of train B’, s4 = ‘Many passengers would like
to change for train B’, s5 = ‘The delay of train A is short’, s6 = ‘(Let) train B

158 Z. Suraj and P. Grochowalski

Fig. 4. T2GFP-net model of train traffic control: (a) the initial marking, (b) the mark-
ing after firing a sequence of transitions t1t2t3, and the transition t4

depart according to schedule’, s7 = ‘Employ an additional train C (in the same
direction as train B)’, and s8 = ‘Let train B wait for train A’.

Using the Algorithm 1 presented in Sect. 4, we construct the T2GFP -net
model corresponding to these rules, where the logical operator AND is inter-
preted as iZtN (interval minimum). This net model is shown in Fig. 4. Note
that the places p1, p2, p3, p4, p4(copy), p5, p6, p7 and p8 include the interval
numbers [0.6,0.7], [0.6,0.65], [0.75,0.8], [0.5,0.7], [0.5,0.7], [0.85,1.0], [0,0], [0,0]
and [0,0] corresponding to the statements s1, s2, s3, s4, s4(copy), s5, s6, s7 and
s8, respectively. Moreover, there are: the truth degree function β: β(t1) =
β(t2) = [0.8, 0.9], β(t3) = [0.6, 0.7], β(t4) = [0.5, 0.8], the threshold function γ:
γ(t1) = γ(t2) = [0.3, 0.4], γ(t3) = [0.4, 0.5], γ(t4) = [0.5, 0.6], the set of operators
Op = {iZtN, iGtN, iZsN} and the operator binding function δ: δ(t1) = δ(t2) =
δ(t3) = δ(t4) = (iZtN, iGtN, iZsN). Assessing the statements attached to the
places from p1 up to p5, we observe that the transitions t1, t2 and t4 are i-enabled
by the initial marking M0 (see Fig. 4(a)), where i = Upo, Lex1, Lex2, Y X. Fir-
ing these transitions according to the firing rules for the T2GFP -net model
allows computation of the support for the alternatives in question. In this way,
the possible alternatives are ordered with regard to our preferences. This order
forms the basis for further examinations and simulations and, ultimately, for the
dispatching proposal. If one chooses a sequence of transitions t1t2t3 then they
obtain the final value, corresponding to the statement s7, equal to the interval
number [0.3,0.49]. The detailed computation in this case proceeds as follows.
We can see that the transition t1 is i-enabled by the initial marking M0 since

Fuzzy Petri Nets with Linear Orders for Intervals 159

iZtN(M0(p2)) = iZtN([0.6, 0.65]) = [0.6, 0.65] 	i [0.3, 0.4] = γ(t1). Firing tran-
sition t1 by the marking M0 transforms M0 to the marking M1 = ([0.6, 0.7],
[0, 0], [0.75, 0.8], [0.5, 0.7], [0.5, 0.7], [0.85, 1], [0.48, 0.585], [0, 0], [0, 0]), because
iGtN(iZtN(M0(p2)), β(t1)) = iGtN([0.6, 0.65], [0.8, 0.9]) = [0.6·0.8, 0.65·0.9] =
[0.48, 0.585]. It is easy to see that the transition t2 is still i-enabled by the mark-
ing M1. Firing transition t2 by the marking M1 transforms M1 to the marking
M2 = ([0.6, 0.7], [0, 0], [0, 0], [0.5, 0.7], [0.5, 0.7], [0.85, 1], [0.6, 0.72], [0, 0], [0, 0]),
where the transition t3 is now i-enabled. After firing this transition by the mark-
ing M2 we obtain the marking M3 = ([0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.7], [0.85, 1], [0,
0], [0.3, 0.49], [0, 0]), where the transitions t1, t2, t3 are already disabled. In the
other case (i.e., for the transition t4 only), the final value, this time correspond-
ing to the statement s8, equals the interval number [0.25,0.56], where now all
transitions are disabled. We omit the particular calculations for firing the tran-
sitions t2, t3 and t4 because they run similarly as for the transition t1 presented
above.

If we interpret the logical operator AND as the interval Lukasiewicz t-norm
and accept for the output operators Out1 and Out2 the interval algebraic product
iGtN and the interval Lukasiewicz s-norm, respectively, for all transitions, and
if we choose a sequence of transitions t1t2t3 then the final value is not possible to
obtain, because after firing the transitions t1, t2 with i = Upo, Lex1, Lex2, Y X
by the initial marking M0 we achieve the result marking by which the transition
t3 is not able to fire by any order relation. In the other case, i.e., for the transition
t4, we obtain the final value for the statement s8 equal to [0.175,0.56] only with
the order relation Lex2 and Y X. A similar situation occurs as before, if we accept
the interval Goguen t-norm as the interpretation of the logical operator AND,
and interval Goguen t-norm and interval Goguen s-norm for the output operators
Out1, Out2, respectively. It is easy to observe that this time the transition t4
is i-enabled with i = Lex2 or i = Y X, by the initial marking M0. After firing
this transition by M0, we obtain the final value for the statement s8 equal to
[0.2125,0.56]. The detailed computation in this case is also omitted.

At the end of this example we would still like to mention about one more
interesting problem. In the first case we have obtained two final decisions corre-
sponding to the statements s7 and s8 equal to the interval numbers [0.3,0.49],
[0.25,0.56], respectively. In order to determine which is the best alternative, we
need to order these values. But, if we consider the order generated by the order
relation Lex1, our approach leads to the ordering [0.3,0.49] 	Lex1 [0.25,0.56].
This means that the interval number [0.3,0.49] is the best alternative. On the
other hand, the order generated by the order relation i = Lex2 or Y X provides
the opposite ranking [0.25,0.56] 	i [0.3,0.49]. In this case the best decision is
[0.25,0.56]. Finally, if we choose the order generated by the usual partial order
Upo we will see that these two intervals are not comparable, i.e., in this situation
it is not possible to indicate the best decision result. This example shows clearly
that different interpretations for the logical operator AND, different substitu-
tions for the output operators, and different order relations for comparing of
intervals may lead to quite different decision results. The fuzzy Petri net model

160 Z. Suraj and P. Grochowalski

proposed in the paper gives us such possibility. Therefore, we can say that it is
more flexible than the ones known from the subject literature. Choosing a suit-
able interpretation for the logical operator AND we may apply the mathematical
relationships between interval t-norms, and for the order relations presented in
Subsects. 2.4 and 2.2, respectively. The rest in this case certainly depends on the
experience of the model designer to a significant degree.

6 Concluding Remarks

In this paper, a modified type-2 generalized fuzzy Petri net model has been pro-
posed. The model uses interval triangular norms instead of classical triangular
ones. Moreover, we enhance this model by adding to it instead of the usual par-
tial order relation between interval numbers [15] some of the most used examples
of total orders that appear in the literature. The orders considered in the paper
include the total orders such as the lexicographical orders or the order defined
by Xu and Yager [16]. In general, it is possible to define many other total orders
between interval numbers [1]. However, we have shown in the paper by means of
the simple example that there exist problems in which, by choosing the appro-
priate order, we can force the conclusion. This is the novelty of this research
work. In the approach based on the interval fuzzy sets, it is assumed that one
is not able to specify the exact membership or truth value. An interval is adopt
to indicate the range of the exact value. It makes the model as proposed in this
paper more flexible and general. Moreover, this model is concerned with the
reliability of the information provided, leading to more generalization in approx-
imate reasoning process in decision support system. Using the intuitive real-life
example suitability and usefulness of the proposed approach have been proved
for the decision-making. The elaborated approach looks promising with regard
to alike application problems that could be solved in a similar manner.

In this paper, we have only considered the extension of t-norms to interval
t-norms in a numeric framework. It is useful to study fuzzy Petri nets in the
context of the notion of t-norms and their interval extensions using more general
mathematic structures (see e.g. [7,8]). Moreover, the comment presented above
and related to ordering of interval numbers leads to the following question. Which
is the most appropriate order for a given practical problem, in order to avoid
spurious conclusions? In other words: How can these orders be related to the data
in the different problems that can be considered? In future works, we intend to
handle these issues, focusing in particular on the approach presented here.

Acknowledgments. This research was partially supported by the Center for Inno-
vation and Transfer of Natural Sciences and Engineering Knowledge at the Univer-
sity of Rzeszów. The authors are grateful to the anonymous referees for their helpful
comments.

Fuzzy Petri Nets with Linear Orders for Intervals 161

References

1. Bustince, H., Fernandez, J., Kolesarova, A., Mesiar, R.: Generation of linear orders
for intervals by means of aggregation functions. Fuzzy Sets Syst. 220, 69–77 (2013)

2. Cardoso, J., Camargo, H.: Fuzziness in Petri Nets. Springer, Heidelberg (1999)
3. David, R., Alla, H.: Petri Nets and Grafcet: Tools for Modelling Discrete Event

Systems. Prentice-Hall, Upper Saddle River (1992)
4. Klement, E., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht (2000)
5. Li, X., Lara-Rosano, F.: Adaptive fuzzy petri nets for dynamic knowledge repre-

sentation and inference. Expert Syst. Appl. 19, 235–241 (2000)
6. Looney, C.: Fuzzy petri nets for rule-based decision-making. IEEE Trans. Syst.

Man Cybern. 18(1), 178–183 (1988)
7. Ma, Z., Wu, W.: Logical operators on complete lattices. Inf. Sci. 55, 77–97 (1991)
8. Mayor, G., Torrens, J.: On a class of operators for expert systems. Int. J. Intell.

Syst. 8, 771–778 (1993)
9. Moore, R.: Methods and Applications of Interval Analysis. SIAM Studies in

Applied Mathematics, vol. 2 (1979)
10. Pedrycz, W.: Fuzzy Control and Fuzzy Systems, 2nd edn. Wiley, New York (1993)
11. Pedrycz, W., Gomide, F.: A generalized fuzzy Petri net model. IEEE Trans. Fuzzy

Syst. 2(4), 295–301 (1994)
12. Peterson, J.: Petri Net Theory and the Modeling of Systems. Prentice-Hall Inc.,

Upper Saddle River (1981)
13. Sanz, J., Fernandez, A., Bustince, H., Herrera, F.: A genetic tuning to improve the

performance of fuzzy rule-based classification systems with interval-valued fuzzy
sets: degree of ignorance and lateral position. Int. J. Approx. Reas. 52(6), 751–766
(2011)

14. Suraj, Z.: A new class of fuzzy petri nets for knowledge representation and reason-
ing. Fundam. Informat. 128(1–2), 193–207 (2013)

15. Suraj, Z., Grochowalski, P.: Fuzzy Petri nets over interval triangular norms. In:
Proceedings of the 2nd International Symposium Fuzzy and Rough Sets (ISFUROS
2017), 24–26 October 2017, Santa Maria Key, Villa Clara, Cuba (2017)

16. Xu, Z., Yager, R.: Some geometric aggregation operators based on intuitionistic
fuzzy sets. Int. J. Gen. Syst. 35, 417–413 (2006)

17. Zadeh, L.: Fuzzy sets. Inform. Control 8, 338–353 (1965)

Molecular Computation

Networks of Polarized Splicing Processors

Henning Bordihn1, Victor Mitrana2,3(B), Andrei Păun3, and Mihaela Păun3

1 Department of Computer Science, University of Potsdam,
August-Bebel-Str. 89, 14482 Potsdam, Germany

henning@cs.uni-potsdam.de
2 Faculty of Mathematics and Computer Science, University of Bucharest,

Str. Academiei 14, 010014 Bucharest, Romania
mitrana@fmi.unibuc.ro

3 Bioinformatics Department, National Institute for R&D for Biological Sciences,
060031 Bucharest, Romania

apaun@incdsb.ro, mihaela.paun@incdsb.ro

Abstract. In this paper, we consider the computational power of a new
variant of networks of splicing processors in which each processor as well
as the data navigating throughout the network are now considered to be
polarized. While the polarization of every processor is predefined (nega-
tive, neutral, positive), the polarization of data is dynamically computed
by means of a valuation mapping. Consequently, the protocol of commu-
nication is naturally defined by means of this polarization. We show that
networks of polarized splicing processors (NPSP) of size 2 are compu-
tationally complete, which immediately settles the question of designing
computationally complete NPSPs of minimal size. We prove that NPSP
of size 4 can accept all languages in NP in polynomial time. All these
results can be obtained with NPSPs with valuations in the set {−1, 0, 1}
as well. We finally show that Turing machines can simulate a variant of
NPSPs and discuss the time complexity of these simulations.

Keywords: Computing with DNA · Splicing · Splicing processor
Polarization

1 Introduction

Networks of bio-inspired processors is one of the well known bio-inspired fami-
lies of highly parallel and distributed computational models based on the string
processing. Networks of bio-inspired processors resemble other models of com-
putation with different origins: evolutionary systems inspired by the evolution of
cell populations [2], tissue-like P systems in the membrane computing area [10],
networks of parallel language processors as a formal languages generating device
[3], flow-based programming as a well-known programming paradigm [11], dis-
tributed computing using mobile programs ([4] and the references therein), etc.

This work was supported by a grant of the Romanian National Authority for Scien-
tific Research and Innovation, project number POC P-37-257. Victor Mitrana has
also been supported by the Alexander von Humboldt Foundation.

c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 165–177, 2017.
https://doi.org/10.1007/978-3-319-71069-3_13

166 H. Bordihn et al.

Informally speaking, a network of bio-inspired processors can be defined as a
graph whose nodes host processors performing bio-inspired operations on the
strings contained in the corresponding nodes. Every node has filters that block
some strings from being sent out and/or receiving in. A network of bio-inspired
processors alternates processing and communication steps, until a predefined
halting condition is fulfilled. In each processing step, all processors change simul-
taneously the contents of their nodes according to their associated sets of rules.
In the communication step, all the strings that pass the corresponding filters are
interchanged between the connected nodes.

Two main types of processors have been considered so far: evolutionary
processors and splicing processors. An evolutionary processor can perform very
simple operations on strings. These operations, which might be viewed as formal
operations of the gene mutations in DNA molecules, consist in: delete a symbol,
insert a symbol, and substitute one symbol by another. A splicing processor can
perform an operation inspired from one of the basic mechanisms by which the
genetic material is merged, namely recombination of DNA sequences under the
effect of enzymatic activities called splicing. This process has been formalized
as a word rewriting operation as follows [5]: the restriction enzymes have been
approximated by a finite set of rules defining the restriction sites and the DNA
sequences, on which the enzymes act, have been approximated by a finite set
of words. A computing model based on the splicing operation as defined above,
called network of splicing processors (NSP), was introduced in [8] In this paper
we change the protocol of communication which is now regulated by a sort of
compatibility between nodes and data, called here polarity. The NSP model is
similar in some extent to the test tube distributed systems based on splicing
introduced in [1] and further explored in [16]. However, there are several dif-
ferences between the models considered in [1,8] which are precisely pointed out
in [8]. Along the same lines, in [8] one discusses the differences between NSP
and the time-varying distributed H systems, a generative model introduced in
[15] and further studied in [9,13,14]. A restricted version of NSPs (in which the
splicing operations were performed if and only if exactly one of the two strings
spliced was an auxiliary string) was introduced in [8], where it was shown that
this computing model is computationally complete. Also, the complexity class
NP was proved to correspond to the class of languages accepted by restricted
NSPs in polynomial time and PSPACE to the class accepted by restricted NSPs
with at most polynomial length of the stings used in the derivation.

In this paper, we consider the computational power of a new variant of net-
works of splicing processors in which the communication protocol is not anymore
regulated by random-context conditions. Each processor as well as the data navi-
gating throughout the network are now considered to be polarized, that is having
a value in the set {−, 0,+}. While the polarization of every processor is prede-
fined, the polarization of data is dynamically computed by means of a valuation
mapping. The valuation mapping associates an integer value with each symbol
and computes the value associated with the whole word as the algebraic sum of
the values of its symbols, taking into consideration the number of occurrences

Networks of Polarized Splicing Processors 167

of each symbol. Then the polarization of the word is nothing else then the sign
of this value. Consequently, the protocol of communication is naturally defined
by means of this polarization, namely each word will migrate to a node of the
same polarity as it has. We show that networks of polarized splicing processors
(NPSP) of size 2 are computationally complete by simulating a deterministic
Turing machine. As a non-trivial NPSP must have at least two nodes, this result
settles the question of designing computationally complete NPSPs of minimal
size. We prove that NPSP of size 4 can decide all languages in NP in polyno-
mial time by efficiently simulating a nondeterministic Turing machine. All these
results can be easily obtained with NPSPs with valuations in the set {−1, 0, 1},
by encoding each symbol having a value out of the set {−1, 0, 1} with a block
of identical new symbols. As the proofs of all previous results use a restricted
version of NPSP in which the splicing operations are performed if and only if
exactly one of the two strings spliced is an auxiliary word, we finally show that
Turing machines can simulate this variant of NPSPs. The time complexity of
these simulations is also discussed.

2 Basic Definitions and Notations

We assume the reader’s familiarity with the basic concepts in complexity classes
and formal language theory. The reader may refer to [6,12] for definitions.

For any finite set A, card(A) denotes the cardinality of A and for a word
w, |w| denotes the length of w. The smallest alphabet W such that w ∈ W ∗ is
denoted by alph(w) and the empty word is denoted by λ.

A homomorphism from the monoid V ∗ into the additive monoid (group)
of integers Z is called valuation of V ∗ in Z. The absolute value of an integer
k is denoted by |k|. Although the length of a word and the absolute value of
an integer is denoted in the same way, this cannot cause any confusion as the
arguments are understood from the context.

A nondeterministic Turing machine is a construct M = (Q, V, U, δ, q0, B,
F), where Q is a finite set of states, V is the input alphabet, U is the tape
alphabet, V ⊂ U , q0 is the initial state, B ∈ U \V is the “blank” symbol, F ⊆ Q

is the set of final states, and δ is the partial transition function, δ : (Q\F)×U
◦→

2Q×(U\{B})×{R,L}. The variant of a Turing machine we use in this paper can be
described intuitively as follows: it has a semi-infinite tape (bounded to the left)
divided into cells (each cell may store exactly one symbol from U). The machine
has a central unit storing a state from a finite set of states, and a reading/writing
tape head which scans the tape cells; the head cannot write blank symbols.
The input is a word over V stored on the tape starting with the leftmost cell
while all the other tape cells initially contain the symbol B. When M starts a
computation, the tape head scans the leftmost cell and the central unit is in the
state q0. The machine performs moves that depend on the content of the cell
currently scanned by the tape head and the current state stored in the central
unit. A move consists of: change the state, write a symbol from U on the current
cell and move the tape head one cell either to the left (provided that the cell

168 H. Bordihn et al.

scanned was not the leftmost one) or to the right. An input word is accepted iff
after a finite number of moves the Turing machine enters a final state. A Turing
machine is deterministic if for every state and symbol, the machine can make at
most one move. The deterministic Turing machine halts if it reaches a state q
and reads a symbol a such that δ(q, a) is not defined. Note that, in particular,
no transition is defined for any final state. An instantaneous description (ID for
short) of a Turing machine M as above is a word over (U \ {B})∗Q(U \ {B})∗.
Given an ID αqβ, this means that the tape contents is αβ followed by an infinite
number of cells containing the blank symbol B, the current state is q, and the
symbol currently scanned by the tape head is the first symbol of β provided that
β �= λ, or B, otherwise. Usually, we say that an ID αqβ is final when q ∈ F ,
and we say that such an ID is blocking when δ(q, x) is not defined, where x is
the first symbol of β (if β �= λ) or x = B (if β = λ). An input word w ∈ V ∗

is accepted by M iff there exists a computation of M on w that halts in a final
state. The language accepted by M is the language of all accepted words by M .

For a deterministic Turing machine M that halts on every input, we say that
the language of all accepted words by M is decided by M .

We now pass to the definition of the splicing operation following [5]. A splicing
rule over a finite alphabet V is a quadruple of words of the form [(u1, u2); (v1, v2)]
such that u1, u2, v1, and v2 are in V ∗. For a splicing rule r = [(u1, u2); (v1, v2)]
and for x, y, w, z ∈ V ∗, we say that r produces z from x and y (denoted by
(x, y) �r z) if there exist some x1, x2, y1, y2 ∈ V ∗ such that x = x1u1u2x2,
y = y1v1v2y2, and z = x1u1v2y2.

For a language L over V and a set of splicing rules R we define

σR(L) = {z ∈ V ∗ | ∃u, v ∈ L,∃r ∈ R such that (u, v) �r z}.

A polarized splicing processor over V is a triple (S,A, π) where

– S a finite set of splicing rules over V ,
– A a finite set of auxiliary words over V ,
– π ∈ {−,+, 0} is the polarization of the node (negatively or positively charged,

or neutral, respectively).

A network of polarized splicing processors (NPSP for short) is a construct

Γ = (V,U, 〈, 〉, G,N , ϕ, In,Halt),

where

– U is the network alphabet and V ⊆ U is the input alphabet.
– 〈, 〉 ∈ U \ V are two special symbols.
– G = (XG, EG) is an undirected graph with nodes XG and edges EG.
– N is a mapping which associates with each node x ∈ XG the splicing processor

over U , N (x) = (Sx, Ax, πx).
– ϕ is a valuation of U∗ in Z.
– In and Halt are the input and the halting nodes, respectively.

Networks of Polarized Splicing Processors 169

The graph G is called the underlying graph of the network. We say that
card(XG) is the size of Γ .

A configuration of an NPSP Γ is a mapping C : XG → 2U∗
which associates

a set of words to every node of the graph. A configuration can be seen as the
sets of words which are present in any node at a given moment. For a word
w ∈ V ∗ the initial configuration of Γ on w is defined by C

(w)
0 (xIn) = {〈w〉} and

C
(w)
0 (x) = ∅ for all other x ∈ XG. By convention, the auxiliary words do not

appear in any configuration.
There are two ways to change a configuration, by a splicing step or by a

communication step. When changing by a splicing step, each component C(x) of
the configuration C is changed according to the set of splicing rules Sx, whereby
the words in the set Ax are available for splicing. Formally, configuration C ′ is
obtained in one splicing step from the configuration C, written as C ⇒ C ′, iff
for all x ∈ XG

C ′(x) = σSx
(C(x) ∪ Ax).

When changing by a communication step, each node processor x ∈ XG sends
out copies of all its words, keeping a local copy of the words having the same
polarity to that of x only, to all the node processors connected to x and receives
a copy of each word sent by any node processor connected with x providing
that it has the same polarity as that of x. Note that, for simplicity reasons, we
prefer to consider that a word migrates to a node with the same polarity and
not an opposed one. Formally, we say that the configuration C ′ is obtained in
one communication step from configuration C, written as C � C ′, iff

C ′(x) = (C(x) \ {w ∈ C(x) | sign(ϕ(w)) �= πx}) ∪
⋃

{x,y}∈EG

({w ∈ C(y) | sign(ϕ(w)) = πx}),

for all x ∈ XG. Here sign(m) is the sign function which returns +, 0,−, provided
that m is a positive integer, is 0, or is a negative integer, respectively. Note that
all words with a different polarity than that of x are expelled from x. Further,
each expelled word from a node x that cannot enter any node connected to x
(no such node has the same polarity as the word has) is lost.

Let Γ be an NPSP, the computation of Γ on the input word w ∈ V ∗ is a
sequence of configurations C

(w)
0 , C

(w)
1 , C

(w)
2 , . . . , where C

(w)
0 is the initial config-

uration of Γ on w, C
(w)
2i =⇒ C

(w)
2i+1 and C

(w)
2i+1 � C

(w)
2i+2, for all i ≥ 0. Note that

the configurations are changed by alternative steps. By the previous definitions,
each configuration C

(w)
i is uniquely determined by the configuration C

(w)
i−1.

A computation as above halts as soon as there exists a configuration in which
the set of words from the halting node Halt is non-empty, or no further step
is possible anymore. Given an NPSP Γ and an input word w, we say that Γ
accepts w if the computation of Γ on w halts and the node Halt is non-empty.
The language accepted by an NPSP Γ consists of all words accepted by Γ and
is denoted by L(Γ). A language is decided by an NPSP Γ if it is accepted by Γ
and moreover the computation of Γ on every input halts.

170 H. Bordihn et al.

We now define the time computational complexity of an NPSP Γ with the
input alphabet V that halts on every input. The time complexity of the finite
computation C

(x)
0 , C

(x)
1 , C

(x)
2 , . . . C

(x)
m of Γ on x ∈ V ∗ is denoted by TimeΓ (x)

and equals m, that is the number of steps required for the network to halt on x.
The time complexity of Γ is the partial function from N to N,

TimeΓ (n) = max{TimeΓ (x) | x ∈ V ∗, |x| = n}.

An NPSP Γ is said to be working in O(f(n)) time if TimeΓ (n) ≤ cf(n) for
some c ≥ 0 and n ≥ n0.

3 NPSPs Simulating Turing Machines

In this section, we provide simulations of Turing machines by NPSPs. First we
simulate deterministic Turing machines as follows.

Theorem 1.

1. All recursively enumerable (recursive) languages are accepted (decided) by
NPSPs of size 2.

2. Every language decided by a deterministic Turing Machine in O(f(n)) time,
for some function f(n), is decided by an NPSP of size 2 in O(f(n)) time.

Proof. 1. The construction is essentially the same as that in the proof of Theo-
rem 1 from [7] so that, due to space limitations we prefer to skip it. In that
proof it suffices to consider that the valuation of each symbol in UΓ is 0,
except the final state qf whose valuation is 1. Moreover, the input node has
a neutral polarization, while the halting node has a positive polarization. We
also note that, the given Turing machine halts in a non-final state, if and only
if the computation of the network halts because no further step is possible
anymore, and the halting node is empty.

2. As one can see in the aforementioned construction, each move of the Turing
machine is simulated by a constant number of computational steps in the
network. ��
Note that the NPSPs constructed above have a valuation mapping with val-

ues in {−1, 0, 1}, actually in {0, 1}, only. Furthermore, we have:

Corollary 1. The class of polynomially recognizable languages is included in the
class of languages decided by NPSPs of size 2 in polynomial time.

We present now a more involved construction of an NPSP with 4 nodes that
can simulate in parallel the computations of non-deterministic Turing machines.

Theorem 2. Every language accepted by a nondeterministic Turing machine
is accepted by an NPSP of size 4. Moreover, if the Turing machine works in
O(f(n)), for some function f(n), then the time complexity of the simulating
network is in O(f(n)).

Networks of Polarized Splicing Processors 171

Proof. Let M = (Q,V, U, q0, {qf}, δ, B) be a nondeterministic Turing machine
accepting L, with Q the set of states, V and U respectively the input and tape
alphabet, q0 the initial state, B the blank symbol and δ : Q×U → Q×U×{L,R}
the transition function. We assume without loss of generality that M has a
single accepting state qf . Moreover, we may assume that M has no deadlock
state different than qf , that is a state in which M may halt its computation.
Given that M accepts L, we construct an NPSP Γ = (V,U〈, 〉, G,N , ϕ, In,Halt)
accepting L as follows.

We make the following assumptions:

– V = {1, 2, . . . , p}.
– U = {p + 1, p + 2, . . . , n + 1}, n ≥ p, and B = n + 1.
– The transitions to the right are labeled with labels from 1 to k, while the

transitions to the left, if any, are labeled with labels from k + 1 to m.

We shall not give the whole construction from the beginning. We prefer to
construct the network step by step with explanations about every step. The
underlying network is a star graph with nodes: In, Plus, Minus, and Halt,
hence a claw graph with In of degree 3.

We first show how the input word 〈w〉 in In is transformed into 〈q0w#〉,
which eventually enters In. To this aim, for each of the nodes In, Plus, and
Minus we set:

In

⎧
⎨

⎩

{[(〈, a); ($q0, c)] | 1 ≤ a ≤ n} ∪ {[($, q0); (〈, †)]} ⊆ SIn,
{$q0c, 〈†} ⊆ AIn,
πIn = 0.

P lus

⎧
⎨

⎩

{[(a, 〉); (�,#£)] | 1 ≤ a ≤ n} ⊆ SPlus,
{�#£} ⊆ APlus,
πPlus = +.

Minus

⎧
⎨

⎩

{[(#,£); (‡, 〉)]} ⊆ SMinus,
{‡〉} ⊆ AMinus,
πMinus = −.

We define ϕ(x) = 0 for any 1 ≤ x ≤ n and x ∈ Q ∪ {#}. Furthermore,
ϕ($) = 1, ϕ(c) = −1, ϕ(�) = 2,
ϕ(£) = −1, ϕ(†) = 0, ϕ(‡) = −1.

We now explain how an input word 〈w〉 in In is transformed into 〈q0w#〉,
which eventually enters In. In In the splicing rule [(〈, a); ($q0, c)], where a is
the first symbol of w, is applied to the pair of words (〈w〉, $q0c). Two words
are obtained: $q0w〉 and 〈c. The first one has a positive polarization, hence
it migrates to Plus, while the second one will enter Minus, where it remains
trapped and cannot be used in any further computational step.. The word $q0w〉
enters together with �#£ into a splicing step under the rule [(b, 〉); (�,#£)],
where b is the last symbol of w. Two words result from this slicing step: $q0w#£
and �〉. As the first word has a neutral polarization, it enters In, while the second
one remains in Plus forever and will not intervene in any further computation.

172 H. Bordihn et al.

We continue with the word $q0w#£ that entered In. Here the rule [($, q0); (〈, †)]
is applied to the pair of words ($q0w#£, 〈†) yielding 〈q0w#£ and $†. The first
word goes to Minus while the second one goes to Plus, where it will remain
forever. The word 〈q0w#£ is transformed into 〈q0w#〉 in Minus and goes back
to In. Note that all the other words obtained during the splicing steps discussed
here remain trapped in some nodes and are inert for further computations.

Inductively, assuming that a word of the form 〈qx#y〉 is in In, such that yqx
is an ID of M , we show how the network simulates a move of M to the right
in the state q, provided that such a transition is defined. Let 1 ≤ a ≤ n be the
first symbol of x and (s, b, R) ∈ δ(q, a) be a transition to the right labeled by the
number 1 ≤ i ≤ k. The simulation of such a transition is pretty much similar to
the previous case. To this aim, for each transition (s, b, R) ∈ δ(q, a), labeled by
i, with 1 ≤ a ≤ n, and each of the nodes In, Plus, and Minus we set:

In

⎧
⎨

⎩

{[(〈qa, c); ($i, ci)] | c ∈ {1, 2, . . . , n} ∪ {#}}∪
{[($i, c); (〈s,♦)] | c ∈ {1, 2, . . . , n} ∪ {#}} ⊆ SIn,

{$ici, 〈s♦} ⊆ AIn.

P lus

{
{[(c, 〉); (♣, b̃i)] | c ∈ {1, 2, . . . , n} ∪ {#}} ⊆ SPlus,

{♣b̃i} ⊆ APlus.

Minus

{
{[(c, b̃i); (£, b〉)] | c ∈ {1, 2, . . . , n} ∪ {#}} ⊆ SMinus,
{£b〉} ⊆ AMinus.

We further extend ϕ in the following way: ϕ($i) = i + 2, ϕ(ci) = −(i + 2),
ϕ(b̃i) = −(i + 2), ϕ(�) = 0, and ϕ(♣) = 2m + 3.

We now explain how a move of M to the right using the transition (s, b, R) ∈
δ(q, a) is simulated by the network. Assume that 〈qax′#y〉 is in In; the rule
[(〈qa, c); ($i, ci)] can be applied to the pair formed by 〈qax′#y〉 and $ici yielding
the pair of words ($ix

′#y〉, 〈qaci). The first word enters Plus while the second
one enters Minus. As in the previous case, the word 〈qaci that arrives in Minus
remains there forever being inactive for the rest of the computation. Let us follow
what is the itinerary of the word $ix

′#y〉 that arrives in Plus. Here its rightmost
symbol 〉 is replaced by a symbol d̃j in a splicing step. It is worth mentioning
that if j = i, then d = b must hold. Furthermore, if j �= i, the polarization
of the word will be either positive or negative. If the polarization is negative,
the word goes out from Plus, but cannot enter any node such that it is lost.
If the polarization is positive, the word remains in Plus forever and becomes
inactive for the rest of the computation. Therefore i = j must hold. Now the
word has a neutral polarization such that it enters In, where its first symbol $i

is substituted by s via a splicing rule. The new word enters Minus, where by
the splicing rule [(c, b̃i); (£, b〉)], for some c ∈ {1, 2, . . . , n} ∪ {#}, b̃i is replaced
by b〉, yielding the word 〈sx′#yb〉. This word enters In and the simulation is
completed.

Networks of Polarized Splicing Processors 173

We analyze now the case when a = n+1. If the transition (s, b, R) ∈ δ(q, n+1)
is labeled by some r, then it suffices to add the following sets of splicing rules
and auxiliary words to the nodes of Γ :

– The set {[(〈q,#); ($r, cr)], [($r,#); (〈s,♦)]} to SIn, and {$r#r, 〈s♦} to AIn.
– The set {[(c, 〉); (♣, b̃r)] | c ∈ {1, 2, . . . , n} ∪ {#}} to SPlus, and ♣b̃r to APlus.
– The set {[(c, b̃r); (£, b〉)] | c ∈ {1, 2, . . . , n} ∪ {#}} to SMinus, and £b to

AMinus.

Furthermore, ϕ($r) = r + 2, ϕ(cr) = −(r + 2), ϕ(b̃r) = −(r + 2).
Now, we show how the network simulates a move of M to the left. To this

aim, for each transition (s, b, L) ∈ δ(q, a), labeled by k + 1 ≤ j ≤ m, with
1 ≤ a ≤ n, and each of the nodes In, Plus, and Minus we set:

In

⎧
⎨

⎩

{[(〈qa, c); ($j,d, cj,d)] | c ∈ {1, 2, . . . , n} ∪ {#}, 1 ≤ d ≤ n}∪
{[($j,d, c); (〈sdb,♥)] | c ∈ {1, 2, . . . , n} ∪ {#}, 1 ≤ d ≤ n} ⊆ SIn,

{$j,dcj,d | 1 ≤ d ≤ n} ∪ {〈sdb♥ | 1 ≤ d ≤ n} ⊆ AIn.

P lus

{
{[(c, d〉); (♠, d̂j)] | c ∈ {1, 2, . . . , n} ∪ {#}, 1 ≤ d ≤ n} ⊆ SPlus,

{♠d̂j | 1 ≤ d ≤ n} ⊆ APlus.

Minus

{
{[(c, d̂j); (£, 〉)] | c ∈ {1, 2, . . . , n} ∪ {#}, 1 ≤ d ≤ n} ⊆ SMinus,
{£〉} ⊆ AMinus.

We further extend ϕ in the following way: ϕ($j,d) = 2m+j+23m+d+2, ϕ(cj,d) =
−2m+j+23m+d+2, ϕ(d̂j) = −2m+j+23m+d+2, for all 1 ≤ d ≤ n. Moreover, ϕ(♥) =
0 and ϕ(♠) = 72m+3.

We now explain how a move of M to the left using the transition (s, b, L) ∈
δ(q, a), with a �= n+1, is simulated by the network. Assume that 〈qax#yd〉 is in
In, for some 1 ≤ d ≤ n; the rule [(〈qa, c); ($j,t, cj,t)], for some 1 ≤ t ≤ n, can be
applied to the pair formed by 〈qax#yd〉 and $j,tcj,t yielding the pair of words
($j,tx#yd〉, 〈qacj,t). A short discussion is in order here. With a symbol $j,d, we
guess the last symbol of the current word 〈qax#yd〉. Our guess is checked with
the values associated with the symbols $j,d and d̂j , which uniquely identify the
pair (j, d). The first word enters Plus while the second one enters Plus, where
it becomes inactive. Let us follow which is the itinerary of the word $j,tx#yd〉
that arrives in Plus. Here its suffix d〉 is replaced by the symbol t̂r in a splicing
step. It is worth mentioning that if d �= t, the polarization of the word will be
either positive or negative. If the polarization is negative, the word goes out from
Plus, but cannot enter any node such that it is lost. If the polarization is positive,
the word remains in Plus, but it cannot participate in any further slicing step.
Therefore t = d must hold; furthermore, as in the previous case r = j must
also hold. Now the word has a neutral polarization such that it enters In, where
its first symbol $j,d is replaced by 〈sdb. The new word enters Minus, where by
the splicing rule [(c, d̂j); (£, 〉)], for some c ∈ {1, 2, . . . , n} ∪ {#}, d̂j is replaced
by 〉, yielding the word 〈sdbx#y〉. This word enters In and the simulation is
completed.

174 H. Bordihn et al.

We analyze now the case when a = n+1. If the transition (s, b, L) ∈ δ(q, n+1)
is labeled by some u, then it suffices to add the following sets of splicing rules
and auxiliary words to the nodes of Γ :

• The set {[(〈q,#); ($u,d, cu,d)] | 1 ≤ d ≤ n}∪{[($u,d,#); (〈sdb,♥)] | 1 ≤ d ≤ n}
to SIn, and {$u,dcu,d | 1 ≤ d ≤ n} ∪ {〈sdb♥ | 1 ≤ d ≤ n} to AIn.

• The set {[(c, d〉); (♠, d̂u)] | c ∈ {1, 2, . . . , n} ∪ {#}, 1 ≤ d ≤ n} to SPlus, and
{♠d̂j | 1 ≤ d ≤ n} to APlus.

• The set {[(c, d̂u); (£, 〉)] | c ∈ {1, 2, . . . , n} ∪ {#}, 1 ≤ d ≤ n} to SMinus. Fur-
thermore, ϕ($u,d) = 2m+u+23m+d+2, ϕ(cu,d) = −2m+u+23m+d+2, ϕ(d̂u) =
−2m+u+23m+d+2, for all 1 ≤ d ≤ n.

We finish the construction by considering the case when the current state
is qf . If the current word is of the form 〈qfx〉, for some x, it will be spliced in
In by the splicing rule [(〈, qf); ($0, c0)], which is added to SIn together with the
word $0c0 to AIn. We set ϕ($0) = ϕ(c0) = 0, hence both words produced by the
splicing rule above will enter Halt and the computational process if stopped. It
follows that the input word is accepted but it is accepted by the Turing machine
as well. ��

As we have seen in the proof of Theorem 1, a valuation mapping with values
in {−1, 0, 1} was sufficient. A natural question is whether the construction in the
previous proof can be modified such that the valuation mapping of any symbol
is just one of the three values. The answer is positive and the modification is
simple because it suffices to replace each occurrence of a symbol x in the splicing
rules and auxiliary words, such that ϕ(x) = k, k /∈ {−1, 0, 1}, by a word which
is defined as follows:

(i) ak−1
x �, if ϕ(x) > 0, where ax are new symbols and ϕ(ax) = ϕ(�) = 1,

(ii) a−k−1
x ∇, if ϕ(x) < 0, where ax are new symbols and ϕ(ax) = ϕ(∇) = −1.

Therefore, we can state:

Theorem 3. Every language accepted (decided) by a nondeterministic Turing
machine is accepted (decided) by an NPSP of size 4 having a valuation in the set
{−1, 0, 1}. Moreover, if the Turing machine works in O(f(n)), for some function
f(n), then the time complexity of the simulating network is in O(f(n)).

4 Turing Machines Simulating NPSPs

Clearly, every NPSP can be simulated by a Turing machine. However, the simula-
tion might be very inefficient. As one can easily see, in all constructions presented
so far, one of the two words in each splicing step was always an auxiliary word.
If we consider these NPSPs such that one of the two words in each splicing step
is an auxiliary word, we can construct a Turing machine able to simulate such a
network in an efficient way.

Networks of Polarized Splicing Processors 175

Theorem 4. Every language accepted by an NPSP Γ such that one of the two
words in each splicing step is an auxiliary word is accepted by a Turing machine
M . If TimeΓ (n) ∈ O(f(n)), then M accepts any input word of length n in
O((f(n) + n)(f(n) + n + K)), where K is the maximal absolute value of the
valuations of symbols in the working alphabet of Γ .

Proof. Let L be a language accepted by an NPSP Γ ; we construct a nondeter-
ministic Turing machine that accepts L. Such a machine M may be constructed
as follows. For each node of Γ , a set of states of M is constructed, which is parti-
tioned into several subsets mutually disjoint. For each splicing rule of the node,
there is a subset of states used in the process when M simulates the application
of the rule to the word on the tape of M and an auxiliary word, which is identi-
fied by some subset of disjoint states associated with the node. F Furthermore,
a subset of states is used for the process of computing the polarity of the words
in that node.

M chooses nondeterministically a copy of the input word from those existing
in the initial node of Γ . This word is actually on the tape of M in its initial ID.
First the Turing machine places this word between the two symbols <,> and
then follows its itinerary through the underlying network of Γ . Let us suppose
that the contents of the tape of M in the current ID is α; M works according to
the following strategy:

(i) When M enters a state from the subset of states associated with a rule of the
node N : [(x, y); (z, t)], it searches in α for the occurrences of the word xy. If
any such occurrence is found, and there exists an auxiliary word in the node
N that contains an occurrence of zt as a subword (this could be checked
by storing the state associated with the above splicing rule, and using the
states associated with the auxiliary words of the node), the splicing rule is
applied nondeterministically for any pair of such occurrences. One of the
two newly obtained words, chosen nondeterministically, becomes the word
whose evolution in the network is followed from now on, and M enters a
state associated with the process of computing the polarity of the current
word. If α does not contain any occurrence of xy, or no auxiliary word in
the currently simulated node contains zt, then M blocks the computation.

(ii) The process of computing the polarity of the current word is accomplished
in a nondeterministic way as follows:
• Mark all the occurrences of the symbols that have a neutral valuation.
• Mark an unmarked symbol and write its valuation in unary on an auxil-

iary tape using the symbol a, if its valuation is a positive integer or b, if
its valuation is a negative integer.

• If the auxiliary tape contains only a’s and 0’s, then mark an unmarked
symbol of a negative valuation and modify accordingly the contents of the
auxiliary tape. For instance, if the number of a’s on the tape is k and the
marked symbol has valuation −p, then change p occurrences of a into 0,
provided that k ≥ p, or change all occurrences of a into 0 and write p− k
b’s on the tape, otherwise. If there is no unmarked symbol of a negative

176 H. Bordihn et al.

value, then halt the process and set the valuation of the current word
as positive. The situation when the auxiliary tape contains only b’s and
0’s is treated analogously. If all symbols of the current word are marked,
the polarity of the word is on the tape. Then M enters a state from the
subset of states associated with a node with the same polarity as that of
the current word, connected to the current node.

(iii) As soon as M enters a state associated with the output node of Γ , it accepts
its input string. It is rather plain that M accepts L.

The following complexity related observations can be made. Assume that Γ
needs at most f(n) steps to accept any word of length n. In any splicing step
the length of the current word increases at most by a constant which is given
by the maximal length of an auxiliary word. Therefore, the maximal length of
the current word is of order O(f(n) + n). In the simulation of each of the f(n)
steps of the computation of Γ , M needs to perform subword matchings in the
word on its tape and to replace a part of the word on its tape with another
word; in both phases the number of steps needed to perform these operations is
O(f(n) + n). Therefore, the overall time for simulating splicing steps is of order
O(f(n) + n)2. On the other hand, the process of computing the polarity of a
word of length m is O(Km), where K = max{|ϕ(a)| | a ∈ V }. Therefore, the
overall time complexity of the Turing machine is O((f(n)+n)(f(n)+n+K)).��

We finish with a few problems that remained unsolved here. The first one
concerns the possibility to simulate a nondeterministic Turing machine with an
NPSP of size 3. In the case that this is possible, is the simulation time efficient?
Another problem refers to the possibility of simulating efficiently a non restricted
NPSP with a Turing machine. It is clear that a Turing machine can simulate an
arbitrary NPSP; however, it appears that such a machine should store all words
obtained during the computation of the network on its tape. This means that
the machine requires both space and time resources which are huge, making the
simulation extremely inefficient.

References

1. Csuhaj-Varjú, E., Kari, L., Păun, G.: Test tube distributed systems based on splic-
ing. Comput. AI 15, 211–232 (1996)

2. Csuhaj-Varjú, E., Mitrana, V.: Evolutionary systems: A language generating device
inspired by evolving communities of cells. Acta Informatica 36(11), 913–926 (2000)

3. Csuhaj-Varjú, E., Salomaa, A.: Networks of parallel language processors. In: Păun,
G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp.
299–318. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62844-4 22

4. Gray, R., Kotz, D., Nog, S., Rus, D., Cybenko, G.: Mobile agents: the next gen-
eration in distributed computing. In: Proceedings of the 2nd AIZU International
Symposium on Parallel Algorithms/Architecture Synthesis, PAS 1997, pp. 8–24.
IEEE Computer Society (1997)

5. Head, T.: Formal language theory and dna: An analysis of the generative capacity
of specific recombinant behaviors. Bull. Math. Biol. 49, 737–759 (1987)

https://doi.org/10.1007/3-540-62844-4_22

Networks of Polarized Splicing Processors 177

6. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory. Addison Wesley,
Languages and Computation (1979)

7. Loos, R., Manea, F., Mitrana, V.: On small, reduced, and fast universal accepting
networks of splicing processors. Theoret. Comput. Sci. 410, 406–416 (2009)

8. Manea, F., Mart́ın-Vide, C., Mitrana, V.: Accepting networks of splicing proces-
sors: Complexity results. Theoret. Comput. Sci. 371, 72–82 (2007)

9. Margenstern, M., Rogozhin, Y.: Time-varying distributed h systems of degree 1
generate all recursively enumerable languages. In: Words, Semigroups, and Trans-
ductions, pp. 329–340. World Scientific (2001)

10. Mart́ın-Vide, C., Pazos, J., Păun, G., Rodŕıguez-Patón, A.: A new class of symbolic
abstract neural nets: tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON
2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45655-4 32

11. Morrison, J.P.: Flow-Based Programming: A New Approach to Application Devel-
opment. J.P. Enterprises Ltd. (2010)

12. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
13. Păun, A.: On time-varying H systems. Bull. EATCS 67, 157–164 (1999)
14. Păun, G.: Regular extended H systems are computationally universal. J. Automata

Lang. Comb. 1, 27–36 (1996)
15. Păun, G.: DNA computing: distributed splicing systems. In: Mycielski, J.,

Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science.
LNCS, vol. 1261, pp. 353–370. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63246-8 22

16. Păun, G.: Distributed architectures in DNA computing based on splicing: limiting
the size of components. In: Unconventional Models of Computation, pp. 323–335.
Springer (1998)

https://doi.org/10.1007/3-540-45655-4_32
https://doi.org/10.1007/3-540-45655-4_32
https://doi.org/10.1007/3-540-63246-8_22
https://doi.org/10.1007/3-540-63246-8_22

Robust Combinatorial Circuits in Chemical
Reaction Networks

Samuel J. Ellis1, Titus H. Klinge2(B), and James I. Lathrop1

1 Department of Computer Science, Iowa State University, Ames, IA 50012, USA
{sjellis,jil}@iastate.edu

2 Department of Computer Science, Grinnell College, Grinnell, IA 50112, USA
klingeti@grinnell.edu

Abstract. We introduce a general method for compiling any combina-
torial circuit into an input/output chemical reaction network (I/O CRN).
An I/O CRN receives a robust input signal over time, processes it cat-
alytically to produce an output signal, and operates under determin-
istic mass action semantics (mass action kinetics). Our construction is
reusable in the sense that it continues to operate correctly under changing
input signals, and we prove that the construction is robust with respect
to perturbations in (1) input signals; (2) initial concentrations; (3) rate
constants; and (4) output measurements.

Keywords: Nanocomputing · Molecular programming
Combinatorial circuits · Robustness · Chemical reaction networks

1 Introduction

Logic circuits are foundational to the computing industry, and over the years
Moore’s law has forced circuit components to the nanoscale. Furthermore, cir-
cuits are being used increasingly often in biological applications and becoming
an important field of study for nano-robotics [2,6,7]. DNA has been proposed
as a universal medium for building bio-compatable logic circuits and has been
thoroughly explored in [3,20,21].

Chemical reaction networks (CRNs) model the behavior of molecular sys-
tems and have been used for over a half-century [1]. In the last decade, CRNs
have become a prominent programming language for developing algorithms for
nanoscale applications for two reasons. First, they are capable of computing
any algorithm [18], and second, they can be systematically compiled into DNA
molecules that simulate their behavior [4,5,19]. CRNs are also a model of ana-
log computation which makes them a natural choice for implementing Boolean
circuits, since concentrations of molecules can be used as signals which are anal-
ogous to electrical signals in traditional silicon circuits.

