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Abstract. Structure-Preserving Signatures (SPSs) are an important
tool for the design of modular cryptographic protocols. It has been
proven that such schemes in the most efficient Type-3 bilinear group
setting have a lower bound of 3-element signatures, which must include
elements from both base groups, and a verification overhead of at least
2 Pairing-Product Equations (PPEs). Very recently, Ghadafi (ESORICS
2017) showed that by restricting the message space to the set of Diffie-
Hellman pairs (which does not hinder applicability of the schemes), some
of the existing lower bounds for the single message case can be circum-
vented. However, the case of signing multiple messages, which is required
for many applications, was left as an open problem since the techniques
used for signing single messages do not seem to lend themselves to the
multi-message setting. In this work we investigate this setting and answer
the question in the affirmative. We construct schemes that sign vectors
of messages and which yield shorter signatures than optimal schemes
for vectors of unilateral messages. More precisely, we construct 2 fully
randomiazble schemes that sign vectors of Diffie-Hellman pairs yielding
signatures consisting of only 2 elements regardless of the size of the vector
signed. We also construct a unilateral scheme that signs a pair of mes-
sages yielding signatures consisting of 3 elements from the shorter base
group. All of our schemes require a single PPE for verification (not count-
ing the cost of verifying the well-formedness of the messages). Thus, all
of our schemes compare favourably to all existing schemes with respect
to signature size and verification overhead. Even when considering single
messages, our first 2 schemes compare favourably to the best existing
schemes in many aspects including the verification overhead and the key
size.

Keywords: Digital signatures · Structure-preserving signatures ·
Type-3 groups

1 Introduction

Structure-Preserving Signatures (SPSs) [3] are pairing-based signature schemes
where the message, the verification key and the signature consist of only group
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elements from one or both base groups, and signature verification requires evalu-
ating Pairing-Product Equations (PPEs). Due to their elegant structure and the
fact that they compose nicely with existing widely used tools such as ElGamal
encryption [20] and Groth-Sahai proofs [34], SPS schemes are an ideal building
block for designing cryptographic protocols not relying on random oracles [22].

The notion has numerous applications which include group signatures,
e.g [3,38], blind signatures, e.g. [3,25], attribute-based signatures, e.g. [21],
tightly secure encryption, e.g. [2,35], malleable signatures, e.g. [9], anonymous
credentials, e.g. [16,24], network coding, e.g. [9], oblivious transfer, e.g. [31],
direct anonymous attestation, e.g. [13,28], and e-cash, e.g. [10].

Related Work. The term “structure-preserving signature” was first formally
introduced by Abe et al. [3] but earlier schemes conforming to the definition were
given in [31,32]. The notion has received a significant amount of attention and
many studies on the notion have been published. Constructions of such schemes
in the Type-3 setting (cf. Section 2.1) include [3,4,6,19,27,33]. The vast majority
of those constructions rely on security proofs in the generic group model [40,41].
Abe et al. [4] proved that signatures of any scheme in the Type-3 bilinear group
setting must contain at least 3 elements, which must include elements from both
base groups, and require at least 2 PPEs for verification. This rules out the
existence of schemes with unilateral signatures, i.e. where all components of the
signature are from the same group.

Constructions relying on standard assumptions, e.g. DLIN and DDH, were
given by [1,2,15,18,36–38]. Abe et al. [5] proved that it is impossible to base the
security of an optimal Type-3 scheme on non-interactive intractability assump-
tions. Their result guarantees that schemes based on non-interactive intractabil-
ity assumptions can never be as efficient as their counterparts relying on inter-
active assumptions or those proven secure directly in the generic group model.
In fact all existing constructions based on standard (static) assumptions are far
less efficient than existing optimal schemes.

Recently, Ghadafi [28] gave a randomizable scheme yielding signatures con-
sisting of 3 elements from the shorter base group which signs a single Diffie-
Hellman (cf. Section 2.1) pair. Signatures of his scheme are shorter than those
of optimal schemes for unilateral messages since the bit size of the elements of
the second base group are at least twice that of those from the first base group.
Verification in his scheme requires, besides checking the well-formedness of the
message, the evaluation of 2 PPEs. However, his scheme is only capable of sign-
ing a single message and it is unclear whether it can be extended (or even if
that is at all possible) to signing multiple messages while preserving the signa-
ture size. More recently, Ghadafi [29] defined the notion of unilateral structure-
preserving signatures on Diffie-Hellman pairs and gave constructions for a single
Diffie-Hellman pair yielding signatures consisting of only 2 elements from the
shorter base group. Ghadafi argued that restricting the message space to the set
of Diffie-Hellman pairs does not restrict applicability of the schemes and used
direct anonymous attestation [14], which is a protocol deployed in practice, and
attribute-based signatures [39] as an example. Even though Ghadafi [29] gave a
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partially structure-preserving scheme which can sign a vector of field elements
along the single Diffie-Hellman pair, it was left as an open problem to investigate
the case of structure-preserving signatures for a vector of group elements.

Constructions in the Type-2 setting (where there is an efficiently computable
homomorphism between the base groups in one direction) were given in [7,11,19].
Fully structure-preserving schemes where even the secret key consists of only
group elements from the base groups were recently given by [8,33,42].

Numerous applications require signing a vector of group elements, e.g. when
certifying the public key of an encryption/signature scheme, without hindering
the structure of the messages, i.e. without hashing. This is particularly impor-
tant when the aim is to avoid relying on random oracles. Therefore, the design of
efficient signature schemes conforming to those requirements would have impli-
cations for various applications. Note that SPS schemes for Diffie-Hellman tuples
proved useful for many applications see e.g. [3,13,24,27,29].

