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Abstract. The cube attack is a powerful cryptanalytic tool for the
analysis of stream ciphers, which until recently were investigated in a
blackbox scenario with a minimal consideration to their internal and
polynomial structures. In this paper, we analyze the lightweight stream
cipher WG-5, which offers 80-bit security, using cube attacks in a non-
blackbox polynomial setting employing the division property. WG-5 is
a lightweight instantiation of the eSTREAM submission Welch-Gong
stream cipher which provides mathematically proven random properties
for its generated keystream. Our cube attack is automated using Mixed
Integer Linear Programming models to theoretically bound the complex-
ity of the superpoly recovery. The results of such an attack enable us to
recover the secret key of WG-5 after 24 rounds of initialization utilizing
26.32 keystream bits in 276.81 time. Our attack on WG-5 has significantly
lower data complexity than the algebraic attacks presented in the liter-
ature, albeit higher in computational complexity, it fits a more realistic
scenario where large amount of data is hard to collect in lightweight
constrained applications. Moreover, our attack is the first one to investi-
gate the nonlinear feedback-based initialization phase of WG-5. Hence,
such results are considered the best cryptanalytic ones in the case that
the cipher runs a nonlinear key generation phase. Finally, our results
are interesting in the sense that they enable us to argue how the design
choices of WG-5 hinder the extension of cube attacks to more rounds in
contrast to Grain 128a and Trivium, where such attacks can cover more
than half of the number of initialization rounds.

Keywords: Welch-Gong stream cipher · Cube attacks · Division
property · MILP · Lightweight stream ciphers

1 Introduction

The eSTREAM project [3] which was launched in 2004 is one of the first initiative
that aimed to identify and recommend stream ciphers that fall under two profiles,
(I) software oriented and (II) hardware efficient designs, for standardization.
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Profile II category received 25 submissions and the project was finalized after
three phases of analysis by recommending the three stream ciphers Grain v.1 [14],
Trivium [8], and Mickey 2.0 [7]. Following the finale of the eSTREAM project,
the work on stream cipher design has slowed for a while, however, it is revived
again by the current NIST lightweight standardization competition [17].

By investigating most of the recent stream cipher proposals such as Sprout [5],
Fruit [27], Lizard [13], Plantlet [19], and Flip [18], one can easily spot that there is
a noticeable class of them that follow a Grain-like structure where two Feedback
Shift Registers (FSRs) are used to provide a guarantee on minimum periodic-
ity. While some of them opt for utilizing one Linear Feedback Shift Register
(LFSR) with a primitive polynomial to prove a minimum bound on the period
of the keystream sequence, others employ one Non-Linear Feedback Shift Regis-
ter (NLFSR) with known maximum periodicity. Nevertheless, all the previously
mentioned proposals fail to provide guarantees for other important randomness
criteria such as runs, t-tuple distribution, and ideal 2-level autocorrelation [12].
On the other hand, another class of cipher such as the eSTREAM profile II
submission Welch-Gong (WG) cipher [20] follows a more rigorous approach to
provide mathematically proven randomness properties which are not provided
by other ciphers. More precisely, WG adopts only one LFSR that produces m-
sequences followed by the Welch-Gong filtering transformation during keystream
generation. Such a transformation is theoretically proven to generate a balanced
keystream with long period, large and exact linear complexity, t-tuple distri-
bution, and ideal 2-level autocorrelation. However, such desirable randomness
properties which are provided by filtering m-sequences generated by the LFSR
come with the price of the feasibility of a range of algebraic attacks [21,23], which
are not applicable on other ciphers that employ NLFSRs during keystream gen-
eration. Nevertheless, in both classes of ciphers, NLFSRs are utilized during
the state initialization phase and accordingly, the analysis of such phase pro-
vides better comparison to their resistance to attacks targeting their non-linear
feedback-based state initialization.

In this paper, we investigate the security of the nonlinear initialization phase
of WG-5 [4] which is a lightweight version of the eSTREAM submission WG [20].
WG-5 is a word oriented stream cipher that provides all the aforementioned ran-
domness criteria. WG resists time-memory-data trade-off attacks by utilizing a
state size that is double the size of the offered security, thus having a hard-
ware footprint that ranges between 1229 and 1235 GEs for a throughput of 100
kbps. The best cryptanalytic result available for WG-5 is a univariate algebraic
attack over the extension field F25 that recovers the secret key using around 215

keystream bits in 233 time [23]. Such attack [23] is applicable on WG-5 only
when it runs a linear feedback keystream generation phase. The results of this
paper are summarized as follows.
Our contributions. We analyze WG-5 with respect to non-blackbox
polynomial-based cube attacks. More precisely, given the complicated struc-
tures of stream ciphers, conventional cube attacks always regard them as
blackbox functions, and the attack was only proven feasible if its complexity
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falls within the practical experimental range. In our analysis, we adopt the
techniques from [25] which takes the polynomial structure of the analyzed stream
cipher into consideration by tracing the propagation of a specific division prop-
erty [24] through the initialization rounds. Accordingly, the propagation of the
division property offers a theoretically proven bound on the number of key bits
involved in the superpoly and the complexity of its recovery. Moreover, we further
automate our attacks by proposing Mixed Integer Linear Programming (MILP)
models for the division trails and then feed them to another MILP model for
the whole attack. In what follows, we list our contributions.

