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Preface

The International Conference on Cryptography and Coding is the biennial conference
of the Institute of Mathematics and its Applications (IMA) on cryptography and coding
theory. The conference series has been running for more than three decades and the
16th edition was held December 12–14 at St. Catherine’s College, University of
Oxford. We received 32 submissions from authors all over the world on a diverse set of
topics both in cryptography and coding theory. The Program Committee selected 19
of the submissions for presentation at the conference. The review process was
double-blind and rigorous. Each submission was reviewed independently by at least
two reviewers in an individual review phase, and subsequently considered by the
Program Committee in a discussion phase. Feedback from the reviews and discussions
was given to the authors and their revised submissions are included in the proceedings.

In addition to the presentations of accepted papers, the conference also featured four
keynote talks by internationally leading scientists on their research in the interface of
cryptography and coding theory. I am grateful to Daniele Micciancio, Jan Camenisch,
Nicolas Sendrier, and Thomas Prest for accepting our invitation and sharing the
insights gathered from their exciting research. I am also grateful to Martin Albrecht,
who co-chaired a Special Session on Lattice-Based Cryptography Constructions
and Architectures, and to the contributing authors, Nina Bindel, Tim Güneysu,
Tobias Oder, Francesco Regazzoni, Peter Campbell, and Michael Groves.

Running a conference like IMACC requires the effort of many people and many
thanks are due. I would like to thank the Steering Committee for their trust and support.
I thank the authors for their submissions and the Program Committee and the external
reviewers for their effort in selecting the scientific program. Thanks also goes to the
IACR for their cooperation and to the H2020 SAFEcrypto project (www.safecrypto.eu)
for providing sponsorship. I appreciate the assistance by Anna Kramer, Abier El-Saeidi
and Xavier Mathew from Springer in the production of the proceedings. Finally, I am
incredibly thankful to conference officer (general chair) Lizzi Lake and her colleagues
at the Institute of Mathematics and its Applications for handling all the practical matters
of the conference.

December 2017 Máire O’Neill

https://www.safecrypto.eu
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Revealing Encryption for Partial Ordering

Helene Haagh1(B), Yue Ji2, Chenxing Li2, Claudio Orlandi1, and Yifan Song2

1 Aarhus University, Aarhus, Denmark
haagh@cs.au.dk

2 IIIS, Tsinghua University, Beijing, China

Abstract. We generalize the cryptographic notion of Order Revealing
Encryption (ORE) to arbitrary functions and we present a construction
that allows to determine the (partial) ordering of two vectors i.e., given
E(x) and E(y) it is possible to learn whether x = y, x > y, x < y or
whether x and y are incomparable. This is the first non-trivial example
of a Revealing Encryption (RE) scheme with output larger than one
bit, and which does not rely on cryptographic obfuscation or multilinear
maps.

Keywords: Secret-key cryptography · Order-revealing encryption ·
Revealing encryption

1 Introduction

Computing on encrypted data is a promising approach to privacy preserving
cloud computing. Using techniques such as (fully) homomorphic encryption
[RAD78,Gen09], a client can upload sensitive data on a partially untrusted cloud
which can perform computation on the data without learning anything about
the data, including the result of the computation. However in many applica-
tions it is desirable for the server to learn the result of the computation, so that
the server can make decisions based on this result without further interaction
with the client. Imagine as an example a server running an encrypted spam fil-
ter: using homomorphic encryption the server can, given an encrypted message,
determine whether the message is spam or not but, since the server does not
learn this bit, the server is unable to place the encrypted message in the user’s
spam folder.

Revealing Encryption. To solve the above class of problems a different kind
of cryptographic primitive is needed, which we refer to as revealing encryption or
RE. Intuitively, an RE scheme is an encryption scheme that allows to compute
(selected) functions of the plaintexts by having access to the encrypted data only.
In other words, given a target function f we want to construct an encryption
scheme E and a public function F such that if X1 = E(K,x1) and X2 = E(K,x2)
(for a random key K) then we have that F (X1,X2) = f(x1, x2).

Work done while visiting Aarhus University.

c© Springer International Publishing AG 2017
M. O’Neill (Ed.): IMACC 2017, LNCS 10655, pp. 3–22, 2017.
https://doi.org/10.1007/978-3-319-71045-7_1



4 H. Haagh et al.

Order Preserving Encryption. The first attempt towards building RE was
taken by Agrawal et al. [AKSX04] when they introduced order preserving encryp-
tion (OPE), which using our language can be phrased as the very special case
of RE where both f and F are numeric comparison. The “preserving” part of
OPE is both a strength and a weakness: since f = F it is very easy to use OPE
in practical applications (a client outsourcing an encrypted database using OPE
does not even need to inform the server that the database is encrypted, as the
database can compare encrypted data in the exact same way as it would com-
pare plaintext data). Unfortunately preserving numeric ordering implies that
OPE cannot achieve strong security guarantees, as shown by [BCLO09,BCO11].
To overcome this limitation order revealing encryption (ORE) was introduced
by Boneh et al. [BLR+15]. The main conceptual contributions of this paper is
to generalize the notion of ORE to arbitrary functions (the formal definition of
RE is given in Sect. 3).

While the first (fully-secure) ORE schemes could only be instantiated using
extremely heavy cryptographic tools (see below) and were therefore completely
impractical, Chenette et al. [CLWW16] proposed a very elegant and simple con-
struction of ORE which is extremely efficient in practice (at the price of leaking
slightly more information than in the ideal case).

Obfuscation & Co. On the other end of the scale, it is trivial to construct
secure RE for any function using ideal circuit obfuscation. In a nutshell, one
can let F be an obfuscated circuit that takes as input two ciphertexts X1,X2,
contains a (hardwired) secret key K, and outputs

F (X1,X2) = f(D(K,X1),D(K,X2))

i.e., the obfuscated program simply outputs the output of f evaluated on the
result of the decryption of its inputs.

Unfortunately general purpose ideal obfuscation or even virtual black-box
obfuscation does not exist [BGI+01]. While a weaker notion of obfuscation
(called indistinguishability obfuscation), might be plausibly instantiated under
cryptographic assumptions (as shown by the fascinating research direction
started by Garg et al. [GGH+13]), it seems unlikely that this will turn into
a practical solution in the foreseeable future. Note that using obfuscation it
is possible to instantiate multi-input functional encryption (MIFE) [GGG+14,
BLR+15,BKS16]: using MIFE, one can implement RE in a similar way as we
sketched above, where the obfuscated program is replaced by a MIFE secret key
skf for the function f .

Note that despite the fact that MIFE implies RE, RE does not imply MIFE1.
It is therefore plausible that RE can be instantiated more efficiently and under
weaker assumptions than MIFE, and our results show that this is indeed the
case.

1 A MIFE scheme must not reveal any information (e.g., satisfy IND-CPA security)
until a secret key for a function f is released, while in an RE scheme anyone can
compute the authorized function on the encrypted data.
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Our Contributions. Given the state of affairs, it is natural to ask:

For which functions can we construct practically
efficient revealing encryption (RE) schemes?

In this paper we begin answering the question by showing a construction of
revealing encryption for partial order of vectors. This is a naturally interesting
function motivated by concrete applications such as privacy-preserving skyline
queries [BKS01,PTFS03] (or enhancing privacy in any other algorithm based on
the partial order relation). In particular, given a dataset of d-dimensional vectors,
the goal of a skyline query is to determine the set of dominating vectors. As a
classic example, in a skyline query a client (e.g., a department committee) wants
to evaluate a number of different offers (e.g., job candidates for a faculty position)
based on a set of incomparable parameters (e.g., teaching experience, research
output, funding, etc.). In this case the department committee is interested in
evaluating all candidates for which there does not exist another candidate who
is better qualified under all parameters, which is exactly the output of a skyline
query. Using RE it is possible to compute the output of a skyline query by per-
forming the partial-comparison directly in the encrypted domain i.e., without
having to first decrypt the vectors. We note that there are plenty of protocols
and algorithms in the computer science literature which use the partial ordering
relation (lattice-based access control, timestamps based on vector clocks, topo-
logical ordering, etc.), and we therefore believe that the notion of RE for partial
order is as natural as the case of RE for the total order relation.

Note that the notion of revealing encryption has also been independently
introduced by Joye and Passelgue [JP16]. (Interestingly, we came to the notion
of RE by generalizing ORE while they reached the same notion by simplifying
2-input FE). In their work they present RE constructions for functions different
than those considered in this paper, including: comparison (ORE), orthogonality
testing and cardinality of intersection.

Technical Overview. The starting point of our solution is the recent ORE
scheme of Chenette et al. [CLWW16]. In this scheme, a value x ∈ {0, 1}n is
encrypted using n evaluations of a pseudorandom function (PRF) FK for key
K, i.e., for each index i = 1, . . . , n the encryption algorithm outputs a value

ci = FK(i, prefix(x, i − 1)) + xi

where prefix(x, i) is the function that outputs the i most significant bits of x, xi

is the ith most significant bit, and where + is integer addition.
Now, take two values x and y and let i∗ be the largest index such that

prefix(x, i∗ − 1) = prefix(y, i∗ − 1)

i.e., i∗ is the smallest index such that xi∗ �= yi∗ . Then the first i∗ − 1 ciphertexts
will be identical for both x, y (since the PRF is evaluated on exactly the same
value, and the added bit is the same), while the i∗-th ciphertext will be “in the
right order” (since the PRF is evaluated on exactly the same value but in only
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one of the two cases 1 will be added) and therefore one can compare x and y
by finding the first ciphertext component in which the encryptions differ and
perform a simple numerical comparison of this value. For security, note that the
bottom n − i∗ − 1 ciphertexts will be independently random since the PRF is
evaluated on different values. Therefore, the scheme reveals the order as well as
the first position in which the value differs. A very recent work shows that it
is possible to limit this leakage [CLOZ16], but unfortunately their construction
requires heavy public key operations (we believe that similar techniques could
be applied to our scheme as well).

In a nutshell, we generalize the construction presented by Chenette et
al. [CLWW16] in the following way: consider for simplicity the 2-dimensional
case x = (x1, x2). Then for each pair of indices i, j we compute

ci,j = FK (i, j, prefix(x1, i − 1), prefix(x2, j − 1)) + αi,j(x1, x2)

where αi,j is a carefully chosen function that allows to perform the comparison
between two vectors in such a way that no information is leaked when the vectors
are incomparable. The main challenge in coming up with the right function α,
is that we are trying to encode a non-binary output (i.e., x = y, x > y, x < y,
or incomparable) into a binary relation (i.e., the numerical comparison between
the scalars α(x) and α(y)). Details of the constructions are given in Sect. 4 and
in Appendix A we give a performance analysis of our scheme.

Revealing Encryption Beyond Partial Ordering. We think that discov-
ering which functions admit revealing encryption schemes is an exciting and
important future research direction. In the full version [HJL+16], we discuss
simple (unconditionally secure) examples of revealing encryptions for absolute
distance and for hamming distance (which unfortunately is only secure for a
limited number of queries).

Other related work. During recent years, OPE and ORE have been active
research areas: Bun and Zhandry [BZ16] have studied the connection between
ORE and differentially private learning [DMNS06,KLN+11]. Concurrent with
this work, Lewi and Wu [LW16] presented a new and efficient ORE construction
based on the work of Chenette et al. [CLWW16]. This construction splits the
message in blocks (i.e. a sequence of bits) and the scheme leaks the position of
the first block in which the messages differ. Roche et al. [RACY16] proposed
a new primitive called partial order preserving encoding, which achieves ideal
OPE security (IND-OCPA [BCLO09]) while providing fast insertion and search
in an encrypted database. Furthermore, interactive OPE [PLZ13,KS14,Ker15]
was introduced to achieve stronger security guarantees (like ideal security) for
OPE schemes. In these schemes, ciphertexts are mutable, meaning that whenever
a new value is encrypted the existing ciphertexts can be updated.

During the last couple of decades there has been a long line of work con-
cerning encryption schemes, where either the ciphertexts preserve some infor-
mation about the underlying messages or it is possible to perform a public
test that reveals some information about the encrypted data: searchable encryp-
tion [SWP00,GSW04,BBO07,BHJP14] allows users to outsource their data in
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a private manner, while maintaining the possibility to do efficient search over
it. Variants of searchable encryption are public-key encryption with keyword
search [BCOP03,CGKO06], secure indexes [Goh03], and (privacy-preserving)
attribute-based searchable encryption [WLLX13,KHY13,ZXA14,CD15b]. Other
related encryption schemes are prefix preservering encryption [XFAM02,XY12]
and format preserving encryption [BRRS09,WRB15], which are concerned with
preserving some specific information about the encrypted data. Property pre-
serving symmetric encryption [PR12,CD15a] is a generalization of OPE that
enables users to learn the properties of a massive data set.

The applications of RE schemes is closely related to the applications
of encryption schemes, like attribute-based encryption [GPSW06,GVW13],
functional encryption [BSW11], predicate encryption [KSW08], (anony-
mous) identity-based encryption [Sha84,KSW08], and access control encryp-
tion [DHO16]. All these encryption schemes deal with payload privacy, user
privacy, computation on outsourced encrypted data, fine-grained access control
on data, etc.

Finally, in the full version [HJL+16], we review the (in)security of some
existing systems which offer alternative solutions to privacy-preserving skyline
queries.

2 Preliminaries

For n, n1, n2 ∈ N, let [n1 : n2] be the set {n1, n1 + 1, . . . , n2 − 1, n2} and [n] be
the set [1 : n]. For x ∈ Z, let |x| denote the absolute value of x. Let x ←$ S
denote that x is sampled uniform random from the set S.

Definition 1 (Pseudorandom Function). We say that F : {0, 1}κ ×
{0, 1}∗ → {0, 1}κ is a pseudorandom function (PRF) if for all PPT adver-
saries A

advA = 2 · |Pr[AOb(·)(1κ) = b] − 1/2| < negl(κ)

with O0 a uniform random function and O1 = FK for some key K ∈ {0, 1}κ.

We interpret x ∈ {0, 1}n both as a string of bits i.e. x = (x1, . . . , xn) and
as an integer x =

∑n−1
i=0 2ixn−i i.e., x1 is the most significant bit of x. Given

such an x and an index i ∈ [n] it is convenient to define the function prefix :
{0, 1}n × [0 : n] → {0, 1}n × [0 : n]

prefix(x, i) := (x1, . . . , xi, 0n−i, i)

so that prefix(x, 0) = (0n, 0), prefix(x, 1) = (x1, 0n−1, 1) and so on. Note that
prefix has the useful property that for all x ∈ {0, 1}n prefix(x, i) �= prefix(x, j)
if i �= j. Given a d-dimensional vector m = (x1, . . . , xd) ∈ ({0, 1}n)d we define
prefix to output the vector2

prefix(m, (i1, . . . , id)) := (prefix(x1, i1), . . . , prefix(xd, id)).
2 To ease the notation we use bold subscripts to indicate the entries in the vector.
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Given two strings x, y ∈ {0, 1}n we define pos(x, y) to return the largest i
such that prefix(x, i − 1) = prefix(y, i − 1) or equivalently the smallest i such
that xi �= yi. If x = y, then we define pos(x, y) to output n + 1. Given two
d-dimensional vectors m(1) = (x(1)

1 , . . . , x
(1)
d ),m(2) = (x(2)

1 , . . . , x
(2)
d ) we define

pos to output the vector

pos(m(1),m(2)) := (pos(x(1)
1 , x

(2)
1 ), . . . , pos(x(1)

d , x
(2)
d )).

3 Revealing Encryption

In this section we formally define Revealing Encryption (RE).

Authorized Function. Let M be the input space and I the output space, then
a RE scheme is parametrized by �-ary authorized function

f : M� → I.

Revealing Encryption. Given an authorized function f , a RE scheme for f is
a triple of algorithms Πf = (Setup,Enc,Eval) defined as follows:

Setup: On input the security parameter κ, the randomized algorithm Setup
outputs a secret key sk and the public parameters pp.

Encryption: On input a message m ∈ M and a secret key sk, the randomized
algorithm Enc outputs a ciphertext c.

Eval: On input � ciphertexts {ci = Enc(sk,mi)}i∈[�] and the public parameters
pp, the Eval algorithm outputs f(m1, . . . ,m�) ∈ I.

Remark 1. Note that here and in the rest of the paper we do not mention the
decryption algorithm, since any RE can be enhanced to allow for decryption by
appending an IND-CPA secure encryption to the RE ciphertext.

Definition 2 (Correctness). Let f be an authorized function and κ be the
security parameter. Let Πf = (Setup,Enc,Eval) be a RE scheme for f . We say
that Πf is correct if for all messages {mi}i∈[�] ∈ M� the following probability

Pr
[
Eval

(
pp, {Enc(sk,mi)}i∈[�]

) �= f
({mi}i∈[�]

)]

is negligible in κ, where (sk, pp) ← Setup(1κ) and the probabilities are taken over
the random coins of all algorithms.

Leakage Function. Following the work of Chenette et al. [CLWW16], our def-
inition also allows for a leakage function L : M∗ → {0, 1}∗ that exactly charac-
terizes the information leaked by our constructions. In the best case L({mi}i∈[q])
outputs f({mj}j∈S) for every subset S ⊂ [q] of size �, and in this case we talk
about optimal leakage. Note that the work of Chenette et al. leaks extra infor-
mation as well (the first digit at which two integers x, y are different) and our
main construction inherits this leakage.
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Definition 3 (Security, [CLWW16]). Let κ be the security parameter, let q ∈
N, and let f be an authorized function. Let Πf = (Setup,Enc,Eval) be a RE
scheme for f . Consider the following experiments, where A = (A1, . . . ,Aq) is
an adversary, S = (S0, . . . ,Sq) is a simulator, and L(·) is a leakage function.

Security Experiments

REAL
Πf

A (κ):
1. (sk, pp) ← Setup(1κ);
2. (m1, stA) ← A1(1

κ, pp);
3. c1 ← Enc(sk, m1);
4. for 2 ≤ i ≤ q;

a. (mi, stA) ← Ai(stA, c1, . . . , ci−1);
b. ci ← Enc(sk, mi);

5. output (c1, . . . , cq) and stA;

IDEAL
Πf

A,S,L(κ):
1. (stS , pp) ← S0(1

κ);
2. (m1, stA) ← A1(1

κ, pp);
3. (c1, stS) ← S1(stS , L(m1));
4. for 2 ≤ i ≤ q;

a. (mi, stA) ← Ai(stA, c1, . . . , ci−1);
b. (ci, stS) ← Si(stS , L(m1, . . . , mi));

5. output (c1, . . . , cq) and stA;

We say that Πf is a q-secure RE scheme wrt L(·) if for all adversaries A that
makes no more than q queries, there exists a simulator S such that the output
distributions of the two experiments are computationally indistinguishable

REAL
Πf

A (κ) ∼c IDEAL
Πf

A,S,L(κ)

We say a scheme is simply secure if it is q-secure for every q = poly(κ).

Definition 3 captures the requirement that given an a priori bounded num-
ber of ciphertexts, the adversary should not be able to learn more than the
allowed leakage. The security experiments formalize this requirement by creat-
ing the challenge ciphertexts either as real encryptions of the adversarial chosen
plaintexts or simulated based on the allowed leakage of the adversarial chosen
plaintexts. Note that the output of the experiment contains an arbitrary output
from the adversary (i.e., stA), which is a very conservative way of allowing the
adversary to output any information that might be useful to distinguish between
the ideal experiment and the real experiment.

4 Partial Order Revealing Encryption (PORE)

In this section, we present a construction of revealing encryption for partial
ordering of vectors. For the sake of presentation, we will start by showing our con-
struction in the 2-dimensional case (which already requires a significant amount
of notation and indices). In the full version [HJL+16], we generalize to the mul-
tidimensional case. Let M = {0, 1}n × {0, 1}n be the message domain, and the
authorized function for a 2-dimensional PORE is

f : M × M → {(0, 0), (0, 1), (1, 0), (1, 1)}
For m(1) = (x(1), y(1)) ∈ M and m(2) = (x(2), y(2)) ∈ M we define a function
that determines the order

ord(m(1),m(2)) :=
{

1 if x(1) ≤ x(2) ∧ y(1) ≤ y(2)

0 otherwise
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Then we can define the authorized function as

f(m(1),m(2)) := (ord(m(1),m(2)), ord(m(2),m(1)))

which means that

f(m(1),m(2)) :=

⎧
⎪⎪⎨

⎪⎪⎩

(1, 1) if m(1) = m(2)

(1, 0) if m(1) < m(2)

(0, 1) if m(1) > m(2)

(0, 0) if they are incomparable

We will prove the security of our scheme with respect to the following leakage
function (with f as defined above and pos as defined in Sect. 2):

L(m(1), · · · ,m(q)) =
{

f(m(i),m(j)), pos(m(I),m(j)) | i, j ∈ [q]
}

i.e. the construction reveals the order as well as the first position in which each
coordinate differ.

Given a pseudorandom function F : {0, 1}κ × {0, 1}∗ → {0, 1}κ, we define
the following four functions:

F1,K , F2,K : M × [n + 1]2 → {0, 1, 2}
F3,K , F4,K : {0, 1}n × [n] → {0, 1}

where given a plaintext m = (x, y) ∈ M and two indices i, j ∈ [n + 1] we define

F1,K(m, (i, j)) = FK(1, prefix(x, i − 1), prefix(y, j − 1)) mod 3
F2,K(m, (i, j)) = FK(2, prefix(x, i − 1), prefix(y, j − 1)) mod 3

F3,K(x, i) = FK(3, prefix(x, i − 1)) mod 2
F4,K(y, j) = FK(4, prefix(y, j − 1)) mod 2

On a high level, the construction works as follows: given a point m = (x, y)
and a key K for the pseudorandom function F , then the ciphertext consist of a
two-dimensional matrix cm ∈ {0, 1, 2}(n+1)×(n+1) and two bit strings bx, by ∈
{0, 1}n (i.e. one bit string for each entry in the point). These bit strings are
constructed to fulfil the property: given encryptions of two points, we can for each
entry (x and y) determine at which position they differ, but without revealing
the order. These positions can then be used to look up an entry in the matrix
cm, which will determine the partial order of the two points.

Construction 1. Fix a security parameter κ ∈ N. We define a PORE scheme
for two dimensions ΠPORE = (Setup,Enc,Eval) as follows

Setup: On input κ ∈ N, sample and output a key K ←$ {0, 1}κ.
Encryption: Given a point m = (x, y) ∈ M and a secret key K compute for

all i, j ∈ [n + 1]

cmi,j = F2,K (m, (i, j)) + α (m, (i, j)) mod 3
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where α is a function defined as follows

α (m, (i, j)) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if (xi, yj) = (0, 0)
1 if (xi, yj) = (1, 1)
xi if i � n, j = n + 1
yj if i = n + 1, j � n
0 if i = n + 1, j = n + 1

zi,j otherwise

where zi,j = F1,K(m, (i, j)). Next, we compute for all i, j ∈ [n]

bxi = F3,K(x, i) + xi mod 2
byj = F4,K(y, j) + yj mod 2

Then, output the ciphertext C = (cm, bx, by), where

cm := (cmi,j)i,j∈[n+1] ∈ {0, 1, 2}(n+1)×(n+1)

bx := (bx1, . . . , bxn) ∈ {0, 1}n

by := (by1, . . . , byn) ∈ {0, 1}n

Evaluation: On input two ciphertexts

C(1) = (cm(1), bx(1), by(1)) = Enc(K,m(1))

C(2) = (cm(2), bx(2), by(2)) = Enc(K,m(2))

Compute pos(bx(1), bx(2)) = �x and pos(by(1), by(2)) = �y. If �x = n + 1 and
�y = n + 1, the algorithm outputs (1, 1) (since m(1) = m(2)). Otherwise,
lookup the two entries cm

(1)
�x,�y

and cm
(2)
�x,�y

and compute

t = cm
(1)
�x,�y

− cm
(2)
�x,�y

mod 3

Next, the algorithm branches on the value of t:
If t = −1, output (1, 0) (since m(1) < m(2));
If t = 1, output (0, 1) (since m(1) > m(2));
Otherwise output (0, 0), since the two points are incomparable.

Correctness. Let m(1) = (x(1), y(1)) and m(2) = (x(2), y(2)) be two plaintexts
such that

pos(m(1),m(2)) = (�x, �y)

(i.e. x(1) and x(2) differ at position �x and y(1) and y(2) differ at position �y).
We consider the encryptions of these messages

C(1) = (cm(1), bx(1), by(1)) = Enc(K,m(1))

C(2) = (cm(2), bx(2), by(2)) = Enc(K,m(2))
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We first argue that bx
(1)
i = bx

(2)
i for i < �x. This is easy to see:

bx
(1)
i = F3,K(x(1), i) + x

(1)
i mod 2

= FK(3, prefix(x(1), i − 1)) + x
(1)
i mod 2

= FK(3, prefix(x(2), i − 1)) + x
(2)
i mod 2

= bx
(2)
i

Since by definition of �x we know that ∀i < �x, prefix(x(1), i−1) = prefix(x(2), i−1)
and x

(1)
i = x

(2)
i . The same can be argued about the y part. We then argue that

if �x < n + 1, then there ∃i < n + 1 such that bx
(1)
i �= bx

(2)
i . This is easy to see

since by definition of �x the output of prefix is the same but x
(1)
�x

�= x
(2)
�x

.

So, we turn our attention to the comparison between cm
(1)
�x,�y

and cm
(2)
�x,�y

by
computing

t = cm
(1)
�x,�y

− cm
(2)
�x,�y

mod 3

Note that by definition of �x, �y, the output of prefix is the same for both cipher-
texts and therefore the output of F2,K is the same so we can rewrite this as

t = α(m(1), (�x, �y)) − α(m(2), (�x, �y)) mod 3

We now have the following cases:

1. �x < n + 1 ∧ �y < n + 1: In this case we know that x
(1)
�x

�= x
(2)
�x

∧ y
(1)
�y

�= y
(2)
�y

,
which means that we are either in the case (comparable)

(x(1)
�x

, y
(1)
�y

) = (0, 0), (x(2)
�x

, y
(2)
�y

) = (1, 1) or

(x(1)
�x

, y
(1)
�y

) = (1, 1), (x(2)
�x

, y
(2)
�y

) = (0, 0)

or (incomparable)

(x(1)
�x

, y
(1)
�y

) = (0, 1), (x(2)
�x

, y
(2)
�y

) = (1, 0) or

(x(1)
�x

, y
(1)
�y

) = (1, 0), (x(2)
�x

, y
(2)
�y

) = (0, 1)

In the comparable case we have that one of the α is 1 and the other is 0. When
we are in the case m(1) < m(2) (i.e. the first of the two comparable cases),
then we have that α(m(1), (�x, �y)) = 0 and α(m(2), (�x, �y)) = 1, thus t = −1
and the evaluation algorithm will output (1, 0) meaning that m(1) < m(2).
Similar, we argue that the evaluation algorithm correctly outputs (0, 1) (since
t = 1) when m(1) > m(2).
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In the incomparable case we have that t = 0 since the value zi,j is the same
in both cases (since as argued before prefix’s output is the same and so is
F1,K ’s output).

2. �x = n + 1 ∧ �y < n + 1: following a similar reasoning in this case x
(1)
�x

=

x
(2)
�x

∧y
(1)
�y

�= y
(2)
�y

therefore t = y
(1)
�y

−y
(2)
�y

= −1 when m(1) < m(2), and t = 1
when m(1) > m(2).

3. �x < n + 1 ∧ �y = n + 1: following a similar reasoning in this case x
(1)
�x

�=
x
(2)
�x

∧y
(1)
�y

= y
(2)
�y

therefore t = x
(1)
�y

−x
(2)
�y

= −1 when m(1) < m(2), and t = 1
when m(1) > m(2).

4. �x = n + 1 ∧ �y = n + 1: by the definition of the pos function this means that
m(1) = m(2), and by definition the evaluation algorithm will output (1, 1)
meaning that the two messages are equal.

4.1 Security

To prove the security of the construction, we present a simulator that constructs
the ciphertexts based on information provided by the leakage function and the
previous generated ciphertext.

On a high level the simulator works as follows: each component of the cipher-
text C(i) is generated using the leakage L(m(1), . . . ,m(i)). For each j < i, the
leakage reveals at which position �x (resp. �y) the messages m(i) and m(j) differ
for coordinate x (resp. y) and the partial order of the messages. Given this infor-
mation, we can construct the entries cm

(i)
�x,�y

, bx
(i)
�x

and by
(i)
�y

in cm(i), bx(i) and

by(i) such that they reveal the order. Next, for each entry cm
(i)
s,t, bx

(i)
s and by

(i)
t

with s < �x and t < �y, the content of the entry will be equivalent to (some of)
the previous generated ciphertexts (which are contained in the state of the sim-
ulator), since the encryption algorithm uses a pseudorandom function. Finally,
for each entry cm

(i)
s,t, bx

(i)
s and by

(i)
t with s > �x and t > �y, the content of the

entry will be generated uniformly at random, since the corresponding input to
the pesudorandom function has never been used before.

Simulator. Denote the adversarial chosen message as m(1), · · · ,m(q), where
m(i) = (x(i), y(i)) ∈ M. Initially, simulator S0 is empty and S1 sets C(1) =
(cm(1), bx(1), by(1)), where cm(1), bx(1), by(1) are all drawn uniformly at random.
Furthermore, it sets the state stS = (C(1)). Next, define the simulator Si (for
2 ≤ i ≤ q) as in Fig. 1.

Theorem 1. The RE scheme ΠPORE from Construction 1 is secure with leakage
function L.

The complete proof of Theorem 1 is presented in the full version of the
paper [HJL+16].
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(C(i), stS) ← Si(stS , L(m(1), . . . ,m(i)))

For all j < i we have that pos(m(i),m(j)) = (�(j)x , �
(j)
y ) is provided by

L(m(1), . . . ,m(i)).
For each s, t ∈ [n + 1] define entry cm

(i)
s,t ∈ cm(i) as:

1. If ∃j < i such that �
(j)
x > s and �

(j)
y > t, then set cm

(i)
s,t := cm

(j)
s,t .

2. Else if ∃j < i such that �
(j)
x = s and �

(j)
y = t, then

– if m(i) > m(j), set cm
(i)
s,t := cm

(j)
s,t + 1 mod 3;

– if m(i) < m(j), set cm
(i)
s,t := cm

(j)
s,t − 1 mod 3;

– if they are incomparable, set cm
(i)
s,t := cm

(j)
s,t .

3. Else set cm
(i)
s,t ←$ {0, 1, 2}.

For each s ∈ [n] define entry bx
(i)
s ∈ bx(i) as:

4. If ∃j < i such that �
(j)
x > s, then set bx

(i)
s := bx

(j)
s .

5. Else if ∃j < i such that �
(j)
x = s, then set bx

(i)
s := bx

(j)
s +1 mod 2.

6. Else set bx
(i)
s ←$ {0, 1}.

For each t ∈ [n] define entry by
(i)
t ∈ by(i) as:

7. If ∃j < i such that �
(j)
y > t, then set by

(i)
t := by

(j)
t .

8. Else if ∃j < i such that �
(j)
y = t, then set by

(i)
t := by

(j)
t +1 mod 2.

9. Else set by
(i)
t ←$ {0, 1}.

Output C(i) = (cm(i), bx(i), by(i)) and stS = (C(1), . . . , C(i)).

Fig. 1. Simulator Si (for 2 ≤ i ≤ q) for 2-dimensional PORE.

5 Conclusion

In this work, we introduced a generalization of order-revealing encryption (ORE)
called revealing encryption (RE), which is an encryption scheme that allows
to compute a (selected) function f of the plaintexts given only the encrypted
data. We adopt the simulation-based security notion presented by Chenette et
al. [CLWW16], which define security with respect to a leakage function. This
enables one to determine the exact information that the ciphertexts leak about
the underlying messages (which will always include the function f evaluated on
all possible ciphertexts).
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Revealing encryption is of special interest in relation to applications like
computation or queries on outsourced encrypted data. However, these encryp-
tion schemes leak potentially sensitive information about the encrypted data
depending on the actual application in which RE is used. This means that
before using RE in a concrete application one should make a proper analysis
to understand whether the leakage provided is problematic or not. A recent line
of work has been concerned with attacking applications built on top of this kind
of encryption schemes [NKW15,DDC16,GSB+17].
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(CTIC), the Danish Independent Research Council under Grant-ID DFF-6108-00169
(FoCC), and the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 731583 (SODA).

Appendices

A Efficiency of PORE

In this section we analyze the efficiency of our PORE construction.

A.1 Theoretical Efficiency

Let κ be the security parameter, d the number of dimensions and n the bit length
of each entry. Then we can compute the storage and computational complexity
of our scheme.

Storage Complexity. The bit length of a ciphertext in our PORE scheme is
exactly:

1.6(n + 1)d + nd = O(nd)

Computational Overhead. Performing an encryption requires

2(n + 1)d + nd = O(nd)

calls to a PRF (with unbounded domain). Note that running the evaluation
algorithm requires no invocation of the PRF (only d binary searches into vectors
of n bits each and a single addition modulo 3).

A.2 Implementation Choices

In this section we describe the result of our experimental validation of the effi-
ciency of our PORE scheme.

Plaintext Space. We have implemented our scheme for a range of parameters d
and n. We report here the results for all combinations (d, n) with d ∈ {2, . . . , 8}
and n = 2i for i ∈ {1, . . . , 13} s.t. the ciphertext size is less than 20 MB.
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PRF Choice. We implement the PRF F : {0, 1}κ × {0, 1}∗ → {0, 1}κ using
AES-CBC mode, with key size κ = 128 bits. This is a particularly convenient
choice thanks to the AES native instruction in modern CPUs.

Note that in the theoretical analysis we stated that the complexity of the
encryption is O(nd) when measured as the number of calls to a PRF with
unbounded domain. However in practice, when instantiating F with AES in
CBC mode the running time (in terms of number of calls to AES) grows linearly
with the number of blocks needed for the plaintext, namely �dn/128. There-
fore, a näıve implementation would be significantly slower than promised. We
notice, however, that thanks to the special structure of the inputs of our PRF
it is possible to get rid of this extra factor. In particular, we note that in our
matrix of ciphertexts we evaluate the PRF on inputs of the form

FK(prefix(x1, i1), . . . , prefix(xd, id))

where each value prefix(xk, ik) is given as input to n different PRFs. Therefore
we modify the way we evaluate the PRF by first precomputing

uk,i = F k
K(prefix(xk, i)) ∀k ∈ [d], i ∈ [n]

and then implement

FK(prefix(x1, i1), . . . , prefix(xd, id)) = F 0
K(u1,i1 ⊕ · · · ⊕ ud,id)

so that the inputs to F 0
K is of fixed length 128. Therefore (even adding the

O(n2d) extra AES invocations on “long” n-bit values used to precompute the
u’s), the total number of calls to AES and hence the running time is O(nd) as
initially promised.

Note, the XOR operation over d strings takes O(d) time. However, the
points which are in the same position in the first k dimensions shares the value
u1,i1 ⊕· · ·⊕uk,ik . By making these values reusable, we can reduce the amortized
complexity to

∑d
i=1

1
ni−1 = O(1).

A.3 Experimental Setup

The reported encryption timings (Table 1) are the average taken over 100 exe-
cutions of the encryption algorithm. For the evaluation timings (Table 2), we
randomly pick 500 pairs from the 100 ciphertexts and take the average of the
500 executions of the evaluation algorithm. To measure the size of the cipher-
texts (Table 3), we keep track of the size of the required space each time the
encryption algorithm applies the memory.

Hardware. The experiments were executed on a machine with the following
characteristics:

– OS: Linux TitanX1 3.19.0-15-generic #15-Ubuntu SMP
– CPU: Intel(R) Xeon(R) CPU E5-2675 v3 1.80 GHz
– Memory: 128 GB
– GCC: gcc version 4.9.2 (Ubuntu 4.9.2-10ubuntu13) (Compile option -O2)
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Table 1. Encryption time and standard deviation

A.4 Results

Encryption Complexity. Table 1 shows how long it takes to encrypt a sin-
gle plaintext for different values of d and n. As expected, we observe that the
encryption time grows as the dimension d and bit lengths n increases.
Evaluation Complexity. Note that the theoretically complexity of the eval-
uation algorithm is O(d). However, the actual running time of the evaluation
algorithm from Table 2 indicates that the algorithm is so fast that for most
choices of parameters it is hard to appreciate the theoretical complexity.

When the combined size of all 100 ciphertext from the experiments does not
exceed 6MB (i.e. each ciphertext does not exceed 60 kB), then all ciphertexts
fits inside the L2 cache of the CPU. By observing the variation of the evaluation
timings in Table 2 and the ciphertext size in Table 3, we can conclude that there is
a tendency that when the ciphertexts fits inside the L2 cache, then the variation
stays below 0.07 µs (this observation is indicated in the tables by splitting the
columns in two).
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Table 2. Evaluation time and standard deviation (µs)

Table 3. The size of a ciphertext
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Abstract. We propose multi target homomorphic attribute-based encryption
(MT-HABE) with dynamic homomorphic evaluation: it can take as input arbi-
trary additional ciphertexts during homomorphic computation. In the previous
MT-HABE of Brakerski et al. (TCC 2016-B), the output of homomorphic compu-
tation, which is related to a policy set, cannot be computed with a fresh ciphertext
whose attribute does not satisfy any policy in the set. This is because the under-
lying multi-key fully homomorphic encryption (MKFHE) is single-hop: some
keys are related to the output of homomorphic computation, which cannot be
combined with ciphertexts encrypted under other keys. To implement dynamic
homomorphic evaluations, we construct MT-HABE from a dual variant of multi-
hop MKFHE proposed by Peikert and Shiehian (TCC 2016-B).

1 Introduction

Fully homomorphic encryption (FHE) allows us to evaluate any function over encrypted
data by only using public information. Since the breakthrough work by Gentry
[Gen09a,Gen09b], many different varieties of FHE have been proposed [DGHV10,
BV11b,BV11a,BGV12,Bra12,LTV12,GSW13,CLT14]. FHE can be used, for exam-
ple, to outsource computations to remote servers (e.g., cloud servers) without compro-
mising privacy.

A cloud server may be used by multiple users, so it is required to set access per-
mission among them. Attribute-based encryption (ABE) is a special type of public
key encryption to accomplish this requirement. In key-policy ABE scheme, a (mas-
ter) public key mpk is used to generate a ciphertext of a message μ, which is labeled
with a public attribute x ∈ {0, 1}�. The secret key sk f is associated to a policy
f : {0, 1}� → {0, 1} and it can only decrypt ciphertexts that satisfy f (x) = 0. Previously,
several ABE schemes under the learning with errors (LWE) assumption have been pro-
posed [GVW13,BGG+14,BV16], and it was known that from [GSW13,GVW13] we
can construct homomorphic ABE (HABE). The HABE scheme enables us to both set
access permission and homomorphically evaluate on the ciphertexts, but the homomor-
phism is somewhat limited: the scheme can correctly evaluate only on the ciphertexts
with the same attribute. In [CM16], Clear and McGoldrick proposed a way to com-
pile the above HABE to an HABE with non-leveled homomorphism, but the resulting
scheme still has the limitation over the attributes.
c© Springer International Publishing AG 2017
M. O’Neill (Ed.): IMACC 2017, LNCS 10655, pp. 25–43, 2017.
https://doi.org/10.1007/978-3-319-71045-7_2
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In [BCTW16], Brakerski et al. proposed target HABE (T-HABE) that enables
cross-attribute homomorphic evaluations. A syntactical difference between T-HABE
and HABE is in the homomorphic evaluation algorithm. In T-HABE, a homomorphic
evaluation algorithm takes as input a set of policies F = { fi}i, an operation g, and some
ciphertexts {(ct j, x j)}, where each ciphertext encrypts μ j. If for any x j there exists fi such
that fi(x j) = 0, the algorithm outputs a ciphertext ct(g)

F that can be decrypted by using
all of the secret keys {sk fi }i, and the result of the decryption is g({μ j} j) with high proba-
bility. The paper proposed two types of T-HABE, single target HABE (ST-HABE) and
multi target HABE (MT-HABE). ST-HABE is an T-HABE that can homomorphically
evaluate between the ciphertexts each of whose attributes satisfy a certain single policy,
i.e., T-HABE in which F = { f } for a single policy f . In MT-HABE, a set of policies
is related to the homomorphic computation, which can be processed between cipher-
texts whose attribute satisfies some policy in the set. The MT-HABE of [BCTW16] is
constructed from the ST-HABE and multi-key FHE (MKFHE) of [CM15,MW16].

The MT-HABE proposed in [BCTW16] is static (i.e., single-hop for policies): the
output of ciphertexts, which depends on a certain policy set F, cannot be homomorphi-
cally evaluated with the fresh ciphertext whose attribute does not satisfy any policy in
F. This forces the evaluator to know all the involved policies before the computation
begins.

1.1 Our Results

We construct dynamic MT-HABE (i.e., which is multi-hop for policies): it can
take as input arbitrary additional ciphertexts during homomorphic computation. This
enables us both dynamic cross-attribute homomorphic computations and setting access
permissions.

In the previous MT-HABE of [BCTW16], the output of homomorphic computation
is related to a policy set F, and it cannot be computed with a fresh ciphertext whose
attribute does not satisfy any policy in F. This is because the underlying multi-key fully
homomorphic encryption (MKFHE) is single-hop: some keys are related to the output
of homomorphic computation, which cannot be combined with ciphertexts encrypted
under other keys. To implement dynamic homomorphic evaluation algorithms, we con-
struct MT-HABE from a dual variant of multi-hop MKFHE proposed by Peikert and
Shiehian [PS16].

The security of the proposed MT-HABE is proven under the same assumption as
[BCTW16]: the LWE assumption with sub-exponential modulus to noise ratio in the
random oracle model. A comparison of key and ciphertext size between the MT-HABE
of [BCTW16] and our scheme is shown in Table 1, which tells that the size of the public
key of our scheme is almost the same as [BCTW16] ignoring the logarithmic factor.

1.2 Our Techniques

For the notation of this section, we refer the reader to the first paragraph of Sect. 2. Let
n, q be LWE parameters, m = O(n log q), N := n�log q�, M := (m + N + 1)�log q�, and
gT := (1, 2, 22, . . . , 2�log q�). In the following, we use the notation x ≈ y to represent
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Table 1. Comparison of key and ciphertext size between the previous MT-HABE [BCTW16]
and our dynamic MT-HABE. The parameter n is the LWE dimension, � is the maximal number of
inputs of policies, dBCTW = dF + dG log d, and dours = d log d + dG + dF log �, where d represents
the bound on the number of involved policies on homomorphic computations, and dF and dG
denote the maximal depths of policies and operations, respectively. The left and right hand sides
of the notation→ represent the size of a fresh and evaluated ciphertext.

Key size Ciphertext size

[BCTW16] Õ(n2d2
BCTW�) Õ(�n4d6

BCTW)→ Õ(d2n2d4
BCTW)

Ours Õ(n2d2
ours�) Õ(n3(� + dours)d6

ours)→ Õ(n3d7
ours)

the noisy equation x = y + e for some noise term e. The starting point of the proposed
scheme is the MKFHE scheme of [PS16].

Multi-hop MKFHE of [PS16]. A ciphertext of the MKFHE is a triple of matrices
(C,F,D) ∈ Zn×N

q × Zn×N
q × Znm×N�log q�

q such that for a secret key vector t ∈ Zn
q,

tTC ≈ μ(tT ⊗ gT ), F = F̂ + μ(In ⊗ gT ), (Im ⊗ tT )D ≈ (R ⊗ g),

where F̂ = AR ∈ Z
m×N
q for a random public matrix A ∈ Z

n×m
q and a random binary

matrix R ∈ Zm×N
q . To achieve dynamic homomorphism on the ciphertexts, the MKFHE

has an algorithm to expand a ciphertext C under t into a ciphertext C′ ∈ Z(n+n)×(n+n)�log q�
q

under t′ = [t, t∗] ∈ Zn+n
q for an additional key t∗ ∈ Zn

q, where C and C′ encrypts the same
message. The expanded ciphertext C′ is generated by

C′ :=

[
C X

F

]
,

for a matrix X ∈ Z
n×N
q that satisfies tTX + tTAR ≈ 0. Since it holds that t

′TC′ ≈
μ(t′T ⊗gT ), which is the approximate eigenvector relation as in [GSW13], we can homo-
morphically evaluate on these expanded ciphertexts.

ST-HABE of [BCTW16]. A public parameter contains random matrices A,B0,B1, . . . ,
B� ∈ Z

n×m
q and a random vector v ∈ Z

n
q. We define Bx := [B1, . . . ,B�], and xG :=

[x1(In ⊗ gT ), . . . , x�(In ⊗ gT )] for an attribute x ∈ {0, 1}�. A ciphertext of the ST-HABE
consists of the following two matrices

C ≈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT
0

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · S + μ(Im+N+1 ⊗ gT ) ∈ Z(m+N+1)×M
q ,

Cx ≈ (Bx − xG)T · S ∈ Z�N×Mq

for some random matrix S. Let f : {0, 1}� → {0, 1} be a policy and B f be a matrix
generated upon f . The secret key for f is a vector r f such that rTf A

T + r′Tf (B0 + B f )T +

vT = 0 for a random binary vector r′f , which is generated by the random oracle in the

MT-HABE of [BCTW16]. There exists a matrix H such that B f − f (x)(In ⊗gT ) = (Bx −
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xG)H. In homomorphic evaluations, the ST-HABE generates the functioned ciphertext
for the policy f by computing Ĉ f := C+ [0M×m,CT

xH, 0M]T . If f (x) = 0 holds, then the
functioned ciphertext satisfies the approximate eigenvector relation of [GSW13] with
tTf = [rTf , r

′T
f , 1].

Our Scheme. We construct dynamic MT-HABE by making the multi-hop MKFHE
[PS16] attribute-based. To this end, we consider a dual variant of [PS16]: set C in the
same way as [BCTW16] and F̂ = [A,B, v]TR + E ≈ [A,B, v]TR ∈ Z

(m+N+1)×M
q for a

random matrix B ∈ Zn×N
q . In the scheme of [PS16], the matrix F contains a message μ, so

F̂ must be indistinguishable from uniform to ensure the security. The matrix F̂ of [PS16]
is set to be AR, and so statistically indistinguishable from uniform by the leftover hash
lemma (LHL). In our scheme, F̂ is computationally indistinguishable from uniform by
the LWE assumption.

In the proposed MT-HABE, the functioned ciphertext is computed in a similar way
to [BCTW16], and it consists of the following three matrices such that for a secret key t,

tTC ≈ μ(tT ⊗ gT ), F ≈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · R + μ(Im+N+1 ⊗ gT ), (IN ⊗ tT )D ≈ (R ⊗ g),

where m = O(n log2 q) for the security reason. To dynamically evaluate on this cipher-
text, we need to implement the ciphertext expansion algorithm, which transforms the
ciphertext C under the key t to the ciphertext C′ under [t, t f ] for an additional policy f .
The algorithm must compute a matrix X such that tTX + tTf F ≈ μ(tTf ⊗ gT ), which is in

other words tTX+tTf [A,B, v]T ·R ≈ 0. However, the term rTf A, which is from expanding

tTf [A,B, v]T , cannot be known because r f is a part of the secret key. To overcome this

problem, our algorithm instead computes X such that tTX ≈ r′Tf (B0+B f −B)T ·R, where

r′Tf is obtained from the random oracle, the matrices B0 and B are the public matrices,
and B f can publicly be generated from f . Then, it holds that

tTX + t fF ≈ r′Tf · (B0 + B f − B)T · R + [rTf , r
′T
f , 1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · R + μ(tTf ⊗ gT )

= [rTf , r
′T
f , 1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT
0 + B

T
f

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · R + μ(tTf ⊗ gT )

= μ(tTf ⊗ gT ).

1.3 Organization

In Sect. 2, we introduce mathematical preliminaries used in this paper. In Sect. 3, we
show the construction of the proposed dynamic MT-HABE.

2 Preliminaries

Notations. We denote the set of natural numbers by N, and the set of integers by Z.
For any positive integer d > 0, we represent {1, 2, . . . , d} by [d]. Let S be a set and P
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be a probability distribution over S . Then, we denote by a ← S that a ∈ S is chosen
uniformly at random from S , and by b← P that b ∈ S is sampled from P. The notation
negl(λ) represents the set of negligible functions for λ ∈ N.

Vectors are in column form and written by bold lower-case letters (e.g., x). The i-
th element of the vector x is represented by xi. We denote the �∞ norm (max norm)
of the vector x by ‖x‖∞. The inner-product of two vectors is written by 〈x, y〉. We
denote matrices as the bold capital letters (e.g., X) and the i-th column vector of the
matrix X is represented by X[i]. For matrix X ∈ R

m×n, the �∞ norm of X is defined as
‖X‖∞ := maxi∈[n]{‖X[i]‖∞} The notation XT ∈ Rn×m represents the transpose of X. For
two matrices A ∈ Rm×n1 and B ∈ Rm×n2 , [A,B] ∈ Rm×(n1+n2) is the matrix generated by
concatenating A and B. Let In be the n× n identity matrix, and 0n×m be the n×m matrix
all of whose entries are 0. For any i ∈ [n], ui ∈ {0, 1}n represents the i-th standard basis
vector of dimension n.

Tensor Products. The tensor product of an m1 ×n1 matrix A and m2 ×n2 matrix B over
a commutative ring R is the m1m2 × n1n2 matrix consisting of m2 × n2 blocks whose
(i, j)-th block is ai, jB, where ai, j is the (i, j)-th element of A.

For any scalar r ∈ R, we have

r(A ⊗ B) = (rA) ⊗ B = A ⊗ (rB).

We heavily use the mixed product property of tensor products, which says

(A ⊗ B) · (C ⊗ D) = (AC) ⊗ (BD)

for any matrices A,B,C,D with compatible dimensions. In particular, it holds that

A ⊗ B = (A ⊗ Iheight(B)) · (Iwidth(A) ⊗ B)

= (Iheight(A) ⊗ B) · (A ⊗ Iwidth(B)).

Noisy Equations. In this paper, we consider the noisy equations, and we use the nota-
tion ≈ to say that the two sides of the equation are approximately equal within some
additive error. For example,

x ≈ y (error: B)

represents x = y + e for some e ∈ [−B, B].

2.1 Target Homomorphic Attribute-Based Encryption

In [BCTW16], Brakerski et al. first introduced the notion of target homomorphic
attribute based encryption (T-HABE), which is an homomorphic encryption whose
homomorphic operations depend on policies. We here define the syntax of T-HABE
and then define its correctness and security.

Definition 1 (Target Homomorphic Attribute Based Encryption (T-HABE)). A
target homomorphic attribute based encryption scheme consists of the following five
algorithms THABE = THABE.{Setup,Enc,Keygen,Dec,EvalNAND}.
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– THABE.Setup(1λ): takes as input a security parameter λ (additionally, the algo-
rithm can take parameters that specify classes of policies or admissible operations),
and outputs a public parameter pp and master secret key msk.

– THABE.Encpp(μ, x): takes as input a public parameter pp, plaintext μ, and attribute
x, and outputs a tuple of a ciphertext and attribute (ct, x).

– THABE.Keygenmsk( f ): takes as input a master secret key msk and policy f , and
outputs a secret key sk f .

– THABE.EvalNANDpp(ct(1), ct(2)): takes as input a public parameter pp, and two
ciphertexts ct(1), ct(2), and outputs a ciphertext ctNAND.

– THABE.DecskF (ct): takes as input a secret key skF (skF = {sk f : f ∈ F}) and
ciphertext ct, and outputs a plaintext μ ∈ {0, 1}.
As well as the definition of multi-hop MKFHE in [PS16], we consider the algo-

rithm EvalNAND, which homomorphically evaluates the NAND gate for two input
ciphertexts, to capture multi-hop property in the above definition. The circuit evalua-
tion algorithm Eval({ct(i)}i, { f j} j ⊆ F , g ∈ G) takes as input an operation g composed
of NAND gates of two inputs and one output, and computes each gate by EvalNAND
on ciphertexts associated to the inputs of the gate. Each gate evaluation depends on the
policies related only with the input ciphertexts, which makes the homomorphic evalua-
tion multi-hop for policies.

The correctness of T-HABE guarantees that the ciphertext is correctly decrypted
to the intended value with high probability when given all the keys for the policies
involved in the homomorphic computation.

Definition 2 (Correctness). Let {Fλ}λ∈N be a class of policies, and {Gλ}λ∈N be a class
of operations. The dynamic T-HABE scheme THABE = THABE.{Setup,Enc, Keygen,
Eval, Dec} is correct if the following holds.

Let (pp,msk) ← THABE.Setup(1λ). Consider a set of poly(λ) policy F ⊆ Fλ, set
of the corresponding secret keys skF := {sk f : f ∈ F}, a sequence of k ≥ 1 messages
and attributes {(μ(i) ∈ {0, 1}, x(i) ∈ {0, 1}∗)}i∈[k] such that ∀x(i),∃ f ∈ F, f (x(i)) = 0,
and their ciphertexts {ct(i) ← THABE.Encpp(μ(i), x(i))}i∈[k]. Then, computing ctg :=
THABE.Evalpp(F, ct(1), . . . , ct(k), g) for some g ∈ G, it holds that

Pr[THABE.Decsk f (ct
g) � g(μ(1), . . . , μ(k))] = negl(λ),

where the probability is take over the randomness in the experiment.

The security is defined in the same way as standard (key-policy) ABE.

Definition 3 (Security). Let THABE be a T-HABE scheme described in the above, and
consider the following game between the challenger and adversary.

1. The adversary sends an attribute x∗ to the challenger.
2. The challenger generates (msk, pp) ← THABE.Setup(1λ) and sends pp to the

adversary.
3. The adversary makes arbitrary many key generation queries by sending fi (repre-

sented as circuits) to the challenger. Upon receiving such functions, the challenger
creates a key sk fi ← THABE.Keygenmsk( fi) and sends sk fi if fi(x

∗) = 1, and sends
⊥ otherwise.



Dynamic Multi Target Homomorphic Attribute-Based Encryption 31

4. The adversary sends a pair of messages μ0, μ1 to the challenger. The chal-
lenger chooses b ← {0, 1} uniformly at random, and computes ct∗ ←
THABE.Encpp(μb, x∗). It sends ct∗ to the challenger.

5. The adversary makes arbitrary many key generation queries as in Step 3.
6. The adversary outputs b′ ∈ {0, 1}.

The above game is called the selective security game, and the advantage of the
adversary in this game is defined by AdvSS−THABEA (λ) := |Pr[b′ = b]−1/2|, where b and
b′ are generated in the game. The scheme THABE is selectively secure if for any PPT
adversaryA, it holds that AdvSS−THABEA (λ) = negl(λ).

As well as the previous attribute-based encryption from lattices, we allow decryp-
tion when f (x) = 0, and all of the queries must satisfy fi(x∗) = 1.

2.2 Learning with Errors (LWE)

The Learning with errors (LWE) assumption was first introduced by Regev [Reg05].
The decision version of the LWE problem is called Decisional LWE (DLWE) and
defined as follows.

Definition 4 (DLWE). For a security parameter λ, let n := n(λ) be an integer lattice
dimension, q := q(λ) ≥ 2 be an integer modulus, and χ := χ(λ) be an error distribution
over Z. DLWEn,q,χ is the problem that for any m = poly(λ), letting A ← Z

m×n
q , s ← Z

n
q,

e ← χm, and u ← Z
m
q , distinguishes the two distributions (A,As + e) and (A,u).

DLWEn,q,χ assumption states that DLWEn,q,χ is intractable for any PPT adversary.

By letting χ be a discrete Gaussian distribution over Z with parameter r = αq ≥
2
√
n (represented by DZ,r) for some 0 < α < 1, there exists a quantum reduction

[Reg05] between DLWEn,q,χ=DZ,r and approximating a short vector over n dimensional
lattices within factor of Õ(n/α)1. Additionally, it is known that there exists the classical
reductions [Pei09,BLP+13] for other parameters.

2.3 Gadget Matrix and Bit Decomposition

Let gT := (1, 2, . . . , 2�log q�) be a vector consisting of the powers of 2. The operation
g−1 : Zq → {0, 1}1×�log q� takes as input x ∈ Zq, and outputs y such that 〈y, g〉 = x ∈
Zq. For example, g−1 is the operation to decompose x into its binary representation.
Symmetrically, g−T : Zq → {0, 1}�log q� transforms an element in Zq into the column
vector of its binary representation. More generally, the operation (In ⊗ g−T )(·) generates
n·�log q� dimensional vector with coefficients of {0, 1} by applying g−T to every element
of the vector in Z

n
q. Then the following holds

(In ⊗ gT ) · (In ⊗ g−T )(x) = x.

It is clear that this operation can be generalized to matrices.

1 Approximating a short vector over n dimensional lattices within factor of γ takes 2Ω̃(n/ log γ)

computations [Sch87].
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2.4 Lattice Trapdoors and Discrete Gaussian Distributions

Consider a matrix A ∈ Z
n×m
q . For all V ∈ Z

n×m′
q and for any probability distribution

P over Zm, let A−1
P (V) be the random variable whose distribution is P conditioned on

A · A−1
P (V) = V. A P-trapdoor for A is an algorithm that can efficiently sample from

a distribution within 2−n statistical distance of A−1
P (V) for any V. We denote the P-

trapdoor by A−1
P , and A−1

P = A−1
τ in the case where P is a Gaussian distribution with

parameter τ.
In the following, we introduce the procedures to generate an almost uniform A with

a trapdoor for sampling from the Gaussian distribution.

Corollary 1 (Generating Trapdoors [Ajt99,GPV08,MP12,BLP+13]). There exists
an efficient algorithm TrapGen(1n, q,m) that outputs (A,A−1

τ0
), where A ∈ Zn×m

q for any
m ≥ m0 for m0 = O(n log q), A is statistically close to uniform over Zn×m

q within 2−n

distance, and τ0 = O(
√
n log q log n). Given A−1

τ0
, one can obtain A−1

τ for any τ ≥ τ0.

Corollary 2 (Gaussian-Binary Sampler [LW15]). Let n,m, q be such that m ≥
n�log q�. With all but O(2−n) probability over the choice of A← Z

n×m
q , for all R ∈ Zm×N

with N = n�log q�, one can obtain [A,AR + (In ⊗ gT )]−1
P with P = DZm,τ × {0, 1}N for

τ = O(N
√
mn · ‖R‖∞). Furthermore, for all v, it holds that the marginal distribution of

the last N coordinates of [A,AR + (In ⊗ gT )]−1
P (v) is statistically close to uniform over

{0, 1}N within 2−n distance.

2.5 Homomorphic Operations

Here we define the procedure used for homomorphic evaluations in our scheme.

Definition 5. Let n, q, � ∈ N and N := n�log q�. Consider B1, . . . ,B� ∈ Z
n×N
q , and

denote B := [B1, . . . ,B�]. Let f be a Boolean circuit of depth d that computes a func-
tion {0, 1}� → {0, 1} and consists only of NAND gates. We define B f := Eval(B, f )
recursively: associate B1, . . . ,B� with the � input wires of f . For every wire w ∈ f , let
u, v be its predecessors and define

Bw := (In ⊗ gT ) − Bu · (In ⊗ g−T )(Bv).

Finally, B f is the matrix associated with the output wire of f .

The following fact represents the properties of the above homomorphic evaluation
algorithm.

Fact 21. Consider B1, . . . ,B� ∈ Z
n×N
q (N = n�log q�). Letting B := [B1, . . . ,B�], and

xG := [x1(In⊗gT ), . . . , x�(In⊗gT )], there exists a polynomial time algorithm EvRelation
such that if H := H f ,x,B := EvRelation( f , x,B), then ‖H‖∞ ≤ (N + 1)d and

(B f − f (x)(In ⊗ gT ))T = HT · [B − xG]T ,

where B f = Eval( f ,B).
In particular, if Bi := ARi+ xi(In⊗gT ), that is, B = AR+ xG for R := [R1, . . . ,R�],

then B f = AR f + f (x)(In ⊗ gT ) for R f = R ·H f ,x,B.
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We can see that this fact holds by verifying that for the NAND operation in
Definition 5,

EvRelation(NAND, (xu, xv), [Bu,Bv]) =

[−(In ⊗ g−T )(Bv)
−xuIN×N

]
.

3 Dynamic MT-HABE

In this section, we construct dynamic MT-HABE (i.e., which is multi-hop for keys)
from the multi-hop MKFHE scheme of [PS16]. The proposed MT-HABE can take
as input arbitrary additional ciphertexts during homomorphic computations. We show
the construction in Sect. 3.1 except for homomorphic evaluation algorithms, which are
described in Sect. 3.2.

3.1 Construction

Let F ⊆ {0, 1}� → {0, 1} be a class of policies computed by depth-dF circuits only
from NAND gates, and G ⊆ {0, 1}∗ → {0, 1} be a class of operations computed by
depth-dG circuits only from NAND gates. Let PRF.{Gen,Eval} be a pseudorandom
function, and d be the designed bound on the number of involved policies on homomor-
phic computations.

– dMTHABE.Setup(1λ, 1�, 1dF , 1dG , 1d) : choose DLWE parameters n, q, χ as
described in Appendix A.1. Let B be a bound of samples from error distribution
χ. Let m = O(n log2 q), N := n�log q�, and M := (m + N + 1)�log q�. Gener-
ate (A,A−1

τ0
) ← TrapGen(1n, q,m), where A ∈ Z

n×m
q and τ0 = O(

√
n log q log n)

from Corollary 1. Sample random matrices B,B0,B1, . . . ,B� ← Z
n×N
q , and let

Bx := [B1, . . . ,B�]. Sample a random vector v ← Z
n
q. Choose a PRF seed σ ←

PRF.Gen(1λ). Let H : Zn×m
q × F → {0, 1}N be a hash function implemented by the

random oracle. Output pp := (A,B,B0,Bx, v,H) and msk := (A−1
τ0
, σ).

– dMTHABE.Encpp(μ ∈ {0, 1}, x ∈ {0, 1}�) : sample a random matrix S ← Z
n×M
q ,

error matrix EA ← χm×M , and error vector ev ← χM . For every i ∈ {0, 1, . . . , �} and
j ∈ [M], sample Ri, j ← {0, 1}m×N , define Ei[ j] := RT

i, jEA[ j], and compute

C :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT
0

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · S +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
EA

E0

eTv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ + μ(Im+N+1 ⊗ gT ) ∈ Z(m+N+1)×M
q

Cx := (Bx − xG)T · S +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1
...
E�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Z
�N×M
q .

Choose a random matrix R ← Z
n×M
q and sample a noise matrix E(F)

A ← χm×M .

For every j ∈ [M], choose R(F)
j ← {0, 1}m×N and define E(F)[ j] := (R(F)

j )TE(F)
A [ j].



34 R. Hiromasa and Y. Kawai

Sample e(F)
v ← χM , and compute

F :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · R +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
E(F)
A

E(F)

(e(F)
v )T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ + μ(Im+N+1 ⊗ gT ) ∈ Z(m+N+1)×M
q

≈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · R + μ(Im+N+1 ⊗ gT ) (error: mB).

For every i ∈ {0, 1, . . . , �}, j ∈ [M], and k ∈ [N], sample E(k)
A ← χm×M and e(k)

v ←
χM , compute E(k)

i [ j] := RT
i, jE

(k)
A [ j], and set E(k) := [(E(k)

A )T , (E(k)
0 )T , e(k)

v ]T . Sample
S(1), . . . ,S(N) ← χn×M , and compute

D :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝IN ⊗
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT
0

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S(1)

...
S(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E(1)

...
E(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + R ⊗ g ⊗ um+N+1 ∈ Z(m+N+1)N×M
q ,

D(k)
x := (Bx − xG)T · S(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E(k)

1
...

E(k)
�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Z
�N×M
q .

Output ct := (x,C,Cx,F,D, {D(k)
x }k).

– dMTHABE.Keygenmsk( f ∈ F ) : compute B f := Eval( f ,Bx) from f and Bx.
Generate r′f = H(A, f ) ∈ {0, 1}N by using the random oracle. Sample r f ←
A−1
τ (−(B0 + B f )r′f − v; ρ) with randomness ρ ← PRF.Eval(σ, f ), where τ =

O(
√
mn · N2�(N + 1)dF ) ≥ τ0. Then, it holds that

[rTf , r
′T
f , 1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

(B0 + B f )T

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 01×n.

Output sk f := r f .
– dMTHABE.ApplyFpp(ct, f ∈ F ) : when given ct and f , first compute a matrix H :=

EvRelation( f , x,Bx). Then set C f := HTCx, and compute

Ĉ f := C +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0m×M
C f

01×M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

By Fact 21, it holds that for a secret key tTf := [rTf , r
′T
f , 1] with related to f ,

tTf · Ĉ f ≈ μ(tTf ⊗ gT ) (error: ‖t f ‖∞ · ((N + 1)dF · �N + 1) · mB).

For every k ∈ [N], compute D(k)
f := HTD(k)

x and let

D f := [0M×m, (D(1)
f )T , 0M , . . . , 0M×m, (D(N)

f )T , 0M]T .



Dynamic Multi Target Homomorphic Attribute-Based Encryption 35

Compute D̂ f := D + D f . Similar to Ĉ f , it holds that for the secret key t f ,

(IN ⊗ tTf ) · D̂ f ≈ R ⊗ g ∈ ZN×M
q (error: ‖t f ‖∞ · ((N + 1)dF · �N + 1) · mB).

Output the functioned ciphertext ct( f ) := (Ĉ f ,F, D̂ f ).
– dMTHABE.Eval(ct(1), . . . , ct(k), F := { f1, . . . , fd} ⊆ F , g ∈ G): for fresh ciphertext

ct(i), compute functioned ciphertext ct( fi) := dMTHABE.ApplyFpp(ct(i), f j), where
f j ∈ F such that f j(xi) = 0. Then homomorphically evaluate g between the cipher-
texts, and output ct(F).

– dMTHABE.Decsk f1 ,...,sk fd
(ct(F))2: given secret keys sk f1 , . . . , sk fd for every policy

in F = { f1, . . . , fd}, and an ciphertext ct(F) = (ĈF ,F, D̂F) for F, first, for all
j ∈ [d], obtain r′f j := H(A, f j) by using the random oracle. Construct the con-

catenated key tTF := [rTf1 , r
′T
f1
, 1, . . . , rTfd , r

′T
fd
, 1], and compute a vector c := tTFĈF . Let

uT := (0, . . . , 0, �q/2�) ∈ Z
1×d(m+N+1). Compute μ̃ := cT · (Id(m+N+1) ⊗ g−T )(u), and

output 0 if |μ̃| < q/4, and 1 otherwise.

Correctness and security of this scheme are discussed in Appendix A.

3.2 The Algorithm Eval

We here describe the algorithms used in homomorphic evaluation of Eval.
Suppose that we obtain a functioned ciphertext ct( f ) := (Ĉ f ,F, D̂ f ) by applying

dMTHABE.ApplyF for a policy f ∈ F to a fresh ciphertext ct := (x,C,Cx,F,D, {D(k)
x }k).

Then the functioned ciphertext ct( f ) satisfies the following three noisy equations with a
secret key t f ∈ Zm+N+1

q for f and small random matrix R ∈ Zn×M
q . For ease of notation,

let BC, BF, BD be bounds of errors included in Ĉ f ,F, and D̂ f , respectively.

tTf Ĉ f ≈ μ(tTf ⊗ gT ) (error: BC) (1)

F ≈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦R + μ(Im+N+1 ⊗ gT ) (error: BF) (2)

(IN ⊗ tTf ) · D̂ f ≈ R ⊗ g (error: BD). (3)

Ciphertext Expansion. We describe a way to expand ciphertexts so that they can be
decrypted by the concatenation of all the keys related to the target policies. This expan-
sion method is very similar to that of [PS16]. Given ciphertext (Ĉ,F, D̂) that satisfies
the three relations (1), (2), and (3) for secret key t ∈ Zn′

q (n′ = k(m + N + 1) for some
positive integer k) and random matrix R ∈ Z

n×M
q , generate (C̃, F̃, D̃) that satisfies the

relations (1), (2), and (3) for the concatenated secret key t̃ := [t, t f ] constructed from t
and t f := [rTf , r

′T
f , 1]T ∈ Zm+N+1

q , and random matrix R̃:

2 The algorithm can take as input fresh ciphertext ct (and the single secret key sk f for f ∈ F
such that f (x) = 0) by generating the functioned ciphertext ct(F) := dMTHABE.ApplyFpp(ct, f )
before the computation begins.
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– F and R are not changed. That is, F̃ := F and R̃ := R. This preserves the relation
(2).

– D̃ is computed as

D̃ :=

(
IN ⊗

[
In′

0(m+N+1)×n′

])
· D̂.

Then, since the following holds, the relation (3) is preserved.

(IN ⊗ t̃T ) · D̃ = (IN ⊗ tT ) · D̂
≈ R ⊗ g (error: BD).

– We define

C̃ :=

[
Ĉ X

F

]
,

where X is a matrix computed by the following procedure. Let B,B0 ∈ Z
n×N
q be

matrices included in the public parameter, generate r′f = H(A, f ) ∈ {0, 1}N , and
compute B f := Eval(B, f ). Define

s := (In ⊗ g−T )((B0 + B f − B)r′f ) ∈ {0, 1}N
X := (sT ⊗ In′) · D̂.

Then, by construction of X, it holds that

tTX = tT · (sT ⊗ In′ ) · D̂
= (sT ⊗ 1) · (IN ⊗ tT ) · D̂
≈ sT · R ⊗ g (error: N · BD)

= sT · (In ⊗ g) · (R ⊗ 1)

= r′Tf · (B0 + B f − B)T · R.
From

tTX + t fF

≈ r′Tf · (B0 + B f − B)T · R + [rTf , r
′T
f , 1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · R + μ(tTf ⊗ gT )

(error: N · BD + ‖t f ‖∞ · (m + N + 1) · BF)

= [rTf , r
′T
f , 1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT
0 + B

T
f

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · R + μ(tTf ⊗ gT )

= μ(tTf ⊗ gT )

we have

t̃T C̃ ≈ μ(t̃T ⊗ gT ) (error: BC + N · BD + ‖t f ‖∞ · (m + N + 1) · BF),

and so the relation (1) is preserved for C̃.
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Homomorphic Operations. We here describe a way to evaluate homomorphic addition
and multiplication. Consider two ciphertexts (C1,F1,D1) and (C2,F2,D2) that encrypt
μ1, μ2 ∈ {0, 1} under the secret key t ∈ Zn′

q . The two ciphertexts satisfy the relations (1),
(2), and (3) for two random matrices R1,R2, respectively.

– Homomorphic addition: to homomorphically add the ciphertexts, we just add the
corresponding matrices:

(Cadd,Fadd,Dadd) := (C1 + C2,F1 + F2,D1 + D2).

It is immediate that the relations (1), (2), and (3) are preserved for message μadd :=
μ1 + μ2 and random matrix Radd := R1 + R2.

– Homomorphic multiplication: to homomorphically multiply the ciphertexts, we
compute the ciphertext consisting of the matrices computed as follows:

Cmult := C1 · (In′ ⊗ g−T )(C2)

Fmult := F1 · (Im+N+1 ⊗ g−T )(F2)

Dmult := D1 · (Im+N+1 ⊗ g−T )(F2) + (IN ⊗ C1) · (In′N ⊗ g−T )(D2).

We now show that the ciphertext output by the homomorphic multiplication proce-
dure satisfies the relations (1), (2), and (3). Since Cmult is the ciphertext output by the
homomorphic multiplication of GSW FHE [GSW13], it is easy to see that the relation
(1) is preserved. If we let BCi be a upper bound of the noise included in Ci(i = 1, 2),
then we have

tTCmult ≈ μ1(tT ⊗ gT ) · (In′ ⊗ g−T )(C2) (error: n′�log q�BC1 )

= μ1tTC2

≈ μ1μ2(tT ⊗ gT ) (error: μ1BC2 ).

Let Rmult := R1 · (Im+N+1 ⊗ g−T )(F2)+ μ1R2 and μmult := μ1μ2. Then the relation (2)
is also preserved for Fmult:

Fmult = F1 · (Im+N+1 ⊗ g−T )(F2)

≈
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · R1 + μ1(Im+N+1 ⊗ gT )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (Im+N+1 ⊗ g−T )(F2) (error: M · BF1 )

≈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · (R1 · (Im+N+1 ⊗ g−T )(F2) + μ1R2) + μ1μ2(Im+N+1 ⊗ gT ) (error: μ1BF2 )

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · Rmult + μmult(Im+N+1 ⊗ gT ).

We check that the relation (3) is also preserved. First, we can see that

(IN ⊗ t) · D1 · (Im+N+1 ⊗ g−T )(F2)

≈ (R1 ⊗ g) · (Im+N+1 ⊗ g−T )(F2) (error: M · BD1 )

= (R1 · (Im+N+1 ⊗ g−T )(F2)) ⊗ g.
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In addition, the following holds:

(IN ⊗ t)(IN ⊗ C1) · (In′N ⊗ g−T )(D2)

= (IN ⊗ tC1) · (In′N ⊗ g−T )(D2)

≈ μ1(IN ⊗ tT ⊗ gT ) · (In′N ⊗ g−T )(D2) (error: n′�log q�BC1 )

= μ1(IN ⊗ tT ) · D2

≈ (μ1R) ⊗ g (error: μ1BD2 ).

Hence, by

(IN ⊗ tT )Dmult ≈ Rmult ⊗ g (error: M · BD1 + n
′�log q�BC1 + μ1BD2 ),

Dmult satisfies the relation (3).

A Correctness and Security

In this section, we discuss about correctness and security of the proposed MT-HABE
described in Sect. 3. In Appendix A.1, we consider parameter settings of the pro-
posed scheme for the correctness and security, and the proofs of them are described
in Appendix A.2.

A.1 Parameter Settings

The DLWE parameters n, q, χ are chosen according to the conditions decided by the
correctness and security.

It is required to set n ≥ λ and q ≤ 2n. We also set �, d = poly(λ). We estimate the
worst-case noise growth when homomorphically evaluating a depth-dG circuit consist-
ing only of the NAND gate under d different policies of depth at most dF . We define
the max error Bmax of the ciphertext (C,F,D) output by the algorithm ApplyF or Eval:

Bmax := max(BC, BF, BD).

From Sect. 3.2, the ciphertext generated by homomorphically evaluating a NAND gate
has noise at most

M · BD1 + d(m + N + 1)�log q�BC1 + μ1BD2

≤ {M · (d + 1) + 1} · Bmax

= poly(d, n, �log q�) · Bmax.

for some polynomial poly(·). The ciphertext generated by the ciphertext expansion algo-
rithm described in Sect. 3.2 also has noise at most

BC + N · BD + ‖t f ‖∞ · (m + N + 1) · BF

≤ (1 + N + ‖t f ‖∞ · (m + N + 1)) · Bmax

= poly′(n, �log q�) · Bmax.
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for some polynomial poly′(·).
Since the max error Bmax of fresh functioned ciphertexts is at most ‖t f ‖∞ ·((N+1)dF ·

�N + 1)mB, the noise of the evaluated ciphertexts obtained by homomorphic evaluation
of a depth-dG circuit under different d policies is at most

poly(d, n, �log q�)d · poly′(n, �log q�)dG · ‖t f ‖∞ · ((N + 1)dF · �N + 1)mB

≤ poly(d, n, �log q�)d · poly′(n, �log q�)dG · O(�2m2 √nN3(N + 1)2dF )B.

For the correctness and security, we select the parameters so that the above quantity by
a factor of eight is less than 2n

ε

for some 0 < ε < 1. To hold this, we set n = Õ(d · log d+
dG + dF · log �)1/ε and choose q and χ so that they satisfy q/B ≥ 2n

ε

, where B is the
upper bound of the noise distribution χ. Selecting such parameters leads the reduction
from the DLWEn,q,χ problem to approximate a short vector on the n dimensional lattice
by a factor of Õ(n · 2nε ).

A.2 Proofs

Correctness and security of our dMTHABE scheme can be proven in a very similar way
to [BCTW16].

Theorem 1 (Correctness). The scheme dMTHABE with parameters �, dF , dG, d is cor-
rect for policy class F�,dF and homomorphism class GdG .

Proof. Let (pp,msk) ← dMTHABE.Setup(1λ, 1�, 1dF , 1dG , 1d). Consider k ciphertexts
ct(i) ← dMTHABE.Encpp(μi, xi) of message μi ∈ {0, 1} with attribute xi ∈ {0, 1}�. For
a set of d policies F := { fi}i∈[d] ⊆ F�,dF and operation g ∈ GdG , consider an evaluated
ciphertext

ct(F) := (ĈF ,FF , D̂F) := dMTHABE.Eval({ct(i)}i∈[k], F, g).