Our Contribution. We construct 3 new fully randomizable structure-
preserving schemes for vectors of messages which yield shorter signatures than
all existing schemes for vectors of unilateral messages. Our first 2 schemes yield
signatures consisting of 2 elements and requiring 1 PPE for verification. Our
third scheme which signs a vector of size 2 yield (unilateral) signatures consist-
ing of 3 elements from the shorter base group and require 1 PPE for verification.
The verification overhead of our schemes also compares favourably to exiting
schemes, in particular, when verifying multiple signatures on the same message
vector, which is what a number of applications require.

Even when signing single messages, our first 2 schemes compare favourably in
many measures, e.g. the key size and verification overhead, to the best existing
scheme [29].

Paper Organization. We provide some preliminary definitions in Sect. 2. In
Sect. 3 we give two new fully randomizable schemes for signing arbitrary vectors
of messages. In Sect. 4 we give a scheme for signing a pair of messages. In Sect. 5
we compare the efficiency of our constructions with that of existing ones.

Notation. We write y = A(x; r) when algorithm A on input x and randomness
r outputs y. We write y ← A(x) for the process of setting y = A(x; r) where
r is sampled at random. We also write y ← S for sampling y uniformly at
random from a set S. A function ν(.) : N → R

+ is negligible (in n) if for every
polynomial p(.) and all sufficiently large values of n, it holds that ν(n) < 1

p(n) . By
PPT we mean running in probabilistic polynomial time in the relevant security
parameter. We use [k] to denote the set {1, . . . , k}. We use capital letters for
group elements and small letters for field elements.

2 Preliminaries

In this section we provide some preliminary definitions.
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2.1 Bilinear Groups

A bilinear group is a tuple P := (G,H,T, p,G, H̃, e) where G, H and T are
groups of a prime order p, and G and H̃ generate G and H, respectively. The
function e is a non-degenerate bilinear map e : G×H −→ T. For clarity, elements
of H will be accented with .̃ We use multiplicative notation for all the groups.
We let G

× := G \ {1G} and H
× := H \ {1H}. In this paper, we work in the

efficient Type-3 setting [26], where G �= H and there is no efficiently computable
homomorphism between the groups in either direction. We assume there is an
algorithm BG that on input a security parameter κ, outputs a description of
bilinear groups.

The message space of the schemes we consider is the set of elements of the
subgroup ̂GH of G × H defined as the image of the map ψ : x �−→ (Gx, H̃x) for
x ∈ Zp. One can efficiently test whether (M, Ñ) ∈ ̂GH by checking

e(M, H̃) = e(G, Ñ) ·

Such pairs were called Diffie-Hellman pairs in [3,23]. An important observation
here is that techniques used for batch verification, e.g. [12,17], can be applied
when verifying the well-formedness of a vector of Diffie-Hellman pairs. This
reduces the cost for verifying a vector of � pairs from 2� pairings to 2 pairings.

2.2 Digital Signatures

A digital signature scheme DS over a bilinear group P generated by BG for a
message space M consists of the following algorithms:

KeyGen(P) on input P, it outputs a pair of secret/verification keys (sk, vk).
Sign(sk,m) on input sk and a message m ∈ M, it outputs a signature σ.
Verify(vk,m, σ) outputs 1 if σ is a valid signature on m w.r.t. vk and 0 otherwise.

Besides the usual correctness requirement, we require existential
unforgeability.

Definition 1 (Existential Unforgeability). A signature scheme DS over
a bilinear group generator BG is Existentially-Unforgeable against adaptive
Chosen-Message Attack (EUF-CMA) if for all κ ∈ N for all PPT adversaries
A, the following is negligible (in κ)

Pr
[P ← BG(1κ); (sk, vk) ← KeyGen(P); (σ∗,m∗) ← ASign(sk,·)(P, vk)

: Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign

]

,

where QSign is the set of messages queried to Sign.
Strong Existential Unforgeability against adaptive Chosen-Message Attack

(sEUF-CMA) requires that the adversary cannot even output a new signature
on a message that was queried to the sign oracle.
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A weaker variant of EUF-CMA is Existential Unforgeability against a
Random-Message Attack (EUF-RMA) in which the sign oracle samples a mes-
sage uniformly from the message space and returns the message and a signature
on it. In one-time signatures, the adversary is restricted to a single signing query.

We consider schemes which are publicly re-randomizable where there is an
algorithm Randomize that on input (vk,m, σ) outputs a new signature σ′ on m.
A desirable property for such class of schemes is that randomized signatures are
indistinguishable from fresh signatures.

Definition 2 (Randomizability). A signature scheme DS over a bilinear
group generator BG is randomizable if for all κ ∈ N for all stateful adversaries
A the following probability is negligibly close to 1

2 .

Pr

[P ← BG(1κ); (sk, vk) ← KeyGen(P); (σ∗, m∗) ← A(P, sk, vk); σ0 ← Sign(sk, m∗);
σ1 ← Randomize(vk, m∗, σ∗); b ← {0, 1} : Verify(vk, m∗, σ∗) = 1 ∧ A(σb) = b

]

When the above is exactly 1
2 , we say the scheme has Perfect Randomizability.

2.3 Structure-Preserving Signatures

Structure-preserving signatures [3] are signature schemes defined over bilinear
groups where the messages, the verification key and signatures are all group
elements from either or both base groups, and verifying signatures only involves
deciding group membership of the signature components and evaluating PPEs
of the form of Equation (1).

∏

i

∏

j

e(Ai, B̃j)ci,j = 1T, (1)

where Ai ∈ G and B̃j ∈ H are group elements appearing in P,m, vk, σ, whereas
ci,j ∈ Zp are constants.

Generic Signer. We refer to a signer that can only decide group membership,
evaluate the bilinear map e, compute the group operations in groups G,H and
T, and compare group elements as a generic signer.