– For the 24-round reduced initialization phase of WG-5, we model the divi-
sion trail through the WG-5 permutation as an Sbox trail propagation which
reduces the number of MILP inequalities and increases the solver chances in
optimizing our model. We also provide the algorithmic description of all the
proposed MILP models that we employ in our attack. The optimization of
such models leads to a full key recovery when given 26.32 keystream bits with
276.81 time complexity.

– We present an argument which shows that the design choices in terms of
feedback and filtering tap positions of WG-5 offer more security against cube
attacks than Grain 128a and Trivium where such attacks break more than
half the number of rounds of their initialization phases.

The rest of the paper is organized as follows. In Sect. 2, we recall the prin-
cipals of the cube attack, division property, and how to model division trails
using MILP. The specification of the WG-5 stream cipher is given in Sect. 3. In
Sect. 4, we explain the details of the attack on the initialization phase of the
WG-5 stream cipher, and how we model the WG-5 permutation as an Sbox to
further reduce the number of MILP variables. Moreover, we give an algorith-
mic description of all MILP models used in our analysis and list the cube attack
results and complexities. Furthermore, we compare our results on WG-5 to other
cryptanalytic results available in the literature. In Sect. 5, we give an argument
on the relation between the design parameters of WG-5 and the applicability
of the cube attack, and further contrast such parameters to those of Grain and
Trivium where cube attacks cover more than half the number of rounds of their
initialization phases. Finally, the paper is concluded in Sect. 6.

2 Cube Attacks and the Division Property

In [25], Todo et al. proposed a method to apply cube attacks on stream ciphers
employing the propagation of specific division trails. The consequence of their
technique is that the application of the cube attack does not have to consider the
analyzed cipher as a blackbox in order to recover its superpoly (the most difficult
step in cube attacks) because the utilization of some specific division trails exploit
the polynomial structure of the stream cipher. More precisely, since the cube
attack is a kind of higher-order differential attack [16] and the division property
is a technique to find higher-order differential trails, then the division property
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can be used to analyze the Algebraic Normal Form (ANF) of the superpoly by
investigating multiple division trails corresponding to a given cube. In order to
better understand how we utilize this method in our analysis of the initialization
phase of WG-5, in what follows, we recall the concepts and definitions related
to the cube attack and division property.

2.1 Cube Attack

The cube attack [9] is based on higher-order differential cryptanalysis to recover
the secret key of the investigated primitive by analyzing the ANF of the summa-
tion of a set of its outputs corresponding to a set of inputs. Unlike block ciphers,
stream ciphers are easily evaluated in the forward direction to compute their
output keystream and very hard to invert them. Accordingly, the cube attack
has been extensively used in the analysis of stream ciphers [6,10,11,25] because
the attacker has to manipulate the input and analyze the output without eval-
uating the cipher in the backward direction. More formally, let the analyzed
stream cipher take an n-bit secret key k = (k0, k1, · · · , kn−1) and an m-bit
IV = (v0, v1, · · · , vm−1), then, the first keystream bit is given by the polynomial
f(k, v) which operates on n + m bits to output 1 bit. After sufficiently enough
initialization rounds, the polynomial f(k, v) becomes very complicated, thus the
role of the cube attack is to simplify it by computing the higher-order differen-
tial of this polynomial which results in what is called the superpoly, that is the
result of summing a set of polynomials

⊕
f(k, v) corresponding to a cube. Such

a cube is a set of different public input variables taking all possible values and is
denoted by CI . If the structure of the superpoly is simple enough (e.g., linear or
quadratic), then its ANF can be analyzed and secret variables can be recovered.
Formally, let the set of public indices I = {i1, i2, · · · , i|I|} ⊂ {0, 1, · · · ,m− 1}
denote the cube indices, then the polynomial f(k, v) can be represented as:

f(k, v) = tI · p(k, v) + q(k, v),

where tI = vi1vi2 · · · vi|I| , p(k, v) is a polynomial that does not contain any of the
cube indices variables (vi1 , vi2 , · · · , vi|I|), and q(k, v) is independent of at least
one variable from (vi1 , vi2 , · · · , vi|I|).

Let the cube CI denote the set of all the possible 2|I| values of
(vi1 , vi2 , · · · , vi|I|), and the remaining input n + m − |I| variables are set to
some constant values, then the summation of f(k, v) over all values of the cube
CI is given by ⊕

CI

f(k, v) =
⊕

CI

tI · p(k, v) +
⊕

CI

q(k, v).

Since such summation reduces tI to 1 because the set CI has only one possibility
where all the |I| variables are equal to 1, and q(k, v) vanishes because it misses
at least one variable from the cube variables, then the above equation denotes
the superpoly which is given by

superpoly :
⊕

CI

f(k, v) = p(k, v).
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If the ANF of the superpoly is simple enough, then an attacker can query the
encryption oracle with the chosen cube CI . Hence, the returned first keystream
bits are summed to evaluate the right-hand side of the superpoly and accordingly,
secret variables can be recovered by solving a system of equations.