By the process of Eval in Sect. 3.2, it holds that

c := tFĈF ≈ μg(tTF ⊗ gT )

for μg := g(μ1, . . . , μk) and tTF := [tTf1 , . . . , t
T
fd

] where r fi ← dMTHABE.Keygenmsk( fi),

r′fi = H(A, fi), and tTfi := [rTfi , r
′T
fi
, 1]. Let uT := (0, . . . , 0, �q/2�), then

μ̃ := cT (Id(m+N+1) ⊗ g−T )(u) ≈ μg�q/2�.
Choosing the parameters as described in Appendix A.1, the noise in ĈF is of size at
most q/8. Hence, it holds that

Pr[dMTHABE.Decsk f1 ,...,sk fd
(ct(F)) � μg] = negl(λ).

Theorem 2 (Security). The scheme dMTHABE scheme is selectively secure for func-
tion classes F ,G in the random oracle model if the DLWEn,q,χ assumption holds.
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Proof. In a similar way to [BCTW16], we prove this theorem by considering about
the indistinguishability of a column vector in the challenge ciphertext C,Cx∗ ,F,
D, {D(k)

x∗ }k∈[N], where we let x∗ be the challenge attribute. That is, we consider the game
in which the adversary is given the following vectors

c :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT
0

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · s +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
eA
e0

ev

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,cx∗ := (Bx∗ − x∗G)T · s +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e1

...

e�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , f :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · r +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
e(F)
A
e(F)

e(F)
v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d(1)

...

d(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ := d :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝IN ⊗
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT

BT
0

vT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
s(1)

...

s(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e(1)

...

e(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,d
(k)
x∗ := (Bx∗ − x∗G)T · s(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e(k)

1
...

e(k)
�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (∀k ∈ [N]).

or the uniformly random vectors, and distinguishes them. We call this game column
game, and define the advantage of the adversary in this game as Advcolumn

A (λ). Without
loss of generality, we can prove the security in the column game instead of proving the
selective security game defined in Definition 3.

We now consider the following sequence of games. Let AdvGamei
A (λ) be the advan-

tage of the adversaryA in Gamei.

– Game0: This game is the same as the column game, so it holds that

Advcolumn
A (λ) = AdvGame0

A (λ).

– Game1: This game is the same as Game0 except that the challenger aborts if the
adversary sends the random oracle query (D, f ) such that D = A and f (x∗) = 1
before the challenger outputs the challenge attribute x∗.
Since the probability that the adversary sends such query is negl(λ), we have

|AdvGame1
A (λ) − AdvGame0

A (λ)| = negl(λ).

– Game2: This game is the same as Game1 except that for every Keygen query the
challenger uniformly chooses the randomness and use it for A−1

τ0
instead of generat-

ing the randomness for A−1
τ0

by using PRF. To answer the oracle query consistently,
the challenger stores the Keygen query and its secret key to the table. By the prop-
erty of the PRF, this game is indistinguishable from Game1:

|AdvGame2
A (λ) − AdvGame1

A (λ)| = negl(λ).

– Game3: This game is the same as Game2 except for the generation of the public
parameters B,B0,B1, . . . ,B�. Here, there exist matrices R0,R1, . . . ,R� such that they
are distributed uniformly over {0, 1}m×Nand satisfies ei = RT

i eA and e(k)
i = RT

i e
(k)
A .

There exists a matrix R(F) such that it is distributed uniformly over {0, 1}m×N and
satisfies e(F) = (R(F))Te(F)

A . In this game, the public matrices B,B0,B1, . . . ,B� are
computed as B := AR(F),B0 := AR0,Bi := ARi + x∗i (In ⊗ gT ) (∀i ∈ [�]) instead of
choosing them uniformly at random. By the leftover hash lemma, every distribution
of B,B0,B1, . . . ,B� is indistinguishable from uniform over Zn×N

q . Hence we have

|AdvGame3
A (λ) − AdvGame2

A (λ)| = negl(λ).
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– Game4: This game is the same as Game3 except that the return sk f for the key gen-
eration query (A, f ) is generated without using the trapdoor A−1

τ .
Without loss of generality, we can assume that the tuple (A, f ) is queried to the
Keygen oracle before querying to the random oracle. By the definition of selective
security, the policy f satisfies f (x∗) = 1 for the challenge attribute x∗, and [r f , r′f ] is

generated as r′f ← {0, 1}N and r f ← A−1
τ (−v − (B0 + B f )r′f ).

Let H := EvRelation( f , x∗,Bx∗ ). Then it holds that B f − f (x∗)(In ⊗ gT ) =
(Bx∗ − x∗G)H. From f (x∗) = 1, we have B f = ARH + (In ⊗ gT ). Hence we have
[A,B0 +B f ] = [A,A(R0 +RH) + (In ⊗ gT )]. By Corollary 2, when given R0, R and
H, for any τ ≥ τ′ = O(

√
mn ·N · ‖(R0 +RH)‖∞), we can sample from [A,B0 +B f ]−1

P
for P = DZm,τ × {0, 1}N .
We generate [r f , r′f ] by [r f , r′f ] ← [A,B0 + B f ]−1

P (−v). Then, r′f is stored as the
reply for the random oracle query (A, f ). By Corollary 2, the marginal distribution
of r′f is statistically indistinguishable from uniform over {0, 1}N , and the probabil-
ity distribution of r f conditioned on r′f is a discrete Gaussian distribution over the
appropriate coset of the integer lattice. Since the view of the adversary in this game
is statistically indistinguishable from that of Game3, we have

|AdvGame4
A (λ) − AdvGame3

A (λ)| = negl(λ).

– Game5: This game is the same as Game4 except for the way to choose A. The
challenger chooses random A from Z

n×m
q instead of generating it by using TrapGen.

By Corollary 1, the distribution of the matrix A generated by TrapGen is statistically
indistinguishable from uniform over Zn×m

q , so we have

|AdvGame5
A (λ) − AdvGame4

A (λ)| = negl(λ).

– Game6: We change the contents of the challenge ciphertexts as follows:

u(C)
A := AT s + eA,u(C)

v := vT s + ev, u(F)
A := ATr + e(F)

A ,

u(F)
v := vTr + e(F)

v ,u
(D,k)
A := AT s(k) + e(k)

A , u(D,k)
v := vT s(k) + e(k)

v .

The challenge ciphertexts can be rewritten as

c :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u(C)
A

RT
0 u

(C)
A

u(C)
v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,cx∗ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
RT

1 u
(C)
A
...

RT
� u

(C)
A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , f :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u(F)
A

(R(F))Tu(F)
A

u(F)
v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

d(k) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u(D,k)
A

RT
0 u

(D,k)
A

u(D,k)
v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,d(k)
x∗ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
RT

1 u
(D,k)
A
...

RT
� u

(D,k)
A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (∀k ∈ [N]).

This game is equivalent to Game5, so we have

AdvGame6
A (λ) = AdvGame5

A (λ).
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– Game7: We change the distribution of u(C)
A , u

(C)
v ,u

(F)
A , u

(F)
v ,u

(D,k)
A , u(D,k)

v to the uniform
distribution. By the DLWEn,q,χ assumption, this change cannot be distinguished by
the adversaryA and so we have

|AdvGame7
A (λ) − AdvGame6

A (λ)| = negl(λ).

– Game8: In this game, we change the distribution of the challenge ciphertexts to
the uniform. By the leftover hash lemma, the view of the adversary in this game is
statistically indistinguishable from Game7, so we have

|AdvGame8
A (λ) − AdvGame7

A (λ)| = negl(λ).

The advantage of the adversary in this game is 0, that is, AdvGame8
A (λ) = 0.

From the above sequences of the games, we can see that Advcolumn
A (λ) = negl(λ), and

therefore the proposed MT-HABE is selectively secure.
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Abstract. We present novel homomorphic encryption schemes for inte-
ger arithmetic, intended primarily for use in secure single-party compu-
tation in the cloud. These schemes are capable of securely computing
arbitrary degree polynomials homomorphically. In practice, ciphertext
size and running times limit the polynomial degree, but this appears
sufficient for most practical applications. We present four schemes, with
increasing levels of security, but increasing computational overhead. Two
of the schemes provide strong security for high-entropy data. The remain-
ing two schemes provide strong security regardless of this assumption.
These four algorithms form the first two levels of a hierarchy of schemes
which require linearly decreasing entropy. We have evaluated these four
algorithms by computing low-degree polynomials. The timings of these
computations are extremely favourable by comparison with even the
best of existing methods, and dramatically out-perform running times
of directly comparable schemes by a factor of up to 1000, and consider-
ably more than that for fully homomorphic schemes, used in the same
context. The results clearly demonstrate the practical applicability of
our schemes.

Keywords: Cryptography · Symmetric encryption · Homomorphic
encryption · Computing on encrypted data · Secure computation in the
cloud

1 Introduction

With services like Amazon’s Elastic MapReduce and Microsoft’s HDInsight offer-
ing large-scale distributed cloud computing environments, computation in the
cloud is becoming increasingly more available. Such services allow for computa-
tion on large volumes of data to be performed without the large investment in
local computing resources. However, where the data that is processed is sensi-
tive, such as financial or medical data, then uploading such data in its raw form
to such a third-party service becomes problematic.
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To take advantage of these cloud services, we require a means to process
the data securely on such a platform. We designate such a computation, secure
computation in the cloud (SCC). SCC should not expose input or output data to
any other party, including the cloud service provider. Furthermore, the details
of the computation should not allow any other party to deduce its inputs and
outputs. Cryptography seems the natural approach to this problem.

However, it should be noted that van Dijk and Juels [23] show that cryptog-
raphy alone cannot realise secure multi-party computation in the cloud. Since
our approach is via homomorphic encryption, we will restrict our attention to
what we will call secure single-party computation in the cloud (SSCC).

Homomorphic encryption (HE) seems to offer a solution to the SSCC prob-
lem. First defined by Rivest et al. [50] in 1978, HE allows a function to be
computed on encrypted inputs without ever decrypting the inputs. A somewhat
HE scheme (SWHE) is a scheme which is homomorphic for only limited inputs
and functions. Fully HE (FHE) is a scheme that is homomorphic for all functions
and inputs. This was first realised by Gentry in 2009 [30], and appeared to be
the ideal HE scheme.

However, despite the clear advantages of FHE, and many significant advances
[12,13], it remains largely impractical. Two implementations of FHE schemes,
HELib [34] and FHEW [24], both perform very poorly in practice, both in their
running time and space requirements (see Sect. 2.6). Therefore, we take the view
in this paper that only SWHE is, for the forseeable future, of practical interest.
Our goal is to develop new SWHE schemes which are practically useful, and
which we have tested with a realistic implementation.

In this paper, we present four novel SWHE schemes for encryption of inte-
gers that are additively and multiplicatively homomorphic. These schemes are
capable of computing arbitrary degree polynomials. In Sect. 2, we present our
usage scenario, a summary of our results, and a discussion of related work. We
present our initial homomorphic scheme in Sect. 3, in two variants, HE1 and
HE1N. HE1 (Sect. 3.1) provides strong security for integers distributed with suf-
ficient entropy. This security derives from the assumed hardness of the partial
approximate common divisor problem (PACDP). HE1N (Sect. 3.2) guarantees
strong security for integers not distributed with sufficient entropy or where the
distribution is not known, by adding an additional “noise” term. In addition to
the hardness assumption, we prove that HE1N is IND-CPA secure [5]. Section 4
describes a further two variants, HE2 and HE2N, which increase the entropy
of the plaintext by adding a dimension to the ciphertexts, which are 2-vectors.
This further increases the security of these schemes by effectively doubling the
entropy. HE2 (Sect. 4.1) deals with integers of sufficient entropy, HE2N (Sect. 4.2)
with integers without the required entropy or of unknown distribution. HE2N
also satisfies IND-CPA. We describe this in some detail, since it appears to be
practically useful, and is the simplest version of our general scheme. We have
performed extensive experimental evaluation of the four schemes presented in
this paper. We report on this in Sect. 5. Our results are extremely favourable
when compared with other methods. In some cases, our algorithms outperform
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the running times of directly comparable schemes by a factor of up to 1000, and
considerably more than that for fully homomorphic schemes, used in the same
context. Finally, in Sect. 6, we conclude the paper.

This paper also contains three appendices. In Appendix A, we generalise HE2
and HE2N from 2-vectors to k-vectors, for arbitrary k, in the scheme HEk, with
noisy variant HEkN. These schemes may also be practical for small enough k.
In Appendix B, we provide proofs of all theorems and lemmas in this paper.
Finally, in Appendix C, we provide the derivation of the bounds on the security
parameters discussed in Sect. 3.1.

2 Background

2.1 Scenario

As introduced above, our work concerns secure single-party computation in the
cloud. In our scenario, a secure client wishes to compute a function on a large
volume of data. This function could be searching or sorting the data, computing
an arithmetic function of numeric data, or any other operation. We consider here
the case where the client wishes to perform arithmetic computations on numeric
data. This data might be the numeric fields within a record, with non-numeric
fields being treated differently.

The client delegates the computation to the cloud. However, while the data is
in the cloud, it could be subject to snooping, including by the cloud provider. The
client does not wish to expose the input data, or the output of the computation,
to possible snooping in the cloud. A snooper here will be a party who may observe
the data and the computation in the cloud, but cannot, or does not, change the
data or insert spurious data. (In our setting data modification would amount
to pointless vandalism.) The snooping may be casual, displaying an uninvited
interest, or malicious, intending to use data for the attacker’s own purposes.

To obtain the required data privacy, the client’s function will be computed
homomorphically on an encryption of the data. The client encrypts the source
data using a secret key and uploads the encryption to the cloud, with a homo-
morphic equivalent of the target computation. The cloud environment performs
the homomorphic computation on the encrypted data. The result of the homo-
morphic computation is returned to the client, who decrypts it using the secret
key, and obtains the output of the computation.

In this scenario, the source data is never exposed in the cloud, but encryptions
of it are. A snooper may observe the computation of the equivalent homomorphic
function in the cloud environment. As a result, they may be able to deduce what
operations are performed, even though they do not know the inputs. A snooper
may also be able to inspect the (encrypted) working data generated by the
cloud computation, and even perform side computations of their own. However,
snoopers have no access to the secret key, so cannot make encryptions of their
own.
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2.2 Definitions and Notation

x
$←− S denotes a value x chosen uniformly at random from the discrete set S.
KeyGen : S → K denotes the key generation function operating on the

security parameter space S and whose range is the secret key space K.
Enc : M × K → C denotes the symmetric encryption function operating on

the plaintext space M and the secret key space K, whose range is the ciphertext
space C.

Dec : C × K → M denotes the symmetric decryption function operating on
the ciphertext space C and the secret key space K, whose range is the plaintext
space M.

Add : C × C → C denotes the homomorphic addition function whose domain
is C2 and whose range is C.

Mult : C × C → C denotes the homomorphic multiplication function whose
domain is C2 and whose range is C.

m,m1,m2, . . . denote plaintext values, and c, c1, c2, . . . denote ciphertext val-
ues.

If k∗ =
(
k+1
2

)
, v� = [v1 v2 . . . vk∗ ]T denotes a k∗-vector which augments

the k-vector v = [v1 v2 . . . vk]T by appending elements vi = fi(v1, . . . , vk) (i ∈
[k +1, k∗]), for a linear function fi. (All vectors are column vectors throughout.)

ei denotes the ith unit vector (i = 1, 2, . . .), with size determined by the
context.

[x, y] denotes the integers between x and y inclusive, and [x, y) denotes [x, y]\
{y}.

log denotes loge and lg denotes log2.
If λ is a security parameter, “with high probability” will mean with proba-

bility 1 − 2−ελ, for some constant ε > 0.
Polynomial time or space will mean polynomial in the security parameter λ.

2.3 Formal Model of Scenario

We have n integer inputs m1,m2, . . . ,mn distributed in [0,M) according to
a probability distribution D. If X is a random integer sampled from D, let
Pr[X = i] = ξi, for i ∈ [0,M). We will consider three measures of the entropy of
X, measured in bits:
Shannon: H1(X) = −∑M−1

i=0 ξi lg ξi, Collision: H2(X) = − lg
(∑M−1

i=0 ξ2i
)
,

Min: H∞(X) = − lg
(
maxM−1

i=0 ξi

)
.

It is known that H1(X) ≥ H2(X) ≥ H∞(X), with equality if and only if X
has the uniform distribution on [0,M), in which case all three are lg M . We
will denote H∞(X) by ρ, so it also follows that H1(X),H2(X) ≥ ρ. We use the
term “entropy” without qualification to mean min entropy, H∞(X). Note that
H∞(X) = ρ ≥ lg M implies ξi ≤ 2−ρ, i ∈ [0,M), and that M ≥ 2ρ.

We wish to compute a multivariate polynomial P of degree d on these inputs.
A secure client A selects an instance EK of the encryption algorithm E using the
secret parameter set K. A encrypts the n inputs by computing ci = EK(mi), for
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i ∈ [1, n]. A uploads c1, c2, . . . , cn and P ′ to the cloud computing environment,
where P ′ is the homomorphic equivalent of P in the ciphertext space. The cloud
environment computes P ′(c1, c2, . . . , cn). A retrieves P ′(c1, c2, . . . , cn) from the
cloud, and computes

P (m1,m2, . . . ,mn) = EK
−1(P ′(c1, c2, . . . , cn)).

A snooper is only able to inspect c1, c2, . . . , cn, the function P ′, and the
computation of P ′(c1, c2, . . . , cn), including subcomputations and working data,
and perform side-computations on these.1 Thus the snooper is passive or honest-
but-curious [31].

2.4 Observations from Scenario

Our encryption schemes are essentially symmetric key encryption, though there
is no key escrow or distribution problem. The public parameters of our schemes
are exposed to the cloud, but they do not provide an encryption oracle.

Note that the n inputs do not necessarily need to be uploaded at once, but n
is an upper bound on the total number of inputs. For example, if the polynomial
is separable we might compute it in separate stages, and this might be useful in
more dynamic situations.

This model is clearly susceptible to certain attacks. We consider ciphertext
only, brute force, and cryptanalytic attacks. To avoid cryptanalytic attacks, we
must choose the parameters of the system carefully. Here, a brute force attack
will mean guessing the plaintext associated with a ciphertext. In our encryption
schemes, it will be true that a guess can be verified. Since ξi ≤ 2−ρ for i ∈ [0,M),
the expected number μ of guesses before making a correct guess satisfies μ ≥ 2ρ.
Massey [43] gave a corresponding result in terms of the Shannon entropy H1(X).

Similarly, probability of any correct guess in 2ρ/2 guesses is at most 2−ρ/2.
This bound holds if we need only guess one of n inputs, m1,m2, . . . ,mn, even
if these inputs are not independent. Therefore, if ρ is large enough, a brute
force attack is infeasible. An example of high entropy data is salaries for a large
national or multinational business. Low entropy data might include enumerated
types, such as gender.

In our model, known plaintext attack (KPA) is possible only by brute force,
and not through being given a sample of plaintext, ciphertext pairs. Chosen
plaintext attack (CPA) or chosen ciphertext attack (CCA) do not appear relevant
to our model. Since EK is never exposed in the cloud, there is no realistic analogue
of an encryption or decryption oracle, as required by these attacks. In public key
encryption, an encryption algorithm is available as part of the system, so CPA
should be forestalled, though failure to satisfy IND-CPA [6] does not imply that
we can break the system.

Following [5], it is common in studying symmetric key encryption to sup-
pose that, in most practical settings, defence against CPA or CCA is necessary.
1 However, note that our “N” schemes below provide security even against more mali-

cious snooping.
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While IND-CPA and IND-CCA are clearly desirable properties for a cryp-
tosystem, their necessity, in the symmetric-key context, seems hard to justify.
Both [4,9] provide examples intended to support this convention. However, these
examples are unconvincing. Nevertheless, we show that the “N” variants of our
HE schemes below do satisfy IND-CPA.

We note that observation of the function P ′, which closely resembles P ,
might leak some information about its inputs. However, we assume that this
information is far too weak to threaten the security of the system, as is common
in the HE literature. However, if the threat is significant, “garbled circuits” [31]
are a possible solution.

Finally, we note that our model of SSCC is very similar to the model of
private single-client computing, described in [23]. Furthermore, they describe
an example practical application, a privacy preserving tax return preparation
program, which computes the relevant statistics on government servers without
revealing the client’s inputs. Another example, cited in [42], is a device which
collects health data which is streamed to the cloud. Statistics are computed on
the data and reported back to the device. To protect the patient’s privacy this
data is encrypted by the device and the computations are performed homomor-
phically. Erkin et al. [27] employ a similar scenario in the description of their
privacy-preserving face recognition algorithm.

2.5 Our Results

We describe new practical HE schemes for the encryption of integers, to be
employed in a SSCC system inspired by the HE scheme CryptDB [46]. CryptDB
encrypts integers using the Paillier cryptosystem [45] which is additively homo-
morphic2. Similar systems [52,53] use ElGamal [26] to support multiplications.
The “unpadded” versions of these schemes must be used. These are not secure
under CPA [32], reducing the advantage of a public-key system. These schemes
do not support both addition and multiplication. Computing the inner product
function requires re-encrypting the data once the multiplications have been done,
so that the additions can be performed. In a SSCC system, this requires ship-
ping the data back to the initiator for re-encryption, a significant communication
overhead. We aim to support both addition and multiplication without this over-
head. It should also be noted that a hybrid scheme of Paillier and ElGamal, for
a given modulus, will be limited in the degree of polynomials that can be com-
puted. Should a product or sum exceed the modulus then the result cannot be
successfully decrypted.

Our scheme is inspired by the SWHE scheme of van Dijk et al. that is used
as the basis for a public-key system. As in their system, we add multiples of
integers to the plaintext to produce a ciphertext. However, [22] supports only
arithmetic mod 2. We generalise their scheme to larger moduli.

2 Paillier supports computation of linear functions with known coefficients homomor-
phically by repeated addition.
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We showed above that the input data must have sufficient entropy to negate
brute force attacks. If the data lacks sufficient entropy, we will introduce more in
two ways. The first adds random “noise” of sufficient entropy to the ciphertext,
to “mask” the plaintext. This approach is employed in [22]. In our “N” variants
below, we add a random multiple (from 0 to κ) of a large integer, κ, to the
ciphertext, such that mi < κ, for all i ∈ [1, N ]. If the entropy of the original data
was ρ, it becomes ρ+lg κ. Therefore, if κ is large enough, our data has sufficient
entropy. But there is a downside. If the noise term grows too large, the ciphertext
cannot be decrypted successfully. So we are restricted to computing polynomials
of bounded degree, but this does not appear to be a practical problem.

The other technique will be to increase the dimension of the ciphertext. We
represent the ciphertext as a k-vector, where each element is a linear function
of the plaintext. Addition and multiplication of ciphertexts use linear algebra.
The basic case k = 1 is described in Sect. 3.1. Then we can increase the entropy
by creating a k-vector ciphertext. Then we must guess k plaintexts to break the
system. Assuming that the inputs m1,m2, . . . ,mn are chosen independently from
D, and the entropy is ρ, the entropy of a k-tuple (m1,m2, . . . ,mk) is kρ. Thus
the k-vectors effectively have entropy kρ. If k is chosen large enough, we have
sufficient entropy to prevent brute force attack. The assumption of independence
among m1,m2, . . . ,mn can be relaxed, to allow some correlation, but we will not
discuss the details. On the upside, some cryptanalytic attacks for k = 1 do not
seem to generalise even to k = 2. The downside is that ciphertexts are k times
larger, and each homomorphic multiplication requires Ω(k3) time and space.
For very large k, this probably renders the methods impractical. Therefore, we
consider the case k = 2 in Sect. 4. The general case is considered in Appendix A.

Our work here supports computing arbitrary degree multivariate polynomi-
als on integer data. However, we expect that for many practical applications,
computing low-degree polynomials will suffice. See [42] for a discussion regard-
ing this. In this paper, we present four variants of our scheme. Two provide
strong security under the assumption that the input data has high entropy. The
other two provide strong security regardless of this assumption. Appendix A
generalises these four schemes to dimension k ciphertexts.

2.6 Related Work

A comprehensive survey of somewhat and fully HE schemes is presented in [1].
In this section, we discuss those most related to our own work. Some related
work [46,52,53] has already been discussed in Sect. 2.5.

Our scheme is inspired by that of van Dijk et al. [22]. In their paper they pro-
duce an FHE scheme over the integers, where a simple SWHE scheme for modulo
2 arithmetic is “bootstrapped” to FHE. Our scheme HE1N below (Sect. 3.2) may
be regarded as a generalisation of theirs to arbitrary prime moduli. In van Dijk
et al. [22], their symmetric scheme is transformed into a public key scheme.
Though we could do this, we will not do so, since public key systems appear
to have little application to our model. In [19], Coron et al. develop a similar
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encryption scheme, where the sum term in the ciphertext is quadratic rather
than linear.

Several implementations of SWHE and FHE schemes have been produced.
Lauter et al. [42] implement the SWHE scheme from [12]. However, they give
results only for degree two polynomials. Our schemes are capable of comput-
ing degree three and four polynomials for practical key and ciphertext sizes.
HELib [34] is an implementation of the BGV [13] FHE scheme. HELib-MP
[48] is an adaptation of HELib to support multi-precision moduli. At the cur-
rent time, it only supports basic SWHE features. The Homomorphic Encryption
Applications and Technology (HEAT) project’s Homomorphic Encryption Appli-
cation Programming Interface (HE-API) [56] has currently integrated HELib
and FV-NFLib [20], an implementation of the Fan and Vercauteren (FV) [28]
SWHE scheme, under a single API. The authors appear to have made significant
improvements in circuit evaluation times, but few details have been made avail-
able [10]. Microsoft’s SEAL library [41] also implements the FV scheme, albeit,
in a modified form. FHEW [25] implements the FHE scheme described in [24].
The performance of these implementations is discussed in Sect. 5.

Erkin et al. [27] exploit the linearly-homomorphic properties of Paillier to
compute feature vector matches in their privacy-preserving face recognition algo-
rithm. Our schemes can likewise compute known linear functions, simply by not
encrypting the coefficients of the function.

Catalano et al. [15] aim to extend a linearly-homomorphic system, such as
Paillier [45], to compute multivariate quadratics homomorphically. However,
their extension relies on pre-computing a product for each pair of plaintexts
and then applying a linear function on the encryption of these products. As
such, it does not extend the underlying linear encryption scheme and is not
multiplicatively homomorphic. They claim that their system can compute any
degree 2 polynomial with at most one multiplication. However, it is not clear
how they would compute the polynomial m1 · (m2 + . . . + mn) without perform-
ing n−1 offline multiplications. By contrast, our scheme would only require one
multiplication. In [14], Catalano et al. extend their approach to cubics.

Zhou and Wornell [59] construct a scheme based on integer vectors, simi-
lar, in some respects, to our HE2 (Sect. 4.1) and HEk (Appendix A) schemes.
Bogos et al. [8] demonstrate that the system displays some theoretical insecuri-
ties. However, the question of whether these are of practical importance is not
addressed.

The symmetric MORE scheme [39] uses linear transformations, as do our
schemes but in a different way. MORE has been shown [57] to be insecure against
KPA, at least as originally proposed. However, whether KPA is relevant in appli-
cations of the scheme is unclear.

Recent work on functional encryption [33] should also be noted. While these
results are of great theoretical interest, the scenario where such schemes might
be applied is rather different from our model. Also, the methods of [33] seem too
computationally expensive to be of practical interest in the immediate future.



52 J. Dyer et al.

3 Initial Homomorphic Scheme

3.1 Sufficient Entropy (HE1)

We have integer inputs m1,m2, . . . ,mn ∈ [0,M). (Negative integers can be han-
dled as in van Dijk et al. [22], by taking residues in [−(p − 1)/2, (p − 1)/2),
rather than [0, p).) We wish to compute a polynomial P of degree d in these
inputs. The inputs are distributed with entropy ρ, where ρ is large enough, as
discussed in Sect. 2.3 above. In practical terms, ρ ≥ 32 will provide sufficient
entropy for strong security, since breaking the system would require more than
a billion guessses. Our HE scheme is the system (KeyGen,Enc,Dec,Add,Mult).

Key Generation. Let λ be a security parameter, measured in bits. Let p
and q be randomly chosen large distinct primes such that p ∈ [2λ−1, 2λ], and
q ∈ [2η−1, 2η], where η ≈ λ2/ρ − λ. Here λ must be large enough to negate
direct factorisation of pq (see [40]), and p and q are chosen to negate Cop-
persmith’s attack [18]. We will also require p > (n + 1)dMd to ensure that
P (m1,m2, . . . ,mn) < p, so that the result of the computation can be successfully
decrypted. Our bounds are worst case, allowing for polynomials which contain all
possible monomial terms. For some applications, they will be much larger than
required to ensure that P (m1,m2, . . . ,mn) < p and smaller bounds will suffice.
Our function KeyGen will randomly select p and q according to these bounds.
Then p is the private symmetric key for the system and pq is the modulus for
arithmetic performed by Add and Mult. pq is a public parameter of the system.
We assume that the entropy ρ � lg λ, so that a brute force attack cannot be
carried out in polynomial time.

Security Parameters. We can easily set the security parameters λ and η
to practical values. If n ≈ √

M , M ≈ 2ρ then we may take λ ≈ 3dρ/2 and
η ≈ 3dλ/2 − λ (see Appendix C). For, example, if ρ = 32, d = 4, we can take
any λ > 192, η > 960.

Encryption. We encrypt a plaintext integer m as

Enc(m, p) = m + rp (mod pq), where r
$←− [1, q).

Decryption. We decrypt the ciphertext c by Dec(c, p) = c (mod p).

Addition. The sum modulo pq of two ciphertexts, c = m + rp and c′ = m′ +
r′p, is

Add(c, c′) = c + c′ = m + m′ + (r + r′)p (mod pq) .

This decrypts to m + m′, provided m + m′ < p.
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Multiplication. The product modulo pq of two ciphertexts, c = m + rp and
c′ = m′ + r′p, is

Mult(c, c′) = cc′ = mm′ + (rm′ + r′m + rr′p)p (mod pq),

which decrypts to mm′, provided mm′ < p.

Security. Security of the system is provided by the partial approximate common
divisor problem (PACDP), first posed by Howgrave-Graham [36], but can be
formulated [16,17] as:

Definition 1. (Partial approximate common divisor problem.) Suppose we are
given one input x0, of the form pr0, and n inputs xi, of the form pri + mi,
i ∈ [1, n], where p is an unknown constant integer and the mi and ri are unknown
integers. We have a bound B such that |mi| < B for all i. Under what conditions
on the mi and ri, and the bound B, can an algorithm be found that can uniquely
determine p in time polynomial in the total bit length of the numbers involved?

A straightforward attack on this problem is by brute force. Consider x1.
Assuming that m1 is sampled from D, having entropy ρ, we successively try
values for m1 and compute gcd(x0, x1 − m1) in polynomial time until we find a
divisor that is large enough to recover p. Then we can recover mi as (xi mod p)
for i ∈ [2, n]. As discussed in Sect. 2.3, the search will requires 2ρ gcd operations
in expectation. Note that publicly known constants, need not, and should not
be encrypted. Encrypting them provides an obvious guessing attack.

Several attempts have been made to solve the PACDP [16,17,36], resulting
in theoretically faster algorithms for some cases of the problem. The paper [16]
gives an algorithm requiring only

√
M polynomial time operations if D is the

uniform distribution on [0,M), and hence ρ = lg M . No algorithm running in
time subexponential in ρ is known for this problem, so the encryption will be
secure if ρ is large enough. See [29] for a survey and evaluation of attacks on
PACDP.

Our system is a special case of PACDP, since we use the residues modulo a
distinct semiprime. A semiprime is a natural number that is the product of two
primes. A distinct semiprime is a semiprime where the primes are distinct. We
call this the semiprime partial approximate common divisor problem (SPACDP).
It is a restriction, but there is no reason to believe that it is any easier than
PACDP.

Definition 2. (Semiprime factorisation problem.) Given a semiprime s, the
product of primes p and q, can p and q be determined in polynomial time?

The computational complexity of this problem, which lies at the heart of the
widely-used RSA cryptosystem, is open, other than for quantum computing,
which currently remains impractical. We will show that breaking HE1 is equiv-
alent to semiprime factorisation. Therefore, our scheme is at least as secure as
unpadded RSA [49].
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Theorem 1. An attack against HE1 is successful in polynomial time if and only
if we can factorise a distinct semi-prime in polynomial time.

With low entropy plaintexts, there is a brute force attack on this system,
which we call a collision attack. Suppose we have a pair of equal plaintexts
m1 = m2. The difference between their encryptions (c1 − c2) is an encryption of
0, and KPA is possible. In fact, for n plaintexts m1,m2, . . . ,mn, if there exist
i, j ∈ [1, n] with mi = mj , then

∏
1≤i<j≤n(cj −ci) is an encryption of 0. However,

if there is sufficient entropy, this attack is not possible.

Lemma 1. If the inputs m have entropy ρ then, for any two independent inputs
m1,m2, Pr(m1 = m2) ≤ 2−ρ.

Thus, for n inputs, m1,m2, . . . ,mn the probability that there exist i, j ∈ [1, n]
with mi = mj is at most

(
n
2

)
2−ρ. If n < 2−ρ/3, this probability is at most 2−ρ/3.

Hence, for large enough λ, collision attack is infeasible.

3.2 Insufficient Entropy (HE1N)

Suppose now that the integer inputs mi, i ∈ [1, n], are distributed with entropy
ρ, where ρ is not large enough to negate a brute force guessing attack. There-
fore, we increase the entropy of the plaintext by adding an additional “noise”
term to the ciphertext. This will be a multiple s (from 0 to κ) of an integer
κ, chosen so that the entropy ρ′ = ρ + lg κ is large enough to negate a brute
force guessing attack. As a result of the extra linear term in the ciphertext, we
compute P (m1, . . . ,mn, κ) instead. We can easily retrieve P (m1, . . . ,mn) from
P (m1, . . . ,mn, κ).

Key Generation. KeyGen now randomly chooses p and q as in HE1, but with
η = λ2/ρ′−λ, and p > (n+1)d(M +κ2)d so that P (m1+s1κ,m2+s2κ, . . . ,mN +
snκ) < p, when s1, s2, . . . , sn ∈ [0, κ). KeyGen also randomly chooses κ, where
κ > (n + 1)dMd, so that P (m1,m2, . . . ,mn) < κ. The secret key, sk, is now
(κ, p).

Security Parameters. Again, we can set the security parameters λ and η to
practical values. If we assume M ≈ 2ρ and large enough n, as in Sect. 3.1, then
we may take lg κ > d(lg n + ρ), ρ′ = ρ + lg κ, λ > d(lg n + 2 lg κ). Then, for
example, if d = 3, lg n = 16, ρ = 8, then lg κ > 72, ρ′ = 80, λ > 480, η > 2400.
In the extreme case that the inputs are bits, so ρ = 1, and d = 3, lg n = 16, then
we can take lg κ ≈ 51 and ρ′ ≈ 52, and we have λ > 354, η > 2056, which is
only 15% smaller than for ρ = 8.

Encryption. We encrypt plaintext m as Enc(m, sk) = m + sκ + rp (mod pq),

where r
$←− [1, q) and s

$←− [0, κ).
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Decryption. We decrypt ciphertext c as Dec(c, sk) = (c mod p) mod κ.

Arithmetic. Addition and multiplication of ciphertexts is as above.

Security. The use of random noise gives the encryption the following “indistin-
guishability” property, which implies that the system satisfies IND-CPA [5,6].

Theorem 2. For any encryption c, c mod κ is polynomial time indistinguish-
able from the uniform distribution on [0, κ). Thus HE1N satisfies IND-CPA,
under the assumption that SPACDP is not polynomial time solvable.

Therefore, HE1N is resistant to both the “guessing” and “collision” attacks
discussed in Sect. 3.1.

Hybrid Scheme. Note that mixed data, some of which has high entropy and
some low, can be encrypted with a hybrid of HE1 and HE1N. More generally, we
can choose s to be smaller for higher entropy and larger for lower entropy, say
s ∈ [0, χi), where 0 ≤ χi < κ, for the ith data type, rather than [0, κ). However,
κ itself remains the same for all i, or we cannot decrypt. Then the entropy
increases to ρi + lg χi for data type i. The advantage is a smaller blow-up in the
noise. A possible disadvantage is that this mixed scheme may not necessarily
have the IND-CPA property of Theorem 2. The same idea can be applied to
HE2 and HE2N below, and to the HEkN schemes, for k > 2, described in the
appendix.

4 Adding a Dimension

In this section we discuss adding an additional dimension to the ciphertext,
which becomes a 2-vector. The purpose of this is to increase the level of security
beyond HE1 and HE1N. In both schemes presented below, HE2 and HE2N, we
add a further vector term, with two further secret parameters. The two schemes
presented below have a constant factor overhead for arithmetic operations. An
addition operation in the plaintext space requires two additions in the ciphertext
space, and a multiplication in the plaintext space requires nine multiplications
and four additions in the ciphertext space.

4.1 Sufficient Entropy (HE2)

As with HE1, it is assumed that the inputs mi (i ∈ [1, n]) are of sufficient entropy.
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Key Generation. p and q are randomly chosen by KeyGen according to the
bounds given in Sect. 3.1. KeyGen sets a = [a1 a2]T , where ai

$←− [1, pq) (i ∈
[1, 2]) such that a1, a2, a1 − a2 
= 0 (mod p and mod q).3 KeyGen also sets R,
the re-encryption matrix (see “Multiplication”) as

[
1 − 2α1 α1 α1

−2α2 α2 + 1 α2

]

,

where
α1 = β−1(σa1 + p − a2

1), α2 = β−1(σa2 + p − a2
2), (1)

such that β = 2(a2 − a1)2, 
$←− [0, q] and σ

$←− [0, pq).
The secret key sk is (p,a) and the public parameters are pq and R.

Encryption. We encrypt a plaintext integer m as the 2-vector c,

c = Enc(m, sk) = (m + rp)1 + sa (mod pq),

where 1 = [1 1]T , r
$←− [0, q), and s

$←− [0, pq). r and s are independent. We
note that two encryptions of the same plaintext are different with very high
probability.

Theorem 3. The encryption scheme produces ciphertexts with components
which are random integers modulo pq.

Note, however, that the components of the ciphertexts are correlated, and this
may be a vulnerability. We discuss this later in this section (“Cryptanalysis”).

Decryption. To decrypt, we eliminate s from c (modulo p), giving

Dec(c, sk) = γT c mod p,

where γT = (a2 − a1)−1[a2 − a1]. We call γ the decryption vector.

Addition. We define the addition operation on ciphertexts as the vector sum
modulo pq of the two ciphertext vectors c and c′,

Add(c, c′) = c + c′ (mod pq).

Therefore, if inputs m,m′ encrypt as (m + rp)1 + sa, (m′ + r′p+)1 + s′a,

Add(c, c′) = c + c′ = (m + m′ + (r + r′)p)1 + (s + s′)a.

which is a valid encryption of m + m′.
3 The condition a1, a2, a1 − a2 �= 0, (mod p, mod q) fails with exponentially small

probability 3(1/p + 1/q). Thus, a1 and a2 are indistinguishable in polynomial time

from a1, a2
$←− [0, pq).
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Multiplication. If c = [c1 c2]T , we construct the augmented ciphertext vector,
c� = [c1 c2 c3]T , where c3 = 2c1 − c2. Thus, c3 = (m + rp) + sa3 mod pq, for
a3 = 2a1 − a2. So,

Mult(c, c′) = c · c′ = R(c� ◦ c′
�) (mod pq),

where · is a product on Z
2
pq and c� ◦ c′

� is the Hadamard product modulo pq of
the two augmented ciphertext vectors c� and c′

�.

Theorem 4. If c is an encryption of m and c′ is an encryption of m′ then
R(c� ◦ c′

�) (mod pq) is an encryption of mm′.

Observe that α1, α2 in R are public, but give only two equations for the four
parameters of the system a1, a2, σ, p. These equations are quadratic mod pq,
and solving them is as hard as semiprime factorisation in the worst case [47].

Also, observe that, independently of a,

Rc� = (m + rp)R1� + sRa� = (m + rp)1 + sa = c,

for any ciphertext c. Hence re-encrypting a ciphertext gives the identity opera-
tion, and discloses no information.

Hardness. We can show that this system is at least as hard as SPACDP. In
fact,

Theorem 5. SPACDP is of equivalent complexity to the special case of HE2
where δ = a2 − a1 (0 < δ < q) is known.

Without knowing the parameter δ = a2 − a1, HE2 cannot be reduced to
SPACDP in this way, so HE2 is more secure than HE1.

Cryptanalysis. Each new ciphertext c introduces two new unknowns r, s and
two equations for c1, c2. Thus we gain no additional information from a new
ciphertext. However, if we can guess, m, m′ for any two ciphertexts c, c′, we can
determine

(c1 − m) = rp + sa1, (c2 − m) = rp + sa2,

(c′
1 − m′) = r′p + s′a1, (c′

2 − m′) = r′p + s′a2,

so (c1 − m)(c′
2 − m′) − (c2 − m)(c′

1 − m′) = (a2 − a1)(rs′ − r′s)p (mod pq)

Since a2 
= a1, and sr′ 
= s′r with high probability, this is a nonzero multiple
of p, νp say. We may assume ν < q, so p = gcd(νp, pq). We can now solve the
linear system γT [c c′] = [m m′] mod p to recover the decryption vector. This
effectively breaks the system, since we can now decrypt an arbitrary ciphertext.
We could proceed further, and attempt to infer a1 and a2, but we will not do so.

Note that to break this system, we need to guess two plaintexts, as opposed
to one in HE1. The entropy of a pair (m,m′) is 2ρ, so we have effectively squared
the number of guesses needed to break the system relative to HE1. So HE2 can
tolerate smaller entropy than HE1. We note further that HE2 does not seem
immediately vulnerable to known cryptanalytic attacks on HE1 [16,17,36].
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4.2 Insufficient Entropy (HE2N)

In this section we extend HE1N above (Sect. 3.2) to two dimensions.

Key Generation. KeyGen randomly chooses p, q and κ according to the
bounds given in Sect. 3.2. 1 is defined as in Sect. 4.1. a, and R are generated
as in Sect. 4.1. The secret key is (κ, p,a), and the public parameters are pq and
R, defined in Sect. 4.1.

Encryption. We encrypt a plaintext integer m ∈ [0,M) as a 2-vector c,

Enc(m, sk) = c = (m + rp + sκ)1 + ta mod pq,

where r is as in Sect. 4.1, s
$←− [0, κ), and t

$←− [0, pq).

Decryption. We decrypt a ciphertext c by Dec(c, sk) = (γT c mod p) mod κ,
where γT is defined as in Sect. 4.1.

Arithmetic. Addition and multiplication of ciphertexts are as in Sect. 4.1.

Security. HE2N has all the properties of HE1N. However, it is more secure,
since there is an additional unknown parameter in the ciphertext. We also note
that HE2N satisfies Theorem 2, so it inherits the IND-CPA property.

4.3 Generalisation of HE2 and HE2N to k Dimensions

The integer vector based approach of HE2 and HE2N can be generalised to
vectors of dimension k. We do not have space to present this material here, but
it may be found in Appendix A.

5 Experimental Results

HE1, HE1N, HE2, and HE2N have been implemented in pure unoptimised Java
using the JScience mathematics library [21]. Secure pseudo-random numbers are
generated using the ISAAC algorithm [37], seeded using the Linux /dev/random

source. This prevents the weakness in ISAAC shown by Aumasson [3].
The evaluation experiment generated 24,000 encrypted inputs and evalu-

ated a polynomial homomorphically on the inputs, using a Hadoop MapReduce
(MR) algorithm. On the secure client side, the MR input is generated as pseudo-
random ρ-bit integers which are encrypted and written to a file with d inputs per
line, where d is the degree of the polynomial to be computed. The security para-
meters λ and η were selected to be the minimum values required to satisfy the
conditions give in Sects. 3.1, 3.2, 4.1, and 4.2. In addition, the unencrypted result
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Table 1. Timings for each experimental configuration (n = 24000 in all cases, λ > 96). Init is the
initialisation time for the encryption algorithm, Enc is the mean time to encrypt a single integer,
Exec is the total MR job execution time, Prod is the mean time to homomorphically compute the
product of two encrypted integers, Sum is the mean time to homomorphically compute the sum of
two encrypted integers.

Alg. Parameters Encryption MR Job Decrypt

d ρ ρ′ Init(s) Enc(μs) Exec(s) Prod(μs) Sum(μs) (ms)

HE1 2 32 n/a 0.12 13.52 23.82 54.41 9.06 0.21

HE1 2 64 n/a 0.12 16.24 23.85 60.38 8.04 0.49

HE1 2 128 n/a 0.15 25.73 23.77 84.69 8.43 0.28

HE1 3 32 n/a 0.17 22.98 23.65 87.75 11.46 0.35

HE1 3 64 n/a 0.19 34.63 24.72 95.68 12.37 0.45

HE1 3 128 n/a 0.42 54.83 26.05 196.71 14.07 0.55

HE1 4 32 n/a 0.28 43.36 24.48 108.72 13.75 0.5

HE1 4 64 n/a 0.53 58.85 26.41 227.44 15.85 3.59

HE1 4 128 n/a 1.36 104.95 28.33 484.95 16.92 5.67

HE1N 2 1 32 0.22 32.99 22.94 88.38 8.53 3.35

HE1N 2 1 64 0.39 52.63 26.24 168.54 12.39 3.56

HE1N 2 1 128 1.2 89.01 26.18 226.2 13.16 8.1

HE1N 2 8 32 0.6 57.88 25.9 177.36 11.17 7.18

HE1N 2 8 64 0.32 43.93 26.53 96.78 12.18 2.27

HE1N 2 8 128 1.13 78.11 24.42 212.75 11.07 8.4

HE1N 2 16 64 0.33 53.97 27.15 168 13.67 4.47

HE1N 2 16 128 0.63 68.73 25.22 194.42 11.01 7.65

HE1N 3 1 32 8.54 183.19 24.24 522.07 12.06 9.09

HE1N 3 1 64 3.67 125 29.49 467.36 18.22 11.43

HE1N 3 1 128 27.84 313.76 26.94 1235.77 15.04 11.75

HE1N 3 8 32 115 462.45 32.61 1556.17 21.11 19.79

HE1N 3 8 64 9.75 180.08 25.87 500.62 15.03 10.39

HE1N 3 8 128 36.05 259.15 30.1 836.27 20.68 11.45

HE1N 3 16 64 30.96 378.99 28.24 1338.33 15.51 13.3

HE1N 3 16 128 8.13 226.32 27.92 621.95 18.01 10.89

HE2 2 32 n/a 0.16 85.79 26.82 305.52 11.68 4.83

HE2 2 64 n/a 0.17 95.92 29.71 354.79 16.9 3.26

HE2 2 128 n/a 0.22 132.53 32.84 540.78 22.83 4.92

HE2 3 32 n/a 0.23 130.3 31.18 513.93 23.77 6.52

HE2 3 64 n/a 0.29 145.62 32.84 615.9 24.61 6.3

HE2 3 128 n/a 0.52 249.47 29.54 1443.82 16.56 18.34

HE2 4 32 n/a 0.39 175.63 29.5 733.23 20.69 6.01

HE2 4 64 n/a 0.7 255.3 29.55 1578.39 18.29 16.24

HE2 4 128 n/a 2.7 465.51 37.47 2943.91 22.15 15.41

(continued)
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Table 1. (continued)

Alg. Parameters Encryption MR Job Decrypt

d ρ ρ′ Init(s) Enc(μs) Exec(s) Prod(μs) Sum(μs) (ms)

HE2N 2 1 32 0.27 147.83 29.74 571.94 16.58 5.66

HE2N 2 1 64 0.43 202.74 33.36 1291.68 18.3 13.23

HE2N 2 1 128 1.58 354.19 33.76 1977.51 17.13 12.46

HE2N 2 8 32 0.59 234.83 31.42 1413.31 15.21 14.92

HE2N 2 8 64 0.33 163.78 27.42 635.64 13.6 6.18

HE2N 2 8 128 0.9 307.68 36.32 1850.83 21.71 15.79

HE2N 2 16 64 0.42 208.1 29.96 1230.56 13.41 13.16

HE2N 2 16 128 0.73 274.48 30.82 1585.1 14.85 15.04

HE2N 3 1 32 5.72 651.1 36.49 3438.96 18.67 19.05

HE2N 3 1 64 4.45 477.52 35.33 3073.46 18.75 19.77

HE2N 3 1 128 26.83 1192.79 43.23 6416.43 22.48 25.12

HE2N 3 8 32 87.38 1658.36 49.63 8139.19 23.71 27.24

HE2N 3 8 64 5.21 607.75 36.54 3337.1 22.28 17.39

HE2N 3 8 128 17.14 945.64 40.49 4620.69 25.91 22.41

HE2N 3 16 64 39.19 1368.18 44.88 7005.7 24.1 28.3

HE2N 3 16 128 11.39 774.07 36.05 3845.1 20.29 20.74

of the computation is computed so that it may checked against the decrypted
result of the homomorphic computation. On the Hadoop cluster side, each map-
per processes a line of input by homomorphically multiplying together each input
on a line and outputs this product. A single reducer homomorphically sums the
products. The MR algorithm divides the input file so that each mapper receives
an equal number of lines of input, ensuring maximum parallelisation. Finally, on
the secure client side, the MR output is decrypted.

Our test environment consisted of a single secure client (an Ubuntu Linux
VM with 16 GB RAM) and a Hadoop 2.7.3 cluster running in a heterogeneous
OpenNebula cloud. The Hadoop cluster consisted of 17 Linux VMs, one master
and 16 slaves, each allocated 2 GB of RAM. Each experimental configuration of
algorithm, polynomial degree (d), integer size (ρ), and effective entropy of inputs
after adding “noise” (ρ′, for the ‘N’ variant algorithms only), was executed 10
times. The means are tabulated in Table 1.

There are some small anomalies in our data. JScience implements arbitrary
precision integers as an array of Java long (64-bit) integers. This underlying
representation may be optimal in some of our test configurations and suboptimal
in others, causing anomalous results. Another possibility is that the unexpected
results are due to garbage collection in the JVM heap, which may be more
prevalent in certain test configurations.
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We may compare these results with those reported in the literature. Our
results compare extremely favourably with Table 2 of [42]. For encryption, our
results are, in the best case, 1000 times faster than those presented there, and,
in the worst case, 10 times faster. For decryption, our results are comparable.
However, it should be noted that to decrypt our results we take the moduli for
large primes rather than 2 as in [42], which is obviously less efficient. For homo-
morphic sums and products, our algorithms perform approximately 100 times
faster. [42] only provides experimental data for computing degree 2 polynomials.
We provide experimental results for higher degree polynomials.

Similarly, compared with Fig. 13 of Popa et al. [46], our encryption times for
a 32-bit integer are considerably faster. While a time for computing a homomor-
phic sum on a column is given in Fig. 12, it is unclear how many rows exist in
their test database. Nevertheless, our results for computing homomorphic sums
compare favourably with those given. Since CryptDB [46] only supports homo-
morphic sums and cannot compute an inner product, we can only compare the
homomorphic sum timings.

Table 1 of [52] is unclear whether the timings are aggregate or per operation.
Even assuming that they are aggregate, our results are approximately 100 times
faster for homomorphic sum and product operations. Crypsis [52] uses two dif-
ferent encryption schemes for integers, ElGamal [26] and Paillier [45], which only
support addition or multiplication but not both. No discussion of computation
of an inner product is made in [52] but we expect that the timings would be
considerably worse as data encrypted using ElGamal to compute the products
would have to be shipped back to the secure client to be re-encrypted using
Paillier so that the final inner product could be computed.

Varia et al. [55] present experimental results of applying their HETest frame-
work to HELib [35]. Varia et al. show timings 104 to 106 times slower than that
of computations on unencrypted data. Although it is unclear exactly which cir-
cuits are being computed, the timings given are in seconds, so we believe that
HELib will not be a serious candidate for SSCC in the immediate future.

As reported in [24], the current performance of FHEW [25] is poor compared
with unencrypted operations. The authors report that FHEW processed a single
homomorphic NAND operation followed by a re-encryption in 0.69 s and using
2.2GB of RAM. Therefore, we also believe that FHEW is not a candidate for
SCCC, as it currently stands.

Although claims regarding its performance have been made in the press [54],
no benchmarking statistics have been made publicly available for Microsoft’s
SEAL library [41]. However, in [2], it is reported that, for SEAL v1, the time to
perform one multiplication is approximately 140 ms.

With regard to FV-NFLib [20], Bonte et al. [10] recently reported a significant
decrease in the time to evaluate a four layer Group Method of Data Handling
(GMDH) neural network [11] from 32 s to 2.5 s, as a result of their novel encoding
of the inputs.

Aguilar-Melchor et al. [2] report their experimental findings regarding HELib-
MP [48]. They show that HELib-MP outperforms FV-NFLib for large (2048-bit)
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plaintexts. They further go on to benchmark HELib-MP by computing RSA-2048
and ECC-ElGamal-P256. An exponentiation in RSA-2048 takes between 157 ms
and 1.8 s depending on the window size and number of multiplications required.
For ECC-ElGamal-P256, an elliptic curve multiplication takes between 96 ms
and 242 ms depending on window size and number of elliptic curve additions.

Catalano et al. [15] provide experimental results for their work. For 128-bit
plaintexts, our algorithms are approximately 10 to 1000 times faster at per-
forming a multiplication operation and our most complex algorithm, HE2N, is
roughly equal to their fastest, an extension of Joye-Libert [38], for additions.

Yu et al. [58] give experimental results for their implementation of the Zhou
and Wornell scheme [59]. From their Figs. 3, 4 and 5, it is hard to compare our
scheme with theirs directly but it would appear that our vector based schemes
are at least comparable in performance to theirs.

6 Conclusion

In this paper we have presented several new homomorphic encryption schemes
intended for use in a practical SSCC system. We envisage that the majority of
computation on integer big data, outside of scientific computing, will be com-
puting low degree polynomials on integers, or fixed-point decimals which can be
converted to integers. Our somewhat homomorphic schemes are perfectly suited
to these types of computation.

Our evaluation has only concerned one- or two-dimensional ciphertexts and
polynomials of degree up to four. We intend to investigate higher degree polyno-
mials in future work. We believe that HE1N and HE2N provide strong security,
even for low-entropy data, as they satisfy the desirable IND-CPA property. If a
user has a high confidence in the entropy of the input data, HE2 may provide
sufficient security.

As they are only somewhat homomorphic, each of these schemes require that
the computational result cannot grow bigger than the secret modulus. In the case
of the “noise” variants, we also have to consider the noise term growing large. So,
as they stand, these schemes can only compute polynomials of suitably bounded
degree. However, we believe this is adequate for most practical purposes.

The schemes presented in Sects. 3 and 4 extend to a hierarchy of systems,
HEk, with increasing levels of security. These are presented in Appendix A and
may be investigated further in future work.

We have implemented and evaluated the HE1, HE1N, HE2 and HE2N
schemes as part of an SSCC system as discussed in Sect. 5. Our results are
extremely favourable by comparison with existing methods. In some cases, they
outperform those methods by a factor of 1000. This clearly demonstrates the
practical applicability of our schemes. Furthermore, our MapReduce job execu-
tion times remain low even when using the largest set of parameters for HE2N.
We believe that this demonstrates the advantages of our schemes for encrypted
computations on fixed-point data in the cloud.
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A Generalisation to k Dimensions

In this appendix, we generalise HE2 and HE2N to k-vectors. HE1 and HE1N are
the cases for k = 1 and HE2 and HE2N are the cases for k = 2.

A.1 Sufficient Entropy (HEk)

We generalise HE2 to k dimensions.

Key Generation. KeyGen randomly chooses p and q according to the bounds
given in Sect. 4.1. KeyGen sets aj

$←− [1, pq)k, ∀j ∈ [1, k − 1], and R (detailed in
“Multiplication” below). The secret key sk is (p,a1, . . . ,ak−1), and the public
parameters are pq and R.

Computational Overhead. The computational overhead increases, the num-
ber of arithmetic operations per plaintext multiplication is O(k3), and the space
requirement per ciphertext is O(k), by comparison with HE1.

Encryption. A plaintext, m ∈ [0,M ], is enciphered as

Enc(m, sk) = c = (m + rp)1 +
∑k−1

j=1 sjaj mod pq

where c is a k-vector, r
$←− [0, q), and ∀j, sj

$←− [0, pq). Let a0 = 1, and Ak =
[a0 a1 . . . ak−1]. We wish the columns of Ak to be a basis for Z

k
pq. We can show

that they do so with high probability. If they do not, we generate new vectors
until they do.

Lemma 2. Pr(a0,a1, . . . ,ak−1 do not form a basis) ≤ (k − 1)(1/p + 1/q).

We extend our definition of an augmented vector v�, for a k-vector, v, such
that v� is a

(
k+1
2

)
-vector, with components vi (1 ≤ i ≤ k) followed by 2vi − vj

(1 ≤ i < j ≤ k). In general, for � > k, v� = 2vi−vj , where � =
(

i
2

)
+k+j−1. Note

that v� = Ukv for a
(
k+1
2

)×k matrix with entries 0,±1, 2, and whose first k rows
form the k×k identity matrix Ik. Note that v� = Ukv implies that 1� is the

(
k+1
2

)

vector of 1’s, and that ∗ is a linear mapping, i.e. (r1v1 + r2v2)� = r1v1∗ + r2v2∗.

Decryption. Dec(c, sk) = γT c mod p, where γT = (A−1
k )1 is the first row of

A−1
k . We call γ the decryption vector, as in HE2.

Addition. Addition is the vector sum of the ciphertext vectors as in HE2.
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Multiplication. Consider the Hadamard product of two augmented ciphertext
vectors, c� ◦ c′

�. For notational brevity, let m̃ = m + rp.

c� ◦ c′
� =

(
m̃1� +

∑k−1
j=1 sja�j

) ◦ (
m̃′1� +

∑k−1
j=1 s′

ja�j

)

= m̃m̃′1� +
∑k−1

j=1 (m̃s′
j + m̃′sj)a�j +

∑k−1
j=1 sjs

′
ja�j ◦ a�j

+
∑

1≤i<j≤k−1(sis
′
j + s′

isj)a�i ◦ a�j ,

since 1� ◦ v� = v� for any v. There are
(
k
2

)
product vectors, which we must

eliminate using the re-encryption matrix R, a k × (
k+1
2

)
.

Lemma 3. Let A�k = [a�0 a�1 . . . a�,k−1], where the columns of Ak form a
basis for Z

k
pq. If RA�k = Ak, then Rv� = v for all v ∈ Z

k
pq.

The condition RA�k = Ak can be written more simply, since it is RUkAk =
Ak. Postmultiplying by A−1

k gives RUk = Ik. Now, since RA�k = Ak, we have

R(c� ◦ c′
�) = (mm′ + r̂p)1 +

∑k−1
j=1 ŝjaj +

∑
1≤i≤j≤k−1 ŝijR(a�i ◦ a�j),

where r̂, ŝj and ŝij (1 ≤ i < j ≤ k − 1) are some integers.
There are k(

(
k+1
2

) − k) = k
(
k
2

)
undetermined parameters Ri�, 1 ≤ i ≤ k,

k < � ≤ (
k+1
2

)
. We now determine these by setting

R(a�i ◦ a�j) = ijp1 +
∑k−1

l=1 σijl al (2)

Thus we have k
(
k
2

)
new unknowns, the ’s and σ’s, and k

(
k
2

)
linear equations for

the k
(
k
2

)
unassigned Ri�’s. Let A◦2

�k be the
(
k+1
2

) × (
k+1
2

)
matrix with columns

a�i ◦ a�j (0 ≤ i < j < k), and let Ck be the k × (
k
2

)
matrix with columns

ijp1 +
∑k−1

l=1 σijl al (0 < i < j < k). Then the equations for the Ri� can be
written as

RA◦2
�k = [Ak | Ck] . (3)

giving k
(
k+1
2

)
linear equations for the k

(
k+1
2

)
Ri�’s in terms of quadratic functions

of the k(k − 1) aij ’s (1 ≤ i ≤ k, 1 ≤ j ≤ k − 1), which are undetermined. Thus
the system has k(k − 1) parameters that cannot be deduced from R.

The system of equations (3) has a solution provided that A◦2
�k has an inverse

mod pq. We prove that this is true with high probability. Again, in the unlikely
event that this is not true, we generate new vectors a1, . . . ,ak−1 until it is.

Theorem 6. A◦2
�k has no inverse mod pq with probability at most (k2−1)(1/p+

1/q).

Note that Theorem 6 subsumes Lemma 2, since the first k columns of A◦2
�k contain

Ak as a submatrix, and must be linearly independent.
Each c introduces k new parameters rp, s1, . . . , sk−1 and k equations, so the

number of undetermined parameters is always k(k − 1).



Practical Homomorphic Encryption over the Integers for SCC 65

Cryptanalysis. Note that p can be determined from mi for k ciphertexts. Let

C = [c1 − m11 . . . ck − mk1], Ak = [1 a1 . . . ak−1]

and let

W =

⎡

⎢
⎢
⎢
⎣

r1p r2p . . . rkp
s1,1 s2,1 . . . sk,1

...
...

s1,k−1 s2,k−1 . . . sk,k−1

⎤

⎥
⎥
⎥
⎦

, W ′ =

⎡

⎢
⎢
⎢
⎣

r1 r2 . . . rk

s1,1 s2,1 . . . sk,1

...
...

s1,k−1 s2,k−1 . . . sk,k−1

⎤

⎥
⎥
⎥
⎦

,

where ri, sij refer to ci. Then C = AkW , and so detC = det Ak det W . Note
that detW = p det W ′, so det C is a multiple of p. Now det C can be determined
in O(k3) time and, if it is nonzero, p can be determined as gcd(det C, pq).

Lemma 4. Pr(det C = 0 mod pq) ≤ (2k − 1)(1/p + 1/q).

Once we have recovered p, we can use the known mi to determine the decryp-
tion vector γ, by solving linear equations. Let C0 = [c1 c2 . . . ck], mT =
[m1 m2 . . . mk].

Lemma 5. Pr(det C0 = 0 mod pq) ≤ (2k − 1)(1/p + 1/q).

Thus, with high probability, we can uniquely solve the system γT C0 = mT

mod p, to recover γ and enable decryption of an arbitrary ciphertext. However,
encryption of messages is not possible, since we gain little information about
a1, . . . ,ak. Note also that, if we determined p by some means other than using
k known plaintexts, it is not clear how to recover γ.

To break this system, we need to guess k plaintexts. The entropy of a k-tuple
of plaintexts (m1,m2, . . . ,mk) is kρ, so effectively we need μk guesses, where
μ is the number of guesses needed to break HE1. So HEk can tolerate much
smaller entropy than HE1, provided k is large enough. If k is sufficiently large,
the scheme appears secure without adding noise, but does not have the other
advantages of adding noise.

Fixing an Insecurity for k > 2. The decryption vector for HEk is γT =
(A−1

k )1. Note that γT 1 = 1 and γT ai = 0 (i ∈ [1, k − 1]), since γT ai = I1i

(i ∈ [0, k − 1]).

The equations R(a�i ◦ a�j) = pij 1 +
∑k−1

l=1 σijl al,
(4)

define a product · on Z
k
pq so that c · c′ = R(c� ◦ c′

�). This product is linear,
commutative and distributive, since R and � are linear operators, and ◦ is com-
mutative and distributive. So we have an algebra Ak, with unit element 1 [51].
The ij , σijl (i, j, l ∈ [1, k − 1]) are the structure constants of the algebra. In
general, Ak will not be associative, i.e. we can have (c1 · c2) · c3 
= c1 · (c2 · c3)
This leads to a potential insecurity. We must have

γT ((c1 · c2) · c3) = γT (c1 · (c2 · c3)) (mod p), (5)
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in order to have correct decryption. The associator for Ak is

[ci, cj , cl] = ci · (cj · cl) − (ci · cj) · cl = rp1 +
∑k−1

l=1 sl cl (mod pq).

Thus [ci, cj , cl] is an encryption of 0. If we can find k associators from
c1, . . . , cn which violate (5), with high probability we have k linearly indepen-
dent associators. We can use these to make a collision attack on HEk, similar to
that described in Sect. 3.1. We use the gcd method to determine p, and then γ,
as described in Sect. A.1. In fact all we need is that (5) holds for any associator.
That is, for all c1, c2, c3, we need

γT ((c1 · c2) · c3) = γT (c1(·c2 · c3)) (mod pq),

or, equivalently, using the Chinese Remainder Theorem,

γT ((c1 · c2) · c3) = γT (c1 · (c2 · c3)) (mod q). (6)

By linearity, (6) holds if and only if it holds for all basis elements, excluding the
identity. That is, for all i, j, l ∈ [1, k − 1], we need

γT (ai · (aj · al)) = γT ((ai · aj) · al) (mod q). (7)

The associator for Ak is

[ai,aj ,al] = ai · (aj · al) − (ai · aj) · al = rp1 +
∑k−1

l=1 sl al (mod pq),

for some integers r, s1, . . . , sk−1, and so γT [ai,aj ,al] = rp.
If Ak is associative, the problem does not arise, since (7) will be satis-

fied automatically. Associativity holds if k ≤ 2. All we have to check is that
a · (a · a) = (a · a) · a, which is true by commutativity. Thus HE1, HE2 cannot
be attacked in this way.

Requiring associativity in Ak overconstrains the system, imposing k
(
k+1
2

)

equations on the k
(
k+1
2

)
structure constants. With only k(k − 1) undetermined

parameters, this is too much. But all we need is that (7) holds. We have

Lemma 6. Equation (7) holds if and only if
∑k−1

t=1 σjltit =
∑k−1

t=1 σijtlt

(mod q), ∀i, j, l ∈ [1, k − 1].

Now we can ensure (7) by giving the ij a multiplicative structure.

Lemma 7. Let τ, i
$←− [0, q) (i ∈ [1, k − 1]), let ij = ij mod q, and let the

σijl satisfy
∑k−1

l=1 σijl l = τij (mod q) for all i, j ∈ [1, k − 1]. Then, for all
i, j, � ∈ [1, k − 1], γT (ai · (aj · al)) = τijl mod q, the symmetry of which
implies (7).

Thus the conditions of Lemma 7 are sufficient to remove the insecurity. The
price is that we now have (k − 1)

(
k
2

)
+ (k − 1) + k(k − 1) = (k + 1)

(
k
2

)
+ k − 1

parameters and k
(
k
2

)
equations. There are

(
k
2

)
+ (k − 1) = (k + 2)(k − 1)/2

independent parameters. This is fewer than the original k(k − 1), but remains
Ω(k2).
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A.2 Insufficient Entropy (HEkN)

We generalise HE2N to k dimensions.

Key Generation. KeyGen, randomly chooses κ, p and q as outlined in Sect. 4.2,
and sets aj ∀j and R as in Sect. A.1. The secret key, sk, is (κ, p, a1, . . ., ak−1),
and the public parameters are pq and R. Note that, as a result of adding the
“noise” term, defence against non-associativity is not required.

Encryption. A plaintext, m ∈ [0,M ], is enciphered as

Enc(m, sk) = c = (m + rp + sκ)1 +
∑k−1

j=1 tjaj (mod pq)

where r, s are as in Sect. 4.2, and tj
$←− [0, pq) ∀j ∈ [1, k).

Decryption. If γT is defined as in Sect. A.1, a ciphertext is deciphered by,

Dec(c, sk) = (γT c mod p) mod κ.

Arithmetic. Addition and multiplication of ciphertexts are as in Sect.A.1.

Security. The effective entropy of HEkN is ρ′ = k(ρ+lg κ). Thus, as we increase
k, the “noise” term can be made smaller while still providing the requisite level
of entropy.

Clearly HEkN also inherits the conclusions of Theorem 2, so this system also
satisfies IND-CPA.

B Proofs

Theorem 1. An attack against HE1 is successful in polynomial time if and only
if we can factorise a distinct semi-prime in polynomial time.

Proof. Suppose that we have an unknown plaintext m, encrypted as c = m + rp

mod pq, where r
$←− [1, q).

If we can factor pq in polynomial time, we can determine p and q in polyno-
mial time, since we know p < q. Therefore, we can determine m = c mod p.

If we can determine m given c for arbitrary m, then we can determine rp =
c−m. We are given qp, and we know 0 < r < q, so gcd(rp, qp) must be p, and we
can compute p in polynomial time. Now, given p, we can determine q as qp/p.
Hence, we can factorise pq in polynomial time. ��
Lemma 1. If the inputs m have entropy ρ then, for any two independent inputs
m1,m2, Pr(m1 = m2) ≤ 2−ρ.
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Proof. Pr(m1 = m2) =
∑M−1

i=0 ξ2i = 2−H2 ≤ 2−ρ, since H2 ≥ H∞ = ρ. ��
Theorem 2. For any encryption c, c mod κ is polynomial time indistinguish-
able from the uniform distribution on [0, κ). Thus HE1N satisfies IND-CPA,
under the assumption that SPACDP is not polynomial time solvable.

Proof.

c = m + sκ + rp = m + rp mod κ,

where r
$←− [1, q). Thus, for i ∈ [0, κ),

Pr
(
c mod κ = i) = Pr(m + rp = i mod κ

)

= Pr
(
r = p−1(i − m) mod κ

)

∈ {�q/κ�1/q, �q/κ�1/q
}

∈ [1/κ − 1/q, 1/κ + 1/q],

where the inverse p−1 of p mod κ exists since p is a prime. Hence the total
variation distance from the uniform distribution is

1
2

κ−1∑

i=0

|Pr
(
c mod κ = i) − 1/κ| < κ/q.

This is exponentially small in the security parameter λ of the system, so the
distribution of c mod κ cannot be distinguished in polynomial time from the
uniform distribution. Note further that c1 mod κ, c2 mod κ are independent for
any two ciphertexts ci = mi + siκ + rip (i = 1, 2), since r1, r2 are independent.

To show IND-CPA, suppose now that known plaintexts μ1, . . . , μn are
encrypted by an oracle for HE1N, giving ciphertexts c1, . . . , cn. Then, for
ri

$←− [0, q), si
$←− [0, κ), we have an SPACDP with ciphertexts ci = mi+siκ+rip,

and the approximate divisor p cannot be determined in polynomial time in the
worst case. However, the offsets in this SPACDP are all of the form μi + siκ, for
known mi, and we must make sure this does not provide information about p.
To show this, we rewrite the SPACDP as

ci = μi + siκ + rip = μ′
i + s′

iκ, (i = 1, 2, . . . , n), (8)

where s′
i = si + �(mi + rip)/κ�, and μ′

i = μi + rip (mod κ). Now we may view
(8) as an ACDP, with “encryptions” μ′

i of the μi, and approximate divisor κ.
Since ACDP is at least as hard as SPACDP, and the offsets μ′

i are polynomial
time indistinguishable from uniform [0, κ), from above, we will not be able to
determine κ in polynomial time. Now, the offsets m′

1,m
′
2 of any two plaintexts

m1,m2 are polynomial time indistinguishable from m′
2,m

′
1, since they are indis-

tinguishable from two independent samples from uniform [0, κ). Therefore, in
polynomial time, we will not be able to distinguish between the encryption c1
of m1 and the encryption c2 of m2. ��
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Theorem 3. The encryption scheme produces ciphertexts with components
which are random integers modulo pq.

Proof. Consider a ciphertext vector which encrypts the plaintext, m, and the
expression m + rp + sa mod pq which represents one of its elements. Then
r

$←− [0, q), s
$←− [0, pq).

Consider first m + sa. We know that a−1 mod pq exists because a 
= 0
(mod p and mod q). Thus, conditional on r,

Pr[m + rp + sa = i mod pq] =

Pr[s = a−1(i − m − rp) mod pq] =
1
pq

.

Since this holds for any i ∈ [0, pq), m + ra + sp mod pq is a uniformly random
integer from [0, pq). ��
Theorem 4. If c is an encryption of m and c′ is an encryption of m′ then
R(c� ◦ c′

�) (mod pq) is an encryption of mm′.

Proof. Consider the Hadamard product modulo pq, c�◦c′
�, of the two augmented

ciphertext vectors c� and c�
′:

z� = c� ◦ c′
� =

⎡

⎣
c1c

′
1

c2c
′
2

c3c
′
3

⎤

⎦ mod pq

Therefore, if inputs m,m′ are encrypted as (m+rp)1+sa, (m′ +r′p)1+s′a,
we first calculate

z� = (m + rp)(m′ + r′p)1� + [(m + rp)s′ + (m′ + r′p)s]a�

+ ss′a◦2
� = (mm′ + r1p)1� + s1a� + ss′a◦2

� mod pq,

where r1 = mr′+m′r+rr′p, s1 = (m+rp)s′+(m′+r′p)s, and a◦2
� = [a2

1 a2
2 a2

3]
T .

As we can see, z� is not a valid encryption of mm′. We need to re-encrypt
this product to eliminate the a◦2

� term.
We achieve this by multiplying z� by R. It is easy to check that R1� = 1

and Ra� = a, independently of a1, a2. Now

(Ra◦2
� )1 = (1 − 2α1)a2

1 + α1a
2
2 + α1(2a1 − a2)2

= a2
1 + α1((2a1 − a2)2 + a2

2 − 2a2
1)

= a2
1 + 2α1(a2 − a1)2

= a2
1 + α1β

= p + σa1

(Ra◦2
� )2 = −2α2a

2
1 + (α2 + 1)a2

2 + α2(2a1 − a2)2

= a2
2 + α2((2a1 − a2)2 + a2

2 − 2a2
1)
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= a2
2 + 2α2(a2 − a1)2

= a2
2 + α2β

= p + σa2

Thus, we obtain the identity Ra◦2
� = p1 + σa.

So, applying R to z�, i.e. z′ = Rz�, gives

z′ = (mm′ + r1p)R1 + s1Ra + ss′Ra◦2

= (mm′ + r1p)1 + s1a + ss′(σa + p1)
= (mm′ + r2p)1 + (s1 + σrr′)a
= (mm′ + r2p)1 + s2a (mod pq)

for some integers r2, s2. So z′ is a valid encryption of mm′. ��
Theorem 5. SPACDP is of equivalent complexity to the special case of HE2
where δ = a2 − a1 (0 < δ < q) is known.

Proof. Suppose we have a system of n approximate prime multiples, mi + rip

(i = 1, 2, . . . , n). Then we generate values a, s1, s2, . . . , sn
$←− [0, pq), and we have

an oracle set up the cryptosystem with a1 = a, a2 = a+ δ. The oracle has access
to p and provides us with R, but no information about its choice of  and σ. We
then generate the ciphertexts ci (i = 1, 2, . . . , n):

[
ci1

ci2

]

=
[

mi + rip + sia
mi + rip + si(a + δ)

]

(mod pq). (9)

Thus ci1 − sia = ci2 − si(a + δ) = mi + rip. Thus finding the mi in (9) in
polynomial time solves SPACDP in polynomial time.

Conversely, suppose we have any HE2 system with a2 = a1+δ. The ciphertext
for mi (i = 1, 2, . . . , n) is as in (9). so si = δ−1(ci2−ci1). Since 0 < δ < q < p, δ is
coprime to both p and q, and hence δ−1 mod pq exists. Thus breaking the system
is equivalent to determining the mi mod p from mi + δ−1(ci2 − ci1)a + rip (i =
1, 2, . . . , n). Determining the mi+δ−1(ci2−ci1)a from the mi+δ−1(ci2−ci1)a+rip
(i = 1, 2, . . . , n) can be done using SPACDP. However, we still need to determine
a in order to determine mi. This can be done by “deciphering” R using SPACDP.
We have

2δ2α1 = σa − a2 + p, 2δ2α2 = σ(a + δ) − (a + δ)2 + p,

so σ = 2δ2(α2 − α1) − 2ka − δ2. Now a can be determined by first determining
m0 = a(2δ2(α2 − α1) − (2δ + 1)a − δ2) from m0 + p = 2δ2α1. This can be done
using SPACDP. Then a can be determined by solving the quadratic equation
m0 = a(2δ2(α2 − α1) − (2δ + 1)a − δ2) mod p for a. This can be done proba-
bilistically in polynomial time using, for example, the algorithm of Berlekamp



Practical Homomorphic Encryption over the Integers for SCC 71

[7]. So the case a = [a a + δ]T , with known δ, can be attacked using SPACDP
on the system

m0 + p, m1 + δ−1(c11 − c12)a + r1p,

. . . , mn + δ−1(cn1 − cn2)a + rnp.