3 Constant-Size Schemes for Diffie-Hellman Vectors

In this section, we give 2 new schemes for signing a vector of Diffie-Hellman
pairs.

3.1 Scheme I

Given the description of Type-3 bilinear groups P output by BG(1κ), the scheme
is as follows:
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• KeyGen(P): Select x1, . . . , x�, y ← Zp. Set Xi := Gxi for all i ∈ [�], Ỹ := H̃y,
sk := (x1, . . . , x�, y) and vk := (X1, . . . , X�, Ỹ ) ∈ G

� × H.
• Sign

(

sk,
(

(M1, Ñ1), . . . , (M�, Ñ�)
))

: To sign
(

(M1, Ñ1), . . . , (M�, Ñ�)
)

∈
̂GH

�
, select r ← Zp and set R := Gr, and S̃ := (

∏�
i=1 Ñxi

i · Ỹ x1 · H̃)
1
r .

Return σ := (R, S̃) ∈ G × H.
• Verify

(

vk,
(

(M1, Ñ1), . . . , (M�, Ñ�)
)

, σ = (R, S̃)
)

: Return 1 iff R ∈ G, S̃ ∈ H,

for all i ∈ [�] : (Mi, Ñi) ∈ ̂GH, and

e(R, S̃) =
�

∏

i=1

e(Xi, Ñi)e(X1, Ỹ )e(G, H̃) ·

• Randomize
(

vk,
(

(M1, Ñ1), . . . , (M�, Ñ�)
)

, σ = (R, S̃)
)

: Select r′ ← Zp, and

return σ′ := (Rr′
, S̃

1
r′ ).

Efficiency of the Scheme. The public key for signing a vector of size � has
size �|G| + |H| whereas the signature is of size |G| + |H| regardless of the size of
the message vector. Thus, our signatures are shorter than all existing schemes
since the best existing optimal schemes for unilateral messages, e.g. [4], have
signatures of size 2|G|+|H|. Assuming that the messages are already well-formed,
verification requires only a single PPE with �+2 pairings where 1 pairing, i.e. the
pairing e(G, H̃) can be pre-computed. Hence, we only require � + 1 pairings for
each signature after the first signature. If the messages are already assumed
to be well-formed, this compares favourably to existing schemes since the most
efficient existing scheme requires 2 PPE for verification. The scheme yields very
short proofs of knowledge when combined with Groth-Sahai proofs [34] as one
requires a proof for a linear (rather than quadratic) equation. As a result, our
scheme outperforms the best existing scheme [29] in this respect. Refer to Sect. 5
for concrete efficiency comparison with existing schemes.

Security of the Scheme. The scheme is perfectly randomizable as the distri-
bution of re-randomized signatures is identical to that of fresh signatures on the
same vector. We now prove the following theorem.

Theorem 1. The scheme is EUF-CMA secure.

Proof. Correctness of the scheme follows by inspection and is straightforward
to verify. The following two lemmata prove unforgeability of the scheme against
adaptive chosen-message attacks. Lemma 1 proves that the case when � = 1 is
secure in the generic group model whereas Lemma 2 reduces any attack on the
scheme when � > 1 to the case when � = 1 which is proved by Lemma 1.

Lemma 1. The scheme for � = 1 is EUF-CMA secure in the generic group
model.
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Proof. We proceed by proving that no linear combinations (which represent Lau-
rent polynomials in the discrete logarithms) of the group elements the adversary
sees in the game correspond to a forgery on a new message.

At the start of the game, the only elements in H the adversary sees are H̃,
Ỹ which correspond to the discrete logarithms 1 and y, respectively. Also, at
the start of the game the only elements in G the adversary sees are G, X which
correspond to the discrete logarithms 1 and x, respectively.

At the j-th sign query on the message (Mj , Ñj), mj and nj (the discrete
logarithms of Mj and Ñj , respectively, can only be a linear combination of the
discrete logarithms of the elements in G and H, respectively, the adversary sees
up to that point of time. Thus, we have

mj = amj
+ bmj

x +
j−1
∑

i=1

cmj ,iri

nj = anj
+ bnj

y +
j−1
∑

i=1

cnj ,i
nix + xy + 1

ri

For the message to satisfy (Mj , Ñj) ∈ ̂GH, we must have that mj = nj and hence
we must have that amj

= anj
, bmj

= bnj
= 0 and for all i that cmj ,i = cnj ,i = 0.

This ensures that the message queried is nothing but a constant polynomial. If
the message is well-formed 1, the sign oracle responds with a signature of the
form

(

rj , sj =
njx + xy + 1

rj

)

Since the adversary is generic, she can only construct
(

(M∗, Ñ∗), σ∗ = (R∗, S̃∗)
)

as a linear combination of the group elements she sees in the game. Thus, we
have

m∗ = am + bmx +
q

∑

i=1

cm,iri r∗ = ar + brx +
q

∑

i=1

cr,iri

n∗ = an + bny +
q

∑

i=1

cn,i
nix + xy + 1

ri
s∗ = as + bsy +

q
∑

i=1

cs,i
nix + xy + 1

ri

Since the forged message (M∗, Ñ∗) must correspond to a Diffie-Hellman pair,
we must have m∗ = n∗ and thus am = an, bm = bn = 0 and cm,i = cn,i = 0 for
all i ∈ [q] and hence m∗ = n∗ = am. For the forgery to be accepted, r∗ and s∗

must satisfy r∗s∗ = n∗x + xy + 1. Therefore, we must have

(

ar + brx +
q

∑

i=1

cr,iri

)(

as + bsy +
q

∑

i=1

cs,i
nix + xy + 1

ri

)

= n∗x + xy + 1

1 We remark that the scheme remains secure even if the sign oracle only gets Ñj as

long as the final forgery is on a well-formed message (M∗, Ñ∗) ∈ ĜH.