2.2 Division Property

The division property [24] is a generalization of the integral attacks [15] and a
method to find higher-order differential trails. Moreover, a more refined bit-based
division property is proposed in [26] and is defined as follows

Definition 1 (Bit-based division property [26]). Let X be a multiset whose
elements take a value of F

n
2 . Let W be a set whose elements take an n-dimensional

vector of binary elements. The multiset X has the division property D1,n
W

if it
fulfills the following conditions1:

⊕

x∈X

πu(x) =

{
unknown if there exists w ∈W s.t u � w,

0 otherwise,

where u,w, x ∈ F
n
2 , πu(x) =

∏n−1
i=0 xui

i and u � w if ui ≥ wi for all i.

An attacker selects a set of chosen messages with a specific division property
and traces its propagation until it reaches a round from where onwards the
division property can not propagate. Accordingly, in the case of a cube attack,
one prepares a set of 2|I| chosen IV s where the variables (vi1 , vi2 , · · · , vi|I|) take
all the possible values. The division property of such a chosen set is D1,n

v , where
vi = 1 if i ∈ {i1, i2, · · · , i|I|} and vi = 0 for all remaining indices. Then one
evaluates the propagation of this division property D1,n

v for r rounds. We denote

by {v} def
= W0 → W1 → · · · → Wr a r round division property propagation

where Wi ⊆ F
n
2 for 0 ≤ i ≤ r. Furthermore, we call (w0, w1, . . . , wr) ∈ W0 ×

W1 × . . . ×Wr a r round division trail if wi−1 can propagate to wi by division
property propagation rules for all i ∈ {1, 2, . . . , r} [26,28]. The i-th bit at round
r is balanced if Wr does not contain a unit vector whose i-th element is 1.
MILP models for division property. The propagation of the division prop-
erty becomes infeasible when the input block size increases because the size of
the corresponding Wi increases too. Particularly, in order to determine if the
i-th bit at round r is balanced, one has to try all possible division trails with a
given input division property and prove that there is no division trail that leads
to a division property at round r with a unit vector where the i-th bit equals 1.
However, in [28], a MILP-based method was proposed that allowed the efficient
propagation of the division property for larger input spaces. More precisely, a
MILP solver [1] is used to efficiently evaluate the feasibility of all division trails
that cover the analyzed r rounds which are modeled by specific MILP models,
and a higher-order differential trail is found if the solver determines that there
1 “unknown” in Definition 1 means the xor sum can be 0 or 1 with probability p �= 1.
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is no division trail. MILP models that describe the propagation of the division
property through different ciphers utilize the following three models [25,28]. Note
that we refer to ‘+’ as integer addition in all the MILP models.

– MILP model for Copy. Let the division trail through a copy be denoted by
a → (b1, b2, . . . , bm), then the following inequalities are used to model such
propagation:

M.var ← a, b1, b2, . . . , bm as binary.

M.con← a = b1 + b2 + . . . + bm.

– MILP model for XOR. Let (a1, a2, · · · , am) → b denote the division trail of
XOR, then the following inequalities are sufficient to describe the propagation
of the division property:

M.var ← a1, a2, · · · am, b as binary.

M.con← a1 + a2 + · · ·+ am = b.

– MILP model for AND. Let (a1, a2, · · · , am)→ b denote the division trail for
AND, then the following inequalities are used to describe the propagation:

M.var ← a1, a2, · · · am, b as binary.

M.con← b ≥ ai for i = 1, 2, · · · ,m.

In what follows, we give the description of the WG-5 stream cipher and how
we use the division property to launch a cube attack on its initialization phase.

3 Specification of the WG-5 Stream Cipher

WG-5 [4] is a lightweight instantiated version of the eSTREAM submission
word oriented WG stream cipher. It utilizes an 80-bit secret key, an 80-bit ini-
tialization vector and a 32-stage LFSR defined over the extension field F25 .
As depicted in Fig. 1, the LFSR is defined using the primitive polynomial
x32 + x7 + x6 + x4 + x3 + x2 + γ, where the polynomial belongs to F25 [x],
γ = α4+α3+α2+α+1, and α is a root of x5+x4+x2+x+1 with its polynomial ∈
F2[x]. We denote the state of WG-5 at i-th round by Si = Si[0]||Si[1]|| . . . ||Si[31],
where Si[j] = (si

5j , s
i
5j+1, s

i
5j+2, s

i
5j+3, s

i
5j+4) for 0 ≤ j ≤ 31. The 80-bit secret

key (k0, k1, . . . , k79) and 80-bit initialization vector (v0, v1, . . . , v79) are denoted
by K[0]||K[1]|| . . . ||K[15] and IV [0]||IV [1]|| . . . ||IV [15], respectively. The cipher
runs in two phases: initialization and keystream generation (KSG) phase. The
initialization phase runs for 64 rounds with the output of WG-permutation
(WGP) feedback into the state, whereas the non-linear feedback is not used
during the KSG phase. We now formally describe the WG-5 cipher. Initially, the
state is loaded with K and IV as follows:

S0[j] =

{
K[j mod 2], if j ≡ 0 mod 2
IV [j mod 2], if j �≡ 0 mod 2
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Fig. 1. Structure of WG-5

We use WG-5 with decimation 3 in our analysis2. The state update function
is given by Si+1[j] = Si[j +1], 0 ≤ j ≤ 30 and Si+1[31] = γSi[0]⊕Si[2]⊕Si[3]⊕
Si[4] ⊕ Si[6] ⊕ Si[7] ⊕WGP((Si[31])3). During the KSG phase, the keystream
bit is given by zi−64 = Tr(WGP(Si[31])3), where Tr : F25 → F2 denotes the
Trace function. The corresponding boolean representation of keystream bit is
given by zi−64 = si

155 + si
156 + si

157 + si
158 + si

159 + si
155s

i
156 + si

155s
i
157 + si

155s
i
159 +

si
156s

i
158 + si

156s
i
159 + si

155s
i
156s

i
157 + si

155s
i
157s

i
158 + si

155s
i
157s

i
159 + si

155s
i
158s

i
159 +

si
156s

i
157s

i
158 + si

156s
i
158s

i
159. The state is then updated as follows:

Si+1[j] = Si[j + 1], 0 ≤ j ≤ 30 and

Si+1[31] = γSi[0]⊕ Si[2]⊕ Si[3]⊕ Si[4]⊕ Si[6]⊕ Si[7], for i ≥ 64.

In the following section, we describe our attack on the initialization phase
of WG-5, and explain all the proposed MILP models used in our analysis. More
detailed explanation is provided in the full paper [22].

4 Cube Attack on WG-5

We adopt the techniques presented in [25,28] to propose the cube attack on
WG-5. The attack procedure consists of two phases: offline phase and online
phase.

1. Offline phase. The goal of this phase is to recover a superpoly that is almost
balanced3 for a given cube CI . It consists of three steps:

2 We use decimation 3 as the degree of each of the component functions for WGP is
4, whereas it is 3 for decimation 1.

3 f : F
n
2 → F2 is almost balanced if f = 0 for ≈ 2n−1 values and f = 1 for the

remaining values.
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Step 1.1: Create a MILP model M for WG-5 whose initialization is reduced
to R rounds. The model encodes the division property propagation
for R rounds to check the feasibility of all R-round division trails.

Step 1.2: Choose a cube CI by flipping bits in I = {i1, i2, . . . , i|I|} and then
evaluate the secret variables involved in the superpoly. Let J =
{kj1 , kj2 , . . . , kj|J|} denotes the set of involved secret variables4.

Step 1.3: Choose a value in the constant part of IV and compute
⊕CI

f(k, v) = p(k̄, v̄), where k̄ = {kj1 , kj2 , . . . , kj|J|}, v̄ =
{(v0, v1, . . . , v79) − (vi1 , vi2 , . . . , vi|I|)} and all the possible combi-
nations of kj1 , kj2 , . . . , kj|J| are tried out, then p(k̄, v̄) is recovered
and stored in a list for all values of k̄. Assuming the best case
that we can recover the balanced superpoly in a single trial, the
time complexity of this phase is bounded by 2|I|+|J|. However, if
N cubes are used, the time complexity is given by N2|I|+|J|.

2. Online phase. The goal of this phase is to recover the entire secret key. This
phase is further divided into two steps.

Step 2.1: Use the balanced superpoly recovered in the offline phase and
query the cube CI to the encryption oracle to obtain the value
of p(k̄, v̄) which is then compared to the previously stored values.
Then one bit is recovered from J as p = 0 for 2|J|−1 values and
p = 1 for the remaining half values. To recover more than 1 bit we
use multiple cubes.

Step 2.2: Guess the remaining secret key values.

In what follows, we describe all the steps of the attack.

4.1 Automating the Cube Attack on WG-5 Using MILP

We start by modelling the division property propagation for each of the functions
used in WG-5. We use COPY, XOR and AND operations described in Sect. 2
to model all the functions in the initialization and key generation phases.
MILP model for the WG-permutation (WGP). To model the WG-
permutation, we can use its boolean representation which is given in Sect. 5.
However, this approach results in large number of MILP variables and constraints
due to its high non-linearity and involvement of terms of up to degree 4 in each of
the component function. Hence, we use an alternative approach, we treat WGP
as a 5-bit Sbox. Let (x0, x1, x2, x3, x4) and (y0, y1, y2, y3, y4) be the input and
output of the WGP Sbox, respectively. We use the inequality generator() func-
tion in Sage [2] and Algorithms 1 and 2 in [28], and consequently find that only
12 inequalities are sufficient to model the division property propagation through
the WGP Sbox. The inequalities are given by:

4 Step 1.2 is computationally feasible because of MILP.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x0 + 2x1 + 2x2 + 2x3 + 6x4 − 3y0 − 3y1 − 3y2 − 3y3 − 3y4 ≥ −1
4x3 − y0 − y1 − y2 − y3 − y4 ≥ −1
4x0 − y0 − y1 − y2 − y3 − y4 ≥ −1
−x0 − x2 − x3 − y0 + 4y1 − y2 − y3 − 2y4 ≥ −4
−6x0 − 3x1 − 6x3 − 6x4 + 2y0 − 4y1 + 3y2 − y3 + 2y4 ≥ −19
−3x0 − x1 − x2 − 3x3 − 2x4 + 9y0 + 7y1 + 8y2 + 9y3 + 9y4 ≥ 0
x0 + x1 + x2 + x3 + x4 − 3y0 − 3y1 − 3y2 − 3y3 + 5y4 ≥ −2
−x0 − 3x2 − 3x3 − 2x4 + y0 + y2 + y3 − 2y4 ≥ −8
−x0 − x1 + 2x2 − x3 − x4 − y0 − 2y1 − 2y2 + 3y3 − y4 ≥ −5
−x0 − 2x1 − 2x2 − 2x3 − x4 − 2y0 − y1 − y2 − y3 + 5y4 ≥ −8
−2x0 − x1 − 2x2 − 2x4 + y0 + y1 − y2 + y4 ≥ −6
−x0 − x2 − x3 + y0 − y4 ≥ −3.

Algorithm 2 describes the MILP model for the WG-permutation.
MILP model for the feedback function (FBK). The function FBK in Algo-
rithm 3 generates the MILP variables and constraints for the feedback function
γSi[0] ⊕ Si[2] ⊕ Si[3] ⊕ Si[4] ⊕ Si[6] ⊕ Si[7]. Since γ = (1, 1, 1, 1, 1), we model
γSi[0] as Si[0].
MILP model for KSG. The function KSG in Algorithm 4 creates the MILP
variables and constraints for the keystream bit z = sR

155+sR
156+sR

157+sR
158+sR

159+
sR
155s

R
156 +sR

155s
R
157 +sR

155s
R
159 +sR

156s
R
158 +sR

156s
R
159 +sR

155s
R
156s

R
157 +sR

155s
R
157s

R
158 +

sR
155s

R
157s

R
159+sR

155s
R
158s

R
159+sR

156s
R
157s

R
158+sR

156s
R
158s

R
159. Furthermore, the bitwise

AND and XOR operations are modeled using Algorithm 5.
We now present the MILP model for WG-5 in Algorithm 1. The function

WG5EVAL evaluates all division trails for WG-5 whose initialization rounds are
reduced to R. The number of MILP variables and constraints required in each
function are given in Table 1.

Table 1. WG-5: MILP variables and constraints

Function # of variables # of constraints

WGP 15 17

FBK 65 35

KSG 79 63

R round of WG-5 160+159R + 5R 161 + 115R + 10R

4.2 Evaluating Involved Secret Variables and Superpoly Recovery

We prepare a cube CI by flipping bits in I = {i1, i2, . . . , i|I|} and then, we
evaluate the involved secret variables in superpoly using the generic algorithm
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Algorithm 1. MILP model for the initialization of WG-5
1: function WG5Eval(R)
2: Prepare empty MILP Model M
3: M.var ← S0[j] for 0 ≤ j ≤ 31
4: for i = 1 to R do
5: (M, S′, a) = WGP(Si−1)
6: (M, S′′, b) = FBK(S′, [0, 2, 3, 4, 6, 7])
7: for j = 0 to 30 do
8: Si[j] = S′′[j + 1]
9: end for

10: M.con← S′′[0] = 0
11: M.var ← Si[31] as binary
12: M.con← Si[31] = a + b
13: end for
14: (M, S′′′, z) = KSG(SR)
15: for j = 0 to 31 do
16: S′′′[j] = 0
17: end for
18: M.con← z = 1
19: end function

proposed in [25]. We have given the description of the utilized algorithm (Algo-
rithm 6) in Appendix B for the sake of completeness. The inputs to Algorithm 6
are the cube indices set I and the MILP model M for WG-5. The model M
evaluates all the division trails for R rounds with input division property given
by vi = 1 for i ∈ I and vi = 0 for i ∈ {(0, 1, . . . , 79)− I}. The reader is referred
to [25] for the detailed explanation of Algorithm 6.
Searching cubes. We limit our search for the cubes to indices I such that
2|I|+|J| < 280. Table 2 lists the cubes we found that satisfies the above condition.
Note that searching all

(
80
|I|

)
cubes is infeasible and the cubes in Table 2 are the

best so far for WG-5 according to our experimental results.
Recovering a balanced superpoly. We choose a value in the constant part
of the IV and vary all 24 × 270 values to recover p(k5, k6, . . . , k74, v̄) where
v̄ = ({v0, v1, . . . , v79}−{vj | j ∈ Ii}) for 1 ≤ i ≤ 5 and R = 24. We also store 270

values of p(k̄, v̄) as they will be used again in the online phase. We assume that
we can recover a balanced superpoly in 1 trial for each of the cubes in Table 2.
We expect that such an assumption holds with a high probability as there are
80-|Ii| = 76 values in the constant part of IV .