Many molecular circuit motifs have been proposed over the years [10,16,17].
Recently Ge, Zhong, Wen, You, and Zhang introduced five approaches for con-
structing combinatorial logic gates with CRNs using Karnaugh maps and com-
pared their stability and robustness using simulations [9]. Since many applications

This work is supported by National Science Foundation grants 1247051 and 1545028.

c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 178–189, 2017.
https://doi.org/10.1007/978-3-319-71069-3_14

Robust Combinatorial Circuits in Chemical Reaction Networks 179

of molecular programming are safety-critical, ensuring the correctness and robust-
ness of molecular systems is crucial [8,11–13,15].

In this paper, we propose a general scheme for robustly implementing combi-
natorial circuits with chemical reaction networks. Our circuit construction com-
pliments the current literature in the following four ways. (1) They are reusable
and dynamically adjust to changes in the input within a programmable propa-
gation delay. (2) Inputs signals are used non-destructively as catalysts. (3) We
formally prove robustness of the CRN construction with respect to perturba-
tions (noise) in the input signals, initial concentrations, rate constants, and out-
put measurements. (4) We prove that all combinatorial circuits can be robustly
implemented in this way.

Since input signals may be used by other gates or circuits, it is critical that
our construction read input signals without modifying or destroying them. CRNs
that receive input signals over time in this manner are referred to as input/output
chemical reaction networks in [14]. Also defined in [14] is a definition of robust-
ness in which the input signal, initial concentrations, and output signal may be
perturbed. (Such perturbations correspond to noisy systems.) This definition of
robustness also takes into account perturbations in the rate constants, which
could be the result of variations in temperature or salinity of the solution. In
this paper, we prove that our construction is not only robust to perturbations
in the input signal, initial concentrations, and output signal, but also to mali-
cious perturbations of the rate constants, i.e., in the presence of an adversary
manipulating the rate constants within a bounded error.

The rest of this paper is organized as follows. Section 2 reviews the I/O CRN
model and the notion of robustly satisfying requirements; Sect. 3 provides an I/O
CRN construction of a NAND gate and formally proves that it is robust; and
Sect. 4 contains our main theorem that all combinatorial circuits can be robustly
implemented by I/O CRNs.

2 Preliminaries

We now review the definitions of an input/output chemical reaction network
and what it means to robustly satisfy a set of requirements. These were first
introduced in 2016 by [14] and are closely related to well-known definitions in
control theory.

2.1 Input/Output Chemical Reaction Networks

We fix a countably infinite set S = {X0,X1,X2 . . .} of species, and we refer to
them with capital Roman characters such as X, Y , and Z. A reaction over a
finite set S ⊆ S of species is a triple ρ = (r,p, k) ∈ N

|S| ×N
|S| ×(0,∞) such that

r �= p. The elements of a reaction ρ = (r,p, k) are called the reactant vector,
product vector and rate constant, respectively, and the net effect of a reaction
ρ = (r,p, k) is the vector Δρ = p− r. Given a reaction ρ = (r,p, k), we use the
notation r(ρ) = r, p(ρ) = p, and k(ρ) = k for the individual components of ρ.

180 S. J. Ellis et al.

The formal definition of a reaction mirrors our intuitive understanding from
chemistry. The reaction A + B

k−→ 2B + C over the set S = {A,B,C} can
be written ρ = (r,p, k) where r = (1, 1, 0) and p = (0, 2, 1). Its net effect is
Δρ = (−1, 1, 1), meaning it consumes one A and produces one B and C. For
convenience, we treat the vectors r, p, and Δρ as functions from the set S into
the natural numbers. We call a species Y ∈ S a reactant of ρ = (r,p, k) if
r(Y) > 0, a product of ρ if p(Y) > 0, and a catalyst of ρ if r(Y) > 0 and
Δρ(Y) = 0.

An input/output chemical reaction network (I/O CRN) is a tuple N =
(U,R, S) where U, S ⊆ S are finite sets of species satisfying U ∩ S = ∅ and
R is a finite set of reactions over U ∪ S where Δρ(X) = 0 for each ρ ∈ R and
X ∈ U . We call the elements of S state species and the elements of U input
species.

Under deterministic mass action semantics (also called mass action kinetics),
a state of an I/O CRN N = (U,R, S) is a vector x ∈ [0,∞)|S| that assigns to
each Y ∈ S a real-valued concentration denoted x(Y). Similarly, an input state
is a vector u ∈ [0,∞)|U |, and a global state is a vector (x,u) ∈ [0,∞)|S∪U |.

For a finite set W ⊆ S, we define the W -signal space to be the set C[W] =
C([0,∞), [0,∞)|W |) where C(X ,Y) is the set of all continuous functions from
X to Y. A context of an I/O CRN N = (U,R, S) is a tuple c = (u, V, h) where
u ∈ C[U], V ⊆ S, and h : [0,∞)|S∪U | → [0,∞)|V |. We call the components of the
context c = (u, V, h) the input function, the output species, and the measurement
function, respectively. The set of all contexts of an I/O CRN N is denoted CN .

Given a global state (x,u) ∈ [0,∞)|S∪U | and a reaction ρ ∈ R, the rate of ρ
in (x,u) is the real-value

ratex,u(ρ) = k(ρ)
∏

Y ∈S∪U

(x,u)(Y)r(ρ)(Y). (1)

For each species Y ∈ S, the deterministic mass action function for Y is

FY (x,u) =
∑

ρ∈R

Δρ(Y) · ratex,u(ρ). (2)

In the context c = (u, V, h), the concentration of each species Y ∈ S of an
I/O CRN evolves according to ordinary differential equation (ODE)

y′(t) = FY (x(t),u(t)), (3)

for all t ∈ [0,∞). (Our occasional use of x and u as single states as well as states
parameterized by time is intentional and helps reduce obfuscation.) If we define
the vector-valued function F (x,u)(Y) = FY (x,u) for each Y ∈ S, then we can
rewrite the ODEs of (3) in the vector form

x′(t) = F (x(t),u(t)), (4)

for all t ∈ [0,∞).

Robust Combinatorial Circuits in Chemical Reaction Networks 181

According to the standard theory of ODEs, the system (4) along with an
initial state x0 ∈ [0,∞)|S| has a unique solution x(t) satisfying x(0) = x0.
Finally, we define the output signal of an I/O CRN N = (U,R, S) with initial
state x0 ∈ [0,∞)|S| in context c = (u, V, h) as

Nx0,c(t) = h(x(t)), (5)

for all t ∈ [0,∞) where x(t) is the unique solution to (4) with initial state x0.
The output signal Nx0,c exactly defines the behavior of the I/O CRN.

2.2 Time-Dependent I/O CRNs

In order to define robustness with respect to rate constants, we define a variation
of the I/O CRN model that replaces the rate constants of reactions with non-
negative functions of time. For the purposes of this definition, we define a time-
dependent reaction over the set S to be tuple ρ = (r,p, k̂) where r,p ∈ N

|S∪U |

and k̂ : [0,∞) → (0,∞). A time-dependent input/output chemical reaction net-
work (I/O tdCRN) is a tuple N = (U, R̂, S) where U, S ∈ S are finite sets of
species such that S ∩ U = ∅ and R̂ is a finite set of time-dependent reactions
that only use species in U as catalysts.

The deterministic mass action semantics of an I/O tdCRN are the same as
that of an I/O CRN except that the rate function of (1) changes to

ratex(t),u(t)(ρ) = k̂(ρ)(t)
∏

Y ∈S∪U

(x,u)(t)(Y)r(ρ)(Y), (6)

for all time t ∈ [0,∞) in order to incorporate the time-dependent reactions. The
Eqs. (2)–(5) also change in the obvious way.

For an I/O CRN N = (U,R, S) and constant δ > 0, we say that an I/O
tdCRN N̂ = (U, R̂, S) is δ-close to N if each ρ̂ ∈ R̂ is the time-dependent
equivalent of ρ ∈ R and satisfies |k(ρ) − k̂(ρ̂)(t)| ≤ δ for all t ∈ [0,∞).

2.3 Robustness

A requirement of an I/O CRN N = (U,R, S) is an ordered-pair Φ = (α, φ)
consisting of two Boolean predicates α : CN → {true, false} and φ : C[U] ×
C[V] → {true, false} called the context assumption and the I/O requirement,
respectively. We say that an I/O CRN N = (U,R, S) satisfies the requirement
Φ = (α, φ), and we write N |= Φ, if there exists an initial state x0 ∈ [0,∞)|S|

such that for all c ∈ CN

α(c) =⇒ φ(u, Nx0,c).

In order to capture the notion of approximately satisfying a requirement, we
use the supremum norm defined by ‖f‖ = supt∈[0,∞) |w(t)| for all w ∈ C[W]
where |w(t)| =

√∑
Y ∈W w(t)(Y)2 is the Euclidean distance function in R

|W |.
For two functions w, ŵ ∈ C[W], it is well known that ‖w − ŵ‖ is a well behaved

182 S. J. Ellis et al.

distance function. Therefore for w ∈ C[W] and ε > 0, we define the closed ball
of radius ε around w to be the set Bε(w) = {ŵ | ‖w − ŵ‖ ≤ ε}. If ŵ ∈ Bε(w),
then we say that ŵ is ε-close to w.

We say that an I/O CRN N = (U,R, S) ε-satisfies a requirement Φ = (α, φ),
and we write N |=ε Φ, if there exists an initial state x0 ∈ [0,∞)|S| such that

α(u, V, h) =⇒ ∃v ∈ Bε(Nx0,c) [φ(u,v)].

Given a context c = (u, V, h) and real numbers δ1, δ2 > 0, we say that
ĉ = (û, V, ĥ) is (δ1, δ2)-close to c if ‖u − û‖ ≤ δ1 and ‖h − ĥ‖ ≤ δ2. Given
states x, x̂ ∈ [0,∞)|S| and δ > 0, we say that x̂ is δ-close to x if |x − x̂| ≤ δ.

Finally we state what it means for an I/O CRN to robustly satisfy a require-
ment. Given N = (U,R, S), Φ = (α, φ), ε > 0, and δ = (δ1, δ2, δ3, δ4) such that
δ1, δ2, δ3, δ4 > 0, we say that N δ-robustly ε-satisfies Φ, and we write N |=δ

ε Φ, if
there exists an initial state x0 ∈ [0,∞)|S| such that for all contexts c = (u, V, h)
satisfying α(c), for each context ĉ = (û, V, ĥ) (δ1, δ2)-close to c, for each state
x̂0 ∈ [0,∞)|S| δ3-close to x0, and for each I/O tdCRN N̂ δ4-close to N , there
exists a concentration signal v ∈ C[V] that is ε-close to the output signal N̂x̂0,ĉ

that satisfies φ(u,v).

3 A Robust NAND Gate

In this section, we prove that a single NAND gate can be robustly implemented
by an I/O CRN. First, we formally specify the requirement for an I/O CRN
that implements a NAND gate. We then present an I/O CRN construction and
prove that it robustly satisfies its requirement.

An implicit parameter of the NAND gate requirement is the set of input
species. Therefore we begin by defining the set

U = {X1,X2,X1,X2}. (7)

The species X1 and X2 represent the two inputs of the NAND gate, and the
species X1 and X2 are their duals. Intuitively, a dual species represents the
Boolean complement of its counterpart. For example, whenever a species Z has
high concentration, Z must have low concentration and vice versa.

Given a positive real number τ , often called the propagation delay, we define
the NAND gate requirement Φ(τ) = (α, φ). The context assumption α of Φ(τ)
is defined by

α(u, V, h) ≡ [
V = {Y, Y } and h = h0

]
, (8)

where h0 is the zero-error measurement function defined by h0(x)(Y) = x(Y)
for all x ∈ [0,∞)|S∪U | and Y ∈ V . Thus α has no constraints on the input signal
u ∈ C[U] and requires that the output species be {Y, Y }, and the measurement
function is initially error-free. (Errors are introduced into the measurement func-
tion when we prove that Φ(τ) can be robustly satisfied.)

Before we specify the I/O requirement φ of Φ(τ), we first define some use-
ful notation. Recall that φ is a predicate that takes two parameters, an input

Robust Combinatorial Circuits in Chemical Reaction Networks 183

signal u ∈ C[U] and an output signal v ∈ C[V]. For convenience, we use these
parameters in two definitions that help us define φ.

First, we define the set of all closed intervals of length at least τ as

I(τ) = {I = [t1, t2] ⊆ [0,∞) | t2 − t1 ≥ τ}.

For an interval I = [t1, t2] ⊆ [0,∞), we define the τ -left-truncation of I to be
the interval Iτ = [t1 + τ, t2].

For two bits a, b ∈ {0, 1}, we define the predicate

φab(I) ≡ (∀t ∈ I)
[
u(X1)(t) = a = 1 − u(X1)(t) and (9)

u(X2)(t) = b = 1 − u(X2)(t)
]
,

for all intervals I ∈ I(τ). Therefore the predicate φ01(I) simply means that the
input species X1 and X2 encode the values 0 and 1 in the interval I, respectively.
Furthermore, their duals encode values of 1 and 0 in I.

Similarly, for a bit a ∈ {0, 1} we define the Boolean predicate

ψa(I) ≡ (∀t ∈ I)
[
v(Y)(t) = a = 1 − v(Y)(t)

]
, (10)

for all I ∈ I(τ). Thus the predicate ψ1(I) simply means that the output species
Y and Y encode the numbers 1 and 0 in the interval I, respectively.

We now have the terminology to define the I/O requirement φ of Φ(τ) as

φ(u,v) ≡ (∀I ∈ I(τ)
)[

[φ11(I) =⇒ ψ0(Iτ)] and (11)

[(φ00(I) ∨ φ01(I) ∨ φ10(I)) =⇒ ψ1(Iτ)]
]

for all u ∈ C[U] and v ∈ C[V]. Intuitively, this means that if X1 and X2 encode
the values of 1 and 1, respectively, then the output species Y must converge to
0 in at most τ time. In addition, Y remains there as long as the inputs are held
constant. Similarly, if either of the inputs is 0, then the output must converge
to 1 in at most τ time and remain there while the inputs are held constant.

We now specify our I/O CRN that robustly simulates a NAND gate.

Construction 1. Given parameters δ = (δ1, δ2, δ3, δ4), and τ , define the CRN

N(δ, τ) = (U,R, S),

where U = {X1,X2,X1,X2}, S = {Y, Y }, and R consists of the reactions

X1 + X2 + Y
k−→ X1 + X2 + Y (12)

X1 + Y
k−→ X1 + Y (13)

X2 + Y
k−→ X2 + Y (14)

2Y + Y
3k−→ 3Y (15)

2Y + Y
3k−→ 3Y , (16)

184 S. J. Ellis et al.

and where k is the constant

k = 100δ4 +
13
τ

(17)

In the above construction, reaction (12) biases the output toward Y when
the inputs X1 and X2 are both present, reactions (13) and (14) bias the out-
put toward Y in the presence of X1 or X2 (i.e. when X1 or X2 is low), and
reactions (15) and(16) give extra bias to the output species with majority con-
centration. The latter two reactions are essential for the I/O CRN to produce
an output signal that is at least as clean as its input.

Theorem 2. If δ = (δ1, δ2, δ3, δ4) ∈ (0,∞)4 and τ > 0 are constants satisfying

δ2 + δ3 < δ1 <
1
25

(18)

δ2 + δ3 <
1

100
(19)

and N = N(δ, τ) is constructed according to Construction 1, then N |=δ
δ1

Φ(τ).

The remainder of this section is devoted to proving this theorem. Since the
proof requires examining an arbitrary perturbation of a variety of parameters,
we begin the proof by fixing these arbitrary perturbations.

Assume the hypothesis of Theorem 2 with N = (U,R, S) = N(δ, τ). We fix
initial state x0 ∈ [0,∞)S defined by

x0(Y) = 1 and x0(Y) = 0.

(Note that any choice satisfying x0(Y) + x0(Y) = 1 suffices for our argument.)
Let c = (u, V, h) be a context that satisfies the context assumption α(c). Let
ĉ = (û, V, ĥ) be (δ1, δ2)-close to c, let x̂0 be δ3-close to x0, and let N̂ be δ4-close
to N . It now suffices to show that the output function N̂ĉ,x̂0 is δ1-close to a
signal v ∈ C[V] satisfying the I/O requirement φ(u,v). Thus we fix x̂ ∈ C[S] as
the unique solution generated by N̂ in context ĉ on the initial state x̂0.

Since the I/O requirement φ(u,v) is naturally broken down into two parts,
Lemmas 3 and 4 suffice to prove the theorem.

Lemma 3. If I ∈ I(τ) is an interval such that φ11(I) holds, then ψ0(Iτ) holds.

Proof. Assume the hypothesis. To show that ψ0(Iτ) holds, we need to show that
for all t ∈ Iτ , 1 − δ2 < x̂(t)(Y) < 1 + δ2 and x̂(t)(Y) < δ2. For convenience, we
will write y(t) and y(t) to denote x̂(t)(Y) and x̂(t)(Y), respectively.

Using the reactions from Construction 1 along with the definition of the
deterministic mass action system for a time-varying I/O CRN, we observe that
y(t) and y(t) conform to the ODEs

dy

dt
= 3k̂1y

2y − 3k̂2yy2 − k̂3x1x2y + k̂4x1y + k̂5x2y, (20)

dy

dt
= −dy

dt
, (21)

Robust Combinatorial Circuits in Chemical Reaction Networks 185

where k̂1, k̂2, k̂3, k̂4, and k̂5 are all time-varying δ4-perturbations of the rate
constant k and x1(t), x2(t), x1(t), and x2(t) are the four components of the
δ1-perturbed input signal û(t).

Equation (21) immediately implies that

p = y(t) + y(t), (22)

where p = x̂0(Y) + x̂0(Y). It is also useful to note that |p − 1| < δ3 since x̂0 is
a δ3-perturbation of x0 which satisfies x0(Y) + x0(Y) = 1.

Recall that our goal is to show for all t ∈ Iτ that y(t) and y(t) are δ1-
close to 0 and 1, respectively. It now suffices to show that y(t) > p − γ where
γ = δ1 − δ2 − δ3. We will show this by examining the ODE (21) of Y .

Since all of the perturbed rate constants are within δ4 of the constant k, we
know that

dy

dt
≥ 3(k − δ4)y2y − 3(k + δ4)yy2 + (k − δ4)k̂3x1x2y

− (k + δ4)k̂4x1y − (k + δ4)x2y.

Thus if we let d = δ4
k , we can write

dy

dt
≥ k

[
3(1 − d)y2y − 3(1 + d)yy2 + (1 − d)x1x2y − (1 + d)(x1 + x2)y

]
. (23)

It is also not difficult to show that the expression 3(1 − d)y2y − 3(1 + d)yy2 can
be minimized by setting y = p

6

(
d + 3 − √

d2 + 3
)
. By substituting this back into

the expression, we obtain the bound

3(1 − d)y2y − 3(1 + d)yy2 ≥ −p3

18

(
3
√

d2 + 3 + d
(
d

(√
d2 + 3 − d

)
+ 9

))

≥ −p3

18

(
(3 + d)3/2 + 9d

)
.

Substituting this into (23), we obtain

dy

dt
≥ k

[
−p3

18

(
(3 + d)3/2 + 9d

)
+ (1 − d)x1x2y − (1 + d)(x1 + x2)y

]
.

Since φ11(I) holds, we know that within the interval I that x1, x2, x1, and x2

are encoding 1, 1, 0, and 0, respectively. However, these are only δ1-approximating
these because of the input perturbations. Thus for all t ∈ I we have

dy

dt
≥ k [−a + b(p − y) − cy] ,

where a = p3

18

(
(3 + d)3/2 + 9d

)
, b = (1 − d)(1 − δ1)2, and c = 2δ1(1 + d). This

equation can easily be solved by separation of variables and integrating which
yields the bound

y
(
t0 +

τ

2

)
≥ bp − a

b + c

(
1 − e−k(b+c) τ

2

)
,

for all t ∈ I where t0 is the time at the beginning of the interval I.

186 S. J. Ellis et al.

Using the facts that δ1 ≤ 1
25 , d < 1

100 , δ3 ≤ 1
100 , |p − 1| ≤ δ3 and k ≥ 13

τ , it
is not difficult to verify via substitution that

y
(
t0 +

τ

2

)
≥ 3

5
. (24)

To bound the behavior of Y after time t0 + τ
2 , we take another look at (23)

and see that

dy

dt
≥ k

[
3(1 − d)y2y − 3(1 + d)yy2 − 2δ1(1 + d)y

]

≥ ay2(p − y) − by(p − y)2 − cy,

where a = 3k(1 − d), b = 3k(1 + d), and c = 2kδ1(1 + d).
This ODE is sometimes referred to as a signal restoration algorithm. Accord-

ing to two theorems proved in [12], if the inequalities

c <
p2a2

4(a + b)
(25)

y
(
t0 +

τ

2

)
> E1, (26)

hold where E1 = p
(

b
a+b

)
+ A and where A = p

2

(
a

a+b

) (
1 − √

1 − c∗) and c∗ =
4c(a+b)

p2a2 , then Y exponentially quickly converges to the concentration E2 = p−A.
Using the facts that d < 1

100 , δ1 < 1
25 , δ3 < 1

100 and y
(
t0 + τ

2

)
> 3

5 , it is easy to
verify that both of the above inequalities hold.

Corollary 4.5 of [12] shows that under these conditions Y will converge to
the quantity p − γ in at most time

T =
a + b

abp2(1 − c∗)
log u,

where u = (p−γ−E1)(E2− 3
5)

(3
5−E1)(E2−p+γ)

. Using the bounds of d, δ1, and δ3 and the fact that

k ≥ 13
τ , it is easy to verify that T ≤ τ

2 . Consequently, for all time t ∈ Iτ ,
y(t) ≥ p − γ and therefore y(t) < γ.

Finally, since p > 1 − δ3, γ = δ1 − δ2 − δ3 and the measurement function can
only introduce δ2 amount of error, N̂x̂0,ĉ(t)(Y) > 1 − δ1 and N̂x̂0,ĉ(t)(Y) < δ1.
Therefore N̂x̂0,ĉ is δ1-close to encoding an output of Y = 0 and Y = 1 in the
interval Iτ . ��
Lemma 4. If I ∈ I(τ) is an interval such that φ00(I), φ01(I), or φ10(I) holds,
then ψ1(I) holds.

Proof. This lemma follows by symmetry of Lemma 3. This is even more pro-
nounced by comparing the bias introduced by the reactions (12)–(14). In the
case of this lemma, the bias in favor of Y is (x1 + x2) ≥ 1 − δ1 and the bias in
favor of Y is x1x2 ≤ (1−δ1)δ1. This is far more favorable when the corresponding
bias in Lemma 3 was (1 − δ1)2 and δ1, respectively. ��

Robust Combinatorial Circuits in Chemical Reaction Networks 187

4 Robust Combinatorial Circuits

In this section, we state and prove our main theorem, namely, that every com-
binatorial circuit can be robustly simulated by an I/O CRN. The proof is a
natural (and relatively simple) extension of Theorem 2. We begin by defining
a requirement for an I/O CRN to properly simulate an arbitrary combinatorial
circuit.

Given positive integers n,m > 0, we define an n-input m-output combinato-
rial circuit Cn,m to be a directed acyclic graph where each node is a two-input
one-output NAND gate. The circuit Cn,m also has n incoming edges for inputs
and m outgoing edges for outputs. The depth of a circuit Cn,m is the longest
path from an input to an output. Each circuit Cn,m can also be regarded as
a function Cn,m : {0, 1}n → {0, 1}m defined in the obvious way of passing the
values of the inputs into the circuit to compute the outputs.

For a circuit Cn,m, we define the set of input species as

U = {Xi,Xi | 0 ≤ i < n}. (27)

We can now define the requirement Φ(Cn,m, τ) = (φ, α) where α is defined by

α(u, V, h) ≡ [
V = {Yi, Y i | 0 ≤ i < m} and h = h0

]
. (28)

To state the I/O requirement φ, we need a bit more terminology.
For a string w = a1a2 · · · an ∈ {0, 1}n, we define the compliment of w to be

w = a1a2 · · · an where ai = 1 − ai. For a string w ∈ {0, 1}n and input u ∈ C[U],
we use the notation u(t) = w to denote that u(t)(Xi) = w[i] and u(t)(Xi) = w[i]
for each 0 ≤ i < n. We also define the predicates

φw(I) ≡ (∀t ∈ I)
[
u(t) = w

]

ψw(I) ≡ (∀t ∈ I)
[
v(t) = w

]
.

We now can define the I/O requirement φ as

φ(u,v) ≡ (∀I ∈ I(τ)
)
(∀w ∈ {0, 1}n

)[
φw(I) =⇒ ψCn,m(w)(Iτ)

]
. (29)

Construction 5. Given a combinatorial circuit Cn,m with G gates and depth
d along with constants δ = (δ1, δ2, δ3, δ4), and τ , define the CRN N(Cn,m, δ, τ)
by joining G copies of the I/O CRN N

(
δ, τ

d

)
from Construction 1 in the obvious

way.

Theorem 6. If Cn,m is a combinatorial circuit, the constants δ =
(δ1, δ2, δ3, δ4) ∈ (0,∞)4 and τ > 0 satisfy δ2 + δ3 < δ1 < 1

25 , δ2 + δ3 < 1
100 ,

and N = N(Cn,m, δ, τ) is constructed according to Construction 5, then N |=δ
δ1

Φ(Cn,m, τ).

Proof. This theorem immediately follows from the fact that each NAND gate
that N is composed of is also robust. Therefore the outputs of every NAND gate
within τ

d time will produce an output signal that is δ1-close to its output. Since
d is the length of the longest path in the circuit, the propagation delay for the
combinatorial circuit is τ . ��

188 S. J. Ellis et al.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. XOR circuit with noise.

Simulations show gates and circuits are far more robust than the theorems
predict. This is due to the loose bounding arguments used in the theorems, and
shows that it may be possible to significantly tighten these bounds in the proofs.
For example, Fig. 1 shows three NAND gates connected to form an exclusive OR
circuit. The simulation shows inputs that transition from low to high at different
times, different levels, and different noise amplitudes.

Acknowledgments. We thank Jack Lutz and the Laboratory of Molecular Program-
ming at Iowa State University for useful discussions.

References

1. Aris, R.: Prolegomena to the rational analysis of systems of chemical reactions.
Arch. Ration. Mech. Anal. 19(2), 81–99 (1965)

2. Boemo, M.A., Lucas, A.E., Turberfield, A.J., Cardelli, L.: The formal language
and design principles of autonomous DNA walker circuits. ACS Synth. Biol. 5(8),
878–884 (2016)

3. Boruah, K., Dutta, J.C.: Development of a DNA computing model for Boolean
circuit. In: Proceedings of the 2nd International Conference on Advances in Elec-
trical, Electronics, Information, Communication and Bio-Informatics, pp. 301–304,
February 2016

4. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci.
23(2), 247–271 (2013)

5. Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D.,
Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol.
8(10), 755–762 (2013)

Robust Combinatorial Circuits in Chemical Reaction Networks 189

6. Dannenberg, F., Kwiatkowska, M., Thachuk, C., Turberfield, A.J.: DNA walker cir-
cuits: computational potential, design, and verification. In: Soloveichik, D., Yurke,
B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 31–45. Springer, Cham (2013). https://
doi.org/10.1007/978-3-319-01928-4 3

7. Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted
transport of molecular payloads. Science 335(6070), 831–834 (2012)

8. Ellis, S.J., Henderson, E.R., Klinge, T.H., Lathrop, J.I., Lutz, J.H., Lutz, R.R.,
Mathur, D., Miner, A.S.: Automated requirements analysis for a molecular watch-
dog timer. In: Proceedings of the 29th International Conference on Automated
Software Engineering, pp. 767–778. ACM (2014)

9. Ge, L., Zhong, Z., Wen, D., You, X., Zhang, C.: A formal combinational logic
synthesis with chemical reaction networks. IEEE Trans. Mol. Biol. Multi-Scale
Commun. 3(1), 33–47 (2017)

10. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural net-
works and Turing machines. Proc. Natl. Acad. Sci. 88(24), 10983–10987 (1991)

11. Klinge, T.H.: Robust and modular computation with chemical reaction networks.
Ph.D. thesis, Iowa State University (2016)

12. Klinge, T.H.: Robust signal restoration in chemical reaction networks. In: Proceed-
ings of the 3rd International Conference on Nanoscale Computing and Communi-
cation, pp. 6:1–6:6. ACM (2016)

13. Klinge, T.H., Lathrop, J.I., Lutz, J.H.: Robust biomolecular finite automata. Tech-
nical report 1505.03931, arXiv.org e-Print archive (2015)

14. Klinge, T.H., Lathrop, J.I., Lutz, J.H.: (2016), Work initially introduced in [11]
and will appear in a forthcoming extension of [13]

15. Lutz, R.R., Lutz, J.H., Lathrop, J.I., Klinge, T.H., Mathur, D., Stull, D.M.,
Bergquist, T.G., Henderson, E.R.: Requirements analysis for a product family
of DNA nanodevices. In: Proceedings of the 20th International Conference on
Requirements Engineering, pp. 211–220. IEEE (2012)

16. Ogihara, M., Ray, A.: Simulating Boolean circuits on a DNA computer. In: Pro-
ceedings of the First Annual International Conference on Computational Molecular
Biology, RECOMB 1997, pp. 226–231. ACM, New York (1997)

17. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332(6034), 1196–1201 (2011)

18. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)

19. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)

20. Song, X., Eshra, A., Dwyer, C., Reif, J.: Renewable DNA seesaw logic circuits
enabled by photoregulation of toehold-mediated strand displacement. RSC Adv.
7, 28130–28144 (2017)

21. Thubagere, A.J., Thachuk, C., Berleant, J., Johnson, R.F., Ardelean, D.A., Cherry,
K.M., Qian, L.: Compiler-aided systematic construction of large-scale DNA strand
displacement circuits using unpurified components. Nat. Commun. 8 (2017). article
number 14373

https://doi.org/10.1007/978-3-319-01928-4_3
https://doi.org/10.1007/978-3-319-01928-4_3
http://arxiv.org/abs/org

Watson-Crick Partial Words

Manasi S. Kulkarni1(B), Kalpana Mahalingam1, and Ananda Chandra Nayak2

1 Department of Mathematics, Indian Institute of Technology Madras,
Chennai 600036, India

ma16ipf01@smail.iitm.ac.in, kmahalingam@iitm.ac.in
2 Department of Mathematics, Indian Institute of Technology Guwahati,

Guwahati 781039, India
n.ananda@iitg.ernet.in

Abstract. In DNA computing experiments, it is important that the
strands involved in the computation do not interact in an unde-
sirable fashion. The mathematical formalization of the DNA WK-
complementarity as an antimorphic involution, has motivated the gen-
eralization of various concepts in combinatorics of words to ones that
involve pseudo-identity functions. Mismatches occurring in not so per-
fect WK-complement strands has motivated the study of partial words
for DNA strands. In this paper, we aim to combine the concept of partial
words with pseudo-identity functions, and study the basic notions such
as primitivity, conjugacy, commutativity and borderedness property for
partial words under morphic and antimorphic involutions.

Keywords: Computing with DNA · Partial words · Primitivity
Conjugacy · Commutativity · Bordered words · Morphic involution
Antimorphic involution

1 Introduction

Synthesizing artificial DNA strands for computation purposes require designing
of these strands in such a way that only the desired computations and interac-
tions will take place while all other undesired computations and interactions are
avoided. The main obstacle in most of the DNA computing experiments is the
design of DNA strands that do not interact with themselves or with other stands
in an undesirable manner forming unwanted secondary structures. This prob-
lem has been theoretically addressed in the literature by various means, such as
ensuring large Hamming distance between the strands [6], extending several clas-
sical concepts from combinatorics on words to incorporate Watson-Crick(WK)
complementarity of DNA strands, [5,7–9,12], etc. (Recall that, a single strand of
DNA can be considered as a word over the DNA alphabet {A,G,C, T} where A
is a WK-complement of T and vice versa, and G is a WK-complement of C and
vice versa. This WK-complementarity of the DNA strands is mathematically
formalized as an antimorphic involution.)

c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 190–202, 2017.
https://doi.org/10.1007/978-3-319-71069-3_15

Watson-Crick Partial Words 191

In general, the theoretical design of the DNA strands is based on the assump-
tion that the hybridization occurs between two perfect WK-complement strands.
However, in experimental computations, the hybridization can still occur even if
there are few mismatches between the two strands. Thus, these mismatches can
be disregarded and can be accounted for holes, treating these strands as partial
words. In [13], Peter Leupold proposed the idea of partial words to be used to
find good encodings for DNA computing purposes, as the compatibility of par-
tial words automatically brings the Hamming distance concept in. The author
then extends the concepts of involution-compliance and involution-freeness [7]
for partial words.

In this paper we continue this line of research by initiating the study of
some of the basic notions in combinatorics on partial words in order to incorpo-
rate the involution mapping. The definition of pseudo-primitive partial words is
motivated by the information equivalence between two complementary strands
of DNA. In addition, pseudo-primitive partial words account for repetition-free
words upto involution. The notions of conjugacy, commutativity and bordered-
ness extended to their involution counterparts are known to have a strong link
with the unwanted secondary structures formed in DNA computing experiments,
[9,10]. Note that, by extending these concepts to involution partial words, for
example, that of pseudo-unbordered partial words, we can ensure that, some of
the self-hybridized secondary structures can be avoided even when the hybridized
substrands are not perfect WK-complements.

This paper is organized as follows. In Sect. 2, we give some basic definitions
and notations used throughout the paper. In Sect. 3, we define θ-primitive par-
tial words for (anti)morphic involution1 and discuss some basic properties of
it. Section 4 defines the concept of θ-conjugacy and θ-commutativity for partial
words and, provides the characterization of partial words such that one is a θ-
conjugate of the other and one θ-commutes with the other. In Sect. 5, we define
θ-bordered and θ-unbordered partial words with concluding remarks in Sect. 6.
Note that, although from theoretical point of view, it is natural to extend the
properties of words to partial words under involution mapping, not all results
hold trivially for partial words as can be seen from this paper.

2 Preliminaries

Let Σ be a finite alphabet consisting of nonempty set of symbols known as letters.
A word is a sequence of letters from the alphabet Σ. A total word w = a1a2 · · · an

is a total function w : {1, 2, . . . , n} �→ Σ where ai ∈ Σ for i = 1, 2, . . . , n. The
length of a word w ∈ Σ∗ (i.e., the number of symbols in a word) is denoted by
|w|. The empty string λ does not contain any symbol and hence |λ| = 0. The
set of all words including λ is denoted by Σ∗ and Σ+ = Σ∗ \ {λ}. By w(i), we
denote the letter at the i-th position. Any subset L of Σ∗ is called a language
and the cardinality of L is denoted by |L|.

1 By (anti)morphic involution, we mean either a morphic or an antimorphic involution.

192 M. S. Kulkarni et al.

An involution is a mapping θ : Σ �→ Σ such that θ2 is the identity function,
i.e., θ(θ(x)) = x for all x ∈ Σ∗. A mapping θ is said to be a morphism if
θ(xy) = θ(x)θ(y) and an antimorphism if θ(xy) = θ(y)θ(x) for all x, y ∈ Σ∗.

A partial word w = a1a2 · · · an over an alphabet Σ can be seen as a partial
function w : {1, 2, . . . , n} �→ Σ. The partial word may have some undefined
positions along with the symbols from the alphabet. These unknown positions
are known as “do not know” symbols or “holes” which are denoted by ♦, and
they can be replaced by any symbol from the alphabet, [3]. A length of a partial
word w is the number of holes and non-holes symbol in it. For a partial word
w = a1a2 · · · an, if w(i) is defined then we say that i ∈ D(w), otherwise we say
that i ∈ H(w) where D(w) and H(w) are the domain and the set of holes of w
respectively and 1 ≤ i ≤ n. A (total) word is a partial word with an empty set
of holes. A partial word can be seen as a total word over an extended alphabet
Σ♦ = Σ ∪ {♦}. A language of partial words L over the alphabet Σ is a subset
of Σ∗

♦. Moreover, for ♦ the mapping θ is defined as θ(♦) = ♦. For example,
u = ab♦b♦a is a partial word of length 6 over an alphabet Σ = {a, b} where
D(u) = {1, 2, 4, 6} and H(u) = {3, 5}.

Since a partial word can be seen as a total word over the enlarged alphabet
Σ♦, the concepts of prefix, suffix and factor of a partial word can be defined
similarly as that of a total word. For a partial word w = xyz, y is called a
central factor of w if x �= λ and z �= λ.

Definition 1 [3]. Let u and v be two partial words of equal length, then

1. u is said be contained in v, denoted by u ⊂ v, if all elements of D(u) are also
in D(v) and u(i) = v(i) for all i ∈ D(u);

2. u and v are said to be compatible, denoted by u ↑ v, if there exists a partial
word w such that both u ⊂ w and v ⊂ w;

For w ∈ Σ∗
♦ and u ∈ Σ∗, u ≤cp w (respectively, u ≤cs w) if and only if

w ⊂ uv (respectively, w ⊂ vu) for v ∈ Σ∗. Similarly, CPref(w) = {u ∈ Σ+ :
∃v ∈ Σ∗, w ⊂ uv} (respectively, CSuff(w) = {u ∈ Σ+ : ∃v ∈ Σ∗, w ⊂ vu}) and
PCPref(w) = {u ∈ Σ+ : ∃v ∈ Σ+, w ⊂ uv} (respectively, PCSuff(w) = {u ∈
Σ+ : ∃v ∈ Σ+, w ⊂ vu}).

Recall that a word is said to be a palindrome if it is equal to its mirror image.
Similarly, a word u is said to be a θ-palindrome if u = θ(u) for (anti)morphic
involution θ. On similar lines, a partial word u is said to be a θ-palindrome if
u ↑ θ(u) for (anti)morphic involution θ.

By u ∨ v, we denote the least upper bound of u and v, i.e., a partial word
such that u, v ⊂ u ∨ v and D(u ∨ v) = D(u) ∪ D(v). A partial word w is said to
be primitive if there does not exist a word v such that w ⊂ vn with n ≥ 2, [2].
The language of primitive partial words is denoted by Qp, [14]. If a partial word
u is primitive and u ⊂ v then v is also primitive.

3 θ-Primitive Partial Words

The notions of primitivity and periodicity are regarded as the most basic notions
in combinatorics on words. Recall that, a word is said to be primitive if it is not

Watson-Crick Partial Words 193

power of any shorter word. Similarly, a partial word is said to be primitive if it is
not contained in the power of a shorter word, i.e., if there does not exist a word
v such that w ⊂ vn with n ≥ 2, [2]. In this section, we extend the concept of
primitivity to accommodate partial words under involution mappings. We first
extend the notion of a period to θ-strong and θ-weak period of a partial word
where θ is (anti)morphic involution.

Definition 2. Let θ be (anti) morphic involution and u be a partial word over Σ.

1. A θ-(strong) period of a partial word u is a positive integer p such that u(i) =
u(j) or u(i) = θ(u(j)) whenever i, j ∈ D(u) and i ≡ j mod p. In such a case,
we call u to be θ-p-periodic.

2. A θ-weak period of u is a positive integer p such that u(i) = u(i + p) or
u(i) = θ(u(i + p)) whenever i, i + p ∈ D(u). In such a case, we call u to be
weakly θ-p-periodic.

If a word is θ-p-periodic then it is weakly θ-p-periodic as well, but converse
does not hold always. Let us illustrate the above definitions with the help of a
following example.

Example 3. Let Σ = {A,C,G, T} and let θ be (anti)morphic involution such
that θ(A) = T , θ(T) = A, θ(G) = C, θ(C) = G and θ(♦) = ♦. Let u =
A♦♦TC♦TGA, then u is θ-3,5,6,8-periodic. Similarly, v = A♦♦TG♦♦CTG is
weakly θ-2,3,5,8-periodic. However v is not θ-2-periodic.

Let θ be (anti)morphic involution. A partial word w = u1u2 · · · un is said
to be contained in θ-power of a word u if u1 ⊂ u and, either ui ⊂ u or ui ⊂
θ(u) for all i ∈ {2, . . . , n}. More specifically, a partial word w ∈ Σ+ is said
to be contained in pseudo-power of a nonempty word u relative to θ, if w ⊂
u{u, θ(u)}∗. Furthermore, a partial word w is said to be θ-primitive if there
exists no nonempty word u such that w ⊂ u{u, θ(u)}+. By Qpθ

we denote the
set of all θ-primitive partial words. If w ⊂ u{u, θ(u)}∗ and u is a shortest such
word, then u is said to be θ-primitive root of w. Formally,

ρθ,♦(w) = {x : x is a θ-primitive (total) word and w ⊂ x{x, θ(x)}n, n ≥ 0}.

It is known that every non-empty word has an unique primitive root, and also
an unique θ-primitive root for a morphic as well as an antimorphic involution θ,
[5]. However, in case of partial words, the primitive root of a partial word need
not be unique, [2]. Similarly, the θ-primitive root of a partial word need not be
unique as shown by the following example.

Example 4. Let Σ = {A, T,C,G} and θ be an antimorphic involution such that
θ(A) = T, θ(T) = A, θ(C) = G, θ(G) = C, θ(♦) = ♦. Let w = A♦CG♦T . It can
be observed that w ⊂ ATCθ(ATC), w ⊂ ACCθ(ACC), w ⊂ AGCθ(AGC) and
w ⊂ AACθ(AAC).

Proposition 5. If a partial word w ∈ Σ+
♦ is θ-primitive then it is also primitive.

194 M. S. Kulkarni et al.

Proof. Let w be a θ-primitive partial word. Suppose w is not primitive. Then
there exists a word u ∈ Σ+ such that w ⊂ uk with k ≥ 2. Hence w is also
contained in θ-power of u which is a contradiction. Thus w is a primitive partial
word. ��

The converse of the above proposition need not be true as illustrated by the
following example.

Example 6. Let Σ = {a, b} and θ be an antimorphic involution such that θ(a) =
b, θ(b) = a and θ(♦) = ♦. Let w = abb♦ ∈ Qp but w = abb♦ ⊂ aθ(a)θ(a)a and
hence w is not a θ-primitive partial word.

It is known that, for a primitive word u, u cannot be a factor of u2 in a
nontrivial way, i.e., if u2 = xuy then either x or y has to be empty. On the
similar lines, it has been shown in [2] that if u is a primitive partial word with
at most one hole and uu ↑ xuy then either x = λ or y = λ. The following result
generalizes this fact to any arbitrary power.

Lemma 7. Let u be a nonempty partial word with one hole. Then the following
are equivalent:

1. u is primitive;
2. un−1 is not compatible to a central factor of un for all n ≥ 2.

Proof. (1) ⇒ (2) We prove it by induction on n.
Base Case: Let n = 2. Since u is a primitive partial word with one hole, the

result holds as proved in [2].
Inductive Hypothesis: Let us assume that the result holds for 2 ≤ k ≤ n − 1,

i.e., uk−1 is not compatible to a central factor of uk.
Inductive step: Now we prove the result for k = n, i.e., we prove that uk is not

compatible to a central factor of uk+1. Assume that uk is compatible to a central
factor of uk+1. Thus, uk+1 = tvs such that v ↑ uk for some nonempty partial
words t, s with |u| = |t| + |s| and t and s are prefix and suffix of u respectively.
This implies u = ty = zs for some nonempty partial words y, z ∈ Σ+

♦ . Now,
uk+1 = uuk−1u = tyuk−1zs = tvs. As v ↑ uk, we have yuk−1z ↑ uk. Since y
and z are nonempty, uk−1 is compatible to a central factor of uk which is a
contradiction to the inductive hypothesis.

Hence if u is a primitive partial word then un−1 cannot be compatible to a
central factor of un for all n ≥ 2.

(2) ⇒ (1) Assume that u is not a primitive partial word. Then there exist
a nonempty word z such that u ⊂ zk, k ≥ 2. Now, un ⊂ znk = zzk(n−1)zk−1.
Since un−1 ⊂ zk(n−1) we have un ↑ zun−1zk−1, and thus un−1 is compatible to
a central factor of un, a contradiction. Thus, u is primitive. ��

However Lemma 7 does not hold for the partial words with at least two holes.
For example, consider a partial word w = a♦b♦ and thus ww = a♦b♦a♦b♦. It
is easy to observe that w is primitive and w is compatible to a central factor
of ww.

Watson-Crick Partial Words 195

Since θ-primitive partial word is primitive, the above lemma applies to
θ-primitive partial words as well. However, a θ-primitive partial word x with
one hole can be compatible to a central factor of a word in {x, θ(x)}2\x2, as
demonstrated by the following example.

Example 8. Let Σ = {A,C,G, T} and θ be an antimorphic involution such that
θ(A) = T, θ(T) = A, θ(G) = C, θ(C) = G and θ(♦) = ♦. Then for x = A♦CG,
we can see that θ(x)θ(x) = CG♦TCG♦T ↑ CGA♦CGAT . Similarly, let Σ =
{a, b, c} and θ be an antimorphic involution such that θ(a) = b and vice versa,
and θ(c) = c. Then for x = a♦c, xθ(x) = a♦cc♦b ↑ aa♦c♦b.

The primitive partial word is closed under cyclic permutation. However, the
class of θ-primitive partial words not necessarily closed under cyclic permutation
which is illustrated by the following example.

Example 9. Consider the DNA alphabet Σ = {A, T,C,G} and let θ be a morphic
involution where θ(A) = T, θ(T) = A, θ(C) = G, θ(G) = C and θ(♦) = ♦. Let
w = AC♦GTC be a primitive partial word. Consider a cyclic permutation of w,
w′ = CAC♦GT ⊂ (CA)2θ(CA) which is not a θ-primitive partial word.

4 θ-Conjugacy and θ-Commutativity

In this section we define the concept of θ-conjugacy and θ-commutativity for
partial words where θ is (anti)morphic involution.

Definition 10. Let θ be either a morphic or an antimorphic involution on Σ∗
♦.

A partial word u is a θ-conjugate of another partial word w if there exists v ∈ Σ∗
♦

such that uv ↑ θ(v)w.

It is know that θ-conjugacy is a transitive relation for total words when θ is
a morphic involution, [11]. However, this may not hold in case of partial words
as demonstrated by the following example.

Example 11. Let Σ = {a, b, c} and let θ be a morphic involution such that
θ(a) = b, θ(b) = a, θ(c) = c and θ(♦) = ♦. Let u = a♦bc, w = ♦acb and
v = b♦ab. It is easy to see that for x = acb and y = c, u ⊂ xy, w ⊂ θ(y)x and
hence u is a θ-conjugate of w. Similarly, for α = b and β = acb, w ⊂ αβ and
v ⊂ θ(β)α and hence w is a θ-conjugate of v. Now, if we assume that there exists
x′, y′ ∈ Σ+

♦ such that u ⊂ x′y′ and v ⊂ θ(y′)x′, then it is easy to observe that x′

must begin with a and θ(y′) must begin with b, i.e., y′ must begin with a. Hence
x′ = a and y′ = abc, but then v = b♦ab �⊂ θ(y′)x′ = baca. Hence θ-conjugacy
relation is not transitive for a morphic involution θ.

The following result from [4] provides a characterization of partial words u, v
such that x is a conjugate of y.

Theorem 12 [4]. Let x, y, z be partial words with x, y ∈ Σ+
♦ and z ∈ Σ∗

♦. If
xy ↑ yz and xy ∨ yz is |x|-periodic then there exists words u ∈ Σ∗, v ∈ Σ+ such
that x ⊂ uv, y ⊂ vu and z ⊂ (uv)nu for n ≥ 0.

196 M. S. Kulkarni et al.

In the following proposition, we provide a characterization of partial words
x and y such that x is a θ-conjugate of y.

Theorem 13. Let x and y be non-empty partial words and θ be a morphic
involution on Σ∗

♦. If there exists a partial word z such that xz ↑ θ(z)y and
xz ∨ θ(z)y is |x|-θ-periodic, then there exist partial words u, v such that x ⊂ uv
and one of the following holds:

1. y ⊂ vθ(u) and z ⊂ (θ(u)θ(v)uv)iθ(u) for some i ≥ 0.
2. y ⊂ θ(v)u and z ⊂ (θ(u)θ(v)uv)iθ(u)θ(v)u for some i ≥ 0.

Proof. Let m > 0 be such that m|x| > |z| > (m − 1)|x|. Let x = x1y1
and y = y2x2 where |x1| = |x2| = |z| − (m − 1)|x| and |y1| = |y2|. Let
z = x′

1y
′
1x

′
2y

′
2 · · · x′

m−1y
′
m−1x

′
m where |x′

1| = |x′
2| = · · · = |x′

m| = |x1| = |x2|
and |y′

1| = |y′
2| = · · · = |y′

m−1| = |y1| = |y2|. Note that such m always exist.
Now, since xz ↑ θ(z)y,

x1 y1 x′
1 y′

1 x′
2 y′

2 · · · x′
m−1 y′

m−1 x′
m ↑

θ(x′
1) θ(y′

1) θ(x′
2) θ(y′

2) θ(x′
3) θ(y′

3) · · · θ(x′
m) y2 x2

By the length argument we get, x1 ↑ θ(x′
1), y1 ↑ θ(y′

1), x′
1 ↑ θ(x′

2), y′
1 ↑ θ(y′

2),
. . . , x′

m−1 ↑ θ(x′
m), y′

m−1 ↑ y2, x′
m ↑ x2. Here, we have two different cases. If m

is odd, then
x1 ↑ θ(x′

1) ↑ x′
2 ↑ θ(x′

3) ↑ · · · ↑ θ(x′
m) ↑ θ(x2)

and
y1 ↑ θ(y′

1) ↑ y′
2 ↑ θ(y′

3) ↑ · · · ↑ y′
m−1 ↑ y2.