192 E. Ghadafi

Thus, we must have

aras + arbsy +
q

∑

i=1

arcs,i
nix + xy + 1

ri

+asbrx + bsbrxy +
q

∑

i=1

brcs,i
nix

2 + x2y + x

ri

+as

q
∑

i=1

cr,iri + bsy

q
∑

i=1

cr,iri +
q

∑

i=1

cr,iri

q
∑

i=1

cs,i
nix + xy + 1

ri

= n∗x + xy + 1

There is no term in xy
ri

or x2y
ri

on the RHS so we must have for all i ∈ [q]
that arcs,i = 0 and brcs,i = 0. This means that we either have that cs,i = 0 for
all i ∈ [q] or we have ar = br = 0.

• Case ar = br = 0: In this case we must have

as

q
∑

i=1

cr,iri + bsy

q
∑

i=1

cr,iri +
q

∑

i=1

cr,iri

q
∑

i=1

cs,i
nix + xy + 1

ri
= n∗x + xy + 1

There are no terms in ri or riy on the RHS so we must have for all i ∈ [q] that
ascr,i = 0 and bscr,i = 0. This means that we either have that cr,i = 0 for all
i ∈ [q] or we have as = bs = 0. The former case cannot occur as otherwise
the LHS will not have a term in xy and hence the equality will not hold. So
we must have as = bs = 0 and hence we must have

q
∑

i=1

cr,iri

q
∑

i=1

cs,i
nix + xy + 1

ri
= n∗x + xy + 1

There is no term on the RHS of the form rjxy
ri

for any i, j ∈ [q] where i �= j.
Thus, we must have cr,ics,j = 0 for all i �= j. This means we must have for
some i ∈ [q]

cr,ics,inix + cr,ics,ixy + cr,ics,i = n∗x + xy + 1

By the monomial xy, we must have cr,ics,i = 1 from which it is clear that the
only way the equality will hold is if n∗ = ni from some i ∈ [q] which means
the forgery is not valid as the signature is on a message that was queried to
the sign oracle.

• Case cs,i = 0 for all i ∈ [q]: In this case we must have

aras + arbsy + asbrx + bsbrxy + as

q
∑

i=1

cr,iri + bsy

q
∑

i=1

cr,iri = n∗x + xy + 1
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The only term on the LHS with the monomial xy is the term bsbrxy thus for
the equality to hold we must have that bs �= 0 and br �= 0. There is no term
on the RHS with the monomial riy and since we cannot have bs = 0, we must
have that cr,i = 0 for all i ∈ [q], which means we have:

aras + arbsy + asbrx + bsbrxy = n∗x + xy + 1

There is no term on the RHS wih the monomial y and since we cannot have
bs = 0, we must have that ar = 0 which means we have:

asbrx + bsbrxy = n∗x + xy + 1

which cannot hold.

�	
Lemma 2. The scheme for � > 1 is EUF-CMA secure.

Proof. We proceed by showing that any valid forgery in the case � > 1 can be
reduced to a forgery for the case � = 1.

Let A be a successful adversary in the � > 1 case we show how to construct
an adversary B who uses adversary A to break the scheme for the case � = 1
which would contradict Lemma 1.

Adversary B gets vk′ = (X ′, Ỹ ′) from her game where she has access to a sign
oracle for a single Diffie-Hellman pair. She chooses x1, . . . , x�−1 ← Zp and sets
Ỹ := Ỹ ′, X1 := X ′ and Xi := X ′xi−1 for i = 2, . . . , �. She starts A on the verifica-
tion key vk := (X1, . . . , X�, Ỹ ). Note that since x1, . . . , x�−1 are chosen uniformly
at random, the verification key vk A sees is indistinguishable from one she gets
from the real signer. When receiving a query on mi =

(

(M, Ñ)i,1, . . . , (M, Ñ)i,�

)

from A, B returns ⊥ if (M, Ñ)i,j /∈ ̂GH for any j ∈ [�]. Otherwise, she for-

wards (M ′
i , Ñ

′
i) :=

(

Mi,1 · ∏�
j=2 M

xj−1
i,j , Ñi,1 · ∏�

j=2 Ñ
xj−1
i,j

)

∈ ̂GH to her sign
oracle and returns the signature she gets to A. Such a signature is a valid signa-
ture on the message mi =

(

(M, Ñ)i,1, . . . , (M, Ñ)i,�

)

w.r.t. the verification key

vk = (X1, . . . , X�, Ỹ ).
When A outputs her forgery σ∗ on m∗ =

(

(M∗, Ñ∗)1, . . . , (M∗, Ñ∗)�

)

, B
returns (M ′, Ñ ′) :=

(

M∗
1 · ∏�

j=2 M∗
j

xj−1 , Ñ∗
1 · ∏�

j=2 Ñ∗
j

xj−1
)

∈ ̂GH and σ∗ as
the answer in her game. Thus, B wins her game with the same advantage as
that of A in her game. �	

3.2 Scheme II

We show here that by transposing the signature components of Scheme I, we
obtain a scheme with signatures (S, R̃) ∈ G × H where R̃ is information-
theoretically independent of the message vector. The verification key matches
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that of Scheme I, i.e. the verification key size is �|G|+ |H|. Note that the scheme
has the property that signing requires only the G components of the messages
whereas verification requires, besides verifying well-formedness of the messages,
only the H components of the messages. We remark that existing schemes with
similar properties have found various applications, see e.g. [13,28].