4.3 Key Recovery for 24 Rounds

We use the balanced superpolys recovered in offline phase for cubes I1, I2, I3, I4

and I5 (see Table 2) in the online phase. We query the cube CIi
to the encryp-

tion oracle and compute the sum ⊕CIi
f(k, v). We then compare this sum with

⊕CIi
f(k, v) = p(k5, k6, . . . , k74, v̄) stored in the offline phase for all possible
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Table 2. Involved secret variables in superpoly for cube indices I ∈ {I1, I2, I3, I4, I5}

Rounds Involved secret variables J Time complexity log2(.)

15 {k5, k6, . . . , k54} 54

16 {k5, k6, . . . , k54} 54

17 {k5, k6, . . . , k59} 59

18 {k5, k6, . . . , k59} 59

19 {k5, k6, . . . , k64} 64

20 {k5, k6, . . . , k64} 64

21 {k5, k6, . . . , k69} 69

22 {k5, k6, . . . , k69} 69

23 {k5, k6, . . . , k74} 74

24 {k5, k6, . . . , k74} 74

I1 = {0, 1, 2, 3}, I2 = {0, 1, 2, 4}, I3 = {0, 1, 3, 4}, I4 = {0, 2,
3, 4}, I5 = {1, 2, 3, 4}.
Here, time complexity means the complexity to recover the
superpoly.

combinations of {k5, k6, . . . , k74}. We discard the values of {k5, k6, . . . , k74}
for which the sum is different. Since, we are using a balanced superpoly,
p(k5, k6, . . . , k74, v̄) = 0 for 269 values and equals 1 for the remaining 269 val-
ues. Thus, one bit of secret information can always be recovered. We use cubes
I1, I2, I3, I4 and I5 in our attack and hence can recover 5 secret variables. We
then guess remaining 75 bits to recover the entire secret key. The attack time
complexity for 24 rounds is then given by 5× 274 + 275 ≈ 276.81.

4.4 Attack Comparison with Algebraic Attacks

The univariate algebraic attacks [23] exploits the fact that WG-5 is updated
linearly during the keystream generation phase. Hence, using the trace repre-
sentation of zt, it is possible to find a multiple g (also known as annihilator) of
filtering function f i.e. fg = 0 and g contains only one term of hamming weight
3. This lowers the data and time complexity of the conventional algebraic attack
to 215 and 233, respectively. The applicability of such attacks does not hold if
the nonlinear WGP is feedback into the state during KSG phase because the
concept of annihilator functions no longer exists. On the other hand, the attack
proposed in this paper is not affected by the nonlinear feedback of WGP into
state during KSG phase. Moreover, our attack requires significantly low data
complexity which enables a more realistic attack scenario in constrained appli-
cations where the available online data that may be queried by an adversary
under a given key is usually limited by the running protocol. In summary, we
can attack 24 rounds of the initialization phase of WG-5 with data and time
complexity of 26.32 and 276.81, respectively.
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5 Comparison of the Initialization Phase of WG-5 with
Those of Grain128a and Trivium

In this section, we present an argument to show how the initialization phase of
WG-5 is more resistant to cube attacks than those of Grain128a and Trivium.
We particularly choose Grain128a and Trivium because both are eSTREAM
finalists and also they offer the same level of security as WG-5. We give a brief
description of both stream ciphers in Appendix C.

We now look at the state update functions of both Grain128a and Trivium
more carefully and deduce the following observations:

– For Trivium, the degree of z is 3 after 81 rounds. The algebraic degree of z
can only be increased by AND terms s90s91, s174s175 and s285s286. Thus, the
round at which the degree of z equals 3 is min(90, 174− 93, 285− 177) = 81.

– For Grain128a, the degree of z is 6 after 32 rounds. The maximum index in h
function is 95 (for b95 term). At round 32 (127-95) only the degree of b95 is 4
and the remaining terms are of degree 1. Hence, the degree of z is 6 because
of b12b95s94 term.

On the other hand, for WG-5 we find that the degree of z is 6 in 1 round only.
The degree of each component of S1[31] = γS0[0] ⊕ S0[2] ⊕ S0[3] ⊕ S0[4] ⊕
S0[6]⊕ S0[7]⊕WGP((S0[31])3) = (s1

155, s
1
156, s

1
157, s

1
158, s

1
159) equals 4. This can

be deduced from the boolean representation of the component functions of the
WG-permutation given below.