��
Lemma 2. Pr(a0,a1, . . . ,ak−1 do not form a basis) ≤ (k − 1)(1/p + 1/q).

Proof. The a’s are a basis if A−1
k exists, since then v = Akr when r = A−1

k v,
for any v. Now A−1

k exists mod pq if (det Ak)−1 mod pq exists, by constructing
the adjugate of Ak. Now (det Ak)−1 mod pq exists if det Ak 
= 0 mod p and
det Ak 
= 0 mod q. Now det Ak is a polynomial of total degree (k − 1) in the
aij (0 < i ≤ k, 0 < j < k), and is not identically zero, since detAk = 1 if

ai = ei+1 (1 < i < k). Also aij
$←− [0, pq) implies aij mod p

$←− [0, p) and

aij mod q
$←− [0, q). Hence, using the Schwartz-Zippel Lemma (SZL) [44], we

have Pr(detAk = 0 mod p) ≤ (k − 1)/p and Pr(detAk = 0 mod q) ≤ (k − 1)/q,
and it follows that Pr(� (det Ak)−1 mod pq) ≤ (k − 1)(1/p + 1/q). ��
Lemma 3. Let A�k = [a�0 a�1 . . . a�,k−1], where the columns of Ak form a
basis for Z

k
pq. If RA�k = Ak, then Rv� = v for all v ∈ Z

k
pq.

Proof. We have v = Akr for some r ∈ Z
k
pq. Then A�k = UkAk and v�k = Ukv,

so Rv� = RUkv = RUkAkr = RA�kr = Akr = v. ��
Theorem 6. A◦2

�k has no inverse mod pq with probability at most (k2−1)(1/p+
1/q).

Proof. We use the same approach as in Lemma 2. Thus A◦2
�k is invertible provided

det A◦2
�k 
= 0 mod p and detA◦2

�k 
= 0 mod q. Let A denote the vector of aij ’s,
(aij : 1 ≤ i ≤ k, 1 ≤ j < k). The elements of A◦2

�k are quadratic polynomials over
A, except for the first column, which has all 1’s, and columns 2, 3, . . . , k which
are linear polynomials. So detA◦2

�k is a polynomial over A of total degree 2
(
k
2

)
+

k−1 = k2−1. Thus, unless det A◦2
�k is identically zero as a polynomial over A, the

SZL [44] implies Pr(� (det A◦2
�k)−1 mod p) ≤ (k2−1)/p and Pr(� (det A◦2

�k)−1 mod
q) ≤ (k2 − 1)/q. Therefore we have Pr(� (det A◦2

�k)−1 mod pq) ≤ (k2 − 1)(1/p +
1/q).

It remains to prove that detA◦2
�k is not identically zero as a polynomial over A

in either Zp or Zq. We prove this by induction on k. Consider Zp, the argument
for Zq being identical. Since Zp is a field, detA◦2

�k is identically zero if and only
if it has rank less than

(
k+1
2

)
for all A. That is, there exist λij(A) ∈ Zp (0 ≤ i ≤

j < k), not all zero, so that

L(A) =
k−1∑

0≤i≤j

λija�i ◦ a�j

= α + a�,k−1 ◦ β + λk−1,k−1a
◦2
�,k−1 = 0,
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where α =
∑k−2

0≤i≤j λija�i ◦ a�j and β =
∑k−2

i=0 λi,k−1a�i are independent of
a�,k−1.

Clearly λk−1,k−1 = 0. Otherwise, whatever α,β, we can choose values for ak

so that L 
= 0, a contradiction. Now suppose λi,k−1 
= 0 for some 0 ≤ i < k − 1.
The matrix Â� with columns a�i (0 ≤ i < k − 1) contains Ak−1 as a submatrix,
which has rank (k − 1) with high probability by Lemma 2. Thus β 
= 0 and,
whatever α, we can choose values for ak so that L 
= 0. Thus λi,k−1 = 0 for
all 0 ≤ i < k. Thus λij 
= 0 for some 0 ≤ i ≤ j < k − 1. Now the matrix Â◦2

�

with
(
k
2

)
columns a�i ◦ a�j (0 ≤ i ≤ j < k − 1) contains A◦2

�,k−1 as a submatrix,
and therefore has rank

(
k
2

)
by induction. Hence α 
= 0, implying L 
= 0, a

contradiction. ��
Lemma 4. Pr(det C = 0 mod pq) ≤ (2k − 1)(1/p + 1/q).

Proof. From Lemma 2, det A = 0 mod p or det A = 0 mod q with probability
at most (k − 1)(1/p+1/q). So detA is not zero or a divisor of zero mod pq. The
entries of W ′ are random [0, pq), and detW ′ is a polynomial of total degree k in
its entries. It is a nonzero polynomial, since W ′ = Ik is possible. Hence, using
the SZL [44], Pr(detW ′ = 0 mod p) ≤ k/p and Pr(detW ′ = 0 mod q) ≤ k/q. So
det W ′ is zero or a divisor of zero mod pq with probability at most k(1/p+1/q).
So detAdet W ′ = 0 mod pq with probability at most (2k − 1)(1/p + 1/q). So
det C 
= 0 with high probability. ��
Lemma 5. Pr(det C0 = 0 mod pq) ≤ (2k − 1)(1/p + 1/q).

Proof. Note that C0 = C if m1 = m2 = · · · = mk = 0. Since Lemma 4 holds in
that case, the result follows. ��
Lemma 6. Equation (7) holds if and only if

∑k−1
t=1 σjltit =

∑k−1
t=1 σijtlt

(mod q), ∀i, j, l ∈ [1, k − 1].

Proof. Since γT 1 = 1 and γT ai = 0, i ∈ [1, k − 1], γT (ai · aj) = γT
(
pij 1 +

∑k−1
l=1 σijl al

)
= pij . Thus

ai · (aj · al) = ai · (
pjl1 +

k−1∑

t=1

σjltat

)

= pjlai +
k−1∑

t=1

σjltai · at,

and hence γT [ai · (aj · al)] = p
∑k−1

t=1 σjltit. Similarly γT [(ai · aj) · al] =
p

∑k−1
t=1 σijtlt, and the lemma follows. ��

Lemma 7. Let τ, i
$←− [0, q) (i ∈ [1, k − 1]), let ij = ij mod q, and let the

σijl satisfy
∑k−1

l=1 σijl l = τij (mod q) for all i, j ∈ [1, k − 1]. Then, for all
i, j, � ∈ [1, k − 1], γT (ai · (aj · al)) = τijl mod q, the symmetry of which
implies (7).
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Proof. We have γT (aj ·al) = pij = pjl for all j, � ∈ [1, k − 1]. Hence, mod q,

γT (ai · (aj · al)) = p
k−1∑

t=1

σjltit

= p

k−1∑

t=1

σjltit

= pi

k−1∑

t=1

σjltt

= piτjl = pτijl.

��

C Derivation of Bounds

To recap, n is the number of inputs, M is an exclusive upper bound on the
inputs, d is the degree of the polynomial we wish to calculate. We take p ≈ 2λ

and then q ≈ 2η, where η = λ2/ρ − λ, to guard against the attacks of [17,36].
For HE1, we assume M ≈ 2ρ, n ≤ √

M . Therefore,

p > (n + 1)dMd ≈ (nM)dfor large n.

So, we may take

p = 2λ > M3d/2 ≈ 23dρ/2 i.e. λ ≈ 3dρ/2

and η ≈ λ2

ρ
− λ =

3dλ

2
− λ =

3dρ

2

(
3d

2
− 1

)

For HE1N, we assume M ≈ 2ρ, and we have ρ′ = ρ + lg κ. Now,

κ > (n + 1)dMd ≈ (nM)d for large n, i.e. lg κ ≈ d(lg n + ρ)

Therefore, since ρ = ρ′ − lg κ,

lg κ > d lg n + d(ρ′ − lg κ) i.e. lg κ ≈ d(lg n + ρ′)
d + 1

Since κ is much larger than M , we also have

p = 2λ > (n + 1)d(M + κ2)d ≈ (nκ2)d for large n i.e. λ ≈ d(lg n + 2 lg κ),

and η ≈ λ2

ρ′ − λ =
3dλ

2
− λ =

3dρ′

2

(
3d

2
− 1

)

Then we can calculate η as for HE1 above. Note that, in both HE1 and HE1N,
λ scales linearly with d, and η scales quadratically. These bounds carry over to
HE2, HE2N, HEk and HEkN.



74 J. Dyer et al.

References

1. Acar, A., et al.: A survey on homomorphic encryption schemes: theory and imple-
mentation (2017). arXiv:1704.03578 [cs.CR]

2. Aguilar-Melchor, C., et al.: A comparison of open-source homomorphic libraries
with multi-precision plaintext moduli, WHEAT 2016, July 2016. https://
wheat2016.lip6.fr/ricosset.pdf

3. Aumasson, J.-P.: On the pseudo-random generator ISAAC. Cryptology ePrint
Archive: 2006/438 (2006)

4. Bellare, M., Rogaway, P.: Introduction to Modern Cryptography. Lecture Notes
(2005)

5. Bellare, M., et al.: A concrete security treatment of symmetric encryption. In:
Proceedings of FOCS 1997, pp. 394–403 (1997)

6. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

7. Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comput.
24(111), 713–735 (1970)

8. Bogos, S., et al.: Cryptanalysis of a Homomorphic Encryption Scheme. Cryptology
ePrint Archive: 2016/775 (2016)

9. Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography. Draft 0.2
(2015)

10. Bonte, C., et al.: Faster homomorphic function evaluation using non-integral base
encoding. Cryptology ePrint Archive: 2017/333 (2017)

11. Bos, J.W., et al.: Privacy-friendly Forecasting for the Smart Grid using Homo-
morphic Encryption and the Group Method of Data Handling. Cryptology ePrint
Archive: 2016/1117 (2016)

12. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

13. Brakerski, Z., et al.: (Leveled) Fully homomorphic encryption without bootstrap-
ping. In: Proceedings of ITCS 2012, pp. 309–325 (2012)

14. Catalano, D., Fiore, D.: Boosting linearly-homomorphic encryption to evaluate
degree-2 functions on encrypted data. Cryptology ePrint Archive: 2014/813 (2014)

15. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: Proceedings of CCS 2015, pp. 1518–1529. ACM
(2015)

16. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors:
breaking fully homomorphic encryption challenges over the integers. In: Proceed-
ings of EUROCRYPT 2012, pp. 502–519 (2012)

17. Cohn, H., Heninger, N.: Approximate common divisors via lattices. In: Proceedings
of ANTSX, vol. 1, pp. 271–293 (2012)

18. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

19. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9 28

http://arxiv.org/abs/1704.03578
https://wheat2016.lip6.fr/ricosset.pdf
https://wheat2016.lip6.fr/ricosset.pdf
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_28
https://doi.org/10.1007/978-3-642-22792-9_28


Practical Homomorphic Encryption over the Integers for SCC 75

20. CryptoExperts. FV-NFLib. https://github.com/CryptoExperts/FV-NFLlib
21. Dautelle, J.-M.: JScience. Version 4.3.1, September 2014. http://jscience.org
22. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomor-

phic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 2

23. van Dijk, M., Juels, A.: On the impossibility of cryptography alone for privacy-
preserving cloud computing. In: Proceedings of HotSec 2010, pp. 1–8 (2010)

24. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 24

25. Ducas, L., Micciancio, D.: FHEW. A fully homomorphic encryption library.
https://github.com/lducas/FHEW

26. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

27. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03168-7 14

28. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive: 2012/144 (2012)

29. Galbraith, S.D., et al.: Algorithms for the approximate common divisor problem.
LMS J. Comput. Math. 19(A), 58–72 (2016)

30. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
STOC 2009, pp. 169–178 (2009)

31. Goldreich, O., et al.: How to play ANY mental game. In: Proceedings of STOC
1987, pp. 218–229 (1987)

32. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

33. Goldwasser, S., et al.: Reusable garbled circuits and succinct functional encryption.
In: Proceedings of STOC 2013, pp. 555–564 (2013)

34. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

35. Halevi, S., Shoup, V.: HELib. https://github.com/shaih/HElib
36. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.

(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44670-2 6

37. Jenkins, B.: ISAAC: a fast cryptographic random number generator (1996). http://
burtleburtle.net/bob/rand/isaacafa.html

38. Joye, M., Libert, B.: Efficient cryptosystems from 2k-th power residue symbols. In:
Proceedings of EUROCRYPT 2013, pp. 76–92 (2013)

39. Kipnis, A., Hibshoosh, E.: Efficient methods for practical fully homomorphic sym-
metrickey encryption, randomization and verification. Cryptology ePrint Archive:
2012/637 (2012)

40. Kleinjung, T., et al.: Factorization of a 768-Bit RSA modulus. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 18

https://github.com/CryptoExperts/FV-NFLlib
http://jscience.org
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://github.com/lducas/FHEW
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-642-03168-7_14
https://doi.org/10.1007/978-3-642-03168-7_14
https://doi.org/10.1007/978-3-662-46800-5_25
https://github.com/shaih/HElib
https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/3-540-44670-2_6
http://burtleburtle.net/bob/rand/isaacafa.html
http://burtleburtle.net/bob/rand/isaacafa.html
https://doi.org/10.1007/978-3-642-14623-7_18


76 J. Dyer et al.

41. Laine, K., et al.: Simple Encrypted Arithmetic Library - SEAL. Version 2.2 (2017).
https://sealcrypto.codeplex.com/

42. Lauter, K., et al.: Can homomorphic encryption be practical? In: Proceedings of
CCSW 2011, pp. 113–124 (2011)

43. Massey, J.L.: Guessing and entropy. In: Proceedings of ISIT 1994, p. 204 (1994)
44. Moshkovitz, D.: An alternative proof of the Schwartz-Zippel lemma. In: Electronic

Colloquium on Computational Complexity (ECCC), p. 96 (2010)
45. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

46. Popa, R.A., et al.: CryptDB: protecting confidentiality with encrypted query
processing. In: Proceedings of SOSP 2011, pp. 85–100 (2011)

47. Rabin, M.O.: Digitalized signatures and public-key functions as intractable as fac-
torization. Technical report. MIT/LCS/TR-212, p. 12 (1979)

48. Ricosset, T.: HElib-MP. https://github.com/tricosset/HElib-MP
49. Rivest, R.L., et al.: A method for obtaining digital signatures and public-key cryp-

tosystems. Commun. ACM 21(2), 120–126 (1978)
50. Rivest, R.L., et al.: On data banks and privacy homomorphisms. Found. Secure

Comput. 4(11), 169–180 (1978)
51. Schafer, R.D.: An Introduction to Nonassociative Algebras, vol. 22. Dover, New

York (1966)
52. Stephen, J.J., et al.: Practical confidentiality preserving big data analysis. In: Pro-

ceedings of HotCloud 2014, p. 10 (2014)
53. Tetali, S.D., et al.: MRCrypt: static analysis for secure cloud computations. In:

Proceedings of OOPSLA 2013, pp. 271–286 (2013)
54. Thomson, I.: Microsoft researchers smash homomorphic encryption speed barrier,

9 February 2016. https://www.theregister.co.uk/2016/02/09/researchers break
homomorphic encryption/

55. Varia, M., et al.: HETest: a homomorphic encryption testing framework. Cryptol-
ogy ePrint Archive: 2015/416 (2015)

56. Vivek, S.: Homomorphic encryption API software library, 21 February 2017.
http://heat-h2020-project.blogspot.co.uk/2017/02/homomorphic-encryptionapi-
software.html

57. Vizár, D., Vaudenay, S.: Cryptanalysis of chosen symmetric homomorphic schemes.
Stud. Sci. Math. Hung. 52(2), 288–306 (2015)

58. Yu, A., et al.: Efficient integer vector homomorphic encryption (2015). https://
courses.csail.mit.edu/6.857/2015/files/yu-lai-payor.pdf

59. Zhou, H., Wornell, G.: Efficient homomorphic encryption on integer vectors and
its applications. In: Proceedings of ITA 2014, pp. 1–9 (2014)

https://sealcrypto.codeplex.com/
https://doi.org/10.1007/3-540-48910-X_16
https://github.com/tricosset/HElib-MP
https://www.theregister.co.uk/2016/02/09/researchers_break_homomorphic_encryption/
https://www.theregister.co.uk/2016/02/09/researchers_break_homomorphic_encryption/
http://heat-h2020-project.blogspot.co.uk/2017/02/homomorphic-encryptionapi-software.html
http://heat-h2020-project.blogspot.co.uk/2017/02/homomorphic-encryptionapi-software.html
https://courses.csail.mit.edu/6.857/2015/files/yu-lai-payor.pdf
https://courses.csail.mit.edu/6.857/2015/files/yu-lai-payor.pdf


When It’s All Just Too Much: Outsourcing
MPC-Preprocessing

Peter Scholl1, Nigel P. Smart2(B), and Tim Wood2

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
2 Department of Computer Science, University of Bristol, Bristol, UK

nigel@cs.bris.ac.uk

Abstract. Many modern actively secure multi-party computation pro-
tocols make use of a function- and input-independent pre-processing
phase. This pre-processing phase is tasked with producing some form
of correlated randomness and distributing it to the parties. Whilst the
“online” phase of such protocols is exceedingly fast, the bottleneck comes
in the pre-processing phase. In this paper we examine situations in which
the computing parties in the online phase may want to outsource the
pre-processing phase to another set of parties, or to a sub-committee.
We examine how this can be done, and also describe situations where
this may be a benefit.

1 Introduction

Secure multi-party computation (MPC) is the idea of allowing multiple parties to
compute on their combined inputs in a “secure” manner. We use the word secure
to mean that the interaction provides no party with any information on the secret
inputs of the other parties, bar what can be learned from the output (a property
called privacy or secrecy). In this paper we will focus on protocols which can
tolerate a majority of the parties being corrupted. In such a situation we know
there is no hope that the honest parties can always obtain the correct output,
so we usually require that either the honest parties obtain the correct result, or
they abort (with overwhelming probability in the security parameter, λ).

For a long time, MPC remained a theoretical exercise and implementations
were impractical. However, much work has recently been undertaken on develop-
ing practical MPC protocols in the so-called pre-processing model. In this model,
the protocol is split up into an offline (a.k.a. pre-processing) phase and an online
phase. In the offline phase, the parties execute a protocol which emulates a
trusted dealer who distributes “raw material” (pre-processed data) to parties;
this data is then used up in the online phase as the circuit is evaluated. The
advantage of doing this is that the pre-processing involves expensive public key
operations which can be isolated to the pre-processing phase. In addition, pre-
processed data can be made independent of both the inputs and the circuit, so it
can be computed at any point prior to the evaluation of the circuit. The online
phase is then executed with (essentially) information theoretic primitives, and
is thus very fast.
c© Springer International Publishing AG 2017
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This protocol idea goes back to Beaver [Bea96]. It was first used in a practical
(and implemented) MPC system in the VIFF protocol [DGKN09], which was a
protocol system built for the case of honest majority MPC. Modern dishonest
majority MPC protocols make use of information theoretic MACs to achieve
active security, an idea which stems from [RBO89] In the last five years, com-
bining the pre-processed triple idea of Beaver with these protocols has resulted
in a step change in what can be implemented efficiently by MPC protocols.

The first protocol in this area was BDOZ [BDOZ11], which demonstrated
that if the number of parties was constant and the parties had access to a
functionality which would provide the pre-processed data then the overhead of
computing an arithmetic circuit over a large finite field securely is only a con-
stant factor times the work required to compute it in the clear. The SPDZ
[DPSZ12] protocol showed that the mere constant factor overhead encountered
in the BDOZ protocol holds for any number of parties. Further improvements
were presented in [DKL+13] to the SPDZ protocol. In the BDOZ and SPDZ
protocols, the pre-processing is produced using forms of homomorphic encryp-
tion, and so the protocols are more suited to MPC over a large finite field. In
TinyOT [NNOB12], similar results in the two-party case for Boolean circuits
were given, where the pre-processing was implemented using oblivious transfer
(OT) extension. In [LOS14,BLN+15], the TinyOT protocol was extended to
the multi-party case, and the online phase was made consistent (in terms of
computational pattern) with that of the SPDZ protocol from [DKL+13]. Fur-
ther unification of these protocol families occurred with the replacement of the
homomorphic encryption based pre-processing phase of SPDZ with an OT based
pre-processing [KOS16], forming what is known as the MASCOT protocol. To
simplify exposition, since all of these protocols are essentially the same at a high
level, in this paper we shall refer to the collective as the “SPDZ family”.

As already remarked, the SPDZ family of protocols has an efficient online
phase; indeed, the online phase has a number of interesting properties:

– Computational Efficiency: Since the online phase is made up of infor-
mation theoretic primitives, the basic arithmetic operations are incredibly
simple, requiring only a constant multiplicative factor increase in the num-
ber of operations when compared to evaluating the function in the clear.
Before every output operation, the execution of a PRF is also required for
MAC checking, but for a large computation this is negligible when measuring
performance.

– Communication Efficiency: The basic protocol requires interaction for
each multiplication operation1. This interaction need only be conducted over
authenticated channels, rather than private channels, and the communication
required grows linearly in the number of players.

– Deterministic: Given the correlated randomness from the offline phase, the
function to be computed, and the parties’ inputs, the online phase is essen-

1 For simplicity of expression we assume the MPC functionality is evaluating an arith-
metic circuit over a finite field. This is purely for exposition: in practice the usual
MPC tricks to remove the need for circuit based computation will be used.
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tially deterministic. Only a small amount of “random data” per party is
needed to ensure that dishonest parties are detected in the MAC checking
protocol. Indeed this random data can be created in the offline phase and
then stored for later use.

The simplicity and efficiency of the online phase, however, comes with a penalty
in the offline phase. Using either method (i.e. the homomorphic encryption of
SPDZ or the OT method of MASCOT) to generate the pre-processed data, the
offline phase requires expensive public key machinery, and in practice is a couple
of orders of magnitude slower than the online phase. In some instances, while the
online phase is computationally cheap enough to be executed by a relatively low
powered computing device, the same device would not be sufficiently powerful to
perform the associated offline phase efficiently. This can cause a problem when
there are parties in a network with very different computing power. Similarly
the offline phase requires the transmission of a larger amount of data per multi-
plication gate than the online phase. Again, this can be a problem in practice if
certain parties are on a slow part of the network.

The offline phase also requires each party to input a large amount of ran-
domness, and it is well known that one of the major challenges of running any
cryptography in the real world is the generation of randomness. Small hardware
devices may not have the capability of producing random values easily, as they
usually have very limited access to good sources of entropy: for example, devices
such as mobile phones and tablets still have problems with good entropy sources.
Moreover, it does not suffice simply to be able to generate pseudo-random num-
bers: in many cryptographic applications (including MPC) it is necessary that
it be “high quality” randomness. This has led to high-end applications requir-
ing expensive dedicated hardware to generate entropy; however, such dedicated
hardware may not be available to all computers in a network. Thus, even in the
case of high-end servers executing the MPC protocol, it may easily not be the
case that all have access to a sufficient entropy source.

For these reasons, we propose a method of outsourcing the offline pre-
processing for the SPDZ family of protocols to a different set of parties. We
will let Q denote the set of nq parties who are to run the online phase; the set
Q will outsource the computation of the pre-processing to a set of parties R of
size nr. This set R may be a strict subset of Q, or they could be a completely
different set all together, or even a mix of parties who will later be involved in
computation and parties who will not. The idea is that Q is unable to execute
the pre-processing as an nq-party protocol, due to some limitation of resources
(computation, bandwidth, or randomness, for example), whereas R is “more
able” to execute the pre-processing as an nr-party protocol. Our protocol to
perform this outsourcing will also aim to minimise the communication needed
to transfer the pre-processing data from the set R to the set Q.

Of course, for this to make sense it is important that the set Q trust the set
R to perform this task, and that the protocol respect this trust relationship. In
particular, our protocol will assume an adversary which can corrupt a majority
of parties in Q and a majority of parties in R, but that the adversary can neither
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corrupt all parties in R nor all parties in Q: indeed, in such a situation we clearly
would not even be expected to guarantee any security. In particular, this means
that each honest party in Q believes that there is at least one honest party in
R, but they may not know which one is honest.

The fact that the parties do not know which parties in the other network are
honest has security implications for the way pre-processing is passed from one
network to the other. The näıve method of sending on the pre-processed data (in
the case of nr ≤ nq) would be to partition Q into nr subsets, and then for each
party in R to send their data to one set in the partition; it turns out that this
method is insecure (using our redistribution procedure), though it only requires
minor modification to make it secure. Our protocol creates a cover of Q, {Qi}i∈R,
using |R| sets, not necessarily disjoint, and associates each subset with a party
in R; namely, party i ∈ R is assigned the set Qi. The association merely defines
the network of secure channels by which secret-shared data amongst the parties
in R is reshared amongst the parties in Q. Note that there is no assumption of
trust of parties in Q for parties in R they are associated to (i.e. with respect to
the cover): the only assumption of trust is that at least one party in each of R
and Q is honest. Our protocol will be secure if there is at least one pair (i, Qi)
for which i ∈ R is an honest party in R and Qi contains at least one honest
party from Q. This raises (at least) three potential ways for the subsets to arise:

– If R ⊆ Q then for each i ∈ R, we can just ensure that Qi contains i. Then
since R and Q each contain an honest party, there must be at least one pair
containing (the same) honest party.

– It may be the case that every party in Q trusts at least one party in R
already. In this case, our cover, {Qi}i∈R, can be produced by letting parties
in Q elect which parties in R they want to be associated with. Security will
follow because in particular, at least one honest party in R believes there is
at least one honest party in Q.

– If no prior trust relation is known then the cover must be defined either deter-
ministically or probabilistically. If deterministically, to satisfy the require-
ment above we must choose Qi = Q for all i. This guarantees a pair (i, Qi)
as described above, but results in an inefficient network topology (since each
party in R needs a secure channel to each party in Q). Alternatively, we make
a probabilistic assignment and derive bounds on nq and nr which ensure that
the assignment preserves security with overwhelming probability: see Sect. 4
for details.

The first case above is a reasonably likely scenario. Consider an (n, t)-
threshold access structure, in which any set of t + 1 parties contains an hon-
est party. In this case any set of t + 1 parties can form the network R and
undertake the pre-processing. To pass the data on, these parties need to be asso-
ciated to the remaining n − t − 1 parties. Thus each party in R must send to
(n − t − 1)/(t + 1) parties on average. For example, if n = 20 and t = 14, then
any 15 parties perform the pre-processing and each sends to all of the remaining
5 parties. For a multiplication performed in the production of a single triple in
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MASCOT amongst 20 parties, assuming a full-threshold access structure, the
required communication is essentially 20×19 = 380 oblivious transfers (OTs). If
we no longer assume full-threshold and instead suppose that any set of 15 parties
contains an honest party, we need only 15× 14 = 210 OTs plus 15× 5 = 75 field
elements to be sent per triple. In light of the real-world applications of MPC in
which full-threshold is sometimes too strong an assumption, and the fact that
the number of OTs required for a multiplication is O(n2), any reduction in the
assumed fraction of corruptions t/n provides significant improvements in com-
munication efficiency via our protocol, since we require only O(t2) OTs plus
O(t · (n − t)) field elements transmitted.

In the case where we use a probabilistic assignment, and where the parties
generating the pre-processing are not later involved in the computation, our
protocol is less efficient. For example, using our protocol and the probabilistic
algorithm we describe later, if there are 5 parties in R of which at most 2
are corrupt, and 50 parties in Q of which at most 25 are corrupt (and R and
Q are disjoint), each party in R need only send to 23 parties in Q for the
cover to be statistically secure (in the sense that the adversary cannot with
probability greater than 1 − 2−80), instead of the 25 required for information-
theoretic security.

Besides the ability of the protocol we describe to enable localising the gen-
eration of pre-processed data, another potential application of the protocol is to
increase the number of parties involved in a given instance of the SPDZ protocol
dynamically (i.e. during the online phase). For example, suppose a set of par-
ties already running an instance of the SPDZ protocol want to (efficiently and
securely) allow another set of parties to join them during a reactive computa-
tion. It may make more sense to transform the already pre-processed data (or
even just a few pre-processed values) via our protocol to a form that is amenable
for use by a larger number of parties, and then distribute it to the parties who
want to join in on the computation, instead of requiring that the parties halt
the computation and then engage in a new round of pre-processing. This would
only make sense if the parties joining the computation trusted at least one of the
pre-existing parties, which is likely to be the case in any reasonable application
of this use-case. The set of parties already performing the computation becomes
the set R, and so we are in the first use-case above.

At its heart our technique can be described as follows. We let FP,A
Prep denote

the SPDZ offline functionality for a set of parties P of size n with set of corrupt
parties A. Suppose now that we have a set of parties indexed by the set [n]
and (not necessarily disjoint) subsets R,Q ⊂ [n] so that R ∪ Q = [n], and a
subset A ⊂ R ∪ Q indexing corrupt parties. We then define a cover {Qi}i∈R of
Q such that there is at least one pair (i, Qi) for which i ∈ R is an honest party
in R, and Qi contains at least one honest party from Q. The cover provides
a description of therequired network: each party in Qi must be connected by
a secure channel to the associated party i in R. Just as (i, Qi) associated a
subset Qi ⊂ Q to a party i ∈ R, we also let Rj ⊂ R be the set of parties
in R associated to a party j ∈ Q. We then extend A to a set A ⊂ R ∪ Q by
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setting A = A ∪ {j ∈ Q : Rj ⊂ A}. The set A contains all corrupt parties and
additionally what we refer to as effectively corrupt honest parties with respect to
the online phase of the protocol. In brief, these are parties whose pre-processed
data is entirely determined by the adversary – while these parties execute the
online protocol honestly, the deterministic dependence on pre-processed data
means the adversary can decide what values these parties hold for their shares.
Our protocol realises the functionality FQ,Q∩A

Prep in the FR,R∩A
Prep -hybrid model.

The main idea of the protocol is conceptually quite simple, and is essentially
a standard “re-sharing” technique similar to [BOGW88]. The main novelty is in
showing that this can be efficiently applied to the SPDZ protocol, without the
need for any expensive zero-knowledge proofs. In doing this, the difficulty comes
in proving that the protocol is actually secure in the UC framework, and also
in creating and analysing an (efficient) algorithm for assigning a cover to the
network so that the adversary can only win with negligible probability in the
security parameter in the case where we randomly assign the covers.

Related Work. There is a long line of works on scalable secure computation
with a large number of parties [DI06,HN06,DKMS14,BCP15] (to name a few),
which use similar techniques to ours. These works often divide the parties into
random committees (or quorums) to distribute the workload of the computa-
tion. Most of these papers target asymptotic efficiency, and strong models such
as adaptive security, asynchronicity and RAM computation. This gives inter-
esting theoretical results, but the practicality of these techniques has not been
demonstrated. In contrast, our work focuses on applying simple techniques to
modern, practical MPC protocols. Furthermore, we give a concrete analysis and
examples of parameters that can be used for different numbers of parties in
real-world settings, at a given security level.

2 Preliminaries

In this section, we describe the notation used in subsequent sections, formally
define secure cover, and give an overview of the SPDZ protocol, and the offline
phase in particular.

General Concepts and Notation. Parties in the network are indexed by
[n] = {1, ..., n}, where n is the total number of parties. We consider the complete
network of parties as the union of two parts, which we call R and Q (so each
is a subset of n and they are not necessarily disjoint). To avoid confusion, we
will index parties in R by the letter i, and parties in Q by the letter j. We
let nr (resp. nq) denote the number of parties in R (resp. Q). We let A ⊂
R∪Q denote the indexing set of corrupt parties in the complete network, and A
denote the superset of A which possibly contains additional honest parties in Q,
called effectively corrupt honest parties from the introduction. We assume there
is a complete network of authenticated channels amongst the parties in R, and
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similarly amongst the parties in Q. We define a secure cover {Qi}i∈R of Q by R
in the following way:

Definition 1. Let [n] be the indexing set of a set of parties in a given network
and suppose we are also given subsets R,Q ⊂ [n] of sizes nr and nq respectively.
Each party in the network is either corrupt or honest. We call a set {Qi}i∈R

of (non-empty but not necessarily disjoint) subsets of Q a secure cover if the
following hold:

– All parties in Qi are connected to player i ∈ R via a secure channel.
– The subsets cover Q, i.e. Q =

⋃
i∈R Qi.

– There is at least one pair (i, Qi) where i ∈ R is an honest party in R, and Qi

contains at least one honest party from Q.

We will also let Rj denote the set of parties in R which are connected to party
j ∈ Q. Note that {Rj}j∈Q is necessarily a cover of R since Qi �= ∅ for all i,
so each i is in at least one Rj . We will use λ to denote the security parameter,
and we will say an event occurs with overwhelming probability in the security
parameter λ if it occurs with probability at least 1−2λ. We denote by Fq the finite
field of order q, a (large) prime power. A function ν ∈ Z[x] is called negligible if
for every polynomial p ∈ Z[x], there exists a C ∈ Z such that ν(x) ≤ 1/p(x) for
all x > C. We write α ← Fq to mean that α is sampled uniformly at random
from the field Fq. We denote by 	a
 the smallest integer b ∈ Z such that b ≥ a.

In Sect. 6, we discuss the different network topologies of secure channels
between our parties in R and parties in Q. In particular, we explore the different
ways by which to define the cover {Qi}i∈R, taking into account, for example,
the fact that the Qi’s are not necessarily all the same size. Section 4 then builds
on these considerations by providing concrete methods of creating the cover and
analysing the resulting protocols. This involves, for example, examining how the
likelihood of the cover being secure changes (if we define it probabilistically) as
we change the value of � if we require that all parties in R send to the same
number � of parties in Q.

Our main theorem is given in the Universally Composability (UC) frame-
work. The power of UC is well demonstrated in the pre-processing model, since
it allows the functionality to be split up into separate independent parts and their
corresponding individual protocols to be proved secure independently, such that
they remain secure even when run concurrently or sequentially. In this model,
we define some functionality FPrep for the pre-processing and a separate func-
tionality FOnline for the online phase. A protocol is designed for each, ΠPrep and
ΠOnline, the protocol ΠPrep is shown to implement FPrep securely, and finally
ΠOnline is shown to implement FOnline securely in the FPrep-hybrid model. This
is particularly useful in our situation where we only want to change how pre-
processing is done since we only need to revamp the pre-processing, and can
leave the online phase unchanged, avoiding the need to reprove security.
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SPDZ Overview. In general, computation will be done over a finite field F =
Fq where q is a (large) prime power. The protocol called MACCheck in the SPDZ
paper [DPSZ12] requires that the field be large enough to make MAC forgery
unfeasible by pure guessing. In particular this means that 1/q must be negligible
in λ. For smaller finite fields, and in particular the important case of binary
circuits, adaptions to the MACCheck protocol can be made; see [LOS14], for
example. For this paper we will assume the simpler case of large q for ease of
exposition. The SPDZ MPC protocol allows parties to compute an arithmetic
circuit on their combined secret input. More specifically, for an arbitrary set
of parties P and a subset set of corrupt parties A ⊂ P, the SPDZ protocol
implements the functionality FP,A

MPC described in Fig. 1, provided P \ A �= ∅.

The Functionality FP,A
MPC.

The superscript P denotes the set of parties involved in the protocol, and A � P
is the set of corrupt parties.

Initialise: On input (Initialise,F) from all parties in P, store F.
Input: On input (Input, i, id, x) from party i and (Input, i, id) from all other parties,
with id a fresh identifier and x ∈ F, store (id, x).
Add: On command (Add, id1, id2, id3) from all parties in P (where id1 and id2 are
present in memory), retrieve (id1, x) and (id2, y) and store (id3, x + y).
Multiply: On command (Multiply, id1, id2, id3) from all parties in P (where id1 and
id2 are present in memory), retrieve (id1, x) and (id2, y) and store (id3, x · y).
Output: On input (Output, id) from all honest parties (where id is present in mem-
ory), retrieve (id, z), output z to the adversary. If the adversary responds with OK
then output the value z to all parties, otherwise output Abort to all parties.

Fig. 1. The Functionality FP,A
MPC.

The main motivation for this paper is that the “standard” protocols which
implement FP,A

MPC in the pre-processing model (for some set of parties P and
corrupt parties A) require a lot of work by the parties in P during pre-processing.
Our goal is to implement FP,A

MPC using a (possibly larger) set of parties in which
some specified set of parties execute the expensive pre-processing part of the
protocol and only the parties in P who are interested in the computation itself
execute the cheap online part of the protocol. In our terminology, the parties
in Q outsource the pre-processing to a set of parties R (which possibly includes
some parties in R) and then compute using the data.

We will elaborate a little here; in what follows we use the notation and
functionalities of the latest version of the SPDZ protocol, based on OT, called
MASCOT [KOS16]. We will describe the SPDZ offline functionality FP,A

Prep and
online protocol ΠP,A

Online for an arbitrary set of parties P; at the end of this section,

we give the conversion protocol ΠR→Q,A
Prep . In the initialisation stage, the parties
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sample (and keep private) random shares αi, one for each party, whose sum is
taken to be a global (secret) MAC key α, i.e. α =

∑
i∈P αi.

A value x ∈ Fq is secret shared among the parties in P by sampling (xi)i∈P ←
F

|P|
q subject to x =

∑
i∈P xi, with party i holding the value xi. In addition, we

sample (γ(x)i)i∈P ← F
|P|
q subject to

∑
i∈P γ(x)i = α · x and party i holding the

share γ(x)i. Thus γ(x)i is a sharing of the MAC γ(x) := α ·x of x. We write the
following to denote that x is a secret value, where party i ∈ P holds xi and γ(x)i.

〈x〉 := ((xi)i∈P , (γ(x)i)i∈P))

Since this sharing scheme is linear, linear operations on secret values comes “for
free”, in the sense that adding secret values or multiplying them by a public
constant requires no communication. Crucially, since the MAC is linear, the
same operations applied to the corresponding MAC shares will result in MACs
on the result of the said linear computation.

Unfortunately, multiplication of secret values requires a little more work, and
is the reason data must be generated offline. At its heart SPDZ uses Beaver’s
method [Bea96] to multiply secret-shared values, which we outline here. In the
offline phase, a large number of multiplication triples are generated, which are
triples (〈a〉, 〈b〉, 〈c〉) such that c = a · b. Note that while other forms of pre-
processing can help in various computations, such as shared squares and shared
bits, in this paper we focus on the basic form of pre-processing and leave the
interested reader to consult [DKL+13] and [KSS13]. To multiply secret-shared
elements 〈x〉 and 〈y〉 in the online phase, we take a triple (〈a〉, 〈b〉, 〈c〉) and
partially open 〈x〉 − 〈a〉 and 〈x〉 − 〈b〉 to obtain ε := 〈x〉 − 〈a〉 and δ := 〈y〉 − 〈b〉.
By “partially open 〈x〉− 〈a〉”, we mean that each party i sends the value xi − ai

to every other party, but does not send the corresponding MAC share. Then

〈z〉 = 〈c〉 + ε · 〈b〉 + δ · 〈a〉 + ε · δ

is a correct secret sharing of z = x · y, and since the triple is never opened, no
information about x or y is revealed. A similar use of pre-processed data is used
for the parties to enter their inputs into the computation.

As remarked earlier our paper is focused on turning SPDZ preprocessing
produced by one set of parties into preprocessing for another set of parties.
Thus we do not discuss the online phase in detail. There is a minor tweak to the
proof of security of the online phase, due to our minor tweak to the preprocessing
functionality. For the interested reader we include the details in Sect. 5.

SPDZ Preprocessing. To formalise things a little more, we now discuss
the functionality FP,A

Prep, given in Fig. 2, which implements the necessary pre-
processing. The superscripts denote parameters of the functionality, where P
denotes the indexing set of parties involved in the computation, and A ⊂ P is
a set of parties in P under the control of the adversary. As explained in the
introduction, if we have a set of parties P and our cover produces effectively
corrupt honest parties, which are those nominally honest parties which receive
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The Offline Functionality FP,A
Prep for SPDZ.

The set A ⊂ P indexes the corrupt parties in P.

Initialise: On input (Initialise, q) from all players and the adversary, the function-
ality does the following:
1. The functionality samples α ← Fq to be the global MAC key.
2. The functionality receives some error Δα from the adversary and, for each

corrupted player i ∈ A, a share αi.
3. The functionality samples at random αi for each i /∈ A subject to

∑
i∈P αi =

α + Δα.
4. The functionality sends αi to party i, for all i ∈ P.

Macro: Angle(x) The following will be run by the functionality at several points
to create 〈·〉 representations:
1. The functionality accepts ({xi, γ(x)i}i∈A, Δx, Δγ) from the adversary.
2. The functionality samples at random {xi, γ(x)i}i/∈A subject to

∑
i∈P xi = x +

Δx and
∑

i∈P γ(x)i = α · x + Δγ .
3. The functionality is left with ((xi)i∈P , (γ(x)i)i∈P).

Computation: On input (DataGen, DataType) from all players and the adversary,
the functionality executes the data generation procedures specified below.
– On input DataType = InputPrep and a party i ∈ P,

1. If i A∈� , the functionality samples r(i) ← Fq. Otherwise i ∈ A so the
functionality accepts r(i) from the adversary.

2. The functionality runs Angle(r(i)).

3. For each j ∈ P, the functionality sends party j the pair (r
(i)
j , γ(r(i))j).

4. Additionally, to party i, the functionality sends r(i).
Thus the parties obtain a sharing 〈r(i)〉 of a value r(i) known only to party i.

– On input DataType = Triple,
1. The functionality samples a, b ∈ Fp and computes c = a · b.
2. The functionality calls Angle(a), Angle(b) and Angle(c).
3. For each i ∈ P, the functionality sends ((ai, γ(a)i), (bi, γ(b)i), (ci, γ(c)i)) to

party i.

Fig. 2. The Offline Functionality FP,A
Prep for SPDZ.

reshares from only corrupt parties, the set A will include these parties. If the
parties generate the pre-processing themselves and do not make use of our pro-
tocol, this set is exactly the set of corrupt parties; when the pre-processing is
outsourced, then we have to worry about (the possibility of) effectively corrupt
parties.

The functionality is a little more general than the functionality presented in
[KOS16] as we allow the corrupt parties to introduce more errors: the standard
SPDZ offline functionality only allows errors to be introduced into the MAC
shares and not the data shares, whereas this new functionality allows errors
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on both. It is fairly intuitive that we will retain a security using this functionality
as opposed to the standard one, as an adversary winning having changed shared
values and MACs needs to have forged the same MAC equation as an adversary
winning after just altering MAC values. The extra ability of altering share values
gives him no advantage, a fact which we will prove shortly.

In [KOS16] the following theorem is (implicitly) proved, where FOT and
FRand are functionalities implementing OT and shared randomness for the par-
ties.

Theorem 1. There is a protocol ΠP,A
Prep that securely implements FP,A

Prep against
static, active adversaries in the FOT,FRand-hybrid model, where P is the com-
plete set of parties and A the set of corrupt parties in P.

We do not give the definition of the ΠP,A
Prep protocol here as it is identical to

MASCOT when based on OT, or identical to the original SPDZ pre-processing
when based on homomorphic encryption (in spite of the slight difference in func-
tionalities). Note that the paper [KOS16] proves the above theorem by giving
a number of different protocols which, when combined, securely implement the
required functionality FP,A

Prep.

3 Feeding One Protocol from Another

In this section we give our main result on feeding pre-processed data from the
parties in R to the parties in Q, assuming a set of corruptions in the latter which
includes effectively corrupt honest parties. In notation, we are instantiating an
instance of FQ,Q∩A

Prep from an instance of FR,R∩A
Prep via the protocol ΠR→Q,A

Prep . Note
that R ∩ A = R ∩ A. We assume we have a secure cover {Qi}i∈R of Q. We
emphasise that the actual execution of ΠR→Q,A

Prep is independent of the set of
corrupted parties; we only use the superscript A notation to indicate the relation
between the corrupted parties in the protocol and in the different functionalities.

Method of Redistributing Data. Recall the parties in R will be performing
the offline phase on behalf of the parties in Q. The parties in Q will share data
in the standard manner (see Sect. 2), and the same will happen for parties in R.
To avoid confusion, a data item x ∈ F secret shared amongst partes in Q will
be denoted by 〈x〉Q, whilst the same data item shared amongst parties in R will
be denoted by 〈x〉R, where implicitly we are assuming the same MAC key α is
shared amongst the parties in R and the parties in Q.

When parties in Q want to evaluate a circuit amongst themselves, they follow
the online protocol, in Fig. 5, and whenever they require a pre-processed data-
item, they will ask R to provide one2. Thus we simply require a methodology to

2 Of course, Q could ask R for these to be obtained all in one go in a form of outsourced
pre-processing.
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translate 〈x〉R sharings into 〈x〉Q sharings. Recall a shared value in the network
R is denoted by

〈x〉R = ((xi)i∈R, (γ(x)i)i∈R)

The principal idea of the protocol is, for each i ∈ R, to take the value xi held by
i and sample a set {xj

i}j∈Qi
subject to xi =

∑
j∈Qi

xj
i and define xj ← ∑

i∈Rj
xj

i

so that ∑

i∈R

xi =
∑

i∈R

∑

j∈Qi

xj
i =

∑

j∈Q

∑

i∈Rj

xj
i =

∑

j∈Q

xj

which holds because, by definition,

{(i, j) : i ∈ R, j ∈ Qi} = {(i, j) : j ∈ Q, i ∈ Rj}.

If we do the same for the MAC shares, and at initialisation also share the global
MAC key α in the same way, we obtain the same secret value x under the same
global MAC key but shared instead amongst the parties in Q, which we denote
by

〈x〉Q = ((xj)j∈Q, (γ(x)j)j∈Q).

It is hopefully now clear how to define a feeding protocol to send shares from
the R parties to the Q parties. We do this by providing a protocol ΠR→Q

Prep which

assumes the existence of the functionality FR,R∩A
Prep .

It is important to note that honest parties use incoming shares in an entirely
deterministic manner; as such, observe that if some party j ∈ Q is honest but
it receives shares from only corrupt parties in R, the adversary has complete
control over what this party’s share will look like. For this reason, we consider
them as “effectively” corrupt, contained in the extended adversary set A. This
is why in the online protocol, run by the parties in Q, we need to consider the
set of adversaries as being Q ∩ A.

The Protocol. The idea of the protocol is to convert the pre-processing gener-
ated by the parties in R to pre-processing that can be used by the parties in Q.
Our goal, then, is to show that if the set of parties R ∪ Q is provided with the
functionality FR,R∩A

Prep and the parties engage in the protocol ΠR→Q
Prep to send their

pre-processing to the parties in Q, then this “looks the same” to the parties in
Q as a functionality FQ,Q∩A

Prep . The protocol is given in Fig. 3.

Main Theorem. Before we give the statement of the theorem, we briefly give
some intuition as to why our construction gives us the desired security. Recall
that we are given a cover {Qi}i∈R of Q, indexed by parties in R, so that each
party in R is associated to the set Qi �= ∅ of parties in Q. We defined a cover to
be secure if there is at least one pair (i, Qi) where i is honest and Qi contains
at least one honest party. If a cover is not secure, it means that for every i,
we have that i is corrupt, or i is honest but Qi contains no honest parties. In
this case, given a secret value v, for each i ∈ R the adversary either has share vi
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(when i ∈ R is corrupt), or all “reshares”, {vj
i }j∈Qi

(when i ∈ R is honest but all
j ∈ Qi are corrupt); using these shares and reshares, the adversary can construct
v and hence he breaks secrecy: thus a secure cover is necessary. Conversely, if
the cover is secure then at “worst”, the adversary obtains all reshares but one;
then since all reshares were sampled uniformly at random so that they summed
to individual shares, and these shares were sampled so that they summed to the
secret, this set of shares is indistinguishable from a uniformly randomly sampled
set. Our main theorem (for which the proof is in the full version) is as follows.

Theorem 2. The construction ΠR→Q,A
Prep securely implements the functionality

FQ,Q∩A
Prep in the presence of static, active adversaries in the FR,R∩A

Prep -hybrid model
assuming a secure cover of Q is given.

4 Creating a Secure Cover

In the introduction, we assumed three potential use-cases. We now consider how
to assign a cover securely for each scenario.

1. R ⊆ Q. In this case, for each i we define Qi to be any subset of Q containing
i and ensure that their union covers.

2. Each party in Q knows a subset of parties in R in which it believes there is
an honest party. The cover is created respecting this knowledge.

3. There is no prior trust relationship.

In this last scenario we have two choices: either to set each covering subset Qi

equal to the whole set Q, or to assign the players randomly to subsets of Q whose
union is the whole. In this section we provide an algorithm creating a cover and
analyse the security it provides.

Recall that, when creating the secure cover, is necessary to ensure that at
least one honest party in Q receives a share from at least one honest party in R
with overwhelming probability in the security parameter λ. If this is not true,
the adversary is able to reconstruct the share.

Let tr and tq be the number of corrupt parties in R and Q respectively. We set
εr = tr/nr and εq = tq/nq to be the associated ratios. To help with the analysis,
and for efficiency and load-balancing reasons, we will assume that each party in
R sends to the same number of parties � ≥ 	nq/nr
 in Q. Note, any assignment
of sets to parties in R which covers Q where � = tq + 1 is automatically secure,
since every party in R necessarily sends to at least one honest party in Q. We
will see how small � can be to provide statistical security for a given security
parameter.

To assign a cover randomly in such a situation we use the algorithm in Fig. 4.
The high-level idea of the algorithm is the following:

1. For each party in Q, we assign a random party in R, until each party in R has
	nq/nr
 parties in Q assigned to it (or, equivalently, until the sets of parties
in Q assigned to parties in R forms a disjoint cover). For ease of exposition,
we assume nr|nq.
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Protocol ΠR→Q,A
Prep

Parties in R have ideal access to an instance of FR,R∩A
Prep .

Initialise: On input (Initialise, q) from all parties in Q,

1. The parties in R execute FR,R∩A
Prep .Initialise:

(a) The functionality samples some α ← Fq.
(b) From each corrupt party i ∈ R ∩ A, the functionality receives (αi, Δα,i).
(c) The functionality samples {αi}i∈R\A uniformly subject to the constraint

that
∑

i∈R αi = α +
∑

i∈R∩A Δα,i.
(d) For each i ∈ R, the functionality sends αi to party i.

2. The parties run FeedValue(α) below to share the global MAC key amongst Q.

Macro: FeedValue(v) On input an element v ∈ Fq shared amongst the parties as
v =

∑
i∈R vi with party i ∈ R holding vi,

1. For each i ∈ R, party i samples {vj
i }j∈Qi subject to

∑
j∈Qi

vj
i = vi.

2. For each i ∈ R, for each j ∈ Qi, party i sends vj
i to party j.

3. For each j ∈ Q, party j sets vj =
∑

i∈Rj
vj

i .

Computation: On input (DataGen, DataType) from all players in Q,
– On input DataType = InputPrep and a value j ∈ Q,

1. For each i ∈ Rj ,

(a) The parties call FR,R∩A
Prep .Computation(DataGen, InputPrep) with in-

put i:
i. If i �∈ R ∩ A, the functionality will sample some r(i) ← F, and

otherwise will accept r(i) as input from the corrupt party.
ii. In the execution of Angle, the corrupt parties k ∈ R ∩ A each

give the functionality some r
(i)
k and γ(r(i))k and errors Δr(i),k

and Δγ(r(i)),k. The functionality samples {r
(i)
k , γ(r

(i)
k : k ∈ R \ A}

such that
∑

k∈R r
(i)
k = r(i) +

∑
k∈R\A Δr(i),k and

∑
k∈R γ(r(i))k =

α · r(i) +
∑

k∈R\A Δγ(r(i)),k.
iii. For each k ∈ R, the functionality sends party k the pair

(r
(i)
k , γ(r(i))k).

iv. Additionally, the functionality sends r(i) to party i.
(b) The parties run FeedValue(r(i)) and FeedValue(γ(r(i))) to get 〈r(i)〉Q.
(c) Party i sends r(i) to party j.

2. Party j computes r(j) ← ∑
i∈Rj

r(i).

3. The parties in Q then fix 〈r(j)〉Q ← ∑
i∈Rj

〈r(i)〉Q.

– On input DataType = Triple by parties in Q,

1. The parties call FR,R∩A
Prep .Computation(DataGen,Triple) to obtain a triple

(〈a〉R, 〈b〉R, 〈c〉R).
2. The parties in R now run FeedValue on a, b and c and their MACs.

Fig. 3. Protocol ΠR→Q,A
Prep
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2. For each party in R, we assign random parties in Q until each party in R has
� total parties which it sends to.

Note that in practice, the parties may want to run this algorithm using a trusted
source of randomness (such as a blockchain or lottery), or execute a coin-tossing
protocol to generate the necessary randomness.

Algorithm for randomly assigning elements of a cover of Q to parties in R.

For ease of notation, we label parties in R as ik for k ∈ [nr] and parties in Q as jl

for l ∈ [nq]; then the output array M is a binary nr × nq matrix with a 1 in the
(k, l)th position if and only if ik in R sends to jl in Q.
Inputs: nr, nq, n = nr + nq, �, and sets R, Q ⊂ [n] whose disjoint union is [n].

Outputs: Matrix M ∈ Fnr×nq

2 .
Method: (Note that � is a constant, whereas l is an index.)
1. Set M [1..nr, 1..nq] ← {{0, 0, . . . , 0}, . . . , {0, 0, . . . , 0}}
2. Set NoOfOnes[1..nr] ← {0, . . . , 0}
3. For l ∈ [nq],

– Do
• k ← FRand([nr])

– Until NoOfOnes[k] < 	nq/nr
 and M [k, l] = 0
– M [k, l] ← 1, NoOfOnes[k] ← NoOfOnes[k] + 1

4. For k ∈ [nr],
(a) While NoOfOnes[k] < �,

– Do
• l ← FRand([nq])

– Until M [k, l] = 0
– M [k, l] ← 1, NoOfOnes[k] ← NoOfOnes[k] + 1

5. Output matrix M .

Fig. 4. Algorithm for randomly assigning elements of a cover of Q to parties in R.

The algorithm allows different parties in Q to receive from different numbers
of parties in R, whilst parties in R always send to the same number of parties in
Q. Over Z, each row of the matrix we generate, M , sums to �, whilst the array
NoOfOnes records how many parties in Q the ithk party in R sends to. Step 3
assigns all parties in Q to a party in R: this is the part of the algorithm which
ensures we have a cover. In fact, this is done in such a way that each party in R
sends to the same number of parties in Q, namely 	nq/nr
. The reason for doing
this is that it lends itself better to analysis of relevant probabilities below. Step
4 assign parties in Q to parties in R at random until each party in R is assigned
� parties in Q.

In the worst case, there is only one honest party in each of R and Q. Since
we ensure that each party in R is assigned the same number of parties, the
probability we obtain a secure cover is given by:
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1− Pr[Every good party in R is assigned only dishonest parties in Step 3]
· Pr[Every good party in R is assigned only dishonest parties in Step 4]

When performing Step 3, the probability that the first good party in R is
assigned only dishonest parties is the number of ways of choosing 	nq/nr
 parties
from the tq corrupt parties divided by the number of ways of choosing 	nq/nr

parties from all nq parties: ( tq

�nq/nr�
)

( nq

�nq/nr�
)

Thus the first 	nq/nr
 corrupt parties in Q have been assigned. Then the
probability that the next honest party in R is also assigned only corrupt par-
ties from the remaining tq − 	nq/nr
 corrupt parties, out of the nq − 	nq/nr

remaining parties in Q, is: (tq−�nq/nr�

�nq/nr�
)

(nq−�nq/nr�
�nq/nr�

) .

This continues until all the nr − tr − 1 honest parties in R have been assigned
parties in Q.

Each party in R has been assigned 	nq/nr
 parties in Q so that each party
in Q has been assigned to exactly one party in R. In Step 4 of the algorithm,
each party in R is randomly assigned parties in Q until all parties in R have �
parties assigned to them; they are thus each assigned � − 	nq/nr
 more parties
in Q. For a given party in R, this is the number of ways of choosing � − 	nq/nr

dishonest parties from the remaining nq − 	nq/nr
 parties in Q such that they
too are all dishonest – i.e. they are from the tq − 	nq/nr
 remaining dishonest
parties: (tq−�nq/nr�

�−�nq/nr�
)

(nq−�nq/nr�
�−�nq/nr�

)

The choice of parties in Q is with replacement since the algorithm is oblivious
to the choice of other parties in Step 4 (since Step 3 ensured the cover).

Then the probability that we obtain a secure cover is given by:

1−
⎛

⎝

( tq
�nq/nr�

) · (tq−�nq/nr�
�nq/nr�

) · · · · · (tq−(nr−tr−1)�nq/nr�
�nq/nr�

)

( nq

�nq/nr�
) · (nq−�nq/nr�

�nq/nr�
) · · · · · (nq−(nr−tr−1)�nq/nr�

�nq/nr�
)

⎞

⎠·
⎛

⎝

(tq−�nq/nr�
�−�nq/nr�

)

(nq−�nq/nr�
�−�nq/nr�

)

⎞

⎠

nr−tr

After some simplification we find that this is equal to

1 − tq! · (nq − (nr − tr)	nq/nr
)!
nq! · (tq − (nr − tr)	nq/nr
)! ·

⎛

⎝

(tq−�nq/nr�
�−�nq/nr�

)

(nq−�nq/nr�
�−�nq/nr�

)

⎞

⎠

nr−tr

(1)

To see what happens in the extreme case where all but one party is corrupt in
each of R and Q, we set tq = nq − 1 and tr = nr − 1. Then the probability that
we obtain a secure cover is given by
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1 − (nq − 1)! · (nq − 	nq/nr
)!
(nq)! · (nq − 1 − 	nq/nr
)! ·

((nq−1)−�nq/nr�
�−�nq/nr�

)

(nq−�nq/nr�
�−�nq/nr�

)

= 1 − nq − 	nq/nr

nq

· nq − �

nq − 	nq/nr
 =
�

nq
.

When � is equal to nq, i.e. each party in R sends to every party in Q, we obtain a
secure cover. For any other choice of � with this high proportion of corruptions,
we do not obtain a sufficiently high probability of obtaining a secure cover. Thus
our protocol will not be secure for any size of R.

When � is at least tq + 1, then every party in R necessarily sends to at least
one honest party. For small numbers of parties, the parties in R must send to all
parties in Q because chance of the cover being insecure is too great. However,
as we increase the total number of parties, the probability that the cover is not
secure decreases. For example, if there are 5 parties in R of which at most 2 are
corrupt, and 50 parties in Q of which at most 25 are corrupt, each party in R
must be assigned � = 23 parties in Q to ensure at least one honest party in R
sends to one honest party in Q with probability at least 1 − 2−80, instead of the
25 parties we would require to guarantee the cover is secure.

For the data in Table 1, we fix the number of parties in R at 5, fix the number
of allowable corruptions to be at most 3, and compute the lower bound on the
size of Q (i.e. on nq) to guarantee that the adversary cannot win even where � is
fixed as the smallest number of connections necessary to make {Qi}i∈R to cover
Q, and vary the number of corruptions we allow in Q. In other words, � need be
no larger to provide 80-bit security than it need be for enabling the partition to
be an exact cover (i.e. each party in Q sent to by at most one party in R).

We stress that while the idea of completely outsourcing the pre-processing
to an independent set of parties often does not result in an efficient protocol,
the best use-case of our protocol is when R ⊂ Q; i.e., if there is some subset
of parties trusted by all other parties in the network which can do all of the
pre-processing and then distribute it to the other parties.

Table 1. We fix nr = 5, tr = 3 and vary the fraction of corruptions in Q; the last
column in the table is the least nq such that the cover is secure even if each party in
R only sends to � = 	nq/nr
 parties.

nr tr tq/nq Min. nq for λ = 80 and � = 	nq/nr

5 3 1/2 336

5 3 1/3 201

5 3 1/4 148

5 3 1/5 125
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5 SPDZ Online Protocol

The SPDZ online protocol is given in Fig. 5 which itself uses the subprocedure
MACCheck presented in Fig. 6, which itself makes use of a commitment func-
tionality given in Fig. 7. It has been shown that UC commitment schemes in
the plain model cannot exist, though they do exist in the common reference
string model (in which one assumes the existence of common string known to all
parties) [CF01], or, alternatively, the random oracle model (e.g. [HMQ04]).

The SPDZ Online Protocol ΠP,A
Online.

The set P is the complete set of parties, and the set A ⊂ P the set of corrupt
parties in P.

Initialise: The parties call FP,A
Prep for the handles of enough multiplication triples

(〈a〉, 〈b〉, 〈c〉) and enough input mask values (ri, 〈ri〉) as are needed for the function
being evaluated. If FP,A

Prep aborts then the parties output ⊥ and abort.
Input: To share an input xi, party i ∈ P takes an available unused input mask
value (ri, 〈ri〉) and does the following:
1. Broadcast ε ← xi − ri.
2. The parties compute 〈xi〉 ← 〈ri〉 + ε.

Add: On input (〈x〉, 〈y〉), locally compute 〈x + y〉 ← 〈x〉 + 〈y〉.
Multiply: On input (〈x〉, 〈y〉), the parties do the following:
1. Take one multiplication triple (〈a〉, 〈b〉, 〈c〉), compute 〈ε〉 ← 〈x〉−〈a〉 and 〈ρ〉 ←

〈y〉 − 〈b〉 and partially open these shares to obtain ε and ρ respectively.
Partially opening a sharing 〈x〉 consists of each party i ∈ P sending its share
xi to every other party j ∈ P and computing the sum of all of these shares,
including the party’s own. The values of γ(x)i are kept secret.

2. Set 〈z〉 ← 〈c〉 + ε · 〈b〉 + ρ · 〈a〉 + ε · ρ.
Output: To output a share 〈y〉, do the following:
1. Check all partially opened values since the last MACCheck in the following

manner.
(a) The parties have some id’s id1, . . . , idk for some k, and corresponding par-

tially opened values x1, . . . , xk.
(b) The players agree on a random vector r ← FRand(F

k
q ).

(c) Party i in P computes z ← ∑k
j=1 rj ·xj and γ(z)i ← ∑k

j=1 rj ·γ(xj)i where
γ(xj)i denotes the MAC share held by party i ∈ P on xj .

(d) The parties now run MACCheck on z, with party i inputting z and γ(z)i.
2. If the check fails, output ⊥ and abort.
3. Open the value by each party i ∈ P sending yi to all other parties j ∈ P

to compute y ← ∑
j∈P yi, and then run MACCheck once more, so party i ∈

P inputs y and γ(y)i, to verify 〈y〉. If this check fails, output ⊥ and abort;
otherwise, accept y as a valid output.

Fig. 5. The SPDZ Online Protocol ΠP,A
Online.
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The MACCheck Protocol from SPDZ/MASCOT.

On input an opened value s, a MAC share γ(s)i and a MAC key share αi from each
party i and a session id sid, each party i does the following:
1. Compute σi ← γ(s)i − s · αi and call FCommit.Commit(σi, i, sid) to commit to

this, and receive the handle τi.
2. When commitments are output by all parties call FCommit.Open(i, sid, τi) to

open the commitments.
3. If

∑n
i=1 σi �= 0, output ⊥ and abort; otherwise, continue.

Fig. 6. The MACCheck Protocol from SPDZ/MASCOT.

Commitment Functionality FCommit.

Commit: On input Commit(v, i, sid) by party i, where v is the value to committed,
sample a handle τv and send (i, sid, τv) to all parties.
Open: On input Open(i, sid, τv) by party i, output (v, i, sid, τv) to all parties. If
some party Pi is corrupt and the adversary inputs (Abort, i, sid, τv), the functionality
outputs (⊥, i, sid, τv) to all parties.

Fig. 7. Commitment Functionality FCommit.

The MAC check passes if the MAC is correct for the corresponding share.
Importantly, the check fails if the MAC is incorrect for the shared value, which
occurs if the MAC or the value it authenticates (or both) is incorrect. Proofs
can be found in [KOS16, App. B] and [DPSZ12, App. D3]. It is precisely because
MACCheck detects errors in either the MAC value or share value or both that we
can use an offline phase which introduces errors into the share values themselves,
and not restrict ourselves to an offline phase in which only errors on MACs are
allowed (as in the original SPDZ papers). For clarity, we show this more explicitly
in the proof of the next theorem:

Theorem 3. The protocol ΠP,A
Online securely implements the functionality FP,A

MPC

in the FP,A
Prep, FCommit, FRand-hybrid model.

Proof. The proof is identical to that in [DPSZ12], except that the pre-processing
may now introduce errors into the share values as well as the MAC values. To
prove the theorem, we must show that no environment can distinguish between
an adversary interacting as in the protocol ΠP,A

Prep and a simulator interacting
with the functionality FP,A

Prep. Thus the proof runs exactly as in [DPSZ12, App.
D3], except that when we run the MACCheck protocol, the error can now be
on the value in the share or the MAC. However, the security game presented in
[DPSZ12] already allowed the adversary to introduce errors on the shares, so the
original protocol already offers the stronger guarantee that no error can occur
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on either the MAC or the value of the share it authenticated (or both). Note
that if the adversary can alter the share and the MAC and have MACCheck
pass, then in particular this is equivalent to tweaking some share ai by t to
obtain a′

i ← ai + t and then choosing the correct tweak τ on the MAC share,
γ(a′)i ← γ(ai) + τ so that the check passes. However, this means the adversary
has successfully guessed α = τ/t, the global MAC key, which it can only do
successfully with probability 1/q. (Since q is expontial in the security parameter
λ, this probability is negligible.) ��

6 Communication Between Subnetworks

Here we discuss the topology of the network of secure channels between the
subnetworks R and Q. Recall that Q has been partitioned into sets {Qi}i∈R

and party i ∈ R assigned the set Qi, and each Qi is assumed to be of size �.
The topology depends primarily on the choice for the size � of each set Qi. We
assume Qi is the same size for all i, and note that obviously � is lower-bounded
by 	nq/nr
 (so that � · nr ≥ nq), since {Qi}i∈R together need to cover Q.

i1

i2

i3

i4

...

inr

j1

j2

j3

j4

j5

j6

...

jnq

Fig. 8. Complete bipartite graph

6.1 Complete

A näıve approach to connecting the two graphs with bilateral secure channels
would be to form the complete bipartite graph between them (so � = nq). This
topology requires nr · nq secure connections and is shown in Fig. 8. If there is
at least one honest party in each of R and Q then an adversary controlling any
number of other parties still can never recover the MAC key. Unfortunately, there
is a big communication overhead. Additionally, each party in R must compute
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nq reshares for their share. If we assume the adversary is able to corrupt at
most some t of the n total parties, we can clearly improve efficiency by instead
requiring each party in R to send to t+1 parties in Q, since then it is guaranteed
each party, and in particular at least one honest party, sends to an honest party
in Q.

6.2 Load-Balanced

To aim for a load-balanced solution, we could instead ask each party i ∈ R to
reshare its share into � = k · 	nq/nr
 shares for some integer k ≥ 1, and sending
these to some set Qi of � parties in Q. If we have a secure cover, then the intuition
is that there exist shares held by only honest players which are independent of
all shares held by the adversary and are necessary for reconstructing the secret.
This is discussed in more detail in the proof of our main theorem (see the full
version). Figure 9 shows an example of our load-balanced topology for when
nq ≈ 2nr and k = 1. Note that it is not necessarily the case that each party in
Q receive the same number of shares, even though we require each party in R
to reshare to the same number of parties in Q.

i1

i2

i3

i4

...

inr

j1

j2

j3

j4

j5

j6

...

jnq

Fig. 9. Load-balanced topology
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Abstract. In the literature of Error Correcting Codes (ECC) there are
many probabilistic characterizations of different events that happen in
the decoding process. Historically, the most considered parameters in
the performance of a linear code are the Probability of Undetected Error
and the probability of incorrect decoding, also known as Probability of
Miscorrected Error. While there is agreement about the first, starting
from the Seventies, basically four definitions of the Probability of Mis-
corrected Error are present in literature; aim of this work is to show that
they are equivalent and, although different in the mathematical formu-
lation, they yield exactly the same result. The gap of this missing proof
is herein fulfilled and two examples with interesting properties are given.

Keywords: Linear code · Error probability · Miscorrected error · Error
detection · Bounded distance decoding · Decoding error probabilities

1 Introduction

The performance of a (linear) error correcting code can be evaluated on the
basis of many parameters. Depending on the application studied, one can focus
on the distance of the code, its dimension, the information rate; or one can
investigate what happens when the number of errors in transmission is greater
than the correction capability of the code. Those events are studied in terms of
error probabilities. In the decoding process, the events of major interest have an
associated probability, in particular, the Probability of Correct Decoding (PCD),
the Probability of Undetected Error (PUE) and the Probability of Miscorrected
Error (PME), [15]. The presence of an undetected error is especially important
when related to safety, e.g. when the codewords represent a feedback for danger.
A miscorrected error can have heavy consequences when the wrong information
can corrupt a whole set of data, that is, the cost of incorrect decoding is high,
for example in data storage applications or in the 3D reconstruction of a human
body [1].

There are four formulations for the PME and they have been derived by
different authors from different points of view, also the mathematical expression
is not the same but after a computer implementation and evaluation of the
four formulas, it becomes clear that they give the same result. Therefore it is
interesting to prove their equivalence, which is missing in literature.
c© Springer International Publishing AG 2017
M. O’Neill (Ed.): IMACC 2017, LNCS 10655, pp. 103–115, 2017.
https://doi.org/10.1007/978-3-319-71045-7_5
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The work has this structure: Sect. 2 gives a short review of the names, conven-
tions and standard use of symbols for ECC that will be useful for Sect. 3, where
the four formulations of PME are stated and the equivalence theorem is proved.
Section 4 presents a comparison of the results of bruteforce decoding (maximum
likelihood) with the theoretical results of the probability of miscorrected error.
Section 5 contains comments and conclusions on those four different formulas
proposed in literature.

2 Background and Framework

Let C be an [n, k, d] linear code over Fq with weight distribution A0, A1, . . . , An

and let the symbol error probability on a q−ary alphabet be p. The probability
that a symbol is correctly transmitted over the channel is then 1 − p. Assume
that if an error does occur, then each of the q − 1 symbols aside from the
correct symbol is equally likely to be received, with probability p

q−1 each. This
hypothetical channel is called the q−ary symmetric channel or q − SC for short,
[4]. This is a standard framework in ECC.

Let τ be the number of errors that occurred in transmission. If τ = 0 the
decoder does not detect any error and does not decode the received vector, as
it is in the code already. If 1 ≤ τ ≤ t, where t := �d−1

2 �, the decoder detects
the error and corrects it to the unique codeword at distance less than t from the
received vector. However, if τ > t three models of decoder must be considered:
the ideal bounded distance decoder, the maximum likelihood decoder and other
types (e.g. Berlekamp-Massey, etc.). If more than t errors occur, two situations
can happen: (a) there is a unique codeword at distance at most t from the
received vector; (b) there is no codeword at a distance lower than t + 1 from
the received vector. In case (a), every decoder will clearly correct the vector to
that unique codeword, and the correction will be wrong, see Fig. 1. In case (b),
the decoders exhibit different behaviours: the ideal bounded distance decoder
will not attempt to correct the vector and will raise a flag of decoding failure;
the maximum likelihood decoder will correct the vector to its closest codeword
(which may not be unique); for other decoders the behaviour is not specified,
see Figure 2.

Remark 1. As a remark, notice that the algorithm of Berlekamp-Massey can be
approximated with an ideal decoder. This algorithm is based on the error locator
polynomial, which has the properties that its roots give the locations of the errors
occurred in transmission (for instance [3] for a Gröbner Basis derivation). For a
number of errors τ ≤ t the roots of the locator polynomial are valid positions
and the correction is unambiguous. If there are more than t errors, the following
cases can happen: 1. there exists a codeword at distance lower than t from
the received vector and this produces a wrong correction; 2a. there does not
exist any codeword at distance lower than t + 1 from the received vector and
the decoder corrects wrong, 2b. as in 2a but the decoder corrects to the sent
codeword, 2c. there does not exist any codeword at distance lower than t + 1
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v

v1

v2

v3

v + e

Fig. 1. Suppose to send v and receive v+ e, i.e. the triangle inside the decoding sphere
of v1, in this case every decoder will correct v+ e to v1 thus making a correction error.

v

v1

v2

v3

v + e

Fig. 2. Suppose to send v and receive v+e, i.e. the triangle outside any decoding sphere
(in gray around each codeword). In this case the ideal decoder will raise a message of
decoding failure, whereas the maximum likelihood decoder will decode to the closest
codeword around v + e, that is v2 in that picture.

from the received vector, but not all the roots of the locator polynomial are valid
positions, the decoder sends a message of decoding failure. The case 2b cannot
happen in practice because in this instance the locator polynomial will have a
degree higher than t, but in an implementation, the decoding process will be
stopped after degree t.

After these considerations about the decoders, we are interested in the probabil-
ity of the miscorrected error for bounded distance decoders. It is important to
notice that this decoding scheme is incomplete because not all possible received
vectors will have a distance less than t from a codeword, that is, inside a decod-
ing sphere, [12]. An example where the sent codeword is outside of any decoding
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sphere is presented in Section 4, see also [10] for details about the decoding
spheres. Consider the reliability of a bounded distance decoder. A codeword c
sent over the channel is correctly decoded at the receiving end by the decoder if
the decoder receives any vector in the sphere of radius t = �d−1

2 � around c, yield-
ing a lower bound on the probability that a transmitted codeword is correctly
decoded.

There are several different ways to characterize the error detecting and cor-
recting capabilities of codes at the output of the channel decoder. Those are
widely accepted definitions and they can be found in many references e.g. in
[2,5,7,11,14].

PCD(p) is the probability of correct decoding, which is the probability that a
codeword c sent over the channel is correctly decoded at the receiving end by
the decoder, and can be computed by:

PCD(p) =
t∑

i=0

(
n

i

)

pi(1 − p)n−i.

Note that this probability is independent of the size of the alphabet. PUE(p)
is the probability of undetected error, the probability that errors occurring in
a codeword are not detected. An error vector moves the transmitted codeword
into another codeword, and this probability is therefore

PUE(p) =
n∑

i=d

Ai

(
p

q − 1

)i

(1 − p)n−i.

PE(w) is the probability of miscorrected error conditioned to an error of weight
w. This is the probability that the codeword at the output of the decoder is not
the same as the codeword produced by the encoder, with the condition that an
error of weight w occurred. PME(p) is the probability of miscorrected error. This
is the probability that the decoder outputs a wrong codeword. It depends only
on the code (it is important to note that knowledge of the weight distribution is
required) and on the channel.

Whereas for the probabilities of correct decoding and undetected error there
is agreement in the definition among all authors, the situation is very different
for the PME. In the literature there are four definitions of PME, only one of them
(proposed by [5]) involves the definition of PE(w), the others directly assume
the presence of the q−ary symmetric channel. The study of the PME in terms
of the PE(w) brings more insight in what happens when the number of errors
increases, therefore it is herein briefly summarized.

In order to proceed, define the quantity N(�, w; s) as the number of vectors
of weight w that are at distance s from a fixed codeword of weight �. If w is not
such that � − s ≤ w ≤ � + s, then N(�, w; s) = 0. N(�, w; s) is independent of
the given codeword of weight � and is hence well defined ([5]). For s ≤ t, spheres
of radius s about codewords are disjoint and hence the number of vectors of
weight w at distance exactly s from a codeword of weight � is A� · N(�, w; s).
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Now received vectors which will be improperly decoded are those which lie within
a sphere of radius t about some codeword other than that which was sent. Call
Cw the number of these vectors, clearly

Cw =
n∑

�=0

A�

t∑

s=0

N(�, w; s) for t + 1 ≤ w ≤ n.

This leads easily to the next lemma.

Lemma 1. The probability PE(w) is the probability of miscorrected error con-
ditioned to an error of weight w and is characterized by

PE(w) =
Cw

(q − 1)w
(

n
w

) .

Proof. PE(w) is given by the ratio of the decodable vectors of weight w (i.e. Cw)
by all possible vectors of weight w, which are (q − 1)w

(
n
w

)
.

The following lemma finds out the number N(�, w; s).

Lemma 2. The number N(�, w; s) of vectors of weight w that are at distance s
from a fixed codeword of weight � is zero if w is not such that � − s ≤ w ≤ � + s,
otherwise is

N(�, w; s) =
r2∑

r=r1

(
�

� − s + r

)(
s − r

w − � + s − 2r

)(
n − �

r

)

(q − 2)w−�+s−2r(q − 1)r,

where r1 := max{0, w−�} and r2 := �w−�+s
2 �. Note that �x� is the larger integer

less than or equal to x and that
(
x
y

)
is zero if y �∈ N.