Given the description of Type-3 bilinear groups P output by BG(1κ), the
scheme is as follows:

• KeyGen(P): Select x1, . . . , x�, y ← Zp. Set Xi := Gxi for all i ∈ [�], Ỹ := H̃y,
sk := (x1, . . . , x�, y), and vk := (X1, . . . , X�, Ỹ ) ∈ G

� × H.
• Sign

(

sk,
(

(M1, Ñ1), . . . , (M�, Ñ�)
))

: To sign
(

(M1, Ñ1), . . . , (M�, Ñ�)
)

∈
̂GH

�
, select r ← Zp and set R̃ := H̃r, and S := (

∏�
i=1 Mxi

i · Xy
1 · G)

1
r .

Return σ := (R̃, S) ∈ H × G.
• Verify

(

vk,
(

(M1, Ñ1), . . . , (M�, Ñ�)
)

, σ = (R̃, S)
)

: Return 1 iff R̃ ∈ H, S ∈ G,

for all i ∈ [�] : (Mi, Ñi) ∈ ̂GH, and

e(S, R̃) =
�

∏

i=1

e(Xi, Ñi)e(X1, Ỹ )e(G, H̃) ·

• Randomize
(

vk,
(

(M1, Ñ1), . . . , (M�, Ñ�)
)

, σ = (R̃, S)
)

: Select r′ ← Zp, and

return σ′ := (R̃r′
, S

1
r′ ).

The scheme has identical efficiency as that of Scheme I.

Security of the Scheme. The scheme is perfectly randomizable as the distri-
bution of re-randomized signatures is identical to that of fresh signatures on the
same vector.

Theorem 2. The scheme is EUF-CMA secure.

Proof. Correctness of the scheme follows by inspection and is straightforward
to verify. The following two lemmata prove unforgeability of the scheme against
adaptive chosen-message attacks. Lemma 3 proves that the case when � = 1 is
secure in the generic group model whereas Lemma 4 reduces any attack on the
scheme when � > 1 to the case when � = 1 which is proved by Lemma 3.

Lemma 3. The scheme for � = 1 is EUF-CMA secure in the generic group
model.

Proof. We proceed by proving that no linear combinations (which represent Lau-
rent polynomials in the discrete logarithms) of the group elements the adversary
sees in the game correspond to a forgery on a new message.

At the start of the game, the only elements in H the adversary sees are H̃,
Ỹ which correspond to the discrete logarithms 1 and y, respectively. Also, at
the start of the game the only elements in G the adversary sees are G, X which
correspond to the discrete logarithms 1 and x, respectively.
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At the j-th query on message (Mj , Ñj), mj and nj which are the discrete
logarithm of the message can only be a linear combination of the elements in
the respective groups so far. Thus, we have

mj = amj
+ bmj

x +
j−1
∑

i=1

cmj ,i
mix + xy + 1

ri

nj = anj
+ bnj

y +
j−1
∑

i=1

cnj ,iri

For the message to satisfy (Mj , Ñj) ∈ ̂GH, we must have that mj = nj

and hence we must have that amj
= anj

, bmj
= bnj

= 0 and for all i that
cmj ,i = cnj ,i = 0. This ensures that the message queried is nothing but a constant
polynomial.

If the message is well-formed, the sign oracle responds with a signature of
the form

(

rj , sj =
mjx + xy + 1

rj

)

Since the adversary is generic, she can only construct (M∗, Ñ∗) and σ∗ =
(R̃∗, S∗) as a linear combination of the group elements she sees in the game.
Thus, we must have

m∗ = am + bmx+

q∑

i=1

cm,i
mix+ xy + 1

ri
r∗ = ar + bry +

q∑

i=1

cr,iri

n∗ = an + bny +

q∑

i=1

cn,iri s∗ = as + bsx+

q∑

i=1

cs,i
mix+ xy + 1

ri

Since the forged message (M∗, Ñ∗) must correspond to a Diffie-Hellman pair,
we must have m∗ = n∗ and thus am = an, bm = bn = 0 and cm,i = cn,i = 0 for
all i ∈ [q] and hence m∗ = n∗ = am. For the forgery to be accepted, r∗ and s∗

must satisfy s∗r∗ = m∗x + xy + 1. Therefore, we must have
(

ar + bry +
q

∑

i=1

cr,iri

) (

as + bsx +
q

∑

i=1

cs,i
mix + xy + 1

ri

)

= m∗x + xy + 1

Thus, we must have

aras + arbsx +
q

∑

i=1

arcs,i
mix + xy + 1

ri

+ asbry + bsbrxy +
q

∑

i=1

brcs,i
mixy + xy2 + y

ri

+ as

q
∑

i=1

cr,iri + bsx

q
∑

i=1

cr,iri +
q

∑

i=1

cr,iri

q
∑

i=1

cs,i
mix + xy + 1

ri

= m∗x + xy + 1
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There is no term in xy
ri

or xy2

ri
on the RHS so we must have for all i ∈ [q]

that arcs,i = 0 and brcs,i = 0. This means that we either have that cs,i = 0 for
all i ∈ [q] or we have ar = br = 0.

• Case ar = br = 0: Here we must have

as

q
∑

i=1

cr,iri + bsx

q
∑

i=1

cr,iri +
q

∑

i=1

cr,iri

q
∑

i=1

cs,i
mix + xy + 1

ri
= m∗x + xy + 1

There is no terms in ri or rix on the RHS so we must have for all i ∈ [q] that
ascr,i = 0 and bscr,i = 0. This means that we either have that cr,i = 0 for all
i ∈ [q] or we have as = bs = 0. The former case cannot occur as otherwise
the LHS will not have a term in xy and hence the equality will not hold. So
we must have as = bs = 0 and hence we have

q
∑

i=1

cr,iri

q
∑

i=1

cs,i
mix + xy + 1

ri
= m∗x + xy + 1

There is no term on the RHS of the form rjxy
ri

for any i, j ∈ [q] where i �= j.
Thus, we must have cr,ics,i = 0 if i �= j. This means we have

cr,ics,imix + cr,ics,ixy + cr,ics,i = m∗x + xy + 1

By the monomial xy, we must have cr,ics,i = 1 from which it is clear that the
only way the equality will hold is if m∗ = mi from some i ∈ [q] which means
the forgery is not valid as the signature is on a message that was queried to
the sign oracle.