y0 = x0x1x3x4 + x0x1x4 + x0x2x3x4 + x0x2x3 + x0x2x4 + x0x4 + x0

+ x1x2x3 + x1x2 + x1x3 + x3x4

y1 = x0x1x2x3 + x0x1x2x4 + x0x1x2 + x0x1x3 + x0x1x4 + x0x1

+ x0x2x4 + x0x2 + x0x3x4 + x0x4 + x1x2x3x4 + x1x4 + x1

+ x2x4 + x2 + x3x4

y2 = x0x1x2x3 + x0x1x4 + x0x1 + x0x2 + x0x3x4 + x1x2x3x4 + x1x2

+ x1x4 + x2x3x4 + x2x3 + x2x4 + x2 + x3x4 + x3 + x4

y3 = x0x1x2x3 + x0x1x3 + x0x1 + x0x2x3x4 + x0x2x3 + x0x2x4

+ x0x3x4 + x0x4 + x1x2x4 + x1x3x4 + x1x3 + x1

y4 = x0x1x2x4 + x0x1x2 + x0x1x3x4 + x0x1 + x0x2x3x4 + x0x2

+ x0x3x4 + x0x3 + x0x4 + x1x2x3 + x1x2x4 + x1x2 + x1x3

+ x1x4 + x1 + x2x3x4 + x2x3 + x2x4 + x4

Since z at round 1 is given by s1
155 + s1

156 + s1
157 + s1

158 + s1
159 + s1

155s
1
156 +

si
155s

1
157+s1

155s
1
159+s1

156s
i
158+si

156s
i
159+s1

155s
1
156s

1
157+s1

155s
1
157s

1
158+s1

155s
1
157s

1
159+

s1
155s

1
158s

1
159 + s1

156s
1
157s

1
158 + s1

156s
1
158s

1
159, then the degree of z is 6.

Based on the degree comparison of 32 rounds of Grain128a and 81 rounds of
Trivium with 1 round of WG-5, we see that degree in WG-5 grows much faster.
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We also observe that all the 5 bits processed by WGP at the i-th round are used
to generate the keystream bit at round (i + 1) along with 5 × 6 = 30 new bits
from the feedback function. This is not the same case with Grain128a because the
updated bits b127 and s127 in i-th round are used in keystream bit at i + 32 and
i+33, respectively. Similarly, for Trivium the values of t1, t2 and t3 at i-th round
are used in keystream bit at i+90, i+81 and i+108 rounds, respectively. Thus,
cubes of higher dimension whose superpoly involves few secret variables exist
for both Grain128a and Trivium. For example, Todo et al. [25] experimentally
found 92 dimension cube for 183 rounds Grain128a whose superpoly involves
16 secret key bits. Also, for Trivium reduced to 832 rounds, they found a 72
dimension cube which has only 5 secret variables in its superpoly. We tried some
cubes of higher dimension for WG-5 and found that all the 80 secret variables
are involved in the superpoly. The best cubes we have found are listed in Table 2
and they can cover 24 rounds of WG-5. Thus, based on the above observations,
we conclude that the initialization phase of WG-5 is more stronger than those
of Grain128a and Trivium with respect to cube attacks.

6 Conclusion

In this paper, we have investigated the lightweight stream cipher WG-5 with
respect to non-blackbox cube attacks. Specifically, we have utilized the division
property to find higher-order differential trails corresponding to a set of chosen
initial values generated from specific cubes, and consequently the structure of
the superpoly is recovered. Moreover, we have automated the process of the
propagation of the division property by proposing MILP models for the WG-5
initialization and keystream generation phases. We have further modeled the WG
permutation as an Sbox to reduce the number of variables and inequalities in the
model which raises the chances of the MILP solver to find a feasible solution. The
results of our cube attack reveals low data complexity requirements which when
compared to the existing algebraic attacks, offer a more realistic attack scenario
for lightweight constrained applications where the amount of data available to
attacker under a given key is restricted by the running protocol. Also, unlike
algebraic attacks, our attack is applicable on WG-5 whether it runs a linear or
nonlinear keystream generation phase. Finally, the findings of our analysis enable
us to argue that the WG-5 design parameters in terms of feedback and filtering
tapping positions inhibit the extension of the cube attack to more rounds, in
contrast to Grain128a and Trivium where such an attack covers more than half of
the rounds of their initialization phases. Thus, we conclude that the initialization
phase of WG-5 is more resistant to cube attacks than Grain’s and Trivium’s.
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A MILP Models for WG-5 Components

Algorithm 2. MILP model for WGP
1: function WGP(S) � S = (s0, s1, . . . , s159)
2: M.var ← s′

155+i, xi, yi as binary for 0 ≤ i ≤ 4
3: M.con← s155+i = s′

155+i + xi for 0 ≤ i ≤ 4
4: Add constraints to M according to the WGP inequalities 4.1
5: for j = 0 to 30 do
6: S′[j] = S[j] � S′[j] = (s′

5j , s
′
5j+1, s

′
5j+2, s

′
5j+3, s

′
5j+4)

7: end for
8: return (M, S′, [y0, y1, y2, y3, y4])
9: end function

Algorithm 3. MILP model for the FBK function in WG-5
1: function FBK(S, I)
2: for i ∈ I do
3: M.var ← s′

5i+j , x5i+j as binary for 0 ≤ j ≤ 4
4: end for
5: M.var ← yi as binary for 0 ≤ i ≤ 4
6: for i ∈ I do
7: M.con← s5i+j = s′