Similarly, if m is even then,

x1 ↑ θ(x′
1) ↑ x′

2 ↑ θ(x′
3) ↑ · · · ↑ x′

m ↑ x2

and
y1 ↑ θ(y′

1) ↑ y′
2 ↑ θ(y′

3) ↑ · · · ↑ θ(y′
m−1) ↑ θ(y2).

Also, xz ∨ θ(z)y is |x|-θ-periodic. For 1 ≤ i ≤ |x1|, consider the partial word

(x1)(i) (x′
1)(i) (x′

2)(i) · · · (x′
m−1)(i) (x′

m)(i) ∨
(θ(x′

1))(i) (θ(x′
2))(i) (θ(x′

3))(i) · · · (θ(x′
m))(i) (x2)(i)

It is clear that the above word is 1-θ-periodic, say with letter ai ∈ Σ ∪ {♦}.
Similarly, for 1 ≤ j ≤ |y1|, the partial word

(y1)(j) (y′
1)(j) (y′

2)(j) · · · (y′
m−2)(j) (y′

m−1)(j) ∨
(θ(y′

1))(j) (θ(y′
2))(j) (θ(y′

3))(j) · · · (θ(y′
m−1))(j) (y2)(j)

is 1-θ-periodic, say with letter bj ∈ Σ ∪ {♦}. Now, let u = a1a2 · · · a|x1| and
v = b1b2 · · · b|y1|. Let m be odd, then x1 ⊂ u, x2 ⊂ θ(u), y1 ⊂ v and y2 ⊂ v.
Then x = x1y1 ⊂ uv, y = y2x2 ⊂ vθ(u) and z = x′

1y
′
1x

′
2y

′
2 · · · x′

m−1y
′
m−1x

′
m ⊂

(θ(u)θ(v)uv) · · · (θ(u)θ(v)uv)θ(u) = (θ(u)θ(v)uv)
m−1

2 θ(u). Similarly, if m
is even, then x1 ⊂ u, x2 ⊂ u, y1 ⊂ v and y2 ⊂ θ(v) and
z = x′

1y
′
1x

′
2y

′
2 · · · x′

m−1y
′
m−1x

′
m ⊂ (θ(u)θ(v)uv) · · · (θ(u)θ(v)uv)θ(u)θ(v)u =

(θ(u)θ(v)uv)
m−2

2 θ(u)θ(v)u. ��

Watson-Crick Partial Words 197

The following theorem from [3] provides a necessary and sufficient condition
for two equi-length partial words to be conjugates of each other.

Theorem 14 [3]. Let x, y, z be partial words such that |x| = |y| > 0. Then
xz ↑ zy if and only if xzy is weakly |x|-periodic.

However, in case of partial words under the involution mapping, we have only
a necessary condition. The proof technique for this proof is similar to that of
Theorem 13 and hence is omitted.

Theorem 15. Let x, y and z be partial words such that |x| = |y| > 0. Then for
a morphic involution θ, xz ↑ θ(z)y implies xzy is weakly θ-|x|-periodic.

However, the converse of the above theorem does not hold necessarily. For
example, let Σ = {A,G,C, T} be such that for a morphic involution θ, θ(A) =
T, θ(T) = A, θ(G) = C, θ(C) = G and θ(♦) = ♦. Then for x = A♦, y = G♦
and z = ♦TG♦CT , xzy = A♦♦TG♦CTG♦ is weakly 2-θ-periodic but xz =
A♦♦TG♦CT �↑ ♦AC♦GAG♦ = θ(z)y.

4.1 θ-Commutativity

Definition 16. Let θ be either a morphic or an antimorphic involution. A par-
tial word u ∈ Σ+ is said to θ-commute with a partial word v ∈ Σ+ if uv ↑ θ(v)u.

We define the θ-commutativity order of a partial word v as u ≤θ♦
c v if and only

if v ⊂ ux and v ⊂ θ(x)u for some x ∈ Σ∗. By L
θ♦
c (v) = {u : u ∈ Σ∗, u ≤θ♦

c v} we
denote the set of all partial words that θ-commute with v and ν

θ♦
c (v) = |Lθ♦

c (v)|.
For a positive integer i ≥ 1, we define Cθ♦(i) = {v : v ∈ Σ+

♦ , ν
θ♦
c (v) = i}.

We illustrate θ-commutative partial words in the following example.

Example 17. Consider the DNA alphabet Σ = {A, T,C,G} and θ be an anti-
morphic involution such that θ(A) = T, θ(T) = A, θ(C) = G, θ(G) = C and
θ(♦) = ♦. Let v = A♦G♦ and x = CTAGA♦G♦. Now θ(x) = ♦C♦TCTAG and
vx = A♦G♦·CTAGA♦G♦ ↑ θ(x)v = ♦C♦TCTAG·A♦G♦. Hence v θ-commutes
with x.

In [10], the authors have shown that for all a ∈ Σ such that a �= θ(a),
a+ ⊆ Cθ(1) whenever θ is either a morphic or an antimorphic involution. This
result does not hold in case of partial words which is illustrated in the following
example.

Example 18. Let Σ = {a, b} and θ be an antimorphic involution such that θ(a) =
b, θ(b) = a and θ(♦) = ♦. Consider the partial word u = a♦ and observe that
u ⊂ a2. For v = a, x = b, we have u ⊂ vx and u ⊂ θ(x)v. Hence a ∈ L

θ♦
c (u) and

thus u /∈ Cθ♦(1).

The following result provides a characterization of partial words u and v that
commutes with each other.

198 M. S. Kulkarni et al.

Lemma 19 ([1]). Let u and v be two nonempty partial words such that uv
contains at most one hole. The words u and v commute if and only if they are
contained in powers of the same word, i.e., uv ↑ vu if there exists a word w such
that u ⊂ wm and v ⊂ wn for some m,n ≥ 1.

On similar lines, in the following result, we provide a characterization
for partial words u and v such that u θ-commutes with v for (anti)morphic
involution θ.

Theorem 20. Let u, v ∈ Σ+
♦ such that u θ-commute with v, i.e., uv ↑ θ(v)u

and uv ∨ θ(v)u is |v|-periodic.
1. If θ is a morphic involution then v ⊂ yx, u ⊂ (xy)ix as well as v ⊂ θ(x)θ(y)

for i ≥ 0 and x ∈ Σ+, y ∈ Σ∗.
2. If θ is an antimorphic involution then v ⊂ yx, u ⊂ (xy)ix for i ≥ 0 as well as

v ⊂ θ(y)θ(x) where x ∈ Σ+, y ∈ Σ∗.

Proof. We prove the result only for a morphic involution as the proof for an
antimorphic is similar. Let uv ↑ θ(v)u and uv ∨ θ(v)u is |v|-periodic. Then by
Theorem 12, there exist x ∈ Σ+ and y ∈ Σ∗ such that θ(v) ⊂ xy, v ⊂ yx and
u ⊂ (xy)ix for some i ≥ 0. Furthermore, θ(v) ⊂ xy implies that v ⊂ θ(xy) =
θ(x)θ(y) as θ is a morphic involution.

5 θ-(Un)bordered Partial Words

In this section we introduce the concept of θ-bordered and θ-unbordered partial
words for (anti)morphic involution θ. Recall that, a non-empty partial word u
is said to be bordered if there exists x ∈ Σ+ such that u ⊂ xy and u ⊂ zx for
y, z ∈ Σ+.

Definition 21. Let θ be either a morphic or an antimorphic involution on Σ∗
♦.

A partial word u ∈ Σ+
♦ is said to be θ-bordered if there exists x ∈ Σ+ such that

u ⊂ xy and u ⊂ zθ(x) for y, z ∈ Σ+. A partial word which is not θ-bordered is
called θ-unbordered.

For u ∈ Σ∗
♦ and x, y, z ∈ Σ∗, if u ⊂ xy and u ⊂ zθ(x), then x is said to

be a θ-border of u and this is denoted by x ≤θ♦
d u. By L

θ♦
d (u) and Dθ♦(i) we

denote the set of all θ-borders of a partial word u and the set of all partial words
with exactly i θ-borders, respectively. Note that, the empty word λ is always
considered as a trivial θ-border for all partial words. Also, let ν

θ♦
d (u) denotes the

cardinality of the set L
θ♦
d (u) for a partial word u ∈ Σ+

♦ .

Example 22. Let Σ = {a, b} and θ be an antimorphic involution such that θ(a) =
b, θ(b) = a and θ(♦) = ♦. Then for u = a♦ab, L

θ♦
d (u) = {λ, a, ab, aba} and

ν
θ♦
d (u) = |Lθ♦

d (u)| = 4. Hence u ∈ Dθ♦(4).

Watson-Crick Partial Words 199

The following observations follow directly from the definition.

Lemma 23. Let θ be either a morphic or an antimorphic involution over the
alphabet Σ♦.

1. A θ-bordered partial word u ∈ Σ+
♦ has length greater than or equal to 2.

2. For u ∈ Σ+
♦ , if u ⊂ {u1, u2, . . . , un} then θ(u) ⊂ {θ(u1), θ(u2), . . . , θ(un)}.

It was shown in [9] that in the case of total words, if θ(a) �= a for all a ∈ Σ
then a+ ⊆ Dθ(1). However, this result does not necessarily hold in case of partial
words, as demonstrated by the following example.

Example 24. Consider a partial word u = a♦a♦♦ over an alphabet Σ = {a, b}
such that θ(a) = b, θ(b) = a and θ(♦) = ♦ for (anti)morphic involution θ.
Clearly u ⊂ a+ but u /∈ Dθ♦(1) as a is a θ-border of u.

The following lemma provides the characterization of partial words that are
θ-bordered for an antimorphic involution θ.

Lemma 25. Let θ be an antimorphic involution. A nonempty partial word u ∈
Σ+

♦ is θ-bordered if and only if u ⊂ avθ(a) for a ∈ Σ and v ∈ Σ∗.

The following result follows immediately from Lemma 25.

Theorem 26. Dθ♦(1) is a regular language when θ is an antimorphic involution
on Σ∗

♦.

We have seen a characterization of θ-bordered partial words in Lemma 25
when θ is an antimorphic involution. The next lemma on similar lines provides
a characterization of θ-unbordered partial words for (anti)morphic involution θ,
in terms of set of contained prefixes and contained suffixes. Note that, the char-
acterization provided in Lemma 25 is stronger than the one provided in the next
lemma for an antimorphic involution θ.

Lemma 27. Let θ be (anti)morphic involution on Σ∗
♦. Then for all u ∈ Σ+

♦
with |u| ≥ 2, u is θ-unbordered iff θ(PCPref(u)) ∩ PCSuff(u) = ∅.

We know from Theorem 26 that the set Dθ♦(1) is a regular language for an
antimorphic involution θ, while Theorem 28 states that the set of all θ-bordered
words is not a context-free language for a morphic involution θ.

Theorem 28. Let θ be a morphic involution such that θ(a) �= a for all a ∈ Σ.
Then the language of θ-bordered partial words over Σ is not context-free.

We have the following result from [9] which counts the number of θ-borders
of a power of a θ-palindromic primitive word.

Proposition 29 [9]. Let u be a θ-palindrome primitive word and j ≥ 1 be an
integer.

200 M. S. Kulkarni et al.

1. For a morphic involution θ, νθ
d(uj) = νθ

d(u) + j − 1.
2. For an antimorphic involution θ, νθ

d(uj) = |uj | = j ∗ |u|.
Both of the above results need not hold in case of partial words as illustrated

by the following example.

Example 30. If θ is an antimorphic involution such that θ(a) = b, θ(b) =
a and θ(♦) = ♦ then for u = a♦b, u ↑ θ(u) and hence u is a θ-
palindrome. Let v = u2 = a♦ba♦b. Then L

θ♦
d (u) = {λ, a, aa, ab} and L

θ♦
d (v) =

{λ, a, aa, ab, aab, abb, aaba, abba, aabaa, abbaa, aabab, abbab} and thus ν
θ♦
d (u2) �=

2 ∗ |u|.
Moreover, we have the following result for a partial word that is both θ-

palindromic and primitive for a morphic involution θ.

Proposition 31. Let θ be a morphic involution, |Σ| = k and j ≥ 2. Let u ∈ Σ+
♦

be a θ-palindromic primitive partial word with one hole, then

ν
θ♦
d (uj) = ν

θ♦
d (u) + k + k2 + · · · + kj−1.

Proof. Let u = a1a2 · · · an be a primitive partial word with one hole. Since
u is θ-palindrome for a morphic involution θ, u ↑ θ(u). Thus a1a2 · · · an ↑
θ(a1a2 · · · an) = θ(a1)θ(a2) · · · θ(an) which implies that ai = θ(ai) for all
i ∈ {1, 2, . . . , n}. Hence ν

θ♦
d (u) = νd(u), where νd(u) is the number of borders

of u.
For j = 2, u2 = uu will have exactly two holes and since u is primitive, by

Proposition 7, u will not be compatible to a central factor of u2. The borders of
u2 will include the borders of u. Moreover, u is a proper prefix and as well as
proper suffix of u2. Since u has one hole, that hole can be replaced by any of the
k symbols from the alphabet Σ. Thus ν

θ♦
d (u2) = νd(u2) = νd(u) + k.

For uj , by Proposition 7 observe that uj−1 is not compatible to a proper factor
of uj . Hence, all of u, u2, . . . , uj−1 are proper prefixes as well as proper suffixes of
uj . Also uj−1 has exactly j−1 holes. Thus, ν

θ♦
d (uj) = ν

θ♦
d (u)+k+k2+· · ·+kj−1.

Corollary 32. Let θ be a morphic involution and let u be a θ-palindromic prim-
itive partial word with one hole. Then for j ≥ 2,

uj ∈ Dθ♦(i +
j−1∑

p=1

kp).

In the following result, for an antimorphic involution θ, we count the number
of θ-borders of a θ-palindromic partial word with one hole. Note that, in a partial
word u, when the hole does not occur in the middle position, the holes in the
prefixes of uj does not align with the holes in the image of suffixes of uj under
an antimorphic involution θ. However, if the hole occurs exactly in the middle
position of u, the holes in the prefixes and the image of suffixes under θ aligns
with each other, and hence the count.

Watson-Crick Partial Words 201

Proposition 33. Let θ be an antimorphic involution, |Σ| = k and j ≥ 2. Let
u ∈ Σ+

♦ be a θ-palindromic partial word with one hole. Then

1. If u is a primitive partial word such that the hole occurs anywhere but in the
middle position, then ν

θ♦
d (uj) = j × |u|.

2. If the hole in u occurs exactly in the middle position, then

ν
θ♦
d (uj) = ν

θ♦
d (u) +

(|u| + 1
2

)
k + |u|k2 + · · · + |u|kj−1 +

(|u| − 1
2

)
kj .

6 Conclusions

Primitivity, borderedness, conjugacy, commutativity are some of the most basic
notions in combinatorics on words. We have initiated the study of some of these
notions for partial words under involution mappings, drawing motivation from
DNA strand design. The presence of multiple copies of θ-palindromic strands in
DNA based computations is known to form unwanted intermolecular hybridiza-
tions, [12]. Thus, in addition, concepts like palindromic property can be extended
to partial words under involution mapping. Also, from theoretical point of view,
it is interesting to study the extended Fine-Wilf’s theorem, critical factorization
theorem, Lyndon-Schützenberger equations, etc., with respect to (anti)morphic
involutions θ.

References

1. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theor.
Comput. Sci. 218(1), 135–141 (1999)

2. Blanchet-Sadri, F.: Primitive partial words. Discr. Appl. Math. 148(3), 195–213
(2005)

3. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. CRC Press, Boca
Raton (2007)

4. Blanchet-Sadri, F., Luhmann, D.: Conjugacy on partial words. Theor. Comput.
Sci. 289(1), 297–312 (2002)

5. Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words. Theor. Com-
put. Sci. 411, 617–630 (2010)

6. Deaton, R., Garzon, M., Murphy, R.C., Rose, J.A., Franceschetti, D.R., Stevens,
S.E.: Reliability and efficiency of a DNA-based computation. Phys. Rev. Lett. 80,
417–420 (1998)

7. Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages.
Theor. Comput. Sci. 290(3), 1557–1579 (2003)

8. Jonoska, N., Mahalingam, K.: Languages of DNA based code words. In: Chen, J.,
Reif, J. (eds.) DNA 2003. LNCS, vol. 2943, pp. 61–73. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24628-2 8

9. Kari, L., Mahalingam, K.: Involutively bordered words. Int. J. Found. Comput.
Sci. 18(05), 1089–1106 (2007)

10. Kari, L., Mahalingam, K.: Watson-Crick conjugate and commutative words. In:
Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 273–283. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-77962-9 29

https://doi.org/10.1007/978-3-540-24628-2_8
https://doi.org/10.1007/978-3-540-77962-9_29

202 M. S. Kulkarni et al.

11. Kari, L., Mahalingam, K.: Watson-Crick bordered words and their syntactic
monoid. Int. J. Found. Comput. Sci. 19(05), 1163–1179 (2008)

12. Kari, L., Mahalingam, K.: Watson-Crick palindromes in DNA computing. Nat.
Comput. 9(2), 297–316 (2010)

13. Leupold, P.: Partial words for DNA coding. In: Ferretti, C., Mauri, G., Zandron,
C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 224–234. Springer, Heidelberg (2005).
https://doi.org/10.1007/11493785 20

14. Nayak, A.C., Kapoor, K.: On the language of primitive partial words. In:
Dediu, A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015.
LNCS, vol. 8977, pp. 436–445. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15579-1 34

https://doi.org/10.1007/11493785_20
https://doi.org/10.1007/978-3-319-15579-1_34
https://doi.org/10.1007/978-3-319-15579-1_34

Topological Classification of RNA Structures
via Intersection Graph

Michela Quadrini(B) , Rosario Culmone , and Emanuela Merelli

University of Camerino, via Madonna delle Carceri, Camerino, Italy
{michela.quadrini,rosario.culmone,emanuela.merelli}@unicam.it

Abstract. We introduce a new algebraic representation of RNA sec-
ondary structures as a composition of hairpins, considered as basic loops.
Starting from it, we define an abstract algebraic representation and
we propose a novel methodology to classify RNA structures based on
two topological invariants, the genus and the crossing number. It takes
advantage of the abstract representation to easily obtain two intersec-
tion graphs: one of the RNA molecule and another one of the relative
shape. The edges cardinality of the former corresponds to the number of
interactions among hairpins, whereas the edges cardinality of the latter is
the crossing number of the shape associated to the molecule. The afore-
mentioned crossing number together with the genus permits to define
a more precise energy function than the standard one which is based
on the genus only. Our methodology is validated over a subset of RNA
structures extracted from Pseudobase++ database, and we classify them
according to the two topological invariants.

Keywords: RNA classification · Topological invariants
RNA algebraic representation · Intersection graph

1 Introduction

Ribonucleic acid (RNA) is a single stranded molecule made of four different types
of nucleotides, known as Adenine (A), Guanine (G), Cytosine (C) and Uracil (U).
Such single strand, referred to as primary structure, folds back on itself achieving
secondary and tertiary structures. During such a process, called folding process,
each nucleotide can interact at most with another one establishing a hydrogen
bond performing Watson-Crick (G-C and A-U) and wobble (G-U) base pairs.
The folding process can generate many RNA secondary structures; it depends
on the free energy of RNA configurations. The RNA secondary structure is
composed of five basic structural elements namely hairpins, internal loops, bulges,
helixes (or stacks) and multi-loops. Each one of them, generated when at least
one base pair is formed, is a loop. Therefore, secondary structures are composed
of loops. If no interaction among loops is present, the secondary structure is
said to be pseudoknots free, as illustrated in Fig. 1(A), otherwise it is called
pseudoknotted, as depicted in Fig. 1(B). In this work, the phosphodiester bond,
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 203–215, 2017.
https://doi.org/10.1007/978-3-319-71069-3_16

http://orcid.org/0000-0003-0539-0290
http://orcid.org/0000-0003-3333-0893
http://orcid.org/0000-0002-1321-4134

204 M. Quadrini et al.

a chemical bound that links two consecutive nucleotides, is referred to as a
strong interaction and is depicted by a black line, while the base pairs created
during the folding process are called weak interactions and are illustrated by
zig zag lines.

Fig. 1. RNA secondary structures

RNA molecules regulate a wide range of functions in biological systems. It has
been recognized that in addition of being a carrier of genetic information, some
RNA may also have enzymatic roles and may play a central part in the regulation
of biological networks [5]. The pseudoknots, although it is known experimentally
that they are fairly rare, usually impose some constraints on the sugar-phosphate
backbone of the molecule. Their roles include forming the catalytic core of var-
ious ribozymes [13], self-splicing introns [1], and telomerase [17]. Additionally,
they play critical roles in altering gene expression. For these reasons, starting
from the primary structure of an RNA molecule, the prediction of the folding
process is the main open problem of molecular biology [5]. Several deterministic
and stochastic methods have been proposed for such prediction [2,11]. Despite
great progress, their overall success is limited, especially for long RNA mole-
cules. Part of the difficulty lies in the prediction of RNA pseudoknots, which
has been identified as an NP-complete problem [8]. Bon et al. [4] introduced a
topological classification of RNA secondary structures with pseudoknots based
on a topological invariant, the genus. Reidys et al. provided relevant contri-
butions in the research area of combinatorial topology and developed several
algorithms for predicting pseudoknots [7,14]. Vernizzi et al. [18] added a new
topological invariant, the number of crossings, to the aforementioned topological
classification. Many different ways to represent RNA secondary structures are
introduced in literature, such as the conventional diagram depicted in Fig. 2(A),
arc diagram illustrated in part (B) of Fig. 2, bracket representation and many
others. The arc diagram representation can be regarded as a special case of the
conventional diagram, where the vertices on a straight line (backbone) represent
the nucleotides and base pairs are indicated using arcs.

In this work, we introduce a multiple context-free grammar that permits
to associate a unique algebraic representation for each RNA molecule, both

Topological Classification of RNA Structures via Intersection Graph 205

Fig. 2. Two different representations of RNA secondary structures

pseudoknot free and pseudoknotted. The main novelty of our approach, respect
to the others present in the literature, is that we represent each RNA secondary
structure as an algebraic composition of hairpins, considered as basic loops.
Moreover, it permits to classify each RNA molecule in terms of genus and cross-
ing number. Such crossing number and the genus, a non negative integer which
depends only on the connectivity of the base pairs, are two topological invari-
ants. They permit to improve the function for the energy calculation. Finally, a
procedure, Pseudoknots Detection Procedure, is defined to identify the kind of
pseudoknots of genus 1. In order to validate our methodology, we applied it to a
subset of real RNA structures extracted from Pseudobase++ database, and we
classified them according to their genus and crossing number.

The paper is organized as follows. In Sect. 2, we present a review of mathe-
matical concepts necessary to understand the new proposed methodology, which
is introduced in Sect. 3. The results are then commented in Sect. 4, whereas
conclusions and future works are reported in Sect. 5.

2 Mathematical Background

In this Section, some basic mathematical concepts will be introduced. The inter-
ested readers can refer to [12] for a complete treatment of topological invariants
and to [10] for intersection graphs.

2.1 Topological Invariants

The global properties of RNA molecule are included in topological constraints
encoded at the level of secondary structure. The topological invariants pro-
vide information regarding such constraints and, roughly speaking, they do not
change under continuous stretching and bending of the topological space. The
genus of an RNA molecule measures its complexity. Its geometrical interpre-
tation is quite simple. In fact, the genus g of an arc diagram is the minimum
number of handles that a sphere must have in order that each arc of the diagram
can be illustrated without any crossing. An arc diagram that does not present
any crossing can be drawn on a sphere. A graphical example is given at the top
of Fig. 3. The sphere has no handles, so the genus associated to the structure
is equal to 0. The arc diagram illustrated at the bottom right of Fig. 3 can be

206 M. Quadrini et al.

drawn without crossing on a torus. Roughly speaking, the torus corresponds to
a sphere with one handle and therefore the genus of the structure is 1.

Fig. 3. Examples of the idea of genus

The genus permits to classify RNA secondary structures in equivalence
classes; each class is determined by a value of genus g. In order to simplify
the classification, we can observe that collapsing parallel arcs into one single arc
and removing arcs which do not perform any cross, does not in fact change the
genus value. This process determines the shape of the diagram. See Fig. 4 for an
illustration of the process.

Fig. 4. The shape of a diagram

All the four types of RNA molecule with genus 1 are shown in Fig. 5.

Fig. 5. The four types of primitive pseudoknots with genus 1

A practical way for calculating the diagram genus consists in fattening the
diagram, obtaining a double-line diagram, as illustrated in Fig. 6. Let P be the

Topological Classification of RNA Structures via Intersection Graph 207

number of double lines (i.e., the number of base pairs) and let L be the number
of closed loops, the genus of the diagram is the non negative integer defined by

g =
P − L

2
.

For instance, in Fig. 6 the diagram has 3 double lines and 1 closed loops.

Fig. 6. Steps to compute the genus of a structure

The genus has the property of being additive. Thus, for a structure com-
prised of two consecutive pseudoknots with genus g1 and g2 respectively, the
genus of the whole structure is given by g = g1 + g2. For example, if the shape
is composed of an H pseudoknot followed by a K pseudoknot, as illustrated in
Fig. 7, each one has genus 1 and the genus of the whole structure is 2. In order
to characterize the intrinsic complexity of a pseudoknot, the concepts of irre-
ducibility and nested have been introduced. A shape is said to be irreducible if
it cannot be disconnected by cutting the backbone. It is said to be nested if it
can be removed by cutting the backbone twice, while the rest of the shape stays
connected in a single component. The shape on the left of Fig. 7 is an example
of a reducible one, whereas the motif on the right is irreducible.

Fig. 7. A reducible shape (left) and an irreducible one (right)

Each arc diagram with genus greater than 0 is characterized by crossing
arcs. Thus, the crossing arcs indicate the presence of at least one pseudoknot.
If we take into account the four shapes of genus 1, introduced in Fig. 5, we can
observe that they differ by the crossing number. Moreover, such crossing number
and the genus do not uniquely identify the RNA shape. A simple example of this
observation is given by the eight different pseudoknots with genus 2 and crossing
number NC equals to 3 shown in Fig. 8.

The crossing number of a shape is a topological invariant and it has the
property of being additive. In fact, if D is a reducible shape characterized by
a sequence of two or more shapes, D1,D2, . . . ,Dn, the crossing number, ND, is
given by the sum of the crossing number NDi of each shape. Analogously, if D

208 M. Quadrini et al.

Fig. 8. The eight shapes with genus 2 and crossing number 3

can be decomposed into nested parts Di, the crossing number, ND, is given by
the sum of the crossing number of each nested part. Thus, it is defined as follows:

1. Given an arc diagram D, let D = D1 + D2 + . . . DN be its decomposition in
irreducible or nested parts Di;

2. For each diagram Di, we consider its shape D′
i;

3. The crossing number NC of D′ is defined as the sum of the crossing number
of each D′

i.

2.2 Intersection Graph

Intersection graphs are relevant in both theoretical and applicative perspectives.
In fact, they are able to provide several types of topological information about
an arc diagram. For each arc diagram, its intersection graph is defined as follows:

1. each vertex corresponds to a loop of the diagram;
2. each edge corresponds to an interaction between two loops of the diagram.

An example of the intersection graph of the RNA structure illustrated in Fig. 2
is shown in Fig. 9.

Fig. 9. The intersection graph of the RNA molecule shown in Fig. 2

3 Materials and Methods

The topological classification of RNA secondary structures with pseudoknots,
that we propose, is based on two topological invariants, genus and crossing num-
ber, and takes advantage of a new algebraic representation and of intersection
graphs. To define the new representation it is necessary to introduce an opera-
tor able to model interactions among loops; it has been introduced in Sect. 3.1.
Such operator is translated into a multiple context-free grammar, in Sect. 3.2.
The procedures to obtain the intersection graph of an RNA molecule and the
intersection graph of the relative shape are defined in Sect. 3.3, as well as the
algorithm that permits to recognize the kind of pseudoknots of genus 1.

Topological Classification of RNA Structures via Intersection Graph 209

3.1 Operator to Model Interactions Among Loops

In order to model RNA secondary structures, we define an operator crossing,
��k, able to model interactions among loops. The operator takes two arc dia-
grams and maps them into another one. It depends on a non integer parameter,
k, which indicates that the resulting structure is obtained attaching the second
arc diagram on the k–th nucleotides of the first one. According to the nature of
RNA molecules, such operator is well-defined if each nucleotide of the resulting
structure performs at most one weak interaction. It is also well-defined if the
two structures do not share nucleotides, i.e., the first arc diagram is followed
by the second one. The new structure, obtained when k is equal to 0, is a con-
catenation between the two structures. In order to formally define the operator
��k, it is necessary to introduce new symbols, 〈 , 〉 and �. Algebraically, each
RNA secondary structure is identified by (as

1, a
s
N)〈α〉, where α is the sequence of

nucleotides (backbone) enclosed by the pseudoweak interaction, a fictitious weak
interaction, between the first nucleotide, a1, and the last one, aN , identified by
pair (as

1, a
s
N). Each nucleotide that performs a weak interaction with another

one, is marked by symbol �, while the unpaired nucleotides are marked by ε.
Formally, let S1 and S2 be two structures, where S1 = (as

1, a
s
N)〈as

2 . . . as
N−1〉 and

S2 = (bs1, b
s
M)〈bs2 . . . bsM−1〉, the resulting structure, S1 ��k S2, is well defined if

k = 0, s ∈ {ε, �}
S1 ��k S2 → (as

1, b
s
M)〈 as

2. . .a
s
N−1a

s
Nbs1 . . . bsM−1〉

k ≤ N, s ∈ {ε, �}, ((b1 = ak) ∧ BC), ((b2 = ak+1) ∧ BC), . . . , ((bN−k = aN) ∧ BC)

S1 ��k S2 →(as
1, b

s
M)〈 as

2. . .b
s
1 . . .bsN−kbsN−k+1 . . .bsM−1〉

where BC expresses the biological constraint that each nucleotide performs at
most one weak interaction and it is formalized as follows:

BC : (s = ε, (̄s = ε ∨ s̄ = �)) ∨ (s = �,s̄ = ε).

3.2 Translating Operator into MCFG

A context-free grammar is an inadequate formalism to describe arc diagrams
with pseudoknots. It can be proved applying Ogden’s Lemma [6]. As a con-
sequence, a more expressive grammar is required. An appropriate choice is
the so-called Multiple Context-Free Grammar (MCFG), introduced in [15].
Let ΣRNA = {A,U,G,C} be the alphabet of RNA nucleotides, and let
ΣRNA = {(A,U), (U,A), (G,C), (C,G), (G,U), (U,G)} be the alphabet of weak
interactions, whose elements represent Watson-Crick or wobble base pairs of
nucleotides. The grammar is GRNA = (VN , VT , R, S, F), where VN = {S, P, L},

210 M. Quadrini et al.

VT = ΣRNA ∪ΣRNA ∪{[,]}, F = {f(��,k)} is the set of partial functions and set
of productions R is defined as follows:

S ::= αPα RNA secondary structure
P ::= f(��,0)�Pα,L� Concatenation

| f(��,k)�P,L� Nesting or Crossing
| L Hairpin

L ::= x[α+]

where x ∈ ΣRNA, α ∈ Σ∗
RNA and

f(��,k)�S,L� =
{

S ��k L if ��k is defined;
undefined otherwise.

Start symbol S represents any RNA secondary structure. The first produc-
tion of the grammar formalizes the concatenation between an RNA pseudoloop
P followed by a sequence of nucleotides α, eventually empty, and a loop L.
Whereas the second one represents both the crossing and the nesting between
a pseudoloop P and a loop L. Finally, P → L generates a hairpin. Note that
a pseudoloop P is an RNA secondary structure without the head and the tail.
Each loop L is a hairpin, L → x[α+], i.e., a Watson-Crick or a wobble base pair
encloses a sequence of unpaired nucleotides, α+.

Theorem 1. Multiple context-free grammar GRNA, introduced above, generates
uniquely all RNA secondary structures.

Proof. It is equivalent to prove that grammar GRNA is not ambiguous. This
property follows by the nature of the molecule, i.e., each nucleotide can perform
at most one weak interaction and the primary structure is an ordered sequence of
nucleotides. It is trivial to observe that the grammar is recursive to the right. This
means that each production adds a hairpin starting from the end of the structure.
Due to the biological constraint, the unambiguous property is guaranteed.

Theorem 2. Each secondary structure can be uniquely decomposed in terms of
a particular loop, i.e., hairpin.

Proof. Each vertex which performs a weak interaction belongs to a unique hair-
pin. Since an unpaired nucleotide is either external or internal to a unique base
pair the decomposition is unique.

3.3 From Arc Diagram to Intersection Graph

The multiple context-free grammar permits to associate a unique algebraic
expression for each RNA secondary structure in terms of hairpins. Such algebraic
expression contains each structural and biological information of the molecule.
Obviously, two molecules having different backbones can be characterized by the
same genus and same crossing number. We can observe that the two topological
invariants cannot be influenced by the head and the tail of the structure, the

Topological Classification of RNA Structures via Intersection Graph 211

unpaired nucleotides that characterize the loop or the number of nucleotides that
two loops share. By removing the nucleotides, each weak interaction divides the
backbone into three components, as illustrated in Fig. 10, which are enumerated
from right to left starting from 0.

Fig. 10. Backbone components generated by an arc

For each algebraic expression

S = αx[α+] ��k x[α+] ��k · · · ��k x[α+]α

the following abstract algebraic expression

S′ = L ��t L ��t · · · ��t L

is associated. Note that t is a non negative integer that represents the component
of the backbone which the successive loop is attached to. Thus, operator ��t is
a bit different from the initial crossing operator: the initial one depends on
nucleotides, whereas the second one depends on the backbone component. We
decided to maintain the same symbol in order to not overload the notation.
For each abstract structure, S′, the intersection graph is associated by means
of The Intersection Graph Procedure. It takes the input an abstract algebraic
expression, that models the RNA molecule, and then returns an intersection
graph as output. The core of the algorithm is based on the identification of the
backbone component where the successive loop is attached on the identification
of the numbers of crossing that the loop performs with the previous ones. It
permits to detect the set of loops that cross each others. Another procedure,
The Shape Intersection Graph Procedure, is defined over the intersection graph
obtained by the previous algorithm. In fact, it takes the intersection graph of
the molecule as input and returns the intersection graph of the relative shape
as output, identifying and removing the edges which correspond to parallel arcs
in the arc diagram. Finally, the kind of pseudoknots with genus 1 is defined by
means of an additional procedure, The Pseudoknots Detection Procedure, based
on edges of the shape intersection graph. The encoding of such procedures is
omitted from this paper in order to not overload the readers with technicalities.

3.4 Example of Application

This methodology is applied to PKB10 molecule, extracted from Pseudobase++
database [16]. PKB10 is a tRNA-like structure 3′end pseudoknot of ononis yellow

212 M. Quadrini et al.

mosaic virus [9], which diagram, obtained from the database, is shown in Fig. 11.
The algebraic expression of the structure is

S =β1x1[α1]��2x2[α2]��1x3[α3]��12x4[α4]��11x5[α5]��10

x6[α6]��9x7[α7]��8x8[α8] ��7x9[α9]β2

Fig. 11. The diagram of PKB10 obtained from Pseudobase++ database [16]

where x1 = x2 = x3 = (C,G), x4 = (A,U), x5 = (G,C), x6 = x7 = (C,G),
x8 = x9 = (U,A), β1 = UGGGUUCAACUCCC, α1 = CUUUUCCGA, α2 =
CCUUUUCCGAG, α3 = CCCUUUUCCGAGG, α4 = GGGUA, α5 =
AGGGUAU, α6 = GAGGGUAUC, α7 = CGAGGGUAUCG, α8 =
CCGAGGGUAUCGG,α9=UCCGAGGGUAUCGGA, β2=ACC.
The abstract algebraic expression is

S′ = L ��2 L ��2 L ��2��3 L ��5 L ��7 L ��9 L ��11 L

and the associated intersection graph, obtained applying. The Intersection
Graph Procedure, is G = (V,E) where V = {L1, L2, L3, L4, L5, L6, L7, L8} and
E = {(L1, L4), (L1, L5), (L1, L6), (L1, L7), (L1, L8), (L2, L4), (L2, L5), (L2, L6),
(L2, L7), (L2, L8), (L3, L4), (L3, L5), (L3, L6), (L3, L7), (L3, L8)}. Applying The
Shape Intersection Graph Procedure, we obtain G′ = (V ′, E′), where V ′ =
{L1, L2} and E′ = {(L1, L4)}. Finally, using The Pseudoknots Detection Proce-
duce we detect that the genus of the structure is 1 and we are in the presence
of an H pseudoknot, thus NC = 1.

4 Results and Discussion

Our methodology permits to classify each RNA molecule in terms of genus and
crossing number associated to its shape. Thus, for each equivalent class deter-
mined by the genus, it is possible to define a new classification. Such classification
permits to define a more accurate energy function respect to the standard one.
To test the methodology, we have analyzed a subset of real molecules extracted
from Pseudobase++ database [16]. The molecules of the database are classified

Topological Classification of RNA Structures via Intersection Graph 213

Table 1. Results of analysis

Molecule Genus Num of loops
interactions

Crossing Num
of Shape

Type of
Pseudoknot

PKB205 1 16 1 HLIn

PKB210 1 63 1 HLIn

PKB234 1 63 1 HLIn

PKB238 1 80 1 HLIn

PKB139 1 24 1 LL

PKB140 1 68 1 LL

PKB141 1 27 1 LL

PKB142 1 35 1 LL

PKB143 1 35 1 LL

PKB144 1 32 1 LL

PKB145 1 30 1 LL

PKB146 1 25 1 LL

PKB174 1 112 1 LL

PKB248 1 18 1 LL

PKB57 1 28 1 LL

into groups in accord to different types of structure. We choose two groups, i.e.,
HLIn and LL, and the results of the analysis is shown in Table 1.

The results of the analyzed molecules correspond to the expected values.
In fact, the genus of each molecule is 1 as well as the crossing number of the
shape. These values are in accordance with the selected molecules, since each
molecule is characterized by a H pseudoknot. Note that the same result can
be obtained defining a procedure that associates for each molecule its shape,
and applying an algorithm similar to The Intersection Graph Procedure. We
propose the first approach because we believe that starting from the intersection
graph of a molecule, a new measure can be defined. Such measure will allow
us to compute the distance between two RNA secondary structures in terms of
interactions among loops.

5 Conclusions

In this work, a new algebraic representation of RNA secondary structures and an
abstract representation have been defined. The former contains each structural
and biological information of each molecule, the latter is obtained from the first
one removing its primary structure. This simplification does not influence the
two topological invariants, genus and crossing number, but easily allowed us
to define three procedures. The Intersection Graph Procedure associates the
intersection graph for each RNA molecule, while The Shape Intersection Graph

214 M. Quadrini et al.

Procedure, starting from the last structure, determines the intersection graph
of The shape. Over the latter structure, the kind of pseudoknot of genus 1 is
determined through The Pseudoknots Detection Procedure. Such methodology
permits to classify each RNA molecule in terms of genus and crossing number
associated to its shape. Thus, for each equivalent class determined by the genus,
it is possible to define a new classification.

We have planned to improve the developed software that implements the
whole methodology presented in this paper in order to analyze efficiently two
database, Worldwide Protein Data Bank [3] and Pseudobase++ [16], with the
scope of carrying out a more accurate topological classification than the one
obtained by Bon et al. in [4]. A statistical study will be performed to detect
the relations between genus and crossing number. Finally, the challenge will be
to define an algorithm for the RNA folding problem taking advantage of the
classification obtained applying this proposed methodology.

References

1. Adams, P.L., Stahley, M.R., Gill, M.L., Kosen, A.B., Wang, J., Strobel, S.A.:
Crystal structure of a group I intron splicing intermediate. RNA 10(12), 1867–
1887 (2004)

2. Bellaousov, S., Mathews, D.H.: Probknot: fast prediction of RNA secondary struc-
ture including pseudoknots. RNA 16(10), 1870–1880 (2010)

3. Berman, H., Henrick, K., Nakamura, H.: Announcing the worldwide protein data
bank. Nature Struct. Mol. Biol. 10(12), 980–980 (2003)

4. Bon, M., Vernizzi, G., Orland, H., Zee, A.: Topological classification of RNA struc-
tures. J. Mol. Biol. 379(4), 900–911 (2008)

5. Elliott, D., Ladomery, M.: Molecular Biology of RNA. Oxford University Press,
Oxford (2017)

6. Harrison,M.A.: Introduction toFormalLanguageTheory.Addison-WesleyLongman
Publishing Co., Inc., Boston (1978)

7. Huang, F.W., Reidys, C.M.: Topological language for RNA. Math. Biosci. 282,
109–120 (2016)

8. Lyngsø, R.B., Pedersen, C.N.: RNA pseudoknot prediction in energy-based models.
J. Comput. Biol. 7(3–4), 409–427 (2000)

9. Mans, R.M., Pleij, C.W., Bosch, L.: tRNA-like structures. structure, function and
evolutionary significance. Eur. J. Biochem. 201(1), 303–324 (1991)

10. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. SIAM,
Philadelphia (1999)

11. Metzler, D., Nebel, M.E.: Predicting RNA secondary structures with pseudoknots
by MCMC sampling. J. Math. Biol. 56(1), 161–181 (2008)

12. Munkres, J.R.: Analysis on Manifolds. Westview Press, USA (1997)
13. Rastogi, T., Beattie, T.L., Olive, J.E., Collins, R.A.: A long-range pseudoknot is

required for activity of the Neurospora VS ribozyme. EMBO J. 15(11), 2820 (1996)
14. Reidys, C.M., Huang, F.W., Andersen, J.E., Penner, R.C., Stadler, P.F., Nebel,

M.E.: Topology and prediction of RNA pseudoknots. Bioinformatics 27(8), 1076–
1085 (2011)

15. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoret. Comput. Sci. 88(2), 191–229 (1991)

Topological Classification of RNA Structures via Intersection Graph 215

16. Taufer, M., Licon, A., Araiza, R., Mireles, D., Van Batenburg, F., Gultyaev, A.P.,
Leung, M.Y.: Pseudobase++: an extension of PseudoBase for easy searching, for-
matting and visualization of pseudoknots. Nucleic Acids Res. 37(suppl. 1), D127–
D135 (2008)

17. Theimer, C.A., Blois, C.A., Feigon, J.: Structure of the human telomerase RNA
pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell
17(5), 671–682 (2005)

18. Vernizzi, G., Orland, H., Zee, A.: Classification and predictions of RNA pseudo-
knots based on topological invariants. Phys. Rev. E 94(4), 042410 (2016)

Neural Networks

Splicing-Inspired Recognition and Composition
of Musical Collectives Styles

Roberto De Prisco, Delfina Malandrino, Gianluca Zaccagnino,
Rocco Zaccagnino(B), and Rosalba Zizza

Dipartimento di Informatica, University of Salerno, Fisciano, Italy
{robdep,delmal,zaccagnino.gianluca,zaccagnino,zizza}@dia.unisa.it

Abstract. Computer music is an emerging area for the application of
computational techniques inspired by information processing in Nature.
A challenging task in this area is the automatic recognition of musical
styles. The style of a musician is the result of the combination of sev-
eral factors such as experience, personality, preferences. In the last years,
several works have been proposed for the recognition of styles for soloists
performers, where the improvisation often plays an important role. The
evolution of this problem, that is the recognition of multiple performers’
style that collaborate over time to perform, record or compose music,
know as Musical collective, presents many more difficulties, due to the
simultaneous presence of various performers, mutually conditionable.

In this paper, we propose a new approach for both recognition and
automatic composition of styles for musical collectives. Specifically, our
system exploits a machine learning recognizer, based on one-class support
vector machines and neural networks for style recognition, and a splicing
composer, for music composition (in the style of the whole collective).

To assess the effectiveness of our system we performed several tests
using transcriptions of popular jazz bands. With regard to the recogni-
tion, we show that our classifier is able to achieve an accuracy of 97.7%.
With regard to the composition, we measured the quality of the generated
compositions by collecting subjective perceptions from domain experts.

Keywords: Splicing-inspired recognition
Composition of musical collectives styles · Support vector machine
Neural network

1 Introduction

The interest in algorithmic music composition date back to 1950 with the devel-
opment of computers, and since then both computer scientists and artists consid-
ered their use in many disciplines, such as, music information retrieval, pattern
recognition, and so on. The resulting Computer Music field still represents an
emerging research area for the application of computational intelligence tech-
niques, such as, machine learning and bio-inspired algorithms.

In this work we focus on aspects along two directions: (1) music information
retrieval (MIR), i.e., the science of retrieving information from music, involving
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 219–231, 2017.
https://doi.org/10.1007/978-3-319-71069-3_17

220 R. De Prisco et al.

activities such as content-based organization and exploration of digital music
data sets, and (2) algorithmic music composition, i.e., how to compose music by
means of a computer program with no (or minimal) human intervention. One
interesting problem to solve in MIR is how to model the musical styles. The style
of a musician stricly depends on his experience, and therefore on his personality
and personal preferences, especially when the improvisation plays an impor-
tant role. Musical improvisation is the creative activity of immediate musical
composition, which combines performance with communication of emotions and
instrumental technique as well as spontaneous response to other musicians, and
is conditioned by the other musicians if he is part of a Musical collective. So we
distinguish two cases: (1) the recognition of styles for soloists performers, and (2)
the recognition of styles for Musical collectives, which presents more difficulties,
due to the simultaneous presence of various performers mutually conditionable.

Several works have been proposed for the first case [7,12,23,24,26] but rela-
tively fews for the second one. We focus on the more complex second case. An
application of recognition systems can be their use in cooperation with auto-
matic composition algorithms. In [22] several composition algorithms have been
discussed, and here we investigate the use of music splicing systems [6]. The
main contributions of our paper can be summarized as follows.

1. A new approach for automatic collectives style recognition and composition.
2. A machine learning technique for the recognition process: a one-class support

vector machine classifier is defined for each performer to learn his own style,
while a neural network is used to recognize the style of the collective. We
define a splicing composer for each performer in the musical collective, built
by using several long short-term memory networks to predict patterns in the
learned style. Since the performer is influenced by his preferences as well as
by the preferences of the others performers, this problem can be seen as a
multi-objective problem in which we have to minimize the distance between
the style of the generated compositions and both the stylistic “personal” and
stylistic “collective” features induced by the other performers.

3. To assess our approach, we performed several tests by using transcriptions
of solos from popular jazz bands. We analyzed the capability of our system
in recognizing a style and we verified the stylistic coherence of the composed
music. Moreover, we showed that the use of a LSTM network to predict
pattern could involve better results respect to the traditional approaches.

Organization of the paper. In Sect. 2 we describe some related works. In Sect. 3
we provide the background to understand the paper. In Sects. 4, 5 and 6 we
provide details about the machine learning and splicing approaches. In Sects. 7
and 8 we describe the experiment analysis and the future directions.

2 Related Work

Several works addressed the musical styles recognition problem where most of
them are based on machine learning methods. In [24] the authors show how to

Splicing-Inspired Recognition and Composition of Musical Collectives Styles 221

cluster music digital libraries according to sound features of musical themes,
by using self-organizing maps. A system based on neural networks and support
vector machines, which is able to classify an audio fragment into a given list
of artists, is described in [26]. In [25] a neural system to recognize music types
from sound inputs is described. It is important to note that our approach differ
from these works since they only consider the problem of recognizing the styles
in terms of music genre, without considering the style of a performer or of per-
formers in a musical collective. Furthermore, they do not face the problem of
the composition of music in a specific style.

Several automatic composers, based on different approaches, exist in litera-
ture: rules and expert-systems [16], systems based on a combination of formal
grammars, analysis and pattern matching techniques [5], neural networks [20].
Other automatic composers are based on meta-heuristics, and specifically on
genetic algorithms [1,3,13,14,27]. Other works have been proposed for different
musical genres or problems: Jazz solos [2], harmonize chords progressions [19],
monophonic Jazz composition given a chord progression [3], figured bass prob-
lem [10], and finally, unfigured bass problem [13]. In [6,7] the authors define
a bio-inspired approach for automatic composition, called music splicing sys-
tems. Starting from an initial set of precomposed music the system generates a
language in which each word is the representation of music in the style of the
chosen composer. In [12] the authors propose an approach for both recognition
and automatic composition of music according to a specific performer’s style.
In this work we extend this approach, by considering musical collectives whose
style can be view as the result of the combination of several performers’ styles.