• Case cs,i = 0 for all i ∈ [q]:

Thus, we must have

aras + arbsx + asbry + bsbrxy + as

q
∑

i=1

cr,iri + bsx

q
∑

i=1

cr,iri = m∗x + xy + 1

The only term on the LHS with the monomial xy is the term bsbrxy thus for
the equality to hold we must have that bs �= 0 and br �= 0. There is no term
on the RHS with the monomial rix and since we cannot have bs = 0, we must
have that cr,i = 0 for all i ∈ [q], which means we have:

aras + arbsx + asbry + bsbrxy = m∗x + xy + 1

There is no term on the RHS wih the monomial y and since we cannot have
br = 0, we must have that as = 0 which means we have:

arbsx + bsbrxy = m∗x + xy + 1

which cannot hold.
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�	
Lemma 4. The scheme for � > 1 is EUF-CMA secure.

Proof. We proceed by showing that any valid forgery in the case � > 1 can be
reduced to a forgery for the case � = 1.

Let A be a successful adversary in the � > 1 case we show how to construct
an adversary B who uses adversary A to break the scheme for the case � = 1
which would contradict Lemma .

Adversary B gets vk′ = (X ′, Ỹ ′) from her game where she has access to a sign
oracle for a single Diffie-Hellman pair. She chooses x1, . . . , x�−1 ← Zp and sets
Ỹ := Ỹ ′, X1 := X ′ and Xi := X ′xi−1 for i = 2, . . . , �. She starts A on the verifica-
tion key vk := (X1, . . . , X�, Ỹ ). Note that since x1, . . . , x�−1 are chosen uniformly
at random, the verification key vk A sees is indistinguishable from one she gets
from the real signer. When receiving a query on mi =

(

(M, Ñ)i,1, . . . , (M, Ñ)i,�

)

from A, B returns ⊥ if (M, Ñ)i,j /∈ ̂GH for any j ∈ [�]. Otherwise, she for-

wards (M ′
i , Ñ

′
i) :=

(

Mi,1 · ∏�
j=2 M

xj−1
i,j , Ñi,1 · ∏�

j=2 Ñ
xj−1
i,j

)

∈ ̂GH to her sign
oracle and returns the signature she gets to A. Such a signature is a valid signa-
ture on the message mi =

(

(M, Ñ)i,1, . . . , (M, Ñ)i,�

)

w.r.t. the verification key

vk = (X1, . . . , X�, Ỹ ).
When A outputs her forgery σ∗ on m∗ =

(

(M∗, Ñ∗)1, . . . , (M∗, Ñ∗)�

)

, B
returns (M ′, Ñ ′) :=

(

M∗
1 · ∏�

j=2 M∗
j

xj−1 , Ñ∗
1 · ∏�

j=2 Ñ∗
j

xj−1
)

∈ ̂GH and σ∗ as
the answer in her game. Thus, B wins her game with the same advantage as
that of A in her game. �	

4 Unilateral Scheme for 2 Diffie-Hellman Pairs

We give here a scheme for 2 pairs of Diffie-Hellman messages yielding unilateral
signatures of size 3|G|. The scheme is an extension of the recent single-message
scheme from [29] where we use different randomness for each message. Signatures
of this scheme are still shorter than those of all existing optimal Type-3 schemes
since the latter require that at least one of the components of σ is from the second
base group. The scheme is also more efficient than the single-message scheme
from [28]. The verification key of the scheme is of size 3|H|, whereas verification
of signatures require 1 PPE and 3 pairings, excluding the cost for verifying well-
formedness of the messages. Given the description of Type-3 bilinear groups P
output by BG(1κ), the scheme is as follows:

• KeyGen(P): Select x1, x2, y ← Zp. Set sk := (x1, x2, y) and vk :=
(X̃1, X̃2, Ỹ ) := (H̃x1 , H̃x2 , H̃y) ∈ H

3.

• Sign
(

sk,
(

(M1, Ñ1), (M2, Ñ2)
))

: To sign
(

(M1, Ñ1), (M2, Ñ2)
)

∈ ̂GH
2
, select

r1, r2 ← Zp, set R1 := Gr1 , R2 := Gr2 , S := ((Gx1 · M1)
r1 · (Gx2 · M2)

r2)
1
y .

Return σ := (R1, R2, S) ∈ G
3.
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• Verify
(

vk,
(

(M1, Ñ1), (M2, Ñ2)
)

, σ = (R1, R2, S)
)

: Return 1 iff R1 ∈ G
×,

R2, S ∈ G,
(

(M1, Ñ1), (M2, Ñ2)
)

∈ ̂GH
2

and

e(S, Ỹ ) = e(R1, X̃1 · Ñ1)e(R2, X̃2 · Ñ2) ·

• Randomize
(

vk,
(

(M1, Ñ1), (M2, Ñ2)
)

, σ = (R1, R2, S)
)

: Select r′ ← Z
×
p , and

set R′
1 := Rr′

1 , R′
2 := Rr′

2 , S′ := Sr′
. Return σ′ := (R′

1, R
′
2, S

′).

Correctness of the scheme follows by inspection and is straightforward to
verify. We remark here that the signer will always be able to link a random-
ized signature to the original signature from which it was obtained even if we
additionally require that R2 �= 1G. For instance, the malicious signer can choose
r2 = −r1 which will make all randomized versions of the signature in question
satisfy R′

1 · R′
2 = 1G. Another way the signer can link a randomized signature to

its original signature is by using knowledge of the exponents r1 and r2 since we
will always have that R′

1

1
r1 = R′

2

1
r2 .