5i+j + x5i+j for 0 ≤ j ≤ 4
8: end for
9: for j = 0 to 4 do

10: temp = 0
11: for i ∈ I do
12: temp = temp + x5i+j

13: end for
14: M.con← yj = temp
15: end for
16: for j ∈ {(0, 1, . . . , 31)− I} do
17: S′[j] = S[j]
18: end for
19: return (M, S′, [y0, y1, y2, y3, y4])
20: end function
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Algorithm 4. MILP model for the KSG operation in WG-5
1: function KSG(S)
2: (M, S1, a1) = AND(S, [155, 156])
3: (M, S2, a2) = AND(S1, [155, 157])
4: (M, S3, a3) = AND(S2, [155, 159])
5: (M, S4, a4) = AND(S3, [156, 158])
6: (M, S5, a5) = AND(S4, [156, 159])
7: (M, S6, a6) = AND(S5, [155, 156, 157])
8: (M, S7, a7) = AND(S6, [155, 157, 158])
9: (M, S8, a8) = AND(S7, [155, 157, 159])

10: (M, S9, a9) = AND(S8, [155, 158, 159])
11: (M, S10, a10) = AND(S9, [156, 157, 158])
12: (M, S11, a11) = AND(S10, [156, 158, 159])
13: (M, S12, a12) = XOR(S11, [155, 156, 157, 158, 159])
14: M.var ← z as binary
15: M.con← z =

∑12
i=1 ai

16: return (M, S12, z)
17: end function

Algorithm 5. MILP model for AND and XOR operations in WG-5
1: function AND(S, I)
2: M.var ← s′

i, xi as binary for i in I
3: M.var ← y as binary
4: M.con← si = s′

i + xi for i in I
5: M.con← y ≥ xi for i in I
6: for i ∈ {(0, 1, . . . , 159)− I} do
7: s′

i = si

8: end for
9: return (M, S′, y)

10: end function
11: function XOR(S, I)
12: M.var ← s′

i, xi as binary for i in I
13: M.var ← y as binary
14: M.con← si = s′

i + xi for i in I
15: temp = 0
16: for i ∈ I do
17: temp = temp + xi

18: end for
19: M.con← y = temp
20: for i in {(0, 1, . . . , 159)− I} do
21: s′

i = si

22: end for
23: return (M, S′, y)
24: end function
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B A Generic Algorithm for the Evaluation of the
Involved Secret Variables in a Superpoly [25]

Algorithm 6. MILP model to find involved secret variables in superpoly
1: function extractSecretVariables(MILP model M, Cube Indices I)
2: M.var ← ki as binary for 0 ≤ i ≤ n− 1, � k0, k1, . . . , kn−1 are secret variables
3: M.var ← vi as binary for 0 ≤ i ≤ m− 1, � v0, v1, . . . , vm−1 are public variables
4: M.con← vi = 1 for i ∈ I
5: M.con← vi = 0 for i ∈ {(0, 1, . . . , m− 1)− I}
6: M.con←∑n−1

i=0 ki = 1
7: do
8: solve MILP model M
9: if M is feasible then

10: pick j ∈ {0, 1, . . . , n− 1} s.t kj = 1
11: J = J ∪ {j}
12: M.con← kj = 0
13: end if
14: while M is feasible
15: return J
16: end function

C Description of Grain128a and Trivium

Grain128a is a NLFSR based stream cipher of Grain family with two 128-bit
states represented by (b0, b1, . . . , b127) and (s0, s1, . . . , s127). The state is loaded
with 128-bit key and 96-bit IV as follows (b0, b1, . . . , b127) = (k0, k1, . . . , k127)
and (s0, s1, . . . , s127) = (iv0, iv1, . . . , iv95, 1, . . . , 1, 0). The initialization phase
runs for 256 rounds with the state update function given by

g ← b0 + b26 + b56 + b91 + b96 + b3b67 + b11b13

+ b17b18 + b27b59 + b40b48 + b61b65 + b68b84

+ b88b92b93b95 + b22b24b25 + b70b78b82

f ← s0 + s7 + s38 + s70 + s81 + s96

h← b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94

z ← h + s93 + b2 + b15 + b36 + b45 + b64 + b73 + b89

(b0, b1, . . . , b127)← (b1, b2, . . . , b127, g + s0 + z)
(s0, s1, . . . , s127)← (s1, s2, . . . , s127, f + z).

During the KSG phase, z is not feedback to the state and directly used as the
keystream bit.
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Trivium is also an NLFSR based stream cipher with state size 288. The 80-
bit key and 80-bit IV are loaded into the state as follows (s0, s1, . . . , s92) =
(k0, k1, . . . , k79, 0, . . . , 0), (s93, s94, . . . , s176) = (iv0, iv1, . . . , iv79, 0, . . . , 0) and
(s177, s178, . . . , s287) = (0, 0, . . . , 0, 1, 1, 1). The state update function of Trivium
is given by

t1 ← s65 + s92

t2 ← s161 + s176

t3 ← s242 + s287

z ← t1 + t2 + t3

t1 ← t1 + s90s91 + s170

t2 ← t2 + s174s175 + s263

t3 ← t3 + s285s286 + s68

(s0, s1, . . . , s92)← (t3, s0, . . . , s91)
(s93, s1, . . . , s176)← (t1, s93, . . . , s175)
(s177, s1, . . . , s287)← (t2, s177, . . . , s286).

The initialization phase runs for 1152 rounds without producing an output while
z is used as the keystream bit during KSG phase.
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