3 Background

3.1 Music Improvisation Collective

Music improvisation refers to the ability of playing music extemporaneously,
without planning or preparation, by inventing variations on a melody or creating
new melodies. It combines performance with communication of emotions and
instrumental technique as well as spontaneous response to other musicians. This
means that the style of a performer is also conditioned by the other musicians
which play together, if he is part of a Musical collective.

In this work with the term solo we indicate the transcription of an improvised
melody. There are musical genres in which improvisation assumes a fundamen-
tal role, and inside a musical collective, more performers could also improvise
contemporaneously (for example the period of New Orleans for the Jazz music).

In our approach we are interested in modeling the style of a musical collective,
which can be view as the result of the combination of several performers’ styles.
In each performer it is possible to found music features that characterize his
specific style, and an expert ear is able to perceive such aspects. When the
performer is part of a collective is also important to find the aspects of his style
influenced by the presence of the other performers. Thus, given a corpus of solos,
we can extract such significant features and using them to recognize his style.

222 R. De Prisco et al.

As explained in [12], to extract the stylistic features is necessary to define
the role that each music note assumes in the chord in which it is played. Let
Ch be a music chord, usually a musician chooses a scale S(Ch) (sequence of
notes). In this work we assume that each scale is composed of 7 notes. Usually
there are several alternativies. For example, let Ch = D7, a choice could be
S(D7) = (D,E, F#, G,A,B,C) (mixolydian mode of Gmaj). An alternative is
S(D7) = (Ab,Cb, C,Db,Eb, F,Gb) (mixolydian mode in Dbmaj).

Now, let n be a note played on Ch, we indicate with degree(n, S(Ch)) the
degree (position) of n respect to S(Ch). There are 12 possible degrees, (7 degrees
in S(Ch) and 5 out of S(Ch). For example let Ch = Am7 and S(Am7) =
(A,B,C,D,E, F#, G) (dorian mode). Let n = C then degree(C,S(Am7)) =
III. Let n = Bb then degree(Bb, S(Am7)) = bII. We say that the chord D7
has been substituted by the tritone chord Ab7. The process of substituting a
chord with another chord is known in Jazz as substitution [21]. We remark that
the musician’s choice of S(Ch) for a Ch is crucial for the definition of his style.

3.2 Splicing Systems

Splicing systems are formal models for generating sets of words [18]. It is a
relatively old research topic in computer science and much early research effort
has been devoted to the study of the theoretical computational power of such
formal systems [8,9]. We start with an initial set of words and we apply to these
words the splicing operation by using rules in a given set. The set of generated
words is joined to the initial set and the process is iterated on this new set until no
new word is produced. The language generated is the collection of all these words.
Formally, a splicing system is a triple S = (A, I,R), where A is a finite alphabet,
I ⊆ A∗ is the initial language and R ⊆ A∗|A∗$A∗|A∗ is the set of rules, where
|, $ �∈ A. A splicing system S is finite when I and R are both finite sets. Let
L ⊆ A∗. We set γ′(L) = {w′, w′′ ∈ A∗ | (x, y)�r (w′, w′′), x, y ∈ L, r ∈ R}. The
definition of the splicing operation is extended to languages as follows: γ0(L) =
L,γi+1(L) = γi(L) ∪ γ′(γi(L)), i ≥ 0, and γ∗(L) =

⋃
i≥0 γi(L). We say that

L(S) = γ∗(I) is the a splicing language generated by S.

3.3 Machine Learning Approaches to Music Problems

In this section we provide some basic notions about the machine learning clas-
sifiers used in this work, but for further information see [4].

One-class Support Vector Machine (OCSVM). A OCSVM maps input
data into a high dimensional feature space and finds the maximum margin
hyperplane which best separates the training data from the origin. In terms
of recognition, given a melody, it verifies whether it is coherent with a music
performer’s style. As we will see in Sect. 4, the idea is to associate a vector of
features to the melody, and to use a OCSVM for mapping the vector belonging
to the training data. As we will see, in our approach, given a musical collective,
for each performer in the collective we define a OCSVM to recognize his style.

Splicing-Inspired Recognition and Composition of Musical Collectives Styles 223

Style recognition using Artificial Neural Networks (ANNs). ANNs are
very useful tool also for automatic music composition [11]. One of the most
commonly used neural network is the fully connected three-layer feed-forward
neural network with tangent activation function, and we used it in our work. In
our approach we define a ANN to recognize the style of the whole collective. We
have one class N , where N = 1 indicates that the features in input correspond
to the specific learned style, and N = 0 otherwise. The input of such network
contains a value for each OCSVM corresponding to a performer in the collective.
So the size of the input layer is equal to the size of the collective.

Style prediction using Long short-term memory (LSTM). LSTM are a
good mechanism for learning to compose music [17] when it is necessary to store
information about the past. As explained in Sect. 5, for each performer we define
a LSTM to predict musical patterns that follows his style respect to what played
before, and a LSTM for each other performer to predict musical patterns that
follows his style respect to what played at the same time by others.

4 The Machine Learning-Based Recognition

The recognition of a musical collective’s style is obtained by defining: (1) a
OCSVM style recognizer for each performer and, (2) a ANN to recognize the
style of the whole collective. Music features that characterize the style of a
performer can be extracted from a corpus of solos. Let M be the corpus solos by
a musical collective, for each performer X in the collective we denote with MX

the set of his improvised melodies. So we have a classification problem in which
the melodies in M can belong to two possible classes: melodies coherentor not
with the X’s style. Obviously, the melodies in M−MX can be coherent with the
X’s style or not. The goal of the OCSVM recognizer is to classify correctly the
melodies in M in these two classes. Let vj be the feature vector of some melody
mj , obtained through the feature extraction model to be discussed shortly. The
OCSVM recognizer will be defined to classify mj by using vj as input. In the
following we indicate the OCSVM recognizer for X with RX .

4.1 Feature Model

To capture the most significant features of a melody we use the n-gram model to
identify tokens in melodies whose importance can than be determined through
some statistical measure. An n-gram refers to n tokens which are dependent on
each other. Once obtained n-grams from the training set of melodies, we use a
statistical measure to calculate their relative importance and to obtain the list of
n-grams ordered according to their importance. Depending on the value of n we
can have different size of such a list, so for practical reasons we fix a maximum
size. Since there is no theoretical support to the style classification capability of
the n-grams, we apply a random forest selection procedure to keep those that
better contribute to the classification. As we will see in Sect. 7, we have tried

224 R. De Prisco et al.

several values of n but found no significant improvement beyond n = 16. Below,
we provide details about tokens and statistical measure.

The token. A token is the set of relevant information about a music note, and
one n-gram represents a sequence of n notes. A note can be described by three
parameters that explain his role respect to the chord in which is played: (1) the
name chord k1, i.e., C, C#, D, D#, E, F , F#, G, G#, A, A#, B; thus we
have 12 possible values for k1 (0 for C, 1 for C#, 2 for D and so on). (2) the
type chord k2 that in this work is derived from the modes of the major, melodic
minor and harmonic minor scales (see [21] for further details); in Table 1 we
describe such type chords. (3) the role k3 which is the position inside the scale
(integer in the range from 0 to 11). So the 3-tuple Ki = [ki

1, k
i
2, k

i
3] is the token

that describes the note played at ith time interval. For example K3 = [0, 1, 9]
says that at the 3th time interval the note played has degree V I (k3 = 9 means
degree V I) in the scale corresponding to the chord Cm7 (k1 = 0 means name
chord C and k2 = 1 means type chord m7). Thus the note played is A.

In our approach the duration of notes is relevant only for the execution of the
melody and it will be established by the composer by using a specific operator.

Table 1. Modes of the major, melodic minor and harmonic minor scales.

Description S(Ch) Mode Chord type k2 value

Major scale

ionic I maj7 0

dorian ii m7 1

phrygian iii m7b9 2

lydian IV maj7#11 3

mixolydian V 7 4

aeolian vi m7b6 5

locrian vii m7b5 6

Melodic minor scale

ipoionic i m(maj7) 7

dorian b2 ii m7b9 8

augmented lydian III maj7#5 9

dominant lydian IV 7#11 10

mixolydian b6 V 7b6 11

locrian #2 vi m7b5#2 12

superlocrian vii 7alt 13

Harmonic minor scale

ipoionic b6 I m(maj7) 14

locrian #6 ii m7b5b9b13 15

augmented lydian iii maj7#5 16

minor lydian iv m7#11 17

mixolydian b2b6 V 7b9b13 18

lydian #2 V I maj7#9#11 19

diminished superlocrian vii ◦ 20

The statistical measure. In our approach the measure used to evaluate the
relative importance of n-grams is the term frequency with inverse document

Splicing-Inspired Recognition and Composition of Musical Collectives Styles 225

frequency (tfidf). The term t, central to this measure, refers to a n-gram. We
use the boolean term frequency (tf) measure such that tf(t,mj) = 1 if t ∈ mj

(the sequence of notes corresponding to t occurs in the melody mj), 0 otherwise.
The inverse document frequency measure (idf) is defined as: idf(t,mj ,M) =
log(|M|/|{ mj ∈ M : t ∈ mj }|). Finally we obtain tf with idf for each t ∈ mj

over the corpus M, as: tfidf(t,mj ,M) = tf(t,mj) · idf(t,mj ,M). The tfidf
measure gives more weight to terms that are less common in M, since such terms
are more likely to make the corresponding melody stand out. It transforms our
corpus M to the feature vector space. The feature vector corresponding to a
melody mj is denoted by vj and vj [i] is equal to tfidf(ti,mj ,M).

4.2 The Recognizers

The OCSVM performer-recognizers. As explained before, let mj be a
melody we define a feature vector corresponding to mj denoted by vj , which
contains an element for each significant feature of the melody, and the value of
this element is the tfidf explained in Sect. 4.1. In our approach, for each per-
former X in the collective we use a OCSVM denoted RX and named performer-
recognizer for X, for mapping vj . It uses the rule f(vj) = 〈w, vj〉 + b, where
〈w, vj〉 + b is the equation of the hyperplane, with w being the vector normal to
this hyperplane and b being the intercept. If f(vj) ≥ 0 then mj is considered as
melody not coherent with the X’s style, otherwise mj is coherent.

The ANN collective-recognizer. In our approach we define a ANN trained
to recognize the style of the whole collective. Thus we have one class N , where
N = 1 indicates that the features in input correspond to the specific learned
style, and N = 0 otherwise. The input of such classifier contains a value for each
performer-recognizer defined. So the size of the input layer is equal to the size
of the collective. We denote with R the collective-recognizer.

5 The Machine Learning-Based Prediction

For each performer X in the collective we define: (1) a LSTM used to predict
musical patterns that follows the style of X respect to what played before by X,
and (2) a LSTM for each other performer Y in the collective used to predict
musical patterns that follows the style of X respect to what played at the same
time by Y . Observe that the first network gives a temporal information of the
musical behavior of X, while the second type of networks seeks to capture the
musical relation between X and each other performer Y , at the same time.

We remark that we first build the performer-recognizers RX , for each per-
former X in the collective, then we build the collective-recognizer R as described
in Sect. 4, and finally we build the predictors for X.

5.1 Temporal Predictor for X

Now we describe the LSTM used to predict musical patterns that follows the
style of X respect to what played before by X. Let M be a corpus of solos for a

226 R. De Prisco et al.

musical collective, and MX ⊆ M be the set of solos performed by X. Let RX be
the performer-recognizer for X and n the value used for the construction of the
n-grams as described in Sect. 4.1. The idea is to define a predictor PX that given
a n-gram at time t have to predict the n-gram at time t + 1. This is equivalent
to say that given the sequence of n music notes at time t, PX has to predict the
sequence of n music notes at time t + 1.

The training set. We define a data set of n-grams as follows. Let TX ⊆ M
be the training set used for the training of RX . For each mj ∈ TX such that
RX says that mj is coherent with the X’s style (f(mj) < 0), we consider the
sequence of n-grams extract by mj . So, let Ngrams(mj) = (ng1, . . . , ngkj

) be
the sequence of n-grams extract from mj , we insert the pair (ngi, ngi+1) in the
training set for PX , for each 1 ≤ i ≤ kj − 1.

The architecture. In our approach the predictor PX is a LSTM and we now
describe the steps and reasons for its definition.

1. We define a ANN to predict the note at time i + 1 given the note at time
i. As described in Sect. 4, each note is a token Ki = [ki

1, k
i
2, k

i
3]. Thus, input

and output layers have size 3. We also use four hidden layers having size 3.
2. To add “recurrency”, we take the output of each node of the hidden layer,

and feed it back to itself as an additional input. Each node of the hidden
layer receives both the list of inputs from the previous layer and the list of
outputs of the current layer in the last time.

3. To solve the problem of shot-term memory we use LSTM nodes.
4. PX has to be identical (1) for each step (time-invariant), and (2) for each

note (note-invariant). We build a stack of n identical RNN, one for each token,
and the overall network can be viewed as a predictor of the n-gram at time
i + 1 given the n-gram at time i. We use a “biaxial RNN” approach: the
first two recurrent layers sends recurrent connections along the time-axis, but
are independent across notes. The last two layers sends recurrent connections
along the note-axis, but are independent between time steps.

5.2 Temporal Predictor for (X,Y)

Now we describe the LSTM defined for each other performer Y in the collective,
used to predict musical patterns that follows the style of X respect to what played
at the same time by Y . Let M be a corpus of solos for a musical collective,
MX ⊆ M be the set of solos performed by X, and MY ⊆ M be the set of
solos performed by Y . Let RX be the performer-recognizer for X, RY be the
performer-recognizer for Y and n the value used for the construction of the n-
grams as described in Sect. 4.1. We remark that n is equal for each performer.
Then, we define a predictor PX,Y (having the same architecture of PX) that
given a n-gram at time t for Y have to predict the n-gram at time t for X. This
equivalent to saying that given the sequence of n music notes at time t by Y ,
PX,Y has to predict the sequence of n music notes at time t by X.

Splicing-Inspired Recognition and Composition of Musical Collectives Styles 227

The training set. We define a data set of n-grams as follows. Let TX ⊆ M be
the training set used for the training of RX and TY ⊆ M be the training set
used for the training of RY . For each mj ∈ TX such that RX says that mj is
coherent with the X’s style (f(mj) < 0), let m′

j ∈ TY such that RY says that
m′

j is coherent with the Y ’s style and mj ,m
′
j are played at the same time. Then,

we consider the sequence of n-grams extract by mj and n-grams extract by m′
j .

So, let Ngrams(mj) = (ng1, . . . , ngkj
) be the sequence of n-grams extract from

mj , Ngrams(m′
j) = (ng′

1, . . . , ng′
kj

) be the sequence of n-grams extract from m′
j

we insert the pair (ng′
i, ngi) in the training set for PX,Y , for each 1 ≤ i ≤ kj − 1.

6 The Splicing-Based Composition

For each performer X, we define a music splicing system to compose melodies
coherent with the style learned by RX . We denote with CX the performer-
composer for X. We remark that, unlike the cases of the recognizers, in which we
first built a single performer-recognizer for each performer in the collective and
then a collective-recognizer for the whole collective, here we do not need to define
a collective composer. The composition corrsponding to the collective will be the
combination of the single compositions generated by the performer-composers.

First we build the performer-recognizers RX for each performer X and the
collective-recognizer R as described in Sect. 4, then we build the predictors PX ,
PX,Y for each pair of performers X,Y as described in Sect. 5 and finally we
build the performer-composers CX for each performer X. Thus, let MX ⊆ M,
the idea is to build a music splicing composer which produces melodies coherent
with the X’s style. As explained in [6,12] to define a music splicing composer
we need to define an alphabet, an initial set and a set of rules. Such a system is
defined by an initial set of melodies coherent with the X’s style, and a set of rules
built by using P. The language generated contains words that represent pieces
of “new” melodies coherent the X’s style. Formally, a music splicing system is a
triple Smss = (Amss, Imss,Rmss). Among the generated words we choose the best
solution according to the evaluation function defined in Sect. 6.1.

We remark that in this work we use the same techniques of construction
of the splicing system proposed in [12] except the evaluation function. In fact,
unlike [12] in the musical collective context each splicing composer has to solve
a multi-objective problem. Below we only provide details about such a function.

6.1 Implementation Details and Evaluation Function

Given a splicing system S = (A, I,R), the generated language L(S) is an infinite
set of words, and the number of iterations of the splicing operation to generate it
is unbounded. Thus, we fix a number k of iterations and a maximal cardinality
pmax. We also define k languages as follows. We set L0 = Imss = γ0(Imss). For
any i, 1 ≤ i ≤ k, we consider L′

i = Li−1 ∪γ′(Li−1), which corresponds to enlarge
Li−1 by an application of all the rules in Rmss to all possible pairs of words in
Li−1. If Card(L′

i) ≤ pmax, then Li = L′
i. Otherwise, Li is obtained from L′

i by

228 R. De Prisco et al.

erasing the Card(L′
i) − pmax words in L′

i that are the worst with respect to an
evaluation function, i.e., the quality of the melody in terms of stylistic coherence.
Therefore, to measure the quality of the compositions and to choose the better
solutions we consider such a function. Finally, we define L(k, pmax) = ∪1≤i≤kLi

as the (k, pmax)-language generated by Smss. We remark that L(k, pmax) is the
language considered during the experiments described in Sect. 7.

We have not music rules to use for defining a function that evaluate a compo-
sition in terms of “stylistic” goodness. So we use the predictor PX and the predic-
tors PX,Y as follows. The composition problem can be view as a multi-objective
problem in which we have to minimize the distance between the style of the
compositions generated by CX and both (a) the features related to the personal
experience and (b) the features related to the influence of the other performers.
Let w be a word generated by the composer Smss and let m = (n1, . . . , nl) the
melody such that w = W(m). Now, let Ngrams(m) = (ng1, . . . , ngl−1) be the
sequence of n-grams extract from m. First function fX is defined as:

fX(m) =
∑

1≤i≤l−1

(tfidf(ngi,m,M)) + Diff(ngi+1,PX(ngi))

where Diff(ngi,PX(ngi)) is the difference between ngi+1 and PX(ngi) that
is the n-gram predicted by PX with ngi as input. Such a difference is defined
as follows: let Ki+1 = [ki+1

1 , ki+1
2 , ki+1

3] be the token for ngi+1 and K ′i+1 =
[k′i+1

1 , k′i+1
2 , k′i+1

3] be the token for P(ngi). Then Diff(ngi+1,P(ngi)) = |ki+1
1 −

k′i+1
1 | + |ki+1

2 − k′i+1
2 | + |ki+1

3 − k′i+1
3 |. About the second class of functions, for

each other performer Y we define fX,Y as:

fX,Y (m) =
∑

1≤i≤l

(tfidf(ng′
i,m,M)) + Diff(ngi,PX,Y (ng′

i))

where Diff(ngi,PX,Y (ng′
i)) is the difference between ngi and PX,Y (ng′

i) that is
the n-gram predicted by PX,Y with ng′

i as input. So, let m be a melody produced
by CX , let X1, . . . , Xl the performers of the collective (including X), we say that
f(m)X = (e1, . . . , el) where ei = fX(m) if xi = X, otherwise ei = fX,Xi

(m).
Thus the composition process of CX can be view as a multi-objective problem
in which we have to minimize the functions fX and each fX,Xi

with X �= Xi.
To solve such a problem, we adopt the strategies of elitism and pareto front
described in [13,15]. Now, let the sets of solutions produced by each Ci, in order
to obtain composition for the whole collective, we create each possible l-uple
m1, . . . ,ml where mi is one of the best solutions produced by Ci. So we consider
the pareto front of l-uple as the best solutions for the collective.

7 Experimental Analysis

We report results of tests that we carried out to assess the validity of our app-
roach. We considered several musical collectives: the Hot Five and Hot Seven by
Louis Armstrong, the Creole Band by King Oliver, the Countie Basie Orchestra

Splicing-Inspired Recognition and Composition of Musical Collectives Styles 229

and the Ornette Coleman quartet (by the disc “Free Jazz: A Collective Improvi-
sation”). For each collective we create a data set M of transcribed solos. In this
section we refer to the collective by using directly the corresponding datset. The
average number of transcriptions for each dataset is 23 and the average number
of notes for each melody is 215. For each collective M we build the performer-
recognizers and the collective-recognizer R and we compute the recognition rate.
As result we obtained that the average recognition rate is 97.7%.

Recognition performances. In our experiments we used a traditional super-
vised two-class support vector machine as a benchmark for the performance of
each RX . For each collective M and for each RX , we build a training set by
considering the 80% of melodies in MX (randomly chosen). For the SSVM, we
build a training set by considering the 80% of melodies in MX and a testing set
by considering the 20% of melodies in MX . As we can see in Table 2 (left) best
average results have been obtained with n = 16, and in this case two classifiers
achieve very similar rates, with true positive and negative rates of up to 0.97 and
false positive and negative of only 0.03. As proved for the study described in [12],
also in this new study we obtain that the performance of RX are comparable to
the traditional SSVM with the advantage that it requires fewer examples.

Prediction efficacy. In our experiments we assessed the efficacy of each PX in
terms of abilities in predicting patterns that follows the X’s style. As explained
in Sect. 5 the accuracy of PX is also validated and compared against a ANN
and a RNN trained on the same training set. Table 2 (right) summarizes the
(most significant) best average results (over the three experiments) about the
prediction rate. As we can see, in a range of 150000 epochs, we have obtained
the highest prediction rate using the LSTM recurrent neural network, with Back
propagation training, M = 0.4 (momentum) and L = 0.5 (learning rate).

Table 2. Classifiers performances (left) and Test with average prediction rate (right)

Feature Classifier MX M − MX

model Yes Not Yes Not

n = 12 RX 0.88 0.12 0.08 0.92

SSVM 0.87 0.13 0.07 0.93

n = 16 RX 0.5 0.95 0.06 0.94

SSVM 0.5 0.95 0.06 0.94

n = 24 RX 0.94 0.06 0.07 0.93

SSVM 0.93 0.07 0.08 0.92

Representation M L Prediction rate [%]

LSTM 0.4 0.5 98.1

Recurrent NN 0.3 0.6 94.3

LSTM 0.3 0.3 90.2

LSTM 0.2 0.5 88.3

ANN 0.4 0.4 87.1

Music quality. The stylistic coherence of each splicing composer has been
evaluated by experts among musicians with more than 10 years of experience
in the music field. For each collective we select the best 2 solutions1 according
to the evaluation function (see Sect. 6.1). We asked participants to listen and
respond to the following questions: (1) “How do you rate the quality of music?”,
1 https://goo.gl/RnVVT5.

https://goo.gl/RnVVT5

230 R. De Prisco et al.

and (2) “How do you rate the coherence of the music with the collective’s style?”
(rating on a 7-point Likert scale). Our experts rated very positively both quality
and stylistic coherence (M = 6.8 and M = 6.7, respectively).

8 Conclusion

The recognition of multiple performers’ style that collaborate over time to per-
form music, know as Musical collective, is a complex problem due to the simulta-
neous presence of various performers, mutually conditionable. We propose a new
approach for both recognition and automatic composition of styles for musical
collectives. Our system exploits a machine learning recognizer in cooperation
with a splicing composer for music composition in the style of the whole collec-
tive. To assess the effectiveness of our system we performed tests using transcrip-
tions of popular jazz bands. With regard to the recognition, we show that our
classifier is able to achieve an accuracy of 97.7%. With regard to the composition,
the quality of the produced compositions was rated positively.

References

1. Acampora, G., Cadenas, J.M., Prisco, R.D., Loia, V., Ballester, E.M., Zaccagnino,
R.: A hybrid computational intelligence approach for automatic music composition.
In: IEEE International Conference on Fuzzy Systems, pp. 202–209 (2011)

2. Biles, J.A.: GenJam: a genetic algorithm for generating jazz solos. In: International
Computer Music Conference, pp. 131–137 (1994)

3. Biles, J.A.: GenJam in perspective: a tentative taxonomy for GA music and art
systems. Leonardo 36(1), 43–45 (2003)

4. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, New York (2006)

5. Cope, D.: Experiments in Musical Intelligence. Computer Music and Digital Audio
Series. A-R Editions, Middleton (1996)

6. De Felice, C., De Prisco, R., Malandrino, D., Zaccagnino, G., Zaccagnino, R., Zizza,
R.: Chorale music splicing system: an algorithmic music composer inspired by
molecular splicing. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART
2015. LNCS, vol. 9027, pp. 50–61. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16498-4 5

7. De Felice, C., De Prisco, R., Malandrino, D., Zaccagnino, G., Zaccagnino, R., Zizza,
R.: Splicing music composition. Inf. Sci. 385–386, 196–212 (2017)

8. De Felice, C., Zaccagnino, R., Zizza, R.: Unavoidable sets and regularity of lan-
guages generated by (1, 3)-circular splicing systems. In: TPNC 2014. Proceedings,
Granada, pp. 169–180, 9–11 December 2014

9. De Felice, C., Zaccagnino, R., Zizza, R.: Unavoidable sets and circular splicing
languages. Theor. Comput. Sci. 658, 148–158 (2017)

10. De Prisco, R., Zaccagnino, R.: An evolutionary music composer algorithm for bass
harmonization. In: Giacobini, M., Brabazon, A., Cagnoni, S., Caro, G.A., Ekárt,
A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops
2009. LNCS, vol. 5484, pp. 567–572. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01129-0 63

https://doi.org/10.1007/978-3-319-16498-4_5
https://doi.org/10.1007/978-3-319-16498-4_5
https://doi.org/10.1007/978-3-642-01129-0_63
https://doi.org/10.1007/978-3-642-01129-0_63

Splicing-Inspired Recognition and Composition of Musical Collectives Styles 231

11. De Prisco, R., Eletto, A., Torre, A., Zaccagnino, R.: A neural network for bass
functional harmonization. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner,
M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., ONeill, M.,
Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 351–
360. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12242-2 36

12. De Prisco, R., Malandrino, D., Zaccagnino, G., Zaccagnino, R., Zizza, R.: A Kind
of bio-inspired learning of music style. In: Correia, J., Ciesielski, V., Liapis, A.
(eds.) EvoMUSART 2017. LNCS, vol. 10198, pp. 97–113. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-55750-2 7

13. De Prisco, R., Zaccagnino, G., Zaccagnino, R.: Evobasscomposer: a multi-objective
genetic algorithm for 4-voice compositions. In: GECCO, pp. 817–818 (2010)

14. De Prisco, R., Zaccagnino, G., Zaccagnino, R.: A genetic algorithm for dodeca-
phonic compositions. In: Chio, C., Brabazon, A., Caro, G.A., Drechsler, R., Farooq,
M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino,
E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011.
LNCS, vol. 6625, pp. 244–253. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20520-0 25

15. De Prisco, R., Zaccagnino, G., Zaccagnino, R.: A multi-objective differential evo-
lution algorithm for 4-voice compositions. In: SDE, pp. 65–72 (2011)

16. Ebcioglu, K.: An expert system for harmonizing four-part chorales. In: Machine
Models of Music, pp. 385–401. MIT Press, Cambridge (1992)

17. Gers, F.A., Schmidhuber, J.: Recurrent nets that time and count. In: International
Joint Conference on Neural Networks, Como (2000)

18. Head, T.: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviours. Bull. Math. Biol. 49, 737–759 (1987)

19. Horner, A., Ayers, L.: Harmonization of musical progression with genetic algo-
rithms. In: International Computer Music Conference, pp. 483–484 (1995)

20. Lehmann, D.: Harmonizing melodies in real-time: the connectionist approach. In:
Proceedings of the International Computer Music Association, pp. 27–31 (1997)

21. Levine, M.: The Jazz Theory Book. Curci (2009)
22. Miranda, E.: Composing Music with Computers. Focal Press (2001)
23. Pachet, F., Westermann, G., Laigre, D.: Musical data mining for electronic music

distribution. In: WEB Delivering of Music (WEDELMUSIC), pp. 101–106 (2001)
24. Pampalk, E., Dixon, S., Widmer, G.: Exploring music collections by browsing dif-

ferent views. In: Music Information Retrieval (2003)
25. Soltau, H., Schultz, T., Westphal, M., Waibel, A.: Recognition of music types. In:

International Conference on Acoustics, Speech, and Signal Processing (1998)
26. Whitman, B., Flake, G., Lawrence, S.: Artist detection in music with minnow-

match. In: Neural Networks for Signal Processing XI, pp. 559–568 (2001)
27. Wiggins, G., Papadopoulos, G., Amnuaisuk, S., Tuson, A.: Evolutionary methods

for musical composition. In: CASYS1998 (1998)

https://doi.org/10.1007/978-3-642-12242-2_36
https://doi.org/10.1007/978-3-319-55750-2_7
https://doi.org/10.1007/978-3-642-20520-0_25
https://doi.org/10.1007/978-3-642-20520-0_25

Regularized Stacked Auto-Encoder
Based Pre-training for Generalization

of Multi-layer Perceptron

Prasenjit Dey, Abhijit Ghosh, and Tandra Pal(B)

Department of Computer Science and Engineering,
National Institute of Technology, Durgapur,

Durgapur 713209, West Bengal, India
prasenjitdey13@gmail.com, mailabhijit93@gmail.com,

tandra.pal@gmail.com

Abstract. Generalization capability of multi-layer perceptron (MLP)
depends on the initialization of its weights. If the weights of an MLP are
not initialized properly, it may fail to achieve good generalization. In this
article, we propose a weight initialization technique for MLP to improve
its generalization. This is achieved by a regularized stacked auto-encoder
based pre-training method. During pre-training, the weights between each
adjacent layers of an MLP, upto the penultimate layer, are trained layer
wise by an auto-encoder. To train the auto-encoder, we use weighted sum
of two terms: (i) mean squared error (MSE) and (ii) sum of squares of the
first order derivatives of the outputs with respect to inputs. Here, the sec-
ond term acts as a regularizer. It is used to penalize the training of auto-
encoder during pre-training to generate better initial values of the weights
for each successive layers of MLP. To compare the proposed initialization
technique with random weight initialization, we have considered ten stan-
dard classification data sets. Empirical results show that the proposed ini-
tialization technique improves the generalization of MLP.

Keywords: Auto-encoder · Initialization · Multi-layer perceptron
Pre-training · Regularization

1 Introduction

In multi-layer perceptron (MLP), while dealing with large number of hidden
layers, random weight initialization technique may not work well [7], due to the
problem called vanishing gradient. In this scenario, the weights associated with
the layers closer to the input layer could not be updated significantly during
back propagation of the error from the output layer. To deal with this sce-
nario, various methods related to pre-training of the weights have been used in
the literature of MLP and deep neural network (DNN) [16,17]. Note that, an
MLP with more than one hidden layer can be considered as DNN. Layer wise
stacked auto-encoder based weight initialization is one of them. An auto-encoder
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 232–242, 2017.
https://doi.org/10.1007/978-3-319-71069-3_18

Regularized Stacked Auto-Encoder for Generalization of MLP 233

is a computational model with an encoding function f(·) and a decoding func-
tion g(·), where, for any input x ∈ Rn, g(f(x)) ≈ x. In auto-encoder based
learning, the weights between each of the adjacent layers of MLP are trained
layer wise starting from the input layer to the penultimate layer.

Hinton et al., in [8], performed unsupervised pre-training by stacking restricted
boltzmann machines (RBM) for proper initialization of weights of the DNNs.
DNNs mainly use learning techniques with multiple levels of representation [11].
Traditional machine learning approaches involve features, extracting explicitly
from a data set and then feed it to a neural network for training. Although such
approaches are still effective for small problems, but for real world problems, it
becomes increasingly difficult to hand engineer features from huge data sets. In
DNNs, the data is directly fed into the network. It is the job of the network to
extract the features from the data using non-linear modules that transform the
representation at one level (starting form the raw input) into a representation
at a higher and slightly more abstract level, and learn the mapping between the
input to the required output. DNNs perform layer wise unsupervised pre-training
to obtain the higher level of abstraction from data sets followed by conventional
supervised training of the network [8].

In the proposed work, we use regularized stacked auto-encoders to achieve
the higher level abstraction of the original data set at each hidden layer. The
auto-encoders are trained layer wise using gradient descent based back propa-
gation technique. For training the auto-encoder, we use a weighted sum of the
two terms: (i) mean squared error (MSE) and (ii) sum of squares of the first
order derivatives of the outputs with respect to inputs. During pre-training,
the regularizers in auto-encoders make the deviations in the hidden represen-
tation less with respect to the inputs. The proposed method have been tested
for generalization using ten classification data sets. The empirical results show
that the proposed initialization method gives better generalization capability of
MLP when compared to initialization by auto-encoders without regularizer and
random weight initialization methods.

This article is organised into five sections. In Sect. 2, we review the works,
existing in the literature, similar to the proposed model, i.e., pre-training based
initialization of weights. The proposed model is discussed, in detail, in Sect. 3.
In Sect. 4, we provide experimental results. Finally, we conclude in Sect. 5.

2 Literature Review

Over the years, various researchers have worked towards improving the general-
ization capability of MLP using various regularization techniques. Some of them
have used early stopping [18], curvature-driven smoothing [5] or weight decay
[9]. Early stopping involves stopping the training process depending on valida-
tion error. In curvature-driven smoothing, we penalize the mappings with large
curvature by adding a curvature smoothing term [3,4]. Weight decay involves
additional terms, added to the cost function in order to penalize high values
of weights and biases, thereby reducing classifier complexity. There are various

234 P. Dey et al.

such additional terms discussed in [5]. In [13], the authors have introduced a new
regularization scheme termed as eigenvalue decay. The cost function that they
use in their work is given as follows

E∗∗ = E + κ(λmin + λmax). (1)

Here, E is the mean squared error, κ is the regularization coefficient, λmin is the
smallest eigenvalue of square of (WH)(WH)T , and λmax is the biggest eigenvalue
of (WH)(WH)T . With the introduction to pre-training, it has become possible to
train deeper networks. The starting parameters that we get after pre-training is
robust with respect to random initialization. It ensures better generalization [7].
In [2], Bengio et al. have used stacked RBMs for pre-training the DNN in a
greedy layer wise unsupervised manner. To improve the performance further,
they have suggested that the idea of greedy layer wise unsupervised training
can also be extended to auto associators to get a better representation in higher
layers, which reflects the capability to generate higher level of abstractions from
the raw data. Erhan et al. [6] have demonstrated through their experiments
that supervised learning of the parameters generated through unsupervised pre-
training produces better results compared to randomly generated parameters in
MLP. For justifying their work philosophically they have stated that while the
network learns one hidden representation at a time, the weights tend to reach
near the global minima. Thus, once the entire network is pre-trained, all the
parameters are already in the neighbourhood of the global minima.

Larochelle et al. [10] have shown the results on MNIST data set using both the
stacked RBMs and the auto-encoders. The authors have validated that in order
to achieve better generalization capability of deep architectures, it is important
to perform local unsupervised pre-training each layer at a time. Each layer pro-
duces a higher layer representation from the lower level representation output
by the previous layer by altering the parameters between them. A key differ-
ence between an auto-encoder based pre-training and a restricted boltzmann
machine (RBM) based pre-training is that the weights used by RBMs to gener-
ate the data is same as those used to infer from the data. This is not the case
in auto-encoder, which is basically a special type of neural network, where hid-
den activations are the new representations of the input that has been learnt by
back-propagating the reconstruction error. It is not compulsory to use the same
weights for inference and reconstruction. It is, however, suggested that care must
be taken while training the auto encoder network to prevent any trivial and unin-
teresting mapping that can be learnt [10]. In [10,14,15], the authors have tied
both the weights together, i.e., (W I)T = WH , where W I and WH represent
the input-hidden and hidden-output weights of the auto-encoder respectively.
However, they have suggestted that use of weight decay as a regularizer with
error function during training can also be useful.

To achieve a good hidden representation, Rifai et al. [15] have proposed to
use the sum of square of first order derivative of the hidden representation with
respect to inputs as a regularizer, penalizing the standard loss function of an
auto encoder. Such auto-encoders are called contractive auto-encoders (CAEs).

Regularized Stacked Auto-Encoder for Generalization of MLP 235

The cost function C(θ), the authors [15] have used is

CCAE(θ) =
∑

xεDn

(L(x; θ) + λ||Jf (x)||2F), (2)

where θ is the set of weights and biases of the input-hidden and the hidden-
output layer, and x is a training sample from the training set Dn. L(x; θ) is the
mean squared error of the input and the output for the sample x. ||Jf (x)||2F is
the term for regularization given as follows,

||Jf (x)||2F =
∑

ij

(
∂hj(x)

∂xi
)2, (3)

where hj(x) is the hidden representation of the input x at the jth hidden node.
In [14], Rifai et al. have proposed a higher order contractive auto-encoder by
introducing the second order derivative of the representations with respect to
the inputs as the penalising term. Thus, their cost function becomes as follows
in (4).

CCAE+H(θ) = CCAE + γE[||Jf (x) − Jf (x + ε)||2] (4)

Here CCAE is the same as Eq. (2). λ and γ respectively in Eqs. (2) and (4) are
non negative hyperparameters. These regularised auto-encoders have then been
stacked to obtain deep networks and tested on various standard data sets. How-
ever, in [15] and [14], the authors have not considered the fact that the hidden
representation is achieved by virtue of weights and biases learnt by minimizing
the mean squared difference or loss between the achieved output/reconstruction
and the target output (which is actually the input). M.B. Ali, in his disserta-
tion [1], has done an elaborate comparison on the effects of standard l1 and l2
regularizers as well as dropouts in pre-training of the auto-encoders. The author
has also proposed the k-lowest dropout auto-encoder and fine-tuning, in which
k number of hidden nodes having the lowest outputs were switched off. The
outputs from the rest were only forwarded to the next layer.

3 Proposed Model

In the proposed model, we have used regularized stacked auto-encoders to train
the weights between each adjacent layers except those between penultimate and
output layers. Reconstruction error of an auto-encoder is the deviation of the
output of the decoding function from the input of the encoder. We have used an
MLP as auto-encoder with the hidden layer activation function as the encoder
and the output layer activation function as the decoder. The cost function of the
MLP is the reconstruction error which is minimized with respect to the weights
of the network during pre-training.

As auto-encoders are used to train the weights between each of the adjacent
layers one at a time, we need the hidden representation to retain information of
input as much as possible. The hidden representation is used to obtain higher

236 P. Dey et al.

abstraction of the input which is finally mapped with the target output. In
the proposed model, we use untied weights, i.e., (W I)T �= WH , where W I and
WH are respectively the input-hidden weights and hidden-output weights of
the auto-encoder. It makes sure that the network does not learn any trivial
identity function. We also introduce a new penalty term as a regularizer along
with the reconstruction error in the cost function. The regularizer, used in the
model, is the first order derivative of the output with respect to the input of
the auto-encoder. Weight updation restricts the outputs of the auto-encoders to
reconstruct the inputs faithfully and not deviate much from the desired value.
It ensures that the inputs that are comparatively similar have similar hidden
representations, resulting better generalization. The new cost function is then
minimized using gradient descent to obtain the weight updates. Note that, the
regularizer is used only in the pre-training phase when the weights of successive
layers are trained one at a time.

Once the weights of the hidden layer of the auto-encoder is trained, the
weights of the output layer of the auto-encoder is discarded. The encoding para-
meters, i.e., the input-hidden weights are frozen and the output of the hidden
layer is then used as the input to the next auto-encoder, which is stacked on top
of it to generate the next level of representation. It is continued upto the penul-
timate layer. The pre-trained parameters of the encoder part of all the stacked
auto-encoders, i.e., the input-hidden weights including the bias of the auto-
encoder, are the initial weights for the training of the MLP. The proposed method
is explained below in detail.

3.1 Pre-training

Let us consider a data set D of size P , D = {(x1, t1), (x2, t2), · · · , (xP , tP)},
where the input xi ∈ R

n and the corresponding output ti ∈ [0, 1]j . In pre-
training, the auto-encoders are used to generate a hidden representation of the
input. The input xi is fed to the auto-encoder having a single hidden layer with
h hidden nodes. An auto-encoder reconstructs its input by altering the weighted
connections in between the successive layers. The output of the hidden layer is
as follows in (5).

si(z) =
1

1 + exp−z
, z = WIxi + bh. (5)

Here, WI is the input-hidden weight matrix. bh is the weight between the bias
node of the input layer and the hth hidden node.
The function of the output layer of the auto-encoder is

si(y) =
1

1 + exp−y
, y = WHsi(z) + bo. (6)

Here, WH is the hidden-output weight matrix and bo is the weight between the
bias node of the hidden layer and the oth output node.

Regularized Stacked Auto-Encoder for Generalization of MLP 237

We use the bias as a special node in the preceding layer increasing the dimension
of vector xi by 1, i.e., (n + 1). Thus, xi = (x1

i , x
3
i , x

3
i , · · · , xn+1

i), where x1
i = 1.

W I
1h = bh represents the connection between the bias node and the hth hidden

layer node. Similarly, a node is added in the hidden layer as the bias node of
output layer.

As an auto-encoder approximates its input, the cost function can be written
as follows in (7).

ei =
1
2

n∑

k=1

(xk
i − si(yk))2, (7)

where ei is the error corresponding to the ith sample and yk is the input of kth

node of the output layer.
For updation of weights, we compute the first order derivative of the cost function
with respect to the weights WI and WH as given below.

ΔWI = −η1
∂ei

∂WI
ΔWH = −η1

∂ei

∂WH
(8)

In our work, the cost function of the auto-encoder, given in (7), is penalized
using a regularization function, which is the first order derivative of the output
representation with respect to the input. Therefore, the cost function in (7) is
replaced by (9) as follows.

enew
i = ei + λR, R =

∂si(y)
∂xi

, (9)

where λ is the regularization parameter and R is the regularization function.
From (9), we derive

R =
n∑

j=1

n+1∑

k=1

(∂si(yj)
h+1∑

l=2

(WH
lj ∂si(zl)W I

k(l−1)). (10)

The corresponding updation of weights WI and WH are respectively given below
in (11) and (12).

ΔWI = −η1(
∂ei

∂WI
+ λ

∂R

∂WI
) (11)

ΔWH = −η1(
∂ei

∂WH
+ λ

∂R

∂WH
) (12)

As the learning is done in batch mode, we have

∂ei

∂W I
pq

=
1
P

P∑

i=1

n∑

j=1

(−ej
i∂si(yj)WH

qj)∂si(zq)si(xp), (13)

∂R

∂W I
pq

=
1
P

P∑

i=1

(∂si(zq+1)
n∑

j=1

(∂si(yj)WH
(q+1)j)) (14)

238 P. Dey et al.

and
∂ei

∂WH
qr

=
1
P

P∑

i=1

−er
i ∂si(yr)si(zq) (15)

∂R

∂WH
qr

=
1
P

P∑

i=1

(∂si(yr)∂si(zq)
n+1∑

k=1

(W I
k(q−1))) (16)

Substituting (13) and (14) in (11), and (15) and (16) in (12), we finally get
the updates for the weights and biases of the auto-encoder. We obtain a hidden
representation of the input xi in the form of si(z) by virtue of the trained input-
hidden weight WI . We therefore retain WI as the pre-trained weight.

3.2 Training of the Pre-trained Weights

The weights, already pre-trained, are then trained in MLP in batch mode. The
size of the batch is equal to the number of samples present in the training data
set. For the given data set, we perform the following operation for the output of
the hidden layer.

si(z) = f(W Ixi) (17)

Here f(.) is the sigmoid transfer function, W I is the pre-trained weight between
the input and hidden layers with W I

1h as weight between the bias node of input
layer and hth hidden node, and xi is the ith input sample. In our study, we have
used a single hidden layer in MLP. So, si(z) is used as the input to the output
layer. The output of the final layer is given in (18).

si(y) = f(W classsi(z)) (18)

Here, W class is the weight between the pre-final and the final layers with W class
1o

as weight between the bias node of hidden layer and oth output node. si(y)
represents the actual output, which is compared with the target output ti to
give the loss function of the whole network as given below.

ei =
1
2

c∑

k=1

(tki − si(yk))2 (19)

The loss function is then optimized using gradient descent based back propaga-
tion to train the network for its set of parameters, W class and W I .

4 Experimentation

4.1 Experimental Settings

For experimentation, we have used ten standard classification data sets, taken
from [12]. The information of all the data sets and their class wise dis-
tribution is shown in Table 1. The simulations are performed in MATLAB

Regularized Stacked Auto-Encoder for Generalization of MLP 239

(Version 8.1). We have compared the proposed model with two different
approaches: (i) an MLP with random weight initialization and (ii) stacked auto-
encoder with unsupervised pre-training without regularizer. We have first per-
formed z-score normalization on the training data set and found the mean and
standard deviation. The mean and standard deviation have been used to obtain
the z-score normalization of the test data set. All the models, that we have used
for our experiment, have a single hidden layer with 5 hidden nodes except for Tae
data set. For Tae data set, we have taken 4 hidden nodes. As Tae data set has 5
input features, if we take 5 hidden nodes during pre-training, the auto-encoder
shall have five input, five hidden and five output nodes. This configuration will
adjust the weights in such a way that the input will be simply memorized to the
hidden layer.

Table 1. Summary of the classification data sets

Data sets # features # classes Size and class wise distribution

Bands 19 2 365(135,230)

Cleveland 13 5 297(160,54,35,35,13)

Glass 9 6 214(70,76,17,13,9,29)

Ionosphere 34 2 351(225,126)

Satimage 36 6 6435(1533,703,1358,626,707,1508)

Sonar 60 2 208(97,111)

Spectfheart 44 2 267(212,55)

Tae 5 3 151(49,50,52)

Vowel 10 11 990(90 X 11)

Yeast 8 10 1484(224,429,463,44,51,163,35,30,20,5)

Conventional MLP has comparatively less number of hyperparameters, e.g.,
the number of hidden nodes and the learning rate. But in the stacked auto-
encoder with regularizer, we have an additional learning rate and the regulariza-
tion coefficient corresponding to the pre-training. For all the data sets, we use
η1 = 0.5 and η2 = 0.3, where η1 and η2 are respectively the learning rates for
pre-training and final training. For the selection of the initial learning rate (η1),
we have performed cross validation method with different values of learning rate
and observed that for the most of the data sets system best performance is best
η1 = 0.5. With this primitive experimentation, we decide to choose the value of
learning rate as 0.5. We have performed batch mode learning with 10000 epochs
for both of the pre-training and final training of the MLP. Here, the size of the
batch is equal to the number of samples present in the training data set. In
conventional MLP, weights are initialized randomly within [−0.5, +0.5].

The learning rate η1 during pre-training is kept at a higher value than the
learning rate during final training η2, i.e., η1 > η2, because during pre-training
the auto-encoder searches for the global minima over the whole solution space

240 P. Dey et al.

of parameters. If the step size is small, then it might take a lot of time to reach
in the vicinity of the global minima. Therefore, it is kept relatively large, so
that it can cover the search space and avoid getting stuck in local minima. After
the pre-training, the parameters correspond to the vicinity of the optimum. So,
during training, the learning rate is kept low so that it does not surpass the area
of the global minimum and thus properly searches the area for the best possible
solution.

4.2 Results and Discussion

The detailed result of the experiment is given in Table 2. The bold faced entries
in the table signify the best classification accuracy for the respective data sets.
We have performed ten fold cross validation for all the data sets with ten dif-
ferent initialization of the seed to obtain the above results. Column 2 of Table 2
shows the classification accuracy of the data sets obtained by conventional MLP,
i.e., MLP with random initialization of weights. In Table 2, column 3 shows the
classification accuracy of the data sets obtained by MLP with non-regularized
unsupervised pre-training based initialization of weight. Note that, in column
3, λ = 0 signifies that the regularizer is absent which is equivalent to unsuper-
vised pre-training without regularizer. Column 4 to column 6 in Table 2 shows
the accuracies of the data sets obtained by MLP with regularized unsupervised
pre-training of auto-encoders for different values of regularization coefficient (λ).
In this experiment, we vary the value of λ from 0.01 to 0.03 as shown in Table 2,
which shows that the proposed initialization scheme provides better classifica-
tion accuracy for six out of ten data sets when compared with the column 2,
i.e., conventional MLP. Thus, the proposed model has more generalization capa-

Table 2. Table showing the classification accuracy for MLP with random weight ini-
tialization and proposed method with pre-initialized weights for different λ.