We now prove the following theorem.

Theorem 3. The scheme is EUF-CMA secure in the generic group model.

Proof. Public elements in H are H̃, X̃1,X̃2, and Ỹ which correspond to the
discrete logarithms 1, x1, x2, and y, respectively. At the i-th signing query,
we have that ((mi,1, ni,1), (mi,2, ni,2)), which are the discrete logarithms of the

queried message
(

(Mi,1, Ñi,1), (Mi,2, Ñi,2)
)

, must be of the form

ni,k = ani,k
+ bni,k

x1 + cni,k
x2 + dni,k

y

mi,k = ami,k
+

i−1∑

j=1

bmi,k,j
r1j

+

i−1∑

j=1

cmi,k,j
r2j

+

i−1∑

j=1

dmi,k,j

r1j
m1j

+ r1j
x1 + r2j

m2j
+ r2j

x2

y
,

for k = 1, 2. Since we must have mi,1 = ni,1 and mi,1 = ni,2 for the messages
to be valid, we have mi,1 = ni,1 = a

mi,1
= a

ni,1
and mi,2 = ni,2 = a

mi,2
=

a
ni,2

, i.e. the messages queried to the signing oracle correspond to constant
polynomials. Note that the sign oracle does not produce any elements in H.

After q signing queries, ((m∗
1, n

∗
1), (m

∗
2, n

∗
2)), which are the discrete logarithms

of the forged Diffie-Hellman pairs
(

(M∗
1 , Ñ∗

1 ), (M∗
2 , Ñ∗

2 )
)

, must be of the form

n∗
k = ank

+ bnk
x1 + cnk

x2 + dnk
y

m∗
k = amk

+

q∑

i=1

bmk,i
r1i

+

q∑

i=1

cmk,i
r2i

+

q∑

i=1

dmk,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y
,

for k = 1, 2. Since we must have m∗
1 = n∗

1 and m∗
2 = n∗

2 for the forgery to be a

valid element of ̂GH
2
, we have m∗

1 = n∗
1 = a

m1
= a

n1
and m∗

2 = n∗
2 = a

m2
= a

n2
.
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Similarly, the signature (R∗
1, R

∗
2, S

∗) has the form

r∗
1 = a

r1
+

q
∑

i=1

b
r1,i

r1i
+

q
∑

i=1

c
r1,i

r2i
+

q
∑

i=1

d
r1,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y

r∗
2 = a

r2
+

q
∑

i=1

b
r2,i

r1i
+

q
∑

i=1

c
r2,i

r2i
+

q
∑

i=1

d
r2,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y

s∗ = a
s
+

q
∑

i=1

b
s,i

r1i
+

q
∑

i=1

c
s,i

r2i
+

q
∑

i=1

d
s,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y

For the forgery to be a valid signature, (r∗
1 , r

∗
2 , s

∗) must satisfy s∗y = r∗
1m

∗
1 +

r∗
1x1 + r∗

2m
∗
2 + r∗

2x2. So we must have

(
as +

q∑

i=1

b
s,i

r1i
+

q∑

i=1

c
s,i

r2i
+

q∑

i=1

d
s,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y

)
y

=

(
ar1

+

q∑

i=1

br1,i
r1i

+

q∑

i=1

cr1,i
r2i

+

q∑

i=1

dr1,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y

)
(x1 + m

∗
1)

+

(
ar2

+

q∑

i=1

br2,i
r1i

+

q∑

i=1

cr2,i
r2i

+

q∑

i=1

dr2,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y

)
(x2 + m

∗
2)

There is no term in y, r1i
y or r2i

y on the RHS so we must have a
s

= 0 and
b

s,i
= c

s,i
= 0 for all i.

Also, there are no terms in x1, x2, r1i
x2, r2i

x1,
r1i

x2
1

y , or
r2i

x2
2

y on the LHS
so we must have a

r1
= a

r2
= 0 and c

r1,i
= b

r2,i
= d

r1,i
= d

r2,i
for all i. Thus, we

have

q
∑

i=1

d
s,i

(r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2)

=
q

∑

i=1

b
r1,i

r1i
m∗

1 +
q

∑

i=1

b
r1,i

r1i
x1 +

q
∑

i=1

c
r2,i

r2i
m∗

2 +
q

∑

i=1

c
r2,i

r1i
x2

Since we must have r∗
1 �= 0, it follows that we must have at least for one

value of i that b
r1,i

�= 0. By the monomial r1i
x1, we have b

r1,i
= d

s,i
. Since

d
s,i

�= 0, we also have that c
r2,i

= d
s,i

. Now by the monomial r1i
, we have

that b
r1,i

m∗
1 = d

s,i
m1i

from which it follows that m∗
1 = m1i

. Similarly, by
the monomial r2i

, we have that c
r2,i

m∗
2 = d

s,i
m2i

from which it follows that
m∗

2 = m2i
. Thus, the forgery is on a message pair that was queried to the oracle.