Proof. See [5]. ��
Corollary 1. In the case of binary linear codes q = 2 and the previous lemma
simplifies to

N(�, w; s) =

⎧
⎪⎪⎨

⎪⎪⎩

(
n − �
s+w−�

2

)(
�

s−w+�
2

)

if |w − �| ≤ s

0 if |w − �| > s.

Once the weight distribution of C and PE(w) are known, the formula for the
probability that the decoder outputs a wrong codeword is given by the next
theorem.

Theorem 1. The probability of miscorrected error PME(p) depends only on the
code C and on the channel φ, and is

PME(p) := PME(C, φ) =
n∑

w=t+1

PE(w)φ(w), (1)
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where φ(w) is the probability of w errors in transmission. In the case of the
q−ary symmetric channel φ(w) has the classic form

φ(w) =
(

n

w

)

(q − 1)w

(
p

q − 1

)w

(1 − p)n−w.

Corollary 2. In the q−ary symmetric channel, the probability of miscorrected
error (1) simplifies to

PME(C, q − SC) =
n∑

w=t+1

Cw

(
p

q − 1

)w

(1 − p)n−w
.

It may be difficult to compute exactly this probability because the weight dis-
tribution of a linear code (or even just the minimum distance) is in general
not known, [9]. In these cases the weight distribution can be approximated by
suitable estimates and (1) becomes a bound.

3 Unified Probability of Miscorrected Error

This section collects the four formulations of the PME found from different
authors in literature. They are reported in four lemmas identified with the let-
ters A, B, C and D. The corresponding expression for the PME has a superscript
with the matching letter. In the previous section the approach of [5] was pre-
sented, which turns out to be the most followed (Lemma 5), maybe because it
was the first proposed. In [2] there is a historical description and bibliography
of the papers and previous results that yield to [5]. With the aim of keeping the
paper contained, the derivation of the four characterizations is skipped, but can
be easily retrieved in each of the cited references.

Lemma 3 ([13]).

P
A
ME(p) =

n∑

�=2t+1

A�

t∑

s=0

t−s∑

r=0

(
n − �

s

)(
�

r

)

·(q − 1)r−�

(

1 − p

q − 1

)r

(1 − p)n−�−sp�+s−r.

Lemma 4 ([8,12,14]).

P
B
ME(p) =

n∑

�=2t+1

A�

t∑

s=0

s∑

r=0

(
n − �

r

)(
�

s − r

)

·
(

p

q − 1

)�−s+r (

1 − p

q − 1

)s−r

(1 − p)n−�−rpr.
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Lemma 5 ([2,5,6]). For r1 and r2 as defined in Lemma 2,

P
C
ME(p) =

n∑

�=0

A�

t∑

s=0

n∑

w=t+1

r2∑

r=r1

(
n − �

r

)

·
(

�

� − s + r

)(
s − r

w − � + s − 2r

)(
p

q − 1

)w

(1 − p)n−w

·(q − 2)w−�+s−2r(q − 1)r.

Lemma 6 ([11]).

P
D
ME(p) =

n∑

w=t+1

(
p

q − 1

)w

(1 − p)n−w

min(w+t,n)∑

�=max(w−t,d)

A�

t∑

s=|l−w|

s∑

r=0

(
�

r

)(
n − �

r + w − �

)(
� − r

s + � − w − 2r

)

·(q − 2)s+�−w−2r(q − 1)r+w−�.

A final technical lemma is needed in order to prove the main theorem of this
section.

Lemma 7. The following identity holds:

s−r∑

j=0

(
s − r

j

)

(q − 2)j(1 − p)s−r−j(q − 1)r−s

=
s−r∑

j=0

(
s − r

j

)(
p

q − 1

)j

(q − 2)j(1 − p)s−r−j ,

which, in particular, is equal to
(

q−p−1
q−1

)s−r

.

Proof. Follows easily with Newton’s Binomial Theorem. ��
Theorem 2 (Unified Error Probability). The four Lemmas 3, 4, 5 and 6
are equivalent.

Proof. The proof is divided in three parts: Lemma 3 ⇐⇒ Lemma 4, then
Lemma 5 ⇐⇒ Lemma 6 and finally Lemma 4 ⇐⇒ Lemma 5. First consider
the equivalence of Lemma 3 and Lemma 4. The outer sum over � is the same in
(3) and (4), hence look at the inner part only. Starting from the binomial part of
equation (4), the first observation is that s ≤ t and r ≤ s, otherwise the binomial(

�
s−r

)
would become zero because of s − r < 0. It is possible to rewrite (4) as

n∑

�=2t+1

A�

t∑

s=0

t∑

r=0

(
n − �

r

)(
�

s − r

) (
p

q − 1

)�−s+r(

1 − p

q − 1

)s−r

(1 − p)n−�−rpr
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and the swap r with s yields

n∑

�=2t+1

A�

t∑

s=0

t∑

r=0

(
n − �

s

)(
�

r − s

)(
p

q − 1

)�−r+s(

1 − p

q − 1

)r−s

(1 − p)n−�−sps

Observing that the terms of the sum for the index r = 0, 1, . . . , s − 1 are zero,
the previous expression is simplified (with the index substitution k = r − s,
r = k + s) in

n∑

�=2t+1

A�

t∑

s=0

t−s∑

k=0

(
n − �

s

)(
�

k

)

· (q − 1)k−�

(

1 − p

q − 1

)k

(1 − p)n−�−sp�+s−k.

After relabelling k with r, the result is exactly the same as P
A
ME(p) given in (3).

Thus Lemma B is equivalent to Lemma A.

Equivalence of Lemmas 5 and 6. Consider now Lemma 5, a preventive sim-
plification shows that the index of the outer sum over � can be made start from
d = 2t+1 because for � = 0 the binomial term

(
�

�−s+r

)
= 0. Then for � = 1, . . . , 2t

the weights A� of the code are all zero. The same binomial can be substituted
by symmetry with

(
�

s−r

)
. With similar reasoning on the binomials, it is possible

to make the summation over r run from r1 = w− l or 0 to r2 = w− l+s. In fact,
e.g. for r2, the binomial

(
s−r

(w−l+s)−2r

)
will have a negative argument and thus is

zero. Similarly, when r1 is negative the first binomial has a negative argument,
and for 0 ≤ r1 < |w− l| the last binomial is zero. Hence the bounds r1 and r2 by
[5] are very accurate and reduce the effort of computation over dummy indexes.
Rewrite Lemma 5 as

P
C
ME(p) =

n∑

�=2t+1

A�

t∑

s=0

n∑

w=t+1

w−l+s∑

r=w−l

(
n − �

r

)(
�

s − r

)(
s − r

w − � + s − 2r

)

·
(

p

q − 1

)w

(1 − p)n−w · (q − 2)w−�+s−2r(q − 1)r. (2)

In the formula (6) of Lemma 6, notice that r, s ≤ t so that r + s < 2t + 1 = d.
The sum over � can run just over � = d, . . . , n, because if � − w > t the binomial(

n−�
r+w−�

)
=

(
n−l

r−(l−w)

)
will have a negative argument and is therefore zero, when

� − w < −t, the third binomial has a negative argument. Thus it is possible to
swap the sum over � with the sum over w and obtain,

P
D
ME(p) =

n∑

�=2t+1

A�

n∑

w=t+1

t∑

s=|l−w|

s∑

r=0

(
�

r

)(
n − �

r + w − �

)(
� − r

s + � − w − 2r

)

·
(

p

q − 1

)w

(1 − p)n−w · (q − 2)s+�−w−2r(q − 1)r+w−�.
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Now with the change of variable r → r + w − � the new sum over r runs from
w − � to s+w − l, and the first binomial becomes, by symmetry,

(
�

w−�

)
. Observe

then that the index s runs from t to zero, therefore it is possible to reorder the
sum for s = 0, . . . , t. Those simplifications lead to

P
D
ME(p) =

n∑

�=2t+1

A�

n∑

w=t+1

t∑

s=0

s+w−�∑

r=w−�

(
�

w − r

)(
n − �

r

)(
w − r

s + w − � − 2r

)

(
p

q − 1

)w

(1 − p)n−w · (q − 2)r(q − 1)s+w−�−2r,

which resembles equation (2) apart from the role of w in the three binomials.
After a sharp look, it is possible to substitute the missing s with the w without
changing the result, because of a combined simplification of the binomials, in
particular:

(
n − �

r

)(
�

w − r

)(
w − r

s + w − � − 2r

)

=
(

n − �

r

)(
�

s − r

)(
s − r

w − � + s − 2r

)

,

which can be easily verified expanding with factorials. Therefore P
C
ME(p) =

P
D
ME(p).

The last part of the proof is that Lemma 4 is equivalent to Lemma 5: in
Lemma 4 consider the quantity 1 − p/(q − 1), it can be recast into [(q − 2) +
(1 − p)]/(q − 1). Therefore, with Newton’s Binomial Theorem, [1 − p/(q − 1)]s−r

becomes

1
(q − 1)s−r

s−r∑

j=0

(
s − r

j

)

(q − 2)j(1 − p)s−r−j .

Hence, Lemma 4 can be expanded as,

P
B
ME(p) =

n∑

�=2t+1

A�

t∑

s=0

s∑

r=0

s−r∑

j=0

(
n − �

r

)(
�

s − r

)(
s − r

j

)

·
(

p

q − 1

)�−s+r

(q − 1)r−s(q − 2)j(1 − p)n−�−2r+s−jpr,

where, after collecting terms,

P
B
ME(p) =

n∑

�=2t+1

A�

t∑

s=0

s∑

r=0

(
n − �

r

)(
�

s − r

)

·
(

p

q − 1

)�−s+2r

(q − 1)r(1 − p)n−�−r

·
s−r∑

j=0

(
s − r

j

)

(q − 1)r−s−j(q − 2)j(1 − p)s−r−j .
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It is now possible to make use of Lemma 7 and substitute the last sum over j as
follows:

P
B
ME(p) =

n∑

�=2t+1

A�

t∑

s=0

s∑

r=0

s−r∑

j=0

(
n − �

r

)(
�

s − r

)(
s − r

j

)

·
(

p

q − 1

)j+�−s+2r

(q − 1)r(q − 2)j(1 − p)n−(j+�−s+2r).

The substitution w = j + � − s + 2r yields something that is almost equal to the
modified version of Lemma 5 in equation (2):

n∑

�=d

A�

t∑

s=0

s∑

r=0

�+r∑

w=�−s+2r

(
n − �

r

)(
�

s − r

)(
s − r

w − � + s − 2r

)

·
(

p

q − 1

)w

(q − 1)r(q − 2)w−�+s−2r(1 − p)n−w.

The differences with (2) are the order of the inner sums. To exchange the sum
over r with the sum over w, the new indexes must be w = � − s, . . . , � + s and
r = w − �, . . . , w − � + s, where the upper limit of r was simplified using the
same consideration on the third binomial discussed above for r2. With similar
considerations it is possible to extend the range of w to w = t+1, . . . , n, because
for values smaller than � − s the first binomial will have a negative r and for
values greater than � + s the other binomials will have negative argument. The
result is exactly P

C
ME(p) and the proof is complete. ��

4 An Application with Numerical Results

PD(p) is the probability of detected codeword error, the probability that one or
more errors occurring in a codeword are detected. PF(p) is the probability of
decoder failure, which is the probability that the decoder is unable to decode the
received vector (and is able to determine that it cannot decode). The following
check is performed: comparison between the theoretical PE(w) and the “real”
one, obtained by bruteforce decoding, this last identified as P

r
E(w). Suppose to

send the zero codeword, if an arbitrary error occurs, it is possible to receive every
possible vector of (Fq)n. After the correction, five cases can happen:

1. the received vector lies in the correct decoding sphere and is decoded to the
sent word;

2. the received vector lies in a wrong decoding sphere and is decoded to a wrong
codeword;

3. the vector is outside of any decoding sphere but is close to only one codeword
and is decoded to the sent word;

4. the vector is outside of any decoding sphere but is close to only one codeword
and is decoded to a wrong codeword;
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5. the vector is outside of any decoding sphere and there are more codewords at
the same distance, so a decoding failure happens.

In the next examples all decoded vectors (according to the weight w of the error)
are divided in three sets: the set Dw of the vectors correctly decoded (cases 1
and 3), the set Sw of the miscorrected vectors (cases 2 and 4), and the set of
the failures Fw (case 5). The number Cw gives the number of elements of case
2, hence they are expected to be |Sw| ≥ Cw. Furthermore |S0|, . . . , |St| should
be all zero. The next two toy examples show a case on F2 where |Sw| = Cw and
a case on F3 where |Sw| > Cw.

4.1 Example over F2

Let C be the linear code [5, 2, 3] over F2 with generator matrix

G =
(

1 0 1 0 1
0 1 0 1 1

)

.

In this example there is no difference between the theorical formula and the
bruteforce, see Table 1.

Table 1. Results for the linear code [5, 2, 3] over F2. Aw is the weight distribution,
|Dw| is the number of the vectors correctly decoded, |Fw| the number of failures, |Sw|
the number of miscorrected vectors, |Cw| the number of vectors in the wrong decoding
sphere.

w Aw |Dw| |Fw| |Sw| Cw P
r
E(w) PE(w)

0 1 1 0 0 (1) 0 0

1 0 5 0 0 (5) 0 0

2 0 0 4 6 6 3/5 3/5

3 2 0 4 6 6 3/5 3/5

4 1 0 0 5 5 1 1

5 0 0 0 1 1 1 1

4.2 Example over F3

Let C be the linear code [5, 2, 3] over F3 with generator matrix

G =
(

1 0 1 2 0
0 1 0 1 1

)

In this example there are some vectors outside the decoding spheres, the results
are collected in Table 2. Notice that |Sw| > Cw and so P

r
E(w) ≥ PE(w).
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Table 2. Results for the linear code [5, 2, 3] over F3. Aw is the weight distribution,
|Dw| is the number of the vectors correctly decoded, |Fw| the number of failures, |Sw|
the number of miscorrected vectors, |Cw| the number of vectors in the wrong decoding
sphere.

w Aw |Dw| |Fw| |Sw| Cw P
r
E(w) PE(w)

0 1 1 0 0 (1) 0 0

1 0 10 0 0 (10) 0 0

2 0 8 20 12 12 3/10 3/10

3 4 0 16 64 24 4/5 3/10

4 2 0 28 52 36 13/20 9/20

5 2 0 8 24 16 3/4 1/2

5 Comments and Conclusions

In the literature of ECC there are at least four different formulations of the
probability of miscorrected error. They have been presented in Lemmas 3, 4, 5
and 6, with some comments for Lemma 5, probably the most known. It has been
proved that they are equivalent, hence it is useful to point out what is the most
practical formula in terms of complexity. The complexity of Lemmas 3 and 4 is
the same, the number of iterations of the sums required to evaluate the PME(p)
is γ = 1

2 (n−2t)(t+2)(t+1) ≤ n3, whereas for Lemmas 5 and 6 a rough estimate
is γ(n−t) ≤ n4, which is one factor greater. Nevertheless, formulation of PC

ME(p)
gives information on the PE(w) which can be useful in some applications, where
the number of errors beyond t has importance.
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Abstract. Symbol-pair codes were first introduced by Cassuto and
Blaum (2010). The minimum pair distance of a code is a criterion that
characterises the error correcting capability of the code with respect to
pair errors. The codes that achieve the optimal minimum pair distance
(for given codeword length, code book size and alphabet) are called Max-
imum Distance Separable (MDS) symbol-pair codes. A way to study the
minimum pair distance of a code is through its connection to the mini-
mum Hamming distance of the code. For certain structured codes, these
two types of distances can be very different. Yaakobi et al. (2016) showed
that for a binary cyclic code, the minimum pair distance is almost three
halves of its minimum Hamming distance. We extend this connection to
q-ary (q is a prime power) constacyclic codes. The extension involves non-
trivial usage of the double counting technique in combinatorics. Such a
connection naturally yields a constructive lower bound on the minimum
pair distance of q-ary symbol-pair codes. For some choices of the code
parameters, this lower bound matches the Singleton type upper bound,
yielding q-ary MDS symbol-pair codes.

Keywords: Coding theory · Symbol-pair codes · Cyclic codes ·
Constacyclic codes · MDS symbol-pair codes

1 Introduction

In [1], Cassuto and Blaum introduced a new coding model in which reading
from the channel is performed as overlapping pairs of symbols. In other words,
each channel read involves the contribution from two adjacent symbols, called
pair-read symbols. For example, if the recorded sequence is (0, 1, 1), then the out-
put of the symbol-pair read channel would be [(0, 1), (1, 1), (1, 0)]. The symbol-
pair weight of the word (0, 1, 1) is the Hamming weight of its pair-read vector
[(0, 1), (1, 1), (1, 0)], which is 3. The pair distance of two words is the symbol-pair
weight of the difference of the two words. A symbol-pair code is a set of words,
where instead of Hamming distance, pair distance is considered. To distinguish
the notations, we use dH to denote the minimum Hamming distance and dp to
denote the minimum pair distance. It was shown in [1] that if a code has mini-
mum pair distance dp, then it can correct up to �(dp − 1)/2� symbol-pair errors.
In this case, we want to construct symbol-pair codes with a large minimum pair
c© Springer International Publishing AG 2017
M. O’Neill (Ed.): IMACC 2017, LNCS 10655, pp. 116–124, 2017.
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distance. For a fixed code length n, it would be good if both the code size M
and the minimum pair distance dp could be as large as possible. However, there
is a trade-off between these two parameters. Chee et al. in [2] established a
Singleton-type bound on symbol-pair codes and constructed classes of symbol-
pair codes with respect to dp which meet the Singleton-type bound, called MDS
symbol-pair codes. Recently, constacyclic codes over finite fields have been used
to construct quantum MDS code [8]. Kai et al. [4] constructed MDS symbol-pair
codes from cyclic codes and almost MDS constacyclic codes.

The relation between the minimum Hamming distance dH and minimum
pair-distance dp of a code is usually exploited in the study of the dp. Cassuto
et al. [1] established a relation between the minimum Hamming distance dH

of an error-correcting code and the minimum pair distance dp, and obtained
lower and upper bounds on dp in terms of dH . In particular, they showed that
dH + 1 ≤ dp ≤ 2dH . They also showed that the pair distance of cyclic codes is
at least dH + 2 and if instead the length is restricted and for any code, using
Hartmann-Tzeng Bound (Theorem 11 [1]), the relation can be improved into
dH + 3. In a follow-up paper, Kai et al. [4] considered a slightly larger class, the
constacyclic codes and obtained the same relation.

Yaakobi [3] et al. proved that, for binary linear cyclic codes the minimum
pair distance dp is at least dH + �dH

2 �. In this paper, we first generalize this
relation from binary cyclic symbol-pair codes to q-ary cyclic symbol-pair codes.
The extension involves non-trivial usage of the double counting technique in
combinatorics. As cyclic codes are a subclass of constacyclic codes, this naturally
motivates one to consider symbol-pair codes from constacyclic codes. We then
further extend the relation from q-ary cyclic codes to q-ary constacyclic codes.
This relation over q-ary alphabet becomes dp ≥ dH+� dH

2(q−1)� (for both cyclic and
consta-cyclic). Using this relation and known lower bounds on dH , we naturally
obtained lower bounds on the minimum pair distance of q-ary symbol-pair codes.
We show for some choices of parameters, this lower bound matches the Singleton
type upper bound, yielding q-ary MDS symbol-pair codes.

The rest of the paper is organized as follows. In Sect. 2, we introduce the basic
definition and notations as well as results of symbol-pair codes and Singleton-
type bound. We also review the definition and lower bounds of cyclic codes
and constacyclic codes. In Sect. 3, we deduce a relation between minimum pair
distance and Hamming distance of linear cyclic codes from binary to q-ary. In
Sect. 4, we derive some MDS symbol-pair codes with certain parameters.

From now on, Fq denotes a finite field with q elements, where q is a power of
a prime number p.

2 Preliminaries

2.1 Symbol Pair Code

In this section, basic notations and results of symbol − pair codes are provided.
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Let Σ denote a symbol alphabet, each element in Σ is called a symbol. Let
x = (x0, x1, · · ·, xn−1) be a vector in Σn. Then the symbol-pair read vector of x
is defined as

π(x) = [(x0, x1), (x1, x2), · · ·, (xn−2, xn−1), (xn−1, x0)].

Note that π(x) ∈ (Σ × Σ)n, and for x,y ∈ Σ,

π(x + y) = π(x) + π(y).

We say a symbol pair (a, b) differs from (c, d) if a 	= c or b 	= d, or both.
The all-zeros, all-ones vector is denoted by 0,1, respectively. The minimum
Hamming distance between two vectors x,y ∈ Σn is denoted by dH(x,y), and
the Hamming weight of a vector x is denoted by ωH(x). The pair-distance
between x and y is defined as

dp(x,y) = dH(π(x), π(y)).

For any vector x ∈ Σn, the pair weight of x is ωp(x) = ωH(π(x)). A code C over
Σ of length n is a nonempty set C ⊆ Σn. Define the minimum pair-distance of
C as

dp(C) = min{dp(x,y)|x,y ∈ C,x 	= y}.

A code of length n over Σ is called an (n,M, dp)q-symbol-pair code if its size is
M and the minimum pair distance is dp.

It has been shown in [2] that an (n,M, d)q-symbol-pair code must satisfy the
following version of the Singleton-type bound.

Proposition 1. (Singleton Bound) Let q ≥ 2 and 2 ≤ dH ≤ n. If C is an
(n,M, dH)q-symbol-pair code, then M ≤ qn−dH+2.

An (n,M, dH)q-symbol-pair code attains the Singleton-type bound, i.e., M =
qn−dH+2, is said to be an maximum distance separable (MDS) symbol-pair code.
On account of no code of length n with size M has a higher minimum pair distance
than an MDS symbol-pair code, it is desirable to construct MDS symbol-pair
code in theory and practice.

In Cassuto [1], it was shown that if a code has minimum pair distance dp,
then it can correct up to �(dp − 1)/2� symbol-pair errors. For this reason, the
purpose of constructing codes in symbol-pair read channels is to find a high
minimum pair distance.

Cassuto and Blaum [1] provided two ways to construct symbol-pair codes.
One is interleaving method, while codes constructed by interleaving method
can obtain optimal pair-distance for their Hamming distance, but they have
poor Hamming distance themselves. So it came out the second method: linear
cyclic codes, which is the main focus of this paper.
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2.2 Cyclic Codes and Constacyclic Codes

We know that cyclic codes are the special case of constacyclic codes. In this
section, we start with general definitions and notations for linear constacyclic
codes over finite fields.

Let q be a prime power and Fq be the finite field with q elements. If, in
addtion, C is a linear subspace over Fq of Fn

q , then C is called a linear code. A
q-ary linear code of length n is a subspace of Fn

q . For a nonzero element η in Fq,
the η-constacyclic shift τη on F

n
q is the shift

τη(c0, c1, . . . , cn−1) = (ηcn−1, c0, . . . , cn−2)

A linear code C is said to be η-constacyclic if C is a τη-invariant subspace of Fn
q ,

i.e., τη(C) = C. It is obvious that if η = 1, then C is just the usual cyclic code.
In [3], Yaakobi et al. focused on binary vectors, i.e., Σ = {0, 1}, they deduced

an improved lower bound on the minimum pair distance of linear cyclic codes
by showing a relation between dp and dH . In order to give the improved lower
bound, they first give a glance of the method to determine the pair weight of a
vector x. As we calculate the number of non-zero symbols, it can be obtained
that the condition (xi−1, xi) = (0, 1) contributes two new non-zero symbols to
π(x), and the condition (xi−1, xi) = (1, 1) or (xi−1, xi) = (1, 0) contributes one
new non-zero symbol. Obviously, in order to determine the weight of π(x), we
need to know the number of (xi−1, xi) = (0, 1) in the vector x.

For x = (x0, x1, . . . , xn−1), we define

x
′
= (x0 + x1, x1 + x2, . . . , xn−1 + x0).

The next lemma gives a method to calculate the pair weight of any vector x ∈
Σn.

Lemma 1. ([3]) For any x ∈ Σn, ωp(x) = ωH(x) + ωH(x
′
)/2.

Using the Lemma above, Yaakobi et al. deduced an improved lower bound
on the minimum pair distance of linear cyclic codes.

Lemma 2. ([3]) Let C be a linear cyclic code of dimension greater than one.
Then,

dp(C) ≥ dH(C) + �dH(C)
2

�.

Since the result of Yaakobi et al. is for the binary field, we will next generalize
their lower bound to the q-ary case.

3 Lower Bounds on the Minimum Pair Distance of q-ary
Linear Cyclic Codes and Constacyclic Codes

In this section, we give a lower bound on the minimum pair distance over q-ary
vectors, and extend the result to constacyclic codes.
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In order to determine the weight of π(x), we need to determine the number
of occurrences of the sequences (xi−1, xi) = (0, α) in the vector x, where α ∈ F

∗
q .

For x = (x0, x1, · · · , xn−1), we define

x
′
λ = (x0 + λx1, x1 + λx2, · · · , xn−1 + λx0), λ ∈ F

∗
q . (1)

We now derive a lower bound on the minimum pair distance of q-ary cyclic codes.

Theorem 1. Let C be a q-ary linear cyclic code of dimension greater than one.
Then,

dp(C) ≥ dH(C) + � dH(C)
2(q − 1)

�.

Proof. For any x ∈ Σn, let x = (x0, x1, · · · , xn−1) be a codeword in C. Here,
without loss of generality, first we assume that x 	= α, α ∈ F

∗
q . Since the code is

cyclic, (x1, · · · , xn−1, x0) ∈ C. Thus for any λ ∈ F
∗
q ,

x
′
λ = (x0, x1, · · · , xn−1) + λ(x1, · · · , xn−1, x0) ∈ C.

Now let
Sα = {i|(xi, xi+1) 	= (0, 0), xi = α}, α ∈ Fq.

For α, β ∈ Fq, α 	= β, one has Sα ∩ Sβ = ∅ and wp(x) =
∑

α∈Fq
|Sα| =

wH(x)+|S0|. In order to get |S0|, we use the trick of double counting to calculate∑
λ∈F∗

q
wH(x

′
λ).

If there exists a sequence (xi−1, xi) = (0, α), then there must exist a sequence
(xj−1, xj) = (β, 0). We can deduce that the i-th place of x

′
could not be zero for

any α, β ∈ F
∗
q . Hence, each element of S0 contributes two new non-zero symbols

for each λ ∈ F
∗
q . For each element (α, β) ∈ Sα, α, β ∈ F

∗
q , the equation α+λβ = 0

has exact one root in F
∗
q . It follows that each element (α, β) ∈ Sα with α, β ∈ F

∗
q

contributes q − 2 non-zero symbols when q runs through F
∗
q . Thus, one has

∑

λ∈F∗
q

wH(x
′
λ) = 2(q − 1)|S0| + (q − 2)

∑

λ∈F∗
q

|Sα|

= 2(q − 1)|S0| + (q − 2)wH(x).

Then we can deduce that

|S0| =
1

2(q − 1)

∑

λ∈F∗
q

wH(x
′
λ) − q − 2

2(q − 1)
wH(x).
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It follows that

wp(x) = wH(x) + |S0|
=

1
2(q − 1)

∑

λ∈F∗
q

wH(x
′
λ) − q − 2

2(q − 1)
wH(x) + wH(x)

≥ dH

2
− q − 2

2(q − 1)
dH + dH

=
dH

2(q − 1)
+ dH

Hence,

wp(x) ≥ � dH

2(q − 1)
� + dH .

Remark 1. If q = 2, we can recover the same result from [3].

In the next theorem, as cyclic codes are a subclass of constacyclic codes, we
deduce that for a nonzero element η in Fq, a η-constacyclic code C of length n
also holds the similar result as Thoerem 1.

Theorem 2. Let C be a q-ary η-constacyclic code of dimension greater than
one. Then,

dp(C) ≥ dH(C) + � dH(C)
2(q − 1)

�.

Proof. Let x = (x0, x1, · · · , xn−1) be a codeword in C. We know that

τη(x) = (ηxn−1, x0, · · · , xn−2) ∈ C.

We define

xηλ
= x + τη(x)
= (x0 + ληxn−1, x1 + λx0, · · · , xn−1 + λx0).

For any nonzero λ ∈ F
∗
q , we can deduce that

∑

λ∈F∗
q

wH(xηλ
) = 2(q − 1)|S0| + (q − 2)wH(x).

Then, from Thoerem 1 we can derive

dp(C) ≥ dH(C) + � dH(C)
2(q − 1)

�.

In [9](Theorem 1.1), Chen et al. presented a lower bound for the minimum
pair distance of constacyclic codes. Let C be an [n, k, dH ] constacyclic code over
Fq with 2 ≤ dH ≤ n. Then they deduced the following.
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(1) dp(C) ≥ dH + 2 if and only if C is not an MDS code, i.e., k < n − dH + 1.
Equivalently, dp(C) = dH + 1 if and only if C is an MDS codes, i.e., k =
n − dH + 1.

(2) If k > 1 and n − dH ≥ 2k − 1, then dp(C) ≥ dH + 3.

Compared with the results above, it can be seen that if we have sufficiently
large dH and sufficiently small q in Theorem 1, our result dH +� dH

2(q−1)� improves
the result dH + 3 in [1].

So far, we derive lower bounds of cyclic codes and constacyclic codes, next
section we use them to construct some MDS symbol-pair codes with certain
parameters.

4 Some Specific MDS Symbol-Pair Codes Constructed
by Constacyclic Codes

Cyclic codes were used to construct symbol-pair codes and gave a good pair-
error correctability. In the former sections, we deduce a lower bound for codes
over q-ary. As cyclic codes are a subclass of constacyclic codes, in this section,
we yield some classes of new MDS symbol-pair codes with certain parameters
by constacyclic codes with respect to Hamming distance.

Example 1. (1) Let C be a [23, 3, 19]5 η-constacyclic code, there exists an MDS
[23, 22]5-symbol-pair code. (2) Let C be a [11, 5, 6] η-constacyclic code over F3,
there exists an MDS (11, 8)3-symbol-pair code.

Put the certain parameters d, q into dp(C) ≥ dH+� dH

2(q−1)�, we obtain dp(C) ≥
22, it meets the Singleton Bound of symbol-pair codes when equality holds, so
we construct a MDS symbol-pair code.

Note that a linear [n, k, n−k]-code over Fq is called an almost MDS code [5].
Therefore, the code [11, 5, 6]3 is an almost MDS code.

5 Conclusion

In this paper, we study the symbol-pair codes and deduce a lower bound on
the minimum pair distance of q-ary constacyclic codes. It has enabled us to
construct some q-ary MDS symbol-pair codes with certain parameters by using
constacyclic codes over Fq. Comparing with the construction methods before, our
MDS symbol-pair codes have been constructed directly from both constasyclic
codes and almost MDS codes.

Clearly, the result in this paper can just construct some MDS symbol-pair
codes with certain parameters but not a class of MDS symbol-pair codes. Fur-
thermore, it is not clear whether the lower bound on the minimum pair-distance
of a constacyclic code can be improved. Finally, several other topics relating
to symbol-pair codes have not been explored, such as tight upper bounds, and
optimal code constructions by using constacyclic codes.

Acknowledgment. The author expresses her gratitude to Liming Ma and Fuchun
Lin for their instructive and useful suggestions of this paper.
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Appendix

For better understanding,we give detailed proof of Lemma 1.

Proof. Let x = (x0, x1, · · · , xn−1) ∈ Σn. Our goal is to calculate wp(x), namely,

wp(x) = wt{(x0, x1), (x1, x2), · · · , (xn−1, x0)}.

Now we let
S0 = {i : (xi, xi+1) 	= (0, 0) and xi = 1},
S1 = {i : (xi, xi+1) = (0, 1)}.
In the cases above, S0 contains all the pairs (1, 0) and (1, 1). S1 contains all

the pairs (0, 1). Hence, |S0| = ωH(x), S0 ∩ S1 = ∅, and ωp(x) = |S0| + |S1|. For
all 0 ≤ i ≤ n − 1, i ∈ S1 if and only if xi+1 = 1 and xi = 0. Thus, xi + xi+1 = 1
or x

′
i+1 = 1, where xi = 0. Hence, we get

|S1| = |{i : xi+1 = 1 and xi = 0}|.

Note that for any x ∈ Σn,

|{i : xi+1 = 1 and xi = 0}| = |{i : xi+1 = 0 and xi = 1}|,

and the sum of the cardinality of the two sets is ωH(x
′
). Hence, S1 = ωH(x

′
)

2
and

ωp(x) = |S0| + |S1| = ωH(x) +
ωH(x

′
)

2
.
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Abstract. In this paper, we develop a novel idea of a bilinear cryptosys-
tem using the discrete logarithm problem in matrices. These matrices
come from a linear representation of a group of nilpotency class 2. We
discuss an example at the end.

1 Introduction

Simply stated, this paper is an application of nilpotency class 2 groups in bilinear
public-key cryptography to build a secure bilinear cryptosystem. Bilinear or
pairing based cryptosystems are used in many practical situations such as the
following:

– Identity based encryption: In this case the user’s public-key is based on his
own identity, like his email address or phone number, see [4].

– Short signatures: Signature schemes where the signature is short, about half
the size of the original signatures, see [3].

– Key exchange: Tripartite Diffie-Hellman key exchange [2,8].
– And others.

We are not going to survey all of pairing-based cryptographic protocols but
will refer the reader to [6]. However, we briefly talk about the tripartite Diffie-
Hellman key exchange protocol purely as a motivation to our paper.

2 A Brief Introduction to Bilinear Public-Key
Cryptography

The origin of pairing based cryptosystems is in the MOV attack [10] on the
elliptic curve discrete logarithm problem. The attack was first envisioned by
Gerhard Frey. The idea was to use the bilinear properties of the Weil pairing to
reduce a discrete logarithm problem in an elliptic curve over a finite field Fq to
a discrete logarithm problem in Fqk . It is known [1] that most of the time for
non super-singular curves, this k, the embedding degree is very large.
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The Weil or the Tate pairing is a bilinear map

B : G × G → Fqk .

Where G is the (abelian) group of the elliptic curve written additively. Then the
discrete logarithm problem in G to the base g ∈ G is given g and αg find α.
It was Joux [8] who first noticed that one can manipulate the bilinear map to
deliver a one-round tripartite Diffie-Hellman key exchange protocol. The idea of
using a bilinear map can also be traced back to the work of Dan Boneh on the
decisional Diffie-Hellman problem. Let A,B and C be three users who want to
set up a common secret key among themselves. Then choose three integers α,
β and γ respectively and keep it a secret. They then compute αg, βg and γg
respectively from the public information G = 〈g〉 and broadcast this information
over the public channel. The user A on receiving βg, γg can compute B(βg, γg)α

using his private key α. The same thing can be computed by B and C by using
the public information of the other two users and his private information. The
common key becomes B(g, g)αβγ . All is well and nice in what we just said,
except that B being a alternate(skew-symmetric) map, B(g, g) = 1. There are
many approaches to solve that problem, one was proposed by Joux [8] and the
other using a distortion map. In the interest of brevity of this paper we won’t
go into further details of pairing based cryptosystems using elliptic curve. We
will just have to comment on a few things. There are lots of issues with elliptic
curve pairing. The most important of those are, how to find curves with right
embedding degree and what is the right embedding degree?

3 A Brief Introduction to Nilpotency Class 2 Groups and
Commutator Identities

For any group G we can define the lower-central series as follows:

G := γ0(G) � γ1(G) � · · · � γk(G) · · ·
Where γi(G) = [γi−1(G), G] , i > 1. Let x, y be elements of a group G, we follow
the usual definition of a commutator as [x, y] = x−1y−1xy. For two subgroups,
H and K of G we define [H,K] = 〈[h, k] | h ∈ H, k ∈ K〉. If the central series
stops at identity, then we call that group a nilpotent group. If the length of the
series is c, i.e., γc+1(G) = 1, then we call it a nilpotent group of class c. This c
is also often referred to as the nilpotency class of a group or simply the class. In
this paper we refer the nilpotent class simply as the class. It is not hard to show
that if G is a group of class c, then any commutator [x1, x2, ..., xc+1] of weight
c + 1 is the identity.

Nilpotent groups of class 2 have many properties similar to that of abelian
groups. We state without proof a well known lemma about groups of class 2.

Lemma 1. Let x, y ∈ G and assume that both x and y commute with [x, y] then:

(a) [x, y]n = [xn, y] = [x, yn] for all integer n
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(b) (xy)n = xnyn[y, x]
n(n−1)

2 for all n ≥ 0

For a proof see Rotman [12, Lemma 5.42]. The above lemma is a restatement
of the fact, that in a nilpotent group of class 2, the map x �→ [a, x] for a fixed
a is a linear map. This gives rise to the fact that (x, y) �→ [x, y] is a bilinear
map from G × G → G. This is the central idea that we are going to use next.
However, at this point we are obliged to report that in the case of groups of
class 2, the bilinear map is from the group to the same group. Unlike the case of
elliptic curves, where the bilinear map is from the group of an elliptic curve to
a finite field. This change can have a profound effect on bilinear cryptography,
especially in designing protocols.

4 The Central Idea

Let G be a group of nilpotency class 2. As discussed earlier, there are three users
– A, B and C with private exponent α, β and γ respectively. The main formula
on which this key-exchange protocol is based an identity in a nilpotent group of
class 2.

[x, y]n = [xn, y] = [x, yn] (1)

As with the tripartite Diffie-Hellman key exchange, the users A and B and
C transmits in public xα, yα; xβ , yβ and xγ , yγ respectively in public.
Key Exchange. The tripartite key-exchange is as follows: On receiving xβ , yγ

through the public channel, the user A can compute [xβ , yγ ]α = [x, y]αβγ . On
receiving xα, yγ through the public channel, the user B can compute [xα, yγ ]β =
[x, y]αβγ . On receiving xα, yβ through the public channel, the user C can compute
[xα, yβ ]γ = [x, y]αβγ . The common key is [x, y]αβγ .

4.1 The Primary Security Concerns

The primary security concerns are as follows:

– Given x and xα find α. The same can be said for y. This is the classic discrete
logarithm problem.

– From the information xα and y, one can compute [xα, y] = [x, y]α. Then it
turns out to be the discrete logarithm problem in [x, y].

– Note that [xα, yβ ] = [x, y]αβ . Clearly [x, y]αβ can be easily computed and so
is [x, y]γ from [x, yγ ]. The key-exchange is also broken, if we can compute
[x, y]αβγ from [x, y]αβ and [x, y]γ . This is the classic Diffie-Hellman problem,
also known as the computational Diffie-Hellman problem.

Bilinear cryptography described in previous section works in any nilpotent
group of class 2. It is well known that every finite p-group is nilpotent. There are
plenty of finite p-groups. So, it is a natural choice to investigate p-groups of class
2 for the purpose of bilinear cryptography. From now on we shall be concerned
with finite p-groups of class 2. In order to build an effective and secure bilinear
cryptosystem using finite p-groups of class 2, users needs to choose the private
exponents cleverly. Here we shed some light on the choices of private exponents.
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Exponent Semigroup. Let G be a group, define E(G) = {n ∈ Z | (xy)n =
xnyn for all x, y ∈ G}. The semigroup E(G) is called the exponent semigroup
and is of independent interest in group theory, see [9,11]. We state without proof
a proposition which describes the structure of E(G).

Proposition 1 [11, Proposition 3.2]. Let G be a finite p-group, |G| = pm and
exp(G/Z(G))=pe. Then there exist a nonnegative integer r such that E(G) =
pe+r

Z ∪ (pe+r
Z + 1).

Let G be a finite p-group of class 2 and |G| = pm. Let x, y ∈ G such that
ord(x)=pi, ord(y)=pj where 1 < i, j ≤ m. The private exponents α, β, γ used in
tripartite key-exchange protocol are independent of each other. In order to have
a successful key-agreement it is necessary to have [x, y]αβγ 
= 1. Thus, α, β, γ
must be choosen relatively prime to p, otherwise we could have [x, y]αβγ = 1.
Henceforth, we can assume that the private exponents α, β, γ < pm and are
relatively prime to p. Recall that (xy)n = xnyn[y, x]

n(n−1)
2 for all n ≥ 0. If

[y, x]
n(n−1)

2 = 1 for all x, y ∈ G, implies n ∈ E(G). Thus, by above proposition
n = ape+r or n = ape+r + 1, where 1 ≤ a < pm−e−r. Therefore, we must avoid
choosing private exponents α, β or γ in E(G) = pe+r

Z∪ (pe+r
Z+1). If all α, β, γ

is in E(G), then αβγ belongs to E(G) and by computing integers of the form
ape+r or ape+r +1 where 1 ≤ a < pm−e−r recover the private key αβγ. However,
this attack is not of much concern because α, β and γ are chosen independent of
one another and is a secret, so it is not likely that all three of these will belong
to E(G). When there is no prior information on whether α, β and γ belongs to
E(G) is available, there is no guarantee that αβγ will belong to E(G) and the
attack then is just a mere exhaustive search.

We now hope that there is a convincing argument that our central idea runs
parallel to the pairing based cryptosystems currently being studied. There is
a lot that can be said about protocols using the above idea. A lot can be said
about “provable” or semantic security of those cryptosystems. It can be an active
field of study to design proper protocols using the above idea in an appropriate
security model. However, this paper is not about “provable” or semantic security.
It is about finding the right group in which the above mentioned scheme works
nicely and securely. As we know the security of the discrete logarithm problem
depends on the presentation of the group. There are three most commonly used
presentations of finite groups.

– Permutation presentation.
– Polycyclic presentation.
– Matrix presentation.

5 Finding a Right Group

From the above discussion it is clear that the stepping stone to bring this idea to
light is to look at 2-generator p-groups of nilpotency class 2. Fortunately there
is a lot known about 2-generator p-groups of class 2, these groups have even
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been classified. The automorphism group of these groups are somewhat known
but there is no mention in the literature on the linear representations of these
groups. Our idea simply is to find suitable representations of these 2-generator
p-groups of class 2 and then use it in the ideas described above. In particular,
for the purpose of an exposition, we are interested in the extra-special p groups.

5.1 Extra-Special p-groups

Let G be a finite p-group. Then G is defined to be special if either G is elementary
abelian or G is of class 2 and G′ = Φ(G) = Z(G) is elementary abelian. If G is
a non-abelian special group with |Z(G)| = p, then G is said to be extraspecial.
For example, dihedral group D8 and quaternion group Q8 are extraspecial. An
example of our interest is the following: For α ≥ β ≥ γ ≥ 1,

G = 〈a, b|apα

= bpβ

= [a, b]p
γ

= 1, [a, b, a] = [a, b, b] = 1〉.
It is clear that G is a two-generator p-group of nilpotency class 2. It is not

hard to see that the derived subgroup G′ is cyclic and of order pγ . Furthermore
G/G′ is isomorphic to Cpγ ⊕ Cpβ . Here Cn is the cyclic group of order n.

Here our main goal is to find suitable linear representations for the above
mentioned group. The following theorem will be very useful for our study.

Theorem 1. Every extraspecial p-group G is the central product of extraspecial
groups of order p3. Irreducible representations of G are all obtained as tensor
product of irreducible representations of the individual factors of G.

We now give some examples of p-groups that we will use for our study. The
modular p-group Modn(p) is given by the generators and relations

Modn(p) = 〈a, b|apn−1
= bp = 1, ab = a1+pn−2〉. (2)

And the group

M(p) = 〈a, b|ap = bp = [a, b]p = 1, [a, b, a] = [a, b, b] = 1〉. (3)

In light of the above theorem we will study the linear representations of
extraspecial p-groups of order p3. The following theorem characterize the non-
abelian groups of order p3.

Theorem 2. A non-abelian p-group G of order p3 is extraspecial and is isomor-
phic to one of the groups Mod3(p), M(p), D8 or Q8.

For the purpose of bilinear cryptography we will look for the irreducible faithful
linear representations of Mod3(p) over a finite field. As we know that [7, The-
orem 5.5], if G be an extraspecial p-group of order p2r+1 and F be a field of
characteristic 0 or prime to p which contains a primitive p2-root of unity. Then
the faithful representation of G over F are all of degree pr. Throughout we will
assume that p and s are odd primes and q = sr. Let ζ be a primitive mth root
of unity in Fs and let k be a positive integer with |k|m = n. Where |k|m is the
order of k in the multiplicative groups of units mod m.
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Lemma 2 [5, Lemma 2.2]. The Frobenius automorphism τ on Fs defined by
τ(x) = xq permutes the elements of {ζ, ζk, · · · , ζqn−1} iff q ≡ ki (mod m) for
some 0 ≤ i ≤ n − 1.

Theorem 3 [5, Theorem 2.5]. Let G = 〈a, b|am = 1 = bn, b−1ab = ak〉 where
|k|m = n. Let ρ be the representation of 〈a〉 defined by ρ(a) = ζ where ζ is a
primitive mth root of unity in Fs, (s,m) = 1. Then the induced representation
ρG is realizable over Fq iff q ≡ ki (mod m) for some 0 ≤ i ≤ n − 1.

Observe that if we choose m = p2, n = p, and k = p+1 in the above theorem then
G = Mod3(p) as (p+1)p ≡ 1 (mod p2). Now as we know that by [5, Proposition
2.1] ρG is irreducible over Fs iff |k|m is equal to the order of b. Observe that
ζ, ζq, · · · , ζqn−1

are distinct and ζqn

= ζ whence |q|p2 = p. By [5, Lemma 2.2],
q ≡ (p + 1)i (mod p2) for some i. As |q|p2 = |p + 1|p2 implies that i and p are
co-prime. Hence, letting c = bi we have G = 〈a, c|am = 1 = cn, c−1ac = aq〉. The
induced representation ρG using coset representatives 1, c, c2, · · · , cp−1 is given
by

ρG(c) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

ρG(a) =

⎛

⎜
⎜
⎜
⎝

ζ 0
ζq

. . .
0 ζqp−1

⎞

⎟
⎟
⎟
⎠

Again by [5, Lemma 2.2] we can see that V −1ρG(a)V = X and V −1ρG(c)V =

Y ∈ Mp(Fq) where V and X(the companion matrix of f(x) =
p−1∏

i=1

(x − ζqi

)) are

as follows:

V =

⎛

⎜
⎜
⎜
⎝

1 ζ0 · · · ζp−1
0

1 ζ1 · · · ζp−1
1

...
... · · · ...

1 ζp−1 · · · ζp−1
p−1

⎞

⎟
⎟
⎟
⎠

,

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
... · · · ...

...
0 0 · · · 1 ζqp−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
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Y =

⎛

⎜
⎜
⎜
⎝

1
ζp

. . .
ζ(p−1)p

⎞

⎟
⎟
⎟
⎠

where ζi = ζqi

, 0 ≤ i ≤ n − 1. Here we have f(x) = xp − ζp, hence we get the
equivalent representation σ of ρG which is given by:

σ(a) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 ζp

1 0 · · · 0 0
0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

σ(c) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
ζp

ζ2p

. . .
ζ(p−1)p

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Note that σ(ac) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 1
1 0 · · · 0 0
0 ζp · · · 0 0
...

... · · · ...
...

0 0 · · · ζ(p−2)p 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The characteristic polynomial of σ(a) and σ(ac) is same which is xp − ζp.
Now consider the tensor product of representation σ with itself. If the

characteristic polynomials of A and B factor as PA(x) =
n∏

i=1

(x − λi) and

PB(x) =
m∏

i=1

(x − μj), then the characteristic polynomial of A ⊗ B is PA⊗B(x) =

n∏

i=1

m∏

i=1

(x − λiμj). Thus characteristic polynomial of σ(a), σ(ac) is (xp − ζp)p.

Observe that the polynomial (xp −ζp) is irreducible over F where F is a subfield
of Fq with ζp ∈ F .

6 Conclusion

In this short note, we introduced a novel idea of pairing based cryptosystem
using matrices. The idea is simple, use linear representation of groups of class 2.
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As a test case we looked at the extraspecial p-group of exponent p2. For this
particular group, the set of parameters is not encouraging. From [5], it follows
that the only possible matrices that we can come up with is matrices of size
p over Zp. The most security this can provide is the security in the finite field
Fpp . However, since the size of the field and the size of the matrix must be
the same, this is of little practical value. The size of the matrix is too large.
However, we hope, that there are other groups of class 2 for which we can get
better parameters.

References

1. Balasubramanian, R., Koblitz, N.: The improbability than an elliptic curve has
subexponential discrete log problem under the Menezes-Okamoto-Vanstone algo-
rithm. J. Cryptology 11(2), 141–145 (1998)

2. Barua, R., Dutta, R., Sarkar, P.: Extending Joux’s protocol to multi party key
agreement. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol.
2904, pp. 205–217. Springer, Heidelberg (2003). doi:10.1007/978-3-540-24582-7 15

3. Boneh, D., Shacham, H., Lynn, B.: Short signatures from the Weil pairing. J.
Cryptology 17(4), 297–319 (2004)

4. Chatterjee, S., Sarkar, P.: Identity-Based Encryption. Springer, Boston (2011)
5. Chebolu, S., Minác̆, J., Reis, C.: Reciprocity laws for representations of finite
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Abstract. We investigate the merits of altering the Garg, Gentry and
Halevi (GGH13) graded encoding scheme to remove the presence of the
ideal 〈g〉. In particular, we show that we can alter the form of encodings
so that effectively a new gi is used for each source group Gi, while retain-
ing correctness. This would appear to prevent all known attacks on IO
candidates instantiated using GGH13. However, when analysing security
in a simplified branching program model, we present an IO distinguish-
ing attack that does not use 〈g〉. This result opens a counterpoint with
the work of Halevi (EPRINT 2015) which stated that the core compu-
tational hardness problem underpinning GGH13 is computing a basis of
this ideal. Our attempts seem to suggest that there is a structural vul-
nerability in the way that GGH13 encodings are constructed that lies
deeper than the presence of 〈g〉. Tangentially, we observe that our attack
is prevented when considering all the added machinery of IO candidates.

1 Introduction

The work of Garg, Gentry and Halevi [GGH13a] initiated the study of candidate
multilinear maps (MMAPs). In short, a multilinear map e : G1 ×· · ·×Gκ �→ GT

maps κ elements gi ∈ Gi to a single target element gT ∈ GT in target group GT .1

More accurately, [GGH13a] constructed a graded encoding scheme (GES), infor-
mally defining intermediate bilinear maps between the source groups and thus
allowing group operations on intermediate ‘levels’. The actual construction pro-
vides ‘noisy’ approximations to the functionality of MMAPs and subsequent
candidates [CLT13,GGH15] follow in the same vein. In fact, the common inter-
face that we assume of a GES is similar to that of a levelled FHE scheme except
that decryption is replaced with a public ‘zero-testing’ procedure. This allows the
evaluator to learn whether a particular computation over encodings is equal to
zero or not provided that the result is encoded at the top level of a computation
hierarchy (e.g. after κ multiplications).

M.R. Albrecht and E. Larraia were supported by the EPSRC grant EP/L018543/1
“Multilinear Maps in Cryptography”. A. Davidson was supported by the EPSRC and
the UK Government as part of the Centre for Doctoral Training in Cyber Security
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1 Here we describe an asymmetric MMAP, we can equally describe a symmetric variant
where G1 = · · · = Gκ = G.
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The importance of graded encoding schemes for theoretical cryptography
has solidified with applications including semantically-secure, order-revealing
encryption [BLR+15], attribute-based encryption for circuits [GGH+13c] and
low-overhead broadcast encryption [BWZ14] to name a few. Although, perhaps
the most important application is that of constructing candidates for indistin-
guishability obfuscation (IO) [GGH+13b,BGK+14,GMM+16]. All-known con-
structions of IO obfuscators require usage of a GES or MMAP, and analyse
security in generic graded encoding models.

Unfortunately, the three candidates of GES [GGH13a,CLT13,GGH15]
(denoted as GGH13, CLT13 and GGH15 respectively) have been shown to be
vulnerable to a wide-range of attacks; e.g. ‘zeroizing’ [HJ16,CLR15,CLLT16,
CLT14,CLLT17], ‘overstretched’ NTRU assumption [ABD16,CJL16,KF17] and
using algebraic dependencies [MSZ16a,ADGM16,CGH17]. Zeroizing attacks
are largely avoided in the realm of IO since they rely on lower-level encod-
ings of zero being made available [HJ16,CLR15,CLLT16] or highly structured
branching program constructions [CLLT17]. Attacks on ‘overstretched’ NTRU
assumptions only affect GGH13, but can be avoided by increasing parame-
ters. Finally, algebraic dependency attacks affect specific ‘BGK-style’ IO candi-
dates (e.g. [AGIS14,BGK+14,BMSZ15,MSW14,PST14]) instantiated with the
GGH13 GES and rely on circuits outputting a sufficient number of zeroes. In
short, the presence of a common generator g in all GGH13 encodings allows an
adversary in an IO security game to create a basis for the ideal 〈g〉. This basis
is then used in a distinguishing attack on the obfuscated circuit. We provide
a background on algebraically dependent sets of polynomials in finite fields in
Appendix E.

Recently, there have been attempts to develop ‘immunised’ IO constructions
such as [GMM+16] (a combination of original proposals [GMS16,MSZ16b]).
These immunisations construct branching programs that make finding algebraic
dependences on zero-tested encodings (as described by [MSZ16a,ADGM16])
much more difficult, and analyse security in a weakened graded encoding model.2

However, the cryptanalysis of Chen et al. [CGH17] seems to offer attacks that
are still effective, even for these immunisations.3

This Work. Our analysis is motivated by the cryptanalysis of [CGH17] and its
applicability against ‘immunised’ IO candidates. We focus on algebraic depen-
dency (or annihilation) attacks on IO candidates instantiated with GGH13, and
their propensity to find representatives of the ideal 〈g〉. We investigate the pos-
sibility of making changes at the GES level to avoid the attacks described previ-
ously, rather than using ad-hoc fixes to IO constructions. In particular, we derive

2 This model allows all the same operations as the generic graded encoding model along
with an additional step where the adversary is allowed to submit certain polynomial
evaluations on the results of zero-testing.

3 They are thwarted only by the usage of dual-input branching programs which are
external to the security model considered. In fact, they note that parts of their attack
take place externally to the WGEM and thus suggest that the model is incomplete.
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a variant of GGH13 where the common generator g is removed such that encod-
ings on different levels i are cosets of the form α + Ii for κ ideals Ii. Concretely,
we replace the usage of the short g in GGH13 with larger elements βi that also
depends on the level that the encoding is associated with (See Sect. 3 for more
details). The correctness of zero-testing is achieved since the magnitude of the
result is completely determined by the presence of the βi’s — the number of
which differ in zero and non-zero encodings. The result is a GES that has no
structural ideals that can easily be computed by a PPT adversary.

At first sight, this prevents all known attacks that require an annihilation
phase. On the other hand, it should be noted that, similarly to GGH13, our
variant is trivially susceptible to zeroizing attacks and thus is immediately short
of providing full MMAP functionality. As such, our alteration would only be a
plausible candidate in situations where multilinear jigsaw puzzle (MJP) function-
ality is sufficient (e.g. IO [GGH+13b], order-revealing encryption [BLR+15]).

However, we find that our derived GES is still vulnerable, in a simplified IO
security game, to a variation of the annihilation attack given in [MSZ16a]. While
we remove the ability of an adversary to learn ideals from our MJP scheme, we
detail an attack that side-steps these measures and distinguishes based on the
magnitude of zero-tested encodings. We interpret this result as a counter-point
to the work of Halevi [Hal15] where it is stated that the core computational
hardness problem underpinning GGH13 is to establish a basis of 〈g〉. Given
the similarity between our encodings and those of GGH13, our attack seems to
highlight a structural fault that is exploitable even if the ideal testing capability
of adversaries is removed. However, we stress that the attack is only possible
because of distribution of our elements βi that we use to replace g.

Finally, while our attack works in a simplified branching program model, the
added machinery used in candidate obfuscators (such as ‘multiplicative bundling’
scalars and Kilian randomisation) render the attack apparently useless. This
applies even for BGK-style obfuscators and seems to imply that our GES could
still be used as a valid alternative for instantiating obfuscation candidates —
even those that are believed insecure for GGH13. This may indicate a logical
separation between the structure of the GGH13 MJP scheme and the variant
proposed here. Unfortunately, a BGK-style obfuscator based on our GES still
comes with no security guarantees and merely appears to resist currently avail-
able attacks in the weakened graded encoding model.

Layout. Section 2 details the notation that we will use and a recap of rings,
branching programs and definitions on algebraic dependence — we also cover
additional preliminaries on MJPs and rings in the Appendix. In Sect. 3 we
describe the changes we can make to GGH13 to remove the dependency on the
ideal 〈g〉. In Sect. 4 we provide an analysis of the security of this variant when
applied in differing IO security settings. In Sect. 5 we provide a final discussion of
our results and possible future avenues for research. For a background on GGH13
and how it is susceptible to the annihilation attacks introduced by [MSZ16a] see
Appendix D.
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2 Preliminaries

2.1 Notation and Rings

We may denote sets of the form {1, . . . , n} by [n]. For matrices M , we refer to
the entry in row i and column j as M [i, j]. For ring elements x we also use the
square-bracket notation [x]S to represent an encoding of x with respect to some
index set S. For an algorithm A, we use the notation w ← A(x, y, z) to denote
that A outputs w on inputs x, y, z. For a set X we use the notation x ←$ X to
indicate that x is sampled from X using the uniform distribution. For elements
y ∈ Rq for some polynomial ring Rq, when referring to the ‘magnitude’ of y we
will mean ‖y‖∞. For some distribution Y , we write poly(Y n) to denote sampling
a degree n polynomial with coefficients sampled from Y .

We will be working over rings R := Z[x]/〈φ(x)〉 and Rq := R/qR for
some degree n = n(λ) integer polynomial φ(x) ∈ Z[x] and a prime integer
q = q(λ) ∈ Z — notably Rq is isomorphic to the ring Zq[x]/〈φ(x)〉. We perform
addition in these rings component-wise in the coefficients of the polynomial ele-
ments and multiplication is performed via polynomial multiplication modulo
φ(x) and, if applicable, q. An element in R (respectively Rq) can be viewed as
a degree (n − 1) polynomial over Z (respectively Zq). We can represent such
an element using the vector of its n coefficients (where these will be in the
range {− 	q/2
 , . . . , 	q/2
} for elements in Rq). We work with the polynomial
φ(x) = xN + 1 with N a power of two. In particular, Z[x]/〈φ(x)〉 is isomorphic
to the ring of integers of the 2N -th cyclotomic field.

2.2 Branching Programs

Let L = L(λ), ν = ν(λ) and d = d(λ) be parameters dependent on the security
parameter λ. Let inp : [L] �→ [ν]d be some ‘input’ function. Let {M(b1,...,bd),l}
be a set of matrices individually sampled from Z

5×5
q for b1, . . . , bd ∈ {0, 1} and

l ∈ [L]. Let M0 ∈ Z
5×1
q , ML+1 ∈ Z

1×5
q be two vectors, these are known as

‘bookends’ and are used for guaranteeing a single element output. Define

M := (L, ν, d, inp, {Mxinp(l),l}l∈[L],M0,ML+1) (1)

to be a matrix branching program (MBP) of length L, input width ν and arity
d. We can evaluate M on inputs x ∈ 2ν where xs = x[s] and we denote such an
evaluation by M(x).4 The input function inp chooses the bits in the input x that
are examined at each layer l of the branching program. Clearly |inp(i)| = d where
inp(i)[y] is equal to the yth component of inp(i). In total, we have that the branch-
ing program contains 2dL + 2 matrices. Let xinp(l) = (xinp(l)[1], . . . , xinp(l)[d]), we
evaluate the branching program on an input x by computing

M(x) := M0 ·
(

L∏

l=1

Mxinp(l),l

)

· ML+1. (2)

4 We use 5 × 5 matrices as these are sufficient for Barrington’s theorem [Bar89].
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Using Barrington’s theorem we can associate a circuit C with a branching pro-
gram MC . We have that the branching program (without bookend vectors)
evaluates to the identity matrix on an input x if and only if C(x) = 0. Since this
theorem is commonly used in the construction of IO candidates this formulation
of correctness applies to our situation. It is common to structure a branching
program MC such that M(x) = 0 when C(x) = 0. To ensure this, we can con-
struct a dummy branching program that contains only identity matrices with the
same bookend vectors as in the functional branching program. We then compute
the dummy branch on the same input as the functional branch and subtract the
dummy output from the functional output. All current obfuscators only con-
sider branching programs that take either single [GGH+13b] or dual [BGK+14]
inputs i.e. cases where d = 1 or d = 2.

Definition 1 (Functional equivalence). Let X be the set of valid inputs for two
branching programs M0,M1 of length L, input length ν and arity d. We say
that M0,M1 are functionally equivalent (or M0 ≡ M1) if, for any input x ∈ X
then:

M0(x) = 0 if and only if M1(x) = 0.

As above, we can alter the branching program computation to ensure that only a
single value is output rather than matrices.

Remark 1. Note that we can pad the length of the branching program to any
required length by simply appending the required number of identity matrices
to the end of the branching program. These matrices clearly do not alter the
result of the program evaluation.

2.3 IO from Branching Programs

The majority of current IO candidates make use of branching programs when
constructing an obfuscated version of a circuit C(·). This generalised approach
is developed from the randomised branching program model used by [MSZ16a]
— using Barrington’s theorem to convert a fan-in 2 circuit, C, of depth D into
a branching program M of the form above with length L = O(4D). The con-
struction we detail here is heavily generalised but follows the BGK-style obfus-
cation candidates of [AGIS14,BGK+14,BMSZ15,MSW14,PST14]. Obfuscators
such as [GGH+13b,GMM+16] use more complicated randomisation procedures.

To obfuscate the program, we apply Kilian’s randomisation technique [Kil88]
by randomly sampling invertible matrices R0, . . . ,RL+1, sampling 2L random
non-zero scalars εb,l ←$Zq and then constructing randomised matrices

M̃b,l = εb,l · R−1
l−1Mb,lRl

along with bookend vectors

M̃0 = ε0 · M0R0, and M̃L+1 = εL+1 · R−1
L+1ML+1.
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Notice that the following holds:

M̃0 ·
(

L∏

l=1

M̃xinp(l),l

)

· M̃L+1 = ε̃ · M0 ·
(

L∏

l=1

Mxinp(l),l

)

· ML+1

for the multiplicative bundling scalar ε̃ = ε0εL+1

∏L
i=1 εxinp(i),i. This means that,

if we replace the matrices in the branching program with the randomised matri-
ces then we still compute the same function. These randomisations procedures
prevent ‘partial evaluation’ and ‘input mixing’ attacks on obfuscated programs.
Similarly to the work of [BGK+14], we could make use of a straddling set struc-
ture when encoding elements to prevent further algebraic attacks. However, this
is unnecessary for the security model that we consider.

Finally, the entries of each matrix M̃b,l are encoded using an MJP scheme
with respect to a source index set Sb,l. Security of the construction is then
analysed in the generic graded encoding model as in previous work. This lim-
its an adversary to computing multilinear operations and zero-testing top-level
encodings. We denote the encoded matrices by M̂b,l, the bookend vectors by
M̂0, M̂L+1 and the obfuscated branching program by M̂. The index sets are
define such that the output of M̂ is an encoding with respect to a top-level
set U .

Evaluation. When evaluating the branching program on an input x the book-
end vectors and a dummy program execution ensure that a single element is
propagated from the computation. Using the randomised branching program

M̂ := (L, ν, d, inp, {M̂xinp(l),l}l∈[L], M̂0, M̂L+1)

we learn a top-level encoded element where the encoded value is 0 if and only if
the circuit that was obfuscated also evaluates to 0 on x.5 That is, M̂C(x) = [0]U
iff C(x) = 0 and, since [0]U is a top-level encoding, we can use the zero-test
procedure to learn the output of the obfuscated circuit.

3 GGH13 Without Ideals

The main component of this note is our analysis of the security of IO candidates
when instantiated with a variant of GGH13 where ideals cannot be efficiently
found. In the following we give an overview of our adapted scheme without ideals.
In Appendix A we define a multilinear jigsaw puzzle formally, and in Appendix B
we give a formal MJP realisation of our construction.

5 The bundling scalars ensure that inputs x satisfying C(x) = 1 satisfies ̂MC(x) �=
[0]U .
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3.1 Overview of Encodings

Let R = Z[x]/〈φ(x)〉 be a ring and Rq = R/qR be the quotient ring for a large
prime q, with an accompanying error distribution χ = D̄Zn,σ for parameter σ.
The ring Rq will define the space of encodings.

Let α ∈ Rq be some non-zero polynomial with small coefficients. Sample a
polynomial r ←$ poly(χ) with small coefficients and sample zi uniformly from Rq

for 1 ≤ i ≤ κ. Finally, sample βi such that κ+1
√

q < ‖βi‖∞ < κ
√

q. We refer the
reader to Appendix C for more details on how to sample the βi.

A level 1 encoding of α with respect to some set Si takes the form:

[v]q =
α + r/βi

zi
mod q (3)

where the values zi, βi enforce the leveled structure that we require from the
specification of an MJP scheme. It is easy to see that β−1

i corresponds to using
a different gi in GGH13. We reiterate that βi has to be sampled in a different
way (e.g. no longer as small elements) to ensure correctness for zero-testing.

Remark 2. It is possible to sample higher-level encodings by encoding with
respect to

∏
i∈S zi and

∏
i∈S βi for some index set S. We do not require this

functionality for a MJP scheme.

3.2 Operations

Let U refer to the top-level index where zero-testing can take place.

Addition of Encodings. Let v1, v2 be encodings with respect to the same
index set S ⊆ U . Then we can compute additions of these encodings by simply
computing v = v1 + v2, the result is an encoding of the form

[v]q =
α1 + α2 + (r1 + r2)/βS

zS
mod q

Multiplication of Encodings. Let v1, v2 be encodings with respective index
sets Si and Sj such that Si ∪ Sj ⊆ U . A multiplication of these encodings is
calculated by multiplying the encodings directly, i.e. v = v1 · v2 which creates an
encoding of the form

[v]q =
α1 · α2 + r̃/(βi · βj)

zi · zj
mod q (4)

where r̃ = α1 · r2 · βj + α2 · r1 · βi + (r1 · r2).
As with GGH13, operations can only take place while the noise stays smaller

than a set upper bound (in this case κ
√

q). We choose parameters such that κ
multiplications can be computed without overflowing this boundary.
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Zero-Testing. To enable zero-testing on encodings vU that are indexed at the
top-level we follow procedures set in previous GE schemes and publish a zero-
testing parameter pzt. We consider top-level encodings that are constructed via
a sequence of multiplications of encodings indexed with each of the sets Si and
thus they take the form:

[vU ]q =
α̃ + r̃/βU

zU
where βU =

∏κ
i=1 βi, zU =

∏κ
i=1 zi and α̃ is a polynomial of underlying α values.

Finally, r̃ is a polynomial taking the form r̂ + β(1) + β(2) + . . . + β(κ−1) where
we stratify the polynomial into the components β(h), containing all monomials
of degree h in the βi elements, and r̂ representing a polynomial in the rj values
from each of the underlying encodings vj . Notice that the polynomial structure
of r̂ exactly mirrors the polynomial that has been calculated over the encodings
as a whole. The zero-test parameter is defined as

pzt =
κ∏

i=1

βi · zi

and an encoding vU is zero-tested by first computing δ = pzt · vU mod q and
then we state that vU encodes the value ‘0’ if δ is ‘small’ and encodes a non-zero
value if δ is ‘big’. For example, we have

δ1 =
κ∏

i=1

βi · α̃ + r̂ + β(1) + β(2) + . . . + β(κ−1) (5)

for non-zero encodings (α̃ �= 0) and so for an encoding of zero (α̃ �= 0) we have

δ0 = r̂ + β(1) + β(2) + . . . + β(κ−1). (6)

The difference between Eqs. (5) and (6) is the loss of a factor of
∏κ

i=1 βi, in
Eq. (6) we have monomials in the βi of maximum degree κ − 1.

Observe that the value of the encoding is now stored in the MSB of the
final output — in GGH13 the value is stored in the LSB. Therefore, zero-testing
requires more involved distinguishing in our case than in GGH13. We discuss
this in detail below.
Correctness. Correctness of zero-testing follows providing that

qκ−1/κ < ‖δ1‖∞ < q, and qκ−2/κ < ‖δ0‖∞ < qκ−1/κ.

For δ0, β(1) + β(2) + . . . + β(κ−1) is a sum of monomials dominated by the term
βκ−1. In this particular term, we have a sum of monomials of degree κ − 1
over variables βi, sampled such that ‖βi‖∞ < κ

√
q. The coefficients of these

monomials are made up of polynomials in the α, r elements from underlying
encodings and are thus small. Therefore, providing that κ � q, we have that
qκ−2/κ < ‖βκ−1‖∞ < qκ−1/κ. Therefore, by appropriate choice of q, κ, we have

qκ−2/κ < ‖β(1) + β(2) + . . . + β(κ−1)‖∞ < qκ−1/κ.
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Again, since r̂x is a monomial made up of variable sampled as small elements
from Rq, then we have that δ0 satisfies the relation above. Finally, since δ1
contains a product of all βi values then qκ−1/κ ≤ ‖δ1‖∞ ≤ q.

We could set out tighter bounds for correctness but we are more concerned
with the analysis of this scheme in the IO setting. As a consequence we merely
state that it is possible to choose parameters such that distinguishing non-zero
and zero encodings given how we sample each βi.

4 Security Analysis in IO Setting

In this section we demonstrate flaws in the encoding scheme from Sect. 3 via an
annihilation attack in a simplified security model. Our attack does not depend on
finding representations of any ideals. We will then highlight explicit machinery
in IO constructions that may prevent the attack and may allow us to instantiate
BGK-style obfuscators where annihilation attacks are not possible.

4.1 Simplified Security Model

In the attacks that we propose we prefer to talk explicitly in a game-based rep-
resentation of the IO game. In particular, the scope of the weakened graded
encoding model is unnecessarily wide since our attacks only occur during the
post-zero-testing query phase. As a result we propose two interactive distin-
guishing security games. In the first, IND-M, the adversary chooses functionally
equivalent (Definition 1) branching programs to be encoded and then has oracle
access for querying inputs on the branching program and receiving zero-tested
outputs. In the second, IND-OBF, the branching programs are also randomised
using the techniques (Kilian randomisation and multiplicative bundling scalars)
discussed in Sect. 2.3 before encoding takes place — noting else is changed. In the
weakened graded encoding model, the adversary is able to interact with random
handles that represent encodings after operations have taken place.

The advantage of the adversary in IND-M (Fig. 1) is written as:

AdvIND-M
A (λ) =

∣
∣
∣Pr

[
1 ← A(λ,M̂0)

]
− Pr

[
1 ← A(λ,M̂1)

]∣
∣
∣

and the security game is satisfied if AdvIND-M
A (λ) = negl(λ).

The advantage of the adversary in IND-OBF (Fig. 2) is written as:

AdvIND-OBF
A (λ) =

∣
∣
∣Pr

[
1 ← A(λ,M̂0)

]
− Pr

[
1 ← A(λ,M̂1)

]∣
∣
∣

and the security game is satisfied if AdvIND-OBF
A (λ) = negl(λ). We use iO to

denote the oracle that the challenger uses for performing the BGK-style obfus-
cation of a branching program.
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4.2 Analysis of (in)security in IND-M Game

Let M̂b be the encoded branching program that A1 receives in the IND-M
security game. Then let X = {0, 1}L be the set of valid inputs to M̂b and let
κ = L + 2 be the total degree of multilinearity (due to encoding of bookends
as well). Let μx = M̂b(x) be the output of M̂b on some input x ∈ {0, 1}L and
let δx = Ozt(μx). Assuming that μx is honestly computed then δx should be
meaningful.

Here we show that if μx is generated honestly and that if JTest(δx) = 1
then it is possible to distinguish which branching program has been encoded.
Our analysis uses an annihilation attack that is very similar in spirit to the
original given in [MSZ16a]. Let M̂xinp(l),l be a matrix at level l in M̂b. Let
α

xinp(l)

i,j,l = Mxinp(l),l[i][j] in the original branching program Mb. Recall that the

corresponding entry M̂xinp(l),l[i][j] after encoding has taken place takes the form:

v
xinp(l)

i,j,l = (αxinp(l)

i,j,l + r
xinp(l)

i,j,l /βl)/zl.

Game IND-MA(λ):

1. (sk, prms, evk, ztk) ← JInstGen(1λ, 1κ)
2. (st, M0, M1) ← A0(l, prms, evk)
3. b ← {0, 1}
4. ̂Mb ← JEnc(sk, prms, {Si}i∈[κ], Mb)

5. b′ ← AOzt
1 (st)

6. output (b′ = b)

Oracle Ozt(x):

1. if init, q ← 0; else, q ← q + 1
2. if q > Q, δ ← ⊥
3. else:

4. (U , μx) ← ̂Mb(x)
5. δx ← JZTParam(prms, ztk, (U , μx))
6. return δx

Fig. 1. Left: The IND-M game. An adversary A = (A0,A1) is legitimate if A0

outputs two branching programs (M0,M1) of the same size that compute functionally
equivalent circuits. We abuse notation and write JEnc(sk, prms, {Si}i∈[κ],Mb) to denote
the encoding of the ith level of matrices in Mb with respect to the index set Si. Right:
Oracle for computing inputs on the encoded branching program ̂Mb and outputting
zero-tested results.

Game IND-MA(λ):

1. (sk, prms, evk, ztk) ← JInstGen(1λ, 1κ)
2. (st, M0, M1) ← A0(l, prms, evk)
3. b ← {0, 1}
4. ̂Mb ← iO(sk, prms, {Si}i∈[κ], Mb)

5. b′ ← AOzt
1 (st)

6. output (b′ = b)

Oracle Ozt(x):

1. if init, q ← 0; else, q ← q + 1
2. if q > Q, δ ← ⊥
3. else:

4. (U , μx) ← ̂Mb(x)
5. δx ← JZTParam(prms, ztk, (U , μx))
6. return δx

Fig. 2. Left: The IND-OBF game. Same as above, except that the oracle iO takes a
branching program as input and outputs an obfuscation of the branching program, as
defined in Sect. 2.3. The ith level of matrices is still encoded with respect to Si. Right:
Oracle for computing inputs on the encoded branching program ̂Mb and outputting
zero-tested results.
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In the attack we treat the variables r
xinp(l)

i,j,l as formal variables and show that,
for enough inputs x, we can compute a polynomial Q that annihilates these
variables. Let rx denote the set of all variables r

xinp(l)

i,j,l that are used in computing

M̂b(x).
Firstly notice that the form of δx is the following:

δx = r̂x + β(1) + β(2) + . . . + β(κ−1)

recalling that r̂x is a polynomial dependent only on rj values from encodings
and β(�) is the sum of all monomials in the terms {βi}i∈[κ] of degree �. In this
analysis we focus on the term β(κ−1), which has coefficients in the α

xinp(l)

i,j,l , r
xinp(l)

i,j,l

terms. The adversary A knows the values α
xinp(l)

i,j,l as they are the entries from one
of the original branching programs. The values βi are the same in both branching
programs so we can view β(κ−1) as a linear polynomial in the set of variables
r(x).

Now, consider two bit strings x, x′ where there is only a single bit dif-
ference between the two at position t �= 1. Let xl = xinp(l) = x′

inp(l) and
consider the monomials in the matrix entries r

xinp(1)
i,j,1 . Notice that the coeffi-

cients will only change in the values α
xinp(t)
i,j,t — since the βl variables are fixed

at level l. Let c
xinp(1)
i,j,1 , c′xinp(1)

i,j,1 denote the coefficients of r
xinp(1)
i,j,1 after computing

δx ← JZTParam(M̂b(x)) and δx′ ← JZTParam(M̂b(x′)), respectively. Then, as
long as JTest(δx) = JTest(δx′) = 1, notice that if we compute

c′xinp(1)
i,j,1 δx − c

xinp(1)
i,j,1 δx′ = δ̃.

we remove the monomial in the variable r
xinp(1)
i,j,1 . To see this, note that by mul-

tiplying through the coefficient of r
xinp(1)
i,j,1 with the coefficient from the opposing

output gives equal monomials in both expressions. Subtracting the two scaled
outputs removes this monomial entirely, all other monomials are scaled by the
coefficient that is multiplied through.