Data sets MLP with
random weight
initialization

Proposed method with pre-initialized weights

Without
regularization

With regularization

λ = 0.00 λ = 0.01 λ = 0.02 λ = 0.03

Bands 64.48± 1.52 63.20± 2.01 65.19± 1.83 63.73± 1.93 63.97± 2.53

Cleveland 56.36± 1.30 56.04± 1.13 55.71± 0.86 56.45± 1.22 56.72± 0.97

Glass 62.86± 1.56 62.90± 2.52 62.94± 1.50 62.71± 1.31 63.11± 2.18

Ionosphere 90.87± 0.73 90.46± 1.07 89.81± 1.07 88.44± 1.74 85.23± 1.97

Satimage 83.56± 0.32 85.61± 0.58 85.82± 0.42 85.66± 0.32 85.07± 0.79

Sonar 79.78± 1.91 80.42± 2.43 77.02± 2.82 73.93± 2.38 70.56± 2.96

Spectfheart 76.41± 1.51 77.61± 1.10 77.59± 1.46 77.85± 1.21 77.36± 1.56

Tae 53.98± 2.16 55.00± 1.17 53.68± 0.92 53.23± 1.56 54.82± 1.83

Vowel 58.87± 2.38 58.69± 2.24 59.42± 1.83 57.71± 2.64 51.87± 3.73

Yeast 56.80± 0.65 57.55± 0.43 57.27± 0.49 57.26± 0.48 57.00± 0.64

Regularized Stacked Auto-Encoder for Generalization of MLP 241

bility than the conventional MLP. For Ionosphere data set, randomly initialized
MLP yields better result than MLP with pre-trained parameters. While compar-
ing with the column 3, i.e., unsupervised auto-encoder based training without
regularizer, we observe that the proposed initialization scheme has higher clas-
sification accuracy. Hence, our empirical results show that the proposed model
of pre-training enhances the generalizaion of MLP. It shows the importance of
the proposed pre-initialization technique for generalization. Optimal value of the
regularization coefficient (λ) depends on the data set. Proper empirical analysis
may fix it.

5 Conclusion

In this study, we present a model that generates better values for initialization of
weights by pre-training the network using regularized auto-encoders. It provides
better classification accuracy than conventional MLP, i.e., better generalization
of MLP. The empirical experimentation shows that the proposed model per-
forms better than a network whose weights are initialized by an auto-encoder
without any regularizer as well as random weight initialization. The purpose
of such pre-training technique is the same as any other pre-training methodol-
ogy, i.e., to have a better starting point for the gradient descent learning. The
use of the regularizer in unsupervised pre-training ensures that the inputs that
are comparatively similar have similar hidden representations. This is done by
restricting the outputs of the auto-encoders, used during pre-training, to recon-
struct the inputs correctly and not to deviate much because of weight updates.
The main motive of this work is to use the regularizer in the greedy unsupervised
layer wise pre-training framework using auto-encoders to produce good initial-
ization of weights as compared to random initialization. The hyperparameters
and regularization coefficient are required to be chosen judiciously to obtain the
optimal classification accuracy. In future, we will study the selection mechanism
of these hyperparameters and regularization coefficient. Furthermore, the pro-
posed model having a single hidden layer can be extended for more than one
hidden layer.

References

1. Ali, M.B.: Use of dropouts and sparsity for regularization of autoencoders in deep
neural networks. Ph.D. thesis, bilkent university (2015)

2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise
training of deep networks. Adv. Neural Inform. Process. Syst. 19, 153 (2007)

3. Bishop, C.M.: Curvature-driven smoothing in back-propagation neural networks.
Theory Appl. Neural Networks 2, 139–148 (1990)

4. Bishop, C.M.: Curvature-driven smoothing: a learning algorithm for feedforward
networks. IEEE Trans. Neural Networks 4(5), 882–884 (1993)

5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

242 P. Dey et al.

6. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why
does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–
660 (2010)

7. Erhan, D., Manzagol, P.A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty
of training deep architectures and the effect of unsupervised pre-training. In:
AISTATS, vol. 5, pp. 153–160 (2009)

8. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

9. Jin, Y., Okabe, T., Sendhoff, B.: Neural network regularization and ensembling
using multi-objective evolutionary algorithms. In: IEEE Congress on Evolutionary
Computation, CEC 2004, vol. 1, pp. 1–8. IEEE (2004)

10. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for
training deep neural networks. J. Mach. Learn. Res. 10, 1–40 (2009)

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

12. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
13. Ludwig, O., Nunes, U., Araujo, R.: Eigenvalue decay: a new method for neural

network regularization. Neurocomputing 124, 33–42 (2014)
14. Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y., Glorot, X.:

Higher order contractive auto-encoder. In: Gunopulos, D., Hofmann, T., Malerba,
D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 645–
660. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6 41

15. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders:
explicit invariance during feature extraction. In: Proceedings of the 28th Interna-
tional Conference on Machine Learning (ICML 2011), pp. 833–840 (2011)

16. Santara, A., Maji, D., Tejas, D., Mitra, P., Gupta, A.: Faster learning of deep
stacked autoencoders on multi-core systems using synchronized layer-wise pre-
training. arXiv preprint arXiv:1603.02836 (2016)

17. Seyyedsalehi, S.Z., Seyyedsalehi, S.A.: A fast and efficient pre-training method
based on layer-by-layer maximum discrimination for deep neural networks. Neuro-
computing 168, 669–680 (2015)

18. Treadgold, N.K., Gedeon, T.D.: Exploring constructive cascade networks. IEEE
Trans. Neural Networks 10(6), 1335–1350 (1999)

http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-642-23783-6_41
http://arxiv.org/abs/1603.02836

Historical Markings in Neuroevolution
of Augmenting Topologies Revisited

Lukas Pastorek(B) and Michael O’Neill

UCD Natural Computing Research & Applications Group,
University College Dublin, Dublin, Ireland

{lukas.pastorek,m.oneill}@ucd.ie

Abstract. Historical markings in the NEAT algorithm provides a pow-
erful feature for easy genetic alignment of any networks in the popu-
lation, and allows speciation to protect networks with novelties. The
original approach incorporated in NEAT always generates a new record
for a connection with a unique ID when the connection is proposed in
a generation. However, because of this mechanism, identical novelties
developed in different generations are associated with different IDs and
are not recognized as matching connections between networks. Despite
popularity of the NEAT algorithm, there has been no existing study,
which empirically investigates impact of this encoding on behavioral
dynamics. The aim of this study is: firstly, to theoretically discuss gener-
ation context-dependent and generation context-free definitions for inno-
vations (GC vs. GC-F); secondly, experimentally compare them on an
XOR experiment under different speciation scenarios.

Our analyses suggest that the GC-F approach produces 40–50% less
innovation records than the GC approach. Moreover, the GC algorithm
exploits more innovation records from the register. However, the assump-
tion about a higher number of species for the GC approach is observed to
be true only for the first 30 generations. The difference represents a max-
imum of 10% decline of GC-F rates when compared to GC. The analysis
of migratory patterns shows, that GC-F leads to higher migration to
older species. However, differences in migration to younger species were
minimal. In conclusion, the exuberant number of innovation records in
the register in NEAT does not lead to critical behavioral differences.

Keywords: NEAT · XOR · Historical markings · Bloat
Context-free encoding

1 Introduction

Neuroevolution of Augmenting Topologies (NEAT), see [12], is a popular evolu-
tionary algorithm for evolution of artificial neural networks – their topologies and
synaptic weights. It can be seen as the alternative to training of neural networks
through classic backpropagation. This algorithm and its principles became part
of the highly-cited studies in the field of neural and evolutionary computations
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 243–254, 2017.
https://doi.org/10.1007/978-3-319-71069-3_19

244 L. Pastorek and M. O’Neill

[3,9,11], artificial life [13] or detection and classification [15]. However, the most
eminent fields of application and development represent reinforcement learning
tasks, robotics and video games [1,4,6,10,14,17].

This paper attempts to address one of the intrinsic and originally proposed
NEAT features, whose effect has only been the subject of hypothesis and specu-
lation. The simple, but powerful concept of global innovation numbers dependent
on the generational context were accepted by the community with no more need
for further investigation. The behavioral effect of this idea has not been reported
in the literature. Although, the existence of multiple IDs of identical novelties
can be the source of very complex patterns. Moreover, the dynamics of various
behavioral and genetic attributes is beyond the reach of human intuition. In this
paper, we try to describe data patterns in the particular case of the XOR prob-
lem and compare with results of a generation context-free encoding of innovation
numbers.

The remainder of the paper is structured as follows. Section 2 describes the
original algorithmic implementation of historical markings. In Sect. 3, we theoret-
ically discuss conceptual nature of different definitions of innovations. Section 4
contains a description of the testing problem and settings of algorithm. In Sect. 5,
we present and discuss experimental results. Finally, Sect. 6 summarizes our
study.

2 Tracking Genes Through Historical Markings

Historical markings, in the form of innovation numbers, were originally proposed
to simplify genetic alignment (line up) of any two networks in the population in
a metaphorical mating procedure (called recombination or crossover) [12]. As a
result, inheritance of genes from parents to the offspring is clear, straightforward
and computationally not expensive.

Each individual (neural network) can be constructed based on its set of con-
nections (list of pairs of neuron IDs). So, each individual is defined by the set
of neuron IDs and set of connections between these neurons. A connection is
understood as a gene and the set of connections in an individual as a genome.
At initialization a register of innovations (array) is created including the list of
connections, which is shared by all networks. At the start of evolution, all net-
works have the same connections – the identical topology (minimal structure).
Each gene in the innovation register is also linked with the unique ID called
an innovation number. These unique innovation numbers are also adopted from
the register of innovations by all networks. Thus, the definition of the individual
in NEAT is expanded to the set of connections with their unique innovation
numbers (innovation number is the integral part of each connection). At the
beginning, all networks have identical connections and neurons. However, they
differ in connection weights. Weights are assigned to the individual’s connections
at the initialization of the networks before evolution.

The innovation numbers can be understood as historical markings of genes
and enable the tracking of the evolutionary origins of genes (connections).

Historical Markings in Neuroevolution Revisited 245

A new connection in the individual’s genome can rise through two types of
mutations. Firstly, when two previously unconnected neurons in the individual
are linked. The new connection is created. And secondly, when a new neuron
is inserted into the existing connection. Consequently, two new connections are
initialized (connection from the existing node to the new node and from the new
node to the other existing node).

Always, when a new, previously unseen connection in population arises, the
proposed new connection is recorded in the register of innovations and associ-
ated with a new unique innovation number. Consequently, this connection with a
newly assigned innovation number is inserted into the genome of the given indi-
vidual. As innovation numbers in the genome of individuals are never changed,
they can be also inherited by offspring during recombination. They are an inte-
gral part of inherited connections.

By using this technique, it is easy to line up genomes of any two individuals
and compare, which genes match up with which (share the same innovation
number).

Moreover, this encoding approach provides another powerful new capabil-
ity. This tracking mechanism allows speciation to isolate networks with novel
connections, which have arisen due to mutation and serve to protect these nov-
elties. Using this method, the algorithm promotes survival and reproduction of
uncommon individuals through reduced competition in separate niches (species).

3 Generation Context-Dependent Versus Generation
Context-Free Encoding

Despite the technical nature of innovations in the original algorithm, it represents
the implementation of an important conceptual idea. However, the concept of
generation-dependent innovation numbers was not theoretically discussed by the
authors in [12]. Nor, was its presumed advantageous nature empirically justified
in other publications.

Nevertheless, this novel concept can be compared with the older and more
conventional perspective, which does not consider generation context.

3.1 Generation Context-Dependent Definition of the Innovation

One of the important features, which is specific for the original NEAT imple-
mentation is dependence of the connection encoding on a generational context.

According to the original rule, a new innovation record in the innovation
register is initialized only in the situation when a new innovation is proposed
for the first time in the given generation. For the other cases Stanley stated
“When the same structure arises more than once through independent mutations
in the same generation, each identical mutation is assigned the same innovation
number.” [12].

However, this generation context-dependent procedure (GC) does not prevent
the assignment of a new incremented innovation number to the identical structure

246 L. Pastorek and M. O’Neill

in future generations. The term “innovation” can be misleading in this case, as its
general meaning is associated with something absolutely “new”. In the original
implementation, innovations are also called identical structures, which are not new
in the true sense (when the entire length of evolution is considered). They are con-
sidered new because the algorithm considers a single generation as temporal con-
text (they can appear for the first time in the given generation). So, an additional
innovation record in the register is always established when known structural inno-
vations emerge again in any subsequent generation. Identical innovations from the
previous generations are not taken into account, as if they were forgotten. Due to
the repeated onset of innovations at different times (generations), the innovation
register includes multiple clones of connections with different innovation numbers.
This implementation does not consider structures, which originated in different
generations, as related despite their apparent architectural equality. As they arose
under different circumstances, they are considered as different.

3.2 Generation Context-Free Definition of the Innovation

In this paper, we challenge this generation-dependent interpretation of inno-
vation with the classic, generation context-free implementation (GC-F). This
traditional approach inhibits the described multiplicity by assigning the same
innovation numbers to the same innovations regardless of their generational
onset.

Under this approach, the innovation number is generated in the innovation
register only once, when the innovation is introduced for the first time. After-
wards, when mutation introduces the already seen innovation for insertion into
the genome, the gene is associated with the known, already initialized innovation
number from the register. So the algorithm considers the context of the entire
evolutionary history.

However, this approach leads to a potential exception. A potential advantage
for the occasional multiplicity of apparently identical structures is the capability
of the network to create parallel paths. The random nature of mutations allows
the insertion of new nodes to identical connections more often in history (con-
nections can become subjects of mutation repeatedly). If a connection is being
mutated the second time and no other network in history experienced such a
scenario for a given innovation, two new connections with new incremented inno-
vation numbers are created in the innovation register and associated with the
individual’s genome (inserted into the genome).

The maximum number of repetitions of the architecturally equal connections
in the innovation register means, that in the population there existed the net-
work, which experienced as many mutations of the identical structure, as there
are clones of the given innovation. Accordingly, if any network is mutated, the
algorithm checks if the given network includes all copies of matching innovations
from the register. Only if the network owns all of them, will a new record with a
new innovation number be initialized in the register and inserted into the indi-
viduals genome. Otherwise, the missing copy of innovation is adopted from the

Historical Markings in Neuroevolution Revisited 247

register. The presented mechanism inspects matching connections in the register
from the oldest to the youngest records.

4 Experiments and Settings

Following [16], where authors adjusted JNEAT parameters to limit network
growth, we compare our approaches on the classic XOR problem with the
algorithmic settings described in this section. The XOR problem was addressed
in the original paper by Stanley and its modifications are still spread in publi-
cations concerning the issue of modularity of complex networks, see [2,5,8].

Despite the known minimal neural architecture capable to solve this problem,
the existence of this topology does not imply the limit for other architectures
to deal with this task. This problem can illustrate evolution of more complex
structures too. It is true especially for the situation when the algorithm prefers
solutions of bigger size. We applied a linear algebra-based NEAT implementa-
tion by Mayr [7] (available officially through Miikkulainen’s Neural Networks
Research Group), which promotes network growth at the expense of very small
structures on this problem. This implementation was migrated to the Python
language.

The neuroevolutionary algorithm for each approach was run 1000 times and
all measured features in each generation were averaged. The population included
150 individuals, which were allowed to evolve for a maximum 100 generations.
Networks were initialized with minimal architecture (sigmoid slope parameter in
model was 4.9). Coefficients for measuring compatibility were c1 = 1.0, c2 = 1.0,
and c3 = 0.4. Evolutionary behavior was investigated for 5 different specia-
tion scenarios: speciation threshold δ = {1, 2, 3, 4, 5}. The speciation procedure
inspected compatibility of the individual always starting with compatibility dis-
tance to the representative of the oldest living species (species centroid). In case
of incompatibility (computed distance exceeded the threshold), a new distance
from the representative of the second oldest living species was calculated. Other-
wise, the individual was assigned to the compatible species (computed distance
was less than threshold). If an individual was assigned to the existing species,
the other younger species were not investigated. If the individual was not com-
patible with any species, the individual initialized a new species with itself as
the representative.

The elite individual of each species with more than 5 individuals was copied
into the population for following generation with no change. Each generation
20% of each species was eliminated (if species had more than 5 individuals).
After the elimination step the new representative (centroid) for each species was
randomly chosen from left individuals in given species.

For the purpose of evaluation of stagnation, the champion (individual with
the best fitness value) was identified for each living species and for each genera-
tion. Stagnation of species was declared if the computed differences between the
best fitness values for a given species in the last 15 generations and the arith-
metic mean calculated from these values did not exceed the threshold 0.01 in

248 L. Pastorek and M. O’Neill

all 15 generations. The state of freezing evolution was tested each generation
too. If the best species (which includes the top champion) stagnated for the last
20 generations. If true, then only the top two living species for given generation
were allowed to exist (two species with champions with the highest fitness values
among species).

Individuals’ fitness values were transformed through a linear ranking method
(selection pressure s = 2) and stochastic universal sampling was implemented as
the selection scheme for reproduction. Each generation, 80% of offspring (exclud-
ing elites) in each species were produced using recombination of parents. The
others were left as copies. In a recombination step, an offspring inherited all
connections from the superior parent with higher fitness. Excess or disjoint con-
nections from the less successful parent were never inherited. In the case of
matching connections between parents there was 0.6 probability that the inher-
ited gene is the arithmetic mean of weights from both parents. Otherwise, weights
were inherited randomly from parents. There was zero probability of interspecies
mating.

Each connection, which was disabled in the genome had 25% probability to
be enabled. Each connection had 90% probability that its weight was mutated.
Each weight could be shifted by another value from the uniform distribution
〈−2.5, 2.5〉. However, weights were restricted by caps to be inside the interval
〈−8, 8〉. Each individual had 5% probability of adding a new connection between
unconnected nodes and 3% probability of splitting the existing connection into
two new connections by insertion of a new node. The network could not experi-
ence both mutations in the same generation.

5 Results and Discussion

The basic assumption behind the GC approach to innovation numbers compared
to GC-F is that there is a larger number of innovation numbers generated in the
innovation register. Our observations confirm this under all speciation scenarios,
see Fig. 1a. Curves representing the GC approach (upper non-dotted curves)
reaches average levels of 600–800 innovations records in the 50-th generation
and 1300–1500 records after 100 generations. To uncover the relative dynamics,
we divided the GC-F rates (dotted curves) by corresponding GC values in each
generation. As a consequence Fig. 1b exposes the behavioral convergence to the
linear trend in production of innovation records after the 25-th generation. The
figure shows that the GC-F approach produces 40–50% less innovation records
than the GC approach.

Additionally, we explored how many of the initialized innovation records
from the register were actually present in the population (how many of them
were present at least in one individual). The results in Fig. 1c reveals the higher
absolute frequency of innovations in the GC approach. More informative results
can be obtained from Fig. 1d where the GC-F rates are divided by GC values
from Fig. 1c. This figure demonstrates divergence between approaches in the
initial generations leading to extreme situations with the speciation threshold

Historical Markings in Neuroevolution Revisited 249

2. Under this scenario, the population in the GC approach absorbs nearly twice
as many unique innovations as in the GC-F approach. This relative difference
corresponds approximately to 80–110 innovation records. For comparison, the
minimal maximum difference under the scenario of threshold 5 (25%) is induced
by 5 innovation records. Interestingly, the initial relative divergence is gradually
reduced under all scenarios.

Another assumption about the GC approach is that a higher number of
species are present in the population due to the larger number of innovations.
The observations in Fig. 1e shows that this assumption is correct in the first
30 generations. However, the difference is not as clear as it might be hypoth-
esized. After exceeding this generational limit, differences between approaches
are minor. Better insight is provided in Fig. 1f. When we compared values of
the GC approach with rates of the GC-F approach from Fig. 1e for the first 50
generations, we uncovered approximately a 10% decline of rates in the GC-F
approach in the initial stage of evolution.

Furthermore, we investigated the effect of different codings on the speciation
procedure. One of the strongly demanded effects of the diversity maintaining
techniques is protection of the innovations in newly established species. However,
the presented relocation mechanism includes also the migration of the individuals
between existing species. Surprisingly, results in Fig. 2a (upper curves) show
that migration is encouraged more by the GC-F approach. This approach is
associated with a smaller number of non-migrating individuals. These migrants
are heading predominantly to the older species (lower curves and higher rates
for GC-F approach). This fact is consistent with the idea that it is more difficult
for the algorithm with the GC-F approach to establish new species.

We can conclude from our observations that most of the time migration to
younger species involves less than 5% of individuals in the first 20 generations.
Afterwards, this type of migration dropped to even lower levels. Only under
speciation threshold 1, rates exceeded by as little 10% in the first 20 generations.
Differences in migration of individuals to younger species between GC and GC-F
approaches were minimal (maximum difference ±1 individual). These findings
combined with results in Fig. 1e suggests the hypothesis that the GC approach
leads to somewhat less similar species. Speciation with the GC approach may
produce slightly higher numbers of new species. These new species are founded
by individuals included in the category of migrants heading to younger species.
Further, it is less likely that migrants to younger species in the GC-F approach
establish new species. It is due to the higher chance of their assignment to any
other existing species, which is younger than their original one.

On the other hand, the side effect of algorithmic migration is also the poten-
tial extinction of species (all individuals can leave an existing species and become
members of any different species). The results in Fig. 2b exhibits higher rates for
the GC-F approach, which is consistent with the previous findings of the higher
similarity between individuals.

To sufficiently identify factors responsible for differences in the number of
species, we calculated the average relative frequency of individuals of different

250 L. Pastorek and M. O’Neill

Fig. 1. (a, c, e) Solid lines: rates for GC, dotted: GC-F approach. (a–f) Speciation
thresholds: δ1 = 1 (blue, ©), δ2 = 2 (red, �), δ3 = 3 (green, ♦), δ4 = 4 (purple,
no marker), δ5 = 5 (cyan, �). (a) Number of innovations in register. (b) Num. of
innovations in register: GC-F rates/GC rates. (c) Number of unique innovations in
population. (d) Num. of unique innovations in population: GC-F rates/GC rates. (e)
Number of living species in population. (f) Num. of living species in population: GC-F
rates/GC rates. (Color figure online)

Historical Markings in Neuroevolution Revisited 251

Fig. 2. (a–e) Solid lines: rates for GC, dotted: GC-F approach. (a, b) Speciation thresh-
olds: δ1 = 1 (blue, ©), δ2 = 2 (red, �), δ3 = 3 (green, ♦), δ4 = 4 (purple, no marker),
δ5 = 5 (cyan, �). (a) Migration of individuals: num. of individuals, which did not
migrate (upper part of figure), num. of individuals, which migrated to older species
(lower part). (b) Portion of species in species register, which became extinct due to
exodus of individuals. (c–f) Distribution of networks with given topology (number of
nodes) in population: 4 nodes (blue, �), 5 (red, ♦), 6 (green, �), 7 (purple, ©), 8
(cyan, +), 9 (orange, no marker). (Color figure online)

252 L. Pastorek and M. O’Neill

topologies in each generation. (considered architectures with number of nodes
n; n = {4, 5, 6, 7, 8, 9}). The situation in Fig. 2c–f illustrates the percentage of
different topologies in the population and differences between approaches. The
figures do not exhibit differences at the beginning of evolution. They appeared
with the onset of individuals with bigger architectures. Dominance of the ini-
tial architecture is radically and progressively undermined by architectures with
more nodes. The biggest difference between GC and GC-F is the skewness of
distributions in all speciation scenarios. In the case of the GC approach, the
distribution is more negatively skewed, which means that major onset of new
bigger topologies in the population is retarded in favor of the existing topolo-
gies. We can infer this phenomena from the hypothesis that the GC approach
generates multiple different clones of identical connections, which are associated
with different “redundant” species. This approach artificially inflates the num-
ber of species and reduces space (number of offsprings) for new species with new
topologies.

Also, we did not experience meaningful differences in performance (fitness)
between approaches. The GC-F approach did not deviate more than ±2% from
the average rates of the GC approach (data not shown). The speciation threshold
1 and 2 led on average to the earliest achievement of the fitness limit. However,
the aggregated average fitness on species and individual level was not satisfac-
tory. The population as whole was unable to reach even the fitness plateau.

6 Conclusions

We set out to investigate the impact of the generation context-dependent inno-
vation numbers compared to a generation context-free approach. Despite the
differences between approaches both suffer from the same deficiency. It is not
possible to exactly determine, which connection matches up with which connec-
tion in the network from different runs. This is due to the fact that the generation
of new innovation numbers is dependent upon the order in the innovation regis-
ter (innovation number, in fact, is sequential number). So, both approaches can
be described as order-dependent. However, in Stanleys approach production of
innovation numbers is encapsulated inside each generation. The innovations are
understood as intra-generational concepts. In the GC-F approach the context
of generation has no meaning and implications follow from the number of the
repetitions of the connections in the innovation register.

In this paper, the principles of generation context-dependent and context-
free (GC vs. GC-F) encodings for innovation numbers have been empirically
investigated on the XOR problem under different speciation scenarios.

It can be concluded that the GC approach leads to bloat of innovation records
in the innovation register. We hypothesize, that the GC encoding is an active
mechanism primarily in the initial stage of evolution. In this stage, there are only
a few connections that can be the subject of mutation. As only a small number of
connections can be mutated, identical connections are mutated repeatably in dif-
ferent generations. This situation leads to an initial structural multiplicity in the

Historical Markings in Neuroevolution Revisited 253

register and the population. On the contrary, the production of multiple archi-
tectural clones and their acceptance by the population gradually decreases the
probability that certain innovations are mutated repeatably in different genera-
tions. The probability is additionally reduced by a number of copies of identical
structures in the register and their share in the population. We speculate that
the initial multiplicity in the register is mostly responsible for the exuberant
generation of innovation records in later stages of evolution. This dependence
and growth resembles the theoretical mechanism of the butterfly effect.

We have uncovered the behavioral convergence of the production of innova-
tion records between approaches to a linear trend after the 25-th generation. We
can deduce that the GC-F approach produces 40–50% less innovation records
than GC under given settings.

Also, our analysis confirms that the algorithm with the GC approach incorpo-
rates more innovation records from the register into the population. In extreme
situations the population under the GC strategy exploits nearly twice as many
unique innovations from the register when compared to the GC-F rates.

Moreover, the assumption about a higher number of species when adopting
the GC approach is observed to be true only in the first 30 generations. The
difference represents a maximum of 10% decline of GC-F rates when compared
to the GC coding.

Analysis of migratory patterns have not revealed differences in the number
of individuals migrating into younger species. However, it is observed that GC-F
encourages more frequent migration to older species. It leads us to the sugges-
tion that GC generates a larger number of new species due to a slightly higher
dissimilarity between individuals in new and older species.

The investigation of the onset of new topologies and their relative representa-
tion in the population have uncovered more negatively skewed distributions for
the GC approach. They may be outcomes of multiplicity of connections as these
clones are linked with extra and redundant species. Consequently, this phenom-
ena inflates the number of species and reduces space for offpring of new species
of bigger architectures.

Our data has also revealed uncommon behavioral patterns under speciation
scenario 2, which may be due to coupling of the speciation procedure with the
other complementary mechanisms. As the observations in the current study are
valid for the XOR problem and given settings, investigation on different problems
could enhance the generalization power of any conclusions.

In conclusion, the exuberant number of innovation records in the register in
NEAT does not lead to critical behavioral differences with the observed behav-
iour being comparable with the generation context-free approach on the XOR
problem. On the other hand, the original GC approach complicates and makes
less clear lineage in the population.

Acknowledgments. This research is based upon works supported by Science Founda-
tion Ireland under grant 13/RC/2094 which is co-funded under the European Regional
Development Fund through the Southern & Eastern Regional Operational Programme
to Lero - the Irish Software Research Centre (www.lero.ie).

www.lero.ie

254 L. Pastorek and M. O’Neill

References

1. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated
quadruped gaits with the hyperneat generative encoding. In: IEEE Congress on
Evolutionary Computation, CEC 2009, pp. 2764–2771. IEEE (2009)

2. Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Proc.
R. Soc. B. 280, 2012–2863 (2013). The Royal Society

3. Gauci, J., Stanley, K.O.: Autonomous evolution of topographic regularities in arti-
ficial neural networks. Neural Comput. 22(7), 1860–1898 (2010)

4. Hastings, E.J., Guha, R.K., Stanley, K.O.: Evolving content in the galactic arms
race video game. In: IEEE Symposium on Computational Intelligence and Games,
CIG 2009, pp. 241–248. IEEE (2009)

5. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs.
Proc. Natl. Acad. Sci. U.S.A. 102(39), 13773–13778 (2005)

6. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty
search and local competition. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, pp. 211–218. ACM (2011)

7. Mayr, C.: Neat matlab. Last accessed (2017)
8. Mengistu, H., Huizinga, J., Mouret, J.B., Clune, J.: The evolutionary origins of

hierarchy. PLoS Comput. Biol. 12(6), e1004829 (2016)
9. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Evolving adaptive neural networks

with and without adaptive synapses. In: The 2003 Congress on Evolutionary Com-
putation, CEC 2003, vol. 4, pp. 2557–2564. IEEE (2003)

10. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the
nero video game. IEEE Trans. Evol. Comput. 9(6), 653–668 (2005)

11. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

12. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

13. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life
9(2), 93–130 (2003)

14. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary
complexification (2004)

15. Tan, M., Deklerck, R., Jansen, B., Bister, M., Cornelis, J.: A novel computer-aided
lung nodule detection system for ct images. Med. Phys. 38(10), 5630–5645 (2011)

16. Trujillo, L., Muñoz, L., Naredo, E., Mart́ınez, Y.: NEAT, there’s no bloat. In:
Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M., Garćıa-Sánchez, P., Merelo,
J.J., Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 174–
185. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44303-3 15

17. Whiteson, S., Stone, P.: Evolutionary function approximation for reinforcement
learning. J. Mach. Learn. Res. 7, 877–917 (2006)

https://doi.org/10.1007/978-3-662-44303-3_15

Long-Short Term Memory Network for RNA
Structure Profiling Super-Resolution

Pak-Kan Wong1(B) , Man-Leung Wong2 , and Kwong-Sak Leung1

1 The Chinese University of Hong Kong, Sha Tin, Hong Kong
{pkwong,ksleung}@cse.cuhk.edu.hk

2 Lingnan University, Tuen Mun, Hong Kong
mlwong@ln.edu.hk

Abstract. Profiling of RNAs improves understanding of cellular mech-
anisms, which can be essential to cure various diseases. It is estimated
to take years to fully characterize the three-dimensional structure of
around 200,000 RNAs in human using the mutate-and-map strategy.
In order to speed up the profiling process, we propose a solution based
on super-resolution. We applied five machine learning regression meth-
ods to perform RNA structure profiling super-resolution, i.e. to recover
the whole data sets using self-similarity in low-resolution (undersam-
pled) data sets. In particular, our novel Interaction Encoded Long-Short
Term Memory (IELSTM) network can handle multiple distant inter-
actions in the RNA sequences. When compared with ridge regression,
LASSO regression, multilayer perceptron regression, and random forest
regression, IELSTM network can reduce the mean squared error and the
median absolute error by at least 33% and 31% respectively in three
RNA structure profiling data sets.

Keywords: Long-short term memory · RNA structure
Machine learning regression methods

1 Introduction

The goal of super-resolution is to generate high-resolution signals based on the
low-resolution signals. For example, high-resolution enlargements of pixel-based
images can be reconstructed from lower resolution images via super-resolution
algorithms. Super-resolution is popular in computer vision, medical imaging,
and compiling images from space probes. Figure 1 shows an example of super-
resolution using an image of a flower with raindrops. The rightmost image is
the original image taken by us. The leftmost image is the low-resolution image
by magnifying the original image. The edges of the petals of the flower are
blurred in the magnified image due to undersampling. Besides, the raindrops on
the flower almost disappear. The middle image is obtained by applying image
super-resolution using the low-resolution image as input. The fine details of the
complex structure of the edges are sharpened. The raindrops on the flower also
become more visible.
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 255–266, 2017.
https://doi.org/10.1007/978-3-319-71069-3_20

http://orcid.org/0000-0003-1062-2770
http://orcid.org/0000-0002-4364-6747
http://orcid.org/0000-0001-7816-2454

256 P.-K. Wong et al.

Fig. 1. Images demonstrating the concept of super-resolution. Left to right: the mag-
nified image, the super-resolution image, and the original image. The original image
was taken by us. The super-resolution image was generated from the magnified image
using the algorithm in [6].

Apart from image processing, super-resolution techniques are effective infor-
mation processing techniques for other data types, including audio data, tracking
data, and genomic data. This paper studies the super-resolution problem on the
Sequence Series Data (SSD) resembling time series data. The ‘time’ variable in
the SSD are sequences which can be ordered naturally. Each sequence (‘time
point’) is associated with at least one response variable. SSD can be found in
sentiment analysis and physiological measurement. In this paper, we focus on
the application of SSD super-resolution to accelerate RNA structure profiling.

Cellular activities are controlled by around 200,000 RNAs [12]. RNAs in
human are highly specialized and their functions are closely related to the fold-
ing structure [4]. Structure profiling experiments provide quantitative single-
nucleotide information (i.e. a reactivity value) about RNAs using chemical prob-
ing techniques. The data obtained from RNA structure profiling experiments is
a form of SSD data. A sequence in the SSD is an RNA sequence. They can
be naturally ordered by their mutation positions. At each position in the RNA
sequence, a reactivity value measured from the experiment is associated to it.

The time spent on profiling the wild-type and the variants of 71-nucleotide
adenine-sensing add riboswitch from V. vulnificus is reported to be a single after-
noon (about five and eight hours) [18]. The profiling rate is about three to six
RNAs per day. However, there are about 27,720 long non-coding RNA loci tran-
scripts (excluding other types of RNAs) in human as reported by GENCODE
(ver. 26) [12]. Therefore, performing SHAPE experiments in lower resolution
(i.e. skipping the measurements of some RNA variants) can be helpful in the
preliminary stage of RNA study. After that, super-resolution data are recon-
structed from the low-resolution data via SSD super-resolution methods. The
artificial data set is an approximation of the high-resolution data set. In addi-
tion, because of many successes of machine learning techniques for image super-
resolution, machine learning regression techniques are focused in this paper. The
contributions of this study are as follows:

1. We present RNA structure profiling super-resolution methods based on sev-
eral machine learning regression algorithms, such as ridge regression [15],
LASSO regression [26], multilayer perceptron regression [22,23], and random
forest regression [2,20].

LSTM Network for RNA Structure Profiling Super-Resolution 257

2. We present our Long-Short Term Memory (LSTM) network to capture long
range interactions across multiple positions in the RNA sequences.

3. We demonstrate our super-resolution methods on RNA structure profiling
data.

The rest of the paper is organized as follows. Section 2 presents the related
works about our methods. The super-resolution problem is introduced in Sect. 3.
Section 4 presents classical approaches and our Interaction Encoded Long-Short
Term Memory (IELSTM) network-based approach. In Sect. 5, the data sets
for evaluation are described. Section 6 compares the performance of different
approaches using multiple criteria. Lastly, we conclude the paper and discuss
the future works.

2 Related Works

In this section, a brief summary of the related works on image super-resolution
and LSTM are presented.

2.1 Image Super-Resolution

Recent methods become more data-driven and apply machine learning tech-
niques to match existing high-resolution image(s) of the low-resolution image.
Substantial improvements are achieved using data-driven approaches. The super-
resolution problem is reformulated as a machine learning problem which is to
find the best high-resolution image(s) given the low-resolution image. Pairs of
high-resolution image patches and the low-resolution image patches are served
as training data. Modern image super-resolution algorithms can be categorized
by how training image patches are prepared [17]. There are three categories:
external database driven approach, internal database driven approach, and gen-
eralized database driven approach. Only internal database driven approach is
reviewed because our super-resolution approach belongs to this category.

The internal database driven approach analyzes the given low resolution
image and finds out self-similarity, which includes patch recurrence within the
spatial neighborhood in an image across multiple scales [9]. Generative adversar-
ial network [10] and residual network [13] allow us to infer photo-realistic natural
images for 4x upscaling factors under mean-opinion-score test [19].

2.2 Long-Short Term Memory Network

LSTM network is a type of recurrent neural network [14,16] (and a forget gate
was introduced later [8]). LSTM network is popular and very suitable for mod-
eling many temporal data and sequence data available nowadays. Bidirectional
LSTM networks [11] have succeeded in solving problems in acoustic modeling,
such as phoneme recognition [24] and non-verbal signal detection [3]. LSTM net-
work in tree-structured network topologies are proposed to measure the seman-
tic similarity of two sentences for sentiment analysis [25]. LSTM is a practical

258 P.-K. Wong et al.

solution when researchers develop new language parsers. For example, transition-
based dependency parser can be implemented using stack LSTM, which supports
both reading (pushing) and forgetting (popping) inputs [7].

3 RNA Structure Profiling Super-Resolution Problem

This paper focuses on the RNA structure profiling data sets generated using
a two-dimensional mutate-and-map methodology [18]. Each data set studies
a wild-type sequence. Two-dimensional mutate-and-map method is applied to
measure the reactivity at every position of the RNA sequence. Apart from the
reactivity measurement on the wild-type sequence, the reactivities of a set of
mutated sequences of the wild-type sequence are measured. In the experiment,
a mutated sequence differs from the wild-type sequence at exactly one position.

An example of RNA structure profiling data has been depicted in Fig. 2. The
table on the leftmost in the figure shows six RNA sequences: CUGAU, GUGAU,
CAGAU, CUCAU, CUGUU, and CUGAA, which are denoted by s(0), s(1), s(2),
s(3), s(4), and s(5) respectively. Sequence CUGAU is the wild-type sequence and
the remaining sequences are the mutated sequences. In this paper, we assume
two-dimensional mutate-and-map experiments are performed on all sequences.
Their measured reactivity values are shown in the table in the middle of Fig. 2.
For example, the measured reactivity values of each position in the sequence s(1)

(i.e. GUGAU) are 16, 12, 10, 37, and 45 respectively.
To speed up the RNA structure profiling process, we apply downsampling

during measurement. This means that we only select and measure a subset of
the mutated sequences in the two-dimensional mutate-and-map experiments. In
other words, the original high-resolution RNA structure profiling data set is
downsampled to obtain a low-resolution data set (the rightmost table in Fig. 2).
The measured reactivity values (shaded rows, i.e. m(1), m(2), m(4), and m(5)) of
four sequences (i.e. s(1), s(2), s(4), and s(5)) are not available.

The objective of our super-resolution task is to reconstruct all measured
values (shaded rows) in the low-resolution RNA structure profiling data (i.e.
the rightmost table in Fig. 2) so that it is (approximately) the same as the
ground truth high-resolution profiling data (i.e. the table in the middle in
Fig. 2). Machine learning-based RNA structure profiling super-resolution meth-
ods extract patterns from the low-resolution data set to perform reconstruction.

(0) C U G A U (0) 10 12 43 30 31(1) G U G A U (1) 16 12 10 37 45(2) C A G A U (2) 14 13 47 33 32(3) C U C A U (3) 12 12 55 29 31(4) C U G U U (4) 15 12 24 27 37(5) C U G A A (5) 6 8 26 43 51

Downsampling

Super-resolu on

(0) 10 12 43 30 31(1)(2)(3) 12 12 55 29 31(4)(5)
Fig. 2. An example of RNA structure profiling data and the super-resolution problem.

LSTM Network for RNA Structure Profiling Super-Resolution 259

4 Super-Resolution Methods

In this section, we describe two kinds of methods to perform machine learning-
based RNA structure profiling super-resolution. The first kind of methods adopts
classical machine learning regression approaches, including LASSO regression
and random forest regression. Very often, they are designed to forecast a sin-
gle variable at a time. In order to extend these approaches, the low-resolution
data are split into smaller sub-data set by position of the measured values (see
Fig. 3) and then regression models are learnt for each position using the position-
separated tables. The predictions made by the regression models on each sub-
data set are aggregated to produce the overall prediction.

(0) C U G A U 10(3) C U C A U 12

Sub-data set for position 1 (0) C U G A U 12(3) C U C A U 12

Sub-data set for position 2

…

Fig. 3. Sub-data sets of the low-resolution data in Fig. 2.

4.1 Limitations of LSTM Network

LSTM network is a type of recurrent neural network and is formed by connecting
multiple LSTM cells in a chain structure [14]. Each cell may emit a prediction and
predictions from multiple cells can be concatenated to form an output sequence.
The behaviors of a LSTM cell are governed by the following composite function:

f
(0)
i = σ(W (0)[hi−1; si] + b(0)) (1)

f
(1)
i = σ(W (1)[hi−1; si] + b(1)) (2)

f
(2)
i = tanh(W (2)[hi−1; si] + b(2)) (3)

f
(3)
i = σ(W (3)[hi−1; si] + b(3)) (4)

ci = ci−1f
(0)
i + f

(1)
i f

(2)
i (5)

hi = σ(ci−1)f
(3)
i (6)

The corresponding graphical representation is shown in Fig. 4. The meaning
of each internal building block can be found in Fig. 5. There are three inputs: the
input value at position si, the previous cell state ci−1, and the previous hidden
state hi−1. Besides, there are three gates in the cell: input gate, output gate,
and forget gate. They are implemented using sigmoid functions which determine
how much information to retain or discard. Finally, hi and ci−1 store the result
and a new cell state respectively.

This model has to be adapted because of the following issues. Firstly, the
output hi cannot be larger than 1. Besides, future input information cannot be

260 P.-K. Wong et al.

Fig. 4. A LSTM cell.

+
+1
-1

×
LinearTanh

+ Positional additionAddition Multiplication

1
0 Sigmoid

Fig. 5. Building blocks in the LSTM cell and IELSTM cell.

accessed from the current state. For instance, suppose the measured values of the
first and the last RNA sequences are positively correlated, the measured values
of the first RNA sequence can be better estimated given the measured values of
the last RNA sequence. Therefore, we propose using a new type of LSTM cell,
namely Interaction Encoded Long-Short Term Memory (IELSTM) cell.

4.2 Interaction Encoding LSTM Network

IELSTM network is a type of LSTM network. The graphical representation
is depicted in Fig. 6. A IELSTM cell at position i is defined by the following
composite function:

f
(0)
i = IE1,2(s0s1...sN−1, i) (7)

f
(1)
i = ci−1 + f

(0)
i (8)

f
(2)
i = tanh(W (0)si + b(0)) (9)

ci = tanh(W (1)[ci−1; f
(0)
i] + b(1)) (10)

hi = f
(1)
i f

(2)
i (11)

There are four inputs and two outputs in the i-th IELSTM cell. The whole
input sequence s0s1...sN−1 si is the item at i th position of the input sequence.
The cell state ci−1 of the i-th cell is connected to the output ci−1 of the previous

LSTM Network for RNA Structure Profiling Super-Resolution 261

Fig. 6. The architecture of IELSTM.

IELSTM cell. The outputs of the cell depend on the information from the short-
term memory stored in the cell state. The predicted output at the i-th position
is denoted by hi.

Interaction encoder IE1,2 is a main component in a IELSTM cell. It ana-
lyzes the whole input sequence and captures the global information. As shown
in Fig. 7, the interaction encoder constitutes a first order interaction encoder
IE1 and a second order interaction encoder IE2. Using Fig. 7 as an example,
IE1 transforms characters s0, s1, and s3 in the input sequence using a linear
module. The positional addition module is controlled by variable p so as to
select the relevant input signals. Suppose the value of p is 1, the value of g(1) is
w1s1 + b1, where w1 and b1 are the weight and the bias term respectively. Simi-
larly, in order to extract information from second order interactions among the
characters in the input sequence, every linear module combines a pair of input
signals linearly in IE2. Refer to Fig. 7, IE2 transforms characters s0, s1, and s3

Fig. 7. The architecture of a first and second order interaction encoder.

262 P.-K. Wong et al.

in the input sequence using a linear module. Each linear module handles one
possible interaction among different positions. The positional addition module
is controlled by variable p so as to select the relevant input signals connecting
the input signal sp. Suppose the value of p of IE2 is set to 1, the value of g(2)

is w0,1[s0; s1] + b0,1 + w1,2[s1; s2] + b1,2, where w0,1 and w1,2 are the weights of
the corresponding linear modules connecting the pair s0 and s1, and the pair s1
and s2 respectively; similarly for the bias terms b0,1 and b1,2. The final output
of IE1,2 is the sum of the outputs of IE1 and IE2, i.e. g = g(1) + g(2).

Lastly, we use stochastic gradient descent to find the parameters in the neural
network. The sum of mean squared error and the sum of absolute deviations is
used as the loss function in neural network training.

5 Data Sets

Three data sets were collected from the RNA Mapping Database [5], which use
1-methyl-7-nitroisatoic anhydride reagent in the experiments. A summary of the
three data sets is presented in Table 1. The first column gives the names of the
data sets, which are 16SFWJ, CL1LIG, and HOXA9D, and their RMDB IDs are
16SFWJ 1M7 0001, CL1LIG 1M7 0001, and HOXA9D 1M7 0001 respectively.
Data set 16SFWJ has the least amount of sequences and the least amount of
data points. It has only 111 sequences and 12,210 data points. Data set HOXA9D
is the largest and has 31,152 data points. The sequences in data set HOXA9D
are the longest.

Table 1. Data sets.

Data set # of
sequences

of data
points

Sequence
length

Average Standard
deviation

Maximum
value

16SFWJ 111 12210 110 11.46 17.05 298

CL1LIG 129 21543 167 8.996 15.50 200

HOXA9D 177 31152 176 5.2816 4.43 75.28

Next, we assess the difficulties of the three data sets based on the statistics of
the measured values. As shown in the last three columns in Table 1, the standard
deviations of data sets 16SFWJ and CL1LIG are 17.05 and 15.50 respectively
Both standard deviations are larger than the average values. In addition, the
standard deviation of the data set HOXA9D is 4.43. The measured values in
this data set are more concentrated around the mean. This suggests that data
set HOXA9D may be simpler than the other two data sets.

6 Evaluation and Results

Different super-resolution algorithms are evaluated and compared when solving
the RNA structure profiling super-resolution problem. We adopted four state-
of-the-art machine learning algorithms in the framework of classical approaches:

LSTM Network for RNA Structure Profiling Super-Resolution 263

ridge regression, LASSO regression, multilayer perceptron regression, and ran-
dom forest regression, which are respectively labeled as Ridge, LASSO, MLP,
and RFR. They were implemented using Scikit-learn machine learning library
version 0.18.1 [21] and the default parameters in the library are kept unchanged.
PyTorch [1] is a deep learning framework released by Facebook AI Research and
was chosen to implement the IELSTM network.

Besides, training subsets were created via downsampling by a factor of three
from the original data sets. This means that one-third of the data points were
used to reconstruct the remaining two-third of the data points in every data set.
As such, three testing subsets (indexed by 0, 1, and 2) were created by selecting
different portions of data points for training and testing.

In the evaluation, mean squared error and median absolute error were selected
to compare the performance across different approaches. A better reconstruction
algorithm should produce a smaller error value in the reconstructed data set. The
average performance in different data sets is also provided for each metric.

Table 2. Mean squared error results for all data sets.

Data set Algorithm Training subset 0 Training subset 1 Training subset 2 Average

16SFWJ Ridge 209.47 206.75 169.87 195.36

LASSO 274.80 278.45 237.05 263.43

MLP 186.95 186.01 147.62 173.53

RFR 186.58 186.31 146.52 173.14

IELSTM 131.34 127.82 85.88 115.01

CL1LIG Ridge 102.97 102.84 103.29 103.03

LASSO 240.12 240.14 237.30 239.19

MLP 54.87 54.69 56.59 55.38

RFR 54.50 54.80 58.25 55.85

IELSTM 15.34 14.78 17.66 15.93

HOXA9D Ridge 10.98 10.92 11.97 11.29

LASSO 19.47 19.45 20.40 19.77

MLP 9.57 9.51 10.38 9.82

RFR 9.64 9.48 10.35 9.82

IELSTM 7.06 6.08 6.13 6.42

Mean Squared Error. The mean squared error measures the discrepancy
between the original data and the reconstructed data. It penalizes large errors
heavily and maximizes the signal-to-noise ratio. Refer to Table 2, IELSTM always
attained the lowest mean squared error, which are in bold, among the others.
The mean squared errors of IELSTM were 115.01, 15.93, and 6.42 in data sets
16SFWJ, CL1LIG, and HOXA9D respectively. LASSO was the worst among all
methods. Besides, MLP and RFR performed similarly and were the second best
approaches. However, IELSTM outperformed them by a large margin and was
able to reduce the average mean squared error by at least 33%.

264 P.-K. Wong et al.

Median Absolute Error. Median absolute error is defined as the median
of all absolute differences between the target values and the predicted values. It
measures the robustness of a method to the variability in the samples. In data set
16SFWJ, IELSTM attained 2.18 median absolute error on average. The second
best algorithm was RFR, which attained 3.17 median absolute error on average.
IELSTM attained 0.70 median absolute error on average and was 0.48 less than
the second best result obtained by RFR in data set CL1LIG. Lastly, in data
set HOXA9D, IELSTM attained 0.90 median absolute error on average and was
0.57 less than the second best result obtained by RFR. The results suggested
that IELSTM was a more robust method to variability in the samples (Table 3).