�	

5 Efficiency Comparison

We compare in Table 1 the efficiency of our schemes with that of existing ones.
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Table 1. Efficiency comparison between our schemes and existing Type-3 schemes

Scheme σ vk PP M Randomizable Verification Cost

1 Signature n Signatures

G H G H G H PPE Pairing PPE Pairing

[3] I 5 2 8 + 2� 4 - - G
� Partially 2 6 + 2� + 4† 2n 6n + 2� + 4†

[3] II 2 5 8 + 2� 4 - - H
� Partially 2 6 + 2� + 4† 2n 6n + 2� + 4†

[4] 2 1 � 1 - - H
� Yes 2 3 + � + 1† 2n 3n + � + 1†

[33] 1 1 2 � - - 1 H
� Yes 2 2 + � + 3† 2n 2n + � + 3†

[33] 2 1 2 � - - 1 H
� No 2 3 + � + 3† 2n 3n + � + 3†

Ours I 1 1 � 1 - - ĜH
�

Yes 1 + �∗ 1 + � + 1† + 2�∗ n + �∗ n + � + 1† + 2�∗

Or Or Or Or

1 + 1∗ 1 + � + 1† + 2∗ n + 1∗ n + � + 1† + 2∗

Ours II 1 1 � 1 - - ĜH
�

Yes 1 + �∗ 1 + � + 1† + 2�∗ n + �∗ n + � + 1† + 2�∗

Or Or Or Or

1 + 1∗ 1 + � + 1† + 2∗ n + 1∗ n + � + 1† + 2∗

In the table numbers superscripted with † are the number of pairings that can
be precomputed, whereas numbers superscripted with ∗ are the cost needed to
verify well-formedness of the Diffie-Hellman message. The latter cost is constant
when verifying multiple signatures on the same message. Also, as mentioned ear-
lier, one can use techniques from batch verification, e.g. [12,17], to reduce the
cost required for verifying the well-formedness of a vector of � Diffie-Hellman
pairs to a single PPE and 2 pairings. For our schemes, we give 2 estimations for
the efficiency overhead where the first is for the case where no batch verification
is applied to verifying the well-formedness of the messages, whereas the second
cost is when batch verification is applied in that respect. For all schemes listed,
public parameters PP do not include the default group generators. Note that the
security of all schemes in the table except for [3] which rely on non-interactive
q-type assumptions is proven in the generic group model. For the cost of verifica-
tion, we give two estimations which are for verifying 1 and n different signatures
on the same message vector.

As can be seen from the table, our schemes outperform existing schemes
w.r.t signature size. The size of the verification key of our schemes matches the
best existing scheme. Also, the verification cost compares favourably especially
when verifying various signatures on the same message vector which is the case
for many applications, e.g. when the user is required to prove possession of
various credentials/attributes from an authority or possibly different authorities.

5.1 Efficiency in the Single Message Setting

The best existing scheme in terms of signature size and verification overhead
is the one recently given in [29] which has signatures of size 2|G| and verifica-
tion key of size 2|H|. When used on their own, the scheme in [29] has slightly
shorter signatures than ours, whereas schemes I and II of ours have shorter
verification key. In fact, the combined size of signatures and verification key
in the 3 schemes are identical. Note that the scheme in [29] has the slight
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non-standard requirement that one needs to check that a signature component
(which is information-theoretically independent of the message) is not the triv-
ial element and hence in the case that one needs to commit to that signature
component, one needs more expensive alternatives to prove that it conforms to
the requirement, which is not the case in our schemes. Let’s now compare the
verification overhead when verifying n signatures on the same message. Ignoring
the cost of checking that (M, Ñ) ∈ ̂GH, the scheme in [29] would require 2n pair-
ings, whereas schemes I and II of ours require only n + 2 pairings where one of
the pairings, i.e. e(G, H̃) can be pre-computed and used for signatures on other
messages, i.e. the cost drops to only n + 1 pairings after verifying signatures on
the first message. Thus, it is obvious that ours have less computational overhead
when verifying multiple signatures on the same message.

Let’s now compare the performance of Scheme I of ours and the one in [29]
when combined with Groth-Sahai [34] to prove knowledge of a signature on a
committed message. We consider the most efficient instantiation of the proofs
which relies on the SXDH assumption as noted by [30]. The scheme from [29] has
signatures of the form (R,S) ∈ G

2 and a verification key of the form (X̃, Ỹ ) ∈ H
2,

and verification requires checking that (M, Ñ) ∈ ̂GH, R �= 1G, and evaluating
the following PPE:

e(S, Ỹ ) = e(R, X̃ · Ñ) (2)

In the terminology of [34], Equation (2) is a quadratic PPE. When proving
knowledge of a signature, one has to commit to M , Ñ and S and thus we need
to produce a proof for the satisfiability of (2) as well as the quadratic PPE
e(G, Ñ) = e(M, H̃) to prove that (M, Ñ) ∈ ̂GH. The total size of the Groth-
Sahai commitments is 4|G| + 2|H|, whereas the size of the proof for each of the
above equations is 4|G|+4|H|. Thus, the total size of the witness indistinguishable
Groth-Sahai proof of knowledge is 12|G| + 10|H|.

Scheme I of ours has signatures of the form (R, S̃) ∈ G×H and a verification
key of the form (X, Ỹ ) ∈ G×H, and verification requires checking that (M, Ñ) ∈
̂GH and evaluating the following PPE:

e(R, S̃) = e(X, Ñ · Ỹ )e(G,H) (3)

When proving knowledge, we need to commit to M , Ñ and S̃ and thus we need
to produce a proof for the satisfiability of (3), which is a linear PPE since com-
ponents of the witness are all from the same group, as well as the quadratic PPE
to prove that (M, Ñ) ∈ ̂GH. The total size of the Groth-Sahai commitments is
2|G| + 4|H|. The size of the proof for (3) is 2|G| whereas proving (M, Ñ) ∈ ̂GH

requires a proof of size 4|G| + 4|H|. Thus, the total size of the witness indistin-
guishable Groth-Sahai proof of knowledge is 8|G| + 8|H|. From the above, it is
obvious when proving knowledge of signatures using Groth-Sahai proofs, which
was the main motivation behind introducing the structure-preserving signatures
notion, and which is required for the vast majority of applications of the notion,
e.g. group, blind, attribute-based signatures, e-cash, etc., our scheme outper-
forms the best existing scheme. The efficiency gain has implication for various
applications.
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