The power of this attack is that it only requires four inputs to remove all
monomials that are linear in some r

xinp(l)

i,j,l for any program length L. That is,
we iterate over the possible four choices for the first two input bits and fix the
remaining L − 2 input bits. Recall, that we are only interested in annihilating
the monomials that are linear in the variables r

xinp(l)

i,j,l . Moreover, the annihi-
lation is performed on the polynomial evaluations that arise after computing
the branching program on these four different inputs. Let x ∈ {00, 01, 10, 11}
describe the four varying inputs and notice that, for any r

xinp(l′)
i,j,l′ for l′ /∈ {1, 2},

then the coefficient of the monomial in δx changes only in the values of α
xinp(lx)

i,j,lx
for lx ∈ {1, 2} — which are known the adversary. Moreover, for the monomials
in entries r

xinp(lx)

i,j,lx
, precisely two of the polynomial evaluations contain monomials

with differing coefficients. Therefore, we have at least two polynomials contain-
ing each variable r

xinp(l)

i,j,l ; thus the problem essentially becomes solving a set of
linear simultaneous equations of rank less than four. By performing operations
over these polynomial evaluations to reduce the rank of the system from four to
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three then we create a polynomial where all monomials r
xinp(l)

i,j,l are annihilated.
There are 25(L + 2) + 10 variables that need to be annihilated which is linear
in the length of the branching program — the attack needs to be applied this
many times but this is clearly efficient.6

Thus, once an equation is solved a distinguishing attack in the IND-M game
can be launched. The final result is a term δ that is noticeably smaller than all
previous outputs δx since the only monomials that are left have degree ≤ κ − 2
in the variables βi. The βi variables are the largest components of δx and so
the magnitude noticeably decreases. Notice, that the attack only works for the
choice of one branching program, i.e. the attack works in the case where M̂0

is encoded rather than M̂1 (without loss of generality). Therefore, if the attack
fails (i.e. the magnitude of δ is no smaller) then A outputs b′ = 1; if it does
work they output b′ = 0. The attack works with probability 1 and so we have
no security when analysing our MJP scheme in the IND-M game.

4.3 Initial Analysis of Security in IND-OBF game

Recall that the IND-OBF game adds extra randomisation details to the
branching program that are commonplace in most IO constructions. Impor-
tantly, it mimics the structure of BGK-style obfuscated branching programs.
In this setting, instantiating using GGH13 is insecure due to the attacks
of [CGH17,MSZ16a,ADGM16] and as such these attacks also work in our sim-
plified model. We show that there is an observable difference between our MJP
scheme and that of GGH13 since the multiplicative bundling scalars introduced
in IND-OBF seem to render our previous attack useless. However, we stress
that it is likely a variant of the attack could be used to still distinguish easily in
the game.

Concretely, the adversary in IND-OBF receives M̂0, M̂xinp(l),l, M̂L+1 that
are, respectively, encodings of the following matrices:

– ε0M0 · R0;
– εxinp(l),lR−1

l−1 · Mxinp(l),l · Rl;
– εL+1R−1

L · ML+1.

Recall, R0, . . . ,RL are randomly sampled invertible matrices used to imple-
ment Kilian’s randomisation technique and ε0, {εxinp(l),l}l∈[L], εL+1 are random
multiplicative bundling scalars taken from Rq. There are other techniques that
are used for protecting constructions of indistinguishability obfuscation (such as
encoding with respect to a straddling sets structure), but for simplicity we only
consider these randomisation measures.

Indeed, it appears that the randomisation matrices obscure the encoded val-
ues to the adversary. However, we can write each encoded matrix at level l as:

M̂xinp(l),l = εxinp(l),lR−1
l−1 · Mxinp(l),l · Rl + Exinp(l),l/βl

6 After each iteration the output is also scaled by the coefficients used previously so
these need to be taken account for in further operations.
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where Exinp(l),l is a matrix containing the entries r
xinp(l)

i,j,l .7 However, a change of
variables transformation allows us to rewrite the encodings as

M̂xinp(l),l = εxinp(l),lR−1
l−1 · (Mxinp(l),l + Exinp(l),l/βl) · Rl

which lets us assume that the adversary still has knowledge of the encoded
values. This technique was first used by Miles et al. [MSZ16a] in justifying their
annihilation attack scenario. Thus, while Kilian randomisation procedures are
still regarded as an important facet of IO candidates, it would appear that they
do very little to prevent known attacks.8

The reason that our attack no longer works trivially is due to the introduction
of the multiplicative bundling scalars. These act as unknown variables in the
final output when computing δx as the zero-tested output of M̂b(x). Consider
the monomials that are linear in some random variable r

xinp(l)

i,j,l ; we previously
annihilated any such monomial by picking two inputs x, x′ differing only on
one input bit in position t. The outputs δx, δ′

x would now also include different
scalars εxt,t that are unknown to the adversary. This means that the previous
technique for annihilating the monomial in variable r

xinp(l)

i,j,l is no longer possible
since it would also require scaling by εxt,t.

There are 2L + 2 input mixing scalars and a total 50L + 10 matrix entries
r

xinp(l)

i,j,l . It is, in principle, possible (by a corollary of Theorem 2 of Kayal [Kay09])
to carry out a generic annihilation attack since there are 2L possible inputs. Such
an attack would require finding annihilating polynomials for each of the mono-
mials (degree κ + 1) in the variables r

xinp(l)

i,j,l , {εxinp(l),l}l
, ε0, εL+1 for an input x.

Computing general annihilating polynomials is believed to be a #P -hard prob-
lem and indeed there are some sets of cubic polynomials for which the annihi-
lating polynomial cannot be expressed by a poly-depth circuit [MSZ16a,Kay09].
As such, the distinguishing attack above no longer seems to apply, though we
stress that we cannot prove hardness under any reasonable assumption.

Thus, it appears that our encoding scheme may still be able to be used
in instantiating BGK-style obfuscators in our security model, even though these
obfuscators are insecure when instantiated via GGH13. Exploring the possibility
of attacks that could distinguish in this setting would be valuable in further
ascertaining the relationship between our encodings and original GGH13.

5 Discussion of Findings

Finally, we summarise and address the key points arising from our analysis and
give points that may warrant further attention.

7 We ignore the usage of each zl in the encodings for now as these are removed after
zero-testing.

8 It may be wise to no longer think of these random invertible matrices as offering any
security when analysing IO candidates.
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Structural Faults in GGH13. Our main focus is to highlight that the GGH13
GES bears structural faults that are vulnerable even when a natural variant
where the ideals are removed is constructed. All previous attacks exploit the
presence of the generator g in each encoding to learn a basis of the ideal 〈g〉.
We show that removing the capability to learn this ideal does not prevent dis-
tinguishing attacks in a simplified Security model.

These faults appear to be mitigated by considering more complete obfusca-
tion techniques in our security model, though we fully expect a more sophis-
ticated attack to be viable via the annihilating polynomial route. In order to
make security more concrete we would need to reduce the hardness of finding
annihilating polynomials for our case back to a plausible hard problem. This
may take into account the hardness of finding an annihilating polynomial for a
general set of algebraically dependent polynomials in Rq.

CGH Attacks. The attacks of Chen, Gentry and Halevi [CGH17] use a vari-
ant of an annihilation attack, along with knowledge of the ratios of input mixing
scalars to launch powerful attacks on various IO candidates (including recent
immunisations). These attacks can be prevented using input authentication
methods [FRS16], however these prevention methods lie outside scope of the
weakened graded encoding model.

It is not completely clear whether a variant of the CGH attack can be lever-
aged on an IO candidate using our MJP scheme. This is because it explicitly
launches a distinguishing attack based on the ideal 〈g〉. It would be valuable
to investigate whether a variant of their attack can be used to break our MJP
scheme as well. Such a result would add weight to the fact that structural faults
in ‘GGH-like’ encodings are to be blamed rather than the presence of g explicitly.

Thus, it might be preferable to instantiate immunised IO candidates with
our MJP scheme rather than GGH13 as our encodings provide no natural way
of finding a basis of representative ideals. Furthermore, immunised constructions
seem to prevent MSZ-like attacks on the underlying encoding schemes and thus
also prevent the simplified attack that we described in Sect. 4.2. However, this
should not be construed as having confidence in the security of our scheme. It
is an interesting open question if the attacks in [CGH17] can be generalised to
our case.

A Multilinear Jigsaw Puzzles

Typically, IO candidates are instantiated via multilinear jigsaw puzzles
(MJPs) — a restricted variant of a GES where lower-level encodings of zero
are not permitted and only certain types of multilinear form can be computed.
From now on we will use the following MJP formalisation when referring to the
functionality required for constructing IO rather than the wider GES framework.

Definition 2 (MJP Scheme). A multilinear jigsaw puzzle consists of two algo-
rithms (JGen, JVer) that generate the puzzle and verify a solution to the puzzle,
respectively. We explain the algorithms in detail.
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Puzzle generation: The algorithm JGen comprises the triple of sub-algorithms
(JInstGen, JEnc, JGenPuzz) described as such:
– JInstGen(1λ, 1κ) : On input the security parameter λ and multilinearity

κ, this algorithm outputs a set of private parameters sk needed to encode
ring elements, and a set of public parameters pp = (prms, evk, ztk). The
last two components of the public tuple are necessary to perform alge-
braic operations over the encodings, and for zero-testing, respectively. The
system-wide parameters prms include a prime q defining the working ring,
a set universe U , and a partition {S1, . . . ,Sκ} of U .

– JEnc(prms, sk,S, a) : On input sk, a set S ⊂ U and a ∈ Zq, this algorithm
outputs an encoding v relative to the set S.

– JGenPuzz(1λ, 1κ, l, A) : Takes as input the security and multilinearity
parameters, l ∈ N and a set A = (A1, . . . , Al), where Ai is a set of values
{aj}j∈[mi] that will be encoded with respect to index set Si. First it runs
JInstGen(1λ, 1κ) to receive system parameters (sk, pp = (prms, evk, ztk)).
It then runs JEnc on inputs (prms, sk) and each element (Si, aj) ∈ Ai to
receive encodings (Si, vj) ∈ Ci.

Let puzzle = (C1, . . . , Cl) and let X = ((S1, v1), . . . , (Sl, vl)), then we define
(X, puzzle) as the output of JGen where X is kept secret and puzzle is the
public output.

Puzzle verification: Algorithm JVer takes as input the public parameters
pp = (prms, evk, ztk), the public output puzzle of JGen and some multilinear
form F (the solution to the puzzle). It outputs either acceptance or rejection.
More formally, following [MSZ16a], we split the verification into three sub-
algorithms JVer = (JCompute, JZTParam, JTest). This helps in capturing the
weakened grading encoding security model [MSZ16a,GMM+16].
– JCompute(prms, evk, puzzle, F ) : On input the encodings in puzzle and

some valid multilinear form F , outputs the encoding (S, v) = F (puzzle)
for S ⊆ U . We will sometimes abuse notation and simply write the output
of the algorithm as F (puzzle).

– JZTParam(prms, ztk, (S, v)) : On input encoding (S, v) it first checks if
S = U and if not aborts. If true, it outputs the ring element δ. In an
honest execution we have that (S, v) ← JCompute(puzzle, F ).

– JTest(prms, δ) : On input ring element δ it returns 1 or 0. In an honest
execution we have that δ ← JZTParam(prms, ztk, (U , v)).

In the above definition, by valid multilinear form, we mean some sort of
computation that respects the computation laws of a graded encoding scheme
and outputs a top-level encoding [GGH+13b]. For instance, for any encodings
(S1, v1), (S2, v2) we have an addition operation that is defined when S = S1 = S2

and outputs the encoding (S, v1+v2). We also have multiplication that is defined
when S1 ∩ S2 = ∅ and results in an encoding (S, v1 · v2) for S = S1 ∪ S2. The
output of these operations is said to be a top-level encoding when S = U .

Definition 3 (MJP Correctness). A jigsaw verifier JVer is correct for a tuple
(pp, (X, puzzle), F ) if either F (X) = (U , 0) and JVer(puzzle, F ) = 1 or F (X) �=
(U , 0) and JVer(puzzle, F ) = 0. Otherwise it is incorrect on F .
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We specifically require that JVer is correct on all but negligibly many forms
(see [GGH+13b] for an explanation of the requirement).

Security. Characterising the security that should be offered by a MJP is one
of the difficulties confronted by constructions of IO. In short, constructions of
IO are proven secure in a generic model where encodings are treated as random
handles and all operations that can be performed are interacted with via oracle
calls. Yet, as discussed above, current MJP constructions do not justify the use
of such a model, i.e. they are broken by attacks which fall our side of this model.
See [MSZ16a,GMM+16] for more details.

B MJP from Our Encoding Scheme

Using the encodings that we describe in Sect. 3.1 we can now construct an MJP
scheme. Note that we refer to jigsaw generation and verification as both algo-
rithms and as specific roles within a computation interchangeably.

B.1 Setup

Instance Generation. (JInstGen): On input the security parameter 1λ, and
perceived multilinearity κ the algorithm does the following:

– Samples the prime integer q
– Samples κ uniform polynomials zi from the ring Rq

– Samples κ polynomials βi fulfilling the requirements set out in Sect. 3
– Outputs (sk, pp) = ((βi, zi), ({Si}i∈[κ], q))

Encoding. (JEnc): This algorithm takes as input some value α, an index set Si

and a pair (βi, zi) = sk sampled from JInstGen and:

– Samples a small element r uniformly from the error distribution χ

– Computes v = α+r/βi

zi
as an encoding of the value α

Jigsaw Generation. (JGen): Takes as input an index set Si, the pair (βi, zi)
for i ∈ [κ] and associated encoded values (α1, . . . , αmi

) for each of these pairs,
where mi is the number of values to be encoded with respect to Si. Then this
algorithm performs the following:

– Inputs each tuple (Si, αj) for j ∈ [mi] to the encode algorithm JEnc
and receives back the κ sets Ci where Ci consists of all pairs (Si, vj) for
1 ≤ j ≤ mi.

– Generates the zero-testing parameter pzt by computing

pzt =
κ∏

i=1

βi · zi

.
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– Creates
puzzle = (q, {C1, . . . , Cκ}, pzt) (7)

as the public output. Let α(i) be the set of values {α1, . . . , αmi
} that are

encoded with respect to Si — then the private output is defined as

X = (α(1), . . . ,α(κ)).

Note that the values r, β and z are all kept secret in order to preserve the secrecy
of the encoded values. Public access to each βi and zi is granted in the form of
the zero-test parameter pzt, though it should be impossible to decompose this
into the individual factors.

B.2 Jigsaw Verification

As before, we note that the zero-test procedure is split into three separate algo-
rithms to accurately model the security setting that we consider. These three
algorithms are defined as the following:

Computation. (JCompute): Takes as input the encodings v
(i)
j with respect to

each index set Si and a multilinear form, F , and outputs

v∗ = F (v(1)
1 , . . . , v(1)m1

, . . . , v
(κ)
1 , . . . , v(κ)mκ

)

where v∗ is a top-level encoding as shown in Equation (4).

Zero-Testing. (JZTParam): Takes as input an encoding v∗ resulting from the
JCompute algorithm and pzt from puzzle and output δ = pzt · v∗

Zero-Test Output. (JTest): Takes δ as an output from the JZTParam algo-
rithm and checks the magnitude of the element. If it has magnitude greater than∏κ

i=1 βi then output 1 (encoded value is zero). Otherwise output 0 (encoded
value is non-zero).

Finally the overarching JVer algorithm defined previously simply runs these
three algorithms in sequence and outputs the result of JTest.

B.3 Correctness of Construction

The homomorphic properties of our encodings as shown in the previous section
enable us to evaluate the multilinear forms that are input to the JCompute algo-
rithm. Correctness is lost post-zero-testing if wrap-around modulo q occurs for a
top-level encoding, or if an encoding of zero exceeds q

κ−1
κ . Since we specifically

sample the βi elements from Rq such that we satisfy these requirements and
since each of the sampled elements are small.
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C Additional Ring Preliminaries

Canonical Embeddings. Let ζm denote a primitive m-th root of unity. The
m-th cyclotomic number field Q = Q(ζm) is the field extension of Q obtained by
adjoining ζm. Let n be the degree of K over Q, then there are n embeddings σi

of K → C. These n embeddings correspond precisely to evaluation in each of the
n distinct roots αi of φ(x). In our case, ψ(x) has 2 · s2 = n complex conjugate
roots. Order the roots such that αk = αs2+k for k = 1, . . . , s2. The canonical
embedding σ : K → C

n is defined as

a �→ (σ1(a), . . . , σss
(a), σ1(a), . . . , σs2(a)) .

The canonical embedding maps into a space H ⊂ C
n given by

H = {(x1, . . . , xn) ∈ C
n : xj = xs2+j ,∀1 ≤ j ≤ s2}

which is isomorphic to R
n and we can represent the coordinates of σ(a) by a

real vector [CIV16]

(ã1, . . . , ãn) ∝ (� (σ1(a)) , . . . ,� (σs2(a)) ,� (σ1(a)) , . . . ,� (σs2(a))) .

This naturally induces a geometry on K with �2-norm ‖ · ‖2 and �∞-norm
‖ · ‖∞:

‖a‖2 = ‖σ(a)‖2 =

(
n∑

i=1

|ãi|2
)1/2

and

‖a‖∞ = ‖σ(a)‖∞ = max
i

|ãi|.

Bounded Distributions. When sampling our encodings we are required to
define a B-bounded distribution, where all elements sampled from this distrib-
ution have an l∞ norm that is bounded by B. In this section we will formally
define such a distribution.

Definition 4 (B-bounded element). An element p ∈ R is called B-bounded if
‖p‖∞ ≤ B.

Definition 5 (B-bounded distribution). A distribution ensemble {χλ}λ∈N
, sup-

ported over R, is called B-bounded (for B = B(λ)) if for all p in the support of
χλ, we have ‖p‖∞ < B. In other words, a B-bounded distribution over R outputs
a B-bounded polynomial.

Lemma 1 ([LTV12]). Let n ∈ N, let φ(x) = xn + 1 and let R = Z[x]/〈φ(x)〉.
For any s, t ∈ R,

‖s · t‖ ≤ √
n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤ ‖s‖∞ · ‖t‖∞

Corollary 1 ([LTV12]). Take n, φ(x), R as before. Let s1, . . . , sk ←$ χ where χ

is a B-bounded distribution over the ring R. Then s :=
∏k

i=1 si is (nk−1Bk)-
bounded.
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Gaussian Sampling. For any real r > 0 the Gaussian function on R
n centred

at c with parameter r is defined as:

∀x ∈ R
n : ρr,c(x) := e−π||x−c||2/r2

Definition 6. For any n ∈ N and for any c ∈ R
n and real r > 0, the Discrete

Gaussian distribution over Z
n with standard deviation r and centred at c is

defined as:

∀x ∈ Z : DZn,r,c :=
ρr,c(x)
ρr,c(Zn)

where ρr,c(Zn) :=
∑

x∈Zn

ρr,c(x) is a normalisation factor.

The work of [MR04] showed that the discrete Gaussian distribution over Z
n

with standard deviation r outputs elements that are (r
√

n)-bounded with high
probability (≥ 1 − 1/2−n+1). We can then define the truncated Gaussian distri-
bution that is (r

√
n)-bounded and is statistically close to the discrete Gaussian.

The truncated Gaussian with standard deviation r and centred at c will be
denoted by D̄Zn,r,c and can be defined by sampling polynomials according to
the discrete Gaussian (DZn,r,c) and repeating any samples that are not (r

√
n)-

bounded. We note that this distribution is statistically close to DZn,r,c as shown
in [LTV12]. For the case where c = 0 we will simply write D̄Zn,r.

Our GES (Sect. 3) relies on distinguishing between products of κ − 1 and
κ elements. For this, we sample real vectors (ã1, . . . , ãn) with each coordinate
sampled from a Gaussian distribution conditioned on a minimum size through
rejection sampling. Mapping these real vectors to elements in K produces the
desired distribution in K. We then discretise, i.e. randomised round each coor-
dinate to an integer to obtain elements in Z[x]/〈φ(x)〉 as usual.

Thus, we may infer the magnitude of elements that are sampled from certain
distributions and latterly what the magnitude of such an element is expected to
be after multiplying any number of these elements is. We can use this informa-
tion to make statements on the size of encodings that are made up of elements
sampled from such B-bounded distributions.

D GGH13 and Annihilation Attacks

D.1 GGH13 Overview

The space for GGH13 encodings is Rq = R/qR where q is some big integer and
R = Z[x]/(xm+1) for m ∈ N. The plaintext ring is defined by Rg = R/gR where
g is a small element in the ring. A GGH13 encoding takes the form v = (α+rg)/z
mod q where z is some uniformly random value — z and g are secret — α is the
encoded plaintext value and r is some small random value, all these values are
sampled from some error distribution, χ, over Rq.
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The denominators z enforce the levels of the GES, where we can sample one
global z for the symmetric case and z1, . . . , zκ in the asymmetric case, we will
consider the asymmetric case unless otherwise stated. Where an encoding v has
a denominator zi we will say that v is encoded at level Si where there are κ such
index sets. Additions and multiplications are carried out by simply adding and
multiplying encodings directly. Clearly, additions of encodings indexed at the
same level results in another encoding at that level. Multiplying two encodings,
indexed by z1 and z2 respectively, results in an encoding at level S1 ∪ S2.

Finally, there is a public zero-test parameter

pzt =
h ·

κ∏

i=1

zi

g

for some ‘smallish’ h ∈ Rq.9 We can learn whether an encoding (U , v) (e.g. top-
level with denominator z1 · · · · · zκ) encodes zero or not by computing pzt · v and
seeing if the result is small.

The functionality described can be adapted to construct a correct MJP
scheme [GGH+13b].

D.2 Annihilation Attacks on GGH13

Let M̂ be a randomised branching program that has entries encoded as GGH13
elements and each pair of matrices M̂b,l and bookends M̂0, M̂L+1 are encoded
with respect to the levels l ∈ {0, . . . , L+1}. Let x ∈ X be some valid input for M̂
and let μx ← M̂(x) be the output. Finally denote δx = pzt ·μx = JZTParam(μx)
as the zero-tested output.

A top-level GGH13 encoding will have the following form:

δx = α̃x · g−1 + γ1,x + γ2,x · g + . . . + γκ,x · gκ−1 (8)

after zero-testing has occurred. The target of the annihilation attacks is the
polynomial γ1,x(α, r) which is linear in the unknown sampled elements rj from
each encoding vj . Using a change of variables in the branching program it is
possible to assume that the adversary has knowledge of the values αj that are
encoded in each of the matrices [MSZ16a] (see Sect. 4.3 for more details). By
choosing enough inputs x such that αx = 0, the adversary is able to guarantee
that there exists an annihilating polynomial Q for the set of γ1,x polynomi-
als [Kay09]. In fact, the work of [MSZ16a] explicitly gives a description of Q for
a given single-input branching program M.

Consequently, the result ρx ← Q({δx}x) results in some output where the
γ1,x polynomials are eliminated. In particular, this means that ρx ∈ 〈g〉. By com-
puting enough outputs, an adversary can heuristically construct a basis of 〈g〉.
The attack concludes by specifying a functionally equivalent M′ where the set of
polynomials γ′

1,x are not annihilated by Q. The work of [MSZ16a] show that it is

9 The exact magnitude is not important for the attack in [MSZ16a] as long as h � q.
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possible to construct M,M′ such that a PPT adversary with obfuscated access
to either of the circuits can first construct a basis of 〈g〉10 and then secondly
distinguish between the circuits. Distinguishing is possible since ρ′

x ← M̂′(x) is
not in 〈g〉 and so they are able to distinguish using the basis computed in the
first step.

E Algebraic Dependence

Here, we list definitions and key results taken from the work of [Kay09] that we
use in the security analysis of our MJP scheme. In short, we articulate the for-
malisation of expressing algebraic dependencies for a set of polynomials sampled
from a particular field.

Definition 7. Let f = (f1, . . . , fk) be a vector of k polynomials (of degree ≤ d)
where each fi ∈ F[y1, . . . , yn] is an n-variate polynomial over the field F. A
non-zero polynomial A(t1, . . . , tk) ∈ F[t1, . . . , tk] is said to be an annihilating
polynomial for f if A(f1, . . . , fk) = 0. The polynomials f1, . . . , fk are said to be
algebraically dependent if such an annihilating polynomial exists.

Definition 8. Let f = (f1, . . . , fk) be a vector of k polynomials as above where
f ′ represents some subset of algebraically independent polynomials of maximal
size k (i.e. for any fk+1 ∈ F[y1, . . . , yn] then the set f ′ ∪ fk+1 is algebraically
dependent). Then the algebraic rank of the set of polynomials f is k.

Theorem 1 (Theorem 2 [Kay09]). Let f1, . . . , fk ∈ F[x1, . . . , xn] be a set of
k polynomials in n variables over the field F. Then this set of polynomials has
algebraic rank k if and only if the Jacobian matrix, Jf(x), has rank k.

Corollary 2 ([Kay09,BS83]). There exists a randomized polynomial time algo-
rithm that on input a set of k arithmetic circuits over a field F, determines if the
polynomials computed by these arithmetic circuits are algebraically dependent or
not.

Remark 3. The algorithm mentioned by Corollary 2 essentially requires submit-
ting random values in place of the variables in the Jacobian matrix Jf(x). By the
Schwarz-Zippel lemma, the rank of the symbolic matrix is likely to be the same
as the rank of the matrix evaluated on random inputs with high probability. As
such we can calculate the algebraic rank for a given system of polynomials.
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[ADGM16] Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indis-
tinguishability obfuscations of circuits over GGH13. Cryptology ePrint
Archive, Report 2016/1003 (2016). http://eprint.iacr.org/2016/1003

[AGIS14] Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation:
avoiding Barrington’s theorem. In: Ahn, G.-J., Yung, M., Li, N. (eds.),
ACM CCS 2014, pp. 646–658. ACM Press, November 2014

[Bar89] Barrington, D.A.M.: Bounded-width polynomial-size branching programs
recognize exactly those languages in nc1. J. Comput. Syst. Sci. 38(1),
150–164 (1989)

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfus-
cation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 13

[BLR+15] Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman,
J.: Semantically secure order-revealing encryption: multi-input functional
encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 19

[BMSZ15] Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing
obfuscation: the case of evasive circuits. Cryptology ePrint Archive,
Report 2015/167 (2015). http://eprint.iacr.org/2015/167

[BS83] Baur, W., Strassen, V.: The complexity of partial derivatives. Theor.
Comput. Sci. 22, 317–330 (1983)

[BWZ14] Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption
from multilinear maps. In: Garay and Gennaro [GG14], pp. 206–223

[CGH17] Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching
program obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56617-7 10

[CIV16] Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of
ring-LWE revisited. In: Fischlin and Coron [FC16], pp. 147–167

[CJL16] Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and
cryptanalysis of the GGH multilinear map without a low-level encoding
of zero. LMS J. Comput. Math. 19(A), 255–266 (2016)

[CLLT16] Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of
GGH15 multilinear maps. In: Robshaw and Katz [RK16], pp. 607–628

[CLLT17] Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on
indistinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017.
LNCS, vol. 10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.
org/10.1007/978-3-662-54365-8 3

[CLR15] Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new CLT multilinear
maps. Cryptology ePrint Archive, Report 2015/934 (2015). http://eprint.
iacr.org/2015/934

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 476–493. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 26

[CLT14] Coron, J.-S., Lepoint, T., Tibouchi, M.: Cryptanalysis of two candidate
fixes of multilinear maps over the integers. Cryptology ePrint Archive,
Report 2014/975 (2014). http://eprint.iacr.org/2014/975

http://eprint.iacr.org/2016/1003
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-662-46803-6_19
http://eprint.iacr.org/2015/167
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
http://eprint.iacr.org/2015/934
http://eprint.iacr.org/2015/934
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
http://eprint.iacr.org/2014/975


Notes on GGH13 Without the Presence of Ideals 157

[FC16] Fischlin, M., Coron, J.-S. (eds.): EUROCRYPT 2016, Part I. LNCS, vol.
9665. Springer, Heidelberg (2016)

[FRS16] Fernando, R., Rasmussen, P.M.R., Sahai, A.: Preventing CLT zeroizing
attacks on obfuscation. Cryptology ePrint Archive, Report 2016/1070
(2016). http://eprint.iacr.org/2016/1070

[GG14] Garay, J.A., Gennaro, R. (eds.): CRYPTO 2014, Part I. LNCS, vol. 8616.
Springer, Heidelberg (2014)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 1

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press,
October 2013

[GGH+13c] Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based
encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40084-1 27

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 498–527. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 20

[GMM+16] Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.:
Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 10

[GMS16] Garg, S., Mukherjee, P., Srinivasan, A.: Obfuscation without the vulnera-
bilities of multilinear maps. Cryptology ePrint Archive, Report 2016/390
(2016). http://eprint.iacr.org/2016/390

[Hal15] Halevi, S.: Graded encoding, variations on a scheme. Cryptology ePrint
Archive, Report 2015/866 (2015). http://eprint.iacr.org/2015/866

[HJ16] Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin and Coron
[FC16], pp. 537–565

[Kay09] Kayal, N.: The complexity of the annihilating polynomial. In: Proceed-
ings of the 24th Annual IEEE Conference on Computational Complexity,
CCC 2009, Paris, France, 15–18 July 2009, pp. 184–193. IEEE Computer
Society (2009)

[KF17] Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched
NTRU parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7 1

[Kil88] Kilian, J.: Zero-knowledge with log-space verifiers. In: 29th FOCS, pp.
25–35. IEEE Computer Society Press, October 1988
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Abstract. Attribute-Based Signatures (ABS) are a versatile crypto-
graphic primitive and have many applications. They are a generalization
of many widely-used signature-related notions such as group, ring and
mesh signatures. Attribute-Based Signatures with User-Controlled Link-
ability (ABS-UCL) add the notion of user-controlled linkability to ABS
thus allowing users to anonymously and at will maintain a session with
a verifier. In this work, we provide the first constructions of ABS-UCL
dispensing with heuristic assumptions such as random oracles. We start
by providing a generic construction which avoids some of the inefficiency
pitfalls of existing constructions. We then provide efficient instantiations
supporting expressive signing policies. We also give a concrete construc-
tion for threshold policies yielding constant-size signatures. Some of the
building blocks we construct might be of independent interest.

Keywords: Attribute-based signatures · User-controlled linkability ·
Standard model

1 Introduction

Attribute-Based Signatures (ABS), introduced by Maji et al. [28], are a promis-
ing, versatile primitive that allows signers to authenticate messages while enjoy-
ing fine-grained control over identifying information. In ABS, users sign messages
w.r.t. policies satisfied by a set of attributes they possess. The verifier of a sig-
nature is convinced that a signer with a set of attributes satisfying the policy in
question signed the message but learns neither the identity of the signer nor the
exact attributes used to satisfy the policy in question. ABS are a generalization
of many prominent notions such as group [11], ring [31] and mesh [8] signa-
tures. They have numerous applications including trust negotiation, e.g. [18],
attribute-based messaging, e.g. [5], and leaking secrets.

ABS schemes can be categorized according to the expressiveness the policies
they support. In threshold ABS (tABS), proposed by Shahandashti and Safavi-
Naini [33], the policy is restricted to proving possession of at least t out of
c© Springer International Publishing AG 2017
M. O’Neill (Ed.): IMACC 2017, LNCS 10655, pp. 161–184, 2017.
https://doi.org/10.1007/978-3-319-71045-7_9
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n attributes. Constructions of tABS schemes include [19,24,27]. ABS schemes
supporting more expressive policies, i.e. monotonic access structures, were first
given by Maji et al. [28]. Okamoto and Takashima [29,30] gave constructions
supporting non-monotonic access structures. Note that any scheme supporting
monotonic access structures could be extended to support non-monotonic access
structures in a straightforward manner by doubling the universe of attributes.
ABS schemes for circuits were given by Tang et al. [34] and Sakai et al. [32].
Practical features such as decentralization [30], user-controlled linkability [15],
traceability [16,17,21], and controllable-linkability [35] have been added to ABS
schemes resulting in various ABS notions.

El Kaafarani et al. [15] introduced the notion of Attribute-Based Signatures
with User-Controlled Linkability (ABS-UCL), which analogously to the Direct
Anonymous Attestation (DAA) protocol [9], which is a standardized protocol
deployed in practice, it adds the user-controlled linkability feature to standard
ABS schemes. More precisely, the user can at her discretion choose to make
some of her signatures aimed at a particular verifier linkable without sacrificing
her anonymity. Thus, the user-controlled linkability feature allows anonymous
users to establish and maintain sessions with particular verifiers. For instance,
consider a potential buyer of age-restricted products who wishes to convince the
seller that she indeed satisfies the policy in place for buying such products but
without revealing her identity. In this scenario, the user may also wish to link
her current transaction to some of her earlier anonymous ones, e.g. to benefit
from discounts. Another useful application of the controlled-linkability feature
is resuming interrupted or lost authentication sessions between communicating
parties. The more recent notion of DAA with attributes (DAA-A) [12] can also
be viewed as a variant of ABS-UCL where the signer is split into a trusted
(computationally-constrained) TPM and a more powerful but not necessarily
trusted host. Note that unlike in DAA, where the signature attests to the fact
that the user belongs to a particular group, and thanks to the expressiveness
of the policies with which signatures in ABS schemes are associated, ABS-UCL
allows the user to attest to much broader statements than merely proving she
belongs to a particular group. Also, note that ABS-UCL is very different from
the notion of Attribute-Based Signatures with Controllable Linkability [35] in
which a designated authority (equipped with a secret key) is able to check if
two signatures originated from the same signer. Traceable ABS (TABS) [17]
and Decentralized Traceable ABS (DTABS) schemes [16,21] add the traceability
feature to ABS schemes by granting a designated opener a special tracing key
using which she can revoke anonymity when the need arises.

To the best of our knowledge, currently there exist no constructions of anony-
mous signature schemes offering the user-controlled linkability feature and sup-
porting attributes which do not rely on random oracles. The constructions in
[15] as well as the more recent variants in [12] all rely on heuristic assumptions
for their security.

Our Contribution. We give a generic construction of ABS-UCL supporting
expressive policies, i.e. monotone access structures (and hence non-monotone
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access structures) and 3 efficient concrete constructions. The first two are instan-
tiations of the generic construction whereas the third construction is a con-
crete one supporting threshold policies and yielding constant-size signatures. Our
generic construction is tailored towards avoiding some of the inefficiency pitfalls
of existing ones. Our instantiations are efficient and constitute the first con-
structions not relying on random oracles [2] and compare favourably to existing
related constructions offering different features. As a special case of our construc-
tions, i.e. when the user-controlled linkability requirement is dropped, we obtain
efficient instantiations of standard ABS schemes which compare favourably to
existing ones. As a building block for some of our constructions, we construct a
new efficient partially structure-preserving signature scheme [22], which might
be of independent interest.

Paper Organization. In Sect. 2, we give some preliminaries. In Sect. 3, we
present the building blocks we use. We define ABS-UCL in Sect. 4. In Sects. 5
and 6, we present our constructions of ABS-UCL.

2 Preliminaries

In this section we present some preliminaries.

2.1 Bilinear Groups

A bilinear group is a tuple P := (G,H,GT , p,G, H̃, e) where G := 〈G〉,H := 〈H̃〉
and GT are groups of a prime order p. The function e is a non-degenerate bilinear
map G × H −→ GT . We focus on Type-III bilinear groups [20], where G �= H

and no efficient isomorphisms between G and H are known in either direction,
since it is well-known it is more efficient than the other settings.

2.2 Intractability Assumptions

We will use the following existing intractability assumptions:

DDH. Given (G,Ga, Gb, Gc) ∈ G
4 for a, b, c ← Zp, where G = 〈G〉 is of a prime

order p, it is hard to decide whether or not c = ab (mod p).
SXDH. This requires that the DDH assumption holds in both groups G and

H.
q-SDH [7]. Given (G,Gx, . . . , Gxq

) for x ← Zp, where G = 〈G〉 is of a prime
order p, it is hard to output a pair (c,G

1
x+c ), where c ∈ Zp\{−x}.

q-DDHI [6]. Given (G,Gx, . . . , Gxq

) for x ← Zp, where G = 〈G〉 is of a prime
order p, it is hard to distinguish G

1
x from a random element of G.

(�,m, t)-aMSE-CDH [25]. Given P := (G,H,GT , p,G, H̃, e) and x = (x1, · · · ,

x�+m) ← (Z×
p )�+m, g1(X) =

∏�
i=1(X + xi) and g2(X) =

∏�+m
i=�+1(X + xi)

for some �,m, t ∈ N. The assumption states that it is infeasible to compute
e(G, H̃)κg1(γ) given:
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G, Gγ , . . . , Gγ�+t−2
, Gκγg1(γ) (1) Gωγ , Gωγ2

, . . . , Gωγ�+t−2
(2)

Gα, Gαγ , . . . , Gαγ�+t

(3) H̃, H̃γ , . . . , Gγm−2
, H̃κg2(γ) (4)

H̃ω, H̃ωγ , . . . , Gωγm−1
(5) H̃α, H̃αγ , . . . , Gαγ2(m−t)+3

(6)

3 Building Blocks

In this section, we present the building blocks we use; this includes a new partially
structure-preserving signature scheme that we construct.

3.1 Partially Structure-Preserving Signature Schemes

Ghadafi [22] defined Partially Structure-Preserving Signature (PSPS) schemes as
a variant of structure-preserving signature schemes [1] where the only deviation
from the definition of the latter is that some part of the message might be field
elements rather than group elements. In this work we will use 2 PSPS schemes
the first of which is new.
A New PSPS Scheme for the Message Space G

n × Z
n′
p . We give here a

PSPS scheme for the message space G
n × Z

n′
p . It is an extension of the single-

message structure-preserving scheme of Chatterjee and Menezes [10]. The new
scheme is as follows:

• KeyGen(P):Choose x1, . . . , xn, y1, . . . , yn′ , z ← Zp, X̃i := H̃xi , Ỹi :=
H̃yi , Z̃ := H̃z. Return

(
sk := (x1, . . . , xn, y1, . . . , yn′ , z), vk :=

(X̃1, . . . , X̃n, Ỹ1, . . . , Ỹn′ , Z̃)
)
.

• Sign
(
sk,

(
U = (U1, . . . , Un),m = (m1, . . . ,mn′)

) ∈ G
n × Z

n′
p

)
: Choose r ←

Zp. Set R := Gr, R̃ := H̃r, and S :=
∏n

i=1 Uxi
i · G

∑n′
i=1 miyi+r2+z. Return

σ :=
(
R̃, R, S

)
∈ H × G

2.

• Verify
(
vk,

(
U = (U1, . . . , Un),m = (m1, . . . ,mn′)

)
, σ = (R̃, R, S)

)
: Return 1

iff R̃ ∈ H, R,S ∈ G, Ui ∈ G, and the following two equations hold:

e(R, H̃) = e(G, R̃),

e(S, H̃) =
n∏

i=1

e(Ui, X̃i)
n′
∏

i=1

e(Gmi , Ỹi)e(R, R̃)e(G, Z̃) ·
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• Randomize
(
vk,

(
U = (U1, . . . , Un),m = (m1, . . . ,mn′)

)
, σ = (R̃, R, S)

)
:

Choose r′ ← Zp, Set R′ := R · Gr′
, R̃′ := R̃ · H̃r′

, and S′ := S · R2r′ · Gr′2
.

Return σ′ := (R̃′, R′, S′).

Correctness of the scheme is easy to verify. The signatures are perfectly random-
izable as the distribution of randomized signatures is identical to that of fresh
signatures on the same message. We now prove the following theorem.

Theorem 1. The signature scheme is existentially unforgeable against a chosen-
message attack in the generic group model.

Proof. We prove that no linear combinations of the elements available to the
adversary produce Laurent polynomials corresponding to a forgery on a message
that was not queried to the sign oracle.

Public elements in H are H̃, X̃1, . . ., X̃n, Ỹ1, . . ., Ỹn′ , Z̃ which correspond
to the discrete logarithms 1, x1, . . ., xn, y1, . . ., yn′ , z, respectively. Thus, this
means that at the it-h sign query on (U i,mi), Ui,j (for j = 1, . . . , n) can only
be a linear combination of G, {Rk}i−1

k=1, {Sk}i−1
k=1. Thus, we have

ui,j = aui,j
+

i−1∑

k=1

bui,j,k
rk +

i−1∑

k=1

cui,j,k
(

n∑

l=1

uk,lxl +
n′

∑

l=1

mk,lyl + r2k + z),

After q signing queries, u∗, which is the discrete logarithm of the forged vector
U∗ must be of the form

u∗
i = aui

+
q∑

k=1

bui,k
rk +

q∑

k=1

cui,k
(

n∑

l=1

uk,lxl +
n′

∑

l=1

mk,lyl + r2k + z), for i = 1, . . . , n

Similarly, the (R∗, S∗) components part of the forgery can only be a linear com-
bination of the group elements from G, i.e. a linear combination of G, {Ri}q

i=1

and {Si}q
i=1 and therefore we have

r∗ = ar +
q∑

k=1

brk
rk +

q∑

k=1

crk
(

n∑

l=1

uk,lxl +
n′

∑

l=1

mk,lyl + r2k + z)

s∗ = as +
q∑

k=1

bsk
rk +

q∑

k=1

csk
(

n∑

l=1

uk,lxl +
n′

∑

l=1

mk,lyl + r2k + z)

Analogously, the R̃∗ part of the forgery can only be a linear combination of the
elements from H. Therefore, we have

r̃∗ = ar̃ +
q∑

k=1

br̃k
r̃k +

n∑

i=1

cr̃i
xi +

n′
∑

i=1

dr̃i
yi + er̃z
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For the forgery to be a valid signature, r∗, r̃∗ and s∗ must satisfy

r∗ = r̃∗ (7)

s∗ =
n∑

l=1

u∗
l xl +

n′
∑

l=1

m∗
l yl + r∗2 + z (8)

By (7), we must have er̃ = 0 and cr̃i
= dr̃i

= 0 for all i ∈ [n]. Also, we must
have ar̃ = ar, br̃k

= brk
for all k, and crk

= 0 for all k ∈ [q]. Therefore, we have

r∗ = r̃∗ = ar +
q∑

k=1

brk
rk

By (8), we must have

as +

q
∑

k=1

bskrk +

q
∑

k=1

csk (

n
∑

l=1

uk,lxl +

n′
∑

l=1

mk,lyl + r2k + z)

=
n
∑

l=1

u∗
l xl +

n′
∑

l=1

m∗
l yl + r∗2

+ z

Thus, we must have

as +

q
∑

k=1

bskrk +

q
∑

k=1

csk (

n
∑

l=1

uk,lxl +

n′
∑

l=1

mk,lyl + r2k + z)

=

n
∑

l=1

u∗
l xl +

n′
∑

l=1

m∗
l yl +

(

ar +

q
∑

k=1

brkrk)2 + z

Note that on the left-hand side there is no term in rjrk for all k �= j. This means
that on the right-hand side we must have brj

brk
= 0 for all k �= j. This implies

that there is only one value of j such that brj
�= 0, whereas brk

= 0 for all k �= j.
Thus, we have

as +

q
∑

k=1

bskrk +

q
∑

k=1

csk (
n
∑

l=1

uk,lxl +
n′
∑

l=1

mk,lyl + r2k + z)

=
n
∑

l=1

u∗
l xl +

n′
∑

l=1

m∗
l yl +

(

ar + brj rj)
2 + z

Thus, we have

as +

q
∑

k=1

bskrk +

q
∑

k=1

csk (
n
∑

l=1

uk,lxl +
n′
∑

l=1

mk,lyl + r2k + z)

=
n
∑

l=1

u∗
l xl +

n′
∑

l=1

m∗
l yl + a2

r + 2arbrj rj + b2rj
r2j + z



Attribute-Based Signatures with User-Controlled Linkability 167

Re-writing the left-hand side we have

as + bsj rj + csj

n
∑

l=1

uj,lxl + csj

n′
∑

l=1

mj,lyl + csj r2j + csj z

=
n
∑

l=1

u∗
l xl +

n′
∑

l=1

m∗
l yl + a2

r + 2arbrj rj + b2rj
r2j + z

The monomial z implies cs,j = 1. Therefore, we have

as + bsj rj +

n
∑

l=1

uj,lxl +

n′
∑

l=1

mj,lyl + r2j + z

=

n
∑

l=1

u∗
l xl +

n′
∑

l=1

m∗
l yl + a2

r + 2arbrj rj + b2rj
r2j + z

By the monomial xl, it is clear that we must have uj,l = u∗
l for all l ∈ [n] and

some j ∈ [q]. Similarly, the monomial yl implies we must have mj,l = m∗
l for all

l ∈ [n′] and some j ∈ [q]. This means the forgery is on vectors which have been
queried to the sign oracle and therefore the adversary does not win.

This concludes the proof. �	
PSPS Scheme for a Diffie-Hellman Pair [22]. We also use the recent efficient
PSPS scheme by Ghadafi [22] which signs a Diffie-Hellman pair and a vector from
Z

n
p . It suffices for our case to have n = 1. The scheme from [22] is as follows,

where as in [22], we let ĜH denote the set of Diffie-Hellman pairs, i.e. ĜH =
{(U, Ṽ )|(U, Ṽ ) ∈ G × H, e(U, H̃) = e(G, Ṽ )}.

• KeyGen(P): Select x, y1, . . . , yn, z ← Z
×
p . Set X̃ := H̃x, Ỹi := H̃yi for all

i ∈ [n], Z̃ := H̃z. Set sk := (x, y1, . . . , yn, z) and vk := (X̃, Ỹ1, . . . , Ỹn, Z̃).
• Sign

(
sk,

(
(U, Ṽ ),m = (m1, . . . ,mn)

))
: To sign (U, Ṽ ) ∈ ĜH and a vec-

tor (m1, . . . ,mn) ∈ Z
n
p , select r ← Z

×
p , and set R := Gr, S :=

(
Ur ·

Gr(x+
∑n

i=1 miyi)
) 1

z . Return σ := (R,S) ∈ G
2.

• Verify
(
vk,

(
(U, Ṽ ),m

)
, σ = (R,S)

)
: Return 1 iff R ∈ G

×, (U, Ṽ ) ∈ ĜH, and

e(S, Z̃) = e(R, Ṽ )e(R, X̃)
n∏

i=1

e(R, Ỹ mi
i ) ·

• Randomize
(
vk,

(
(U, Ṽ ),m

)
, σ = (R,S)

)
: Select r′ ← Z

×
p , and set R′ := Rr′

,

S′ := Sr′
. Return σ′ := (R′, S′).

3.2 Groth-Sahai Proofs

Groth-Sahai (GS) proofs [23] are non-interactive proofs in the CRS model. We
will use GS proofs that are secure under the SXDH assumption.
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For clarity, when describing the statements to be proven, we underline the
variables which are part of the witness. The language for the proofs is of the
form

L := {statement | ∃witness : E(statement,witness) holds} ,

where E(statement, ·) is one of the four types as described in [23].
The system consists of the algorithms (GSSetup,GSProve,GSVerify,

GSExtract, GSSimSetup,GSSimProve).
GSSetup takes as input the description of a bilinear group P and outputs a

binding reference string crs and an extraction key xk. GSProve takes as input
the string crs, a set of equations statement and a witness, and outputs a proof Ω
for the satisfiability of the equations. GSVerify takes as input a set of equations,
a string crs and a proof Ω and outputs 1 if the proof is valid, and 0 otherwise.
GSExtract takes as input a binding crs, the extraction key xk and a valid proof Ω,
and outputs the witness used for the proof. GSSimSetup, on input a bilinear group
P, outputs a hiding string crsSim and a trapdoor key tr that allows to simulate
proofs. GSSimProve takes as input crsSim, a statement and the trapdoor tr and
produces a simulated proof ΩSim without a witness.

The system can either be instantiated using a binding CRS crs (produced by
GSSetup) or a hiding CRS crsSim (produced by GSSimSetup). The distributions of
strings crs and crsSim are computationally indistinguishable and simulated proofs
are indistinguishable from real proofs. The proof system has perfect complete-
ness, (perfect) soundness, composable witness-indistinguishability/composable
zero-knowledge.

Formal definitions of those properties are provided below, where y denotes
the statement whereas x denotes the witness.

(Perfect) Completeness: ∀λ ∈ N, ∀(x, y) ∈ RL, we have

Pr
[
(crs, xk) ← GSSetup(1λ);π ← GSProve(crs, x, y) : GSVerify(crs, y, π) = 1

]
= 1

Soundness: ∀λ ∈ N, ∀y /∈ L, we have for all adversaries F

Pr
[
(crs, xk) ← GSSetup(1λ);π ← F(crs, y) : GSVerify(crs, y, π) = 1

] ≤ 2−λ

If the above probability is 0, we say the system has perfect soundness.
Knowledge Extraction: A proof system is a Proof of Knowledge if there exists

an efficient extractor algorithm GSExtract which can extract the witness from
any proof the adversary outputs. Note that if a proof system is a proof of
knowledge then it is sound. More formally, for all adversaries F , we have

Pr
[
(crs, xk) ←GSSetup(1λ); (y, π) ← F(crs);x ← GSExtract(crs, xk, y, π)

: GSVerify(crs, y, π) = 0 ∨ (x, y) ∈ RL
]

≤ 1 − ν(λ)

If the above probability is 1, we say the system has perfect knowledge
extraction.
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Witness Indistinguishability: The system is witness indistinguishable if for
all PPT adversaries F , we have

Pr

⎡

⎣

(crs, xk) ← GSSetup(1λ); (stfind, y, x0, x1) ← Ffind(crs); b ← {0, 1};

π ← GSProve(crs, xb, y); b∗ ← Fguess(stfind, π)

: (x0, y) ∈ RL ∧ (x1, y) ∈ RL ∧ b = b∗

⎤

⎦ =
1

2
+ ν(λ) .

If ν(λ) = 0, we say the system has perfect witness indistinguishability.
Zero-Knowledge: The system is zero-knowledge if ∀(x, y) ∈ RL, we have for

all PPT adversaries F
Pr

[
(crssim, tr) ← GSSimSetup(1λ) : FGSSim(crssim,tr,·,·)(crssim) = 1

]

≈ Pr
[
(crs, xk) ← GSSetup(1λ) : FGSProve(crs,·,·)(crs) = 1

]
,

where GSSim(crssim, tr, x, y) outputs GSSimProve(crssim, tr, y) if (x, y) ∈ RL
or ⊥ otherwise.

3.3 Linkable Indistinguishable Tag

A Linkable Indistinguishable Tag (LIT) scheme [3,4] is defined w.r.t. a one-way
function PK such that a tag created with a secret key sk can be verified using
PK(sk). LIT consists of the algorithms (KeyGen,Tag,Verify) defined as follows:

KeyGen(1λ): produces a secret key sk.
Tag(sk,m): outputs a tag τ on the message m.
Verify(PK(sk),m, τ): verifies that the tag τ is valid on the message m returning

0/1 accordingly.

Besides correctness, the security of LIT [3,4] requires linkability and f -indis-
tinguishability. Informally, the former requires that an adversary who is allowed
to control both the secret key and the message cannot produce identical tags
unless they are on the same message/key pair. Indistinguishability, which is
defined w.r.t. a one-way function f of the secret key, requires that an adversary
who gets f(sk) and access to a tag oracle, cannot determine whether or not a
new tag on a message of her choice was produced using the same key used by
the tag oracle.

As in [3], we instantiate LIT in the standard model with the function under-
lying the weak Boneh-Boyen signature scheme [7]. The instantiation is secure
under the q-DDHI assumption.

4 Definition and Security of ABS-UCL

In this section, we recall the syntax and security of Attribute-Based Signatures
with User-Controlled Linkability (ABS-UCL) [15]. An ABS-UCL scheme consists
of the following algorithms, where pp output by Setup is an implicit input to the
rest of the algorithms:
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Setup(1λ) on input a security parameter, it returns public parameters pp.
AASetup(aid) is run by attribute authority AAaid to generate her public/secret

key pair (vkAA, skAA).
UKeyGen(id) is run by user id to generate her personal secret key uskid.
AttKeyGen(skAA, id, f(uskid), a) is run by attribute authority AA (managing

attribute a), where f is an injective one-way function, it gives user id the
secret key skid,a.

Sign(uskid, {skid,a}a∈A,m,P, recip) user id with attributes A s.t. P(A) = 1 uses
this algorithm to sign a message m w.r.t. signing policy P and the recipient
tag recip. The algorithm returns a signature σ.

Verify(σ, {vkAAi
}i,P,m, recip) checks if the signature σ is valid on the message

m w.r.t. (the possibly empty) recipient tag recip and the policy P returning
1/0.

Link(σ0,m0, {vkAAi}i,P0, σ1,m1, {vkAAj }j ,P1, recip) checks if the two signatures
on their respective messages and w.r.t. recip �=⊥ and their respective signing
policies were produced by the same user, outputting 0/1 accordingly.

Identify(sk, σ,m, recip, {vkAAi}i,P) is only used in the security model for cap-
turing linkability. It checks whether the valid signature σ (w.r.t. the signing
policy P) on the message m and recip �=⊥ was produced by the secret key sk,
outputting 0/1 accordingly.

Security Requirements. Besides correctness, the security of ABS-UCL [15]
requires unforgeability, linkability and anonymity which we define below.

Unforgeability. This property guarantees that users cannot output signa-
tures on (message, recipient tag) pairs w.r.t a signing policy that is not satisfied
by their set of attributes, even if they collude, ensuring collusion-resistance. It
also ensures that an adversary cannot produce a signature which links to a sig-
nature by an honest user even if everyone else in the system is corrupt.

Definition 1 (Unforgeability). An ABS-UCL scheme is unforgeable if for all
security parameters λ ∈ N, for all PPT adversaries the advantage in winning
the following game is negligible:

Setup: The challenger runs Setup and gives pp to the adversary.
Play: The adversary can ask for attribute authorities to be created and get hold

of their secret keys. She can also ask for honest users to be created and get
hold of their personal secret keys. Moreover, the adversary can ask for keys
for attributes for users and signatures on tuples (m,P, recip) of her choice on
behalf of honest users.

Output: The adversary outputs either of the following:
	 A valid signature σ on m and recip w.r.t. P, where (m, recip,P) was not

queried to the signing oracle, and there exists no subset of attributes A∗

whose keys have been revealed to the adversary or managed by corrupt
attribute authorities such that P(A∗) = 1.

	 A tuple (m0, σ0, {vkAAi
}i,P0,m1, σ1, {vkAAj

}j ,P1, recip �=⊥, id), where
σi is valid on mi and recip w.r.t. Pi, user id is honest,
Link(σ0,m0, {vkAAi

}i,P0, σ1,m1, {vkAAj
}j ,P1, recip) = 1 and either
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(id,m0, recip,P0) or (id,m1, recip,P1) was not queried to the signing
oracle.

LINKABILITY. This property ensures that only valid signatures directed at
the same recipient and which were produced by the same user link.

Definition 2 (Linkability). An ABS-UCL scheme is linkable if for all secu-
rity parameters λ ∈ N, for all PPT adversaries the advantage in winning the
following game is negligible:

Setup: The challenger runs Setup and gives pp to the adversary.
Play: The adversary can choose all the secret keys of all users and attribute

authorities.
Output: The adversary outputs (σ1, recip1,m1, {vkAAi

}i,P1, sk1) and (σ2, recip2,
m2, {vkAAj

}j ,P2, sk2). She wins if σi is valid (w.r.t. Pi) on mi and recipi, for
i = 1, 2 and either of the following holds:

	 σ1 was produced by sk1 and σ2 was produced by sk2 where sk1 = sk2
and recip = recip1 = recip2 �=⊥ but Link(σ1,m1, {vkAAi

}i,P1, σ2,m2,
{vkAAj }j ,P2, recip) = 0.

	 σ1 was produced by sk1 and σ2 was produced by sk2 where sk1 = sk2 and
Link(σ1,m1, {vkAAi

}i,P1, σ2,m2, {vkAAj
}j ,P2, recipk) = 1 for k ∈ {1, 2}

and either recipk =⊥ or recip1 �= recip2.
	 σ1 was produced by sk1 and σ2 was produced by sk2 where sk1 �= sk2
and recip = recip1 = recip2 �=⊥ and Link(σ1,m1, {vkAAi

}i,P1, σ2,m2,
{vkAAj }j ,P2, recip) = 1.

Anonymity. This ensures that neither the identity of the signer, nor the
attributes used in the signing are revealed by the signature.

Definition 3 (Anonymity). An ABS-UCL scheme is anonymous if for all
security parameters λ ∈ N, for all PPT adversaries the advantage in winning
the following game is negligibly close to 1

2 :

Setup: The challenger runs Setup and gives pp to the adversary.
Play I: The adversary has full control over all attribute authorities. She can also

get hold of the secret keys of signers of her choice; those signers automatically
become corrupt users. Moreover, the adversary can get hold of the secret key
of any attribute and signatures on tuples (m,P, recip) of her choice on behalf
of honest users.

Challenge: The adversary outputs (m, id0,A0, id1,A1,P, recip) where P(Ai) = 1
for i = 0, 1. If recip �=⊥, we require that both id0 and id1 are honest users. The
challenger sends back a signature σb generated using (idb,Ab), for b ← {0, 1}.

Play II: Same as in play I with the additional condition that if recip �=⊥, the
adversary can corrupt neither id0 nor id1.

Output: The adversary outputs her guess b∗ and wins if b∗ = b.
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5 Efficient ABS-UCL Constructions for Expressive
Policies

Here we give efficient constructions for monotone access policies. By doubling
the attribute space, we also cover non-monotone access policies. Our construc-
tion is a modified and improved variant of the generic construction in [15]. We
describe the idea of our construction generically and then give specific efficient
instantiations. When producing the zero-knowledge proofs part of the signature,
we use a span program [26] to represent the signing policy. Refer to [26] for more
information about span programs.

The personal secret key of user id is a secret key uskid ∈ SK for a linkable
indistinguishable tag scheme LIT. Let f : SK → F and PK : SK → PK be
two one-way injective functions. In our instantiations, f and PK are exponentia-
tions of uskid in groups G and H, respectively. We make f(uskid) public whereas
PK(uskid) is only known to the user.

Since our main goal is to design efficient schemes while dispensing with heuris-
tic assumptions, unlike the generic construction of [15] and other similar con-
structions of variants of standard-model attribute-based signature schemes, e.g.
[16,21], which do not offer the user-controlled linkability feature, we use an
existentially unforgeable randomizable partially structure-preserving signature
scheme (RPSPS) [22] to issue attribute credentials to users. Unlike e.g. [16,21],
we have weakened the requirement we need from the signature scheme from
being structure-preserving [1] to being partially structure-preserving [22]. This
serves to improve the efficiency of the construction. We also require a second
existentially unforgeable signature scheme DS whose public verification key is
part of the public parameters of the system whereas its secret key is not known
to any party.

The credential skid,a for attribute a to user id is a RPSPS signature on
(f(uskid), a) using skAAaid which is the secret key of the authority managing a.

To sign a message m w.r.t. a signing policy P where the signer possesses
credentials {sk′

id,a}a∈A for a set of attributes A satisfying P(A) = 1, the signer
first re-randomizes sk′

id,a into skid,a for all a ∈ A so that the new randomized
credentials are unlinkable to the original credentials sk′

id,a. Another deviation
from the construction in [15] is that we only need to hide the components of the
user’s attribute credentials skid,a which depend on the user’s secret key uskid and
publicly release the remaining components. When signing a message m w.r.t. a
signing policy P and a non-empty recipient tag recip, the user produces a proof of
knowledge π to prove that she either has enough credentials for a set of attributes
A such that P(A) = 1 or has a DS signature on H(m,P, recip) for some collision-
resistant hash function H : {0, 1}∗ → MDS. Following the literature, we refer
to the latter as a pseudo-attribute. Since in this case the signature is linkable,
the NIZK proof π additionally proves that the tag τ on recip verifies w.r.t. the
same user secret key uskid with which the attribute credentials are associated.
To prove the latter, let IsConsistent : F × PK → {0, 1} be a predicate where F
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and PK are the ranges of the functions f and PK respectively. In our instantia-
tions, IsConsistent requires checking that the pair is a Diffie-Hellman pair. For all
remaining attributes in the policy P that the signer is not going to use, i.e. the set
of attributes a ∈ P \ A, the user chooses random dummy credentials skid,a . For

all attributes a ∈ A, we parse skid,a as (ŝkid,a, škid,a), where ŝkid,a are independent

of uskid. Similarly, for all attributes a ∈ P\A, parse skid,a as
(

ŝkid,a , škid,a

)

.

Let skid,apsdo be the credential for the pseudo-attribute, i.e. the DS signature on

H(m,P, recip). We parse skid,apsdo as
(

ŝkid,apsdo , škid,apsdo

)

, where ŝkid,apsdo

is independent of the message of DS. Since the signing key of DS is only known
to the challenger in the security reduction, we can safely reveal the component

ŝkid,apsdo in the clear since it does not reveal whether skid,apsdo is a valid signa-

ture on H(m,P, recip) or a fake dummy signature. If recip =⊥, then we set τ =⊥
and π excludes the latter part concerning proving correctness of the tag τ . The

signature Σ is then
(

π, τ, {ŝkid,a}a∈A ∪ { ŝkid,a }a∈P\A ∪ ŝkid,apsdo

)

.

To verify the signature, it suffices to just verify the proof π. To link two signa-
tures, one checks that tag components of the two valid signatures are identical.

Details of the construction are given in Fig. 1, where z and M are the secret
vector and the public span matrix used in the span program, respectively. The
languages associated with the NIZK system are as follows. For clarity we under-
line the witnesses:

L :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

((
τ, recip, {vkAAaid(a)}a∈P ∪ svk, {ŝkid,a}

a∈P̂

)
,
(
(f(uskid), PK(uskid)), z, {škid,a}

a∈P̂

) )

: zM = [1, 0, . . . , 0] ∧ LIT.Verify(PK(uskid), recip, τ) = 1 ∧ IsConsistent(f(uskid), PK(uskid)) = 1
∧|P|

i=1 if zi �= 0 ⇒ RPSPS.Verify
(
vkAAaid(ai)

,
(
(f(uskid), PK(uskid)), ai

)
,
(
ŝkid,ai

, škid,ai

))
= 1

∧ if z|P|+1 �= 0 ⇒ DS.Verify

(

svk, H(m, P, recip),

(

ŝkid,apsdo
, škid,apsdo

))

= 1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

L′ is similar to L but without LIT.Verify(PK(uskid), recip, τ) = 1 and
IsConsistent(f(uskid),PK(uskid)) = 1 .

Theorem 2. The construction in Fig. 1 is a secure ABS-UCL scheme.

Proof. Correctness is straightforward and is easy to verify. Also, linkability fol-
lows from that of the LIT scheme and is easy to verify.

Lemma 1. The construction satisfies anonymity if NIZK is zero-knowledge and
LIT is f-indistinguishable.

Proof. Note that all public parts of the attribute credentials including that for
the pseudo-attribute are independent of the witness of the NIZK proof.

We proceed by defining a sequence of games such that the last game is inde-
pendent of the bit b used in the anonymity game. We prove that an adversary
against anonymity behaves differently in any two consecutive games only with
a negligible probability.
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Setup(1λ)
- (crs, xk) ← NIZK.Setup(1λ). (svk, ssk) ← DS.KeyGen(1λ).
- Choose a collision-resistant hash function H : {0, 1}∗ → MDS. Return pp := (1λ, crs, H, svk).

AASetup(pp, aid)
- (vkAAaid, skAAaid) ← RPSPS.KeyGen(1λ). Return (vkAAaid, skAAaid).

UKeyGen(pp)
- uskid ← LIT.KeyGen(1λ). Return uskid.

AttKeyGen(id, f(uskid), a, skAAaid(a))

- sk′
id,a ← RPSPS.Sign skAAaid(a), ((f(uskid), ·), a)

)
. Return sk′

id,a.

Sign(m,P, uskid, {sk′
id,a}a∈A, recip)

- Return ⊥ if P(A) = 0.
- Let apsdo := H(m,P, recip) and P̂ := P ∨ apsdo.

- For each a ∈ A, compute skid,a ← RPSPS.Randomize
(
vkAAaid(a), ((f(uskid),PK(uskid)) , a) , sk′

id,a

)
.

- For each a ∈ P \ A, choose a random dummy credential skid,a .

- Choose a random dummy credential skid,apsdo for the pseudo-attribute apsdo.

- Parse skid,α as ŝkid,a, škid,a

)
, where ŝkid,a are independent of uskid.

- Similarly, parse skid,a as ŝkid,a , škid,a

)
, and skid,apsdo as ŝkid,apsdo , škid,apsdo

)
.

- If recip =⊥ Then

◦ Set τ :=⊥, Ω := ({vkAAaid(a)}a∈P ∪ svk, {ŝkid,a}a∈A ∪ { ŝkid,a }a∈P̂\A).

◦ π ← NIZK.Prove

(
crs,

(
(f(uskid),PK(uskid)),z, {škid,a}a∈A ∪ { škid,a }a∈P̂\A

)
: Ω ∈ L′

)
.

- Else
◦ τ ← LIT.Tag(uskid, recip).

◦ Ω := (τ, recip, {vkAAaid(a)}a∈P ∪ svk, {ŝkid,a}a∈A ∪ { ŝkid,a }a∈P̂\A).

◦ π ← NIZK.Prove(crs,
(
(f(uskid),PK(uskid)),z, {škid,a}a∈A ∪ { škid,α }a∈P̂\A

)
: Ω ∈ L).

- Return Σ :=
(
π, τ, {ŝkid,a}a∈A ∪ { ŝkid,a }a∈P̂\A

)
.

Verify(Σ, {vkAAaid(a)}a∈P,P, m, recip)

- Parse Σ as
(
π, τ, {ŝkid,a}a∈P̂

)
and pp as (1λ, crs, svk, H). Return NIZK.Verify(crs, π).

Link recip, (mi, {vkAAaid(a)}a∈Pi ,Pi, Σi)i=1,2

)
- Parse Σi as

(
πi, τi, {ŝkid,a}a∈P̂i

)
and pp as (1λ, crs, svk, H).

- Return 0 if recip =⊥ or ∃i ∈ {1, 2} s.t. Verify(Σi, {vkAAaid(a)}a∈Pi ,Pi, mi, recip) = 0 .
- If τ1 = τ2 
= ⊥ Then Return 1 Else Return 0.

Identify(sk, Σ, m, recip, {vkAAaid(a)}a∈P,P)

- Parse Σ as
(
π, τ, {ŝkid,a}a∈P̂

)
and pp as (1λ, crs, svk, H).

- If recip =⊥ or Verify(Σ, {vkAAaid(a)}a∈P,P, m, recip) = 0 Then Return 0.
- If LIT.Tag(sk, recip) = τ Then Return 1 Else Return 0.

Fig. 1. Our generic construction of ABS-UCL

Let η(λ) be a polynomial representing an upper bound on the number of
users the adversary is allowed to create in the game. We let Game 0 be the
original anonymity game but where we randomly guess the challenge user used
by randomly choosing īd from the set {1, . . . , η(λ)} and aborting if the challenge
user chosen is different from īd. We have a probability of 1

η(λ) of guessing the
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challenge user correctly. If the advantage of the adversary against the original
anonymity game is non-negligible then so is her advantage against Game 0 since
η(λ) is polynomial in λ.

Let Game 1 be the same as Game 0 but now the CRS crs used for the NIZK
is chosen as a hiding string. By the security of the NIZK system, the difference
between games Game 0 and Game 1 is negligible.

Let Game 2 be the same as Game 1 but now proof π part of the signature
is a simulated proof rather than a real proof. By the zero-knowledge property of
NIZK, the difference between games Game 1 and Game 2 is negligible.

Let Game 3 be the same as Game 2 but now every time the game answers a
signature on behalf of user īd (via a signing or a challenge query) for a recipient
tag recip �=⊥, if such a recipient tag has already been queried on behalf of the
same user, we return the same tag τ ; otherwise, we choose a random user key
uskid ∈ SK and use it to produce a tag τ on recip. We can use a hybrid argument
and a reduction to the f -indistinguishability of the LIT scheme to argue that
the difference between games Game 3 and Game 2 is negligible. Let γ(λ) be
a polynomial representing an upper bound on the total number of signing and
challenge queries involving user īd on non-empty recipient names recip �=⊥. We
define a sequence of games GM

γ(λ)
i=0 where in game GMj we answer the first

j queries on non-empty recipient tags using the key for user īd and from the
(j+1)-th query onwards we use tags under random keys. If the adversary behaves
differently in any two subsequent games with a non-negligible probability, we can
use her to break the f -indistinguishability of the LIT scheme. We have GM0 =
Game 3 and GMγ(λ) = Game 2. By the f -indistinguishability of LIT we have
that the difference between games Game 3 and Game 2 is negligible.

Now note that Game 3 is independent of the bit b used in the anonymity game
and therefore the adversary has a negligible advantage against anonymity. �	
Lemma 2. The construction satisfies unforgeability if NIZK is sound, RPSPS
and DS are existentially unforgeable, and the hash function H is collision-
resistant.

Proof. By the collision-resistance of the hash function H used in the pseudo-
attribute apsdo, the adversary has a negligible probability in finding two different
tuples (m,P, recip) �= (m′,P′, recip′) where H(m,P, recip) = H(m′,P′, recip′).

By choosing the CRS crs for NIZK as a binding one, the proofs are per-
fectly sound and we are guaranteed to be able to extract a valid witness from
the proof π∗ part of the forged signature Σ∗. The underlying witness would be
either a valid signature on a new pseudo-attribute (m,P, recip) which was not
queried to the sign oracle or a set of credentials on a one-way function of a
user secret key uskid where some of the valid credentials were not obtained from
the AttKeyGen oracle. In the former case, we can reduce unforgeability to the
existential unforgeability of signature scheme DS used for the pseudo-attribute,
whereas in the latter case, by guessing which attribute authority (with probabil-
ity 1

η(λ) , where η(λ) is a polynomial representing an upper bound on the number
of attribute authorities the adversary can create in the unforgeability game)
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managing a forged credential, we can reduce unforgeability to the existential
unforgeability of signature scheme RPSPS used in issuing attribute credentials
to users. �	

5.1 Instantiations

In both instantiations below, we instantiate NIZK using the Groth-Sahai system
(secure under SXDH) and instantiate the signature scheme DS using the full
Boneh-Boyen signature scheme [7] (secure under q-SDH). We instantiate the
LIT scheme LIT using the weak Boneh-Boyen signature [7] as in [3] (secure
under q-DDHI). The only difference between the two instantiations lies in how we
instantiate the signature scheme RPSPS. In the following, we let F = f(uskid) =
Guskid and F̃ = PK(uskid) = H̃uskid .
Instantiation I. Here we instantiate RPSPS using the efficient partially
structure-preserving signature scheme from [22] as shown in Sect. 3.1.

Below we detail the Groth-Sahai NIZK proofs required for the instantiation.
Let M ∈ Z

|P̂|,β
p be the span program for P̂ := P ∨ apsdo. The proof π part of

the signature is a proof for the following:

• To prove zM = [1, 0, . . . , 0], the signer proves:
∑|P̂|

i=1(z̃iMi,1) = 1
∑|P̂|

i=1(z̃iMi,j) = 0, for j = 2, . . . , β

• For each ai ∈ {1, . . . , |P|}, we have sk′
id,ai

= (R′
i, S

′
i) ∈ G

2 where ŝk′
id,ai

= R′
i

and ˇsk′
id,ai

= S′
i. The signer re-randomizes sk′

id,ai
by choosing r′ ← Z

×
p and

computing skid,ai
:= (Ri, Si) = (R′

i
r′

, S′
i
r′

).

To prove if z̃i �= 0 ⇒ RPSPS.Verify
(
vkAAaid(ai),

(
(F, F̃ ), ai

)
,

(ŝkid,ai
, škid,ai

)
)

= 1, where vkAAaid(ai) = (X̃i, Ỹi, Z̃i) ∈ H
3. Note that Ri

is independent of R′
i and (F, F̃ ). The signer then proves the following:

S̆i = Si
z̃i R̆i = R

z̃i

i e(S̆i, Z̃i) = e(R̆i, F̃ )e(R̆i, X̃i)e(R̆i
αi

, Ỹi)
Note that since Ri is public, the verifier can verify that Ri �= 1G. The verifier
can on her own compute a Groth-Sahai commitment to the value R̆ai

i by
computing Cai

R̆i
, where CR̆i

is the Groth-Sahai commitment (which is ElGamal

ciphertext) to R̆i. Such an observation improves the efficiency. Also, we only
need to commit to the elements of the vector z in H, which further improves
the efficiency.

• For the pseudo-attribute apsdo, we have ŝkid,apsdo = rFBB, škid,apsdo = σFBB

and svk = (X̃FBB, ỸFBB), the signer proves that

˘σFBB = σFBB
z̃|P|+1 Ğ = G

z̃|P|+1 e( ˘σFBB, X̃FBB · Ỹ rFBB

FBB · G̃apsdo)e(Ğ, H̃) = 1
The signature size of this instantiation is (15|P|+15)·|G|+(14|P|+22)·|H|+(β+3)·
|p| which is much more efficient than the traceable constructions in [16,21].
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Instantiation II. Here we instantiate RPSPS with our new partially structure-
preserving signature scheme from Sect. 3.1. The only difference from the details of
the NIZK proof π from that of instantiation I is in the part that proves possession
of credentials for attributes used in the signing which we detail below. The rest
of the details of the proof π and hence the signature are identical to those of
instantiation I.

For each ai ∈ {1, . . . , |P|}, we have sk′
id,ai

= (R′
i, S

′
i, R̃

′
i) ∈ G

2 × H where

ŝk′
id,ai

= (R′
i, R̃

′
i) and ˇsk′

id,ai
= S′

i. The signer re-randomizes sk′
id,ai

by choosing
r′ ← Z

×
p and computing skid,ai

:= (Ri, R̃i, Si) = (R′
i·Gr′

, R̃′
i·H̃r′

, S′
i·R′

i
2r′ ·Gr′2

).

To prove if z̃i �= 0 ⇒ RPSPS.Verify
(
vkAAaid(ai),

(
F, ai

)
, (ŝkid,ai

, škid,ai
)
)

= 1,

where vkAAaid(ai) = (X̃i, Ỹi, Z̃i) ∈ H
3. The signer proves the following:

S̆i = Si
z̃i F̆i = F z̃i R̆i = R

z̃i

i Ği = Gz̃i

e(S̆i, H̃) = e(F , X̃i)e(Ği
αi

, Ỹi)e(R̆i, R̃i)e(Ği, Z̃i)
Note that since (Ri, R̃i) are independent of vkAAaid(ai) and thus when choos-

ing dummy credentials for attributes in P \ A, any one can choose such a pair
satisfying e(Ri, H̃) = e(G, R̃i).

The verifier can on her own compute a Groth-Sahai commitment to the
value Ğai

i by computing Cai

Ği
, where CĞi

is the Groth-Sahai commitment (which

is ElGamal ciphertext) to Ği. Such an observation improves the efficiency. In
addition, we only need to commit to the elements of the vector z in H, which
further improves the efficiency. When verifying the signature, one additionally
checks that e(Ri, H̃) = e(G, R̃i).

The signature size of this instantiation is (19|P| + 15) · |G| + (21|P| + 22) ·
|H| + (β + 3) · |p| which is again more efficient than the traceable constructions
in [16,21].

6 Construction of ABS-UCL for Threshold Policies

We give here an ABS-UCL construction supporting threshold policies and a
single authority. The scheme is based on an improved variant of the ABS scheme
in [24].

Setup(1λ, n): Generate a bilinear group P := (G,H,T, G, H̃, p, e) and choose a
collision-resistant hash function H : {0, 1}∗ → {0, 1}k, and a coding map ζ :
A → Z

∗
p. Define a set of pairwise different elements of Z∗

p, D = {d1, · · · , dn−1}
where Di represents the first i elements of D, i.e. Di = {d1, · · · , di}. These
values correspond to n − 1 dummy attributes that should be different from
all attributes appearing in A. Generate a CRS crs for the Groth-Sahai NIZK
system and the secret/verification keys (ssk, svk) of a signature scheme (Full
Boneh-Boyen) which will be used to sign a special attribute called the pseudo-
attribute which is needed in the security proofs to simulate signing queries
and to bind a signature to the message.
The public parameters is pp = (A, n, λ,P, G′, H̃ ′, crs,H,D, svk), where
e(G, H̃ ′) = e(G′, H̃).
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AASetup(pp): this is run by the attribute authority. It randomly chooses α, γ ∈
Z

∗
p, and sets U = Gαγ , and V = e(G, H̃)α. The master secret key is gmsk =

(α, γ) whereas the master public key is gmpk = (U, V,Gα, {H̃αγi}i=0,··· ,2n−1).
AttKeyGen(pp, gmpk, I, F, F̃ ): given a set of attributes I ⊂ A and F = (G′)uskid ,

and F̃ = (H̃ ′)uskid . It picks r ← Z
∗
p at random and returns

skid,I =
({(G · F )

r
γ+ζ(a) }a∈I , {(H̃ · F̃ )rγi}i=0,··· ,n−2, (H̃ · F̃ )

r−1
γ

)

.
Sign(pp, gmpk, skid,I , uskid,M,P, recip): Given a message M ∈ {0, 1}∗, a policy

P(t, S), for which t ≤ |S| = s ≤ n. If |S ∩ I| < t, return ⊥. Otherwise, fix the
signing set of attributes as IS ⊆ I where |IS | = t and compute the following:

• Let C1 = (G · F )z1 ← Aggregate({(G · F )
r

γ+ζ(a) }a∈IS
, IS), where1

z1 =
r

∏
a∈IS

(γ + ζ(a))

• Define the sets W = S ∪ Dn+t−1−s and R = W \ IS and compute z2 =
∏

a∈R(ζ(a)). Then compute T1 = C
1/z2
1 .