Table 3. Median absolute error results for all data sets.

Data set Algorithm Training subset 0 Training subset 1 Training subset 2 Average

16SFWJ Ridge 4.67 4.48 4.40 4.52

LASSO 6.86 7.12 6.66 6.88

MLP 3.02 3.43 3.22 3.22

RFR 2.94 3.40 3.18 3.17

IELSTM 1.97 2.42 2.14 2.18

CL1LIG Ridge 3.87 3.65 3.70 3.74

LASSO 7.54 7.43 7.55 7.51

MLP 1.33 1.31 1.11 1.25

RFR 1.19 1.22 1.12 1.18

IELSTM 0.72 0.69 0.68 0.70

HOXA9D Ridge 1.90 1.81 1.78 1.83

LASSO 3.11 3.21 2.70 3.01

MLP 1.52 1.54 1.38 1.48

RFR 1.53 1.51 1.38 1.47

IELSTM 1.03 0.90 0.77 0.90

In summary, we concluded that IELSTM is the most suitable method for our
super-resolution task based on the two metrics.

7 Conclusions and Future Works

This paper addressed the problem in structure profiling of a large amount
of RNAs in cells. We formulated the RNA structure profiling problem into
a super-resolution problem which was then solved via machine learning-based
super-resolution algorithms. Three mutate-and-map data sets using 1-methyl-7-
nitroisatoic anhydride reagent in the experiments were selected in the evaluation.
Our novel IELSTM network was demonstrated to be the best algorithm among
other classical approaches across the data sets based on two metrics.

LSTM Network for RNA Structure Profiling Super-Resolution 265

In the future, our IELSTM network will be extended to unify several super-
resolution models learnt from different data sets and perform super-resolution
on data sets at a lower resolution. The major challenge will be how to align
the data sets when the lengths of the target RNA sequences are not the same.
In addition, we will also deploy the network to other SSD sets, for instance,
sentiment analysis data sets to predict the changes in mood.

Acknowledgments. This research is supported by General Research Fund
(LU310111 and 414413) from the Research Grant Council of the Hong Kong Special
Administrative Region and the Lingnan University Direct Grant (DR16A7).

References

1. PyTorch. http://pytorch.org/. Accessed 30 Jan 2017
2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Brueckner, R., Schulter, B.: Social signal classification using deep BLSTM recur-

rent neural networks. In: Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 4823–4827. IEEE (2014)

4. Choudhary, K., Deng, F., Aviran, S.: Comparative and integrative analysis of RNA
structural profiling data: current practices and emerging questions. Quantit. Biol.
5, 1–22 (2017)

5. Cordero, P., Lucks, J.B., Das, R.: An RNA mapping database for curating RNA
structure mapping experiments. Bioinformatics 28(22), 3006–3008 (2012)

6. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convo-
lutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

7. Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, N.A.: Transition-
based dependency parsing with stack long short-term memory. arXiv preprint
arXiv:1505.08075 (2015)

8. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction
with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

9. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Pro-
ceedings of the IEEE International Conference on Computer Vision, pp. 349–356.
IEEE (2009)

10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural
Information Processing Systems, pp. 2672–2680 (2014)

11. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks 18(5), 602–610
(2005)

12. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski,
F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., et al.: GENCODE: the reference
human genome annotation for the encode project. Genome Res. 22(9), 1760–1774
(2012)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

http://pytorch.org/
http://arxiv.org/abs/1505.08075

266 P.-K. Wong et al.

15. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal
problems. Technometrics 12(1), 55–67 (1970)

16. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

17. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed
self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5197–5206 (2015)

18. Kladwang, W., VanLang, C.C., Cordero, P., Das, R.: A two-dimensional mutate-
and-map strategy for non-coding RNA structure. Nat. Chem. 3(12), 954–962
(2011)

19. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-
resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802
(2016)

20. Liaw, A., Wiener, M., et al.: Classification and regression by random forest. R
News 2(3), 18–22 (2002)

21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

22. Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan Books, Washington (1962)

23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Parallel distributed processing:
explorations in the microstructure of cognition. In: Learning Internal Representa-
tions by Error Propagation, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

24. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural net-
work architectures for large scale acoustic modeling. In: Proceedings of the Fif-
teenth Annual Conference of the International Speech Communication Association
(2014)

25. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from
tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075
(2015)

26. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Roy. Stat.
Soc. Ser. B (Methodol.) 58(1), 267–288 (1966)

http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1503.00075

Quantum Computing

Hamming Distance Kernelisation via Topological
Quantum Computation

Alessandra Di Pierro1(B), Riccardo Mengoni1, Rajagopal Nagarajan2,
and David Windridge2

1 Dipartimento di Informatica, Università di Verona, Verona, Italy
alessandra.dipierro@univr.it

2 Department of Computer Science, Middlesex University, London, UK

Abstract. We present a novel approach to computing Hamming dis-
tance and its kernelisation within Topological Quantum Computation.
This approach is based on an encoding of two binary strings into a topo-
logical Hilbert space, whose inner product yields a natural Hamming
distance kernel on the two strings. Kernelisation forges a link with the
field of Machine Learning, particularly in relation to binary classifiers
such as the Support Vector Machine (SVM). This makes our approach
of potential interest to the quantum machine learning community.

Keywords: Quantum computing · Topology · Kernel function

1 Introduction

The Hamming distance of two strings is defined as the number of positions in
which the strings are different. It was introduced in the context of error detect-
ing and error correcting codes [8]. The concept is widely applicable to diverse
areas such as information theory, coding theory, cryptography and telecommuni-
cation. As well as its use throughout computer science, the Hamming distance is
interesting from the perspectives of statistical data analysis and machine learn-
ing in that it constitutes a simple (in fact the simplest) instance of a kernel
distance. Kernel distances are built from kernel functions via the metric relation
D(x, y) = K(x, x) + K(y, y) − 2K(x, y). Critically, from our perspective, kernel
functions can be shown to be equivalent to an inner product within a space
produced via the kernel function’s implicit feature mapping, thereby enabling
e.g. linear learning algorithms to learn highly non-linear decision boundaries.
In many applications where data classification is based on dissimilarity mea-
sures (e.g. string matching for pattern recognition), kernels provide a method
for classification and regression in the absence of obvious features.

R. Nagarajan—Partially supported by EU ICT COST Action IC1405 “Reversible
Computation Extending Horizons of Computing”.
D. Windridge—Supported by EU Horizon 2020 research project No. 731593 “Dream-
like simulation abilities for automated cars (DREAMS4CARS)”.

c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 269–280, 2017.
https://doi.org/10.1007/978-3-319-71069-3_21

270 A. Di Pierro et al.

In this paper we show that there is a strong relationship between Ham-
ming distance and Topology and we use it to define a quantum algorithm that
computes a Hamming distance based kernel. Topology is the branch of Math-
ematics in which two objects are identified whenever one can continuously be
deformed into the other. It has been used in physics to define a very particular
class of quantum field theories, namely the Topological Quantum Field Theo-
ries (TQFTs), modelling phenomena such as the fractional quantum Hall effect.
Quantum computers can benefit from the use of topological properties in as
far as they can guarantee a form of robustness [14]. This is possible because in
a topological quantum computer information is encoded in the collective states
of many quasi-particles, so-called anyons, which are naturally protected from
decoherence by their braiding behaviour.

Topological Quantum Computation (TQC) is equivalent in computational
power to other standard models of quantum computation such as the quantum
circuit model and the quantum Turing machine model. However, certain algo-
rithms are more naturally implementable on a topological quantum computer.
A well known example of such an algorithm is the one for evaluating a knot
invariant called the Jones polynomial [2,7]. The quantum algorithm we present
is essentially the application of the Jones polynomial algorithm after an appro-
priate problem reduction. This is obtained by an encoding of binary strings as
some special braiding in TQC and deriving their Hamming distance as the Jones
polynomial of a particular link. We can then exploit the computational features
of TQC for comparing two strings and obtain an estimation of the Hamming dis-
tance between them. Moreover, the encoding function corresponds to the feature
map of a kernel defined as the dot product in the Hilbert space of the topological
quantum algorithm (i.e. the feature space). This demonstrates the suitability of
TQC for defining kernel methods in a natural way.

2 Preliminaries

In this section we briefly review the main concepts in Topology that are relevant
for the work presented in this paper, namely those of knots/links, braiding and
related results.

Knot theory [1,12] studies the topological properties of mathematical knots
and links. A knot is an embedding of a circle in the 3-dimensional Euclidean
space R

3, up to continuous deformations, and a link is a collection a knots that
may be linked or knotted together. A fundamental question in knot theory is
whether two knot diagrams, i.e. projections of knots on the plane, represent
the same knot or rather they are distinct. The Reidemeister theorem [16] says
that two links can be continuously deformed into each other if and only if any
diagram of one can be transformed into a diagram of the other by a sequence of
moves called Reidemeister moves [17]. If there exists such a transformation the
two links are said to be isotopic.

The Reidemeister moves can be of three types, as depicted in Fig. 1. Move I
undoes a twist of a single strand, move II separates two unbraided strands and

Hamming Distance Kernelisation via Topological Quantum Computation 271

Fig. 1. The Reidemeister moves

finally move III slides a strand under a crossing. A powerful knot invariant is
the Jones polynomial VL(A) [9] which is a Laurent polynomial in the variable A
with integer coefficients. Given two links L1 and L2 and their respective Jones
polynomials VL1(A) and VL2(A), the following relation holds true:

L1 = L2 ⇒ VL1(A) = VL2(A) or, equivalently, VL1(A) �= VL2(A) ⇒ L1 �= L2.

A useful formulation of this polynomial due to Kauffman [10,11] is given in
terms of the so-called bracket polynomial or Kauffman bracket, defined in the
following section. Crucial for our work is that such a polynomial can be efficiently
computed in TQC [2].

2.1 Kauffman Bracket

Definition 1. The Kauffman bracket of any (unoriented) link diagram D,
denoted 〈L〉, is a Laurent polynomial in the variable A, characterized by the
three rules:

1.
〈 〉

= 1, where is the standard diagram of the loop
2.

〈
D � 〉

= (−A2 − A−2)〈D〉 = d〈D〉, where � denotes the distant union1

and (−A2 − A−2) = d.
3.

〈 〉
= A

〈 〉
+ A−1

〈 〉

where and represent some regions of link diagrams where they differ as
shown.

Rule 3 expresses the skein relation: it takes in input a crossing ri and dissolves
it generating two new links that are equal to the original link except for ri, and
therefore with a smaller number of crossings. By applying it recursively to a
link we obtain at the end a number of links with no crossings but only simple

1 The distant union of two arbitrary links L and M, denoted by L�M is obtained by
first moving L and M so that they are separated by a plane, and then taking the
union.

272 A. Di Pierro et al.

loops, though this number is exponential in the number of crossings. Rule 1 and
Rule 2 show how to calculate the polynomial after the decomposition achieved
by applying Rule 3.

Note that the Kauffman bracket of a link diagram is invariant under Reide-
meister moves II and III but it is not invariant under move I.

Proposition 2. For every two links L and M, the distant union L � M has the
property:

〈L � M〉 = (−A2 − A−2) 〈L〉 〈M〉 = d 〈L〉 〈M〉

The Kauffman Bracket of the Hopf Link. We show here the calculation
of the Kauffman bracket for the simplest non-trivial link with more than one
component, i.e. the Hopf link depicted below [15].

By applying Rule 3 of Definition 1 to the upper crossing we get

〈 〉
= A

〈 〉
+ A−1

〈 〉

Now we use also Rules 1 and 2 of Definition 1 to compute the new two
brackets separately:

〈 〉
= A

〈 〉
+ A−1

〈 〉
= Ad + A−1 = (−A)3

〈 〉
= A

〈 〉
+ A−1

〈 〉
= A + dA−1 = (−A)−3

Finally we get
〈 〉

= A

〈 〉
+ A−1

〈 〉
= −A4 − A−4

It is worth noting that the Hopf link calculated here and the one obtained
by reversing all the crossings have the same Kauffman brackets, i.e.

〈 〉
=

〈 〉

Hamming Distance Kernelisation via Topological Quantum Computation 273

2.2 Braids and Links

A braid can be visualised as an intertwining of some number of strands, i.e.
strings attached to top and bottom bars such that each string never turns back.

Given n strands, the operator σi performs a crossing between the ith strand
and the (i + 1)th, keeping the former above the latter. In a similar way, the
operator σ−1

i denotes a crossing of the ith strand below the (i + 1)th. A generic
braid B on n strings is obtained by iteratively applying the σi and σ−1

i operators
in order to form a braid-word, e.g. σ1σ2σ

−1
1 σ4. It is well-know that the operators

σi and σ−1
i on n strands define a group Bn called braid group [18].

Definition 3 (Markov trace). Given a braid B, its Markov trace is the closure
obtained connecting opposite endpoints of B together, as shown below.

••

•

•

• •

••

•

•

• •
−→B

The relation between links and open ended strands is defined by two impor-
tant theorems [3,4].

Theorem 4 (Alexander’s theorem). Every link (or knot) can be obtained as
the closure of a braid.

The result of the Markov closure of a braid B is a link that we will denote by
L = (B)Markov.

Theorem 5 (Markov’s theorem). The closure of two braids B1 and B2 gives
the same link (or knot) if and only if it is possible to transforms one braid into
the other by successive applications of the Markov moves:

(1) conjugation: B = σiBσ−1
i = σ−1

i Bσi, where B ∈ Bn

(2) stabilization: B = Bσ−1
n = Bσn, where σn, Bσn and Bσ−1

n ∈ Bn+1.

3 Topological Quantum Computation

Topological Quantum Computation (TQC) [6,13,14] is related to the presum-
able existence of some special particles, called anyons, whose statistics substan-
tially differ from the more common physical particles observed in nature. They
were discovered at the end of the 1970’s when Leinaas and Myrheim observed
that these particles could not be identified neither with bosons nor with fermi-
ons; in fact their behaviour could be described by the statistics generated by
the exchanging of one particle with another. This exchange rotates the system
quantum state and produces non trivial phases [19].

274 A. Di Pierro et al.

In the following we give a quick explanation of the basic features of the TQC
computational paradigm, which we will use for defining our algorithm for the
Hamming distance and its kernelisation.

In order to perform a topological quantum computation we need to fix an
anyon system, i.e. a system with a fixed number anyons for which we specify: (1)
the type, i.e. the anyon physical charge, (2) the fusion rules N c

ab (i.e. the laws of
interaction), (3) the F -matrices, and (4) the R-matrices. The role of these latter
will be made clear in the following.

The fusion rules, give the charge of a composite particle in terms of its
constituents. The fusion rule a ⊗ b = N c

a bc indicates the different ways of fusing
a and b into c; these are exactly N c

a b. Dually, we can look at these rules as
splitting rules giving the constituent charges of a composite particle.

An anyon type a for which
∑

c N c
a b > 1 is called non-Abelian. In other words,

a non-Abelian anyon is one for which the fusion with another anyon may result in
anyons of more than one type. This property is essential for computation because
it implies the possibility of constructing non trivial computational spaces, i.e.
spaces of dimension n ≥ 1 of ground states where to store and elaborate infor-
mation. Such spaces correspond to so-called fusion spaces. The fusion space, V c

ab,
of a particle c, or dually its splitting space V ab

c , is the Hilbert space spanned by
all the different (orthogonal) ground states of charge c obtained by the different
fusion channels. The dimension of such a space is called the quantum dimension
of c; clearly this is 1 for Abelian anyons.

Considering the dual splitting process, a non-Abelian anyon can therefore
have more than one splitting rule that applies to it, e.g. a ⊗ b = c and e ⊗ b = c.
Given an anyon of type c we can split it into two new anyons a, b and obtain a
tree with root c and a, b as leaves. By applying another rule to a, say a = c ⊗ d,
we will obtain a tree with leaf anyons c, d, b and root c. The same result can also
be obtained by splitting the original anyon c into e, b and, supposing that there
exists a fusion rule of the form c ⊗ d = e, we can again split e into the leaves c
and d. The two resulting, which have leaf anyons and root anyon of same type
and differ only for the internal anyons a, e, represent two orthogonal vectors of
the Hilbert space V cdb

c .
Applying the fusion rules in different order generates other (non orthogo-

nal) trees which have different shapes but contain the same information. This
is because the total charge is conserved by locally exchanging two anyons, a
property that deserves the ‘topological’ attribute to anyon systems and that
determines the fault-tolerance of the quantum computational paradigm based
on them.

3.1 Computing with Anyons

The idea behind the use of anyons for performing computation is to exploit
the properties of their statistical behavior; this essentially means to look at the
exchanges of the anyons of the system as a process evolving in time, i.e., looking
at an anyon system as a 2 + 1 dimensional space. This corresponds to braiding
the threads (a.k.a. world-lines) starting from each anyon of the system. Particle

Hamming Distance Kernelisation via Topological Quantum Computation 275

trajectories are braided according to rules specifying how pairs (or bipartite
subsystems) behave under exchange. The braiding process causes non-trivial
unitary rotations of the fusion space resulting in a computation. Equivalently, a
topological quantum computation can be seen as a splitting process (creating the
initial configuration) followed by a braiding process (the unitary transformation)
followed by a fusion process (measuring the final state). The latter essentially
consists in checking whether the initial anyons fuse back to the vacuum from
which they were created by splitting.

3.2 Calculation of the Kauffman Bracket via TQC

Consider n pairs of anyons created (via splitting) from the vacuum. Each anyonic
pair is in the vacuum fusion channel with initial state denoted by |ψ〉. The final
state 〈ψ| corresponds to a fusion of these anyons back into the vacuum [15].

I

|ψ〉

〈ψ|

a)

B

b)

|ψ〉

〈ψ|

Fig. 2. Two anyonic quantum evolutions. In both cases pairs of anyons are created from
the vacuum and then fused back into it. In (a) no braiding, i.e. the identity operator,
is performed, in (b) some braiding operator is applied.

As shown in Fig. 2 part a, if no braiding is performed on the anyons (I stands
for the identity), then the probability that they fuse back to the vacuum in the
same pairwise order is trivially given by

〈ψ| I |ψ〉 = 〈ψ|ψ〉 = 1.

Consider instead the situation represented in Fig. 2 part b, where, after cre-
ating n = 8 anyons in pairs from the vacuum, we braid half of them with each
other to produce the anyonic unitary evolution represented by the operator B.
In this case, the probability amplitude of fusing the anyons in the same pairwise
order to obtain the vacuum state is given by

〈ψ|B |ψ〉 =

〈
(B)Markov

〉
dn−1

, where d = (−A2 − A−2). (1)

276 A. Di Pierro et al.

This equation expresses the relation between the probability amplitude of
obtaining the vacuum state after the braiding given by the operator B and the
Kauffman bracket of the link obtained from the Markov trace of braid B, i.e.
(B)Markov.

4 Topological Quantum Calculation of Hamming
Distance Between Binary Strings

In this section we define a topological quantum algorithm for the approximation
of the Hamming distance between two binary strings. This will be the base for
the definition of a distance based kernel.

Definition 6 (Hamming distance). Given two binary strings u and v of
length n, the Hamming distance dH(u, v) is the number of components (bits)
by which the strings u and v differ from each other.

4.1 Encoding Binary Strings in TQC

Given a binary string u, we associate to each 0 and 1 in u a particular braiding
between two strands as follows:

Note that, using this encoding, a given binary string of length n is uniquely
represented by a pairwise braiding of 2n strands i.e. by a braid B ∈ B2n as
shown below.

• ••• • •

•• ••• •
010... −→ ...

4.2 Hamming Distance Calculation: Base Case

Given two binary strings of length one (n = 1), u and v, we consider the braiding
operators, Bu and Bv, associated to u and v, respectively. Then we construct
the composite braiding operator BuB†

v and apply the Markov trace, obtaining
a link. Our aim is to calculate the Hamming distance dH(u, v) by exploiting the
properties of the Kauffman brackets associated to these links. All the possible
cases are shown below.

As we can see from Fig. 3,

Hamming Distance Kernelisation via Topological Quantum Computation 277

Fig. 3. Links associated to the Hamming distance between two single-digit binary
strings.

– dH(0, 0) and dH(1, 1) can be continuously transformed in two loops (using
the Reidemeister moves of Sect. 2) with Kauffman brackets (using rules in
Sect. 2.2) 〈 � 〉

= (−A2 − A−2)〈 〉 = d〈 〉 = d

– dH(1, 0) and dH(0, 1) are both represented by the Hopf link with Kauffman
brackets (calculated as in Sect. 2.1)

〈Hopf〉 = (−A4 − A−4)

If we could perform the calculation of such Kauffman brackets using anyons, as
discussed in Sect. 3.2, we would get:

– for dH(0, 0) and dH(1, 1)

〈ψ|BuB†
v |ψ〉 =

〈
(BuB†

v)Markov
〉

d2n−1
=

〈 � 〉
d2−1

=
d

d
= 1

– for dH(1, 0) and dH(0, 1)

〈ψ|BuB†
v |ψ〉 =

〈
(BuB†

v)Markov
〉

d2n−1
=

〈Hopf〉
d

This means that, when the Hamming distance is zero (i.e. in the cases dH(0, 0)
and dH(1, 1)), the probability of the anyons fusing back into the vacuum is
1. When the hamming distance is 1 instead (i.e. in both cases dH(0, 1) and

dH(1, 0)), this probability reduces to
∣∣∣∣ 〈Hopf〉

d

∣∣∣∣
2

.

278 A. Di Pierro et al.

4.3 Hamming Distance Calculation: General Case

What was shown in the previous paragraph can be easily generalised. Consider
two binary strings u and v of length n > 0 such that dH(u, v) = k.

This means that Markov trace of the 2n strand used in the encoding will give
a number 2(n − k) of loops and k Hopf links. Hence, the Kauffman bracket is
calculated considering the distant union � between all these k+2(n−k) = 2n−k
links. What we get from anyon braiding is the following:

〈ψ|BuB†
v |ψ〉 =

〈
(BuB†

v)Markov
〉

d2n−1
=

〈(⊔2(n−k)
i=1

)
�

(⊔k
j=1 Hopf

)〉
d2n−1

=

= d2(n−k)

〈(⊔k
j=1 Hopf

)〉
d2n−1

= d2(n−k)dk−1 〈Hopf〉k

d2n−1
=

〈Hopf〉k

dk

where Property 1.1.1 and the rules of the Kauffman brackets have been used.
Finally we can write

〈ψ|BuB†
v |ψ〉 =

(〈Hopf〉
d

)dH(u,v)

(2)

which means that, given two arbitrary binary string u and v, of length n, their
associated braiding Bu and Bv are such that the probability amplitude of 2n
anyons fusing back into the vacuum after a braid BuB†

v is given by a constant
〈Hopf〉

d multiplied by itself a number of times equal to the Hamming distance
between the two strings dH(u, v).

From Eq. 2 we can calculate an approximation to the Hamming distance
dH(u, v) as follows (note that like in the case of the evaluation of the Jones
polynomials, the result is probabilistic):

dH(u, v) = log 〈Hopf〉
d

〈ψ|BuB†
v |ψ〉 .

5 Kernel Functions

Kernel functions are generalised inner products that profoundly extend the capa-
bilities of any mathematical optimisation that can be written in terms of a Gram
matrix of discrete vectors (for example, a Gram matrix of vectors over training
examples in machine-learning or samples requiring interpolation in regression).
In particular, the Gram matrix (xT

i xj) may be freely replaced by any kernel
function K(xi,xj) that satisfies the Mercer condition, i.e. a condition guar-
anteeing positive semi-definiteness. Many optimisation problems fall into this
category (e.g. the dual form of the support vector machine training problem
[5]). The Mercer space is given in terms of the input space x via φ(x), where
K(xi,xj) ≡ φ(xi)T (φ(xj); the Mercer condition guarantees the existence of φ,
but the kernel itself may be calculated based on any similarity function that
gives rise to a legitimate kernel matrix. A kernel enforces a feature mapping of

Hamming Distance Kernelisation via Topological Quantum Computation 279

the input objects into a Hilbert space; however, the feature mapping does not
need at any stage to be directly computed in itself; the kernel matrix alone is
sufficient. This can, for example, enable machine learning to apply in areas in
which there is not a readily apparent real vector space of feature measures (a
motivating example is genomics, for which it is much more straightforward to
compute a similarity measure between pairs of DNA strands than it is to embed
each strand individually into a vector space of feature measurements). More gen-
erally, the very large choice of kernels available effectively infinitely extends the
capabilities of kernelisable regression and machine-learning algorithms, allowing
them to apply to essentially arbitrary domains.

In the next we show how a kernel can be naturally defined using TQC. To
this purpose we use the Hamming distance as a demonstrative example of an
approach to the definition of kernel methods that may involve more complex
distance notions (note that the Hamming distance is essentially the simplest
case of an edit distance, which excludes edit operations such as insertion, deletion
and substitution; these clearly provide a more general and accurate measure of
sequence dissimilarities).

5.1 Hamming Distance Based Kernel

The topological quantum computation of the Hamming distance shown in Sect. 4
can be used to define a kernel function. In fact, the encoding of binary strings
as vectors B |ψ〉 in the anyonic space allows us to define an embedding φ into
the Hilbert space H defined by the fusion space of the anyonic configurations,
i.e. for each string u, the mapping φ(u) is such that φ(u) = Bu |ψ〉 ∈ H. With
this, using Eq. 2 we can define a string kernel by

K(u, v) ≡ 〈ψ|BuB†
v |ψ〉 =

(〈Hopf〉
d

)dH(u,v)

=
(

A4 + A−4

A2 + A−2

)dH(u,v)

If we work with so-called Fibonacci anyons, we have that A = eπi/10 and the
resulting kernel matrix is semi-definite positive. Thus it satisfies the Mercer
condition for a valid kernel. Moreover, we can show that the Euclidean distance
in the Mercer space, i.e. the fusion space H, can be defined in terms of 〈Hopf〉

d .
In fact, we have, using the fact that vectors in H are normailized to unity,

||φ(u) − φ(v)||2H = ||φ(u)||2H + ||φ(v)||2H − 2φ(u)T φ(v) = 2 − 2K(u, v).

6 Conclusions

We have presented an encoding of the Hamming distance problem into a link
invariant problem and we have shown how to solve it by means of topological
quantum computation. We have also shown that the anyonic encoding of the
string data and their braiding evolution naturally define a kernel function. The
choice of a simple distance such as the Hamming distance allowed us to focus on

280 A. Di Pierro et al.

the description of the approach rather than on the technicalities of the encodings
of more complex distance notions.

We are not aware of other approaches that similarly to ours associate some
topological properties to a given problem with no intrinsic topology, in order to
exploit TQC. Our aim is to further investigate the potential offered by topologi-
cal quantum algorithmic techniques for Machine Learning. It will be the subject
of future work to extend the range of applicability of topological quantum com-
putation to kernel methods.

References

1. Adams, C.: The Knot Book. W.H. Freeman, New York (1994)
2. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approxi-

mating the Jones polynomial. In: Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, Seattle, WA, USA, 21–23 May 2006, pp. 427–436 (2006)

3. Alexander, J.W.: A lemma on systems of knotted curves. Proc. Natl. Acad. Sci.
U.S.A. 9(3), 93–95 (1923)

4. Markoff, A.: Uber die freie äquivalenz der geschlossenen zöpfe. Rec. Math. [Mat.
Sbornik] N.S. (1936)

5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

6. Freedman, M.H.: P/NP, and the quantum field computer. Proc. Natl. Acad. Sci.
95(1), 98–101 (1998)

7. Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological field theories by
quantum computers. Commun. Math. Phys. 227, 587–603 (2002)

8. Hamming, R.W.: Error detecting and error correcting codes. Bell System Tech J.
29, 147–160 (1950)

9. Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull.
Amer. Math. Soc. (N.S.) 12(1), 103–111 (1985)

10. Kauffman, L.H.: State models and the Jones polynomial. Topology 26(3), 395–407
(1987)

11. Kauffman, L.H.: New invariants in the theory of knots. Am. Math. Monthly 95(3),
195–242 (1988)

12. Kauffman, L.H.: Knots and Physics. Series on Knots and Everything, 4th edn.
World Scientific, Singapore (2013)

13. Kitaev, A., Preskill, J.: Topological entanglement entropy. Phys. Rev. Lett. 96,
110404 (2006)

14. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1),
2–30 (2003)

15. Pachos, J.K.: Introduction to Topological Quantum Computation. Cambridge Uni-
versity Press, New York (2012)

16. Reidemeister, K.: Knoten und Gruppen. Springer, Heidelberg (1932). https://doi.
org/10.1007/978-3-642-65616-3

17. Reidemeister, K.: Elementare begründung der knotentheorie. Abhandlungen aus
dem Mathematischen Seminar der Universität Hamburg 5(1), 24–32 (1927)

18. Satō, H.: Algebraic Topology: An Intuitive Approach. Iwanami Series in Modern
Mathematics. American Mathematical Society, Providence (1999)

19. Wilczek, F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49,
957–959 (1982)

https://doi.org/10.1007/978-3-642-65616-3
https://doi.org/10.1007/978-3-642-65616-3

Typing Quantum Superpositions
and Measurement

Alejandro Dı́az-Caro1(B) and Gilles Dowek2

1 Universidad Nacional de Quilmes and CONICET,
Roque Sáenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina

alejandro.diaz-caro@unq.edu.ar
2 Inria, LSV, ENS Paris-Saclay,

61, avenue du Président Wilson, 94235 Cachan Cedex, France
gilles.dowek@ens-paris-saclay.fr

Abstract. We propose a way to unify two approaches of non-cloning
in quantum lambda-calculi. The first approach is to forbid duplicating
variables, while the second is to consider all lambda-terms as algebraic-
linear functions. We illustrate this idea by defining a quantum extension
of first-order simply-typed lambda-calculus, where the type is linear on
superposition, while allows cloning base vectors. In addition, we provide
an interpretation of the calculus where superposed types are interpreted
as vector spaces and non-superposed types as their basis.

Keywords: Quantum computing · Lambda-calculus
Algebraic linearity · Linear logic · Measurement

1 Introduction

In λ-calculus, applying the term λx (x⊗x), that expresses a non-linear function
for some convenient definition of ⊗, to a term u yields the term (λx (x ⊗ x))u,
that reduces to u ⊗ u. But “cloning” this vector u is forbidden in quantum
computing. Various quantum λ-calculi address this problem in different ways.

One way is to forbid the construction of the term λx (x ⊗ x) using a typing
system inspired from linear logic [1,9], leading to logic-linear calculi [2,10,11,
13,14]. Another is to consider all λ-terms expressing linear functions. The term
λx (x ⊗ x), for instance, expresses the linear function that maps |0〉 to |0〉 ⊗ |0〉
and |1〉 to |1〉 ⊗ |1〉1. This leads to restrict beta-reduction to the case where
u is a base vector (in the computational basis) and to add the linearity rule
f(u + v) −→ (fu + fv), leading to algebraic-linear calculi [3–6,8].

Each solution has its advantages and drawbacks. For example, let t?u·v be
the conditional statement on |0〉 and |1〉. Interpreting λ-terms as algebraic-
linear functions permits to reduce the term (λx x?|0〉·|1〉)(α.|0〉 + β.|1〉) to

Partially funded by the STIC-AmSud Project FoQCoSS and PICT-PRH 2015-1208.

1 Where |x〉 is the Dirac notation for vectors, with |0〉 = (10
) ∈ C

2 and |1〉 = (01
) ∈ C

2,
so {|0〉, |1〉} is an orthonormal basis of C2, called here the “computational basis”.

c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 281–293, 2017.
https://doi.org/10.1007/978-3-319-71069-3_22

http://orcid.org/0000-0002-5175-6882

282 A. Dı́az-Caro and G. Dowek

(α.(λx x?|0〉·|1〉)|0〉+β.(λx x?|0〉·|1〉)|1〉) then to (α.|1〉+β.|0〉), instead of reduc-
ing it to the term (α.|0〉 + β.|1〉)?|0〉·|1〉 that would be blocked. This explains
that this linearity rule, that is systematic in the algebraic-linear languages cited
above, is also present for the condition in [2] (the so-called if◦ operator).

However, interpreting all λ-terms as linear functions forbids to extend the
calculus with non-linear operators, such as measurement. For instance, the term
(λx πx)(|0〉 + |1〉), where π represents a measurement in the computational
basis, would reduce to ((λx πx)|0〉 + (λx πx)|1〉), while it should reduce to |0〉
with probability 1

2 and to |1〉 with probability 1
2 .

In this paper, we propose a way to unify the two approaches, distinguishing
duplicable and non-duplicable data by their type, like in the logic-linear calculi;
and interpreting λ-terms as linear functions, like in the algebraic-linear calculi,
when they expect duplicable data. We illustrate this idea with an example of
such a calculus.

In this calculus, a qubit has type B when it is in the computational basis,
hence duplicable (a non-linear term in the sense of linear logic), and S(B) when
it is a superposition, hence non-duplicable (a linear term in the sense of linear
logic). Hence, the term |0〉⊗(|0〉+ |1〉) has type B⊗S(B). Giving this type to this
term and the type S(B⊗B) to the term (|0〉 ⊗ |0〉+|0〉 ⊗ |1〉) however jeopardizes
the subject reduction property as, using the bilinearity of the product, the former
should develop to the latter. This dilemma is not specific to quantum computing
as computing is often a non-reversible process where some information is lost. For
instance, if we express, in its type, that the term (X−1)(X−2) is a product of two
polynomials, developing it to X2−3X +2 does not preserve this type. A solution
is to introduce, in the language, an explicit cast. For example, from the type of
tensor products to the type of arbitrary vectors. The term |0〉 ⊗ (|0〉 + |1〉) then
has type B ⊗ S(B) and it cannot be reduced. But the term ⇑ (|0〉 ⊗ (|0〉 + |1〉))
has type S(B ⊗ B) and can be developed to (|0〉 ⊗ |0〉 + |0〉 ⊗ |1〉).

This language permits expressing quantum algorithms with a very precise
information about the nature of the data processed by these algorithms.

Outline of the Paper. In Sect. 2 we introduce the calculus, without tensor. In
Sect. 3 we extend the language with a tensor operator for multiple-qubits sys-
tems, and state the Subject Reduction property of the resulting system. In Sect. 4
we provide a straightforward interpretation of the calculus considering base types
as sets of vectors, and types S(·) as vector spaces. Finally, in Sect. 5 we express
a non-trivial example in our calculus: the Teleportation algorithm, demonstrat-
ing the expressivity of the proposed language. A long version of this paper
(51 pages) with all the detailed proofs is available at arXiv:1601.04294.

http://arxiv.org/abs/1601.04294

Typing Quantum Superpositions and Measurement 283

2 No-Cloning, Superpositions and Measurement

The grammar of types and terms is defined as follows, with α ∈ C.

Ψ := B | S(Ψ) Qubit types (Q)
A := Ψ | Ψ ⇒ A | S(A) Types (T)
b := x | λx : Ψ t | |0〉 | |1〉 Base terms (B)
v := b | (v + v) | �0S(A) | α.v Values (V)
t := v | tt | (t + t) | πt | ?· | α.t Terms (Λ)

Terms are variables, abstractions, applications, two constants for base qubits
(|0〉 and |1〉), linear combinations of terms (built with addition and product by
a scalar, addition being commutative and associative), a family of constants for
the null vectors, one for each type of the form S(A), (�0S(A)), and an if-then-
else construction (?·) deciding on base vectors. We also include a symbol π for
measurement in the computational basis.

The set of free variables of a term t is defined as usual in λ-calculus and
denoted by FV (t). We use [α.]t as a notation to refer indistinctly to α.t and
to t. We use −t as a shorthand notation for −1.t, and (t − r) as a shorthand
notation for (t + (−r)). The term (t − t) has type S(A), and reduces to �0S(A),
which is not a base term.

An important property of this calculus is that types S(·) are linear types.
Indeed, those correspond to superpositions, and so no duplication is allowed on
them. Instead, at this tensor-free stage, a type without an S(·) on head posi-
tion is a non-linear type, such as B, which correspond to base terms, i.e. terms
that can be cloned. A non-linear function is allowed to be applied to a linear
argument, for example, λx : B (fxx) can be applied to (1√

2
.|0〉 + 1√

2
.|1〉), how-

ever, it distributes in the following way: (λx : B (fxx)) (1√
2
.|0〉 + 1√

2
.|1〉) −→

(1√
2
.(λx : B (fxx))|0〉 + 1√

2
.(λx : B (fxx))|1〉)−→(1√

2
.(f|0〉|0〉) + 1√

2
.(f |1〉|1〉)).

Hence, the beta reduction occurs only when the type of the argument is the
same as the type expected by the abstraction. Thus, the rewrite system depends
on types. For this reason, we describe first the type system, and only then the
rewrite system.

A type A will be interpreted as a set of vectors and S(A) as the vector
space generated by the span of such a set (cf. Sect. 4). Hence, we naturally have
A ⊆ S(A) and S(S(A)) = S(A). Therefore, we also define a subtyping relation
on types. The type system and the subtyping relation are given below, where
contexts Γ and Δ have a disjoint support.

284 A. Dı́az-Caro and G. Dowek

A 	 S(A) S(S(A)) 	 S(A)
A 	 B

Ψ ⇒ A 	 Ψ ⇒ B

A 	 B

S(A) 	 S(B)

x : Ψ
 x : Ψ
Ax
 �0S(A) : S(A)

Ax�0
 |0〉 : B
Ax|0〉
 |1〉 : B

Ax|1〉

Γ
 t : A
Γ
 α.t : S(A)

Sα
I

Γ
 t : A Δ
 u : A
Γ,Δ
 (t + u) : S(A)

S+
I

Γ
 t : S(B)
Γ
 πt : B

SE

Γ
 t : A (A�B)

Γ
 t : B
	
 ?· : B ⇒ B ⇒ B ⇒ B

If
Γ, x : Ψ
 t : A

Γ
 λx : Ψ t : Ψ ⇒ A
⇒I

Γ
 t : Ψ ⇒ A Δ
 u : Ψ
Γ,Δ
 tu : A

⇒E
Γ
 t : S(Ψ ⇒ A) Δ
 u : S(Ψ)

Γ,Δ
 tu : S(A)
⇒ES

Γ
 t : A
Γ, x : B
 t : A

W
Γ, x : B, y : B
 t : A

Γ, x : B
 (x/y)t : A
C

Remarks: Rule Ax allows typing variables only with qubit types. Hence, the
system is first-order and only qubits can be passed as arguments (more when
the rewrite system is presented). Rule Ax�0 types the null vector as a non-base
term, because the null vector cannot belong to the base of any vector space.

Thanks to rule 	 the term |0〉 has type B and also the more general type
S(B). Note that ((|0〉 + |0〉)− |0〉) has type S(B) and reduces to |0〉 that has the
same type S(B). Reducing this term to |0〉 of type B would not preserve its type.
Moreover, this type would contain information impossible to compute, because
the value |0〉 is not the result of a measurement, but of an interference.

Rule Sα
I states that a term multiplied by a scalar is not a base term. Even if

the scalar is just a phase, we must type the term with an S(·) type, because our
measurement operator removes the scalars, so having the scalar means that it
has not been measured yet. Rule S+

I is the analog for sums to the previous rule.
Rule SE is the elimination of the superposition, which is achieved by measuring
(using the π operator).

We use r?s·t as a notation for (?·)rst. Notice that it is typed as a non-linear
function by rule If, and so, the if-then-else linearly distributes over superposi-
tions.

Rule ⇒ES is the elimination for superpositions, corresponding to the linear
distribution. Notice that the type of the argument is a superposition of the
argument expected by the abstraction (S(Ψ) vs. Ψ). Also, the abstraction is
allowed to be a superposition. If, for example, we want to apply the sum of
functions (f + g) to the base argument |0〉, we would obtain the superposition
(f |0〉 + g|0〉). The typing is as follows:

 f : B ⇒ A
 g : B ⇒ A

 (f + g) : S(B ⇒ A)
S+

I

 |0〉 : B
Ax|0〉

 |0〉 : S(B)
	

 (f + g)|0〉 : S(A)
⇒ES

−→

 f : B ⇒ A
 |0〉 : B

Ax|0〉

 f |0〉 : A
⇒E

 g : B ⇒ A
 |0〉 : B
Ax|0〉

 g|0〉 : A
⇒E

 (f |0〉 + g|0〉) : S(A)
S+

I

Similarly, a linear function (
 f : B ⇒ A) applied to a superposition (|0〉 + |1〉)
reduces to a superposition (f |0〉 + f |1〉).

Finally, Rules W and C correspond to weakening and contraction on variables
with base types. The rationale is that base terms can be cloned.

Typing Quantum Superpositions and Measurement 285

The rewrite system is given bellow, where, in rule (proj), ∀i, bi = |0〉 or
bi = |1〉,

∑n
i=1 αi.bi is normal (so 1 ≤ n ≤ 2), if an αk is absent, |αk|2 = 1, and

1 ≤ k ≤ n.

B
e
ta

If b has type B and b ∈ B, then (�0S(A) + t) −→(1) t (neutral)

V
e
c
to

r
sp

a
c
e
a
x
io
m
s

(λx : B t)b −→(1) (b/x)t (βb) 1.t −→(1) t (unit)
If u has type S(Ψ), then If t has type A, then

(λx : S(Ψ) t)u −→(1) (u/x)t (βn) 0.t −→(1)
�0S(A) (zeroα)

If

|1〉?u·v −→(1) u (if1) α.�0S(A) −→(1)
�0S(A) (zero)

|0〉?u·v −→(1) v (if0) α.(β.t) −→(1) (α × β).t (prod)

L
in
e
a
r
d
is
tr
ib
u
ti
o
n

If t has type B ⇒ A, then α.(t + u) −→(1) (α.t + α.u) (αdist)
t(u + v) −→(1) (tu + tv) (lin+r) (α.t + β.t) −→(1) (α + β).t (fact)

If t has type B ⇒ A then (α.t + t) −→(1) (α + 1).t (fact1)
t(α.u) −→(1) α.tu (linα

r) (t + t) −→(1) 2.t (fact2)
If t has type B ⇒ A, then (u + v) =AC (v + u) (comm)

=

t�0S(B) −→(1)
�0S(A) (lin0r) ((u + v) + w) =AC (u + (v + w)) (assoc)

(t + u)v −→(1) (tv + uv) (lin+l) π(
∑n

i=1[αi.]bi) −→(p) bk (proj)

P
ro

je
c
t.

(α.t)u −→(1) α.tu (linα
l)

�0S(B⇒A)t −→(1)
�0S(A) (lin0l) with p = |αk|2

∑n
i=1 |αi|2

t −→(p) u

tv −→(p) uv

t −→(p) u

(λx : B v)t −→(p) (λx : B v)u
t −→(p) u

t + v −→(p) u + v

t −→(p) u

α.t −→(p) αu

t −→(p) u

πt −→(p) πu

The relation −→(p) is a probabilistic relation where p is the probability of
occurrence. Every rewrite rule has a probability 1 of occurrence, except for the
projection ((proj) rule).

There are two beta rules. Rule (βb) acts only when the argument is a base
term, and the type expected by the abstraction is a base type. Hence, rule (βb)
is “call-by-base” (base terms coincides with values of λ-calculus, while values
on this calculus also includes superpositions of base terms and the null vector).
Instead, (βn) is the usual call-by-name beta rule. They are distinguished by the
type of the argument. Rule (βb) acts on non-linear functions while (βn) is for
linear functions. The test on the type of the argument is due to the type system
that allows an argument with a type not matching with the type expected by
the abstraction (in such a case, one of the linear distribution rules applies).

The group If-then-else contains the tests over the base qubits |0〉 and |1〉.
The first three of the linear distribution rules (those marked with subindex

r), are the rules that are used when a non-linear abstraction is applied to a
linear argument (that is, when an abstraction expecting a base term is given a
superposition). In these cases the beta reductions cannot be used since the side
conditions on types are not met. Hence, these distributivity rules apply instead.
The remaining rules in this group deal with a superposition of functions. For
example, rule (lin+l) is the sum of functions: A superposition is a sum, therefore,
if an argument is given to a sum of functions, it needs to be given to each
function in the sum. We use a weak reduction strategy (i.e. reduction occurs
only on closed terms), hence the argument v on this rule is closed, otherwise,

286 A. Dı́az-Caro and G. Dowek

it could not be typed. For example x : S(B), t : B ⇒ B, u : B ⇒ B
 (t + u)x :
S(B) is derivable, but x : S(B), t : B ⇒ B, u : B ⇒ B
 (tx + ux) : S(B) is not.

The vector space axioms rules are the directed axioms of vector spaces [5,6].
The Modulo AC rules are not proper rewrite rules, but express that we consider
the symbol + to be associative and commutative, and hence our rewrite system
is rewrite modulo AC [12].

Finally, rule (proj) is the projection over weighted associative pairs, that
is, the projection over a generalization of multisets where the multiplicities are
given by complex numbers. This reduction rule is the only one with a probability
different from 1, and it is given by the square of the modulus of the weights2,
implementing this way the quantum measurement over the computational basis.

3 Multi-qubit Systems: Tensor Products

A multi-qubit system is represented with the tensor product between single-
qubit Hilbert spaces. The tensor product of base terms can be seen as an ordered
list. Hence, we represent the tensor product as a conjunction-like operator. The
distributivity of linear combinations over tensor products is not trivially tracked
in the type system, and so an explicit cast between types is also added.

Each level in the term grammar (base terms, values and general terms) is
extended with the tensor of the terms in such a level. The primitives head and
tail are added to the general terms. The projector π is generalized to πj , where
the subindex j stands for the number of qubits to be measured, which are those
in the first j positions. Notice that it is always possible to do a swap between
qubits and so place the qubits to be measured at the beginning. For instance,
λx : B ⊗ B (tail x ⊗ head x).

An explicit type cast of a term t (⇑S(B⊗C)
S(A) t) is included in the general terms.

It is only allowed to cast a superposed type into a superposed tensor product.
We also add the tensor between types, and, as a consequence, a new level.

B := B | B ⊗ B Base qubit types (B)
Ψ := B | S(Ψ) | Ψ ⊗ Ψ Qubit types (Q)
A := Ψ | Ψ ⇒ A | S(A) | A ⊗ A Types (T)
b := x | λx : Ψ t | |0〉 | |1〉 | b ⊗ b Base terms (B)
v := b | (v + v) | �0S(A) | α.v | v ⊗ v Values (V)
t := v | tt | (t + t) | πjt | ?· | α.t| t ⊗ t | head t | tail t | ⇑S(B⊗C)

S(A) t Terms (Λ)

The type system includes all the typing rules given in the previous section,
plus the rules for tensor, for cast, and an updated rule SE , for which we introduce
the following notation:

2 We speak about weights and not amplitudes, since the vector may not have norm 1.
The projection rule normalizes the vector while reducing.

Typing Quantum Superpositions and Measurement 287

Let S ⊆ {1, · · · , n}. We define QS
n inductively by:

QS
n =

{
AS

n−1(B) if n /∈ S

A
S\{n}
n−1 (S(B)) if n ∈ S

A∅
0(B) = B

AS
k+1(B) =

{
AS

k (B) ⊗ B if k + 1 /∈ S

A
S\{k+1}
k (S(B)) ⊗ B if k + 1 ∈ S

AS
k+1(S(B)) =

{
AS

k (B) ⊗ S(B) if k + 1 /∈ S

A
S\{k+1}
k (S(B ⊗ B)) if k + 1 ∈ S

where B is any type.
In simple words, notation QS

n stands for a tensor of n qubits, where those
indexed by the set S are superposed and typed with the most general type,
for example Q

{1,2}
3 stands for S(B ⊗ B) ⊗ B and not for S(B) ⊗ S(B) ⊗ B. The

following example may be clarifying. Q
{1,2,4}
5 = A

{1,2,4}
4 (B) = A

{1,2}
3 (S(B))⊗B =

A
{1,2}
2 (B)⊗S(B)⊗B = A

{1}
1 (S(B))⊗B⊗S(B)⊗B = A∅

0(S(B⊗B))⊗B⊗S(B)⊗B =
S(B ⊗ B) ⊗ B ⊗ S(B) ⊗ B.

In addition, we update the subtyping relation adding the following two rules.

A 	 B

A ⊗ C 	 B ⊗ C
and A 	 B

C ⊗ A 	 C ⊗ B
.