• Define the following polynomial in γ where deg(P (γ)) = n − 2

P (γ) =
1
γ

( ∏

a∈R

(γ + ζ(a)) −
∏

a∈R

(ζ(a))
)
.

Using the second part of the secret key as an input to a Lagrange inter-
polation algorithm, one can efficiently compute H̃1 = (H̃ · F̃ )rP (γ). We
actually need to compute the following value;

T̃2 = (H̃ · F̃ )
r−1

γ · H̃
1∏

a∈R(ζ(a))

1

• If recip �= ⊥, set τ = χ
1

recip+uskid , where χ ∈ G. Otherwise, τ = ⊥.
• Let H̃2 = H̃α·∏a∈W (γ+ζ(a)), which can be computed from gmpk.
• When recip �= ⊥, the signer proves that either she has enough attributes

to satisfy the policy P or she has a signature on the pseudo-attribute
apsdo = H(M,P, recip). This is realized by a GS NIZK proof for the
following language:

L :

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

(τ, recip, pp) ,
(

(f(uskid),PK(uskid)), T̃2, T1, G
′′, H̃ ′′

))

:

e(U−1, T̃2) · e(T1, H̃2) = e(Gα, H̃ ′′) · e(Gα, F̃ )
∧

F = (G′)uskid
∧

e( ˘σFBB, X̃FBB · Ỹ
rFBB
FBB · G̃apsdo) = e(G′′, H̃)

∧

e(G′′ · G−1, H̃ ′′ · H̃−1) = 1
∧

e(τ, H̃uskid) · e(τ, H̃ recip) = e(χ, H̃)
∧

e(G, F̃ ) = e(G′, H̃uskid)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

,

1 Aggregate was originally defined in [13], and is based on the fact that a product
of inverses of coprime polynomials can be written as a sum of inverses of affine
polynomials, as described and used in [14]. More details on Aggregate can be found
in [13].
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• When recip = ⊥, everything stays the same except that we remove the last
two equations from the NIZK language and change the pseudo-attribute
to apsdo = H(M,P).

The signature is σ = (πGS, τ) which is of size 27 · |G| + 28 · |H|.
Verify(pp, gmpk,M,P, σ, recip): Compute H2 = H̃α·∏a∈W (γ+ζ(a)) and verify the

GS proof πGS.
Link(pp, gmpk, σ1, σ2,M1,M2,P1,P2, recip): If σ1 or σ2 are invalid, return 0. Oth-

erwise, parse σi as (πGSi
, τi) and return 1 if both τ1 and τ2 are non-trivial

and τ1 = τ2 �= ⊥, return 0 otherwise.

Efficiency comparison with Herranz et al. results in [24]. The two schemes
that are presented in [24] employ the less efficient pairing setting, i.e. symmetric
pairing. The sizes of the schemes’ signatures are 15 and 3 group elements. The
latter comes at the cost of having longer secret keys. Our scheme, even after
adding the user-controlled linkability feature, is still comparable to the first
scheme in terms of the size of the secret key and the size of the signature (as the
group elements in our scheme are much smaller). However, the public parameters
in our scheme are shorter (by k group elements, where k is the bit length of the
output of the hash function used in the sheme). We get this improvement by using
the pseudo-attribute idea to bind the message to the signature. Moreover, using
our technique to bind the message, and if we were to drop the user-linkability
property from our scheme, we would get a standard ABS for threshold policies
that has the same signature size as [24], but with much shorter public keys.

The proof of the following theorem is in Appendix A.

Theorem 3. The construction above is a secure tABS-UCL.

Acknowledgement. The first author was funded by a research grant from the UK
government.

Appendix

A Single Authority tABS-UCL: Security Proofs

Theorem 4 (Anonymity). If the NIZK proof system NIZK is zero-knowledge,
the linkable indistinguishable tag scheme LIT is indistinguishable, and the hash
function H is collision-resistance then the tABS-UCL is anonymous.

Proof. We will prove the anonymity of tABS-UCL by showing that a sequence
of games are only negligibly indistinguishable from one another. The technique
is similar to [3]; the challenger will beforehand guess the challenge user that
will be chosen by the adversary F during the game, and will abort if they are
not the same. If the adversary has advantage ε in winning the unchanged game,
than F will have an advantage ε/η(λ) in winning the second game, where η(λ),
a polynomial in λ, is the upper bounds of number of users that an adversary
can create. The sequence of games will start with a game where the challenger
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guesses correctly the challenger user and end with a game that is independent of
challenger user. If we can prove that F ’s behaviour changes only with negligible
probability, then our tABS-UCL is anonymous.

We start with the first game Game 0 where the challenger guesses a particular
user id∗ ← [1, η(λ)], and aborts the game if in the challenge call we have idb �= id∗.
In Game-1, we replace the crs of the NIZK proof by the hiding crs, i.e. we run
GSSimSetup instead of GSSetup.

By the Zero-knowledge proporty of the NIZK, we have that Game 0 and
Game 1 differ only negligibly from each other.

In Game 2, we don’t use uskid
∗ while replying to KeyGen oracle queries. This

game is only negligibly different from Game-1 as the generated keys are always
randomized with a fresh uniform random r and therefore are indistinguishable
from random group elements.

In Game 3, for any Sign or Challenge queries that involve id∗, if the recip is
new, we use independent uniformly random keys to produce the tags, i.e. σUCL,
otherwise, we use the same tag that has been used before.

From Game 2 to Game 3, we will have a series of sub-games, where each two
consecutive ones are indistinguishable by the indistinguishability of the LIT, i.e.
they differ from each other by a single construction of a LIT tag. We start by
answering all queries related to the selected signer id∗ using its secret key uskid

∗,
then we move from a sub-game to another by answering one of these queries
using a random key sk. We end up in the last sub-game where we answer all
those queries using a key sk chosen uniformly at random. We have μ(λ) sub-
games, where each two consecutive ones differ from each other by a negligible
value, i.e. the advantage against the indistinguishability of the LIT. One can
easily see that the last game is now independent of the challenge user used in
answering challenge query, and hence the anonymity of tABS-UCL. �	
Theorem 5 (Unforgeability). if (�,m, t)-aMSE-CDH holds, H is collision-
resistance and the NIZK system is sound then our tABS-UCL is unforgeable.

Proof. First, by the collision-resistance of H the adversary has a negligible
probability in finding two different tuples (m,P, recip) �= (m′,P′, recip′) where
H(m,P, recip) = H(m′,P′, recip′).

Now, we take as input a problem instance of (�,m, t)-aMSE-CDH. We denote
the generators used in the given instance by G0, H̃0. Given an attacker F1 that
can break the unforgeability of our tABS-UCL scheme, we will build an attacker
F2 that can use F1 as a subroutine to solve (�,m, t)-aMSE-CDH. The attacker
gives the policy that he wants to be challenged on P

∗(t∗, S∗) where |S∗| = s∗.
We can set n − s∗ = �, n + t∗ − 1 = m and t∗ + 1 = t. The adversary F2 will
then simulate the different algorithms of tABS-UCL as follows:
Setup.

• Define the attribute encoding ζ as follows:

ζ(a) =

⎧
⎪⎨

⎪⎩

−xi,where g1(xi) = 0 if a ∈ P\S∗

−xj ,where g2(xj) = 0 if a ∈ S∗or a ∈ D1 = Dn+t∗−1−s∗

d, d ← Zp if a ∈ D\D1
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• Use the elements of line (1) to compute G
g1(γ)
0 , set G := G

g1(γ)
0 and H̃ := H̃0.

• Sample x, y ← Z∗
p and set F1 = Gx and F̃2 = H̃y.

• Use line (3) to compute u = Gαγ = G
αγg1(γ)
0 and v = e(G, H̃)α =

e(Gg1(γ)α
0 , H̃0).

• Use line (6) to get {hαγi}i=0,...,2n−1. Then generate (svk, ssk) for the pseudo-
attribute and crs for GS proofs in the soundness setting.

Key Generation. On input P(Ω, t), if |ΩS = Ω ∩S∗| ≥ t∗, return ⊥, otherwise
it generates the key corresponding to S as follows: The first step is to compute

({
G

r
γ+ζ(a)

}
a∈Ω

,
{
H̃rγi}

i=0,...,n−2
, H̃

r−1
γ

)

and the second step is to compute:

skΩ =
({(

G
r

γ+ζ(a)
)xsksid+1}

a∈Ω
,
{(

H̃rγi)ysksid+1}
i=0,...,n−2

,
(
H̃

r−1
γ

)ysksid+1)

The second step can be easily done as the challenger knows of x, y, skid. For
the first step, here are the details (similar to [24]):

• Let where λΩ =
( ∏

a∈ΩS
ζ(a)

)−1, r = (ωyΩγ + 1)QΩ(γ). Define

QΩ(X) =

{
1 if X = γ and |ΩS | = 0
λΩ · ∏

a∈ΩS
(X + ζ(a)) otherwise

• Define

La(X) =

{
QΩ(X)
X+ζ(a) if a ∈ ΩS

g1(X)
X+ζ(a) if a ∈ Ω\ΩS

• For a ∈ ΩS , use the line (1) and (2) to compute G
r

γ+ζ(a) = G
g1(γ)ωyΩγLa(γ)
0 ·

G
g1(γ)La(γ)
0 . For a ∈ Ω\ΩS , compute G

r
γ+ζ(a) = G

La(γ)ωyΩγQΩ(γ)
0 ·

G
QΩ(γ)La(γ)
0 .

• Use the lines (4) and (5) to compute
{
H̃rγi}

i=0,··· ,n−2
.

• Use the line (4) to compute H̃
QΩ(γ)−1

γ and (5) to compute H̃QΩ(γ)ωyω . Their
product will give H̃

r−1
γ .

Signing Queries. Use the pseudo-attribute secret key ssk to sign any message
of the attacker’s choice.
Forgery. The adversary now outputs a valid signature. By the extractability
of the GS proofs, F2 can either extract T1 and T2 or a valid signature on the
pseudo-attribute. In the first case, we note that F2 knows of x, y and skid, and

therefore can compute T ′
1 = T

1
xskid+1

1 , T ′
2 = T

1
yskid+1

2 . Using the lines (4) and (5),
F2 can finally compute

e(T ′
1, H̃

κg2(γ)
0 ) · e(G−κγg1(γ), T ′

2) = e(G0, H̃0)κg1(γ)

and therefore solve (�,m, t)-aMSE-CDH. In the second case, the forgery on tABS-
UCL will directly give a forgery on the underlying digital signature used to sign
the pseudo-attributes (i.e. the Full Boneh-Boyen signature). �	
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Theorem 6 (User-controlled linkability). The threshold attribute based sig-
natures is User controlled linkable if the Linkable Indistinguishable tag scheme
LIT is linkable.

Proof. We will first deal with the case in which an adversary produces two
supposedly linkable signatures, but when testing them with Link, it says they
are not. Given that an adversary C has full control over the secret keys so he can
generate secret keys to any user that he wants to be challenged on, say idLink. He
should also pick the verifier’s name recip as a part of the challenge. At the end,
he needs to produce two signatures, σ1 and σ2 on behalf of the user idLink, for
which σ1 = (σABS1 , σUCL1) and σ2 = (σABS2 , σUCL2). He wins if both signatures σ1

and σ2 verify correctly and Link(σ1, σ2, recip) = 0. The contradiction is straight
forward here, non-linkable signatures would lead to σUCL1 �= σUCL2, where the
fact that both signatures verify correctly against the same recipient name recip,
would lead to σUCL1 = σUCL2. In the second case, the adversary aims to break the
soundness of the linking algorithm Link by producing supposedly non-linkable
signatures (σ1, σ2) and yet Link tells that they are linkable. This case can be
easily reduced to breaking the linkability property of the LIT scheme, as this can
only be done by having (sk1, recip1) �= (sk2, recip2). �	
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Abstract. Structure-Preserving Signatures (SPSs) are an important
tool for the design of modular cryptographic protocols. It has been
proven that such schemes in the most efficient Type-3 bilinear group
setting have a lower bound of 3-element signatures, which must include
elements from both base groups, and a verification overhead of at least
2 Pairing-Product Equations (PPEs). Very recently, Ghadafi (ESORICS
2017) showed that by restricting the message space to the set of Diffie-
Hellman pairs (which does not hinder applicability of the schemes), some
of the existing lower bounds for the single message case can be circum-
vented. However, the case of signing multiple messages, which is required
for many applications, was left as an open problem since the techniques
used for signing single messages do not seem to lend themselves to the
multi-message setting. In this work we investigate this setting and answer
the question in the affirmative. We construct schemes that sign vectors
of messages and which yield shorter signatures than optimal schemes
for vectors of unilateral messages. More precisely, we construct 2 fully
randomiazble schemes that sign vectors of Diffie-Hellman pairs yielding
signatures consisting of only 2 elements regardless of the size of the vector
signed. We also construct a unilateral scheme that signs a pair of mes-
sages yielding signatures consisting of 3 elements from the shorter base
group. All of our schemes require a single PPE for verification (not count-
ing the cost of verifying the well-formedness of the messages). Thus, all
of our schemes compare favourably to all existing schemes with respect
to signature size and verification overhead. Even when considering single
messages, our first 2 schemes compare favourably to the best existing
schemes in many aspects including the verification overhead and the key
size.

Keywords: Digital signatures · Structure-preserving signatures ·
Type-3 groups

1 Introduction

Structure-Preserving Signatures (SPSs) [3] are pairing-based signature schemes
where the message, the verification key and the signature consist of only group
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elements from one or both base groups, and signature verification requires evalu-
ating Pairing-Product Equations (PPEs). Due to their elegant structure and the
fact that they compose nicely with existing widely used tools such as ElGamal
encryption [20] and Groth-Sahai proofs [34], SPS schemes are an ideal building
block for designing cryptographic protocols not relying on random oracles [22].

The notion has numerous applications which include group signatures,
e.g [3,38], blind signatures, e.g. [3,25], attribute-based signatures, e.g. [21],
tightly secure encryption, e.g. [2,35], malleable signatures, e.g. [9], anonymous
credentials, e.g. [16,24], network coding, e.g. [9], oblivious transfer, e.g. [31],
direct anonymous attestation, e.g. [13,28], and e-cash, e.g. [10].

Related Work. The term “structure-preserving signature” was first formally
introduced by Abe et al. [3] but earlier schemes conforming to the definition were
given in [31,32]. The notion has received a significant amount of attention and
many studies on the notion have been published. Constructions of such schemes
in the Type-3 setting (cf. Section 2.1) include [3,4,6,19,27,33]. The vast majority
of those constructions rely on security proofs in the generic group model [40,41].
Abe et al. [4] proved that signatures of any scheme in the Type-3 bilinear group
setting must contain at least 3 elements, which must include elements from both
base groups, and require at least 2 PPEs for verification. This rules out the
existence of schemes with unilateral signatures, i.e. where all components of the
signature are from the same group.

Constructions relying on standard assumptions, e.g. DLIN and DDH, were
given by [1,2,15,18,36–38]. Abe et al. [5] proved that it is impossible to base the
security of an optimal Type-3 scheme on non-interactive intractability assump-
tions. Their result guarantees that schemes based on non-interactive intractabil-
ity assumptions can never be as efficient as their counterparts relying on inter-
active assumptions or those proven secure directly in the generic group model.
In fact all existing constructions based on standard (static) assumptions are far
less efficient than existing optimal schemes.

Recently, Ghadafi [28] gave a randomizable scheme yielding signatures con-
sisting of 3 elements from the shorter base group which signs a single Diffie-
Hellman (cf. Section 2.1) pair. Signatures of his scheme are shorter than those
of optimal schemes for unilateral messages since the bit size of the elements of
the second base group are at least twice that of those from the first base group.
Verification in his scheme requires, besides checking the well-formedness of the
message, the evaluation of 2 PPEs. However, his scheme is only capable of sign-
ing a single message and it is unclear whether it can be extended (or even if
that is at all possible) to signing multiple messages while preserving the signa-
ture size. More recently, Ghadafi [29] defined the notion of unilateral structure-
preserving signatures on Diffie-Hellman pairs and gave constructions for a single
Diffie-Hellman pair yielding signatures consisting of only 2 elements from the
shorter base group. Ghadafi argued that restricting the message space to the set
of Diffie-Hellman pairs does not restrict applicability of the schemes and used
direct anonymous attestation [14], which is a protocol deployed in practice, and
attribute-based signatures [39] as an example. Even though Ghadafi [29] gave a
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partially structure-preserving scheme which can sign a vector of field elements
along the single Diffie-Hellman pair, it was left as an open problem to investigate
the case of structure-preserving signatures for a vector of group elements.

Constructions in the Type-2 setting (where there is an efficiently computable
homomorphism between the base groups in one direction) were given in [7,11,19].
Fully structure-preserving schemes where even the secret key consists of only
group elements from the base groups were recently given by [8,33,42].

Numerous applications require signing a vector of group elements, e.g. when
certifying the public key of an encryption/signature scheme, without hindering
the structure of the messages, i.e. without hashing. This is particularly impor-
tant when the aim is to avoid relying on random oracles. Therefore, the design of
efficient signature schemes conforming to those requirements would have impli-
cations for various applications. Note that SPS schemes for Diffie-Hellman tuples
proved useful for many applications see e.g. [3,13,24,27,29].

Our Contribution. We construct 3 new fully randomizable structure-
preserving schemes for vectors of messages which yield shorter signatures than
all existing schemes for vectors of unilateral messages. Our first 2 schemes yield
signatures consisting of 2 elements and requiring 1 PPE for verification. Our
third scheme which signs a vector of size 2 yield (unilateral) signatures consist-
ing of 3 elements from the shorter base group and require 1 PPE for verification.
The verification overhead of our schemes also compares favourably to exiting
schemes, in particular, when verifying multiple signatures on the same message
vector, which is what a number of applications require.

Even when signing single messages, our first 2 schemes compare favourably in
many measures, e.g. the key size and verification overhead, to the best existing
scheme [29].

Paper Organization. We provide some preliminary definitions in Sect. 2. In
Sect. 3 we give two new fully randomizable schemes for signing arbitrary vectors
of messages. In Sect. 4 we give a scheme for signing a pair of messages. In Sect. 5
we compare the efficiency of our constructions with that of existing ones.

Notation. We write y = A(x; r) when algorithm A on input x and randomness
r outputs y. We write y ← A(x) for the process of setting y = A(x; r) where
r is sampled at random. We also write y ← S for sampling y uniformly at
random from a set S. A function ν(.) : N → R

+ is negligible (in n) if for every
polynomial p(.) and all sufficiently large values of n, it holds that ν(n) < 1

p(n) . By
PPT we mean running in probabilistic polynomial time in the relevant security
parameter. We use [k] to denote the set {1, . . . , k}. We use capital letters for
group elements and small letters for field elements.

2 Preliminaries

In this section we provide some preliminary definitions.
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2.1 Bilinear Groups

A bilinear group is a tuple P := (G,H,T, p,G, H̃, e) where G, H and T are
groups of a prime order p, and G and H̃ generate G and H, respectively. The
function e is a non-degenerate bilinear map e : G×H −→ T. For clarity, elements
of H will be accented with .̃ We use multiplicative notation for all the groups.
We let G

× := G \ {1G} and H
× := H \ {1H}. In this paper, we work in the

efficient Type-3 setting [26], where G �= H and there is no efficiently computable
homomorphism between the groups in either direction. We assume there is an
algorithm BG that on input a security parameter κ, outputs a description of
bilinear groups.

The message space of the schemes we consider is the set of elements of the
subgroup ̂GH of G × H defined as the image of the map ψ : x �−→ (Gx, H̃x) for
x ∈ Zp. One can efficiently test whether (M, Ñ) ∈ ̂GH by checking

e(M, H̃) = e(G, Ñ) ·

Such pairs were called Diffie-Hellman pairs in [3,23]. An important observation
here is that techniques used for batch verification, e.g. [12,17], can be applied
when verifying the well-formedness of a vector of Diffie-Hellman pairs. This
reduces the cost for verifying a vector of � pairs from 2� pairings to 2 pairings.

2.2 Digital Signatures

A digital signature scheme DS over a bilinear group P generated by BG for a
message space M consists of the following algorithms:

KeyGen(P) on input P, it outputs a pair of secret/verification keys (sk, vk).
Sign(sk,m) on input sk and a message m ∈ M, it outputs a signature σ.
Verify(vk,m, σ) outputs 1 if σ is a valid signature on m w.r.t. vk and 0 otherwise.

Besides the usual correctness requirement, we require existential
unforgeability.

Definition 1 (Existential Unforgeability). A signature scheme DS over
a bilinear group generator BG is Existentially-Unforgeable against adaptive
Chosen-Message Attack (EUF-CMA) if for all κ ∈ N for all PPT adversaries
A, the following is negligible (in κ)

Pr
[P ← BG(1κ); (sk, vk) ← KeyGen(P); (σ∗,m∗) ← ASign(sk,·)(P, vk)

: Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign

]

,

where QSign is the set of messages queried to Sign.
Strong Existential Unforgeability against adaptive Chosen-Message Attack

(sEUF-CMA) requires that the adversary cannot even output a new signature
on a message that was queried to the sign oracle.
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A weaker variant of EUF-CMA is Existential Unforgeability against a
Random-Message Attack (EUF-RMA) in which the sign oracle samples a mes-
sage uniformly from the message space and returns the message and a signature
on it. In one-time signatures, the adversary is restricted to a single signing query.

We consider schemes which are publicly re-randomizable where there is an
algorithm Randomize that on input (vk,m, σ) outputs a new signature σ′ on m.
A desirable property for such class of schemes is that randomized signatures are
indistinguishable from fresh signatures.

Definition 2 (Randomizability). A signature scheme DS over a bilinear
group generator BG is randomizable if for all κ ∈ N for all stateful adversaries
A the following probability is negligibly close to 1

2 .

Pr

[P ← BG(1κ); (sk, vk) ← KeyGen(P); (σ∗, m∗) ← A(P, sk, vk); σ0 ← Sign(sk, m∗);
σ1 ← Randomize(vk, m∗, σ∗); b ← {0, 1} : Verify(vk, m∗, σ∗) = 1 ∧ A(σb) = b

]

When the above is exactly 1
2 , we say the scheme has Perfect Randomizability.

2.3 Structure-Preserving Signatures

Structure-preserving signatures [3] are signature schemes defined over bilinear
groups where the messages, the verification key and signatures are all group
elements from either or both base groups, and verifying signatures only involves
deciding group membership of the signature components and evaluating PPEs
of the form of Equation (1).

∏

i

∏

j

e(Ai, B̃j)ci,j = 1T, (1)

where Ai ∈ G and B̃j ∈ H are group elements appearing in P,m, vk, σ, whereas
ci,j ∈ Zp are constants.

Generic Signer. We refer to a signer that can only decide group membership,
evaluate the bilinear map e, compute the group operations in groups G,H and
T, and compare group elements as a generic signer.

3 Constant-Size Schemes for Diffie-Hellman Vectors

In this section, we give 2 new schemes for signing a vector of Diffie-Hellman
pairs.

3.1 Scheme I

Given the description of Type-3 bilinear groups P output by BG(1κ), the scheme
is as follows:
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• KeyGen(P): Select x1, . . . , x�, y ← Zp. Set Xi := Gxi for all i ∈ [�], Ỹ := H̃y,
sk := (x1, . . . , x�, y) and vk := (X1, . . . , X�, Ỹ ) ∈ G

� × H.
• Sign

(

sk,
(

(M1, Ñ1), . . . , (M�, Ñ�)
))

: To sign
(

(M1, Ñ1), . . . , (M�, Ñ�)
)

∈
̂GH

�
, select r ← Zp and set R := Gr, and S̃ := (

∏�
i=1 Ñxi

i · Ỹ x1 · H̃)
1
r .

Return σ := (R, S̃) ∈ G × H.
• Verify

(

vk,
(

(M1, Ñ1), . . . , (M�, Ñ�)
)

, σ = (R, S̃)
)

: Return 1 iff R ∈ G, S̃ ∈ H,

for all i ∈ [�] : (Mi, Ñi) ∈ ̂GH, and

e(R, S̃) =
�

∏

i=1

e(Xi, Ñi)e(X1, Ỹ )e(G, H̃) ·

• Randomize
(

vk,
(

(M1, Ñ1), . . . , (M�, Ñ�)
)

, σ = (R, S̃)
)

: Select r′ ← Zp, and

return σ′ := (Rr′
, S̃

1
r′ ).

Efficiency of the Scheme. The public key for signing a vector of size � has
size �|G| + |H| whereas the signature is of size |G| + |H| regardless of the size of
the message vector. Thus, our signatures are shorter than all existing schemes
since the best existing optimal schemes for unilateral messages, e.g. [4], have
signatures of size 2|G|+|H|. Assuming that the messages are already well-formed,
verification requires only a single PPE with �+2 pairings where 1 pairing, i.e. the
pairing e(G, H̃) can be pre-computed. Hence, we only require � + 1 pairings for
each signature after the first signature. If the messages are already assumed
to be well-formed, this compares favourably to existing schemes since the most
efficient existing scheme requires 2 PPE for verification. The scheme yields very
short proofs of knowledge when combined with Groth-Sahai proofs [34] as one
requires a proof for a linear (rather than quadratic) equation. As a result, our
scheme outperforms the best existing scheme [29] in this respect. Refer to Sect. 5
for concrete efficiency comparison with existing schemes.

Security of the Scheme. The scheme is perfectly randomizable as the distri-
bution of re-randomized signatures is identical to that of fresh signatures on the
same vector. We now prove the following theorem.

Theorem 1. The scheme is EUF-CMA secure.

Proof. Correctness of the scheme follows by inspection and is straightforward
to verify. The following two lemmata prove unforgeability of the scheme against
adaptive chosen-message attacks. Lemma 1 proves that the case when � = 1 is
secure in the generic group model whereas Lemma 2 reduces any attack on the
scheme when � > 1 to the case when � = 1 which is proved by Lemma 1.

Lemma 1. The scheme for � = 1 is EUF-CMA secure in the generic group
model.
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Proof. We proceed by proving that no linear combinations (which represent Lau-
rent polynomials in the discrete logarithms) of the group elements the adversary
sees in the game correspond to a forgery on a new message.

At the start of the game, the only elements in H the adversary sees are H̃,
Ỹ which correspond to the discrete logarithms 1 and y, respectively. Also, at
the start of the game the only elements in G the adversary sees are G, X which
correspond to the discrete logarithms 1 and x, respectively.

At the j-th sign query on the message (Mj , Ñj), mj and nj (the discrete
logarithms of Mj and Ñj , respectively, can only be a linear combination of the
discrete logarithms of the elements in G and H, respectively, the adversary sees
up to that point of time. Thus, we have

mj = amj
+ bmj

x +
j−1
∑

i=1

cmj ,iri

nj = anj
+ bnj

y +
j−1
∑

i=1

cnj ,i
nix + xy + 1

ri

For the message to satisfy (Mj , Ñj) ∈ ̂GH, we must have that mj = nj and hence
we must have that amj

= anj
, bmj

= bnj
= 0 and for all i that cmj ,i = cnj ,i = 0.

This ensures that the message queried is nothing but a constant polynomial. If
the message is well-formed 1, the sign oracle responds with a signature of the
form

(

rj , sj =
njx + xy + 1

rj

)

Since the adversary is generic, she can only construct
(

(M∗, Ñ∗), σ∗ = (R∗, S̃∗)
)

as a linear combination of the group elements she sees in the game. Thus, we
have

m∗ = am + bmx +
q

∑

i=1

cm,iri r∗ = ar + brx +
q

∑

i=1

cr,iri

n∗ = an + bny +
q

∑

i=1

cn,i
nix + xy + 1

ri
s∗ = as + bsy +

q
∑

i=1

cs,i
nix + xy + 1

ri

Since the forged message (M∗, Ñ∗) must correspond to a Diffie-Hellman pair,
we must have m∗ = n∗ and thus am = an, bm = bn = 0 and cm,i = cn,i = 0 for
all i ∈ [q] and hence m∗ = n∗ = am. For the forgery to be accepted, r∗ and s∗

must satisfy r∗s∗ = n∗x + xy + 1. Therefore, we must have

(

ar + brx +
q

∑

i=1

cr,iri

)(

as + bsy +
q

∑

i=1

cs,i
nix + xy + 1

ri

)

= n∗x + xy + 1

1 We remark that the scheme remains secure even if the sign oracle only gets Ñj as

long as the final forgery is on a well-formed message (M∗, Ñ∗) ∈̂GH.
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Thus, we must have

aras + arbsy +
q

∑

i=1

arcs,i
nix + xy + 1

ri

+asbrx + bsbrxy +
q

∑

i=1

brcs,i
nix

2 + x2y + x

ri

+as

q
∑

i=1

cr,iri + bsy

q
∑

i=1

cr,iri +
q

∑

i=1

cr,iri

q
∑

i=1

cs,i
nix + xy + 1

ri

= n∗x + xy + 1

There is no term in xy
ri

or x2y
ri

on the RHS so we must have for all i ∈ [q]
that arcs,i = 0 and brcs,i = 0. This means that we either have that cs,i = 0 for
all i ∈ [q] or we have ar = br = 0.

• Case ar = br = 0: In this case we must have

as

q
∑

i=1

cr,iri + bsy

q
∑

i=1

cr,iri +
q

∑

i=1

cr,iri

q
∑

i=1

cs,i
nix + xy + 1

ri
= n∗x + xy + 1

There are no terms in ri or riy on the RHS so we must have for all i ∈ [q] that
ascr,i = 0 and bscr,i = 0. This means that we either have that cr,i = 0 for all
i ∈ [q] or we have as = bs = 0. The former case cannot occur as otherwise
the LHS will not have a term in xy and hence the equality will not hold. So
we must have as = bs = 0 and hence we must have

q
∑

i=1

cr,iri

q
∑

i=1

cs,i
nix + xy + 1

ri
= n∗x + xy + 1

There is no term on the RHS of the form rjxy
ri

for any i, j ∈ [q] where i �= j.
Thus, we must have cr,ics,j = 0 for all i �= j. This means we must have for
some i ∈ [q]

cr,ics,inix + cr,ics,ixy + cr,ics,i = n∗x + xy + 1

By the monomial xy, we must have cr,ics,i = 1 from which it is clear that the
only way the equality will hold is if n∗ = ni from some i ∈ [q] which means
the forgery is not valid as the signature is on a message that was queried to
the sign oracle.

• Case cs,i = 0 for all i ∈ [q]: In this case we must have

aras + arbsy + asbrx + bsbrxy + as

q
∑

i=1

cr,iri + bsy

q
∑

i=1

cr,iri = n∗x + xy + 1
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The only term on the LHS with the monomial xy is the term bsbrxy thus for
the equality to hold we must have that bs �= 0 and br �= 0. There is no term
on the RHS with the monomial riy and since we cannot have bs = 0, we must
have that cr,i = 0 for all i ∈ [q], which means we have:

aras + arbsy + asbrx + bsbrxy = n∗x + xy + 1

There is no term on the RHS wih the monomial y and since we cannot have
bs = 0, we must have that ar = 0 which means we have:

asbrx + bsbrxy = n∗x + xy + 1

which cannot hold.

�	
Lemma 2. The scheme for � > 1 is EUF-CMA secure.

Proof. We proceed by showing that any valid forgery in the case � > 1 can be
reduced to a forgery for the case � = 1.

Let A be a successful adversary in the � > 1 case we show how to construct
an adversary B who uses adversary A to break the scheme for the case � = 1
which would contradict Lemma 1.

Adversary B gets vk′ = (X ′, Ỹ ′) from her game where she has access to a sign
oracle for a single Diffie-Hellman pair. She chooses x1, . . . , x�−1 ← Zp and sets
Ỹ := Ỹ ′, X1 := X ′ and Xi := X ′xi−1 for i = 2, . . . , �. She starts A on the verifica-
tion key vk := (X1, . . . , X�, Ỹ ). Note that since x1, . . . , x�−1 are chosen uniformly
at random, the verification key vk A sees is indistinguishable from one she gets
from the real signer. When receiving a query on mi =

(

(M, Ñ)i,1, . . . , (M, Ñ)i,�

)

from A, B returns ⊥ if (M, Ñ)i,j /∈ ̂GH for any j ∈ [�]. Otherwise, she for-

wards (M ′
i , Ñ

′
i) :=

(

Mi,1 · ∏�
j=2 M

xj−1
i,j , Ñi,1 · ∏�

j=2 Ñ
xj−1
i,j

)

∈ ̂GH to her sign
oracle and returns the signature she gets to A. Such a signature is a valid signa-
ture on the message mi =

(

(M, Ñ)i,1, . . . , (M, Ñ)i,�

)

w.r.t. the verification key

vk = (X1, . . . , X�, Ỹ ).
When A outputs her forgery σ∗ on m∗ =

(

(M∗, Ñ∗)1, . . . , (M∗, Ñ∗)�

)

, B
returns (M ′, Ñ ′) :=

(

M∗
1 · ∏�

j=2 M∗
j

xj−1 , Ñ∗
1 · ∏�

j=2 Ñ∗
j

xj−1
)

∈ ̂GH and σ∗ as
the answer in her game. Thus, B wins her game with the same advantage as
that of A in her game. �	

3.2 Scheme II

We show here that by transposing the signature components of Scheme I, we
obtain a scheme with signatures (S, R̃) ∈ G × H where R̃ is information-
theoretically independent of the message vector. The verification key matches
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that of Scheme I, i.e. the verification key size is �|G|+ |H|. Note that the scheme
has the property that signing requires only the G components of the messages
whereas verification requires, besides verifying well-formedness of the messages,
only the H components of the messages. We remark that existing schemes with
similar properties have found various applications, see e.g. [13,28].

Given the description of Type-3 bilinear groups P output by BG(1κ), the
scheme is as follows:

• KeyGen(P): Select x1, . . . , x�, y ← Zp. Set Xi := Gxi for all i ∈ [�], Ỹ := H̃y,
sk := (x1, . . . , x�, y), and vk := (X1, . . . , X�, Ỹ ) ∈ G

� × H.
• Sign

(

sk,
(

(M1, Ñ1), . . . , (M�, Ñ�)
))

: To sign
(

(M1, Ñ1), . . . , (M�, Ñ�)
)

∈
̂GH

�
, select r ← Zp and set R̃ := H̃r, and S := (

∏�
i=1 Mxi

i · Xy
1 · G)

1
r .

Return σ := (R̃, S) ∈ H × G.
• Verify

(

vk,
(

(M1, Ñ1), . . . , (M�, Ñ�)
)

, σ = (R̃, S)
)

: Return 1 iff R̃ ∈ H, S ∈ G,

for all i ∈ [�] : (Mi, Ñi) ∈ ̂GH, and

e(S, R̃) =
�

∏

i=1

e(Xi, Ñi)e(X1, Ỹ )e(G, H̃) ·

• Randomize
(

vk,
(

(M1, Ñ1), . . . , (M�, Ñ�)
)

, σ = (R̃, S)
)

: Select r′ ← Zp, and

return σ′ := (R̃r′
, S

1
r′ ).

The scheme has identical efficiency as that of Scheme I.

Security of the Scheme. The scheme is perfectly randomizable as the distri-
bution of re-randomized signatures is identical to that of fresh signatures on the
same vector.

Theorem 2. The scheme is EUF-CMA secure.

Proof. Correctness of the scheme follows by inspection and is straightforward
to verify. The following two lemmata prove unforgeability of the scheme against
adaptive chosen-message attacks. Lemma 3 proves that the case when � = 1 is
secure in the generic group model whereas Lemma 4 reduces any attack on the
scheme when � > 1 to the case when � = 1 which is proved by Lemma 3.

Lemma 3. The scheme for � = 1 is EUF-CMA secure in the generic group
model.

Proof. We proceed by proving that no linear combinations (which represent Lau-
rent polynomials in the discrete logarithms) of the group elements the adversary
sees in the game correspond to a forgery on a new message.

At the start of the game, the only elements in H the adversary sees are H̃,
Ỹ which correspond to the discrete logarithms 1 and y, respectively. Also, at
the start of the game the only elements in G the adversary sees are G, X which
correspond to the discrete logarithms 1 and x, respectively.
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At the j-th query on message (Mj , Ñj), mj and nj which are the discrete
logarithm of the message can only be a linear combination of the elements in
the respective groups so far. Thus, we have

mj = amj
+ bmj

x +
j−1
∑

i=1

cmj ,i
mix + xy + 1

ri

nj = anj
+ bnj

y +
j−1
∑

i=1

cnj ,iri

For the message to satisfy (Mj , Ñj) ∈ ̂GH, we must have that mj = nj

and hence we must have that amj
= anj

, bmj
= bnj

= 0 and for all i that
cmj ,i = cnj ,i = 0. This ensures that the message queried is nothing but a constant
polynomial.

If the message is well-formed, the sign oracle responds with a signature of
the form

(

rj , sj =
mjx + xy + 1

rj

)

Since the adversary is generic, she can only construct (M∗, Ñ∗) and σ∗ =
(R̃∗, S∗) as a linear combination of the group elements she sees in the game.
Thus, we must have

m∗ = am + bmx+
q∑

i=1

cm,i
mix+ xy + 1

ri
r∗ = ar + bry +

q∑

i=1

cr,iri

n∗ = an + bny +
q∑

i=1

cn,iri s∗ = as + bsx+
q∑

i=1

cs,i
mix+ xy + 1

ri

Since the forged message (M∗, Ñ∗) must correspond to a Diffie-Hellman pair,
we must have m∗ = n∗ and thus am = an, bm = bn = 0 and cm,i = cn,i = 0 for
all i ∈ [q] and hence m∗ = n∗ = am. For the forgery to be accepted, r∗ and s∗

must satisfy s∗r∗ = m∗x + xy + 1. Therefore, we must have
(

ar + bry +
q

∑

i=1

cr,iri

) (

as + bsx +
q

∑

i=1

cs,i
mix + xy + 1

ri

)

= m∗x + xy + 1

Thus, we must have

aras + arbsx +
q

∑

i=1

arcs,i
mix + xy + 1

ri

+ asbry + bsbrxy +
q

∑

i=1

brcs,i
mixy + xy2 + y

ri

+ as

q
∑

i=1

cr,iri + bsx

q
∑

i=1

cr,iri +
q

∑

i=1

cr,iri

q
∑

i=1

cs,i
mix + xy + 1

ri

= m∗x + xy + 1
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There is no term in xy
ri

or xy2

ri
on the RHS so we must have for all i ∈ [q]

that arcs,i = 0 and brcs,i = 0. This means that we either have that cs,i = 0 for
all i ∈ [q] or we have ar = br = 0.

• Case ar = br = 0: Here we must have

as

q
∑

i=1

cr,iri + bsx

q
∑

i=1

cr,iri +
q

∑

i=1

cr,iri

q
∑

i=1

cs,i
mix + xy + 1

ri
= m∗x + xy + 1

There is no terms in ri or rix on the RHS so we must have for all i ∈ [q] that
ascr,i = 0 and bscr,i = 0. This means that we either have that cr,i = 0 for all
i ∈ [q] or we have as = bs = 0. The former case cannot occur as otherwise
the LHS will not have a term in xy and hence the equality will not hold. So
we must have as = bs = 0 and hence we have

q
∑

i=1

cr,iri

q
∑

i=1

cs,i
mix + xy + 1

ri
= m∗x + xy + 1

There is no term on the RHS of the form rjxy
ri

for any i, j ∈ [q] where i �= j.
Thus, we must have cr,ics,i = 0 if i �= j. This means we have

cr,ics,imix + cr,ics,ixy + cr,ics,i = m∗x + xy + 1

By the monomial xy, we must have cr,ics,i = 1 from which it is clear that the
only way the equality will hold is if m∗ = mi from some i ∈ [q] which means
the forgery is not valid as the signature is on a message that was queried to
the sign oracle.

• Case cs,i = 0 for all i ∈ [q]:

Thus, we must have

aras + arbsx + asbry + bsbrxy + as

q
∑

i=1

cr,iri + bsx

q
∑

i=1

cr,iri = m∗x + xy + 1

The only term on the LHS with the monomial xy is the term bsbrxy thus for
the equality to hold we must have that bs �= 0 and br �= 0. There is no term
on the RHS with the monomial rix and since we cannot have bs = 0, we must
have that cr,i = 0 for all i ∈ [q], which means we have:

aras + arbsx + asbry + bsbrxy = m∗x + xy + 1

There is no term on the RHS wih the monomial y and since we cannot have
br = 0, we must have that as = 0 which means we have:

arbsx + bsbrxy = m∗x + xy + 1

which cannot hold.
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�	
Lemma 4. The scheme for � > 1 is EUF-CMA secure.

Proof. We proceed by showing that any valid forgery in the case � > 1 can be
reduced to a forgery for the case � = 1.

Let A be a successful adversary in the � > 1 case we show how to construct
an adversary B who uses adversary A to break the scheme for the case � = 1
which would contradict Lemma .

Adversary B gets vk′ = (X ′, Ỹ ′) from her game where she has access to a sign
oracle for a single Diffie-Hellman pair. She chooses x1, . . . , x�−1 ← Zp and sets
Ỹ := Ỹ ′, X1 := X ′ and Xi := X ′xi−1 for i = 2, . . . , �. She starts A on the verifica-
tion key vk := (X1, . . . , X�, Ỹ ). Note that since x1, . . . , x�−1 are chosen uniformly
at random, the verification key vk A sees is indistinguishable from one she gets
from the real signer. When receiving a query on mi =

(

(M, Ñ)i,1, . . . , (M, Ñ)i,�

)

from A, B returns ⊥ if (M, Ñ)i,j /∈ ̂GH for any j ∈ [�]. Otherwise, she for-

wards (M ′
i , Ñ

′
i) :=

(

Mi,1 · ∏�
j=2 M

xj−1
i,j , Ñi,1 · ∏�

j=2 Ñ
xj−1
i,j

)

∈ ̂GH to her sign
oracle and returns the signature she gets to A. Such a signature is a valid signa-
ture on the message mi =

(

(M, Ñ)i,1, . . . , (M, Ñ)i,�

)

w.r.t. the verification key

vk = (X1, . . . , X�, Ỹ ).
When A outputs her forgery σ∗ on m∗ =

(

(M∗, Ñ∗)1, . . . , (M∗, Ñ∗)�

)

, B
returns (M ′, Ñ ′) :=

(

M∗
1 · ∏�

j=2 M∗
j

xj−1 , Ñ∗
1 · ∏�

j=2 Ñ∗
j

xj−1
)

∈ ̂GH and σ∗ as
the answer in her game. Thus, B wins her game with the same advantage as
that of A in her game. �	

4 Unilateral Scheme for 2 Diffie-Hellman Pairs

We give here a scheme for 2 pairs of Diffie-Hellman messages yielding unilateral
signatures of size 3|G|. The scheme is an extension of the recent single-message
scheme from [29] where we use different randomness for each message. Signatures
of this scheme are still shorter than those of all existing optimal Type-3 schemes
since the latter require that at least one of the components of σ is from the second
base group. The scheme is also more efficient than the single-message scheme
from [28]. The verification key of the scheme is of size 3|H|, whereas verification
of signatures require 1 PPE and 3 pairings, excluding the cost for verifying well-
formedness of the messages. Given the description of Type-3 bilinear groups P
output by BG(1κ), the scheme is as follows:

• KeyGen(P): Select x1, x2, y ← Zp. Set sk := (x1, x2, y) and vk :=
(X̃1, X̃2, Ỹ ) := (H̃x1 , H̃x2 , H̃y) ∈ H

3.

• Sign
(

sk,
(

(M1, Ñ1), (M2, Ñ2)
))

: To sign
(

(M1, Ñ1), (M2, Ñ2)
)

∈ ̂GH
2
, select

r1, r2 ← Zp, set R1 := Gr1 , R2 := Gr2 , S := ((Gx1 · M1)
r1 · (Gx2 · M2)

r2)
1
y .

Return σ := (R1, R2, S) ∈ G
3.
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• Verify
(

vk,
(

(M1, Ñ1), (M2, Ñ2)
)

, σ = (R1, R2, S)
)

: Return 1 iff R1 ∈ G
×,

R2, S ∈ G,
(

(M1, Ñ1), (M2, Ñ2)
)

∈ ̂GH
2

and

e(S, Ỹ ) = e(R1, X̃1 · Ñ1)e(R2, X̃2 · Ñ2) ·

• Randomize
(

vk,
(

(M1, Ñ1), (M2, Ñ2)
)

, σ = (R1, R2, S)
)

: Select r′ ← Z
×
p , and

set R′
1 := Rr′

1 , R′
2 := Rr′

2 , S′ := Sr′
. Return σ′ := (R′

1, R
′
2, S

′).

Correctness of the scheme follows by inspection and is straightforward to
verify. We remark here that the signer will always be able to link a random-
ized signature to the original signature from which it was obtained even if we
additionally require that R2 �= 1G. For instance, the malicious signer can choose
r2 = −r1 which will make all randomized versions of the signature in question
satisfy R′

1 · R′
2 = 1G. Another way the signer can link a randomized signature to

its original signature is by using knowledge of the exponents r1 and r2 since we
will always have that R′

1

1
r1 = R′

2

1
r2 .

We now prove the following theorem.

Theorem 3. The scheme is EUF-CMA secure in the generic group model.

Proof. Public elements in H are H̃, X̃1,X̃2, and Ỹ which correspond to the
discrete logarithms 1, x1, x2, and y, respectively. At the i-th signing query,
we have that ((mi,1, ni,1), (mi,2, ni,2)), which are the discrete logarithms of the

queried message
(

(Mi,1, Ñi,1), (Mi,2, Ñi,2)
)

, must be of the form

ni,k = ani,k
+ bni,k

x1 + cni,k
x2 + dni,k

y

mi,k = ami,k
+

i−1∑

j=1

bmi,k,j
r1j

+

i−1∑

j=1

cmi,k,j
r2j

+

i−1∑

j=1

dmi,k,j

r1j
m1j

+ r1j
x1 + r2j

m2j
+ r2j

x2

y
,

for k = 1, 2. Since we must have mi,1 = ni,1 and mi,1 = ni,2 for the messages
to be valid, we have mi,1 = ni,1 = a

mi,1
= a

ni,1
and mi,2 = ni,2 = a

mi,2
=

a
ni,2

, i.e. the messages queried to the signing oracle correspond to constant
polynomials. Note that the sign oracle does not produce any elements in H.

After q signing queries, ((m∗
1, n

∗
1), (m

∗
2, n

∗
2)), which are the discrete logarithms

of the forged Diffie-Hellman pairs
(

(M∗
1 , Ñ∗

1 ), (M∗
2 , Ñ∗

2 )
)

, must be of the form

n∗
k = ank

+ bnk
x1 + cnk

x2 + dnk
y

m∗
k = amk

+
q∑

i=1

bmk,i
r1i

+
q∑

i=1

cmk,i
r2i

+
q∑

i=1

dmk,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y
,

for k = 1, 2. Since we must have m∗
1 = n∗

1 and m∗
2 = n∗

2 for the forgery to be a

valid element of ̂GH
2
, we have m∗

1 = n∗
1 = a

m1
= a

n1
and m∗

2 = n∗
2 = a

m2
= a

n2
.
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Similarly, the signature (R∗
1, R

∗
2, S

∗) has the form

r∗
1 = a

r1
+

q
∑

i=1

b
r1,i

r1i
+

q
∑

i=1

c
r1,i

r2i
+

q
∑

i=1

d
r1,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y

r∗
2 = a

r2
+

q
∑

i=1

b
r2,i

r1i
+

q
∑

i=1

c
r2,i

r2i
+

q
∑

i=1

d
r2,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y

s∗ = a
s
+

q
∑

i=1

b
s,i

r1i
+

q
∑

i=1

c
s,i

r2i
+

q
∑

i=1

d
s,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y

For the forgery to be a valid signature, (r∗
1 , r

∗
2 , s

∗) must satisfy s∗y = r∗
1m

∗
1 +

r∗
1x1 + r∗

2m
∗
2 + r∗

2x2. So we must have

(
as +

q∑

i=1

b
s,i

r1i
+

q∑

i=1

c
s,i

r2i
+

q∑

i=1

d
s,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y

)
y

=

(

ar1
+

q∑

i=1

br1,i
r1i

+

q∑

i=1

cr1,i
r2i

+

q∑

i=1

dr1,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y

)

(x1 + m
∗
1)

+

(

ar2
+

q∑

i=1

br2,i
r1i

+

q∑

i=1

cr2,i
r2i

+

q∑

i=1

dr2,i

r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2

y

)

(x2 + m
∗
2)

There is no term in y, r1i
y or r2i

y on the RHS so we must have a
s

= 0 and
b

s,i
= c

s,i
= 0 for all i.

Also, there are no terms in x1, x2, r1i
x2, r2i

x1,
r1i

x2
1

y , or
r2i

x2
2

y on the LHS
so we must have a

r1
= a

r2
= 0 and c

r1,i
= b

r2,i
= d

r1,i
= d

r2,i
for all i. Thus, we

have

q
∑

i=1

d
s,i

(r1i
m1i

+ r1i
x1 + r2i

m2i
+ r2i

x2)

=
q

∑

i=1

b
r1,i

r1i
m∗

1 +
q
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i=1

b
r1,i

r1i
x1 +

q
∑

i=1

c
r2,i

r2i
m∗

2 +
q

∑

i=1

c
r2,i

r1i
x2

Since we must have r∗
1 �= 0, it follows that we must have at least for one

value of i that b
r1,i

�= 0. By the monomial r1i
x1, we have b

r1,i
= d

s,i
. Since

d
s,i

�= 0, we also have that c
r2,i

= d
s,i

. Now by the monomial r1i
, we have

that b
r1,i

m∗
1 = d

s,i
m1i

from which it follows that m∗
1 = m1i

. Similarly, by
the monomial r2i

, we have that c
r2,i

m∗
2 = d

s,i
m2i

from which it follows that
m∗

2 = m2i
. Thus, the forgery is on a message pair that was queried to the oracle.

�	

5 Efficiency Comparison

We compare in Table 1 the efficiency of our schemes with that of existing ones.
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Table 1. Efficiency comparison between our schemes and existing Type-3 schemes

Scheme σ vk PP M Randomizable Verification Cost

1 Signature n Signatures

G H G H G H PPE Pairing PPE Pairing

[3] I 5 2 8 + 2� 4 - - G
� Partially 2 6 + 2� + 4† 2n 6n + 2� + 4†

[3] II 2 5 8 + 2� 4 - - H
� Partially 2 6 + 2� + 4† 2n 6n + 2� + 4†

[4] 2 1 � 1 - - H
� Yes 2 3 + � + 1† 2n 3n + � + 1†

[33] 1 1 2 � - - 1 H
� Yes 2 2 + � + 3† 2n 2n + � + 3†

[33] 2 1 2 � - - 1 H
� No 2 3 + � + 3† 2n 3n + � + 3†

Ours I 1 1 � 1 - - ĜH
�

Yes 1 + �∗ 1 + � + 1† + 2�∗ n + �∗ n + � + 1† + 2�∗

Or Or Or Or

1 + 1∗ 1 + � + 1† + 2∗ n + 1∗ n + � + 1† + 2∗

Ours II 1 1 � 1 - - ĜH
�

Yes 1 + �∗ 1 + � + 1† + 2�∗ n + �∗ n + � + 1† + 2�∗

Or Or Or Or

1 + 1∗ 1 + � + 1† + 2∗ n + 1∗ n + � + 1† + 2∗

In the table numbers superscripted with † are the number of pairings that can
be precomputed, whereas numbers superscripted with ∗ are the cost needed to
verify well-formedness of the Diffie-Hellman message. The latter cost is constant
when verifying multiple signatures on the same message. Also, as mentioned ear-
lier, one can use techniques from batch verification, e.g. [12,17], to reduce the
cost required for verifying the well-formedness of a vector of � Diffie-Hellman
pairs to a single PPE and 2 pairings. For our schemes, we give 2 estimations for
the efficiency overhead where the first is for the case where no batch verification
is applied to verifying the well-formedness of the messages, whereas the second
cost is when batch verification is applied in that respect. For all schemes listed,
public parameters PP do not include the default group generators. Note that the
security of all schemes in the table except for [3] which rely on non-interactive
q-type assumptions is proven in the generic group model. For the cost of verifica-
tion, we give two estimations which are for verifying 1 and n different signatures
on the same message vector.

As can be seen from the table, our schemes outperform existing schemes
w.r.t signature size. The size of the verification key of our schemes matches the
best existing scheme. Also, the verification cost compares favourably especially
when verifying various signatures on the same message vector which is the case
for many applications, e.g. when the user is required to prove possession of
various credentials/attributes from an authority or possibly different authorities.

5.1 Efficiency in the Single Message Setting

The best existing scheme in terms of signature size and verification overhead
is the one recently given in [29] which has signatures of size 2|G| and verifica-
tion key of size 2|H|. When used on their own, the scheme in [29] has slightly
shorter signatures than ours, whereas schemes I and II of ours have shorter
verification key. In fact, the combined size of signatures and verification key
in the 3 schemes are identical. Note that the scheme in [29] has the slight
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non-standard requirement that one needs to check that a signature component
(which is information-theoretically independent of the message) is not the triv-
ial element and hence in the case that one needs to commit to that signature
component, one needs more expensive alternatives to prove that it conforms to
the requirement, which is not the case in our schemes. Let’s now compare the
verification overhead when verifying n signatures on the same message. Ignoring
the cost of checking that (M, Ñ) ∈ ̂GH, the scheme in [29] would require 2n pair-
ings, whereas schemes I and II of ours require only n + 2 pairings where one of
the pairings, i.e. e(G, H̃) can be pre-computed and used for signatures on other
messages, i.e. the cost drops to only n + 1 pairings after verifying signatures on
the first message. Thus, it is obvious that ours have less computational overhead
when verifying multiple signatures on the same message.

Let’s now compare the performance of Scheme I of ours and the one in [29]
when combined with Groth-Sahai [34] to prove knowledge of a signature on a
committed message. We consider the most efficient instantiation of the proofs
which relies on the SXDH assumption as noted by [30]. The scheme from [29] has
signatures of the form (R,S) ∈ G

2 and a verification key of the form (X̃, Ỹ ) ∈ H
2,

and verification requires checking that (M, Ñ) ∈ ̂GH, R �= 1G, and evaluating
the following PPE:

e(S, Ỹ ) = e(R, X̃ · Ñ) (2)

In the terminology of [34], Equation (2) is a quadratic PPE. When proving
knowledge of a signature, one has to commit to M , Ñ and S and thus we need
to produce a proof for the satisfiability of (2) as well as the quadratic PPE
e(G, Ñ) = e(M, H̃) to prove that (M, Ñ) ∈ ̂GH. The total size of the Groth-
Sahai commitments is 4|G| + 2|H|, whereas the size of the proof for each of the
above equations is 4|G|+4|H|. Thus, the total size of the witness indistinguishable
Groth-Sahai proof of knowledge is 12|G| + 10|H|.

Scheme I of ours has signatures of the form (R, S̃) ∈ G×H and a verification
key of the form (X, Ỹ ) ∈ G×H, and verification requires checking that (M, Ñ) ∈
̂GH and evaluating the following PPE:

e(R, S̃) = e(X, Ñ · Ỹ )e(G,H) (3)

When proving knowledge, we need to commit to M , Ñ and S̃ and thus we need
to produce a proof for the satisfiability of (3), which is a linear PPE since com-
ponents of the witness are all from the same group, as well as the quadratic PPE
to prove that (M, Ñ) ∈ ̂GH. The total size of the Groth-Sahai commitments is
2|G| + 4|H|. The size of the proof for (3) is 2|G| whereas proving (M, Ñ) ∈ ̂GH

requires a proof of size 4|G| + 4|H|. Thus, the total size of the witness indistin-
guishable Groth-Sahai proof of knowledge is 8|G| + 8|H|. From the above, it is
obvious when proving knowledge of signatures using Groth-Sahai proofs, which
was the main motivation behind introducing the structure-preserving signatures
notion, and which is required for the vast majority of applications of the notion,
e.g. group, blind, attribute-based signatures, e-cash, etc., our scheme outper-
forms the best existing scheme. The efficiency gain has implication for various
applications.
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Abstract. Current widely-used key exchange (KE) mechanisms will be
vulnerable to quantum attacks when sufficiently strong quantum com-
puters become available. Therefore, devising quantum-resistant replace-
ments that combine efficiency with solid security guarantees is an impor-
tant and challenging task. This paper proposes several contributions
towards this goal. First, we introduce “CAKE”, a key encapsulation
algorithm based on the QC-MDPC McEliece encryption scheme, with
two major improvements: (a) the use of ephemeral keys that defeats
a recent reaction attack against MDPC decoding of the corresponding
encryption scheme and (b) a highly efficient key generation procedure
for QC-MDPC-based cryptosystems. Then, we present an authenticated
key exchange protocol based on CAKE, which is suitable for the Inter-
net Key Exchange (IKE) standard. We prove that CAKE is IND-CPA
secure, that the protocol is SK-Secure, and suggest practical parameters.
Compared to other post-quantum schemes, we believe that CAKE is a
promising candidate for post-quantum key exchange standardization.

Keywords: Post-quantum cryptography · Code-based cryptography ·
Key exchange

1 Introduction

The currently deployed public key cryptosystems rely on the difficulty of number
theory problems, e.g. factorization [47] and the discrete logarithm problem [37].
These problems will be efficiently solved by large quantum computers [50], turn-
ing those schemes completely useless in a not-so-distant future. Thus, it is of
c© Springer International Publishing AG 2017
M. O’Neill (Ed.): IMACC 2017, LNCS 10655, pp. 207–226, 2017.
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great relevance to devise and deploy alternative schemes that can survive the
advent of large quantum computers and, ideally, offer reasonable performance.

In this context code-based cryptography is a promising alternative. It relies on
the well-known decoding problem [7], believed to be hard even against quantum
adversaries [8], and on the indistinguishability of its public key from random, a
problem that strongly depends on the code family. The best-known code-based
scheme, namely the McEliece encryption scheme [35], suggests binary Goppa
codes as the code family. This choice has two main drawbacks: (a) Goppa codes
may not be the optimal security choice given a recent distinguisher for certain
Goppa codes [18] and (b) they require very large public keys (size of several
megabytes).

To address these issues, the QC-MDPC McEliece scheme [39] was introduced
replacing Goppa codes by Quasi-Cyclic Moderate-Density Parity-Check (QC-
MDPC) codes. This approach led to key sizes that are just a few thousand bits
long, and approximated the distinguishing problem to the decoding problem.
These features attracted great attention from the community (see [15,25,52,
53], just to mention a few) including a mention in the preliminary European
recommendations for post-quantum cryptography [30].

Despite their promising features, QC-MDPC codes need to be handled care-
fully due to the probabilistic nature of MDPC decoding (which is inherited from
Low-Density Parity-Check (LDPC) codes [21]): there is some probability that
the MDPC decoding may fail. This property can be leveraged to mount an
attack on some schemes. Indeed, Guo, Johansson and Stankovski [22] presented
an interesting reaction attack (GJS attack) against the QC-MDPC McEliece
encryption scheme. In this attack, the adversary carefully crafts error patterns
and observes whether (or not) the decoding process fails. The adversary can
recover the private key by collecting the decoding failure rate of various error
patterns. This is possible only because the parameters suggested in [39] ensured
(through exhaustive simulation) a decoding failure rate (DFR) of 10−7. The sim-
plest way to foil this attack is to choose parameters such that DFR ≤ 2−λ, where
λ is the security level of the scheme. However, the difficulty with this strategy
is to formally prove that a given parameter set attains a given DFR. Empirical
observations indicate that the DFR of MDPC codes decreases exponentially, and
secure parameters could be achieved by increasing the code length of [39] by 30%
or 40%. However, with no formal proof for this property, the GJS attack might
prevent wide adoption of QC-MDPC McEliece for asymmetric encryption.

Contributions. Thus far neither an MDPC-based key exchange nor any
MDPC-based encryption scheme has been proposed that defeats the GJS attack.
This work provides several contributions to address this and other problems:

� It introduces CAKE, a new key encapsulation mechanism (KEM), based on
QC-MDPC codes. It differs from the QC-MDPC McEliece encryption scheme
in two respects: (a) the key generation process is significantly faster at the cost
of longer public keys, and (b) completely defeats the GJS attack by employing
ephemeral keys (i.e., new keys are generated at each key exchange).
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� It proposes an authenticated key exchange protocol based on CAKE that is
suitable for the Internet Key Exchange (IKE), similarly to what was previ-
ously done done for lattices [41].

� It proves that CAKE is CPA secure and the protocol is SK secure [13].

The full version of this paper will include a discussion of implementation
aspects, including strategies to deploy our proposal in an isochronous way.
Related Work. Lattice-based cryptography has a long record of academic works
[42], including promising key exchange (KE) protocols. The NewHope scheme
[1] provides good performance and is based on the Ring-LWE problem [32] (a
ring variant of the Learning-With-Errors (LWE) problem [46]). It improves over
previous work by Bos, Costello, Naherig and Stebilla [11] which is an implemen-
tation of Peikert’s proposal [41] for TLS. Frodo [10] is a key exchange scheme
based on the LWE problem itself at the price of larger parameters and worse
performance. Cryptography based on isogenies of supersingular elliptic curves
seems to be another promising way to devise KE protocols [16,26] offering small
public keys but not so attractive latency. There are very few code-based key
encapsulation mechanism (KEM) schemes. The best known is McBits [9]which
builds on the work of [44], and lives in the classical McEliece setting with binary
Goppa codes and enormous public keys. Very recently, Ouroboros scheme [28]
has been introduced and seems to be a competitive proposal with security proof
advantages. There is another class of related works which is not focused on key
exchange but that shares some similarities on the techniques to achieve compact
McEliece public key sizes, e.g. the seminal work based on quasi-cyclic codes [20],
based on quasi-dyadic codes [14,38,43] and quasi-cyclic low-density parity-check
codes [2–5,40].
Organization. This paper is organized as follows. Section 2 presents the prelim-
inary concepts, Sect. 3 introduces CAKE, a new unauthenticated key encapsula-
tion mechanism (KEM) based on QC-MDPC codes, Sect. 4 presents an authen-
ticated key exchange protocol based on CAKE, Sect. 5 proves that CAKE is
IND-CPA secure and the corresponding authenticated key exchange protocol is
SK secure, Sect. 6 discusses practical security and suggests parameters. Section 7
presents our conclusions.

2 Preliminaries

Definition 1 (Linear codes). The Hamming weight of a vector x ∈ F
n
2 is the

number wt(x) of its nonzero components. A binary (n, r)-linear code C of length
n, co-dimension r and dimension k = (n−r) is a k-dimensional vector subspace
of Fn

2 . It is spanned by the rows of a matrix G ∈ F
k×n
2 , called a generator matrix

of C. Equivalently, it is is the kernel of a matrix H ∈ F
r×n
2 , called parity-check

matrix, i.e. C = {c | HcT = 0}. The codeword c ∈ C of a vector m ∈ F
(n−r)
2 is

c = mG. The syndrome s ∈ F
r
2 of a vector e ∈ F

n
2 is sT = HeT .
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Definition 2 (Quasi-cyclic code). An (n, r)-linear code is quasi-cyclic (QC)
if there is some integer n0 such that every cyclic shift of a codeword by n0 places
is again a codeword.

When n = n0r, for some integer r, it is possible and convenient to have
both generator and parity check matrices composed by r × r circulant blocks.
A circulant block is completely described by its first row (or column) and the
algebra of r × r binary circulant matrices is isomorphic to the algebra of poly-
nomials modulo xr − 1 over F2, enabling efficient computations. For example, a
parity-check matrix H of an (n0r, r)-quasi-cyclic code can be represented as:

H = [H0| . . . |Hn0−1], where: Hi =

⎛
⎜⎝

hi,0 . . . hi,r−1

...
. . .

...
hi,1 . . . hi,0

⎞
⎟⎠ ∈ F

r×r
2

Definition 3 (QC-MDPC codes). An (n0, r, w)-QC-MDPC code is a quasi-
cyclic code of length n = n0r, co-dimension r admitting a parity-check matrix
with constant row weight w = O(

√
n log n).

3 CAKE: A QC-MDPC KEM with Fast Key-Generation

In this section we introduce CAKE – an unauthenticated key encapsulation
mechanism based on QC-MDPC codes. The strategy to present our scheme as
an unauthenticated KEM follows works such as NewHope [10] and BCNS [11].
In this way, authentication and key exchange features are decoupled, allowing
flexibility to select (and eventually replace) the choice for each feature. Section 4
describes one way to add the authentication layer on top of CAKE.

CAKE resembles the QC-MDPC McEliece encryption scheme [39] but also
has important differences. While QC-MDPC McEliece intends to use long term
keys, CAKE relies on ephemeral keys. This means that a new key pair is gener-
ated at each key exchange, thus completely defeating the GJS attack [22] which
depends on observing a large number of decoding failures for a same private key.
Given the new requirement of generating a key pair at every key exchange, a
major challenge consisted of investigating novel strategies to accelerate MDPC
key generation. To address this issue, we suggest a simple and elegant solution.
In contrast to QC-MDPC McEliece (and any quasi-cyclic McEliece variant),
CAKE does not compute the inversion of one of its private cyclic blocks and
then multiply it by the whole private matrix. Note that this was done to ensure
that one of the blocks in the public matrix is the identity block (and thus no need
to be transmitted) and to hide the private code structure. Instead, CAKE hides
the private code structure by simply multiplying its sparse private matrix by
any random, dense cyclic block. This turns CAKE key generation into the most
efficient process among key generation, encryption and decryption. It is worth
mentioning that the QC-MDPC inversion-based key generation can be up to 21x
slower than encryption [33]. Therefore, removing the inversion operation is an
excellent strategy to accelerate key generation.
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The drawback of this strategy is the doubled public key size since the pub-
lic key will not have an identity block anymore. We consider that this is an
acceptable cost given the significant speedup. Finally, we make use of a simple
variant of McEliece, as presented in [14,36], which swaps the roles of message
and randomness in the encryption process to avoid a costly polynomial inversion.

A key encapsulation mechanism (KEM) is composed by three algorithms:
Gen which outputs a public encapsulation key pk and a private decapsulation
key sk, Encaps which takes as input an encapsulation key pk and outputs
a ciphertext c and a symmetric key K, and Decaps which takes as input a
decapsulation key sk and a cryptogram c and outputs a symmetric key K or a
decapsulation failure symbol ⊥. For more details on KEM definitions, we refer
the reader to [17].

For a security level λ, let r be a prime such that (xr − 1)/(x − 1) ∈ F2[x] is
irreducible, dv be an odd integer and t be an integer such that decoding t errors
with a uniformly chosen binary linear error-correcting code of length n = 2r
and dimension r, as well as recovering a base of column weight dv given an
arbitrary base of a QC-MDPC code of the same length and dimension, both
have a computational cost in Ω(exp(λ)). See Sect. 6 for a detailed discussion
on parameters selection. The CAKE algorithms definition is presented next.
Notation: We denote by $← the process of sampling uniformly at random, by R
the ring F2[x]/〈xr − 1〉 and by K : {0, 1}n → {0, 1}�K the hash function used by
encapsulation and decapsulation, where �K is the desired symmetric key length.

Algorithm 1. CAKE.Gen:

– Input: λ, the target quantum security level.
– Output: the sparse private key (h0, h1) and the dense public key (g0, g1).

0. Given λ, set the parameters r, dv, t as described above.
1. Generate h0, h1

$← R both of (odd) weight wt(h0) = wt(h1) = dv.

2. Generate g
$←R of odd weight (so wt(g) ≈ r/2).

3. Compute (g0, g1) ← (g · hT
1 , g · hT

0 ).

Let H and G be the quasi-cyclic matrices built from (r − 1) cyclic shifts of
(h0, h1) and (g0, g1) respectively. It is easy to see that G · HT = 0 and therefore
they satisfy the condition to be a generator and a parity-check matrix of the
given code: G · HT = [g · hT

1 | g · hT
0 ] · [h0 | h1]T = g · hT

1 · hT
0 + g · hT

0 · hT
1 =

g · (hT
1 · hT

0 + hT
0 · hT

1 ) = 2 · g · hT
0 · hT

1 = 0. It is also important to show that g,
as created above, is always invertible (thus not risking to generate a public code
which is in fact a sub-code of the private one) and this is proven in AppendixA.
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Algorithm 2. CAKE.Encaps:

– Input: the dense public key (g0, g1).
– Output: the encapsulated key K and the cryptogram c.

1. Generate an error pattern e = (e0, e1)
$← R of total weight wt(e) = t.

2. Generate m
$← R.

3. Compute c = (c0, c1) ← (m · g0 + e0,m · g1 + e1).
4. Compute K ← K(e).

Algorithm 3. CAKE.Decaps:

– Input: the sparse private key (h0, h1) and the cryptogram c.
– Output: the decapsulated key K or a failure symbol ⊥.

1. Compute the syndrome s ← c0 · hT
0 + c1 · hT

1 .
2. Try to decode s to recover an error vector e′ = (e′

0, e
′
1).

3. If wt(e′) �= t or decoding fails, output ⊥ and halt.
4. Compute K ← K(e′).

All public key, private key and cryptogram are n bits long. We remark that
e can be represented with only �log2

(
n
t

) bits and such a compact representa-
tion can be used if memory is the preferred metric of optimization (the hash
function K would need to be changed as well to receive �log2

(
n
t

) bits instead
of n). Figure 1 illustrates CAKE as a protocol of messages exchanged between
an Initiator and a Responder. Table 1 shows the bandwidth cost per message.

rednopseRrotaitinI

(h0, h1, g0, g1) ← CAKE.Gen(λ)
(g0,g1)−−−−−−−−−−−→

(K, c) := CAKE.Encaps(g0, g1)
c←−−−−−−−−−−−

K/⊥ := CAKE.Decaps(h0, h1, c)

Fig. 1. CAKE key encapsulation mechanism

Table 1. Communication bandwidth.

Message flow Message Size (bits)

Initiator → Responder (g0, g1) n

Responder → Initiator (c0, c1) n
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4 An Authenticated Key Exchange Protocol from CAKE

In this section, we discuss one way to extend CAKE to an authenticated
key exchange protocol. This discussion intends to demonstrate that CAKE
ephemeral keys are not a limitation for its integration into real-world key
exchange protocols and also allows us to discuss interesting security proper-
ties required in the real world, such as perfect forward secrecy, which are usually
managed in levels of abstraction above the simple key encapsulation building
block.

The construction here described is based on the well-known SIGn-and-MAc
(SIGMA) protocol design [29], which is adopted by the Internet Key Exchange
(IKE) protocol [24], part of the IPSec standard [49]. The simplest SIGMA pro-
tocol is known as Σ0 and is proven to be secure (in terms to be discussed in
Sect. 5.2) when instantiated with Diffie-Hellman key agreement [13]. Our pro-
posal essentially leverages a result presented by Peikert which demonstrated
that Σ0 can be proven secure with any IND-CPA KEM [41], instead of being
restricted to Diffie-Hellman.

As in [41], the key exchange protocol here described is parametrized by an
(IND-CPA-secure) key encapsulation mechanism KEM with key space K, a dig-
ital signature scheme SIG, a pseudorandom function f : K× {0, 1} → K0, and a
message authentication code MAC with key space K0 and message space {0, 1}∗.
A successful execution of the protocol outputs a secret key in K0. In our work,
we explicitly defines CAKE as the KEM scheme. For the sake of flexibility, we do
not specify any particular signature, MAC or pseudorandom function although
they all need to meet some minimum security notion (the signature and MAC
must be EUF-CMA secure and f must be a secure pseudorandom function; see
Sect. 5). We assume that each party has a long-term signing key for SIG whose
corresponding verification key is publicly available and associated to its identity
ID. This can be done in terms of certificate authorities and common public key
infrastructure.

Key exchange protocols are multiparty protocols activated by messages that
are locally processed, leading to new messages being triggered. A session is an
invocation of this protocol. Each session is associated to a unique session ID
(denoted as sid) and a party can be called the Initiator (with identity IDI) who
first activates the session or the Responder (identity IDR) who is activated upon
receiving a message. For a more detailed discussion on key exchange protocol
definitions we refer to [12]. Figure 2 describes how CAKE can be plugged into
an authenticated key exchange protocol, similarly as done in [41].

The protocol assumes that Initiator and Responder possess identities IDI

and IDR, respectively. Initiator generates a unique session identifier sid and a
CAKE key pair (sk = (h0, h1), pk = (g0, g1)), and sends (sid, pk) to Responder,
who generates a key K and a ciphertext C using the encapsulation method.
The pair (K0,K1) is generated from K using the pseudorandom function f . The
tuple (1, sid, pk, C) is signed using Responder’s signing key and a MAC tag is
generated from (1, dif, IDR) using key K1. The signature, tag, IDR, sid and
C is sent to Initiator, who tries to decapsulate C. In case of success, Initiator
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rednopseRrotaitinI

IDI IDR

sid

(sk, pk) :=CAKE.Gen(λ)
sid,pk−−−−−−−−−−−→

(K, C) := CAKE.Encaps(pk)

K0 := fK(0), K1 := fK(1)

α := SIG.SignR(1, sid, pk, C)

β := MAC.TagK1(1, sid, IDR)
sid,C,IDR,α,β←−−−−−−−−−−−

k or ⊥ := CAKE.Decaps(sk, C)

K0 := fK(0), K1 := fK(1)

� or ⊥ := SIG.V erifyR(α)

� or ⊥ := MAC.V erifyK1(β)

γ := SIG.SignI(0, sid, C, pk)

δ := MAC.TagK1(0, sid, IDI)
sid,IDI ,γ,δ−−−−−−−−−−−→

� or ⊥ := SIG.V erifyI(γ)

� or ⊥ := MAC.V erifyK1(δ)

Public output: (IDI , sid, IDR) Public output: (IDI , sid, IDR)

Local output: (K0 (:tuptuolacoL) K0)

Fig. 2. SIGMA-like authenticated key exchange from CAKE KEM

reconstructs (K0,K1) and verifies both signature and MAC tag. If it succeeds,
Initiator signs the tuple (0, sid, C, pk) and generates a MAC tag for the tuple
(0, sid, IDI). Signature, tag, sid and IDI are sent to Responder who verifies both
signature and tag. If it succeeds, the public output is the tuple (IDI , sid, IDR)
and the local output is the shared key K0. If any process fails, the public output
is (abort, IDI , sid) and (abort, IDR, sid), and the key exchange is restarted.

5 Formal Security Assessment

In this section, we prove that CAKE is IND-CPA secure and that the authenti-
cated key exchange protocol described in Sect. 4 is SK-Secure.

5.1 CAKE IND-CPA Security

In the following definition, we denote by K the domain of the exchanged sym-
metric key and by λ the security level of the scheme.
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Definition 4. A key encapsulation mechanism is IND-CPA (passively) secure
if the outputs of the two following games are computationally indistinguishable.

Game 1 Game 2

(sk, pk) ← Gen(λ) (sk, pk) ← Gen(λ)

(c, K) ← Encaps(pk) (c, K) ← Encaps(pk)

K∗ ← K
Output (pp, pk, c, K) Output (pp, pk, c, K∗)

Proposition 1. CAKE is IND-CPA secure in the random oracle model assum-
ing that the hash function K is modeled as a random oracle.