The updated type system is given below.

x : Ψ
 x : Ψ
Ax
 �0S(A) : S(A)

Ax�0
 |0〉 : B
Ax|0〉
 |1〉 : B

Ax|1〉

Γ
 t : A
Γ
 α.t : S(A)

Sα
I

Γ
 t : A Δ
 u : A
Γ,Δ
 (t + u) : S(A)

S+
I

Γ
 t : QS
n

Γ
 πjt : Q
S\{1,...,j}
n

SE (S⊆N
≤n

j≤n
)

Γ
 t : A (A�B)

Γ
 t : B
	
 ?· : B ⇒ B ⇒ B ⇒ B

If
Γ, x : Ψ
 t : A

Γ
 λx : Ψ t : Ψ ⇒ A
⇒I

Γ
 t : Ψ ⇒ A Δ
 u : Ψ
Γ,Δ
 tu : A

⇒E
Γ
 t : S(Ψ ⇒ A) Δ
 u : S(Ψ)

Γ,Δ
 tu : S(A)
⇒ES

Γ
 t : A
Γ, x : B
 t : A

W
Γ, x : B, y : B
 t : A

Γ, x : B
 (x/y)t : A
C

Γ
 t : A Δ
 u : B
Γ,Δ
 t ⊗ u : A ⊗ B

⊗I
Γ
 t : B ⊗ B
Γ
 head t : B

⊗Er
Γ
 t : B ⊗ B
Γ
 tail t : B

⊗El

Γ
 t : S(S(A) ⊗ B)

Γ
⇑S(A⊗B)
S(S(A)⊗B) t : S(A ⊗ B)

⇑r

Γ
 t : S(A ⊗ S(B))

Γ
⇑S(A⊗B)
S(A⊗S(B)) t : S(A ⊗ B)

⇑l

Γ
⇑S(A)
S(B) t : S(A)

Γ
⇑S(A)
S(B) α.t : S(A)

⇑α
Γ
⇑S(A)

S(B) t : S(A) Δ
⇑S(A)
S(B) r : S(A)

Γ,Δ
⇑S(A)
S(B) (t + r) : S(A)

⇑+

The new rule SE types the generalized projection: we force the term to be
measured to be typed with a type of the form QS

n , and then, after measuring
the first j qubits, the new type becomes Q

S\{1,...,j}
n , that is, we remove the

superposition mark S(·) from the first j types in the tensor product.
The added rules ⊗I , ⊗Er

, ⊗El
are the standard introduction and eliminations

for lists. Rules ⇑r and ⇑l type the castings. The only valid casts are S(S(A)⊗B)

288 A. Dı́az-Caro and G. Dowek

and S(A ⊗ S(B)) into S(A ⊗ B). Rules ⇑α and ⇑+ allow for compositional
reasoning. Indeed, casting a linear combination of terms will rewrite to casting
each term in the combination.

The rewrite system is given below. It includes all the rules from the previous
section plus the rules for tensors: (head) and (tail) to deal with lists, and the
typing casts rules, which normalize superpositions to sums of base terms, while
update the types.

In the rule (proj), j ≤ m, k ≤ n, ∀i ≤ n, ∀h ≤ m, bhi = |0〉 or bih = |1〉, if an
αi is absent, it is taken as 1,

∑n
i=1[αi.](b1i ⊗· · ·⊗ bmi) is in normal form (hence,

1 ≤ n ≤ 2m), and P ⊆ N
≤n, such that ∀i ∈ P , ∀h ≤ j, bhi = bhk.

B
e
ta

If b has type B and b ∈ B, then (�0S(A) + t) −→(1) t (neutral)

V
e
c
to

r
sp

a
c
e
a
x
io
m
s

(λx : B t)b −→(1) (b/x)t (βb) 1.t −→(1) t (unit)
If u has type S(Ψ), then If t has type A, then

(λx : S(Ψ) t)u −→(1) (u/x)t (βn) 0.t −→(1)
�0S(A) (zeroα)

If

|1〉?u·v −→(1) u (if1) α.�0S(A) −→(1)
�0S(A) (zero)

|0〉?u·v −→(1) v (if0) α.(β.t) −→(1) (α × β).t (prod)

L
in
e
a
r
d
is
tr
ib
u
ti
o
n

If t has type B ⇒ A, then α.(t + u) −→(1) (α.t + α.u) (αdist)
t(u + v) −→(1) (tu + tv) (lin+r) (α.t + β.t) −→(1) (α + β).t (fact)

If t has type B ⇒ A then (α.t + t) −→(1) (α + 1).t (fact1)
t(α.u) −→(1) α.tu (linα

r) (t + t) −→(1) 2.t (fact2)
If t has type B ⇒ A, then (u + v) =AC (v + u) (comm)

=

t�0S(B) −→(1)
�0S(A) (lin0r) ((u + v) + w) =AC (u + (v + w)) (assoc)

(t + u)v −→(1) (tv + uv) (lin+l) If h �= u ⊗ v and h ∈ B, then

L
is
ts(α.t)u −→(1) α.tu (linα

l) head (h ⊗ t) −→(1) h (head)
�0S(B⇒A)t −→(1)

�0S(A) (lin0l) If h �= u ⊗ v and h ∈ B, then
tail (h ⊗ t) −→(1) t (tail)

T
y
p
in
g
c
a
st
s

⇑S(A⊗B)
S(S(A)⊗B) ((r + s) ⊗ u) −→(1) (⇑S(A⊗B)

S(S(A)⊗B) (r ⊗ u) + ⇑S(A⊗B)
S(S(A)⊗B) (s ⊗ u)) (dist+r)

⇑S(B⊗A)
S(B⊗S(A)) (u ⊗ (r + s)) −→(1) (⇑S(B⊗A)

S(B⊗S(A)) (u ⊗ r) + ⇑S(B⊗A)
S(B⊗S(A)) (u ⊗ s)) (dist+l)

⇑S(A⊗B)
S(S(A)⊗B) ((α.r) ⊗ u) −→(1) α. ⇑S(A⊗B)

S(S(A)⊗B) (r ⊗ u) (distαr)

⇑S(B⊗A)
S(B⊗S(A)) (u ⊗ (α.r)) −→(1) α. ⇑S(B⊗A)

S(B⊗S(A)) (u ⊗ r) (distαl)

⇑S(A⊗B)
S(S(A)⊗B) (�0S(A) ⊗ u) −→(1)

�0S(A⊗B) (dist0r)

⇑S(B⊗A)
S(B⊗S(A)) (u ⊗�0S(A)) −→(1)

�0S(B⊗A) (dist0l)

⇑S(B⊗C)
S(A) (t + u) −→(1) (⇑S(B⊗C)

S(A) t + ⇑S(B⊗C)
S(A) u) (dist+⇑)

⇑S(B⊗C)
S(A) (α.t) −→(1) α. ⇑S(B⊗C)

S(A) t (distα⇑)
If u ∈ B, then, ⇑S(A⊗B)

S(S(A)⊗B) (u ⊗ v) −→(1) u ⊗ v (neut⇑r)
If u ∈ B, then, ⇑S(A⊗B)

S(A⊗S(B)) (v ⊗ u) −→(1) v ⊗ u (neut⇑l)

P
ro

je
c
t.

πj(
∑n

i=1[αi.](b1i ⊗ · · · ⊗ bmi))

−→(p)

⊗j
h=1 bhk ⊗∑i∈P

(
αi√∑

i∈P |αi|2

)
.(bj+1,i ⊗ · · · ⊗ bmi) (proj)

with p =
∑

i∈P

(
|αi|2

∑n
i=1 |αi|2

)

t −→(p) u

tv −→(p) uv

t −→(p) u

(λx : B v)t −→(p) (λx : B v)u
t −→(p) u

t + v −→(p) u + v

t −→(p) u

α.t −→(p) αu

t −→(p) u

πjt −→(p) πju

t −→(p) u

t ⊗ v −→(p) u ⊗ v
t −→(p) u

head t −→(p) head u

t −→(p) u

tail t −→(p) tail u

t −→(p) u

⇑S(B)
S(A) t −→(p)⇑S(B)

S(A) u

Typing Quantum Superpositions and Measurement 289

The rule (proj) has been updated to account for multiple qubits systems. It
normalizes (as in norm 1) the scalars on the obtained term.

The first six rules in the group typing casts—(dist+r), (distαr), and (dist0r),
and their analogous (dist+l), (distαl), and (dist0l)—deal with the distributivity of
sums, scalar product and null vector respectively. If we ignore the type cast ⇑S(B)

S(A)

on each rule, these rules are just distributivity rules. For example, rule (dist+r)
acts on the term (r + s) ⊗ u, distributing the sum with respect to the tensor
product, producing (r ⊗ u+s ⊗ u) (distribution to the right). However, the term
(r + s) ⊗ u may have type S(A) ⊗ B, S(A) ⊗ S(B) or S(A ⊗ B), while, among
those, the term (r ⊗ u + s ⊗ u) can only have type S(A ⊗ B). Hence, we cannot
reduce the first term to the second without losing subject reduction. Instead,
we need to cast the term explicitly to the valid type in order to reduce. Notice
that in the previous example it would have been enough to use ⇑S(A⊗B)

S(A)⊗B. Indeed,
the term (r + s) ⊗ u can be typed with S(A) ⊗ B. However, we prefer the more
general S(S(A) ⊗ B) and hence to use the same rule when, for example, a sum
is given.

The next two rules, (dist+⇑) and (distα⇑), distribute the cast over sums and
scalars. For example ⇑S(B⊗B)

S(S(B)⊗B) ((α.|1〉) ⊗ |0〉 + (β.|0〉) ⊗ |1〉) reduces by rule
(dist+⇑) to (⇑S(B⊗B)

S(S(B)⊗B) (α.|1〉) ⊗ |0〉 + ⇑S(B⊗B)
S(S(B)⊗B) (β.|0〉) ⊗ |1〉), and hence, the dis-

tributivity rule can act. The last two rules in the group, (neut⇑r) and (neut⇑l),
remove the cast when it is not needed anymore. For example ⇑S(B⊗B)

S(S(B)⊗B) (α.β.|0〉)⊗
|1〉 (distαr)−→(1) α. ⇑S(B⊗B)

S(S(B)⊗B) (β.|0〉) ⊗ |1〉 (distαr)−→(1) α.β. ⇑S(B⊗B)
S(S(B)⊗B) |0〉 ⊗ |1〉 (neut⇑r)−→(1)

α.β.|0〉 ⊗ |1〉.
The measurement rule (proj) is updated to measure the first j qubits. Hence,

a n-qubits in normal form (that is, a sum of tensors of qubits with or without
a scalar in front), for example, the term ((2.(|0〉 ⊗ |1〉 ⊗ |1〉) + |0〉 ⊗ |1〉 ⊗ |0〉) +
3.(|1〉 ⊗ |1〉 ⊗ |1〉)) can be measured and will produce a n-qubits where the first j
qubits are the same and the remaining are untouched, with its scalars changed to
have norm 1. In this 3-qubits example, measuring the first two can produce either
|0〉 ⊗ |1〉 ⊗ (2√

5
.|1〉 + 1√

5
.|0〉) or |1〉 ⊗ |1〉 ⊗ (1.|1〉). The probability of producing

the first is |2|2
(|2|2+|1|2+|3|2) + |1|2

(|2|2+|1|2+|3|2) = 5
14 and the probability of producing

the second is |3|2
(|2|2+|1|2+|3|2) = 9

14 .
Remark, to conclude, that since the calculus presented in this paper is call-

by-base for the functions expecting a non-linear argument, it avoids a well-
known problem in others λ-calculi with a linear logic type system including
modalities. To illustrate this problem, consider the following typing judgement:
y : S(B)
 (λx : B (x ⊗ x))(πy) : S(B) ⊗ S(B). If we allow to β-reduce this
term, we would obtain (πy) ⊗ (πy) which is not typable in the context y : S(B).
A standard solution to this problem is illustrated in [7], where the terms that
can be cloned are distinguished by a mark, and used in a let construction, while
non-clonable terms are used in λ abstractions.

Thanks to the explicit casts, the resulting system has the Subject Reduc-
tion property (Theorem 2), that is, the typing is preserved by weak-reduction
(i.e. reduction on closed terms). The proof of this theorem is not trivial,

290 A. Dı́az-Caro and G. Dowek

specially due to the complexity of the system itself. The detailed proof is given
in a seven-page long appendix in a preprint submitted to arXiv:1601.04294.

Lemma 1 (Substitution lemma). Let FV (u) = ∅, then if Γ, x : Ψ
 t : A,
Δ
 u : Ψ , where if Ψ = B then u ∈ B, we have Γ,Δ
 (u/x)t : A.

Theorem 2 (Subject reduction on closed terms). For any closed terms t
and u and type A, if t −→(p) u and
 t : A, then
 u : A.

4 Interpretation

We consider vector spaces equipped with a canonical base, and subsets of such
spaces.

Let E and F be two vector spaces with canonical bases B = {�bi | i ∈ I} and
C = {�cj | j ∈ J}. The tensor product E ⊗ F of E and F is the vector space
of canonical base {�bi ⊗ �cj | i ∈ I and j ∈ J}, where �bi ⊗ �cj is the ordered pair
formed with the vector �bi and the vector �cj . The operation ⊗ is extended to the
vectors of E and F bilinearly: (

∑
i αi

�bi) ⊗ (
∑

j βj�cj) =
∑

ij αiβj(�bi ⊗ �cj).
Let E and F be two vector spaces equipped with bases B and C, and S and

T be two subsets of E and F respectively, we define the set S × T , subset of the
vector space E ⊗ F , as follows: S × T = {�u ⊗ �v |�u ∈ S,�v ∈ T}.

Remark that E × F differs from E ⊗ F . For instance, if E and F are C
2

equipped with the base {�i,�j}, then E × F contains �i ⊗ �i and �j ⊗ �j but not
�i ⊗�i +�j ⊗�j, that is not a tensor product of two vectors of C2.

Let E be a vector space equipped with a base B, and S a subset of E. We
write S(S) for the vector space over C generated by the span of S, that is,
containing all the linear combinations of elements of S.

Hence, if E and F are two vector spaces of bases B and C then E ⊗ F =
S(B × C) = S(E × F).

Let S and T be two sets. We write S → T for the vector space of formal
linear combination of functions from S to T . The set S ⇒ T of the functions
from S to T is a subset—and even a basis—of this vector space.

Note that if S and T are two sets, then S → T = S(S ⇒ T).
To each type we associate the subset of some vector space

�B� = {(1
0) , (0

1)}, a subset of C2

�S(A)� = S�A�
�Ψ ⇒ A� = �Ψ� ⇒ �A�
�A ⊗ B� = �A� × �B�

Remark that �S(A ⊗ B)� = S(�A� × �B�) = �A� ⊗ �B�.
If Γ = x1 : Ψ1, ..., xn : Ψn is a context, then a Γ -valuation is a function φ

mapping each xi to �Ψi�. Notation: φ � Γ .
We now would associate to each term t of type A an element �t� of �A�. But

as our calculus is probabilistic, due to the presence of a measurement operator,
we must associate to each term a set of elements of �A�.

http://arxiv.org/abs/1601.04294

Typing Quantum Superpositions and Measurement 291

Let Γ
 t : A and φ � Γ . We define the interpretation of t, �t�φ as follows.
�x�φ = φx
�λx : Ψ t�φ = {f | ∀a ∈ �Ψ�, fa ∈ �t�φ,x �→�Ψ�}
�|0〉�φ = {(1

0)} ; �|1〉�φ = {(0
1)}

�t ⊗ u�φ = �t�φ × �u�φ

�(t + u)�φ = {a + b | a ∈ �t�φ and b ∈ �u�φ}
�α.t�φ = {αa | a ∈ �t�φ}
��0S(B)�φ = {�0}, the null vector of the vector space �S(B)�

�tu�φ =

{{
∑

i∈I αigi(a) |
∑

i∈I αigi ∈ �t�φ, a ∈ �u�φ If Γ
 t : Ψ ⇒ A
{

∑

i∈I,j∈J

αiβjgi(cj) |
∑

i∈I

αigi ∈ �t�φ,
∑

j∈J

βjcj ∈ �u�φ} If Γ
 t :S(Ψ ⇒ A)

�πjt�φ = {
⊗j

h=1 bhk⊗
∑

i∈P

(αi√∑
i∈P |αi|2

)(bj+1,i ⊗· · ·⊗ bmi) | ∀i ∈ P,∀h, bhi =bhk}

where �t�φ = {
∑n

i=1 αi(b1i ⊗ · · · ⊗ bmi)} with bih = (0
1) or (1

0)
�?·�φ = {f | ∀a, b, c ∈ �B�, fabc = b if a = (0

1) and fabc = c if a = (1
0)}

�head t�φ = {a1 | a1 ⊗ · · · ⊗ an ∈ �t�φ, a1 ∈ �B�}
�tail t�φ = {a2 ⊗ · · · ⊗ an | a1 ⊗ · · · ⊗ an ∈ �t�φ, a1 ∈ �B�}
�⇑S(B⊗C)

S(A) t�φ = �t�φ

Lemma 3. If A 	 B, then �A� ⊆ �B�.

Lemma 4. If Γ
 t : A and φ, x �→ S, y �→ S � Γ then �t�φ,x �→S,y �→S =
�(x/y)t�φ,x �→S.

Theorem 5. If Γ
 t : A, and φ � Γ then �t�φ ⊆ �A�.

Theorem 6. If Γ
 t : A, φ � Γ , and t −→(pi) ri, with
∑

i pi = 1, then
�t�φ =

⋃
i�ri�φ.

5 Example: The Teleportation Algorithm

• H

Zb1notb2 |ψ〉

Alice

Bob

Fig. 1. Teleportation circuit

In this section we show that our language is
expressive enough to express the Teleportation
algorithm. The circuit for this algorithm is given
in Fig. 1. The Hadamard gate (H) produces
1√
2
.(|0〉 + |1〉) when applied to |0〉 and 1√

2
.(|0〉 −

|1〉) when applied to |1〉. Hence, it can be imple-
mented with the if-then-else construction: H =
λx : B 1√

2
.(|0〉 + (x?(−|1〉)·|1〉)). Notice that the

abstracted variable has a base type (i.e. non-linear). Hence, if H is applied to a
superposition, say (α.|0〉 + β.|1〉), it reduces, as expected, in the following way:
H(α.|0〉 + β.|1〉) (lin+r)−→(1) (Hα.|0〉 + Hβ.|1〉) (linα

r)2−→(1) (α.H|0〉 + β.H|1〉), and then is
applied to the base terms. The cnot gate, which applies not to the second qubit
only when the first qubit is |1〉, can be implemented with an if-then-else construc-
tion as follows: cnot = λx : B⊗B ((head x) ⊗ ((head x)?(not (tail x))·(tail x))).
We define H3

1 to apply H to the first qubit of a three-qubit system. H3
1 = λx :

292 A. Dı́az-Caro and G. Dowek

B ⊗ B ⊗ B ((H (head x)) ⊗ (tail x)). In addition, we need to apply cnot to the
two first qubits, so we define cnot312 as cnot312 = λx : B⊗B⊗B ((cnot (head x ⊗
(head tail x)))⊗(tail tail x)). The Z gate returns |0〉 when it receives |0〉, and −|1〉
when it receives |1〉. Hence, it can be implemented by: Z = λx : B (x?(−|1〉)·|0〉).
The Bob side of the algorithm will apply Z and/or not according to the bits it
receives from Alice. Hence, for any
 U : B ⇒ S(B) or
 U : B ⇒ B, we define
U(b) to be the function which depending on the value of a base qubit b applies
the U gate or not: U(b) = (λx : B λy : B (x?Uy·y)) b. Alice and Bob parts of
the algorithm are defined separately. Alice=λx :S(B) ⊗ S(B⊗B)(π2(⇑S(B⊗B⊗B)

S(S(B)⊗B⊗B)

H3
1 (cnot312 ⇑S(B⊗B⊗B)

S(B⊗S(B⊗B))⇑S(B⊗S(B⊗B))
S(S(B)⊗S(B⊗B)) x))). Notice that before passing to cnot312

the parameter of type S(B) ⊗ S(B⊗B), we need to fully develop the term using
the two casts, and again, after the Hadamard gate. Bob side is implemented by
Bob = λx : B ⊗ B ⊗ B (Z(head x)(not(head tail x) (tail tail x))).

The teleportation is applied to an arbitrary qubit and to the following Bell
state β00 = (1√

2
.|0〉 ⊗ |0〉+ 1√

2
.|1〉 ⊗ |1〉) and it is defined by Teleportation = λq :

S(B) (Bob(⇑S(B⊗B⊗B)
S(B⊗B⊗S(B)) Alice (q ⊗ β00))).

This term is typed, as expected, by:
 Teleportation : S(B) ⇒ S(B) and
applying the teleportation to any superposition (α.|0〉 + β.|1〉) will reduce, as
expected, to (α.|0〉 + β.|1〉).

6 Conclusion

In this paper we have proposed a way to unify logic-linear and algebraic-linear
quantum λ-calculi, by interpreting λ-terms as linear functions when they expect
duplicable data and as non-linear ones when they do not, and illustrated this
idea with the definition of a calculus.

This calculus is first-order in the sense that variables do not have functional
types. In a higher-order version we should expect abstractions to be clonable.
But, allowing cloning abstractions allows cloning superpositions, by hiding them
inside. For example, λx : B ⇒ B (1√

2
.|0〉 + 1√

2
.|1〉). It has been argued [4,5]

that what is cloned is not the superposition but a function that creates the
superposition, because we had no way there to create such an abstraction from
an arbitrary superposition. The situation is different in the calculus presented
in this paper as the term λx : S(B) λy : B x precisely takes any term t of type
S(B) and returns the term λy : B t. So, a cloning machine could be constructed
by encapsulating any superposition t under a lambda, which transform it into a
basis term, so a clonable term. Extending this calculus to the higher-order will
require characterizing precisely the abstractions that can be taken as arguments,
not allowing to duplicate functions creating superpositions.

Acknowledgements. We would like to thank Eduardo Bonelli, Luca Paolini, Simona
Ronchi della Rocca and Luca Roversi for interesting comments and suggestions.

Typing Quantum Superpositions and Measurement 293

References

1. Abramsky, S.: Computational interpretations of linear logic. Theor. Comput. Sci.
111(1), 3–57 (1993)

2. Altenkirch, T., Grattage, J.: A functional quantum programming language. In:
Proceedings of LICS 2005, pp. 249–258. IEEE (2005)

3. Arrighi, P., Dı́az-Caro, A.: A system F accounting for scalars. Logical Methods in
Computer Science 8(1:11) (2012)

4. Arrighi, P., Dı́az-Caro, A., Valiron, B.: The vectorial lambda-calculus. Inf. Comput.
254(1), 105–139 (2017)

5. Arrighi, P., Dowek, G.: Lineal: a linear-algebraic lambda-calculus. Logical Methods
in Computer Science 13(1:8) (2017)

6. Assaf, A., Dı́az-Caro, A., Perdrix, S., Tasson, C., Valiron, B.: Call-by-value, call-
by-name and the vectorial behaviour of the algebraic λ-calculus. Logical Methods
in Computer Science 10(4:8) (2014)

7. Barber, A.: Dual intuitionistic linear logic. Technical report ECS-LFCS-96-347,
The Laboratory for Foundations of Computer Science, University of Edinburgh
(1996)

8. Dı́az-Caro, A., Petit, B.: Linearity in the non-deterministic call-by-value setting.
In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 216–231.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32621-9 16

9. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
10. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scal-

able quantum programming language. In: ACM SIGPLAN Notices (PLDI 2013),
vol. 48, no. 6, pp. 333–342 (2013)

11. Pagani, M., Selinger, P., Valiron, B.: Applying quantitative semantics to higher-
order quantum computing. In: ACM SIGPLAN Notices (POPL 2014), vol. 49,
no. 1, pp. 647–658 (2014)

12. Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational
theories. J. ACM 28(2), 233–264 (1981)

13. Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.)
Semantic Techniques in Quantum Computation, pp. 135–172. Cambridge Univer-
sity Press, Cambridge (2009). Chapter 9

14. Zorzi, M.: On quantum lambda calculi: a foundational perspective. Math. Struct.
Comput. Sci. 26(7), 1107–1195 (2016)

https://doi.org/10.1007/978-3-642-32621-9_16

Heat-Bath Algorithmic Cooling
with Correlated-Qubits Relaxation

Raymond Laflamme1,2,3,4 , Tal Mor5 ,
Nayeli A. Rodŕıguez-Briones1,2,3 , and Yossi Weinstein5(B)

1 Institute for Quantum Computing, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

2 Department of Physics and Astronomy, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

3 Perimeter Institute for Theoretical Physics,
31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada

narodrig@uwaterloo.ca
4 Canadian Institute for Advanced Research,

Toronto, ON M5G 1Z8, Canada
laflamme@uwaterloo.ca

5 Computer Science Department, Technion – Israel Institute of Technology,
3200003 Haifa, Israel

talmo@cs.technion.ac.il, yossiv@cs.technion.ac.il

Abstract. Pure states are needed for many quantum algorithms and
in particular for quantum error correction. Algorithmic cooling has been
shown to purify qubits by a controlled redistribution of entropy and mul-
tiple contact with a heat-bath. In previous heat-bath algorithmic cool-
ing work, it was assumed that each qubit undergoes thermal relaxation
independently. In this paper we remove this constraint, and introduce an
additional tool for cooling algorithms which we call “state-reset”. State-
reset can occur when the coupling to the environment is generalized from
individual-qubits relaxation to correlated-qubits relaxation. We present
several improved cooling algorithms which lead to an increase of polar-
ization beyond the ones all previous work believed to be optimal, and we
relate our results to an effect in chemical physics, known as the Nuclear
Overhauser Effect.

Keywords: Algorithmic cooling · Nuclear Overhauser Effect
Fault-tolerant quantum computing

1 Introduction

Quantum information processing brought novel ways for cooling physical sys-
tems by manipulating entropy in an algorithmic way [3,11,26,27]. Understand-
ing these algorithmic cooling processes and their cooling limits can elucidate
fundamental theoretical properties of thermodynamics and lead to new experi-
mental possibilities. In particular, these processes have important applications
c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 294–304, 2017.
https://doi.org/10.1007/978-3-319-71069-3_23

http://orcid.org/0000-0002-4755-4006
http://orcid.org/0000-0003-2074-0498
http://orcid.org/0000-0002-3945-518X
http://orcid.org/0000-0001-5685-8450

Heat-Bath Algorithmic Cooling with Correlated-Qubits Relaxation 295

in quantum computing as they provide a potential solution to the problem
of preparing quantum systems with sufficient purity in ensemble implementa-
tions [1,2,4,5,9,12,18,19,24]. Algorithmic cooling is mainly useful in ensemble
quantum computing implementations. However, it could also be used to increase
the purity of initial states up to the fault-tolerance threshold [26] for other tech-
nologies. First, for technologies with strong but imperfect projective measure-
ments; and second, for technologies in which purification through contact with
the bath does not lead to sufficiently pure qubits. Controlled preparation of
nearly pure quantum states is at the core of many quantum algorithms and
is essential for a reliable supply of ancilla qubits in quantum error correction.
Another potential use of algorithmic cooling is for improving signal to noise ratio
in NMR and MRI applications [15] (but see also the limitations analyzed in [6]).

Sørensen [28] was the first to observe the constraint of unitary dynamics to
increase the polarization ε = Tr[ρZ], for the density matrix ρ, and the Pauli
operator Z, of a subset of qubits (e.g. spins), at the expense of decreasing the
polarization of the complementary spins. In the context of quantum informa-
tion, Schulman and Vazirani proposed cooling algorithms and used the term
“quantum mechanical heat engine” [27], which was inspired by Peres’s recursive
algorithm [20] of von Neumann’s extraction of fair coin flips from a sequence of
biased ones [29]. This heat engine carries out a reversible entropy compression
process in which an input of energy to the system results in a separation of cold
and hot regions. Furthermore, an explicit way to implement entropy compression
in ensemble quantum computers (such as in NMR) was given by Schulman and
Vazirani [27]. They showed that it is possible to reach polarization of order unity
using only a number of qubits that scales as 1/ε2b for initial polarization εb � 1.

This scheme was generalized by Boykin, Mor, Roychowdhury, Vatan, and
Vrijen, by adding contact with a heat bath to cool the qubits that were heated
during the process [3]. They termed the generalized process “algorithmic cool-
ing” (AC). To distinguish the two processes, they named the reversible process
of Schulman-Vazirani “reversible algorithmic cooling”, and the more general
process (that may contain many irreversible steps) — “heat-bath algorithmic
cooling” (HBAC). Fernandez, Lloyd, Mor and Roychowdhury [11] then showed
that for εb � 1 and a relatively small number of qubits (e.g., n � 1/ε2b), the
ratio between the final polarization bias and the initial polarization bias may
grow exponentially with the number of qubits used during the process, if HBAC
is applied, while reversible AC may only improve it by

√
n. Based on those

ideas, many algorithms have been designed to purify a set of qubits by removing
entropy of a subset of them at the expense of increasing the entropy of others
[6,8,10,13,16,25,26]. Beyond the theoretical interest, experiments have demon-
strated proof-of-principle of the reversible algorithmic cooling [7] and the heat-
bath algorithmic cooling [1,2,18,24], and showed improvement in polarization
for a few qubits.

The ultimate cooling limits of HBAC have been studied using a specific algo-
rithm, the Partner Pairing Algorithm (PPA), which was introduced by Schul-
man, Mor and Weinstein (SMW) [25], and believed to be optimal among all
possible reversible AC and HBAC in [26]. For simplicity, the case of n qubits

296 R. Laflamme et al.

had been analyzed, assuming the ideal case in which just one qubit is strongly
coupled with the environment and hence reaches thermal equilibrium rapidly
(henceforth “reset qubit”), while the others are hardly influenced by the environ-
ment (henceforth “computing qubits”). SMW claimed in the above two papers
that the PPA gives the optimal physical cooling in terms of entropy extraction.
In particular, this claim means that for just two spins, one computer spin and
one reset spin, with identical equilibrium polarization, there is no way to improve
the polarization of the computer spin beyond its equilibrium polarization (see
also [21,22]), no matter how many reversible steps and re-thermalization steps
(henceforth REFRESH steps) one applies. SMW, as well as all HBAC literature,
implicitly assume that the reset qubit can only be refreshed independently of the
other qubits.

In the original PPA, a reversible entropy compression operation on a string
of n qubits always makes a descending ordering (SORT) of the diagonal elements
of the system’s density matrix. That is, the probabilities of states starting with
0 (0 . . . 00, 0 . . . 01, etc.) will receive the biggest values of the diagonal elements,
while that of states starting with 1 will receive the smallest ones. A sequence of
repeated SORT steps, each followed by a REFRESH of the reset spin, increases
the polarization of the qubits, leading to the maximal polarization on the first
qubit of the string, where the last qubit is the reset qubit. The algorithm always
converges to a steady state. The compression can no longer improve the polar-
ization of the first qubit, or any other qubit for that matter, if the diagonal
elements of the system’s density matrix are already in descending order before
the entropy compression step. Hence, there is a range of initial polarizations that
cannot be improved by any step of PPA — a range of steady states of PPA [26].
Within that range, an exact steady state of the cooling limit of PPA was recently
found and presented in [21,22].

In this work, we present algorithms which lead to an increase in polarization
beyond the achievable cooling for the original PPA, thus presenting a different
and more powerful HBAC than the PPA. In the original PPA (as well as in all
papers discussing and analyzing AC), it was assumed that the reset mechanism
can only re-thermalize qubits individually, implying that this mechanism was
the most general possible. Under this restriction, the qubit-reset is the optimal
refresh operation in terms of entropy extraction. In our model we remove this
restriction and include correlations between qubits as they reset, a mechanism
that we call “state-reset”. We relate our new HBAC method, which we call state-
reset HBAC, to the Nuclear Overhauser Effect (NOE) [17]. By comparing NOE
on two spins to algorithmic cooling we identified that NOE may be “simulated”
if we add two additional mechanisms:

1. reset to the completely mixed state (we call this operation “CMS-reset”).
2. state-reset as described below.

The algorithms that we present here combine four “tools”: unitary evolution
(only SORT is needed here), qubit-reset (REFRESH of individual spins), CMS-
reset and state-reset. We name this type of HBAC state-reset-HBAC. We analyt-
ically calculate the achievable polarization for the state-reset process combined

Heat-Bath Algorithmic Cooling with Correlated-Qubits Relaxation 297

with SORT as in the original PPA, as a function of the number of qubits, n,
and the heat-bath polarization, εb = tanh ΔE

2kBT , where ΔE is the energy gap
between the two states of a qubit, T is the temperature of the heat-bath, and
kB is the Bolzman constant. We present the polarization evolution as a function
of the number of algorithm-iterations and we compare these new results with
the corresponding ones of the original PPA. We give explicit examples for two,
three, and n qubits, with analytical and numerical solutions for low and general
bath polarization. Thus, we prove that our generalized PPA algorithm, in which
SORT is combined with generalized reset, surpasses the original PPA.

2 PPA versus NOE

The original PPA, using only one reset qubit and a total of n qubits, gives [22]
the first qubit an asymptotic polarization of

εmax =
(1 + εb)2

n−2 − (1 − εb)2
n−2

(1 + εb)2
n−2 + (1 − εb)2

n−2 (1)

where εb is the thermal equilibrium polarization of each of the spins (the reset
spin and the computer spins). Hence it may be regarded as the polarization of
the bath. This asymptotic steady state holds for the wide range of initial states
in which the polarization bias of each qubit is smaller than εmax − δ, for a very
small δ [22]. For example, the completely mixed state is in this range, and was
used as the initial state in [26]. For two (n = 2 above) qubits (one qubit which is
going to be cooled, and one reset qubit), starting in the maximally mixed state,
the original PPA gives a steady state with the qubits at the bath temperature
and no polarization gain (beyond that of the bath) is observed.

In a recent paper [14], Li et al. studied the efficiency of polarization transfer in
the presence of a bath using vector of coherence representation. They presented
a numerical solution and an experiment that showed polarization enhancement
above the bath polarization for two qubits, thus bypassing the optimal cooling
allowed by the original PPA. The surprising improvement turns out to be related
to the NOE discovered in 1953 [17]: It appears that in the presence of cross-
relaxation, the polarization of one qubit can be boosted beyond the original
PPA limit. The boost of the polarization (of the computer qubit) appears when
the second one (the reset qubit) is saturated, i.e. rotated rapidly so that over
relevant timescale its polarization averages to zero. This can be predicted by the
Solomon equation, see a preliminary extended version of this paper in [23]. The
effect relies on cross-relaxation (see Γ2 in Fig. 1) and cannot be understood as
a simple swap of the polarization of the hot qubits with the polarization of the
bath (the most general relaxation mechanism allowed in the original PPA).

Understanding this effect from quantum information processing point of view
seems vital, as this observation seems to contradict the optimality proof of
SMW. Analyzing this effect also allows merging NOE into HBAC, thus yielding
a stronger PPA, potentially improving over both the original PPA and the two-
spins NOE. The way to understand the process from an algorithmic point of view

298 R. Laflamme et al.

Γ2

Γ1Γ1

Γ1
Γ1

Γ2

|11〉

|00〉

|01〉 |10〉

′

′
′

Fig. 1. Relaxation diagram for a two qubit system. The various Γ are the population-
exchange rates between the corresponding states. The process illustrated as Γ2 (|00〉 ↔
|11〉) cannot be described as a qubit-reset with the bath as in the PPA, and results in
the boost of polarization of one qubit when the other is saturated.

is to realize that the cross-relaxation effectively provides a new form of relaxation
that had not been taken into account in [25,26] and in other theoretical analysis
of HBAC. For a system of two spins, such state-relaxation (“state-reset”) means
re-thermalization between |00〉 and |11〉, while leaving other states intact for
some time. To achieve this, the state-reset, and algorithms which utilize it, are
limited to case where Γ2 is much larger than the other relaxation rate. In NMR
this is termed “double-quantum transition”, instead of a “qubit-reset” as in the
PPA. We now show, using the language of quantum information processing, that
this form of state-reset, accompanied by a “reset to the completely-mixed-state”
(that we abbreviate as “CMS-reset”) of the second qubit (the reset spin) can
boost the polarization of the first qubit. This boost, not predicted by the original
PPA, is thus beyond what would be obtained solely by unitary transformations
(simply named here “rotations”) and qubit-reset. Therefore the PPA, already
for two qubits, does not give the maximum polarization achievable for HBAC.

It is also possible to generalize this idea to increase the polarization of a qubit
in a larger n–qubit system, by an n–qubit designated algorithm — generalizing
the PPA to contain, in addition to SORT steps and qubit-reset, also state-reset
and CMS-reset steps.

3 Two-Qubit Analysis — Cooling Beyond the Original
PPA

Here we show that we can represent the NOE process solely via the iteration of
two operations, with no additional unitary transformation: the CMS operation
(i.e. CMS-reset) that simulates the saturation of the second (reset) qubit, and
Γ2 for the state-reset of the system between the states |00〉 and |11〉, see Fig. 2.
For simplicity, consider a system of two homonuclear spins. Let the system start

Heat-Bath Algorithmic Cooling with Correlated-Qubits Relaxation 299

in thermal equilibrium with polarization εb, hence, the initial state is ρ⊗2
0 =

1
2

[
1 + εb 0

0 1 − εb

]⊗2

. This state can be represented by the diagonal of its density

matrix, diag
(
ρ⊗2
0

)
. For low polarization εb � 1, this diagonal is approximately

1
4 (1 + 2εb, 1, 1, 1 − 2εb). This state will evolve as follows, under two iterations of
the two mentioned steps (see Fig. 2 and [23]):

diag
(
ρ⊗2
0

)
=

1
4

(1 + 2εb, 1, 1, 1 − 2εb)

CMS(2)−−−−−→ 1
2

(1 + εb, 1 − εb) ⊗ 1
2

(1, 1)

=
1
4

(1 + εb, 1 + εb, 1 − εb, 1 − εb)

Γ2−→ 1
4

(1 + 2εb, 1 + εb, 1 − εb, 1 − 2εb)

CMS(2)−−−−−→ 1
4

(
1 +

3
2
εb, 1 − 3

2
εb

)
⊗ 1

2
(1, 1)

=
1
4

(
1 +

3
2
εb, 1 +

3
2
εb, 1 − 3

2
εb, 1 − 3

2
εb

)

Γ2−→ 1
4

(
1 + 2εb, 1 +

3
2
εb, 1 − 3

2
εb, 1 − 2εb

)
,

(2)

where CMS(2) stands for the saturation process of the second qubit, and Γ2

resets the ratio of the probabilities of the states |00〉 and |11〉 from 1+x
1−x to their

thermal equilibrium ratio 1+2εb

1−2εb
.

From Eq. (2), we can see that the polarization of the first qubit has an
enhancement of 3/2 after the first round, and of 7/4 after the second round,
and so on. This enhancement grows asymptotically to a fixed point, correspond-
ing to the polarization ε∞

NOE . I.e., in the limit of the algorithm, after applying
an iteration,

1
2

(1 + ε∞
NOE , 1 − ε∞

NOE) ⊗ 1
2

(1, 1)

Γ2−→ 1
4

(1 + 2εb, 1 + ε∞
NOE , 1 − ε∞

NOE , 1 − 2εb)

CMS−−−→ 1
2

(
1 +

2εb + ε∞
NOE

2
, 1 − 2εb + ε∞

NOE

2

)
⊗ 1

2
(1, 1)

(3)

the polarization of the first qubit should remain the same. Thus, ε∞
NOE =

2εb+ε∞
NOE

2 , in ε∞
NOE = 2εb, yielding exactly the same enhancement as obtained

from the Solomon equations [23].
See Fig. 2 for the NOE-process yielding polarization of 2εb. If combined with

a final step of relaxation of the reset spin then the process is described in Fig. 3.
We name this simple algorithm “2-qubit-state-reset HBAC” and it will be used
as a subroutine when cooling a string of more qubits. For the string of (two)
qubits, where the reset spin is the rightmost bit, the obtained probabilities for

300 R. Laflamme et al.

each spin to be in state |0〉 are {(1 + 2εb)/2, (1 + εb)/2} representing a diagonal
matrix ρ(Final−NOE), that can be denoted more simply using the shifted-and-
scaled diagonal terms {2, 1} in units of εb, for the string of (two) qubits.

ρεb

ρεb

Γ2
CMS

Γ2
CMS

Γ2
CMS

Round(NOE)

Fig. 2. Circuit of the NOE process on two qubits, presented via quantum information
processing terminology. Γ2 is the state-reset operation on two qubits, and CMS is the
“reset to a completely mixed state” of the reset spin, respectively. The part inside the
dotted box represents a single round, and the entire circuit is just the repetition of that
round. The entire circuit, when repeated a sufficient number of times, represents the
NOE process in which the cross relaxation is effective during the saturation process
applied onto the reset spin.

ρεb

ρεb

Γ2
CMS

Γ2
CMS

Γ2
CMS Γ1

Round(NOE)

Fig. 3. Circuit of the NOE process followed by a reset (Γ1) step on the reset spin, as
the final step of this two-qubit cooling algorithm which we name “2-qubit state-reset
HBAC”.

4 Precise Calculation for the NOE Process

We now generalize our calculation to initial polarizations of any size between 0
and 1. For any 0 < εb < 1, let εb = tanh(ξ). The operation Γ2, applied to an
initial density-matrix diagonal of a 2-qubit-system, produces

[A1, A2, A3, A4]
Γ2−→ [(A1 + A4)p2, A2, A3, (A1 + A4)(1 − p2)], (4)

Heat-Bath Algorithmic Cooling with Correlated-Qubits Relaxation 301

where p2 = e2ξ

2 cosh 2ξ is the population of state |00〉 at thermal equilibrium with the
heat bath (e2ξ/N), normalized by the sum of thermal populations of both states
|00〉 and |11〉 (i.e. N = e2ξ +e2ξ = 2 cosh 2ξ); and so 1−p2 is the complementary
population of |11〉 at thermal equilibrium. For the initial diagonal of Eq. 3,

1
2

(1 + ε∞
NOE , 1 − ε∞

NOE) ⊗ 1
2

(1, 1)

Γ2−→ 1
4

(2p2, 1 + ε∞
NOE , 1 − ε∞

NOE , 2(1 − p2))

CMS−−−→ 1
2

(
1 + 2p2 + ε∞

NOE

2
,
3 − 2p2 − ε∞

NOE

2

)
⊗ 1

2
(1, 1) .

(5)

The assymptotic polarization should hence obey

2p2 =
1 + 2p2 + ε∞

NOE

2
⇒ ε∞

NOE = 2p2 − 1 = tanh 2ξ (6)

5 The 3 Qubit Case

For the case of small initial polarizations it is trivial to show that the subroutine
2-qubit-state-reset-HBAC may be used to cool a three qubit string, where the
rightmost bit is the reset spin, to {3, 2, 1} in units of εb. When starting from
thermal equilibrium {1, 1, 1}, this is done by using the 2-qubit-state-reset-HBAC
subroutine onto the two rightmost bits (yielding {1, 2, 1}), followed by a SORT
step (in this case of just three qubits — known as 3-bit-compression), to cool
the leftmost bit to 2, then another 2-qubit-state-reset-HBAC (yielding {2, 2, 1}).
Repeating these two steps once more yields {2.5, 2, 1}, and another repetition
yields {2.75, 2, 1}.

We can see that the polarization of the first qubit has an enhancement of
2 after the first round, of 2.5 after the second round, of 2.75 after the third
round, and so on. This enhancement grows asymptotically to a fixed point,
corresponding to the polarization ε∞ for the rightmost bit when there are 3
qubits. I.e., in the limit of the algorithm, after applying an iteration,

1
2

(1 + ε∞, 1 − ε∞) ⊗ ρ(Final−NOE)

2−qubit−state−reset−HBAC−−−−−−−−−−−−−−−−−−−→
1
2

(
1 +

3εb + ε∞

2
, 1 − 3εb + ε∞

2

)
⊗ ρ(Final−NOE)

(7)

the polarization of the coldest qubit should remain the same. Thus, ε∞ = 3εb+ε∞
2 ,

in ε∞ = 3εb, yielding the final string polarization {3, 2, 1}.

302 R. Laflamme et al.

6 The n Qubit Case

Using the same process as above, and with 3-bit-compression, it is easy to
obtain a Fibonacci-like series — {...13, 8, 5, 3, 2, 1}; note the only advantage over
the SMW-Fibonacci result [8,26] is that the above is somewhat better than
{...8, 5, 3, 2, 1, 1} with the same number of qubits.

Finally, we show how to get the limit — yielding {...24, 12, 6, 3, 2, 1};
and again, the above is somewhat better than the original PPA, namely
{...16, 8, 4, 2, 1, 1}. This is done by using a SORT rather than 3-bit-compression,
as in the original PPA [8,26].

7 Conclusion

In conclusion, we have presented a new HBAC technique and a new PPA-and-
NOE based algorithm, that can have a better polarization enhancement than the
achievable cooling for the original PPA, for any number of qubits, bypassing what
was believed to be the optimal cooling. That enhancement is achievable when
the coupling to the environment is not limited to qubit-resets, but could also
include correlations between the qubits during thermalization. We called that
“state-reset”. We calculated the maximum polarization for this new method as
a function of the number of qubits, n, and as a function of the polarization in
the equilibrium, εb. Also, we presented the polarization evolution as a function
of the number of algorithm-iterations and we made a comparison between these
new results, and the corresponding ones of the original PPA.

In the full paper [23] we show that, unlike the original PPA, SORT combined
with generalized reset is also not optimal once one allows to replace the SORT
by a different entropy-redistribution operation.

Acknowledgments. The authors would like to thank Jun Li, Xinhua Peng, Xian Ma,
Aharon Brodutch, Osama Moussa, Daniel Park, David Cory, Om Patange, and David
Layden for insightful discussions. N.A. R.-B. is supported by CONACYT-COZCYT
and the Mike and Ophelia Lazaridis Fellowship program. R. L. is supported by Industry
Canada, the government of Ontario, CIFAR and the U.S. Army Research Laboratory.
R. L., T. M. and Y. M. thank the Schwartz/Reisman Foundation.