Proof. It is easy to show that our claim is true. In fact, note that the only
difference between the two distributions in Game 1 and Game 2 is the value of
K which is replaced by a uniformly random value K∗. Remember that in an
honest run of CAKE (i.e. Game 1), the key K is obtained as K(e). Since K is
modeled as a random oracle, its output is pseudorandom. Thus the only way an
attacker could distinguish the two values would be by recovering the vector e.
Since this is a passive attack, the attacker can’t perform any decryption queries
and can only rely on the public data, that is public key and ciphertext. Thus,
this is equivalent to decoding the noisy codeword c in the code described by
(g0, g1). Decoding a random linear code and distinguishing the public code from
the private one are both well-known problems which are considered to be hard,
and which will be described and discussed extensively in Sect. 6. For now, suffice
to say that since the output of K is pseudorandom and recovering e is infeasible,
CAKE satisfies the IND-CPA security notion. ��

5.2 SK Security of Authenticated Key Exchange from CAKE

The security notion targeted by our SIGMA-like construction and also by [41]
is known as SK Secure1, which stands for session-key secure [13]. Informally,
this notion translates into: “the adversary does not learn anything about the
session key by interacting with the protocol” and enables the establishment of
secure channels (usually the ultimate goal of sharing a key). In the following
paragraphs, we give an overview on SK Security.
1 This security notion was originally introduced in [12]. The main difference between

[12] and [13] is that in the former there was an implicit requirement that the identities
of the parties must be known to each other beforehand, while the latter attains a
more realistic (internet-oriented) scenario where the identities of the parties are not
initially known and only becomes known after the protocol run evolves (this model
is called the “post-specified peer model” and is the one used in our proposal).
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According to [13], a key exchange protocol is a multiparty protocol where
each party runs one or more copies of the protocol. A session is a local procedure
resulting from a protocol activation at a party. The activation of a protocol at a
party has three inputs (P, sid, d): the local party P , the unique session identifier
sid and the intended peer address d. A party can be activated as an Initiator or
as a Responder (upon an incoming message). The output of a session is a public
triple (P, sid,Q), where Q is the intended peer identity and a secret session key.
In case of failure, the output is a special failure symbol. Sessions have a local
state which is erased after the session completes. Besides, each party may have
an additional long-term state (composed by long-term signing keys, for example)
which is visible to multiple sessions and is not erased after session completion.

The adversarial model is called the “unauthenticated-links model (UM)” and
allows the attacker to have full control over the communication channel, thus
being able to intercept, delay, inject, drop, or change any message exchanged.
In short, it is a fully-capable man-in-the-middle attacker. Besides, the attacker
is also allowed to start key exchange sessions and, more importantly, is able to
perform all three session exposure attacks:

– Session-state reveal: targets a still incomplete session. The adversary learns
the state of that particular session (not including any long-term secrets acces-
sible to all sessions, such as long-term signing keys).

– Session-key queries: targets a complete session and allows the adversary
to learn its corresponding session key.

– Party corruption: the attacker learns all information possessed by the party
(including long-term secrets accessible to all sessions, such as long-term sign-
ing keys).

An important concept in this model is session expiration. When a session
expires, the attacker is not allowed to perform session-state reveal or session-key
queries, although is fully able to corrupt a party. A key exchange protocol which
is secure even after a party corruption is said to enjoy perfect forward secrecy
(PFS). Another relevant concept is the one of matching session.

Definition 5. Let (P, sid) be a complete session with public output (P, sid,Q).
The session (Q, sid) is called the matching session of (P, sid) if either:

1. (Q, sid) is not completed; or
2. (Q, sid) is completed and its public output is (Q, sid, P ).

Finally, the actual concept of SK Secure relies on the attacker’s ability of
distinguishing a session key from random. This is done through the test session
game that allows the attacker to choose any session which has not been exposed
(by any of the session exposure attacks above) nor its matching session, and runs
the following game used in the formal SK secure definition.

Game 1 (Test Session). Let U be an adversary of the key exchange protocol π.
In the test-session game, the key exchange protocol oracle toss a coin b ← {0, 1}
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and returns a valid session key k if b = 0 or returns a sequence of random bits
if b = 1. The experiment finishes by the adversary U outputting b′ ∈ {0, 1}, a
guess on the value of b.

Definition 6 (SK Secure). A key exchange protocol π is SK Secure in the
post-specified peer model with unauthenticated links if the following holds for any
adversary:

1. π satisfies that both uncorrupted parties output the same session key.
2. The probability that U guesses b correctly in Game 1 is 1

2 + ε, where ε is a
negligible fraction in the security parameter.

Having provided this overview on SK Security, we can finally prove the pro-
tocol described in Sect. 4 attains such a security notion.

Theorem 1. The key exchange protocol described in Sect. 4 is SK Secure in the
post-specified peer model with unauthenticated links assuming that:

1. The key exchange protocol described in Sect. 4 satisfies that both uncorrupted
parties output the same session key;

2. CAKE scheme is IND-CPA secure;
3. SIG and MAC are existentially unforgeable under chosen message attack and

that the function f is a secure pseudorandom function.

Proof. The proof follows Theorem 6.1 of [41]. The first item is about the correct-
ness of the scheme and boils down to ensure that both parties derive the same
session key. This is guaranteed by the correctness of the underlying key encapsu-
lation mechanism (CAKE) and the unforgeability of the signature scheme (see
third item below) required to ensure that the key corresponds to the decapsula-
tion of the given ciphertext. As in [41], we remark that the security of the MAC
and the pseudorandom function are not needed for such a correctness proof. The
second item is achieved by Proposition 1. The third item is achieved by construc-
tion, i.e. by selecting a MAC and a signature scheme that are EUF-CMA and
the function f that is a secure pseudorandom function. ��

Remark on Perfect Forward Secrecy. Key exchange protocols based on
asymmetric encryption, such as key transport protocols, are usually not able to
achieve PFS. This happens because if a party is compromised, then its long-
term encryption keys are also compromised, allowing the adversary to recover
past session keys by decrypting previously exchanged ciphertexts. We remark
that this is not the case of the protocol described in Sect. 4 given the fact we
use ephemeral asymmetric encryption keys. Since these keys are part of the
session state, they will be erased in an event of session expiration. Signing keys
are the actual long-term keys in our proposal and their leakage does not affect
previous sessions. The same argument holds for our key encapsulation mechanism
(CAKE) as long as the ephemeral encryption keys are guaranteed to be erased
after key exchange completion.
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6 Practical Security Assessment

This section discusses the practical security aspects of our proposal.

6.1 Hard Problems and Security Reduction

Let R be the ring F2[x]/〈xr − 1〉. For every h ∈ R and any positive integer t,
let E(h, t) denote the uniform distribution over {e0 + e1h | e0, e1 ∈ R,wt(e0) +
wt(e1) = t}. For any positive integer w, let K(w) denote the uniform distribution
over {h1h

−1
0 | h0, h1 ∈ R,wt(h0) + wt(h1) = w}.

The KEM of Sect. 3 is secure as long as both distributions E(h, t) and K(w)
are computationally indistinguishable from the uniform distribution over R.
From the practical viewpoint, this means that r, w, t must be chosen such that
the following two problems are intractable:

Problem 1. Given s, h ∈ R, find e0, e1 ∈ R such that wt(e0) + wt(e1) = t and
e0 + e1h = s.

Problem 2. Given h ∈ R, find h0, h1 ∈ R such that wt(h0) + wt(h1) = w and
h1 + h0h = 0.

Problems 1 and 2 are respectively the problems of decoding t errors and finding
a codeword of weight w in an arbitrary quasi-cyclic code of dimension r and
length n = 2r.

In the current state of the art, the best known techniques for solv-
ing those problems are variants of Prange’s Information Set Decoding (ISD)
[45]. We remark that, though the best attacks consist in solving one of the
search problems, the security reduction of our scheme requires the decision ver-
sion of Problem 2.

6.2 Information Set Decoding

The best asymptotic variant of ISD is due to May and Ozerov [34], but it has
a polynomial overhead which is difficult to estimate precisely. In practice, the
BJMM variant [6] is probably the best for relevant cryptographic parameters.
The work factor for classical (i.e. non quantum) computing of any variant A
of ISD for decoding t errors (or finding a word of weight t) in a binary code of
length n and dimension k can be written

WFA(n, k, t) = 2ct(1+o(1))

where c depends on the algorithm, on the code rate R = k/n and on the error
rate t/N . It has been proven in [51] that, asymptotically, for sublinear weight
t = o(n) (which is the case here as w ≈ t ≈ √

n), we have c = log2
1

1−R for all
variants of ISD.
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In practice, when t is small, using 2ct with c = log2
1

1−R gives a remarkably
good estimate for the complexity. For instance, non asymptotic estimates derived
from [23] gives WFBJMM(65542, 32771, 264) = 2263.3 “column operations” which
is rather close to 2264. This closeness is expected asymptotically, but is circum-
stantial for fixed parameters. It only holds because various factors compensate,
but it holds for most MDPC parameters of interest.

Exploiting the Quasi-Cyclic Structure. Both codeword finding and decod-
ing are a bit easier (by a polynomial factor) when the target code is quasi-cyclic.
If there is a word of weight w in a QC code then its r quasi-cyclic shifts are in
the code. In practice, this gives a factor r speedup compared to a random code.
Similarly, using Decoding One Out of Many (DOOM) [48] it is possible to pro-
duce r equivalent instances of the decoding problem. Solving those r instances
together saves a factor

√
r in the workload.

Exploiting Quantum Computations. As commented in [8], Grover’s algo-
rithm fully applies to Prange algorithm. Effectively, this halves the above asymp-
totic exponent for Prange algorithm. Later, it was proven in [27] that more
involved variants of ISD could achieve a better exponent but also the improve-
ment was disappointingly away from the factor 2 that could be expected. In the
sequel, we will estimate the quantum security by dividing the classical exponent
by two. This is probably conservative but a more precise evaluation would not
be significantly different.

Practical Parameter Selection. We denote WF(n, k, t) the workfactor of
the best ISD variant for decoding t errors in a binary code of length n and
dimension k. In the following we will consider only codes of transmission rate
0.5, that is length n = 2r and dimension r. In a classical setting, the best solver
for Problem1 has a cost WF(2r, r, t)/

√
r and the best solver for Problem2 has

a cost WF(2r, r, w)/r. As remarked above, with WF(2r, r, t) ≈ 2t we obtain
a crude but surprisingly accurate, parameter selection rule. To reach λ bits of
quantum security, we choose w, t and r such that

λ ≈ t − 1
2 log2 r

2
≈ w − log2 r

2
. (1)

6.3 Defeating the GJS Reaction Attack

Both CAKE and the authenticated key exchange protocol described in Sect. 4
requires ephemeral KEM key pair, i.e. a KEM key generation is performed for
each key exchange. As a result, the GJS reaction attack is inherently defeated: a
GJS adversary would have (at most) a single opportunity to observe decryption,
thus not being able to create statistics about different error patterns. We note
that, for efficiency purposes, an initiator may want to precompute KEM key pairs
before engaging in key exchange sessions. We remark that policies to securely
store the pregenerated KEM key pair must be in place, in order to avoid that
an adversary access a KEM key pair to be used in a future communication.
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6.4 How to Choose MDPC Parameters

If we denote λ the (quantum) security parameter, then both t and w must be
close to 2λ, as in (1). In addition, to ensure decoding, we expect the product tw
to grow as r log r. Putting everything together we obtain

{
t ≈ 2λ + log2(2λ)
w ≈ 2λ + 2 log2(2λ)

and r will grow as λ2/ log λ. The exact value of r needs to be checked, by simu-
lation, and increased to a point where the decoding failure rate is acceptable.

Finally, we choose r such that 2 is primitive modulo r. First, this will force
r to be prime, thwarting the so-called squaring attack [31]. Also, it implies that
xr − 1 only has two irreducible factors (one of them being x − 1). This is an
insurance against an adversary trying to exploit the structure of F2[x]/〈xr − 1〉
when xr − 1 has small factors, other than x − 1.

The parameters suggested in Table 2 consider the security attacks discussed in
Sect. 6. In addition, the block size r is chosen so that state-of-the-art bit flipping
decoding (see [33]; or [15] for a comprehensive assessment) has a failure rate
not exceeding 10−7 (validated through exhaustive simulation). The last column
shows the public and private key size which are both n bits long.

Table 2. QC-MDPC suggested parameters for λ bits of quantum security.

λ n0 n r w t Key size (bits)

128 2 65,542 32,771 274 264 65,542

96 2 39,706 19,853 206 199 39,706

64 2 20,326 10,163 142 134 20,326

7 Conclusion

This paper introduced CAKE, an IND-CPA secure key encapsulation mechanism
(KEM) based on QC-MDPC codes. CAKE uses ephemeral keys and therefore
inherently defeats the recent GJS attack [22]. Since key generation is performed
for every key exchange, we devised an efficient QC-MDPC key generation, which
is much faster than the one proposed for the QC-MDPC McEliece encryption
scheme [39].

CAKE offers a competitive performance. All public key, private key and
cryptogram are n bits long, corresponding to the bandwidth of the messages
depicted in Fig. 1. The key generation cost is dominated by two sparse-dense
modular polynomial multiplications, and does not require any polynomial inver-
sion as usually seen in code-based cryptosystems. The cost of encapsulation is
dominated by the two dense-dense modular polynomial multiplications and a
hash computation. The cost of decapsulation is dominated by two sparse-dense
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polynomial modular multiplications, a decoding attempt, and a hash computa-
tion. In summary, besides MDPC decoding, CAKE relies on modular polynomial
multiplications and hash computations, so we can expect efficient implementa-
tions on a wide range of platforms. A detailed assessment of implementation
aspects will be discussed in the full version of this paper.

CAKE compares well with other post-quantum key exchange schemes. Com-
paring to other code-based schemes, the Goppa-based McBits [9], one of the
fewest currently known code based KEM, offers a public key whose size is orders
of magnitude greater than the one of CAKE. From a security perspective, [9]
does not seem optimal either given a distinguisher for certain (i.e., high-rate)
Goppa codes [18]. On the other hand, Ouroboros [28] is a very recent proposal
that seems to have interesting security proof properties.

Recent works [16,26] have shown that isogenies in supersingular elliptic
curves can be used to devise efficient key exchange mechanisms. In particular,
those constructions have the benefit of achieving small public key sizes, but not
so attractive latency performance. Note that this is a much more recent trend
and caution should be exercised as they have not gone through nearly as similar
scrutiny as code-based cryptosystems, first appeared almost 40 years ago.

When comparing with lattice-based schemes, e.g., [1,11] and [10], CAKE and
the lattice-based protocols show some similarities. All of them suffer from decod-
ing failures (lattice schemes usually have a lower failure probability though).
Also, the use of ephemeral keys for key exchange is not new in the literature;
[1] discusses the security loss inherent to key cache ([19] presents a comprehen-
sive analysis on the security impact of key reuse for Ring-LWE). Besides, they
offer unbalanced cost between the parties, what may lead to great flexibility
(e.g., in a certain application, the role of Initiator/Responder could be prede-
fined depending on the expected computational power of the parties). In terms
of total bandwidth cost, CAKE’s traffic requires 2/3 of the traffic presented in
[10], but is 1.3 and 3 times larger than that of [1] and [11], respectively. While
such comparisons are certainly useful, we point out that lattice-based schemes
are not the immediate “competitors” of CAKE because they are based on a
different class of hard problems. We note that the transition to post-quantum
cryptography is an unprecedented move, thus, relying on a single, silver-bullet
class of cryptographic problems (e.g., lattices) is a very risky strategy, whilst
considering a set of well-studied constructions seems a considerably safer choice
in the long term.

This paper also presents an SK secure authenticated key exchange protocol
based on CAKE, which is suitable for the Internet Key Exchange (IKE), similarly
to [41]. We prove that CAKE is IND-CPA secure, and that the authenticated
protocol is SK secure. Moreover, we demonstrate that our proposal achieves
perfect forward secrecy, despite the fact it is based on asymmetric encryption
(key transport schemes with static keys do not attain PFS, for example).

Taking all these considerations into account, we believe that CAKE is a
promising candidate for post-quantum key exchange standardization.
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Appendix

A Efficiently Sampling Invertible Elements from
F2[x]/〈Xr − 1〉

In this section, we prove that one can efficiently sample an invertible element
from F2[x]/〈xr −1〉 by taking any polynomial h

$←F2[x]/〈xr −1〉 such that wt(h)
is odd.

Lemma 1. Let h ∈ F2[x] have even weight. Then h is not invertible modulo
xr − 1.

Proof. We show that (x − 1) | h by induction on wt(h). For wt(h) = 0 trivially
(x − 1) | h. Assume that (x − 1) | h whenever wt(h) = 2k for some k � 0.
Now consider any h ∈ F2[x] with weight wt(h) = 2(k + 1), and take two distinct
terms xi, xj of h such that i < j. Define h′ = h − xi − xj , so that wt(h′) = 2k.
Then (x − 1) | h′ by induction, i.e. h′ = (x − 1)h′′ for some h′′ ∈ F2[x]. Hence
h = h′+xi+xj = (x−1)h′′+xi(xj−i+1) = (x−1)h′′+xi(x−1)(xj−i−1+· · ·+1) =
(x − 1)(h′′ + xi(xj−i−1 + · · · + 1)), and therefore (x − 1) | h. ��
Theorem 2. Let r a prime such that (xr−1)/(x−1) ∈ F2[x] is irreducible. Then
any h ∈ F2[x] with deg(h) < r is invertible modulo xr − 1 iff h �= xr−1 + · · · + 1
and wt(h) is odd.

Proof. Take a term xi of h. Then wt(h+xi) = wt(h)−1 is even, and by Lemma 1
(x − 1) | (h + xi). Hence h mod (x − 1) = xi mod (x − 1) = 1, meaning that h is
invertible modulo x − 1.

Now, because (xr −1)/(x−1) = xr−1+ · · ·+1 is irreducible, if deg(h) < r−1
then gcd(h, xr−1+· · ·+1) = 1, and if deg(h) = r−1, then gcd(h, xr−1+· · ·+1) =
gcd(h + xr−1 + · · · + 1, xr−1 + · · · + 1) = 1, since deg(h + xr−1 + · · · + 1) < r − 1.
Hence h is invertible modulo xr−1 + · · · + 1.

Therefore, the combination of the inverses of h modulo x − 1 and modulo
xr−1 + · · · + 1 via the Chinese remainder theorem is well defined, and by con-
struction it is the inverse of h modulo (x − 1)(xr−1 + · · · + 1) = xr − 1. ��
Corollary 1. One can efficiently sample an invertible element from
F2[x]/〈xr − 1〉 by taking any polynomial h

$←F2[x]/〈xr − 1〉 such that wt(h) is
odd. ��
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25. Heyse, S., von Maurich, I., Güneysu, T.: Smaller keys for code-based cryptogra-
phy: QC-MDPC McEliece implementations on embedded devices. In: Bertoni, G.,
Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 273–292. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40349-1 16

26. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

27. Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 69–89. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 5

28. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

29. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

30. Lange, T.: Initial recommendations of long-term secure post-quantum systems.
PQCRYPTO. EU. Horizon, 2020 (2015)

31. Lndahl, C., Johansson, T., Koochak Shooshtari, M., Ahmadian-Attari, M., Aref,
M.R.: Squaring attacks on McEliece public-key cryptosystems using quasi-cyclic
codes of even dimension. Des. Codes Cryptogr. 80(2), 359–377 (2016)

32. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2016/085
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
http://eprint.iacr.org/2013/162
http://eprint.iacr.org/2013/162
https://doi.org/10.1007/978-3-642-40349-1_16
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-642-13190-5_1


CAKE: Code-Based Algorithm for Key Encapsulation 225
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Abstract. An identity-based encryption scheme enables the efficient
distribution of keys in a multi-user system. Such schemes are particularly
attractive in resource constrained environments where critical resources
such as processing power, memory and bandwidth are severely limited.
This research examines the first pragmatic lattice-based IBE scheme pre-
sented by Ducas, Lyubashevsky and Prest in 2014 and brings it into the
realm of practicality for use on small devices. This is the first standalone
ANSI C implementation of all the software elements of the scheme with
improved performance. User Key Extraction demonstrates a 180% speed
increase and Encrypt and Decrypt demonstrate increases of over 500%
and 1200% respectively for 80-bit security on an Intel Core i7-6700 CPU
at 4.0 GHz, with similar accelerations for 192-bit security, compared with
Prest’s NTL proof-of-concept implementation on an Intel Core i5-3210M
CPU at 2.5 GHz. In addition, we provide a range of suggestions to further
enhance performance.

Keywords: Lattice-based cryptography · Identity-based encryption ·
NTRU

1 Introduction

Managing keys in systems that use Public Key Cryptography (PKC) as the pri-
mary means of authentication is achieved within the established framework of a
Public Key Infrastructure (PKI). However, it is widely known that PKI requires
an extensive network for operational and certificate management. This imposes
significant overheads in resource constrained environments and in practice limits
the frequency that PKC can be used for large scale, bandwidth intensive appli-
cations requiring real-time performance. As technology progresses to operational
landscapes such as the Internet of Things (IoT), the need for alternative PKC
schemes comes to the fore. Schemes such as Identity-based Encryption (IBE)
have been introduced to overcome the complexity issues associated with tradi-
tional PKI based approaches. IBE simplifies key generation and distribution in
a multi-user system. In environments with limited resources IBE can offer the
potential for PKC to be utilised when it is needed and not just when it can be
c© Springer International Publishing AG 2017
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accommodated. In addition to resource efficient schemes, many applications have
long-term security requirements. For such applications the threat of quantum
attacks must be mitigated [NIST-IR8109]. The formulation of Shor’s algorithm
over two decades ago has prompted research into mathematical areas which could
potentially provide quantum-security. One such area is that of lattices and their
associated NP-hard problems. Finding lattice-based schemes analogous to clas-
sical schemes such as public key encryption and digital signature schemes is the
subject of intense research. One of the main advantages of lattice-based cryp-
tography is that it can also provide quantum-resilient alternatives to today’s
IBE schemes, traditionally based on pairing. Ducas, Lyubashevsky and Prest
proposed such a scheme in 2014 [11], henceforth referred to as DLP-IBE. This
research presents a complete standalone ANSI C implementation of this scheme.
There has been no prior indication of the practical performance and costs of a
lattice-based IBE scheme. This work not only provides a benchmark for this type
of scheme, but our efficiency improvements bring it into the realm of practicality
for the post-quantum setting.

The paper is organised as follows: Sect. 1 reviews both non-lattice and lattice-
based IBE schemes and gives a background of lattice geometry. Section 2 intro-
duces the DLP-IBE scheme, and Sect. 3 describes the proposed software archi-
tecture, which includes the functionality of Master Key Generation and Extract
algorithms as well as the Encrypt and Decrypt processes. Section 4 gives the con-
clusions. We acknowledge the major bottlenecks, optimisations and challenges
and our methods to address them. Implementation results are also given along
with potential extensions of the scheme.

1.1 Identity-Based Encryption

An IBE scheme is one where the user’s public key is a piece of meaningful
information, such as an email address, or a device identifier. A trusted authority
uses a master secret key to compute the user secret key. The authority has a
master public key which is also needed to send messages to the user. The use
of already established personal information as the user ID removes the need
for public key distribution. Elements such as timestamps can be incorporated
into the user keys to provide a key refresh mechanism. Additionally, the use of
timestamps with the user ID can allow senders to encrypt messages that can only
be read in the future. In the generic IBE instantiation the central authority has
complete access to keys and can therefore decrypt any message and so should
be trusted. Additionally, the communication channels between users and the
trusted authority should be secure.

The first notion of identity-based schemes was presented by Shamir in
1984 [26]. The idea was to eliminate the need for a public certificate across
email systems. These schemes allowed secure communication without exchang-
ing user keys. Shamir presented a solution for an identity-based signature scheme
but it wasn’t until 2001 that such an encryption scheme was realised [5]. There
are two main threads of constructing traditional IBE schemes; using pairings
or quadratic residues. The most prominent schemes are Boneh-Franklin [5],
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Cocks [10] and Sakai-Kasahara [25]. Boneh co-founded a start-up company in
2002 called Voltage Security Inc.1 which currently provides IBE solutions to
industry. These include secure email and file transfer applications. However,
these schemes are susceptible to quantum attacks due to Shor’s algorithm, cre-
ating the need for quantum-resilient variants.

The first application of lattices (Sect. 1.2) to IBE schemes was in 2008 by
Gentry et al. [14]. The main contribution of this work was a sampling algorithm
(known as GPV sampling) which showed how to use a short basis as a trapdoor
for generating short lattice vectors. This sampler was then used to construct
a lattice-based IBE scheme that resembled Cocks’ traditional scheme (due to
the use of a trapdoor), and can be considered as the dual of Regev’s LWE
scheme [23]. However, the security proof was in the random oracle model and
the master public key and user secret keys had large sizes of O(n2) bits. In 2010,
Agrawal et al. [1] proposed a Learning With Errors (LWE)-based IBE scheme
with a trapdoor structure, with performance comparable to the GPV scheme. It
uses a sampling algorithm to obtain a basis with low Gram-Schmidt Norm for
the master secret key and forms a lattice family with two associated trapdoors
to generate short vectors; one for all lattices in the family and the other for all
but one. It improves on previous schemes which process the user identities bit
by bit by instead considering them as a whole. The public key is O(nm), where
the lattice basis is of size n ×m. In 2016, Apon et al. [3] proposed the most
efficient standard LWE scheme to date with a public key size of O(2nm log(q)).
This includes the design of new encoding scheme for identities, incorporating a
collision-resistant hash function. The first Ring-LWE based IBE scheme was the
DLP-IBE scheme [11]. The use of the ring variant increases efficiency by reducing
the public key to a polynomial/vector of O(n) and ciphertext O(2n). However,
it makes additional assumptions to standard LWE. In particular, it uses the
GPV sampling algorithm on a certain distribution of NTRU lattices to increase
its efficiency. Other Ring-LWE schemes have since been proposed, for example
in 2016 Katsumata and Yamada [16] introduced a scheme based on Yamada’s
2016 standard-LWE scheme [29], and exploits the ring properties and assumes
the Ring-LWE problem hardness for fixed polynomial approximation factors.
The public parameters in this scheme are of size O(nl1/d log(n)), ciphertext
O(n log(n)) and private key O(n log(n)). However, the DLP-IBE scheme is still
considered the most efficient scheme to date due to smaller key sizes.

1.2 Lattice-Based Cryptography

Shor’s algorithm [27] has prompted the research community to investigate so-
called “quantum-resistant” forms of cryptography. One of the strong contenders
is lattice-based cryptography. The advantages of this type of cryptography are
the associated “worst-case hardness” properties [2], efficiency of implementations
and flexibility, as it has potential to be used in both encryption and digital
signature schemes, as well as IBE, attribute-based encryption (ABE) and even

1 https://www.voltage.com.

https://www.voltage.com
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fully homomorphic encryption (FHE), although in general the latter two schemes
have not yet demonstrated practicality.

A lattice is a mathematical structure, defined by a collection of vectors called
a basis, denoted B. The points v of the lattice are all the possible linear combi-
nations of the basis vectors with integer coefficients:

L = {v = a1b1 + a2b2 + ... + anbn : ai ∈ Z, bi ∈ B}
Informally, this can be thought of as an infinite arrangement of regularly spaced
points. The closest vector problem (CVP), which is that of finding the closest
lattice point to a given point in the space, is an NP-hard lattice problem. The
shortest vector problem (SVP), which is that of finding the shortest vector in
a lattice, is also NP-hard under randomised reductions. These and connected
problems can be used as the basis of security for cryptographic schemes.

A popular lattice problem is the learning with errors (LWE) problem, formu-
lated by Regev in 2005 [23], and its ideal-lattice-based variant Ring-LWE [18].
Many cryptographic schemes based on these have been proposed, such as the
encryption scheme in the original papers, digital signature scheme [19] and other
concepts such as e-voting [9]. Adding structure and pattern to the lattice basis
aids the working of the scheme. This can also improve memory and efficiency,
for example by reducing the amount of basis information that needs to be stored
or transported to recover the lattice. The DLP-IBE Scheme uses NTRU lattices
for this reason. NTRU lattice bases have a convolutional, modular structure.
The trapdoors in this scheme are the polynomials f, g, which allow the user to
generate a “nice” basis Bnice whilst the public only have access to the lattice
through a “bad” basis Bbad defined by polynomial h.

Bbad =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ... 0 h0 h1 ... hN−1
0 1 ... 0 −hn−1 h0 ... hN−2

...
. . .

...
...

. . .
...

0 0 ... 1 −h1 −h2 ... h0
0 0 ... 0 q 0 ... 0
0 0 ... 0 0 q ... 0

...
. . .

...
...

. . .
...

0 0 ... 0 0 0 ... q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
(
1 H
0 q

)
and Bnice =

(
A(g) −A(f)
A(G) −A(F )

)
,

where each A(·) is an anti-circulant matrix dependent on a polynomial f, g, F
or G and is of the form:

A(f) =

⎛
⎝

f0 f1 ... fN−1
−fn−1 f0 ... fN−2

...
. . .

...
−f1 −f2 ... f0

⎞
⎠

The NTRU lattice assumption is that it is a hard problem to recover poly-
nomials f, g from h, where h = g/f , i.e. it is hard to obtain Bnice from Bbad.
The original NTRU system used the polynomial ring Zq[x]/(xN − 1), however
the DLP-IBE scheme uses the NTRU distribution over the polynomial ring
Zq[x]/(xN + 1), as proposed as by Stehlé and Steinfield in 2011 [28].
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2 IBE Scheme Setup

The DLP-IBE scheme was introduced in [11] as the first efficient lattice-based
IBE scheme, whereby the underlying computational hardness is the NTRU and
the Ring-LWE assumption. The first practical efforts towards executing the
DLP-IBE scheme was a Proof-of-Concept (PoC) implementation by the orig-
inal authors2. This implementation is written in C++ and depends on the NTL
library; it also relaxes some constraints such as security thresholds for the lattice
basis size. Recently, Güneysu and Oder [15] demonstrated the efficiency of the
Encrypt and Decrypt components of this scheme on a range of low-cost micro-
controllers and reconfigurable hardware. The research in this paper implements
and examines the entire scheme in C. In particular our focus is on the computa-
tionally intensive tasks of the Key Generation and Extraction algorithms. The
design includes the enforcement of the aforementioned security thresholds and,
in particular, provides the first indication of practical performance of the overall
scheme.
IBE schemes consist of 4 main algorithms:
Master KeyGen: generates the master secret key and the master public key.
Here, the private key is an NTRU lattice basis and the public key is an identifier
of that lattice, in the form of a polynomial. See Sect. 3.1.
Extract: an algorithm to generate the user secret key, given their identity. It
uses the master secret key and a specified hash function to do this. See Sect. 3.2.
Encryption and Decryption: encryption is the process public clients use to
encrypt a message to a user. The DLP-IBE uses the generic ring-LWE encryption
scheme [18]. The encryption process uniformly samples small error polynomials
to encapsulate a uniformly-sampled key, the hash of which is used to one-time-
pad the message. To decrypt, the key is recovered by rounding, and this allows
the message to be output. See Sect. 3.3.

Table 1 shows the inputs and outputs of each algorithm in the DLP-IBE
scheme. In DLP-IBE there is an additional Gaussian sampler algorithm.

Table 1. Algorithm summary

Algorithm Inputs Outputs

Master KeyGen N, q B ∈ Z
2N×2N
q , h ∈ Rq

Extract B ∈ Z
2N×2N
q , H : {0, 1}∗ → Z

N
q , id SKid ∈ Rq

Encryption h ∈ Rq, id, m ∈ {0, 1}m, (u, v, c) ∈ R2
q

H : {0, 1}∗ → Z
N
q ,

H ′ : {0, 1}N → {0, 1}m

Decryption SKid, (u, v, c) ∈ R2
q m ∈ {0, 1}N

2 https://github.com/tprest/Lattice-IBE.

https://github.com/tprest/Lattice-IBE
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2.1 Notation

Throughout the paper, we are working over the polynomial ring modulo (xN +1)
of integers modulo q, denoted Rq = Zq[x]/(xN +1). Here, N is a power of 2 and q
is a prime congruent to 1 mod 2N . Vectors/polynomials are consider analogous
and will be written as v. Matrices will denoted as M. The lattice basis will
be denoted by B or simply B depending on the context; the Gram-Schmidt
Orthogonalisation denoted Bgs with basis vectors b̃i. The Gaussian distribution
over Rq with standard deviation σ is denoted DN,σ.

3 Software Design of the DLP-IBE Scheme

The DLP-IBE scheme is implemented in portable ANSI C. It is intended for
general-purpose applications ranging from high-end 64-bit Intel Xeon servers to
32-bit ARM Cortex-M embedded systems. The design presented here focusses
on 32-bit and 64-bit x86 processors in an Ubuntu/CentOS Linux environment,
with options to configure client compilation on ARM v7 Cortex-A and Cortex-M
target platforms. The Autotools build system is used to deliver the scheme as a
library within a software distribution that can be suitably adapted to the host
system at compile-time, i.e. utilising alternative algorithms for environments
with constrained RAM. Additional adaptations can be configured at run-time,
such as the selected underlying cryptographic functions (i.e. CSPRNG, hash),
NTT optimisations, modular reduction techniques etc.

The proposed architecture considers a range of security levels to suit deploy-
ment needs, as in practice it is only possible to deploy particular levels of secu-
rity on constrained devices, depending upon their capabilities, memory resources
and the information being protected. For example, a battery-powered temper-
ature sensor offering a 192-bit security strength would certainly be secure, but
the reduced battery life and increased price of more capable hardware that is
required are unlikely to appeal to consumers. More powerful devices within an
typical IoT architecture may be able to support the full functionality of DLP-
IBE, but peripheral devices may only support the much more efficient Encrypt
and/or Decrypt functionality. In a standard scenario the peripheral devices could
be provided with a user secret key for decryption purposes by one of three means:
(a) embedded in firmware, (b) provided during device installation or (c) issued
periodically by the DLP-IBE trusted authority. In such a scenario it is possible
for DLP-IBE to provide public-key encryption for constrained devices.

The results have been obtained using GNU GCC 5.4.0. An Intel Core i7 6700
with both hyper-threading and TurboBoost disabled has been used, wherein the
four CPUs are placed in performance mode at 4 GHz. GNU GMP 6.1.2 has been
used to provide multiple precision arithmetic.

3.1 The KeyGen Algorithm

The master key generation (KeyGen) algorithm generates the master keys. This
happens once per environment setup. In this scheme, the KeyGen algorithm
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(Algorithm 1) requires the degree N of defining polynomials f, g, h and the
modulus q and outputs the master secret key B ∈ Z

2N×2N
q and master public

key h ∈ Rq.

Algorithm 1: Key Generation [11]
Data: N, q
Result: B ∈ Z

2N×2N
q , h ∈ Rq

1 σf = 1.17
√

q
2N

2 f, g, ← DN,σf

3 Norm ← max
(
||g, −f ||,

∣∣∣
∣∣∣
(

qf̄
f∗f̄+g∗ḡ

, qḡ
f∗f̄+g∗ḡ

)∣∣∣
∣∣∣
)

4 if Norm > 1.17
√

q then go to Step 2;
5 Compute ρf , ρg ∈ R and Rf , Rg ∈ Z such that: −ρf · f = Rf and − ρg · g = Rg

6 if GCD(Rf , Rg) �= 1 or GCD(Rf , q) �= 1 then go to Step 2;
7 Compute u, v ∈ Z such that: u · Rf + v · Rg = 1
8 F ← qvρg and Q ← −quρf

9 k =
⌊

F∗f̄+G∗ḡ
f∗f̄+g∗ḡ

⌉
∈ R

10 F ← F − k ∗ f and G ← G − k ∗ g
11 return h = g ∗ f−1 mod q

12 and B =
(

A(g) −A(f)
A(G) −A(F )

)

In Step 1, the standard deviation of the Gaussian distribution from which f, g
are generated is set to σf = 1.17

√
q

2N and is chosen so that E[||b1||] = 1.17
√

q.
We have used a CDT Sampler in Step 2 to generate polynomials f, g from
a discrete Gaussian distribution DN,σf

over Rq. In Step 3, ||B̃f,g||, the Gram-
Schmidt Norm of Bf,g, is computed, where Bf,g is a basis of the NTRU lattice
associated to f, g (h = g ∗ f−1 mod q). If ||B̃f,g|| > 1.17

√
q, the algorithm

returns to Step 2 as the Gram-Schmidt Norm needs to be small enough so the
basis can form a short trapdoor for sampling elements. In Step 5 the Extended
Euclidean Algorithm is used to compute ρf , ρg ∈ R and Rf , Rg ∈ Z such
that ρf · f = Rf and ρg · g = Rg. If GCD(Rf , Rg) �= 1 or GCD(Rf , q) �= 1, the
algorithm returns to Step 2. Next, the algorithm computes u, v ∈ Z such that:
u · Rf + v · Rg = 1. These integers are obtained from the Extended Euclidean
algorithm (this extended version keeps track of the coefficients). In step 8, F =
qvρg and Q = −quρf is computed so that f ∗G−g∗F = q, a condition needed to

find a short basis. Next k =
⌊

F∗f̄+G∗ḡ
f∗f̄+g∗ḡ

⌉
is computed and F and G are reduced:

F = F − k ∗ f and G = G − k ∗ g. The final steps generate and output the keys.
Polynomial h = g ∗ f−1 mod q is the master public key and defines a lattice
Λh,q. Matrix B =

(
A(g) −A(f)
A(G) −A(F )

)
is the master secret key and is a short basis for

Λh,q. A is an anti-circulant matrix defined previously in Sect. 1.2.
Key Generation is the most intensive component of the DLP-IBE scheme due

to the arithmetic involving multiple-precision polynomials. The main software
operations are generating the basis and multiple-precision arithmetic, using NTT



234 S. McCarthy et al.

and entropy coding. Optimal performance (i.e. the first f and g polynomials
that are randomly selected are within bounds) is now ≈0.3 s slower than Prest’s
PoC implementation (i.e. 2.7 s vs 2.4 s). However, as the PoC was for reference
purposes, it does not fully implement the f and g selection, which means that
it generates keys that do not meet the security criteria and will not perform
many retries for key selection if the bound thresholds are not met. The design
proposed here enforces this security threshold.

Throughout the entire implementation, floating-point Barrett reduction is
used with a precomputed inverse of q, i.e. multiply by the inverse of q, truncate
towards zero and then multiply by q, subtracting the result from the input to
obtain the remainder.

Gram-Schmidt Norm. A lattice basis can have the Gram-Schmidt process
applied to it. This reduces and shifts the basis vectors in relation to each other so
they become shorter and more orthogonal, yet still define the same vector space
(B → B̃ and Span(B) = Span(B̃)). The Gram-Schmidt Norm is a property
of the basis. It is the maximum of the norms (moduli) of the vectors in the
Gram-Schmidt orthogonalisation of the basis.

GS Norm of B = ||B̃|| = max
i∈I

||b̃i||

The obvious way to compute the Gram-Schmidt Norm would be to compute
the norms of each of the vectors and take the maximum. However, in the case
of the NTRU lattices, it was proved in Sect. 3.2 of [11] that there are only two
candidate vectors with the largest norm, namely b1 and b̃N+1 (with the vectors
ordered as in the definition of B). Further to this, we can prove that ||b̃N+1|| =∣∣∣
∣∣∣
(

qf̄
f∗f̄+g∗ḡ

, qḡ
f∗f̄+g∗ḡ

)∣∣∣
∣∣∣. It is always the case that b̃1 = b1, therefore ||b̃1|| =

||b1||. In this NTRU lattice basis, b1 = the top row of (A(g),−A(f)) = (g,−f),
therefore we can compute the Gram-Schmidt norm solely from f and g and form
an alternative definition.

GS Norm of B = max
i∈I

{
||b1||,

∣∣∣
∣∣∣
( qf̄

f ∗ f̄ + g ∗ ḡ
,

qḡ

f ∗ f̄ + g ∗ ḡ

)∣∣∣
∣∣∣
}

The Gram-Schmidt Norm computation is the first main bottleneck in the Key
Generation algorithm. The b1 norm calculation is simply placing two vectors in
tandem and computing the dot product. However, the b̃N+1 norm computation
is more intensive as it involves polynomial multiplication over a ring, with poly-
nomials coefficients being of approximately 2000–4000 bits in length. Therefore,
we use the Number Theoretic Transform (NTT) to transform the polynomials
into the polynomial ring of integers modulo p, meaning multiplication can be
done coefficient-wise by reducing it to a negative wrapped convolution, rather
than the more complex classical school-book method.
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The Extended Euclidean Algorithm. The Extended Euclidean Algorithm
computes the Greatest Common Divisor (GCD) of two numbers (or polynomi-
als) x, y, and the corresponding Bezout coefficients u, v, such that ux + vy =
GCD(x, y). Note the “extended” version refers to the algorithm in which the
coefficients are both computed and stored. The KeyGen algorithm uses two
versions: one for integer inputs and one for polynomial inputs. The Extended
Euclidean Algorithm for polynomials is along the same principles as the regular
version for integers. The differences are that the variables are polynomials, the
input polynomials are divided by their leading coefficients in order to become
monic for use in the algorithm, and (the more intensive) polynomial multiplica-
tion and division is used.

Step 5 of the Algorithm 1 states that given f, g ∈ R, find ρf , ρg ∈ R and
Rf , Rg ∈ Z which satisfy Eqs. 1 and 2.

− ρf · f = Rf mod (xN + 1) (1)

− ρg · g = Rg mod (xN + 1) (2)

The Extended Euclidean Algorithm for polynomials is used twice here. The first
time, it is used to find the GCD of f and xN + 1. The second time, it is used
to find the GCD of g and xN + 1. During the computation, the algorithm holds
the coefficients while calculating the GCD of two integers or polynomials. The
PoC reference implementation uses the XGCD function from NTL, which selects
the most suitable strategy considering polynomial properties such as coefficient
bit-length and degree. Here, we have used Brown’s Modular GCD for computing
GCDs of multi-precision polynomials, which consists of two subroutines. First,
it maps the polynomials into the bivariate polynomial ring of integers modulo q,
Zq[x, y], and then uses the Chinese Remainder Theorem (CRT) to compute the
coefficients.

A further subroutine is required to map these polynomials from Zq[x, y] ≈
Zq[x][y] into Zq[x], perform the GCD computation and recover the y terms
using CRT. The GCD computations within the subroutines are computed using
Euclid’s algorithm or a variant called Half-GCD, which recursively runs half-
way through the Euclidean algorithm and uses the intermediate polynomials
to reduce the original ones. Equation 3 illustrates the mathematical problem in
the familiar format of ux + vy = GCD(x, y), where u and v are the Bezout
coefficients.

− ρf · f + � · (xN + 1) = Rf (3)

The � represents one of the Bezout coefficients computed during the
Extended Euclidean Algorithm but it becomes obsolete as we apply mod (xN +1)
to each side to obtain Eq. 4.

− ρf · f = Rf mod (xN + 1) (4)
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The useful outputs here are the other Bezout coefficient ρf and the greatest
common divisor Rf . The second use of the algorithm is similar but for g instead
of f to obtain ρg and Rg. Currently GMP is used to provide the multiple-
precision arithmetic, but this has been segmented in the software to a collection
of wrapper functions to allow it to be replaced for future optimisations within
the Extended GCD, multiplication and division components.

3.2 Extract

The Extract algorithm generates the user secret key for a given user ID. This
algorithm is run once per user. In this scheme, the Extract Algorithm requires
the master secret key B ∈ Z

2N×2N
q , a public hash function H : {0, 1}∗ → Z

N
q and

user identity id. The user identity can be any type of data. For implementation
purposes it is considered to be a MAC address, which can be expressed as a
48-bit char array. The random oracle used in the implementation is given as
Algorithm 6, using SHA-3 as the hash function3. The Extract algorithm outputs
the user secret key SKid ∈ Rq. The first steps check if SKid is in local storage;
if so then the secret key has already been extracted for this user so we must use
this one. Extracting multiple secret keys for the same user would compromise
the security of the system by leaking information. If an existing key is not found,
the extraction process begins. Extraction begins by hashing the user id to arrive
at an integer vector t of length N . The vector t is then concatenated with a zero
vector of length N to obtain a 2N -length vector which will become the centre
of the gaussian sample over the lattice. This step uses the Gaussian Sampler
(see Sect. 7) to sample a vector from the lattice defined by B. This vector is then
subtracted from the (t, 0) vector to obtain (s1, s2) such that s1 + s2 ∗h = t. This
equality is due to the GPV algorithm. The user secret key SKid is set to s2 and
this is output and kept in local storage.

Algorithm 2: Extract [11]
Data: B ∈ Z

2N×2N
q , H : {0, 1}∗ → Z

N
q , id

Result: SKid

1 if SKid is in local storage then
2 return Output SKid to user id

3 else
4 t ← H(id) ;
5 (s1, s2) ← (t, 0) − Gaussian(B, σ, (t, 0));
6 SKid ← s2;
7 return Output SKid to user id and keep in local storage

The software components of the Extract operation described in Algorithm 2
are expanding the basis into its matrix form, the use of the random oracle, hash
3 https://github.com/mjosaarinen/tiny sha3.

https://github.com/mjosaarinen/tiny_sha3
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function and CSPRNG, the Gaussian Samplers over integer and the lattice and
its required Gram-Schmidt Orthogonalisation, and entropy coding. The process
as a whole is computationally simple but requires large memory resources. First
the private keys (f, g, F, G) are used to form the polynomial basis B and its
Gram Schmidt orthogonalisation Bgs (both 2N ∗ 2N square matrices). Then
the user’s unique ID is converted into its public key form (a ring polynomial
modulo q) using a random oracle. The proposed software architecture for this is
described in Algorithm 6 and relies upon a hash function and a CSPRNG. The
final and most intensive stage is obtaining the user secret key using Gaussian
Sampling over a lattice.

Gram-Schmidt Orthogonalisation. A Gram-Schmidt Orthogonalised (GSO)
basis of the lattice is required by the Gaussian Sampler. In order to accelerate
this algorithm, our design currently uses Prest’s implementation of the algo-
rithm, which is based on improvements proposed in [20]. This uses O(2N2)
floating point operations as opposed to O(2N3) of the classical algorithm, for
a matrix of dimension 2N × 2N and considers the isometric structure of the
basis: {b, r(b), r2(b), ..., r2N−1(b)} (the cyclic structure of the NTRU basis). The
intuition behind this is that if b̃k is the GSO of bk, then r(b̃k) is the GSO of
bk+1. In fact, this is orthogonal to b2, ..., bk, but not b1. It is therefore needed to
reduce r(b̃k) with respect to b1 − Proj(b1, Span(b2, ..., bk)).

Obtaining B and Bgs is relatively straightforward and fast. Depending upon
the size of the modulus q it is possible to store B using 16-bit or 32-bit types to
both reduce memory storage and improve speed (reduced memory bandwidth,
fewer cache misses etc.). To reduce memory usage we have identified that storing
B and Bgs using 32-bit floating-point types is sufficient. Our current implemen-
tation uses 32-bit floats to store both B and Bgs and thus for n = 512 we require
4 MB for each matrix. We propose that B could alternatively be computed on-
the-fly to further reduce memory usage.

Gaussian Sampler. The Gaussian Sampling algorithm given in the paper is a
variant of the GPV algorithm [14]. Originally, it was deemed impractical but this
distribution of NTRU lattices, along with reducing the standard deviation by
a factor of

√
2 due to consideration of Kullbeck-Leibler Divergence (see Sect. 4

of [11]), improves this. The GPV sampler returns a short lattice vector with-
out revealing the trapdoor. It requires a 1-dimensional Gaussian sampler as a
subroutine. A range of algorithms have been presented in the literature for such
purposes, for example Bernoulli [12], CDT [21], Ziggurat [7] and Knuth-Yao [17].
This research deploys the CDT method for efficiency purposes. Alternative sam-
plers could also be incorporated within this design and will be considered in
future research.

The CDT method gives an efficient form of generating integers according to
a Gaussian distribution by reducing the problem to a binary search on precom-
puted values of the cumulative distribution function. An efficient CDT sampler
has been developed in [6,24]. This CDT method requires 16 kB to store the
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CDF with 64-bit precision and offers constant-time sampling. A disadvantage
of the GPV algorithm is the requirement to sample over varying standard devi-
ations, requiring the re-initialisation of the Gaussian sampler 2N times for a
ring length of N . We have identified the initialisation time of the Gaussian sam-
pler as a performance bottleneck, and of the range of samplers available to us
the CDT method was optimal in this respect. However, we have further mod-
ified the sampling scheme to improve performance by reducing the number of
re-initialisations from 2N to 2. We achieve this by noting that the standard devi-
ation varies insignificantly for the first and latter N samples. This is because it
is scaled according to the basis vector modulus, but as this is already capped at
1.17

√
q during basis generation this step has negligible effect. The performance

of the Gaussian Sampling algorithm can also be improved by pre-computing the
inverse of the norm of the columns of Bgs for a given IBE master key, permitting
division to be replaced with faster multiplication.

In terms of side-channel attacks, the Gaussian Sampling algorithm is required
only for the server-side operations of Key Generation and Extract. In those
applications where the server is vulnerable to physical access by an attacker the
constant-time operation of the CDT limits timing analysis.

The GPV samples from a Gaussian distribution with standard deviation that
is essentially the length of the Gram-Schmidt Norm. Aside from this, there are
no other characteristics of the basis used which could leak information. A better
quality (shorter) basis therefore means a narrower Gaussian distribution and
the samples are closer to c. The algorithm is a randomised variant of Babai’s
Nearest Plane [4] for solving (or approaching the solution of) the CVP. Babai’s
algorithm inductively finds a lattice vector v close to some vector w. To do
this, it solves the problem in a lower dimension; specifically, the sub-lattice (or
plane) spanned by the first b2N−1 basis vectors. This is computed for dimension
2N and iterated until dimension 1, when the next “plane” is a vector. The
output vectors are summed to “reverse-project” back onto the original lattice.
The difference between Babai’s algorithm and the GPV sampler is movement to
the next plane. Whilst Babai’s moves to the nearest plane in each iteration, the
GPV sampler chooses the next plane with probability determined by distance
to the centre point. The 1-dimensional Gaussian Sampler is used for this plane
selection process.

The Gaussian Sampler requires the basis of 2N -dimensional lattice (the mas-
ter secret key) B ∈ Z

2N×2N
q , standard deviation σ � 0 and centre of the sample

c ∈ Z
N . These input parameters mean the probability of a vector v being sam-

pled is proportional to exp(−π||v − c||2/2σ2). The Gaussian Sampler algorithm
outputs a sampled vector v in the Gaussian distribution Dλ,σ,c over the lattice.
The algorithm is presented as Algorithm 3 and is as follows; it iterates through
vectors v2N → v0 and c2N → c0. The vector v0 is the sample vector output at
the end.

To begin, v2N is set to the zero vector and c2N is set to the centre vector c. The
algorithm then iterates through i from i = 2N to 1. The projection coefficient of
ci on lower-dimensional plane is computed as c′

i = 〈ci, b̃i〉/||b̃i||2, where b̃i is the
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Algorithm 3: Gaussian Sampler [11]
Data: B, σ > 0, c ∈ Z

n

Result: v ∈ Dλ,σ,c

1 v2N ← 0
2 c2N ← 0
3 for i ← 2N, ..., 1 do

4 c′
i ← 〈ci, b̃i〉/||b̃i||2

5 σ′
i ← σ/||b̃i||

6 zi ← Gaussian(σ′
i, c

′
i)

7 ci−1 ← ci − zibi and vi−1 ← vi + zibi

8 return v0

Gram-Schmidt orthogonalisation of the basis vector bi. In Step 5, the standard
deviation is scaled down as σ′

i = σ/||b̃i||. Step 6 calls the Gaussian Sampler over
the uniform distribution of integers for each i to obtain zi = Gaussian(σ′

i, c
′
i).

The next steps involve the projection of the centre and sample vector onto the
next plane. The vector vi−1 is the closest vector to the centre in that (randomly
sampled) plane: ci−1 = ci − zibi and vi−1 = vi + zibi. Finally, at the finish of
all the loops, the vector v0 is output. For a small cost to RAM requirements
it is beneficial to store the inverse of ||b̃i|| (see step 4 and 5 of Algorithm 3).
The Gaussian Sampler requires repeated division by this norm and its squared
value, the performance of which is much improved by precomputing the inverse
value and replacing division with faster multiplication. The Gaussian Sampler
is also initialised for each sample that must be produced when generating a user
secret key; this is quite intensive and can potentially be omitted if the stan-
dard deviation does not vary between iterations of the algorithm. In this design,
software acceleration of the Extract process is achieved using auto-vectorisation
and more efficient use of types within the dot product and other loops in the
Gaussian sampler over the lattice. Once the user secret key has been obtained it
can be further compressed for storage or transmission. For this, we use Huffman
coding.

3.3 Encryption and Decryption

The Encryption and Decryption algorithms of the scheme are given as Algo-
rithms 4 and 5 respectively. These are based on the original R-LWE cryptosys-
tem [18] and are consequently well studied and refined throughout numerous
optimisations.

The Key Generation and Extract components are server-side functions in
IBE, whereas Encryption and Decryption are seen as client-side functions and
could therefore be implemented in either software or hardware. Therefore we
propose the hardware design of [15] could be incorporated with this software
design of KeyGen and Extract to create an even faster scheme.
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The software procedures needed here are the use of two random oracles H(id)
and H ′(k), and for each of these, a hash function and CSPRNG are needed. NTT
and entropy coding is utilised again.

Algorithm 4: Encrypt [11]
Data: h, id, m, H, H ′.
Result: (u, v, c)

1 r, e1, e2 ← {−1, 0, 1}N , k ← {0, 1} ;
2 t ← H(id) ;
3 u ← r ∗ h + e1 ∈ Rq;
4 v ← r ∗ t + e2 + 
q/2� ;

5 Drop the least significant bits of v : v ← 2l
v/2l� ;
6 return (u, v, m ⊕ H ′(k))

Algorithm 5: Decrypt [11]
Data: SKid, (u, v, c)
Result: m ∈ {0, 1}m

1 w ← v − u ∗ s2 ;
2 k ← 
 w

q/2
� ;

3 return m ← c ⊕ H ′(k)

Encrypt requires two NTT’s and two inverse NTT’s in order to efficiently per-
form a number of ring modular multiplications (for smaller moduli, sparse mul-
tiplication can be used), while Decrypt requires only a single NTT and inverse
NTT. As the master public key and user secret key are repeatedly used for this
purpose their NTT representation is precomputed to reduce complexity at the
expense of additional storage. Additionally, the Encrypt operation requires two
Random Oracles (H(id) and H ′(k)) while Decrypt requires one (H ′(k)). How
this operation is constructed is not specified in the original work and is imple-
mentation dependent. In Algorithm 6 we describe our method for mapping an
arbitrary length user ID into a ring polynomial and in Algorithm 7 we describe
a similar process where a random bit string is used to generate a one-time pad.
These mapping processes both use the hash function SHA-3 and a NIST AES
CTR-DRBG. Encrypt benefits greatly from sparse multiplication when calculat-
ing e3 ∗h and e3 ∗H(id) when q is less than 26 bits, but requires less efficient and
aggressive NTT multiplication with larger moduli. Decryption is reliable with
NTT with less aggressive reduction when q is less than 26 bits, otherwise the
more aggressive and costly version needs to be used, as in Encrypt. Additionally,
the proposed architecture of Encrypt and Decrypt has been modified to support
any length m of the message instead of specifically N bits, at the cost of perfor-
mance, but it is envisaged that the increased flexibility is more suitable for full
scale testing of the practicality of the scheme.
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Algorithm 6: Random Oracle H(id) - convert the ID into a unique poly-
nomial
Data: id, N, q
Result: t ∈ Rq

1 s ← H(id)

2 t ← CSRNG(s) ∈ Z
N
q

3 return t

Algorithm 7: Random Oracle H ′(k) - create a byte stream to use as a
one-time pad
Data: k, N, q
Result: t ∈ {0, 1}m

1 s ← H ′(k)
2 t ← CSRNG(s) ∈ {0, 1}m

3 return t

3.4 Parameters

One of the main problems surrounding lattice-based cryptography is choosing
secure yet efficient parameters. This is due to constantly evolving attacks and
the use of bounds rather than concrete estimates in their analysis. The original
authors suggest parameters in [11] and these are given in Table 2. The secu-
rity levels of these parameters are estimated in [11] by considering both key
recovery and ciphertext attacks. The encryption component of the scheme is
the most vulnerable, so the security level estimations depend on the strongest
attack known to recover the small errors e1 and e2, which is estimated to reach
a root Hermite factor of γ = 1.0075 for N = 512 and γ = 1.0044 for N = 1024.
However, due to the use of the NTT in this implementation, the value of N has
been changed. To apply the NTT, an 2N th root of unity has to be found. We
also need the condition q = 1 mod 2N to be satisfied in order to compute the
negative wrapped convolution. Therefore, one of the contributions of this design
is the proposal of new parameter sets, given in Table 3. We include a parameter
l from the Encryption algorithm, which corresponds to the truncation of the
ciphertext vector v. The security level is estimated from the root Hermite factor
γ introduced in 2008 [13], which measures the hardness of the underlying lattice
problem. For γ ≈ 1.004, we can estimate 80-bit security and for γ < 1.007, we
can estimate 192-bit security. The bit size information for the selected parame-
ter sets is set out in Table 4. Compression uses Huffman coding throughout. The
master public key cannot be compressed as the nature of the NTRU assumption
requires it to appear random.

3.5 Results

Figures obtained on an Intel Core i7-6700 CPU at 4.0 GHz are shown in Table 5.
This design precomputes B, Bgs, the inverse of ||Bgs|| and the NTT representa-
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Table 2. IBE scheme original parameters

Security parameter 80-bit 192-bit

Polynomial degree N 512 1024

Modulus q 223 or 224 227

Table 3. Proposed IBE scheme parameters

Parameter set Root hermite factor Security level q q in bits N l 2Nth root of unity

0 1.0075 80 5767169 23 512 19 971

1 1.0079 80 10223617 24 512 20 3981

2 1.0085 <80 51750913 26 512 23 115658

3 1.0038 192 5767169 23 1024 18 19484

4 1.0039 192 10223617 24 1024 20 6877

5 1.0043 <192 51750913 26 1024 22 36945

tions of the public master key and the user secret key. The random oracles use
the SHA-3 hash function and the AES CTR-DRBG random number generator.
A CDT Gaussian Sampler is used to randomly sample over the lattices. It should
be noted that this performs all necessary tasks and does not require any offline
computation. As the Key Generation is only run once per scheme setup, the time
in seconds for one run-through is given. The remaining components are called
multiple times (Extract once per user, Encrypt/Decrypt once per message) and
so we give the number of times each can be run per second. Extract I refers to
the original Extract function, while Extract II utilises compression techniques.

For reference, we now give comparable figures from Prest’s NTL-based imple-
mentation in Table 6 (scaled up to account for differences in CPU). Prest’s results
were given in ms on an Intel Core i5-3210M laptop with 2.5 GHz CPU and 6GB
RAM so we have converted to “per second” to represent how they would look
like on our 4 GHz platform: For example, 8.6 ms = 0.0086 s, which means 116.28
per sec at 2.5 GHz, which is equivalent to 116.38/2.5 * 4 = 186.04 per sec at
4 GHz. We compare Prest’s 80-bit and 192-bit security results to our parameter
sets 2 and 5 respectively, without compression. It can be seen that the proposed
software architecture outperforms the original PoC in all respects, for example
for N = 512, q = 224 (or 80-bit security) with NTL, the Extract function can be

Table 4. DLP IBE key and encrypted message bit sizes. All figures are in bits.

Parameter set Message length Master public key Master private key User secret key Message

Uncoded Compressed Uncoded Compressed

0 512 11776 27648 23650 9216 7576 14336

1 512 12288 27648 23779 9216 7807 14848

2 512 13312 29696 25908 9728 8528 15360

3 1024 23552 51200 43834 17408 15522 29696

4 1024 24576 51200 44161 17408 15702 29696

5 1024 26624 59392 51458 19456 17614 31744
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Table 5. DLP IBE performance in terms of KeyGen processing time in seconds and
Extract, Encrypt and Verify operations per second on an Intel Core i7 6700 @ 4 GHz
with SHA-3, CDT Gaussian Sampling and AES CTR-DRBG

Parameter Set q N KeyGen Extract I Extract II Encrypt Decrypt

0 5767169 512 2.666 544 521 9726 33070

1 10223617 512 2.74 541 526 9753 33359

2 51750913 512 4.034 537 527 9390 22489

3 5767169 1024 16.860 138 135 4179 17493

4 10223617 1024 23.004 137 133 3854 17568

5 51750913 1024 25.126 137 134 3598 11526

run almost three times as many per second, and the Encrypt/Decrypt over x5
and x12 times respectively. Note that the Master KeyGen timings are not spec-
ified here, but as this is only run once per scheme set-up it can be temporarily
disregarded.

Table 6. Prest’s NTL implementation results comparison, operations per sec

Security level Extract Encrypt Decrypt

This work Prest This work Prest This work Prest

80-bit 537 186 9725 1758 33070 2580

192-bit 137 49 3598 856 11526 1260

In comparison to classical IBE schemes, the DLP lattice-based IBE scheme
also has respectable performance. In 2011, performance testing of the Boneh-
Franklin IBE scheme [8] on a Pentium Dual T2330 at 1.60 GHz reported that
Extraction could be run at 170.6 ops/s, Encrypt at 1.08 op/s and Decrypt at
1.26 op/s. Therefore, this research shows that replacing current schemes with
post-quantum schemes will improve security without impacting efficiency.

4 Conclusions and Further Research

The research presented here demonstrates how a lattice-based IBE scheme per-
forms on software. It can be used as a benchmark for further improvements
within the scheme and provides a starting point for further investigation. We
have proposed the first working, efficient C implementation of the DLP-IBE
scheme with a range of novel software optimisations to enhance performance
and have discovered many areas for potential optimisations for a range of tar-
geted devices. The future aim is to consider suitable client-side optimisations for
a range of constrained devices, such as those likely to be encountered in IoT, as



244 S. McCarthy et al.

well as a range of server-side optimisations, such as GPU and multithreading. We
intend to carry out a full performance testing of several aspects of the scheme.
The Gaussian Sampler is a main bottleneck of the scheme. There is scope to
investigate other variants of the GPV sampler, by computing the memory-heavy
Gram-Schmidt orthogonalisation on the fly or further acceleration by properties
of the NTRU basis structure. We also intend to test different hash functions and
Extended Euclidean Algorithms to evaluate the effect on the scheme. Lastly, but
perhaps most importantly, is the choice of parameters for the scheme. Currently,
we consider 80-bit and 192-bit security levels but it could be insightful to test
parameter sets for higher security and determine how they would fare on small
devices.

Additionally, the implementation of the scheme opens up other applications
for investigation and further research. A hash-and-sign digital signature scheme
can use the components of the IBE scheme in a different way. The public verifica-
tion key corresponds to the master public key, the secret signing key corresponds
to the master secret key, messages replace user IDs and signatures replace user
secret keys. Secondly, an Authenticated Key Exchange (AKE) scheme can be
constructed. This consists of a Key Encapsulation Mechanism (KEM) together
with a digital signature scheme. Therefore we can use Pino et al. [22] KEM (based
on NTRU) with this digital signature scheme to form a AKE scheme. Both
these additional schemes offer the hardness properties and quantum-resilience of
lattice-based primitives.
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Abstract. The Number Theoretic Transform (NTT) is a time critical
function required by many post-quantum cryptographic protocols based
on lattices. For example it is commonly used in the context of the Ring
Learning With Errors problem (RLWE), which is a popular basis for
post-quantum key exchange, digital signature, and encryption. Here we
apply a simple methodology to convert the NTT and its inverse from a
mathematically correct (but side-channel vulnerable) description, to an
efficient constant-time and side-channel resistant version.

1 Introduction

Often important cryptographic functions are described in the literature with-
out consideration for side-channel vulnerability. Then they are implemented by
competent software engineers who produce functionally correct and efficient real-
world implementations, unfortunately without eliminating the side-channels.
The result is that many widely used cryptographic libraries contain side-channel
weaknesses, that are just awaiting a determined attacker. For a recent example
see [5].

What is needed is an intermediate version of the function which is side-
channel resistant, from which the engineer can go on to produce their real-world
implementation. The purpose of this paper is to describe an easy to follow step-
by-step methodology which converts that which is mathematically correct, to a
constant-time side-channel resistant version with the same functionality. Note
that while claiming that our implementation is immune to timing attacks (to
the extent that this is achievable in software), we are merely claiming that it is
“resistant” to more general side-channel attacks, on the basis that some side-
channel weaknesses may not be currently known.

Our particular context is modular arithmetic, that is arithmetic with respect
to a prime modulus q. Modular arithmetic is widely used as the basis for many
techniques of public key cryptography. Unfortunately it is notoriously hard to
implement in constant time, and has been a prime source of side-channel leakage.

In an earlier paper [12] we developed a methodology which we applied to vul-
nerable functions in the context of elliptic curve cryptography. Here we turn our
attention to the NTT transform function (and its inverse), as used by protocols
based on the post-quantum Ring Learning with Errors (RLWE) problem.
c© Springer International Publishing AG 2017
M. O’Neill (Ed.): IMACC 2017, LNCS 10655, pp. 247–258, 2017.
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2 The Methodology

Our starting point is a mathematically correct implementation of the function,
which is “exception-free”. This is a higher-level requirement for side-channel
resistance and for the possibility of a constant time implementation. Basically
it means that at the level above the modular arithmetic there is only a single
path through the code, independent of the data it is processing. Fortunately
“exception-free” algorithms are commonly available.

Starting with an implementation of such a function, proceed as follows. First
identify a modular reduction algorithm that works well with the given prime
modulus q. This modular reduction function must operate in constant time, but
it is not required to fully reduce its output to be less than q. It is sufficient that
the reduction is to a value less that E.q, where E is a small positive integer
constant. In general it has been observed [8] that such a partial reduction is
often easier to achieve than a full reduction, given the constant time constraint.
It must also be capable of handling an input significantly greater than q2, as its
input may be a product of two values that are not themselves fully reduced. For
example the well-known Montgomery modular reduction algorithm reduces an
input less than qR (where R can be significantly greater than q) to a value less
than 2q [10].

We note in passing that the often suggested alternative reduction method
due to Barret [4] does not meet these conditions. Next

– Associate with every finite field element x an “excess” Ex which tracks the
extent to which its value may exceed q in the absence of any reduction, under
worst case assumptions. So we know that the unreduced x < Ex.q. Input
values might be assumed to be fully reduced, in which case they can be
initialised to have an excess of 1.

– For modular additions, note that for z = x + y, then Ez = Ex + Ey, and
update and record excesses accordingly.

– Consider all modular subtractions as negation followed by addition, and
observe that negation calculated as −x = Ex.q − x will not affect the excess
of x.

– For modular multiplications, note that for z = x.y, then Ez = Ex.Ey that is
the product of the excesses of the inputs, and record a worst-case size of the
product Ez.q

2 which is to undergo reduction. Set the excess of the output
to E.

Next execute the program once. Note that as a consequence of being
exception-free, there will be only one path through the code, and so excesses
recorded as described above will be invariant irrespective of the actual data
being processed.

Now, using these recorded excesses, choose a representation of field elements
that (a) would not overflow if modular addition were to be replaced with non-
modular addition, and (b) could not under worst case assumptions cause an
input to the modular reduction algorithm which would violate its conditions for
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correct operation. The transcript of the excesses provides a proof that integer
overflow cannot occur. Next

– Replace all modular additions, with simple non-modular additions.
– Replace all modular subtractions with negation followed by addition, where

−x = Ex.q − x
– Perform modular multiplications with a simple non-modular multiplication,

followed by our modular reduction algorithm.

Note that for modular negation, it appears to be necessary to continue to
track excesses. So as a final step, either replace the excesses with the fixed values
that apply for each individual occurence, or identify a single worst-case value
that can be applied in all cases. Assuming this is possible, excesses have now
served their purpose, and can be eliminated from the code. We also note that
some post-processing might be required to fully reduce the final outputs of the
function (if this is required).

3 The NTT

The NTT is basically a form of Discrete Fast Fourier transformation. Once a
pair of polynomials is transformed to the “frequency” domain, their product
can be calculated by a simple O(n) element-by-element product, and the result
converted back via the inverse transformation (INTT). Therefore the dominant
cost of polynomial multiplication, is the cost of the transformation to and from
the frequency domain. Hence the significance of the NTT, which has a complexity
of just O(n log n).

Now when using Fast Fourier methods to determine the product of two poly-
nomials of degree n, this normally requires them to be first padded to length 2n.
However in the RLWE setting we get around this problem by manipulating our
polynomials modulo xn + 1, and using the negative wrapped convolution.

The fixed system parameters for a typical instance of the Ring Learning
with Errors problem consist of a prime modulus q and polynomials of degree n
where n = 2m, and with coefficients ∈ Fq. In most cases the prime modulus q is
selected such that q = 1 mod 2n, so that the 2n-th roots of unity exist and can
be precalculated. Typical choices might be q = 12289, and n = 1024, as used in
the NewHope proposal [2], in which case a 2048-th root of unity would be 9089,
and it is easily confirmed that 90892048 = 1 mod 12289. To implement the NTT
we will need to precompute a vector of the first n powers of such a root, but
stored in bit reverse order. So given a root g, while the natural ordering of its
powers would be [g0, g1, g2, . . . gn−1], in bit reverse order the element gi would
actually be stored at an index in the table found by reversing the m bits in i.

Our starting point is the basic NTT algorithm and its inverse, based on its
description by Naehrig and Longa [9], which integrates many prior optimizations.
A key idea is to use the Cooley Tukey butterfly for the forward transformation,
but to switch to the Gentleman-Sande butterfly for the inverse operation. See
Algorithms 1 and 2.
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Algorithm 1. The Cooley-Tukey NTT algorithm
Input: A vector x = [x0, . . . , xn−1] where xi ∈ [0, p − 1] of degree n (a power of 2)

and modulus q = 1 mod 2n
Input: Precomputed table of 2n-th roots of unity g, in bit reversed order
Output: x ← NTT (x)

1: function NTT(x)
2: t ← n/2
3: m ← 1
4: while m < n do
5: k ← 0
6: for i ← 0; i < m; i ← i + 1 do
7: S ← g[m + i]
8: for j ← k; j < k + t; j ← j + 1 do

9: U ← x[j]
10: V ← x[j + t].S mod q
11: x[j] ← U + V mod q
12: x[j + t] ← U − V mod q
13: k ← k + 2t
14: t ← t/2
15: m ← 2m
16: return

Algorithm 2. The Gentleman-Sande inverse INTT algorithm
Input: A vector x = [x0, . . . , xn−1] where xi ∈ [0, p − 1] of degree n (a power of 2)

and modulus q = 1 mod 2n
Input: Precomputed table of inverses of 2n-th roots of unity g−1, in bit reversed order
Input: n−1 mod q
Output: x ← INTT (x)

1: function INTT(x)
2: t ← 1
3: m ← n/2
4: while m > 0 do
5: k ← 0
6: for i ← 0; i < m; i ← i + 1 do

7: S ← g−1[m + i]
8: for j ← k; j < k + t; j ← j + 1 do

9: U ← x[j]
10: V ← x[j + t]
11: x[j] ← U + V mod q
12: W ← U − V mod q
13: x[j + t] ← W.S mod q
14: k ← k + 2t
15: t ← 2t
16: m ← m/2
17: for i ← 0; i < n; i ← i + 1 do

18: x[i] ← x[i].n−1 mod q

19: return

Our ultimate aim is to eliminate the side channel leakage from the modular
arithmetic, that is from those clearly indicated calculations that take place mod-
ulo q. One clever optimization that is not shown here, but which we will make
use of in all of our implementations, is to merge the last iteration of the main
INTT loop with the multiplication of each element of its output by n−1 mod q,
which saves n/2 modular multiplications. See [9] for details.
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3.1 A Näıve Solution

An initial reaction might be that surely we could simply replace modulo q
everywhere with %q, and let the processor’s built in integer division/remain-
der instruction take care of it.

But this is a very unsatisfactory solution for a number of reasons. Firstly inte-
ger remaindering is not the same as modular reduction, and commonly requires
conditional corrections to keep results in range. More importantly integer divi-
sion is complex to implement in hardware, is rarely a bottleneck calculation in
most computer applications, and therefore is not heavily optimized and is thus
very slow, and of particular relevance to us, most often not implemented in con-
stant time [6]. That is takes a number of clock cycles that is dependent on the
data being processed. Nevertheless this makes a good starting point from which
to calculate and record excesses, and to develop better solutions.

We focus on the “butterfly” code in the innermost loops of the NTT and
INTT algorithms. Once we move from an algorithmic description to actual
code, we need to become aware of the possibility of integer overflow. We will
assume two signed integer data types, which we will refer to as int t and int dt
(wordlength and double-wordlength), where the actual wordlength WL might be
16, 32 or 64 bits. In the C programming language on a 32-bit computer these
types might be int32 t and int64 t respectively. We refer to their unsigned
equivalents as uint t and uint dt. For a particular implementation we assume
that the modulus q is globally visible.

Of course polynomials might be transported and stored using a smaller data
type, if the modulus q is small. For example the commonly suggested 14-bit
prime 12289 will fit comfortably in a 16-bit type irrespective of the wordlength
of the processor.

Listing 1.1. Näıve Modular multiplication

i n t t modmul( i n t t a , i n t t b)
{

return ( i n t t ) ( ( ( i n t d t ) a∗b)%q ) ;
}

Listing 1.2. Näıve method for NTT

U=x [ j ] ;
V=modmul(x [ j+t ] , S ) ;
x [ j ]=(U+V)%q ;
x [ j+t ]=(U+q−V)%q ;

Listing 1.3. Näıve method for INTT

U=x [ j ] ;
V=x [ j+t ] ;
x [ j ]=(U+V)%q ;
W=(U+q−V) ;
x [ j+t ]=modmul(W, S ) ;

It becomes immediately obvious that our ability of optimize the code will
depend on the extent of the allowable excess that exists, which will allow inter-
mediate values in the butterfly computation to increase outside of the rigid range
0 → q, without overflow. For the above code to function correctly it is already
assumed that calculating U+V in Listing 1.3 does not cause an overflow. We will
initially assume a signed type of a length at least 2 bits bigger than the prime
modulus. Making immediate use of this latitude, observe that in the INTT case
we can calculate W without reduction modulo q.
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3.2 A Constant Time Solution

However this is not a constant-time solution, and its slow. We need an alternative
technique, and Montgomery’s method for modular multiplication without divi-
sion [10], which replaces division by some multiplications, is ideal, widely used in
this context, and generically applicable. Note that integer multiplication, unlike
division, is heavily optimized for most processors, and usually executes in a
fixed number of clock cycles independent of the data being processed, often just
1 or 2. So we can anticipate that such an implementation might even be faster.
One downside to Montgomery’s method is that we need to convert field elements
to and from Montgomery representation before the NTT and after INTT func-
tions. An obvious optimization is to precompute the tables of roots of unity and
their inverses in Montgomery format.

The Montgomery method assumes the choice of an alternate modulus R
greater than q, which is a simple power of 2, the idea being to replace the
modulo q calculation with a much simpler reduction modulo R. For maximum
efficiency it is common to choose R to be 2 to the power of the wordlength,
and this is what we will use here. The method also requires the precomputed
constant N = 1/(R − q) mod R.

Montgomery’s method introduces a modular reduction function redc which
reduces an input T to a positive integer t less than 2q, assuming that T < qR.
Therefore reduction is not complete. However a simple constant-time augmen-
tation can complete the reduction. Subtract q from t and do an arithmetic shift
right by one less than the bitlength of the signed type used for t. If t−q < 0 this
results in all ones, otherwise all zeros. Perform a logical AND of this bit pattern
with q and add it back into t.

Note the condition on the input to redc that it be less than qR. Since in this
context one of the inputs is from a precomputed table, and hence less than q, it
merely suffices that the other is less than R and is representable as an int t.

The conversion of x to Montgomery form can be computed by applying the
redc function to the product of x and the precomputed constant R2 mod q. The
conversion back to “normal” form is simply an application of redc [10].
Listing 1.4. redc function with full
reduction

i n t t redc ( i n t d t T)
{

u i n t t m=(u i n t t )T∗N;
i n t t V=(( u in t d t )m∗q+T)>>WL;
V−=q ; V+=(V>>(WL−1))&q ;
return V;

}

Listing 1.5. Modular multiplication

i n t t modmul( i n t t a , i n t t b)
{

return redc ( ( i n t d t ) a∗b ) ;
}

Listing 1.6. Constant Time method
NTT

U=x [ j ] ;
V=modmul(x [ j+t ] , S ) ;
W=U+V−q ;
x [ j ]=W+((W>>(WL−1))&q ) ;
W=U−V;
x [ j+t ]=W+((W>>(WL−1))&q ) ;

Listing 1.7. Constant Time method
INTT

U=x [ j ] ;
V=x [ j+t ] ;
W=U+V−q ;
x [ j ]=W+((W>>(WL−1))&q ) ;
W=U+q−V;
x [ j+t ]=modmul(W, S ) ;
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3.3 Lazy Reduction

Next we apply our proposed methodology to make maximum use of delayed
reductions. Ideally we will succeed in removing all of the reduction code, other
than that implicit in the basic un-augmented redc function. We would expect our
ability to achieve this to depend on the detail of the NTT and INTT algorithms,
and on the number of excess bits available to us, which will facilitate delayed
reduction.