References

1. Atia, Y., Elias, Y., Mor, T., Weinstein, Y.: Algorithmic cooling in liquid-state
nuclear magnetic resonance. Phys. Rev. A 93, 012325 (2016)

2. Baugh, J., Moussa, O., Ryan, C.A., Nayak, A., Laflamme, R.: Experimental imple-
mentation of heat-bath algorithmic cooling using solid-state nuclear magnetic res-
onance. Nature 438(7067), 470–473 (2005)

3. Boykin, P.O., Mor, T., Roychowdhury, V., Vatan, F., Vrijen, R.: Algorithmic cool-
ing and scalable NMR quantum computers. Proc. Natl. Acad. Sci. 99(6), 3388–3393
(2002)

Heat-Bath Algorithmic Cooling with Correlated-Qubits Relaxation 303

4. Brassard, G., Elias, Y., Fernandez, J.M., Gilboa, H., Jones, J.A., Mor, T.,
Weinstein, Y., Xiao, L.: Experimental heat-bath cooling of spins. arXiv preprint
quant-ph/0511156 (2005)

5. Brassard, G., Elias, Y., Fernandez, J.M., Gilboa, H., Jones, J.A., Mor, T.,
Weinstein, Y., Xiao, L.: Experimental heat-bath cooling of spins. Eur. Phys. J.
Plus 129, 266 (2014)

6. Brassard, G., Elias, Y., Mor, T., Weinstein, Y.: Prospects and limitations of algo-
rithmic cooling. Eur. Phys. J. Plus 129(11), 1–16 (2014)

7. Chang, D., Vandersypen, L., Steffen, M.: NMR implementation of a building block
for scalable quantum computation. Chem. Phys. Lett. 338(4–6), 337 (2001)

8. Elias, Y., Fernandez, J.M., Mor, T., Weinstein, Y.: Optimal algorithmic cooling of
spins. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T.
(eds.) UC 2007. LNCS, vol. 4618, pp. 2–26. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73554-0 2

9. Elias, Y., Gilboa, H., Mor, T., Weinstein, Y.: Heat-bath cooling of spins in two
amino acids. Chem. Phys. Lett. 517(4), 126–131 (2011)

10. Elias, Y., Mor, T., Weinstein, Y.: Semioptimal practicable algorithmic cooling.
Phys. Rev. A 83(4), 042340 (2011)

11. Fernandez, J.M., Lloyd, S., Mor, T., Roychowdhury, V.: Algorithmic cooling of
spins: a practicable method for increasing polarization. Int. J. Quantum Inf. 2(04),
461–477 (2004)

12. Fernandez, J.M., Mor, T., Weinstein, Y.: Paramagnetic materials and practical
algorithmic cooling for NMR quantum computing. Int. J. Quantum Inf. 3(1), 281–
285 (2005)

13. Kaye, P.: Cooling algorithms based on the 3-bit majority. Quantum Inf. Process.
6(4), 295–322 (2007)

14. Li, J., Lu, D., Luo, Z., Laflamme, R., Peng, X., Du, J.: Maximally accessible
purity in coherently controlled open quantum systems: application to quantum
state engineering. Phys. Rev. A 94(3), 032316 (2016)

15. Mor, T., Fernandez, J.M., Lloyd, S., Mor, T., Roychowdhury, V., Weinstein, Y.:
Algorithmic cooling. USA PATENT (US6873154 B2) (2005)

16. Moussa, O.: On heat-bath algorithmic cooling and its implementation in solid-state
NMR. Master of Science in Physics thesis, University of Waterloo (2005)

17. Overhauser, A.W.: Paramagnetic relaxation in metals. Phys. Rev. 89(4), 689
(1953)

18. Park, D.K., Feng, G., Rahimi, R., Labruyere, S., Shibata, T., Nakazawa, S., Sato,
K., Takui, T., Laflamme, R., Baugh, J.: Hyperfine spin qubits in irradiated mal-
onic acid: heat-bath algorithmic cooling. Quantum Inf. Process. 14(7), 2435–2461
(2015)

19. Park, D.K., Rodriguez-Briones, N.A., Feng, G., Rahimi, R., Baugh, J., Laflamme,
R.: Heat bath algorithmic cooling with spins: review and prospects. In: Takui, T.,
Berliner, L., Hanson, G. (eds.) Electron Spin Resonance (ESR) Based Quantum
Computing. BMR, vol. 31, pp. 227–255. Springer, New York (2016). https://doi.
org/10.1007/978-1-4939-3658-8 8

20. Peres, Y.: Iterating von Neumann’s procedure for extracting random bits. Ann.
Statist. 20(1), 590–597 (1992)

21. Raeisi, S., Mosca, M.: Asymptotic bound for heat-bath algorithmic cooling. Phys.
Rev. Lett. 114(10), 100404 (2015)

22. Rodŕıguez-Briones, N.A., Laflamme, R.: Achievable polarization for heat-bath
algorithmic cooling. Phys. Rev. Lett. 116, 170501 (2016)

https://doi.org/10.1007/978-3-540-73554-0_2
https://doi.org/10.1007/978-3-540-73554-0_2
https://doi.org/10.1007/978-1-4939-3658-8_8
https://doi.org/10.1007/978-1-4939-3658-8_8

304 R. Laflamme et al.

23. Rodriguez-Briones, N.A., Li, J., Peng, X., Mor, T., Weinstein, Y., Laflamme,
R.: Heat-bath algorithmic cooling with correlated qubit-environment interactions.
To appear in New Journal of Physics (2017). arXiv preprint arXiv:1703.02999
[quant-ph]

24. Ryan, C.A., Moussa, O., Baugh, J., Laflamme, R.: Spin based heat engine: demon-
stration of multiple rounds of algorithmic cooling. Phys. Rev. Lett. 100(14), 140501
(2008)

25. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath algorithmic
cooling. Phys. Rev. Lett. 94(12), 120501 (2005)

26. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath algorithmic
cooling. SIAM J. Comput. 36(6), 1729–1747 (2007)

27. Schulman, L.J., Vazirani, U.V.: Molecular scale heat engines and scalable quantum
computation. In: Proceedings of the 31st Annual ACM Symposium on Theory of
Computing (STOC), pp. 322–329. ACM (1999)

28. Sørensen, O.W.: The entropy bound as a limiting case of the universal bound on
spin dynamics. polarization transfer in INSM spin systems. J. Magn. Resonance
(1969) 93(3), 648–652 (1991)

29. Von Neumann, J.: Various techniques used in connection with random digits. Natl.
Bur. Stand. Appl. Math. Ser. 12, 36–38 (1951)

http://arxiv.org/abs/1703.02999

Time-Space Complexity Advantages
for Quantum Computing

Shenggen Zheng1, Daowen Qiu1(B), and Jozef Gruska2

1 School of Data and Computer Science, Institute of Computer Science Theory,
Sun Yat-sen University, Guangzhou 510006, China

zhengshg@mail2.sysu.edu.cn, issqdw@mail.sysu.edu.cn
2 Faculty of Informatics, Masaryk University, 602 00 Brno, Czech Republic

gruska@fi.muni.cz

Abstract. It has been proved that quantum computing has advan-
tages in query complexity, communication complexity and also other
computing models. However, it is hard to prove strictly that quantum
computing has advantage in the Turing machine models in time com-
plexity. For example, we do not know how to prove that Shor’s algo-
rithm is strictly better than any classical algorithm, since we do not
know the lower bound of time complexity of the factoring problem in
Turing machine. In this paper, we consider the time-space complexity
and prove strictly that quantum computing has advantages compared to
their classical counterparts. We prove: (1) a time-space upper bound for
recognition of the languages LINT (n) on two-way finite automata with
quantum and classical states (2QCFA): TS = O(n3/2 log n), whereas a
lower bound on probabilistic Turing machine is TS = Ω(n2); (2) a time-
space upper bound for recognition of the languages LNE(n) on exact
2QCFA: TS = O(n1.87 log n), whereas a lower bound on probabilistic
Turing machine is TS = Ω(n2).

It has been proved (Klauck, STOC’00) that the exact one-way quan-
tum finite automata have no advantage comparing to classical finite
automata in recognizing languages. However, the result (2) shows that
the exact 2QCFA do have an advantage in comparison with their clas-
sical counterparts, which is the first example showing that the exact
quantum computing has advantage in time-space complexity comparing
to classical computing.

Keywords: Quantum computing · Time-space complexity

This work was supported by the National Natural Science Foundation of China
(Nos. 61572532, 61272058, 61602532), the Fundamental Research Funds for
the Central Universities of China (Nos. 17lgjc24, 161gpy43, 17lgzd29) and the
National Natural Science Foundation of Guangdong Province of China (Nos.
2017B030311011, 2017A030313378) and Qiu is partially funded by FCT project
UID/EEA/50008/2013.

c© Springer International Publishing AG 2017
C. Mart́ın-Vide et al. (Eds.): TPNC 2017, LNCS 10687, pp. 305–317, 2017.
https://doi.org/10.1007/978-3-319-71069-3_24

306 S. Zheng et al.

1 Introduction

Time-space complexity is a natural and interesting research topics for compu-
tation and communication, see for example [9,10,20,21] with respect to vari-
ous computing models. Since it is hard to prove that quantum computing have
advantage in time complexity, we try to show the advantage in time-space com-
plexity. We start our proof from the model of finite automata, which is a very
restricted model of Turing machine. In the case of two-way finite automata, there
is not previous work on their time-space complexity as far as we know. Mostly
only their time complexity or state complexity (space complexity) has been
investigated.

One way to present insights obtained this way is to consider language recog-
nition and time and space as related to the length of input. In this paper we
take another approach and demonstrate that it can provide also interesting and
important results. Namely, time and space are here related to the parameter n in
the language specification. It is clear that it can be transformed into the length
of the input is O(n) in the corresponding Turing machine. The space used by the
automaton refers to the number of (qu)bits required to represent an arbitrary
automaton state [5].

When just time complexity or state complexity (space complexity) of two-
way finite automata to recognize some special languages (such as the languages
we defined in this paper) are considered, it seems that quantum finite automata
have no advantages at all compared to their classical counterparts. However,
quite surprisingly, when time-space complexity is considered, then advantages
of quantum variations of the classical models can be demonstrated as shown in
this paper.

Time-space complexity considered in this paper will be closely related to
the communication complexity. Indeed, in this paper we will use communica-
tion complexity results to derive time-space upper-bounds for two-way finite
automata. We prove that the time-space complexity for recognizing some lan-
guages in two-way finite automata with quantum and classical states (2QCFA)
[4] are better than in probabilistic Turing machine (PTM). We prove also that
probabilistic two-way quantum finite automata (2PFA) [13] are better than
deterministic Turing machine (DTM) in time-space complexity in recognizing
some special languages.

Since Yao [26] introduced the topic of communication complexity, it has been
studied very intensively in various settings [22]. The most basic one, used also
here, is the following one. One party, say Alice, gets an x ∈ {0, 1}n, the second
party, say Bob, gets another string, say y ∈ {0, 1}n and they have to compute
value of a given Boolean function f : {0, 1}n × {0, 1}n → {0, 1} using local
computations and communications using as small number of (qu)bits as possible.
In this setting local computations are considered as free, but communications as
expensive and have to be minimized.

Time-Space Complexity Advantages for Quantum Computing 307

Two of the most basic and most often explored communication problems are
that of equality and intersection [22]. They are defined as follows: (1) Equality:
EQ(x, y) = 1 if x = y and 0 otherwise. (2) Intersection: INT(x, y) = 1 if there
is an index i such that xi = yi = 1 and 0 otherwise.

We describe main results of the paper here. Their full proofs will be given in
the section afterwards.

Let us consider the following language over the alphabet Σ = {0, 1,#}:

LEQ(n) = {x#ny | x, y ∈ {0, 1}n,EQ(x, y) = 1}.

It is clear that 2DFA (therefore also 2PFA) can recognize LEQ(n). The time
complexity of 2DFA recognizing this language is O(n). The state complexity of
2DFA recognizing the language is O(n2)-that is the space used is O(log n). The
time complexity and also the space used of 2PFA recognizing the same language
is almost the same. However, when we consider time-space complexity for the
language LEQ(n), the situation is very different.

To prove the following theorem we will use a 2PFA to simulate the proba-
bilistic communication protocol from Chap. 1 of [18] for the problem EQ and
get an upper bound for the time-space complexity for 2PFA.

Theorem 1. There is a 2PFA that accepts the language LEQ(n) in the time T
using the space S such that TS = O(n log n).

Using communication complexity lower bound proof method [22], we can get
the following lower bound for time-space complexity for DTM.

Theorem 2. Let A be a deterministic Turing machine that accepts the language
LEQ(n) in time T using space S. Then, TS = Ω(n2).

In order to prove the time-space complexity advantages of 2QCFA compared
to 2PFA, let us consider the following language over the alphabet Σ = {0, 1,#}:

LINT (n) = {x#ny | x, y ∈ {0, 1}n, INT(x, y) = 1}.

In order to prove the next result we use a 2QCFA to simulate the quantum
communication protocol from [11] for the problem INT and get an upper bound
for the time-space complexity for PTM.

Theorem 3. There is a 2QCFA that accepts the language LINT (n) in time T
using space S such that TS = O(n3/2 log n).

In order to prove our last main result we will make use of the fact that
Buhrman et al. [11] reduced certain quantum communication tasks to computa-
tion problems, which is essentially a way to transform quantum query algorithms
to quantum communication protocols. More exactly, they showed that if there
is a t-query quantum algorithm computing an n-bit Boolean function f with an
error ε, then there is a communication protocol with O(t log n) communication
for the function f(x ∧ y) with the same error ε.

308 S. Zheng et al.

The main idea in the proofs of our main results is to transform quantum query
algorithms and quantum communication protocols to algorithms for 2QCFA.

In particular, using one of communication complexity lower bound proof
methods, we can get the following lower bound for the time-space complexity
for the language LINT (n) on 2PFA.

Theorem 4. Let A be a probabilistic Turing machine that accepts the language
LINT (n) in time T using space S. Then, TS = Ω(n2).

Concerning the exact computing mode, Klauck [19] proved, for any regu-
lar language L, that the state complexity of the exact one-way quantum finite
automata (1QFA) for L is not less than the state complexity of an equivalent
one-way deterministic finite automata (DFA). That means that the exact 1QFA
have no advantage in recognizing regular languages. It is therefore of interest to
consider the case of two-way finite automata. We still do not know whether there
is time complexity or state complexity advantages for two-way quantum finite
automata in recognition of languages. However, we prove that exact 2QCFA do
have time-space complexity advantages for recognizing some special languages.
In order to do that, let us consider a special sequence of functions introduced
and studied in [6].

Let us consider the sequence of functions studied in [6]. Let us first define the
function NE(x1, x2, x3) as follows: NE(x1, x2, x3) = 0 if x1 = x2 = x3 and
NE(x1, x2, x3) = 1 otherwise. Now we can define a sequence of functions
NEd as follows: (1) NE0(x1) = x1 and (2) NEd(x1, . . . , x3d) = NE(NEd−1

(x1, . . . , x3d−1),NEd−1(x3d−1+1, . . . , x2·3d−1),NEd−1(x2·3d−1+1, . . . , x3d)) for all
d > 0.

Let n = 3d, we now define the function RNE(x, y) = NEd(x1∧y1, . . . , xn∧yn),
where x, y ∈ {0, 1}n, and let us consider the following language

LNE(n) = {x#ny | x, y ∈ {0, 1}n,RNE(x, y) = 1}.

In order to prove the last two main theorems, we will use a 2QCFA to simulate
the quantum communication protocol from [6] for the problem RNE and get an
upper bound for the time-space complexity for 2QCFA.

Theorem 5. There is an exact 2QCFA that accepts the language LNE(n) in
time T using space S such that TS = O(n1.87 log n).

Theorem 6. Let A be be a probabilistic Turing machine that accepts the lan-
guage LNE(n) in time T using space S. Then, TS = Ω(n2).

2 Preliminaries

2.1 Quantum Query Algorithm

In the following let input x = x1 · · · xn ∈ {0, 1}n for some fixed n. We will
consider a Hilbert space H with basis states |i, j〉 for i ∈ {0, 1, . . . , n} and j ∈
{1, · · · ,m} (where m can be chosen arbitrarily). A query Ox to an input x ∈
{0, 1}n will be formulated as the following unitary transformation:

Time-Space Complexity Advantages for Quantum Computing 309

– Ox|0, j〉 = |0, j〉;
– Ox|i, j〉 = (−1)xi |i, j〉 for i ∈ {1, 2, · · · , n}.

A quantum query algorithm A which uses t queries for an input x consists of
a sequence of unitary operators U0, Ox, U1, . . . , Ox, Ut, where Ui’s do not depend
on the input x and the query Ox does. The algorithm will start in a fixed starting
state |ψs〉 of H and will perform the above sequence of operations. This leads to
the final state

|ψf 〉 = UtOxUt−1 · · · U1OxU0|ψs〉. (1)

The final state is then measured with a measurement {M0,M1}. For an input
x ∈ {0, 1}n, we denote A(x) the output of the quantum query algorithm A.
Obviously, Pr[A(x) = 0] = ‖M0|ψf 〉‖2 and Pr[A(x) = 1] = ‖M1|ψf 〉‖2 =
1−Pr[A(x) = 0]. We say that the quantum query algorithm A computes f within
an error ε if for every input x ∈ {0, 1}n it holds that Pr[A(x) = f(x)] ≥ 1 − ε.
If ε = 0, we says that the quantum algorithm is an exact quantum algorithm.
For more details on the definition of quantum query complexity see [6,12,16].

2.2 Communication Complexity

We will use the following standard model of communication complexity. Two
parties Alice and Bob compute a function f on distributed inputs x and y.
A deterministic communication protocol P will compute a function f , if for
every input pair (x, y) ∈ X × Y the protocol terminates with the value f(x, y)
as its output at a well specified party. In a probabilistic protocol, Alice and
Bob may also flip coins during the protocol execution and proceed according to
outcomes of the coins. Moreover, the protocol can have an erroneous output with
a small probability. In a quantum protocol, Alice and Bob may use also quantum
resources for communication. Let P(x, y) denote the output of the protocol P.
We will consider two kinds of protocols for computing a function f :

– An exact protocol P such that Pr(P(x, y) = f(x, y)) = 1.
– A bounded error protocol P such that Pr(P(x, y) = f(x, y)) ≥ 2

3 .

The communication complexity of a protocol P is the number of (qu)bits
exchanged in the worst case. The communication complexity of f is, which
respect to the communication mode used, the complexity of an optimal protocol
for f . We will use D(f) and R(f) to denote the deterministic communication
complexity and the bounded error probabilistic communication complexity of
the function f , respectively. Similarly, we use notations QE(f) and Q(f) for the
exact and bounded error quantum communication complexity of a function f .
For more details on the definition of communication complexity see [22].

Some communication complexity results that we will use in this paper are:

1. D(EQ) = Ω(n), R(EQ) = O(log n) [22].
2. R(INT) = Ω(n) [25], Q(INT) = O(

√
n log n) [11].

3. R(RNE) = Ω(n), QE(RNE) = O(n0.87 log n) [6].

310 S. Zheng et al.

2.3 Two-Way Finite Automata

We assume familiarity with the models of finite automata introduced in [3,4,13,
24]. We denote the input alphabet by Σ, which does not include symbols |c (the
left end-marker) and $ (the right end-marker). A two-way finite automaton that
we will use in this paper halts when it enters an accepting or a rejecting state.

2QCFA were introduced by Ambainis and Watrous [4] and further studied
by Zheng et al. [17,23,27–29]. Informally, a 2QCFA can be seen as a 2DFA with
an access to a quantum memory for states of a fixed Hilbert space upon which at
each step either a unitary operation is performed or a projective measurement
and the outcomes of which then probabilistically determine the next move of the
underlying 2DFA.

A 2QCFA M is specified by a 9-tuple M = (Q,S,Σ,Θ, δ, |q0〉, s0, Sacc, Srej)
where: (1) Q is a finite set of orthonormal quantum basis states. (2) S is a
finite set of classical states. (3) Σ is a finite alphabet of input symbols and
let Σ′ = Σ ∪ {|c, $}, where |c will be used as the left end-marker and $ as the
right end-marker. (4) |q0〉 ∈ Q is the initial quantum state. (5) s0 is the initial
classical state. (6) Sacc ⊂ S and Srej ⊂ S, where Sacc ∩ Srej = ∅ are sets of
the classical accepting and rejecting states, respectively. (7) Θ is a quantum
transition function Θ : S \ (Sacc ∪ Srej) × Σ′ → U(H(Q)) ∪ O(H(Q)), where
U(H(Q)) and O(H(Q)) are sets of unitary operations and measurements on the
Hilbert space generated by quantum states from Q. (8) δ is a classical transition
function. If the automaton M is in the classical state s and in the quantum
state |ψ〉, its tape head is scanning a symbol σ, then M performs quantum
and classical transitions as follows. (a) If Θ(s, σ) ∈ U(H(Q)), then the unitary
operation Θ(s, σ) is applied on the current quantum state |ψ〉 to produce a new
quantum state. The automaton then performs, in addition, the following classical
transition function δ : S \ (Sacc ∪Srej)×Σ′ → S ×{−1, 0, 1}. If δ(s, σ) = (s′, d),
then the new classical state of the automaton will be s′ and its head moves in the
direction d. (b) If Θ(s, σ) ∈ O(H(Q)), then the measurement operation Θ(s, σ)
is applied on the current state |ψ〉. Suppose the measurement Θ(s, σ) is specified
by operators {P1, . . . , Pm} and its corresponding classical outcome is from the set
NΘ(s,σ) = {1, 2, · · · ,m}. The classical transition function δ can be then specified
as follow δ : S \ (Sacc ∪Srej)×Σ′ ×NΘ(s,σ) → S ×{−1, 0, 1}. In such a case, if i
is the classical outcome of the measurement, then the current quantum state |ψ〉
is changed to the state Pi|ψ〉/‖Pi|ψ〉‖. Moreover, if δ(s, σ)(i) = (s′, d), then the
new classical state of the automaton is s′ and its head moves in the direction d.

The automaton halts and accepts (rejects) the input when it enters a classical
accepting (rejecting) state (from Sacc(Srej)).

The computation of a 2QCFA M = (Q,S,Σ,Θ, δ, |q0〉, s0, Sacc, Srej) on an
input w ∈ Σ∗ starts with the string |cx$ on the input tape. At the start, the tape
head of the automation is positioned on the left end-marker and the automaton
begins the computation in the classical initial state s0 and in the initial quantum
state |q0〉. After that, in each step, if its classical state is s, its tape head reads
a symbol σ and its quantum state is |ψ〉, then the automaton changes its states
and makes its head movement following the steps described in the definition.

Time-Space Complexity Advantages for Quantum Computing 311

Let 0 ≤ ε < 1
3 . A finite automaton M recognizes L with bounded error ε if,

for w ∈ Σ∗,

1. ∀w ∈ L, Pr[M accepts w] ≥ 1 − ε, and
2. ∀w /∈ L, Pr[M rejects w] ≥ 1 − ε.

If ε = 0, we say the finite automaton M is an exact finite automaton.

3 Main Proofs

Proof (Proof of Theorem 1). At first we describe a 2PFA A to accept the
language LEQ(n). The automaton will use states sq,k,l where 0 ≤ q, k, l ≤ n2.

First of all, the automaton will start A, using O(n) states, to check that
the input is in the form x#ny, where |x| = |y| = n. If the length of the input
|w| > 3n, then the automaton halts and rejects the input in O(n) time. After
that A starts an addition computation in the state s0,0,0. After reading the left-
end marker, the automaton changes its state randomly to sp,0,0, where p ≤ n2

is a prime. When the 2PFA A finishes reading the “x-region” of the input, it
changes its state from sp,0,0 to sp,s,0, where s = Num(x) mod p. (Num(x) is
the natural number whose binary representation is the string x). It is clear that
such computation can be done by a 2PFA. When A reads the “#-region”, it
keeps its state unchanged. When A finishes reading the “y-region”, it changes
its state from sp,s,0 to sp,s,t, where t = Num(y) mod p. The automaton reaches
the right end-marker in a state sp,s,t. If s = t, then the input is accepted. If
s �= t, the input is rejected.

The automaton A simulates the communication protocol [18] for the problem
EQ. If the input w ∈ LEQ(n), A will accept it for certainty.

Let us now say that a prime 2 < p < n2 is bad for a pair (x, y) such that
x �= y, if the above 2PFA for such an input pair (x, y) and such a choice of
prime yields a wrong answer. It is clear that there are at most n−1 bad primes.
Let Prime(m) be the number of primes smaller than m. By the Prime number
theorem, Prime(n2) > n2

2 lnn .
If the input x#ny �∈ LEQ(n), A accepts the input only with the probability

number of bad primes
Prime(n2)

<
n − 1

n2/2 ln n
<

2 ln n

n
. (2)

Obviously, the space used by A is S = O(log n6) = O(log n) and the time is
T = O(n). Therefore, TS = O(n log n).

Proof (Proof of Theorem 2). Let A be a Turing machine that recognizes the
language LEQ(n) in time T using space S. We describe now a deterministic
communication protocol for Alice and Bob that solves the problem EQ.

For an input (x, y) ∈ {0, 1}n × {0, 1}n, Alice and Bob simulate A with
the input x#ny, where x, y ∈ {0, 1}n. It is obvious that x#ny ∈ LEQ(n) iff
EQ(x, y) = 1. Alice starts to simulate A’s computation as long as the tape head

312 S. Zheng et al.

of A is either in “x-region” of the input or in the “#-region” of the input. When
the tape head of A moves to the “y-region”, then Bob simulates A’s computation
as long as the tape head of A is either in the “y-region” of the input or in the
“#-region” of the input. When the tape head of A moves to the “x-region” of
the input, Alice simulates A’s computation again. The idea is that each player
is responsible for the simulation in regions where he knows the input bits. In
any step in which the tape goes from “x-region” and “#-region” to “y-region”
(from “y-region” and “#-region” to “x-region”), Alice (Bob) sends the current
configuration of A to Bob (Alice).

In each time, the information which is required to send to the other party
is not more than S. Since move from the “x-region” to the “y-region” and vice
versa takes at least n steps (at least the size of “#-region”), the number of times
Alice and Bob send information to each other is at most T/n. All together the
amount of communicating information in the protocol is not more than S · T/n.
Since D(EQ) = Ω(n) [22], we have S · T/n = Ω(n) and therefore TS = Ω(n2).

Before we prove Theorem 3, we present a main proof technique of this paper.
Namely, that every quantum query algorithm can be efficiently simulated by a
2QCFA. Some similar proof method can be found in the lines of [30].

Theorem 7. The computation of a quantum query algorithm A for a Boolean
function f : {0, 1}n → {0, 1} can be simulated by a 2QCFA M. Moreover, if the
quantum query algorithm A uses t queries and l quantum basis states, then the
2QCFA M uses O(l) quantum basis states, O(n2) classical states, and O(t · n)
time.

Proof. Suppose that we have a quantum query algorithm A which use t queries
is defined as in Subsect. 2.1. The input of the 2QCFA M is the same as the input
of the quantum query algorithm A, which is |cx$ on its tape. The main idea of
the simulation goes as follows: We consider now a 2QCFA M with quantum
basis states |0〉 and |i, j〉 for i ∈ {0, 1, . . . , n} and j ∈ {1, · · · ,m}. M starts its
computation in the initial quantum state |0〉 and the initial classical state s0.
The first time when M reads the left-end marker |c, M applies Θ(s0, |c) to the
quantum state such that Θ(s0, |c)|0〉 = U0|ψs〉.

The k-th time when M reads the right-end marker $, M applies Uk to the
quantum state, where 1 ≤ k ≤ t. M simulates the query Ox every time when
it reads the input x = x1 · · · xn from left to right. The automaton proceeds
precisely as in Fig. 1, where

Θ(sk,i, σ)|0〉 = |0〉, Θ(sk,i, σ)|i, j〉 = (−1)σ|i, j〉 and Θ(sk,i, σ)|u, j〉 = |u, j〉 for u �= i.
(3)

It is easy to verify that the unitary operators preformed in Step 2.1 are

Θ(sk,n, xn)Θ(sk,n−1, xn−1) . . . Θ(sk,1, x1) = Ox. (4)

It is clear that for any input x, Pr[A(x) = 1] = Pr[M accepts x] and
Pr[A(x) = 0] = Pr[M rejects x]. From the above simulation, we can see that
if the quantum query algorithm A uses l quantum basis states and t queries,

Time-Space Complexity Advantages for Quantum Computing 313

Check that the input x is of the form of {0, 1}n. Repeat the following ad infinity:
1. Read the left end-marker |c, perform Θ(s0, |c) on the initial quantum state |0〉, change its

classical state to δ(s0, |c) = s1,1, and move the tape head one cell to the right.
2. While the current classical state is not st+1,1, do the following

2.1 While the currently scanned symbol σ is not the right end marker $, do the following:
2.1.1 Apply Θ(sk,i, σ) to the current quantum state.
2.1.2 Change the classical state sk,i to sk,i+1 and move the tape head one cell to the right.

2.2 When the right end-marker $ is reached, perform Θ(sk,n+1, $) = Uk on the current
quantum state. Change the classical state sk,n+1 to sk+1,1 and move the tape head to the
symbol of x.

3. Measure the current quantum state with the measurement {M0, M1}.
If the outcome is 1, the input is accepted. Otherwise, the input is rejected.

Fig. 1. Description of the behavior of 2QCFA M when simulating the quantum
algorithm A.

then the 2QCFA M uses O(l) quantum basis states, O(n2) classical states, and
O(t · n) time.

We have proved that 2QCFA can simulate quantum query algorithms. Now
what about the quantum communication protocol for the INT problem? Accord-
ing to [11], we need to simulate the following unitary map:

Oz : |i〉 �→ (−1)zi |i〉, (5)

where z = x∧y is a bit-wise AND of x and y, since zi = 1 whenever both xi = 1
and yi = 1.

In the following prove of Theorem we will use the following result:

Lemma 8. Let w = x#ny, where x, y ∈ {0, 1}n, be the input of a 2QCFA M.
Then, the unitary map: Oz : |i〉 �→ (−1)zi |i〉, where z = x∧y, can be simulated by
M. Moreover, M uses one additional auxiliary qubit and O(n) classical states
and its running time is O(n).

Proof. Assume that Alice wants to apply Oz to a quantum state |φ〉 =∑n
i=1 αi|i〉. M will use quantum states {|i〉|0〉, |i〉|1〉}n

i=1 and classical states
{si}2n+1

i=0 . M will start with the quantum state |φ〉|0〉. The procedure to sim-
ulate the unitary map Oz is as in Fig. 2, where

Ui,σ|j〉|b〉 = |j〉|b ⊕ σ〉 if j = i, otherwise Ui,σ|j〉|b〉 = |j〉|b〉; (6)
Vi,σ|j〉|1〉 = (−1)σ|j〉|1〉 if j = i, otherwise Vi,σ|j〉|b〉 = |j〉|b〉. (7)

It is easy to verify that Ui,σ and Vi,σ are unitary. After Step 2, the quantum
state changes to

Un,xn
· · · U1,x1

n∑

i=1

αi|i〉|0〉 =
n∑

i=1

αi|i〉|xi〉. (8)

314 S. Zheng et al.

After Step 4, the quantum state changes to

Vn,yn
· · · V1,y1

n∑

i=1

αi|i〉|xi〉 =
n∑

i=1

αi · (−1)xi∧yi |i〉|xi〉. (9)

After Step 6, the quantum state changes to

Un,xn
· · · U1,x1

n∑

i=1

αi ·(−1)xi∧yi |i〉|xi〉 =
n∑

i=1

αi ·(−1)xi∧yi |i〉|0〉 = Oz|φ〉|0〉. (10)

1. Move the tape head to the first symbol of x, set its classical state to s1.
2. While the currently scanned symbol σ is not #, do the following:

2.1 Apply Θ(si, σ) = Ui,σ to the current quantum state.
2.2 Change the classical state si to si+1 and move the tape head one cell to the right.

3. Move the tape head to the first symbol of y.
4. While the currently scanned symbol σ is not $, do the following:

4.1 Apply Θ(sn+i, σ) = Vi,σ to the current quantum state.
4.2 Change the classical state sn+i to sn+i+1 and move the tape head one cell to the right.

5. Change the classical state s2n+1 to s1 and move the tape head to the first symbol of x.
6. While the currently scanned symbol σ is not #, do the following:

6.1 Apply Θ(si, σ) = Ui,σ to the current quantum state.
6.2 Change the classical state si to si+1 and move the tape head one cell to the right.

Fig. 2. Description of the behavior of 2QCFA when simulating the unitary map Oz.

Proof (Proof of Theorem 3). Combining the simulation techniques from The-
orem 7 and Lemma 8, we can use a 2QCFA to simulate a Grover search [16] on
the input z ∈ {0, 1}n, where zi = xi ∧ yi. Therefore it is clear that there is a
2QCFA recognizing the language LINT (n). Since the Grover’s algorithm requires
O(

√
n) queries and uses O(n) quantum basis states, the time used by the 2QCFA

is T = O(
√

n ·n) = O(n3/2). The number of quantum states used by the 2QCFA
is O(n) and the number of classical states is O(n2). Therefore, the space used
by the 2QCFA is S = O(log n + log n2) = O(log n). Hence, TS = O(n3/2 log n).

Proof (Proof of Theorem 4). The proof is similar to the proof of Theorem2
except that probabilistic computation is used instead of deterministic one. The
result is based on R(INT) = Ω(n) [25].

Proof (Proof of Theorem 5). By combining the simulation techniques from
Theorem 7 and Lemma 8, we can use a 2QCFA to simulate Ambainis’ exact
query algorithm in [6] on the input z ∈ {0, 1}n, where zi = xi ∧ yi. Therefore,
there is an exact 2QCFA recognizing the language LNE(n). Since the exact
algorithm requires O(n0.87) queries and uses O(n) quantum basis states, the
time used by the exact 2QCFA is T = O(n0.87 · n) = O(n1.87). The space used
is S = O(log n). Hence, TS = O(n1.87 log n).

Proof (Proof of Theorem 6). The proof is similar to that of Theorem2 except
that probabilistic computation is used instead of deterministic one. The final
result is then based on R(RNE) = Ω(n) [6].

Time-Space Complexity Advantages for Quantum Computing 315

4 Conclusion and Open Problems

Query complexity and communication complexity are related to each other. By
using a simulation technique that transforms quantum query algorithms to quan-
tum communication protocols, Buhrman et al. [11] obtained new quantum com-
munication protocols and showed the first exponential gap between quantum
and classical communication complexity.

In this paper, we have developed the connection among 2QCFA, quantum
communication protocols and quantum query algorithms. We have constructed
2QCFA to simulate quantum query algorithms. Using known quantum query
algorithms and quantum communication protocols, this simulation enabled us
to prove several time-space complexity results for 2QCFA.

Some problems for future research:

1. The quantum communication complexity tight bound Q(DISJ) = Θ(
√

n) [1].
Does there exists a 2QCFA that accepts the language LINT (n) in time T
using space S such that TS = O(n3/2)?

2. Recently, there have appeared recently several papers on new separations for
query/communication complexity [2,7,8,14,15], can we use those results to
improve our separations in this paper?

3. We have proved that the exact 2QCFA have superlinear advantage in time-
space complexity. Can we prove that exact 2QCFA have superlinear advantage
in time complexity or space complexity in recognizing languages comparing
to 2DFA or 2PFA?

Acknowledgements. The authors are thankful to anonymous referees for their com-
ments and suggestions that greatly help to improve the quality of the manuscript.
Zheng would like to thanks A. Ambainis for his suggestion and hospitality in Riga,
C. Mereghetti and B. Palano for their discussions and hospitality in Milan, L. Li for
his helpful discussions.

References

1. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: Proceedings of
the 44th FOCS, pp. 200–209 (2003)

2. Aaronson, S., Ben-David, S., Kothari, R.: Separations in query complexity using
cheat sheets. In: Proceedings of the 48th STOC, pp. 863–876 (2016)

3. Ambainis, A., Freivalds, R.: One-way quantum finite automata: strengths, weak-
nesses and generalizations. In: Proceedings of the 39th FOCS, pp. 332–341 (1998)

4. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical
states. TCS 287, 299–311 (2002)

5. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and
quantum finite automata. J. ACM 49, 496–511 (2002)

6. Ambainis, A.: Superlinear advantage for exact quantum algorithms. In: Proceed-
ings of the 45th STOC, pp. 891–900 (2013)

7. Ambainis, A., Balodis, K., Belovs, A., Lee, T., Santha, M., Smotrovs, J.: Separa-
tions in query complexity based on pointer functions. In: Proceedings of the 48th
STOC, pp. 800–813 (2016)

316 S. Zheng et al.

8. Ambainis, A., Kokainis, M., Kothari, R.: Nearly optimal separations between com-
munication (or query) complexity and partitions. In: Proceedings of the 31st CCC,
pp. 4:1–4:14 (2016)

9. Borodin, A., Cook, S.: A time-space tradeoff for sorting on a general sequential
model of computation. SIAM J. Comput. 11, 287–297 (1982)

10. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs. JCSS 45, 204–232 (1992)

11. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and
computation. In: Proceedings of the 30th STOC, pp. 63–68 (1998)

12. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a
survey. TCS 288, 21–43 (2002)

13. Freivalds, R.: Probabilistic two-way machines. In: Gruska, J., Chytil, M. (eds.)
MFCS 1981. LNCS, vol. 118, pp. 33–45. Springer, Heidelberg (1981). https://doi.
org/10.1007/3-540-10856-4 72

14. Goos, M., Pitassi, T., Watson, T.: Deterministic communication vs. partition num-
ber. In: Proceedings of the 56th FOCS, pp. 1077–1088 (2015)

15. Goos, M., Pitassi, T., Watson, T.: Randomized communication vs. partition num-
ber. In: Proceedings of the 44th ICALP, pp. 52:1–52:15 (2017)

16. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceed-
ings of the 28th STOC, pp. 212–219 (1996)

17. Gruska, J., Qiu, D.W., Zheng, S.G.: Generalizations of the distributed Deutsch-
Jozsa promise problem. Math. Struct. Comput. Sci. 27, 311–331 (2017).
arXiv:1402.7254

18. Hromkovič, J.: Design and Analysis of Randomized Algorithms. Springer, Cham
(2005). https://doi.org/10.1007/3-540-27903-2

19. Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way
protocols. In: Proceedings of the 32th STOC, pp. 644–651 (2000)

20. Klauck, H.: Quantum time-space tradeoffs for sorting. In: Proceedings of the 35th
STOC, pp. 69–76 (2003)

21. Klauck, H., Špalek, R., de Wolf, R.: Quantum and classical strong direct product
theorems and optimal time-space tradeoffs. SIAM J. Comput. 36, 1472–1493 (2007)

22. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, New York (1997)

23. Li, L.Z., Feng, Y.: On hybrid models of quantum finite automata. J. Comput. Syst.
Sci. 81, 1144–1158 (2015). arXiv:1206.2131

24. Qiu, D.W., Li, L.Z., Mateus, P., Gruska, J.: Quantum finite automata. In: Wang,
J. (ed.) Handbook on Finite State Based Models and Applications, pp. 113–141.
CRC Press, Boca Raton (2012)

25. Razborov, A.: On the distributional complexity of disjointness. TCS 106, 385–390
(1992)

26. Yao, A.C.: Some complexity questions related to distributed computing. In: Pro-
ceedings of 11th STOC, pp. 209–213 (1979)

27. Yakaryılmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum
finite automata. Discrete Math. Theor. Comput. Sci. 12, 19–40 (2010)

28. Zheng, S., Qiu, D., Li, L., Gruska, J.: One-way finite automata with quantum and
classical states. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive.
LNCS, vol. 7300, pp. 273–290. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31644-9 19

https://doi.org/10.1007/3-540-10856-4_72
https://doi.org/10.1007/3-540-10856-4_72
http://arxiv.org/abs/1402.7254
https://doi.org/10.1007/3-540-27903-2
http://arxiv.org/abs/1206.2131
https://doi.org/10.1007/978-3-642-31644-9_19
https://doi.org/10.1007/978-3-642-31644-9_19

Time-Space Complexity Advantages for Quantum Computing 317

29. Zheng, S.G., Gruska, J., Qiu, D.W.: On the state complexity of semi-quantum
finite automata. RAIRO-Theor. Inform. Appl. 48, 187–207 (2014). Earlier version
in LATA 2014. arXiv:1307.2499

30. Zheng, S., Qiu, D.: From quantum query complexity to state complexity. In:
Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources.
LNCS, vol. 8808, pp. 231–245. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13350-8 18

http://arxiv.org/abs/1307.2499
https://doi.org/10.1007/978-3-319-13350-8_18
https://doi.org/10.1007/978-3-319-13350-8_18

Author Index

Alkhudhayr, Hanadi 25

Baetens, Jan M. 37
Bołt, Aleksander 37
Bołt, Witold 37
Bordihn, Henning 165

Coello Coello, Carlos A. 3
Culmone, Rosario 203
Czajkowski, Marcin 87

De Baets, Bernard 37
De Prisco, Roberto 219
Dey, Prasenjit 232
Di Pierro, Alessandra 269
Díaz-Caro, Alejandro 281
Dowek, Gilles 281

Ellis, Samuel J. 178

Fagan, David 63
Forestiero, Agostino 75

Ghosh, Abhijit 232
Godin, Christophe 49
Grochowalski, Piotr 150
Gruska, Jozef 305

Hajek, Petr 113

Jurczuk, Krzysztof 87

Klinge, Titus H. 178
Kmet, Tibor 100
Kmetova, Maria 100
Kretowski, Marek 87
Kubuś, Łukasz 137
Kulkarni, Manasi S. 190

Laflamme, Raymond 294
Lathrop, James I. 178
Leung, Kwong-Sak 255

Mahalingam, Kalpana 190
Malandrino, Delfina 219
Mengoni, Riccardo 269
Merelli, Emanuela 203
Mieszkowicz-Rolka, Alicja 126
Mitrana, Victor 165
Mor, Tal 294

Nagarajan, Rajagopal 269
Nayak, Ananda Chandra 190

O’Neill, Michael 63, 243

Pal, Tandra 232
Pastorek, Lukas 243
Păun, Andrei 165
Păun, Mihaela 165
Poczeta, Katarzyna 137
Prochazka, Ondrej 113
Pulwicki, Julia 49

Qiu, Daowen 305
Quadrini, Michela 203

Rodríguez-Briones, Nayeli A. 294
Rolka, Leszek 126

Steggles, Jason 25
Suraj, Zbigniew 150

Weinstein, Yossi 294
Windridge, David 269
Wolnik, Barbara 37
Wong, Man-Leung 255
Wong, Pak-Kan 255

Yastrebov, Alexander 137

Zaccagnino, Gianluca 219
Zaccagnino, Rocco 219
Zheng, Shenggen 305
Zizza, Rosalba 219

	Preface
	Organization
	Contents
	Invited Talk
	Recent Results and Open Problems in Evolutionary Multiobjective Optimization
	1 Introduction
	2 Basic Concepts
	3 Some Open Research Topics that Are Worth Exploring
	3.1 Algorithmic Design
	3.2 Scalability
	3.3 Dealing with Expensive Objective Functions

	4 Other Challenges
	5 Conclusions
	References

	Applications of Natural Computing
	A Formal Framework for Composing Qualitative Models of Biological Systems
	1 Introduction
	2 Boolean Networks
	3 Compositional Framework
	4 Compatibility and Alignment
	5 Conclusions
	References

	A Statistical Approach to the Identification of Diploid Cellular Automata
	1 Introduction
	2 Preliminaries
	3 Identification
	4 Results
	5 Summary
	References

	Modelling Curvature Effects Using L-Systems: From Discrete and Deterministic to Continuous and Stochastic
	1 Introduction
	2 Methods
	3 The 2-Sphere
	3.1 A Closed Loop
	3.2 The Koch Curve
	3.3 The Sierpinski Carpet
	3.4 Random Walks

	4 Discussion
	5 Biological and Engineering Applications
	References

	Evolutionary Computation
	Exploring Target Change Related Fitness Reduction in the Moving Point Dynamic Environment
	1 Introduction
	2 Target Change in Dynamic Environments
	3 Moving Point Dynamic Environment
	4 Approaches for Adapting to a Change in Target in Dynamic Environments
	4.1 Reload
	4.2 Percentage Reload
	4.3 Persistent Grid

	5 Experimental Setup
	6 Results
	6.1 Reload Versus No Reload
	6.2 Reload Versus Percentage Reload
	6.3 Reload Versus Persistent Grid

	7 Conclusions
	8 Future Work
	References

	A Smart Discovery Service in Internet of Things Using Swarm Intelligence
	1 Introduction
	2 Related Works
	3 SmartFinder Algorithm
	4 Experimental Results
	5 Conclusions
	References

	GPU-Accelerated Evolutionary Induction of Regression Trees
	1 Introduction
	2 Background
	2.1 Evolutionary Induced Regression Trees
	2.2 GPGPU
	2.3 Related Works

	3 GPU-Accelerated Induction of Regression Trees
	3.1 Global Decision Tree Induction Framework
	3.2 GPU-Based Approach

	4 Experimental Validation
	4.1 Setup
	4.2 Results

	5 Conclusion
	References

	Bezier Curve Parameterization Methods for Solving Optimal Control Problems of SIR Model
	1 Introduction
	2 Bernstein-Bezier Parameterisation
	3 Invasive Weed Optimization Algorithm
	4 SIR Model
	4.1 Optimal Control Problem

	5 Numerical Simulation
	6 Conclusion
	References

	Fuzzy Logic
	Learning Interval-Valued Fuzzy Cognitive Maps with PSO Algorithm for Abnormal Stock Return Prediction
	Abstract
	1 Introduction
	2 Related Literature on Stock Market Prediction
	3 IVFCMs with PSO Learning
	3.1 FCMs
	3.2 Inference in IVFCMs
	3.3 PSO Learning of IVFCMs

	4 Data
	5 Experimental Results
	6 Conclusion
	Acknowledgments
	References

	Fuzzy Linguistic Labels in Multi-expert Decision Making
	1 Introduction
	2 Multiple Information Systems with Fuzzy Attributes
	3 Example
	4 Conclusions
	References

	An Evolutionary Algorithm Based on Graph Theory Metrics for Fuzzy Cognitive Maps Learning
	1 Introduction
	2 Fuzzy Cognitive Maps
	3 Evolutionary Algorithm for FCMs Learning
	4 Experiments
	4.1 Data Sets
	4.2 Learning Parameters
	4.3 Results

	5 Conclusion
	References

	Fuzzy Petri Nets with Linear Orders for Intervals
	1 Introduction
	2 Preliminaries
	2.1 Interval Computation
	2.2 Ordering of Intervals
	2.3 Triangular Norms
	2.4 Interval Triangular Norms

	3 Type-2 Generalized Fuzzy Petri Net
	4 Transformation of Production Rules into T2GFP-net
	5 Example
	6 Concluding Remarks
	References

	Molecular Computation
	Networks of Polarized Splicing Processors
	1 Introduction
	2 Basic Definitions and Notations
	3 NPSPs Simulating Turing Machines
	4 Turing Machines Simulating NPSPs
	References

	Robust Combinatorial Circuits in Chemical Reaction Networks
	1 Introduction
	2 Preliminaries
	2.1 Input/Output Chemical Reaction Networks
	2.2 Time-Dependent I/O CRNs
	2.3 Robustness

	3 A Robust NAND Gate
	4 Robust Combinatorial Circuits
	References

	Watson-Crick Partial Words
	1 Introduction
	2 Preliminaries
	3 -Primitive Partial Words
	4 -Conjugacy and -Commutativity
	4.1 -Commutativity

	5 -(Un)bordered Partial Words
	6 Conclusions
	References

	Topological Classification of RNA Structures via Intersection Graph
	1 Introduction
	2 Mathematical Background
	2.1 Topological Invariants
	2.2 Intersection Graph

	3 Materials and Methods
	3.1 Operator to Model Interactions Among Loops
	3.2 Translating Operator into MCFG
	3.3 From Arc Diagram to Intersection Graph
	3.4 Example of Application

	4 Results and Discussion
	5 Conclusions
	References

	Neural Networks
	Splicing-Inspired Recognition and Composition of Musical Collectives Styles
	1 Introduction
	2 Related Work
	3 Background
	3.1 Music Improvisation Collective
	3.2 Splicing Systems
	3.3 Machine Learning Approaches to Music Problems

	4 The Machine Learning-Based Recognition
	4.1 Feature Model
	4.2 The Recognizers

	5 The Machine Learning-Based Prediction
	5.1 Temporal Predictor for X
	5.2 Temporal Predictor for (X,Y)

	6 The Splicing-Based Composition
	6.1 Implementation Details and Evaluation Function

	7 Experimental Analysis
	8 Conclusion
	References

	Regularized Stacked Auto-Encoder Based Pre-training for Generalization of Multi-layer Perceptron
	1 Introduction
	2 Literature Review
	3 Proposed Model
	3.1 Pre-training
	3.2 Training of the Pre-trained Weights

	4 Experimentation
	4.1 Experimental Settings
	4.2 Results and Discussion

	5 Conclusion
	References

	Historical Markings in Neuroevolution of Augmenting Topologies Revisited
	1 Introduction
	2 Tracking Genes Through Historical Markings
	3 Generation Context-Dependent Versus Generation Context-Free Encoding
	3.1 Generation Context-Dependent Definition of the Innovation
	3.2 Generation Context-Free Definition of the Innovation

	4 Experiments and Settings
	5 Results and Discussion
	6 Conclusions
	References

	Long-Short Term Memory Network for RNA Structure Profiling Super-Resolution
	1 Introduction
	2 Related Works
	2.1 Image Super-Resolution
	2.2 Long-Short Term Memory Network

	3 RNA Structure Profiling Super-Resolution Problem
	4 Super-Resolution Methods
	4.1 Limitations of LSTM Network
	4.2 Interaction Encoding LSTM Network

	5 Data Sets
	6 Evaluation and Results
	7 Conclusions and Future Works
	References

	Quantum Computing
	Hamming Distance Kernelisation via Topological Quantum Computation
	1 Introduction
	2 Preliminaries
	2.1 Kauffman Bracket
	2.2 Braids and Links

	3 Topological Quantum Computation
	3.1 Computing with Anyons
	3.2 Calculation of the Kauffman Bracket via TQC

	4 Topological Quantum Calculation of Hamming Distance Between Binary Strings
	4.1 Encoding Binary Strings in TQC
	4.2 Hamming Distance Calculation: Base Case
	4.3 Hamming Distance Calculation: General Case

	5 Kernel Functions
	5.1 Hamming Distance Based Kernel

	6 Conclusions
	References

	Typing Quantum Superpositions and Measurement
	1 Introduction
	2 No-Cloning, Superpositions and Measurement
	3 Multi-qubit Systems: Tensor Products
	4 Interpretation
	5 Example: The Teleportation Algorithm
	6 Conclusion
	References

	Heat-Bath Algorithmic Cooling with Correlated-Qubits Relaxation
	1 Introduction
	2 PPA versus NOE
	3 Two-Qubit Analysis --- Cooling Beyond the Original PPA
	4 Precise Calculation for the NOE Process
	5 The 3 Qubit Case
	6 The n Qubit Case
	7 Conclusion
	References

	Time-Space Complexity Advantages for Quantum Computing
	1 Introduction
	2 Preliminaries
	2.1 Quantum Query Algorithm
	2.2 Communication Complexity
	2.3 Two-Way Finite Automata

	3 Main Proofs
	4 Conclusion and Open Problems
	References

	Author Index