We make a minor change from the description of our methodology above.
Since our conversion to Montgomery form now uses the un-augmented redc
function, we will assume initial excesses of 2 rather than 1. However we still
assume that precomputed values such as the roots of unity are fully reduced.

One immediate and striking observation is that the Cooley-Tukey NTT and
Gentleman-Sande INTT butterflies behave very differently. As the iterations
progress the excesses get bigger. But whereas the Cooley-Tukey excesses increase
only slowly and linearly, the Gentleman-Sande worst case excesses grow much
more rapidly.

First examine the Cooley-Tukey butterfly. Observe that x values are incre-
mented by the output of the a modular multiplication, which will have a maxi-
mum excess of 2. So the new excesses will be at most 2 bigger than an existing
excess. But for the Gentleman-Sande butterfly certain x values may have their
excesses doubled by the execution of the equivalent of x[j]=x[j]+x[j+t] in
listing 1.10. And this is what we observe.

Recall that there are two places where integer overflow might occur due to
excessive excesses, after addition and before modular multiplication. Experi-
mentally we determine that, for polynomials of degree n, for the NTT (based on
Cooley-Tukey) the maximum excess is 2. lg n + 2, and for the INTT (based on
Gentleman-Sande) the maximum excess is 2n.

Assuming for the moment that these excesses can be accomodated, we can
replace the constant time code with the following. Observe that all explicit mod-
ular reduction code has been removed. In the case of INTT the worst-case excess
for V , which is just the polynomial degree n, is used in the calculation of W in
listing 1.10, and so explicit use of the excesses is not required. Obviously 2q and
nq can be precalculated.

Listing 1.8. redc function incomplete reduction

i n t t redc ( i n t d t T)
{

u i n t t m=(u i n t t )T∗N;
i n t t V=( i n t t ) ( ( ( u in t d t )m∗q+T)>>WL) ;
return V;

}

Listing 1.9. Lazy Reduction method
for NTT

U=x [ j ] ;
V=modmul(x [ j+t ] , S ) ;
x [ j ]=U+V;
x [ j+t ]=U+2∗q−V;

Listing 1.10. Lazy Reduction method
for INTT

U=x [ j ] ;
V=x [ j+t ] ;
x [ j ]=U+V;
W=U+n∗q−V;
x [ j+t ]=modmul(W, S ) ;
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Finally we need to consider the conditions under which the excesses that
might arise, can be safely accomodated. Since the worst case arises for the INTT
butterfly, this code will work correctly as long as 2nq can be represented in the
int t type. For example on a 32-bit processor, the C language type int32 t
can comfortably handle the case of q = 12289 and n = 1024. However for larger
values of q we can expect problems to arise. For example consider the parameters
chosen by Güneysu et al. [7], where q = 8383489 and n = 512. This will cause a
problem for our INTT code on a 32-bit processor.

However from our analysis we know exactly where the worst case excesses
occur, and so we can compensate for it. By inserting extra reduction code at
the appropriate point in the INTT function, it has the effect of suppressing
the excesses. Note that reduction of any value can be achieved at any time
by multiplying it by the Montgomery representation of unity (O = R mod q).
When extra reductions are introduced, the excess transcript can be examined to
determine whether or not the correction has succeeded.

Experimentally we have determined that the modified code in listing 1.11
seems to work well. Set L as the smallest power of 2 such that 2(n/L)q < 231.
For q = 8383489, and n = 512, then L = 4. Since the corrections are only
rarely required, the performance impact should be small. However we appreciate
that such measures will eventually become less effective as q increases, and the
available excess diminishes.

Listing 1.11. Modified Lazy Reduction method for INTT

i f (m<L && j<k+(L/2∗m))
{

U=modmul(x [ j ] ,O) ;
V=modmul(x [ j+t ] ,O) ;

}
else
{

U=x [ j ] ;
V=x [ j+t ] ;

}
x [ j ]=U+V;
W=U+(n/L)∗q−V;
x [ j+t ]=modmul(W, S ) ;

We would emphasise that by vigorous loop unrolling all conditional branches
can be eliminated from the generated code.

3.4 Special Moduli

Special form moduli can be used and exploited in our framework as long as they
obey the same rules as Montgomery arithmetic, that is for an input < qR they
produce an output less than 2q. For example the Fermat prime 216 + 1 = 65537
which has been proposed for RLWE implementations [11], has a fast reduction,
and does not require field elements to be converted to and from Montgomery
form, with further savings. See Listing 1.12 for the fast reduction code for a 32-
bit processor. Careful analysis confirms that the output will always be positive
and less than 2q.
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Listing 1.12. reduction function for Fermat prime 65537

i n t 3 2 t redc ( i n t 6 4 t T)
{

T=(u in t32 t )T+(T>>32);
return (T&0xFFFF)+q−(T>>16);

}

4 Mapping Implementations to Platforms

Our näive and constant time implementations will work immediately on a 16-bit
processor, where a int t is represented by a 16-bit C type like int16 t, and
int dt maps to a int32 t, assuming that the prime modulus q is 14-bits or less.
Unfortunately in this setting the available excesses are insufficient for our full
lazy reduction approach. But in many cases q is bigger than 16-bits, although
usually less than 32-bits, in which case a 32-bit (or 64-bit) processor is really
a necessity, where int t maps to int32 t, and int dt maps to int64 t. The
majority of primes suggested for RLWE range from 13 to 26 bits [1]. In these
cases our lazy reduction code will be a good fit on a 32-bit processor.

5 Comparison with Prior Art

In their influential paper Alkim et al. [2] provide a reference C implementation
of the NTT, using the Gentleman-Sande approach. Their solution is closer to our
constant time solution, and appears to be targeted at a 32-bit architecture, but
one without a 32× 32 multiplier. Such architectures exist, and a prime example
would be the ARM Cortex-M processor, which they specifically targetted in a
follow-up paper [3]. By using the 14-bit prime q = 12289 and a Montgomery
modulus of 218, they cleverly succeed in squeezing the arithmetic into 32-bits
(as 14 + 18 = 32). As R = 218 is a few bits greater than q a modest amount of
lazy reduction then becomes possible.

The paper by Longa and Naehrig [9], which was the starting point for this
research, ends up with an implementation not very dissimilar to our own, albeit
they come to it by a different route. The main difference is that they choose to
use a modular reduction method tailored to the specific types of primes used
in RLWE, that is primes such that q = 1 mod 2n. Therefore they do not use
Montgomery reduction, but can hence avoid the transformation to/from
Montgomery form, with further savings. Their solution is appropriate to a more
conventional 32-bit architecture which allows 64-bit products.

However the Longa and Naehrig implementation is described only in the con-
text of a particular choice of parameters, namely q = 12289 and n = 1024, as
used for the NewHope key exchange protocol described in [2]. Their implemen-
tation, like ours, requires extra modular reductions introduced at certain steps
in the NTT algorithm and its inverse. The reasoning for the positioning of these
extra reductions is not fully explained, and hence it is not clear when they would
be required for a different choice of parameters. However we can see now that
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they are introduced as a mechanism to suppress the excesses from getting too
large. Using their special reduction function, it appears that the extra reduc-
tions must be introduced into both the NTT and the INTT code, whereas in
our implementation our analysis shows that they are not needed at all for the
NewHope parameter set, and are only required for the INTT code when q gets
much larger.

6 Results

Our code is available here1.
First we provide some comparative timings, using cycle counts obtained from

an Odroid C2 single board computer, as used by Streit and De Santis [13] in
their implementation of NewHope on an ARM Cortex-A53 processor. Following
their example, we obtain hardware cycle counts using the accurate Linux Kernel
performance monitoring system call, using the GCC compiler version 5.4 with
maximum optimization. We provide results for all three methods described here,
for the parameters q = 12289, n = 1024 and q = 8383489, n = 512, and q =
16760833, n = 1024 [1] to demonstrate that our code is not tied to just one fixed
set of parameters. See Table 1.

Table 1. Odroid C2 Cycle counts

Prime q Degree n Method NTT INTT

12289 1024 Naive 161701 127879

12289 1024 Constant time 102306 91223

12289 1024 Lazy reduction 74174 78108

8383489 512 Naive 96369 74126

8383489 512 Constant time 48478 43273

8383489 512 Lazy reduction 35537 39784

16760833 1024 Naive 196473 133014

16760833 1024 Constant time 102208 91059

16760833 1024 Lazy reduction 74206 84088

For the NewHope parameters we note that our cycle counts are nearly exactly
half of those quoted by Streit and De Santis, who used the C reference code from
[2]. Using our new counts, it would appear that the advantage of using NEON
instructions is not the speed-up of 8.3 as claimed, but is closer to (a still very
impressive) 4. We next adapted the Longa and Naehrig code to use the same
performance counters, and observed that for the NewHope parameters their code
is about as fast as ours (79020 for NTT, 75822 for INTT). However we would
contend that our reference code is much more general purpose.
1 http://indigo.ie/∼mscott/ntt ref.c.

http://indigo.ie/~mscott/ntt_ref.c


A Note on the Implementation of the Number Theoretic Transform 257

Next we performed the same measurements this time using an Intel i5-
6400 processor with Turbo Boost disabled, and the GCC version 5.3 compiler
(Table 2).

Table 2. Intel i5 Cycle counts

Prime q Degree n Method NTT INTT

12289 1024 Naive 70327 46997

12289 1024 Constant time 47017 42424

12289 1024 Lazy reduction 34300 35110

8383489 512 Naive 37455 23350

8383489 512 Constant Time 21891 1587

8383489 512 Lazy reduction 15863 16703

16760833 1024 Naive 71800 51446

16760833 1024 Constant time 47392 43160

16760833 1024 Lazy reduction 35165 37655

In this case the Longa and Naehrig code when measured on our compil-
er/processor combination, was about 5% faster than our lazy reduction code for
the NewHope parameters.

We observe that the extra reductions necessary for the INTT code to work
correctly for the larger primes 8383489 and 16760833, do not appear to signifi-
cantly effect the performance.

7 Conclusion

We have described an improved reference C implementation of the Number The-
oretic Transform and its inverse, as required for the implementation of post-
quantum cryptographic schemes based on the Ring Learning With Errors prob-
lem. The implementation is efficient and constant time, and hence a safe starting
point for more highly optimized code. It can be used with a range of parame-
ters, and is easily translated to other languages. Our solution uses a methodology
which allows the idea of Lazy Reduction to be exploited to the full, with confi-
dence that integer overflow will never occur. Our methodology exposes the sur-
prising observation that the Cooley-Tukey butterfly is much more lazy-reduction-
friendly than the Gentleman-Sande alternative.

Another conclusion from our results is that, if one ignores bandwidth consid-
erations, the cost of moving to a larger value for q has only a negligible impact
on performance.

Finally we conclude that some performance improvements claimed for assem-
bly code that exploits instruction set extensions like Intel AVX2 and ARM
NEON, when compared to compiler-generated C code, while still very impres-
sive, are perhaps not quite as good as originally claimed.
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Abstract. In delegated computing, prominent in the context of cloud
computing, guaranteeing both the correctness and authenticity of com-
putations is of critical importance. Homomorphic signatures can be used
as cryptographic solutions to this problem. In this paper we solve the
open problem of constructing a linearly homomorphic signature scheme
that is secure against an active adversary under standard assumptions.
We provide a construction based on the DL and CDH assumption. Fur-
thermore we show how our scheme can be combined with homomorphic
encryption under the framework of Linearly Homomorphic Authenti-
cated Encryption with Public Verifiability. This way we can provide the
first such scheme that is context hiding. Furthermore our solution even
allows verification in constant time (in an amortized sense).

Keywords: Homomorphic signatures · Homomorphic encryption ·
Delegated computation · Cloud computing

1 Introduction

1.1 Motivation

Homomorphic signature schemes allow to check the correctness of a computa-
tions result without having to perform the computation oneself. This allows a
client to delegate computations to a computationally more powerful server, such
that the server can verify the result. In this scenario the server is asked to not
only perform a computation but also to evaluate this function over the signa-
tures as well. The resulting signature to the output can be used to verify the
correctness of the result. There have been multiple schemes proposed for this.
Their security however is mostly based on weaker non-standard assumptions.
Besides outsourcing of computations, homomorphic signatures offer security in
network coding [9]. These constructions however do not consider confidentiality,
i.e. the client might not be comfortable with the server knowing what data he is
computing on. Homomorphic encryption schemes allow the evaluation of func-
tions over encrypted messages. That servers can perform computations, learning
neither the input nor the output. However, clients still have to trust the server
c© Springer International Publishing AG 2017
M. O’Neill (Ed.): IMACC 2017, LNCS 10655, pp. 261–279, 2017.
https://doi.org/10.1007/978-3-319-71045-7_14
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to a degree, as there is no way to check whether the function has been evaluated
as claimed. Combining both approaches allows a client to verify the correct-
ness by checking a signature and decrypting the cipher returned by the server.
However, naively combining both primitives requires the cipher space of the
encryption scheme to be (a subset of) the message space of the homomorphic
signature scheme. In the case of Paillier encryption for instance the underlying
message space is Zn while the cipher space is Zn2 , i.e. a doubling the signa-
ture size. Catalano et al. [14] proposed a method which allows to combine the
Paillier encryption scheme with a homomorphic signature scheme instantiated
to support only the message space of the Paillier encryption scheme. Currently
there exists only one instantiation of this, whose security is also based on strong
assumptions.

1.2 Related Work

Linearly homomorphic signature schemes: The idea of linearly homomor-
phic signature schemes was introduced in [16] and later refined in [19]. Freeman
proposed stronger security definitions in [17]. An instantiation based on 2-3-Diffie
Hellmann was proposed in [9]. Later realizations are based on subgroup deci-
sion problems [2,3], the k-Simultaneous Flexible Pairing Problem [4], the RSA
problem [18] (offering only security against weak adversaries), the strong RSA
problem [11], the Flexible DH Inversion problem [10], and the lattice based k-
SIS problem [8]. As already mentioned in [17] the construction of such a scheme,
that is secure against a strong adversary, and based on weak assumptions, has
been solved by using so called chameleon hash functions, which are very compu-
tationally expensive. Constructing such a scheme without them, has remained
an open problem ever since. The idea of homomorphic signatures with efficient
verification was introduced in [12]. Intuitively, this means that the outcome of a
computation can be checked faster by using the schemes verification algorithm
than computing it oneself. However, this only holds in an amortized sense, as an
expensive preprocessing phase has to be amortized over multiple datasets (see
[5,14]).

Authenticated Homomorphic Encryption. An and Bellare [1] introduced
a new paradigm called encryption with redundancy which allows to achieve both
privacy and authentication. In [6] the idea of authenticated encryption is for-
malized. Analogous notions for the homomorphic setting were given in [20] and
[14]. In the latter the notion of linearly homomorphic authenticated encryption
with public verifiability (LAEPuV) was introduced which will be used in this
paper. As pointed out in [22], the candidate instantiation of [14] suffers from
false negatives however, and an improved version was proposed.

1.3 Contribution and Roadmap

In this paper we propose a linearly homomorphic signature scheme that is
unforgeable against strong (adaptive) adversaries under the computational
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Diffie-Hellman assumption, which is one of the most well studied cryptographic
problems and thereby solve a problem left open in [17]. This scheme has several
desirable properties. The size of a signature does not depend on the size of the
dataset over which computations are executed, so it is in particular succinct,
it allows for efficient verification, in our case even constant time verification,
and is context hiding, i.e. no information about the input values can be learned
from the signature to the output of a computation (not even if the secret key is
compromised). We then show how our scheme can be used in conjunction with
Paillier encryption [21] in order to instantiate a LAEPuV scheme. This is both
the first context hiding construction and the first to support vectors of messages.

We introduce notation and preliminaries in Sect. 2. We present a new homo-
morphic signature scheme in Sect. 3 and prove its properties, while Sect. 4 shows
how our scheme can be combined with homomorphic encryption.

2 Preliminaries

To accurately describe what both correct and legitimate operations for homo-
morphic signatures are, we will make use of multi-labeled programs similar to [5].
On a high level a function is appended by several identifiers, in our case input
identifiers and dataset identifiers. Input identifiers label in which order the input
values are to be used and dataset identifiers determine which signatures can be
homomorphically combined. The idea is that only signatures created under the
same dataset identifier can be combined. We will now give formal definitions.

A labeled program P consists of a tuple (f, τ1, . . . , τk), where f : Mk → M is
a function with k inputs and τi ∈ T is a label for the i-th input of f from some
set T . Given a set of labeled programs P1, . . . ,Pt and a function g : Mt → M,
they can be composed by evaluating g over the labeled programs, i.e. P∗ =
g(P1, . . . ,Pt). The identity program with label τ is given by Iτ = (fid, τ), where
fid : M → M is the identity function. Note that program P = (f, τ1, . . . , τk)
can be expressed as the composition of k identity programs P = f(Iτ1 , . . . , Iτk

).
A multi-labeled program PΔ is a pair (P,Δ) of the labeled program P and a

dataset identifier Δ. Given a set of t multi-labeled programs with the same data
set identifier Δ, i.e. (P1,Δ), . . . , (Pt,Δ), and a function g : Mt → M, a com-
posed multi-label program P∗

Δ can be computed, consisting of the pair (P∗,Δ),
where P∗ = g(P1, . . . ,Pt). Analogous to the identity program for labeled pro-
grams we refer to a multi-labeled identity program by I(Δ,τ) = ((fid, τ),Δ).

Definition 1 (Homomorphic Signature Scheme). A homomorphic signa-
ture scheme is a tuple of the following probabilistic polynomial-time algorithms:

HKeyGen(1λ, k): On input a security parameter λ and an integer k, the algorithm
returns a key pair (sk, pk), where sk is the secret key kept private and pk is
the public key which determines the message space M, the signature space Y,
and the set F of admissible labeled programs P : Mk → M.
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HSign(sk,Δ, τ,m): On input a secret key sk, a dataset identifier Δ, an input
identifier τ , and a message m ∈ M, the algorithm returns a signature σ ∈ Y
which is the signature for the message labeled by τ in the dataset identified
by Δ.

HEval(pk,PΔ,σ): On input a public key pk, a multi-labeled program PΔ, and a
set of signatures σ ∈ Yk, the algorithm returns a signature σ′ ∈ Y for the
multi-labeled program P over the (tuple of) signatures σ identified by Δ.

HVerify(pk,PΔ,m, σ): On input a public key pk, a multi-labeled program PΔ, a
message m ∈ M, and a signature σ ∈ Y, the algorithm either accepts the
signature σ, for the multi-labeled program P over the dataset identified by Δ,
i.e. it returns 1, or rejects the signature, i.e. it returns 0.

We will now define the relevant properties for homomorphic signatures.

Definition 2 (Correctness). A homomorphic signature scheme (HKeyGen,
HSign,HEval,HVerify) is called correct, if for any security parameter λ, any inte-
ger k, and any key pair (sk, pk) ← HKeyGen(1λ, k) the following two conditions
are satisfied.

Condition 1. For any dataset identifier Δ, any input identifier τ , and any
message m ∈ M, it holds that

HVerify(pk, IΔ,τ ,m,HSign(sk,Δ, τ,m)) = 1.

Condition 2. For any dataset identifier Δ, any multi-labeled program PΔ =
((f1, . . . , fk), τ1, . . . , τk,Δ) containing a linear function, and any set of mes-
sages m ∈ Mk with m = (m1, . . . ,mk), it holds that

HVerify(pk,PΔ, f(m1, . . . ,mk),HEval(pk,PΔ,σ)) = 1

where σ = (στ1 , ..., στk
) ∈ Yk with στ ← HSign(sk,Δ, τ,mτ ).

Definition 3 (Succinctness). A homomorphic signature scheme
(HKeyGen, HSign,HEval,HVerify) is called succinct if for a fixed security para-
meter λ the size of the signatures depends at most logarithmically on the dataset
size k.

For the security notion of our homomorphic signature scheme we first provide
a definition for well defined programs and forgeries on these programs. Then, we
introduce an experiment the attacker can run in order to make a successful
forgery and present a definition for unforgeability based on this experiment.

Definition 4 (Well Defined Program). A labeled program P = (f, τ1, . . . , τk)
is well defined with respect to a list L if one of the two following cases holds:
First, there exists exactly one mi such that (τi,mi) ∈ L ∀i = 1, . . . , k. Second,
there is an i ∈ {1, . . . , k} such that (τi, ·) /∈ L and f({mj}(τj ,mj)∈L∪{m̃l}(τl,·)/∈L)
does not depend on the choice of m̃l ∈ M.
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Definition 5 (Forgery). A forgery is a tuple (PΔ,m∗, σ∗) such that
HVerify(pk,PΔ,m∗, σ∗) = 1 holds and one of the following conditions is met:

Type 1: The list L was not initialized during the game, i.e. no message was
ever committed under the dataset identifier Δ.

Type 2: PΔ is well defined with respect to the list L and m∗ is not the correct
output of the computation, i.e. m∗ �= f({mj}(τj ,mj)∈L).

Type 3: PΔ is not well defined with respect to L.

For the notion of unforgeability we define the following experiments
HomUF − CMAA,HomSign(λ) and Weak − HomUF − CMAA,HomSign(λ) between an
adversary A and a challenger C.

HomUF − CMAA,HomSign(λ):
Key Generation. C calls (sk, pk) ←$ HKeyGen(1λ, k) and gives pk to A.
Queries. A adaptively submits queries for (Δ, τ,m) where Δ is a dataset, τ
is an input identifier, and m is a message. C proceeds as follows: if (Δ, τ,m)
is the first query with dataset identifier Δ, it initializes an empty list L = ∅
for Δ. If L does not contain a tuple (τ, ·), i.e. A never queried (Δ, τ, ·), C
calls σ ← HSign(sk,Δ, τ,m), updates the list L = L ∪ (τ,m), and gives σ to
A. If (τ,m) ∈ L then C returns the same signature σ as before. If L already
contains a tuple (τ,m′) for m �= m′, C returns ⊥.
Forgery. A outputs a tuple (PΔ,m, σ). The experiment outputs 1, if
(PΔ,m, σ) is a forgery according to Definition 5.

In the following experiment Weak − HomUF − CMAA,HomSign(λ), the adver-
sary has to declare the message components of the later signing queries before
the key generation and can later on specify in which dataset Δj it wants to
query it.

Weak − HomUF − CMAA,HomSign(λ):

Declaration of Messages. A outputs a list of possible messages
{mτ,j}Q

τ∈L,j=1 ⊂ M where Q is the number of datasets to be queried.
Key Generation. C calls (sk, pk) ← HKeyGen(1λ, k) and gives pk to A.
Queries. A adaptively submits queries for (Δj , τ,mτ,j) where Δ is a dataset, τ

is an identifier, and mτ,j is a message. C proceeds as follows: if (Δj , τ,mτ,j)
is the first query with dataset identifier Δj , it initializes an empty list L = ∅
for Δj . If L does not contain a tuple (τ, ·), i.e. A never queried (Δj , τ, ·), C
calls σ ← HSign(sk,Δj , τ,m), updates the list L = L ∪ (τ,mτ,j), and gives
σ to A. If (τ,mτ,j) ∈ L then C returns the same signature σ as before. If L
already contains a tuple (τ,m′

τ,j) for m �= m′ C returns ⊥.
Forgery. A outputs a tuple (PΔ,m, σ). The experiment outputs 1, if (PΔ,m, σ)

is a forgery according to Definition 5

Definition 6 (Unforgeability). A linearly homomorphic signature scheme is
unforgeable if for any PPT adversary A we have

Pr[HomUF − CMAA,HomSign(λ) = 1] ≤ negl(λ).
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It is weakly unforgeable if for any PPT adversary A we have

Pr[Weak − HomUF − CMAA,HomSign(λ) = 1] ≤ negl(λ).

However any homomorphic signature scheme weakly-unforgeable under a
computational assumption can be transformed into one that is unforgeable under
the same assumption by [12, Theorem 1].

Additionally we will make use of the following statement.

Lemma 1 (Proposition 2.3 of [17])
Let H = (HKeyGen,HSign,HEval,HVerify) be a linearly homomorphic signa-

ture scheme over a message space M ⊂ RT for some ring R. If H is secure
against Type 2 forgeries, then H is also secure against Type 3 forgeries.

Definition 7 (Context-Hiding). A homomorphic signature scheme for
multi-labeled programs is called context hiding if there exist additional PPT pro-
cedures σ̃ ← HHide(pk,m, σ) and HHideVer(pk,PΔ,m, σ̃) such that:

Correctness: For any (sk, pk) ← HKeyGen(1λ, k) and tuple (PΔ,m, σ), such
that HVerify(pk,PΔ,m, σ) = 1, and σ̃ ← HHide(pk,m, σ), it holds that
HHideVer(pk,PΔ,m, σ̃) = 1.

Unforgeability: The homomorphic signature scheme is unforgeable (see Defi-
nition 6) when replacing the algorithm HVerify with HHideVer in the security
experiment.

Context-Hiding Security: There is a simulator Sim such that, for any fixed
(worst-case) choice of (sk, pk) ← HKeyGen(1λ, k), any multi-labeled program
PΔ = (f, τ1, . . . , τk,Δ), messages m1, . . . ,ml, and distinguisher D there exists
a function ε(λ) such that the following equation holds:

|Pr[D(I,HHide(pk,m, σ) = 1] − Pr[D(I,Sim(sk,PΔ,m)) = 1]| = ε(λ)

where I = (sk, pk,PΔ, {mi, σi}l
i=1,m, σ) for σi ← HSign(sk,Δ, τi,mi), m ←

f(m1, . . . ,mk), σ ← HEval(pk,PΔ, σ1, . . . , σk),and the probabilities are taken
over the randomness of HSign,HHide and Sim. If ε(λ) ≤ negl(λ) we call the
homomorphic signature scheme statistically context-hiding, if ε(λ) = 0 we
call it perfectly context hiding.

Definition 8 (Efficient Verification). A homomorphic signature scheme for
multi-labeled programs allows for efficient verification, if there exist two addi-
tional algorithms (VerPrep,EffVer) such that:

VerPrep(pk,P): Given a public key pk and a labeled program P = (f, τ1, . . . , τk),
this algorithm generates a concise public key pkP . This does not depend on a
dataset identifier Δ.

EffVer(pkP ,m, σ,Δ): Given a concise public key pkP , a message m, a signature
σ and a dataset Δ, it outputs 1 or 0.

The above algorithms are required to satisfy the following two properties:



A Linearly Homomorphic Signature Scheme from Weaker Assumptions 267

Correctness: Let (sk, pk) ← HKeyGen(1λ, k) be honestly generated keys and
(P,m, σ) be a tuple such that for PΔ = (P,Δ) we have
HVerify(pk,PΔ,m, σ) = 1.

Then for every pkP
$← VerPrep(pk,P), EffVer(pkP ,m, σ,Δ) = 1 holds except

with negligible probability.
Amortized Efficiency: Let P be a program, m1, . . . ,mk, be valid input values

and let t(k) be the time required to compute P(m1, . . . ,mk). Then for pkP
$←

VerPrep(pk,P) the time required to compute
EffVer(pkP ,m, σ,Δ) is t′ = o(t(k)).

Note that efficiency here is used in an amortized sense. There is a function
dependent preprocessing so that the cost of verification amortizes over multiple
datasets.

2.1 Notation

Definition 9 (Asymmetric bilinear groups). An asymmetric bilinear group
is a tuple bgp = (q,G1,G2,GT , g1, g2, e) such that (1) G1,G2, and GT are cyclic
groups of order q, (2) the Discrete Logarithm Problem is hard to be computed in
G1,G2, and GT , (3) e : G1 × G2 → GT is bilinear, i.e. e(g1a, g2

b) = e(g1, g2)ab

holds for all g1 ∈ G1, g2 ∈ G2, and a, b ∈ Zq, (4) e is non-degenerate, i.e.
e(g1, g2) �= 1, and (5) e is efficiently computable. The function e is called bilinear
map or pairing.

During our constructions we will have multiple input messages mi where the
messages are vectors. For reasons of clarity we will make the following convention:
mi will be used to identify a certain message, while m[j] will be used to denote
the j-th entry of the message vector m. Thus mi[j] is the j-th entry of the i-th
message.

2.2 Assumptions

Definition 10 (DL). Let G be a group of order q (not necessarily prime):
We say the Discrete Logarithm assumption holds in G. if there exists no ppt
adversary A that given (g, ga) for a random generator g ∈ G and random a ∈ Zq

can output a with more than negligible probability.

Note that there exist different variations of Diffie-Hellman assumptions in
bilinear groups (see for example [15]). We will use the following definition.

Definition 11 (CDH in Bilinear Groups [15]). Let bgp = (q,G1,G2,GT , g1,
g2, e) be a description of a bilinear group. We say the Computational Diffie-
Hellman assumption holds in bgp, if there exists no ppt adversary A that given
(bgp, ga

1 , gb
2) where a, b

$← Zq can output gab
1 with more than negligible probability.



268 L. Schabhüser et al.

Definition 12 (DCRA). Let n be the product of two (safe) primes, i.e. n =
pq. We say the Decisional composite residuosity assumption (DCRA) holds if
there exists no ppt adversary A that can distinguish between an element drawn
uniformly random from the set Z∗

n2 and an element from the set {zn|z ∈ Z
∗
n2},

that is the set of the n-th residues modulo n2.

3 Construction

In the following we will describe a linearly homomorphic signature scheme
HSig = (HKeyGen, HSign,HEval,HVerify) based on CDH in bilinear groups.
In this instantiation the input identifiers are simply the integers from 1 to k.
Multi-labeled programs contain linear functions f given by their coefficients, i.e.
f = (f1, . . . , fk).

HKeyGen(1λ, k, T ): On input a security parameter λ, an integer k, and an integer
T , the algorithm runs G(1λ) to obtain a bilinear group bgp = (q,G1,G2,GT ,
g1, g2, e), and samples k + T elements R1, . . . , Rk, h1, . . . , hT ← G1. Addi-
tionally it generates a key pair (sk′, pk′) ← KeyGen′(1λ) of a regular sig-

nature scheme and a key K
$← K for a pseudorandom function PRF :

K × {0, 1}∗ → Zq. It returns the key pair (sk, pk) with sk = (sk′,K) and
pk = (pk′, bgp, {hj}T

j=1, {Ri}k
i=1).

HSign(sk,Δ, i,m): On input a secret key sk, a dataset identifier Δ, an input
identifier i ∈ [k], and a message m ∈ Z

T
q , the algorithm generates the para-

meters for the dataset identified by Δ, by running z ← PRFK(Δ) and com-
puting Z = gz

2 . It binds Z to the dataset identifier Δ by using the regu-
lar signature scheme, i.e. it sets σΔ ← Sign′(sk′, Z|Δ). Then, it computes
Λ ← (Ri ·

∏T
j=1 h

−m[j]
j )z and returns the signature σ = (σΔ, Z, Λ).

HEval(pk,PΔ,σ): On input a public key pk, a multi-labeled program PΔ con-
taining a linear function f , and signatures σ = (σ1, . . . , σk), where σi =
(σΔ,i, Zi, Λi), the algorithm checks if the signatures share the same public
values, i.e. if σΔ,1 = σΔ,i and Z1 = Zi for all i = 2, . . . , k, and the signa-
ture for each set of public values is correct and matches the dataset identifier
Δ, i.e. Verify′(pk′, Zi|Δ,σΔ,i) = 1 for any i = 1, . . . , k. If that is not the
case the algorithm rejects the signature, otherwise, it proceeds as follows.
It computes m =

∑k
i=1 fimi and Λ =

∏k
i=1 Λfi

i , and returns the signature
σ = (Z1, σΔ,1, Λ).

HVerify(pk,PΔ,m, σ): On input a public key pk, a message m, a signature σ =
(σΔ, Z, Λ), and a multi-labeled program containing a linear function f , the
algorithm returns 1, if Verify′(pk′, Z|Δ,σΔ) = 1 and e

(
R ·

∏T
j=1 h

−m[j]
j , Z

)

= e (Λ, g2), where R ←
∏k

i=1 Rfi

i . Otherwise, it returns 0.

Theorem 1. HSig is a correct linearly homomorphic signature scheme according
to Definition 2.
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Proof. Throughout this proof, let (sk, pk) ← HKeyGen(1λ, k, T ) be an honestly
generated key pair with sk = (sk′,K) and pk = (pk′, bgp, {hj}T

j=1,

{Ri}k
i=).

Condition 1: Let Δ be a dataset identifier, i ∈ [k] be an input identifier, m ∈ Z
T
q

be a message, and σ = (σΔ, Z, Λ) ← HSign(sk,Δ, i,m) be the signature of m.
Furthermore, let I(Δ,i) be the identity function for the i-th input under the tag
Δ. By construction it holds that Verify′(pk′, Z|Δ,σΔ) = 1 and R =

∏k
i=1 Rfi

i =

R1
i = Ri, which yields e

(
Ri ·

∏T
j=1 h

−m[j]
j , Z

)
= e

(
Ri ·

∏T
j=1 h

−m[j]
j , gz

2

)
=

e
(
Rih

−m
1 , g2

)z
= e

(
(Ri ·

∏T
j=1 h

−m[j]
j

)z

, g1) = e (Λ, g2). Thus, we have
HVerify(pk, I(Δ,i),m, σ) = HVerify(pk, I(Δ,i),m,HSign(sk,Δ, i,m)) = 1.

Condition 2: Let Δ be a dataset identifier, mi ∈ Z
T
q for i ∈ [k] be mes-

sages, PΔ = ((f1, . . . , fk), 1, . . . , k,Δ), and σi ← HSign(sk,Δ, i,mi), with
σi = (σΔ,i, Zi, Λi), be a signature of mi. Furthermore, let σ = (σΔ, Z, Λ) ←
HEval(pk,PΔ,σ) be the signature obtained by evaluating f over the signatures
in the dataset identified by Δ.
By construction we have Z = Z1 and σΔ,i = σΔ,1, hence we have
Verify′(pk′, Z|Δ,σΔ) = 1. To prove the correctness it remains to show that
e
(
R ·

∏T
j=1 h

−m[j]
j , Z

)
= e (Λ, g2), where R =

∏k
i=1 Rfi

i . It holds that

e

⎛

⎝R ·
T∏

j=1

h
−m[j]
j , Z

⎞

⎠ = e

⎛

⎝
k∏

i=1

Rfi

i ·
T∏

j=1

h
−∑k

i=1 fimi[j]
j , gz

2

⎞

⎠

= e

⎛

⎝
k∏

i=1

Rfi

i ·
k∏

i=1

(
T∏

j=1

h
−mi[j]
j )fi , g2

⎞

⎠

z

= e

⎛

⎝
k∏

i=1

(Ri ·
T∏

j=1

h
−mi[j]
j )fi , g2

⎞

⎠

z

= e

⎛

⎝
k∏

i=1

((Ri ·
T∏

j=1

h
−mi[j]
j )z)fi , g2

⎞

⎠ = e

(
k∏

i=1

Λfi

i , g2

)

= e (Λ, g2)

hence HVerify(pk,PΔ, f(m1, . . . ,mk),HEval(pk,PΔ,σ)) = 1.

Theorem 2. If Sig′ is an unforgeable signature scheme, PRF is a pseudorandom
function, and the CDH assumption (see Definition 11) holds in bgp, then the
signature scheme describe above is a weakly-unforgeable homomorphic signature
scheme for linear functions.

Proof. To prove this Theorem we define a series of games with the adversary
A and we will show that the adversary A wins, i.e. the game outputs 1, only
with negligible probability. Following the notation of [10] we will write Gi(A) to
denote that a run of game i with adversary A returns 1. We will make use of
flag values badi initially set to false. If at the end of the game any of these flags
is set to true, the game simply outputs 0. Let Badi denote the event that badi is
set to true during a game.
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Game 1: This is the experiment Weak − HomUF − CMAA,HomSign (see Defini-
tion 6) where A only outputs Type-1 or Type-2 forgeries.

Game 2: This game is defined as Game 1 apart from the fact that whenever
A outputs a forgery (PΔ,m∗, σ∗), where σ∗ = (σ∗

Δ, Z∗, Λ∗) such that Z∗ was
not generated by the challenger, then Game 2 sets bad2 ← true.

Game 3: This game is the same as Game 2, except that the pseudorandom func-
tion of the scheme is replaced with a true random function Φ : {0, 1}∗ → Zq.

Game 4: This game is the same as Game 3, except for an additional check.
When given a forgery (P∗

Δ∗ ,m∗, σ∗) where P∗
Δ∗ = ((f∗, 1, . . . , k),Δ∗)

the simulator computes m ← f∗(m1,Δ, . . . ,mk,Δ). It checks whether
∏T

j=1 h
m[j]
j =

∏T
j=1 h

m∗[j]
j holds. If it does it sets bad4 = true.

We will first show that these games are computationally indistinguishable under
our assumptions and then proceed by showing how to construct a simulator S
which uses an efficient adversary A against the signature scheme to solve the
CDH problem.

Games 1 and 2 are only different if Bad2 occurs. By constructions this means
that A produced a forgery containing a valid signature σ∗

Δ on (Δ∗|Z∗) even
though no signature has ever been queried for datatset Δ∗. This means that
the adversary A can be used to obtain an existential forgery for the signature
scheme Sig′.

If PRF is a pseudorandom function then Game 2 is computationally indistin-
guishable from Game 3.

We obviously have |Pr[G3(A)] − Pr[G4(A)]| ≤ Pr[Bad4].
In Lemma 3 in the Appendix we show how an adversary A, such that

Pr[Bad4] is non negligible, can be used to break the DL assumption. Afterwards
in Lemma 2 we show how a simulator can use an adversary winning Game 4 to
break the CDH assumption.

Theorem 3. The homomorphic signature scheme HSig is succinct.

Proof. The signature size is independent of the size k of the datasets.

Theorem 4. The homomorphic signature scheme HSig allows for efficient ver-
ification.

Proof. We describe the two algorithms (VerPrep,EffVer).

VerPrep(pk,P): It parses P = ((f1, . . . , fk), 1, . . . , k) and takes the Ri for i ∈ [k]
contained in the public key. It computes RP ←

∏k
i=1 Rfi

i and outputs pkP =
(pk′, bgp, {hj}T

j=1, RP) where pk′, bgp, {hj}T
j=1 are taken from pk.

EffVer(pkP ,m, σ,Δ): This algorithm does the same as HVerify only the value R
has been precomputed as RP .

Obviously this satisfies correctness and the running time of EffVer is now inde-
pendent of k and therefore the runtime complexity of P. Thus our construction
is constant time (in an amortized sense).
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Theorem 5. The linearly homomorphic signature scheme HSig is perfectly con-
text hiding according to Definition 7 if Sig′ is a deterministic signature scheme.

For the proof we refer to the appendix (see Theorem 7).

4 Linearly Homomorphic Authenticated Encryption

We will give the formal definitions for Linearly Homomorphic Authenticated
Encryption with Public Verifiability.

Definition 13 (LAEPuV [14]). A LAEPuV scheme is a tuple of five ppt algo-
rithms (AKeyGen,AEncrypt,AEval,AVerify,ADecrypt) such that:

AKeyGen(1λ, k): It takes a security parameter λ and the maximum number k of
encrypted messages in each dataset as input. It returns a key pair (sk, pk),
where sk is the secret key for encrypting and signing and pk is the public key
used for verification and evaluation. The message space M, the cipher space
C and dataset identifier space D are implicitly defined by the public key pk.

AEncrypt(sk,Δ, τ,m): The input is a secret key sk, a dataset identifier Δ, an
input identifier τ , and a message m. The output is a cipher c.

AEval(pk,PΔ, {ci}k
i=1): The input is a public key pk, a multi-labeled program

PΔ, and a set of k ciphers {ci}i=1...k. The output is a cipher c.
AVerify(pk,PΔ, c): The input is a public key pk, a multi-labeled program PΔ con-

taining a linear function f , and a cipher c. The output is either 1, i.e. the
cipher is valid, or 0, i.e. the cipher is invalid.

ADecrypt(sk,PΔ, c): It gets a secret key sk, a multi-labeled program PΔ, and a
cipher c as input and outputs a message m if c is valid and ⊥ if c is invalid,
respectively.

Definition 14 (Correctness). Let LAE = (AKeyGen,AEncrypt,AEval,AVerify,
ADecrypt) be a LAEPuV scheme. We say LAE is correct if the following two
conditions all hold.

1. For any key pair (sk, pk) ← AKeyGen(1λ, k) and any cipher c ∈ C we have

AVerify(pk,PΔ, c) = 1 ⇔ ∃m ∈ M : ADecrypt(sk,PΔ, c) = m.

2. Let (sk, pk) ← AKeyGen(1λ, k) be a key pair, Δ ∈ {0, 1}∗ be any
dataset identifier, m1, . . . ,mk ∈ M be a tuple of messages, and let ci ←
AEncrypt(sk,Δ, τi,mi). For any admissible multi-labeled program PΔ =
((f1, . . . , fk), τ1, . . . , τk,Δ) it holds that

ADecrypt(sk,PΔ,AEval(pk,PΔ, {ci}k
i=1)) = f(m1, . . . ,mk).

Note that in particular, if we have PΔ = I(Δ,τi) the identity program, then
ADecrypt(sk, I(Δ,τ), ci) = mi holds.
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We will give a security definition for a LAEPuV scheme in the Appendix
(Definition 15).

We will now show how our linearly homomorphic signature scheme can be
used to instantiate such a LAEPuV scheme LAE = (AKeyGen,AEncrypt, AEval,
AVerify,ADecrypt) when using bilinear groups of composite order. In [7] it is
shown how to construct even asymmetric bilinear groups of composite order
n = pq. Note that previous instantiations of LAEPuV schemes can only sign
messages in Zn, i.e. vectors of length 1, while we show the first use of LAEPuV
for vectors of polynomial length. Note again, that in this case the input identifiers
are integers i ∈ [k].

AKeyGen(1λ, k, T ): On input a security parameter λ, an integer k, and an integer
T , it chooses two (safe) primes p, q and computes the modulus n ← p·q. It runs
G(1λ) to obtain a bilinear group bgp = (n,G1,G2,Gt, g1, g2, e) of composite
order and samples k + T elements R1, . . . , Rk, h1, . . . hT ← G1 uniformly
at random. Additionally, the algorithm generates a key pair (sk′, pk′) ←
KeyGen′(1λ) of a regular signature scheme and a key K

$← K for the pseudo-
random function PRF. Furthermore it chooses an element g ∈ Z

∗
n2 of order n

as well as a hash function H : {0, 1}∗ → Z
∗
n2 . It returns the key pair (sk, pk)

with sk = (sk′,K, p, q) and pk = (bgp,H, pk′, g, {hj}T
j=1, {Ri}k

i=1).
AEncrypt(sk,Δ, i,m): On input a secret key sk, a dataset identifier Δ, an input

identifier i ∈ [k], and a message m ∈ Z
T
n , it chooses βj uniformly at random

from Z
∗
n2 for j ∈ [T ]. It computes the cipher C[j] ← gm[j] · β[j]n mod n2,

computes S[j] ← H(Δ|i|j) and computes (a[j], b[j]) ∈ Zn × Z
∗
n such that

ga[j] · b[j]n = C[j]S[j] mod n2 using the factorization of n (see [21] for a
detailed description). It generates the parameters for the dataset identified
by Δ, by running z ← PRFK(Δ) and computing Z = gz

2 . It binds Z to
the dataset identifier Δ by using the regular signature scheme, i.e. it sets
σΔ

$← Sign′(sk′, Z|Δ). Then, it computes Λ ← (Ri ·
∏T

j=1 h
−a[j]
j )z and returns

the the cipher c = (C, a, b, σΔ, Z, Λ).
AEval(pk,PΔ, {ci}k

i=1): On input a public key pk, a multi-labeled program PΔ,
and a set of cipers ci, it parses PΔ = ((f1, . . . , fk), 1, . . . , k,Δ) and ci =
(Ci, ai, bi, σΔ,i, Zi, Λi). If Zi �= Z1 for any i ∈ [k], it aborts. Otherwise, it sets

C ←
k∏

i=1

Cfi

i mod n2 a ←
k∑

i=1

fiai mod n

b[j] ←
k∏

i=1

bi[j]fi mod n2, for j ∈ [T ] Λ ←
k∏

i=1

Λfi

i mod n

It returns the cipher c = (C, a, b, σΔ,1, Z1, Λ).
AVerify(pk,PΔ, c): On input a public key pk, a multi-labeled program PΔ, and a

cipher c, it parses PΔ = ((f1, ..., fk), τ1, . . . , τk,Δ) and c = (C, a, b, σΔ, Z, Λ).
The algorithm checks whether the following equations hold:
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Verify′(pk′, Z|Δ,σΔ) = 1, e
(
R ·

∏T
j=1 h

−a[j]
j , Z

)
= e (Λ, g2), and ga[j] ·b[j]n =

C[j]
∏k

i=1 H(Δ|i|j)fi mod n2. If all checks are satisfied, it returns 1. Other-
wise, it returns 0.

ADecrypt(sk,PΔ, c): Returns ⊥ if AVerify(pk,PΔ, c) = 0. Otherwise, compute
(m,β) such that gm[j]β[j]n = C[j] mod n2 and return m.

We will formally show the correctness of LAE in Theorem 8 in the Appendix.

Theorem 6 ([14]). In the random oracle model, if the DCR Assumption (see
Definition 12)and the CDH Assumption (see Definition 11) hold and H is a ran-
dom oracle the LAEPuV scheme LAE is a LH-IND-CCA secure (see Definition
15) LAEPuV scheme.

Proof. This is a direct corollary of [14, Theorem 1] and Theorem 2.

5 Conclusion

We provide a new linearly homomorphic signature scheme directly based on the
CDH assumption, without using a chameleon hash function thereby solving the
problem introduced in [17]. Additionally we provide the first LAEPuV scheme
that supports vectors as inputs and hereby give an alternative to the instantiation
provided in [22]. Our construction achieves two additional properties, that are
constant time verification and context hiding. It would be interesting to see if
the security of homomorphic schemes supporting a larger class of computations
can also be based on such well studied assumptions.

Acknowledgments. This work has received funding from the European Union’s Hori-
zon 2020 research and innovation program under Grant Agreement No 644962.

A Appendix: Postponed Proofs

Lemma 2. An efficient adversary A winning Game 4 in Theorem 2, can be
used to break the CDH assumption.

Proof. We will now show how to construct a simulator S which uses an effi-
cient adversary A against Game 4 to solve the CDH problem. Let bgp =
(q,G1,G2,GT , g1, g2, e) ← G(1λ) be a bilinear group of order q. The simula-

tor S is given g1, g
a
1 , gb

2, where a, b
$← Zq, and intends to compute gab

1 .

Initialization: Let Q be the number of datasets in which the adversary makes
signature queries. The adversary gives the simulator all messages {m(i,l)}k

i=1, for
l ∈ [Q] on which he makes signature queries.

Setup: The simulator runs the key generation algorithm of the regular signature
scheme to obtain a key pair (sk′, pk′) ← KeyGen′(1λ) and samples a key K

$←
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K for the pseudorandom function PRF. The simulator guesses the dataset in
which the adversary produces a forgery, in the following identified by the dataset
identifier Δ. Then, it chooses ri

$← Zq for i ∈ [k] as well as sj
$← Zq for j ∈ [T ].

It sets Ri ← gri
1 · g

a·∑T
j=1 m(i,Δ)[j]

1 , sets hj = (ga
1 )sj , and sends the public key

pk = (pk′, g1, {Ri}k
i=1, {hj}T

j=1) to the adversary. Note that since the sj and ri

are chosen uniformly at random this is perfectly indistinguishable from an honest
setup.

Query: While the adversary queries signatures for messages, we distinguish
between the following two cases.

– Case I: The adversary queries signatures for the dataset Δl �= Δ.
– Case II: The adversary queries signatures for the dataset Δl = Δ.

Case I: In this case, the simulator answers the signing queries by the adversary
with honestly generated signatures. More precisely, let m1, . . . ,mk be the mes-
sages and Δl be the dataset identifier. The simulator computes z ← PRFK(Δl),
sets Z = gz

2 , and σΔ ← Sign′(sk′,Δl|Z). Then, for any i ∈ [k], it computes
Λi ← (Ri·

∏T
j=1 h

−mi[j]
j )z and returns the set of signatures σ = {(σΔl

, Z, Λi)}k
i=1.

The validity of the signatures can be easily verified.

Case II: In this case the adversary A queries signatures in the dataset the simu-
lator expects A to produce a forgery in. It chooses u ← Zq uniformly at random
and sets Z = (gb

2)
u. Let m1, . . . ,mk be the messages and Δ be the dataset

identifier. The simulator sets σΔ ← Sign′(sk′, Z|Δ). Then, for i =∈ [k], the
simulator computes Λi ←

(
gb
2

)uri and returns the signatures σ = (σ1, . . . , σk),
where σi = (σΔ, Z, Λi). Note that for any i = 1, . . . , k, it holds that

e(Ri ·
T∏

j=1

h
−mi[j]
j , Z) = e(gri

1 · g
a·sj ·mi[j]
1 · (ga·sj

1 )−mi[j], gub
2 )

= e(gri
1 , g2)ub = e((guri

1 )b, g2) = e(Λ, g2)

Thus, σi is a valid signature for any i ∈ [k] and the simulated signatures are
perfectly indistinguishable from honestly generated signatures.

Challenge. Let (P∗
Δ∗ ,m∗, σ∗) be the forgery returned by the adversary A. Parse

σ∗ = (σ∗
Δ∗ , Z∗, Λ∗)) and P∗

Δ∗ = (f∗, 1, . . . , k,Δ∗). If Δ∗ �= Δ, restart the sim-
ulation. Otherwise, the simulator evaluates the function f∗ over the dataset
identified by Δ, i.e. it computes m ← f∗(m1, ...,mk) and σ = (σΔ, Z, Λ) ←
HEval(pk,Δ,σ, f∗). Note that we have

∏T
j=1 h

m[j]
j �=

∏T
j=1 h

m∗[j]
j , since bad4 =

false and therefore also
∑T

j=1 sj · m[j] �=
∑T

j=1 sj · m∗[j]. It returns
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(Λ · (Λ∗)−1)(
∑T

j=1 sj(m
∗[j]−m[j]))−1

as a solution. Let R ←
∏k

i=1 Rfi

i . Since Λ and
Λ∗ are valid signatures for the function f∗, it holds that

Λ =

⎛

⎝R ·
T∏

j=1

h
−m[j]
j

⎞

⎠

ub

=
(
Rub · (ga

1 )−ub(
∑T

j=1 sjm[j])
)

= Rub · g
−(
∑T

j=1 sjm[j])uab

1

Λ∗ =

⎛

⎝R ·
T∏

j=1

h
−m∗[j]
j

⎞

⎠

ub

= Rub(ga
1 )−ub(

∑T
j=1 sjm∗[j]) = Rubg

−(
∑T

j=1 sjm∗[j])uab

1

Therefore, we have

Λ · (Λ∗)−1 = (Rub · g
−u(

∑T
j=1 sj ·m[j])ab

1 ) · (R−ub · g
u(
∑T

j=1 sj ·m∗[j])ab

1 )

= g
(
∑T

j=1 sj ·m∗[j])uab

1 · g
−(
∑T

j=1 sj ·m[j])uab

1 = g
ab(u

∑T
j=1 sj(m

∗[j]−m[j]))

1

which yields

(Λ · (Λ∗)−1)
1

u
∑T

j=1 sj(m∗[j]−m[j]) = (gba
1 )

u
∑T

j=1 sj(m∗[j]−m[j])

u
∑T

j=1 sj(m∗[j]−m[j]) = gab
1

Since the simulator guesses the right dataset with probability at least 1/Q, it
holds that

Pr[Adv(S)] ≥ 1
Q

· Pr[G4(A)]

which proves the statement.

Lemma 3. Assuming the DL assumption holds in G1 then Pr[Bad4] ≤ negl(λ)

Proof. Given g1, g
′
1 ∈ G1 from bgp we show how to simulate the game in order

to break the discrete logarithm in G1, i.e. computing x for g′
1 = gx

1 . The simu-
lator chooses an index ν ∈ [T ]. It follows the protocol faithfully except for the

generation of the hj . It chooses sj
$← Zq. and sets hj = g

sj

1 for all j �= ν and
sets hν = g′

1
sν . This is perfectly indistinguishable from a real execution of the

game. It answers all queries faithfully. When the adversary returns a forgery
(P∗

Δ∗ ,m∗, σ∗) it checks whether m[ν] �= m∗[ν]. If not it restarts the simulation.
Otherwise we know that

∏T
j=1 h

m[j]
j =

∏T
j=1 h

m∗[j]
j and therefore we have

sνm[ν]x +
T∑

j=1,j �=ν

sjm[j] = sνm∗[ν]x +
T∑

j=1,j �=ν

sjm
∗[j]

⇔ x =
1

sν(m[ν] − m∗[ν])

T∑

j=1,j �=ν

sj(m∗[j] − m[j])

and found the discrete logarithm gx
1 = g′

1.
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Theorem 7. The linearly homomorphic signature scheme HSig is perfectly con-
text hiding according to Definition 7 if Sig′ is a deterministic signature scheme.

Proof. First we note that in our case the algorithm HHide is just the identity
function, i.e. σ ← HHide(pk,m, σ) for all pk,m, σ and we have HHideVer =
HVerify. We will show how to construct a simulator Sim that outputs signatures
perfectly indistinguishable from the ones obtained by running HEval. Parse the
simulator’s input as sk = (sk′,K), PΔ = ((f1, . . . , fk), 1, . . . , k,Δ), and m̃ =
(m̃[1], . . . , m̃[T ]). With this information the simulator computes the following:

Z ′ = gz
2 where z ← PRFK(Δ)

σ′
Δ

$← Sign′(sk′, Z|Δ)
Λ′ = (

∏k
i=1 Rfi

i ·
∏T

j=1 h
−m[j]
j )z

The simulator outputs the signature σ′ = (σ′
Δ, Z ′, Λ′).

We will now show that this simulator allows for perfectly context hiding
security. We will fix an arbitrary key pair (sk, pk), a multi-labeled program
((f1, . . . , fk), 1, . . . , k,Δ), and messages m1, . . . ,mk ∈ Z

T
q .

Let σ ← HEval(pk,PΔ,σ) and parse it as σ = (σΔ, Z, Λ).
We look at each component of the signature.
We have Z = PRFK(Δ) by definition and therefore also Z = Z ′. In particularly
we also have z = z′ where Z = gz

2 and Z ′ = gz′
2 .

We have σΔ = Sign′(sk′, Z|Δ) by definition and since Z = Z ′ therefore also
σΔ = σ′

Δ since Sign′ is deterministic.
We have Λ =

∏k
i=1(Ri ·

∏T
j=1 h

−mi[j]
j )z·fi = (

∏k
i=1 Rfi

i )z ·(
∏T

j=1

∏k
i=1 h

−fi·mi[j]
j )z

= (
∏k

i=1 Rfi

i ·
∏T

j=1 h
−m[j]
j )z, where the last equation holds since m =

∑k
i=1 fi ·

mi. Thus we also have Λ = Λ′.
We can see that we have identical elements and therefore even a computationally
unbounded distinguisher has no advantage distinguishing the two cases.

Definition 15. (LH-IND-CCA [13]). Let LAE = (AKeyGen,AEncrypt,AEval,
AVerify,ADecrypt) be a LAEPuV scheme. We define the following experiment
LH − IND − CCAH,A(1λ, k) between a challenger C and an adversary A:

Setup: The challenger runs (sk, pk) ← AKeyGen(1λ, k). Then it initializes an
empty list L and gives pk to the adversary A.

Queries I: A can ask a polynomial number of both encryption and decryption
queries. The former are of the form (m,Δ, τ) where m ∈ M is a message,
Δ ∈ {0, 1}∗ is a dataset identifier, and τ ∈ T is an input identifier. The
challenger computes c ← AEncrypt(sk,Δ, τ,m), gives c to A and updates the
list L ← L∪{(m,Δ, τ)}. If L already contains a query (·,Δ, τ) the challenger
C will answer ⊥. The latter queries are of the form (PΔ, c) and A receives
the output of ADecrypt(sk,PΔ, c). Note that this can be ⊥ if c is not a valid
cipher.

Challenge: A produces a challenge tuple (m0,m1,Δ
∗, τ∗). If a query of the

form (·,Δ∗, τ∗) is contained in L, the challenger returns ⊥ as before.
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The challenger chooses a random bit b
$← {0, 1} and gives c∗ ←

AEncrypt(sk,Δ∗, τ∗,mb) to A. Then it updates the list L ← L∪{(mb,Δ
∗, τ∗)}.

Queries II: This phase is carried out similar to the Queries I phase. Any
decryption query (PΔ∗ , c) with PΔ∗ = ((f1, . . . , fk), τ1, . . . , τk,Δ∗) where
fτ∗ �= 0 is answered with ⊥. All other queries are answered as in phase
Queries I.

Output: Finally A outputs a bit b′ ∈ {0, 1}. The challenger outputs 1if b = b′

and 0otherwise.

We say that a LAEPuV scheme is LH-IND-CCA secure if for any ppt adversary
A we have

|Pr[LH − IND − CCALAE,A(1λ, k) = 1] − 1/2| ≤ negl(λ).

Theorem 8. The LAEPuV scheme LAE is correct in the sense of Definition 14.

Proof. We fix a random key pair (sk, pk) ← AKeyGen(1λ, k, T ),
with sk = (sk′,K, p, q) and pk = (bgp,H, pk′, g, {hj}T

j=1, {Ri}k
i=1).

1 If g ∈ Z
∗
n2 has order n then the map: Zn × Z

∗
n → Z

∗
n2 , (a, b) �→ ga · bn is

an isomorphism (see [21]). If AVerify(pk,PΔ, c) = 1 holds then we have in
particular ga[j] · b[j]n = C[j]

∏k
i=1 H(Δ|i|j)fi mod n2, where each ga[j] · b[j]n

and H(Δ|i|j)fi is an element of Z
∗
n2 . Since this is a group so is every C[j]

which means every Paillier decryption yields a valid message m.
2 We choose messages mi

$← Z
T
n as well as a dataset identifier Δ ∈ {0, 1}∗

and a multi-labeled program PΔ = ((f1, . . . , fk), τ1, . . . , τk,Δ). Let ci ←
AEncrypt(sk,Δ, i,mi) and c ← AEval(pk,PΔ, {ci}k

i=1).
By definition we have c = (C, a, b, σΔ, Z, Λ). Where for each j ∈ [T ] we have

C[j] =
k∏

i=1

(
gmi[j]βi[j]n

)fi

= g
∑k

i=1 fimi[j]

(
k∏

i=1

βi[j]fi

)n

mod n2

ga[j] · b[j]n = g
∑k

i=1 fiai[j] ·
(

k∏

i=1

bi[j]fi

)n

=
k∏

i=1

(
C[j]fi · H(Δ|i|j)fi

)

= C ·
k∏

i=1

(H(Δ|i|j)fi) mod n2

z = PRFK(Δ), Z = gz
2 , σΔ = Sign′(sk′, Z|Δ)

Λ =
k∏

i=1

Λfi

i =

⎛

⎝
k∏

i=1

Rfi

i ·
T∏

j=1

h
−∑k

i=1 fiai[j]
j

⎞

⎠

z

=

⎛

⎝R ·
T∏

j=1

h
−a[j]
j

⎞

⎠

z

Therefore we have AVerify(pk,PΔ, C) = 1 and due to the first equation Paillier
decryption of C[j] yields

∑k
i=1 fimi[j] for each j ∈ [T ].
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Abstract. Subset signatures are a variant of malleable signatures which
allow anyone to derive signatures on any subset of previously signed sets
in such a way that derived signatures are indistinguishable from new
signatures on the subset (i.e. context-hiding). Such a primitive has many
applications. In some scenarios, it might be desirable to restrict some
elements in the set from preserving the context-hiding property. In other
words, it might be desirable to allow the signer, at the time of the signing,
to mark specific elements (which we refer to hereafter as the restricted
subset) such that the inclusion of any elements from the restricted sub-
set in any derived signatures would violate the context-hiding property
and make the derived signature linkable to the original signature. In
this paper, we put forward the notion of subset signatures with con-
trolled context-hiding. We propose a security model and a generic con-
struction as well as efficient instantiations which do not rely on random
oracles. Our instantiations are structure-preserving and therefore could
be useful for other applications. As a special case of our constructions
when the restricted subset is empty, we obtain more efficient construc-
tions of standard subset signatures. Our constructions, which satisfy the
strongest existing security definitions, have constant-size keys and out-
perform existing constructions in every respect.

As part of our contribution, we construct a structure-preserving signa-
ture scheme with combined unforgeability that signs a vector of group ele-
ments while maintaining constant-size signatures. The scheme has some
desirable properties and combines nicely with Groth-Sahai proofs, and
thus could be of independent interest.

Keywords: Malleable signatures · Subset signatures · Standard model

1 Introduction

Malleable signatures (sometimes also referred to as homomorphic signatures),
first suggested by Desmedt [25], allow for computing on authenticated data.
Given a message/signature pair (m,σ), anyone can derive a signature σ′ on the
message m′ = T (m) for some “allowable” transformation T . For instance, if m
is a document, T could be defined as quoting or redacting from m. Johnson
et al. [37] provided security definitions and early realizations of homomorphic
c© Springer International Publishing AG 2017
M. O’Neill (Ed.): IMACC 2017, LNCS 10655, pp. 280–304, 2017.
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signatures. Inspired by the advent of fully homomorphic encryption [31] which
allowed computing on encrypted data, and motivated by allowing computation
on authenticated data, the last few years witnessed the emergence of a long line
of research related to malleable signatures. Constructions of malleable signa-
tures for arithmetic functions include [8,14–16,30]. Signature schemes support-
ing document redaction, i.e. redactable signatures, include [17–19,41]. Other
notions permitting other types of allowable transformation, such as append-only
signatures and transitive signatures, include [10,20,38–40]. Malleable signature
schemes for network coding include [6,21,22,28].

Other variants of malleable signatures include quoting and subset signatures
[5]. In the latter, given a signature on some set S, anyone (without knowledge
of the secret signing key) can derive signatures on any subsets of S. Subset
signatures without the context-hiding requirement were considered earlier by
Hevia and Micciancio [36]. Ahn et al. [5] showed that by utilizing a Naor-like
transformation [13], which was used to obtain signature schemes from identity-
based encryption, some variants of Ciphertext-Policy Attribute-Based Encryp-
tion (CP-ABE), e.g. [4], can be used to obtain subset signatures satisfying the
context-hiding requirement. As noted, by Attrapadung et al. [7], instantiating the
generic idea of [5] with existing compatible CP-ABE schemes has the downside
of supporting only bounded-length messages, since the maximal message length,
i.e. the cardinality of the sets that can be signed, need to be fixed beforehand.
Another downside is that the verification key of such instantiations depends
linearly on the maximal length.

Attrapadung et al. [7] combined Groth-Sahai proofs [35], which are randomiz-
able, with the structure-preserving signature scheme of Abe et al. [1] and Waters’
signature scheme [43] to obtain an instantiation of subset signatures which do
not rely on random oracles [11]. Their construction, which is over Type-1 bilin-
ear groups, inherits the linear dependency between the verification key size and
the bit-length of the message space from the underlying Waters’ scheme [43].

While useful, the context-hiding property in its entirety might be a bit too
strong for some applications. For instance, in some scenarios, it might be desir-
able for the authenticator of a message/document (or anyone else) to be able to
detect if some clearly marked (e.g. sensitive) parts of the document, which we
refer to hereafter as “restricted parts”, have been included in future derivatives
of the document without affecting the unlinkability (i.e. context-hiding) of the
remaining parts of the document. In other words, as long as the derivative does
not contain restricted parts from the original document, it cannot be linked to
the original signature.

The main aims of this work is to generalize the notion of subset signatures
to allow for the controlled context-hiding functionality and to obtain efficient
constructions of the new variant as well as the original notion which is a special
case of the new one.

Our Contribution. We define the notion of subset signatures with controlled
context-hiding. We propose a generic construction for the primitive as well as effi-
cient instantiations in the standard model. As a special case of our instantiations
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when the restricted subset is empty, we obtain more efficient (in every respect)
constructions of standard subset signatures than existing constructions. In
order to realize our instantiations, we construct a structure-preserving signa-
ture scheme with combined unforgeability that signs multiple group elements
while maintaining constant-size signatures. Randomization of signatures is done
additively and thus the scheme combines nicely with Groth-Sahai proofs. In par-
ticular, when proving knowledge of signatures, anyone can randomize the public
components of the signature (part of the statement) and adapt the commit-
ted components of the signature (part of the witness) as well as the associated
Groth-Sahai proofs. The latter observation is of independent interest and might
be useful for other applications beyond the scope of this paper. As a special case
of the new combined signature scheme, we also obtain a new (optimal) strongly
unforgeable structure-preserving signature scheme in Type-3 bilinear groups.

Paper Organization. In Sect. 2, we give some preliminaries. In Sect. 3, we
define the notion of subset signatures with controlled context-hiding. We present
the building blocks we use in Sect. 4. In Sect. 5, we present our generic construc-
tion and provide a proof of its security. In Sect. 6, we present instantiations in
the standard model.

Notation. A function ν(.) : N → R
+ is negligible (in n) if for every polynomial

p(.) and all sufficiently large values of n, it holds that ν(n) < 1
p(n) . Given a

probability distribution Y , we denote by y ← Y the operation of selecting an
element according to Y . By PPT we mean running in probabilistic polynomial
time in the relevant security parameter. By [n], we denote the set {1, . . . , n}.
For an algorithm Alg, y ← Alg(x1, . . . , xn; r) denotes the process of running

Alg with inputs x1, . . . , xn and coins r to get output y. y
$←−− Alg(x1, . . . , xn)

or Alg(x1, . . . , xn) $−−→ y denote the act of choosing the coin r at random and
running y ← Alg(x1, . . . , xn; r).

2 Preliminaries

In this section we provide some preliminary definitions.

2.1 Bilinear Groups

A bilinear group is a tuple P := (G, G̃,T, p,G, G̃, e) where G, G̃ and T are groups
of a prime order p, and G and G̃ generate G and G̃, respectively. The function e
is an efficient non-degenerate bilinear map e : G×G̃ −→ T. We use multiplicative
notation for all the groups. We let G

× := G \ {1G} and G̃
× := G̃ \ {1

G̃
}. We

limit our attention to the efficient Type-3 setting [29], where G �= G̃ and there
is no efficient isomorphism between the groups in either direction. We assume
there is an algorithm BG taking as input a security parameter λ and outputting
a description of bilinear groups.
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2.2 Intractability Assumptions

We list here some existing assumptions.

Definition 1 (Decisional Diffie-Hellman (DDH) Assumption). The
DDH assumption holds w.r.t. a group setup G if for all PPT adversaries A,
there exists a negligible (in λ) function ν s.t.

Pr

[

(G, G, p) $←−− G(1λ); x, y, z
$←−− Zp; b

$←−− {0, 1};
X := Gx; Y := Gy; Z := Gbxy+(1−b)z : A(G,X, Y, Z) = b

]

≤ 1
2

+ ν(λ) ·

Definition 2 (Symmetric External Diffie-Hellman (SXDH) Assump-
tion). Given a bilinear group P := (G, G̃,T, p,G, G̃, e), the SXDH assumption
requires that the DDH assumption holds in both groups G and G̃.

2.3 Combined Digital Signatures

A signature scheme can either satisfy the standard notion of unforgeabiliy or
strong unforgeability. In the latter (which implies the former), the adversary
wins even if she forges a signature on a message that she obtained a signature
on from the oracle. Of course, to obtain both variants simultaneously, one can
interleave two different schemes each meeting one of the desired security variants.
However, as recently argued by Groth [34], such an approach results in less
efficient schemes that are conceptually less elegant than a unified scheme. Groth
recently defined a combined notion and gave structure-preserving constructions.

A combined signature scheme over a bilinear group P generated by BG for a
message space M is a tuple

CDS := (KeyGen,Sign0,Verify0,Sign1,Verify1,Randomize),

where:

KeyGen(P) outputs a pair of secret/verification keys (sk, vk).
Sign0(sk,m) on input sk and a message m ∈ M, outputs a randomizable signa-

ture σ.
Verify0(vk,m, σ) this deterministic algorithm outputs 1 if σ (produced by Sign0)

is a valid signature on m w.r.t. vk, and 0 otherwise.
Sign1(sk,m) on input sk and a message m ∈ M, outputs a strongly unforgeable

signature σ.
Verify1(vk,m, σ) this deterministic algorithm outputs 1 if σ (produced by Sign1)

is a valid signature on m w.r.t. vk, and 0 otherwise.
Randomize(vk,m, σ) if the valid signature σ was produced by Sign0, it returns a

new randomized signature σ′ on m. If σ was produced by Sign1, the algorithm
returns the original signatures σ.

Besides (perfect) correctness, which requires that signatures produced by both
modes are accepted, we require the following two properties.
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Definition 3 (Combined Existential Unforgeability). A combined signa-
ture scheme CDS over a bilinear group generator BG satisfies combined existen-
tial unforgeability against adaptive chosen-message attack (CEUF-CMA) if for
all λ ∈ N for all PPT adversaries A, the following is negligible (in λ)

Pr

⎡

⎢
⎢
⎢
⎣

P $←−− BG(1λ); (sk, vk) $←−− KeyGen(P);

(σ∗,m∗) $←−− ASign0(sk,·),Sign1(sk,·)(P, vk)
:
(
Verify0(vk,m∗, σ∗) = 1 ∧ m∗ /∈ Q0

)

∨ (
Verify1(vk,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ Q1

)

⎤

⎥
⎥
⎥
⎦

,

where Q1 is the set of messages/signatures returned by Sign1 and Q0 is the set
of messages queried to Sign0.

Definition 4 (Perfect Randomizability). A combined signature scheme
CDS over a bilinear group generator BG is perfectly randomizable if for all
λ ∈ N for all stateful adversaries A

Pr

⎡

⎢
⎣

P $←−− BG(1λ); (sk, vk) $←−− KeyGen(P); (σ∗,m∗) $←−− A(P, sk, vk);

b
$←−− {0, 1};σ0

$←−− Sign0(sk,m∗);σ1
$←−− Randomize(vk,m∗, σ∗)

: Verify0(vk,m∗, σ∗) = 1 ∧ A(σb) = b

⎤

⎥
⎦ =

1
2
.

Note that our randomizability definition is stronger than that of [34] as we allow
the adversary to create the original signature σ∗.

2.4 Structure-Preserving Signatures

A structure-preserving signature scheme [1] is a signature scheme defined over
bilinear groups where the messages, the verification key and signatures are all
group elements and verifying signatures only involves deciding group member-
ship of the signature components and evaluating pairing-product equations. of
the form of equation (1).

∏

i

∏

j

e(Ai, B̃j)ci,j = 1T, (1)

where Ai ∈ G and B̃j ∈ G̃ are group elements appearing in P,m, vk, σ, whereas
ci,j ∈ Zp are constants.

3 Subset Signatures with Controlled Context-Hiding

Here we define Subset Signatures with Controlled Context-Hiding (SS-CCH).
For a message space M, we denote by P(M) its powerset and by P∗(M)

its powerset excluding the empty subset, i.e. P∗(M) = P(M) \ ∅. A homo-
morphic signature scheme with controlled context-hiding for a subset predi-
cate for a message space M is a tuple of polynomial-time algorithms (KeyGen,
Sign,Derive,Verify, Link), whose definitions are as follows:
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KeyGen(1λ) $−−→ (sk, vk): is a probabilistic key generation algorithm, which on
input a security parameter 1λ outputs a secret signing/public verification key
pair (sk, vk).

Sign(sk,S,Srestrict)
$−−→ σ: is a probabilistic signing algorithm which on input the

signing key sk, a set S ∈ P∗(M) and a possibly empty set Srestrict ∈ P(M),
outputs either a signature σ on the set S or the reject symbol ⊥ if Srestrict /∈
P(S), i.e. if Srestrict �⊆ S.

Derive(vk,S, σ,S ′) $−−→ σ′: on input the verification key vk, a set S ∈ P∗(M), a
signature σ on S, and a set S ′ ⊆ S, derives a signature on the subset S ′. The
algorithm returns the reject symbol ⊥ if S ′ �⊆ S or σ is not a valid signature
on the set S.

Verify(vk,S, σ) → 0/1: is a deterministic algorithm which on input the verifica-
tion key vk, a set S ∈ P∗(M) and a signature σ, outputs either 0 or 1.

IsRestricted(vk,S, σ,SR): is an additional deterministic polynomial-time algo-
rithm which is only used in the security definitions to ease composition. It
returns 1 if the signature σ is a valid signature on the set S and there is a
subset SR′ satisfying SR′ ⊆ SR ⊆ S where the elements of SR′ marked as
restricted elements within the signature σ. If σ does not contain any such
restricted elements from SR, the algorithm returns 0.

Link(vk,S1, σ1,S2, σ2) → 0/1: is a deterministic algorithm which on input the
verification key vk, two pairs of set/signature (Si, σi), the algorithm outputs
1 if all of the following conditions are satisfied or 0 otherwise:

(i) σ1 and σ2 are valid signatures on the sets S1 and S2, respectively.

(ii) Either of the following holds:

• S1 ⊆ S2, σ1 was derived from σ2 and IsRestricted(vk,S2, σ2,S1) = 1.

• S1 ⊇ S2, σ2 was derived from σ1, and IsRestricted(vk,S1, σ1,S2) = 1.

(Perfect) correctness requires that for all (sk, vk) ∈ [KeyGen(1λ)], all sets
S ∈ P∗(M), all sets Srestrict ∈ P(S), all sets S ′ ∈ P∗(S), all signatures σ ∈
[Sign(sk,S,Srestrict)], all sets SR ∈ P∗(S) satisfying IsRestricted(vk,S, σ,SR) = 1,
we have that:

Pr
[
Verify(vk,S, σ) = 1 ∧ Verify(vk,S ′,Derive(vk,S, σ,S ′)) = 1

∧ Link(vk,S, σ,SR,Derive(vk,S, σ,SR)) = 1

]

= 1 ·

Security requires unforgeability, privacy (i.e.context-hiding) and linkability.
The unforgeability requirement ensures that it is infeasible for an adversary

to produce a signature on a new set which is not a subset of any of the sets she
obtained signatures on from the signing oracle.

Definition 5 (Unforgeability). We say the scheme satisfies unforgeability if
for all λ ∈ N, all PPT adversaries have a negligible advantage in winning the
game below in which the following initially empty data structures are maintained:
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• QSign: is a list maintaining input/output of queries to the Sign and Derive
oracles.

• QReveal: is a set whose elements are set-signature pairs from the list QSign

that have been revealed to the adversary.

The unforgeability game is as follows:

• The challenger runs (sk, vk) $←−− KeyGen(1λ) and gives vk to A. The chal-
lenger also initializes a global counter cnt = 0.

• A has an adaptive access to the following oracles:
• Sign: on input (S,Srestrict), it runs σ

$←−− Sign(sk,S,Srestrict). It incre-
ments the counter cnt, sets QSign[cnt] := (S, σ) and returns cnt to A.

• Derive: on input (ind,S ′), it returns ⊥ if ind /∈ [cnt]. Otherwise, it
parses QSign[ind] as (S, σ) and returns ⊥ if S ′ �⊆ S. Otherwise, it

runs σ′ $←−− Derive(vk,S, σ,S ′), increments the counter cnt and sets
QSign[cnt] := (S ′, σ′) and returns cnt to A.

• Reveal: on input an index ind, it returns ⊥ if ind /∈ [cnt]. Otherwise, it
updates QReveal by computing QReveal := QReveal ∪QSign[ind], and returns
the content of QSign[ind] to A.

• Eventually, A halts by returning a pair (S∗, σ∗).

The adversary wins if all the following conditions hold:

1. Verify(vk,S∗, σ∗) = 1.
2. S∗ /∈ ⋃|QReveal|

i=1 P∗(Si), i.e. S∗ is not a subset of any of the sets Si in QReveal.

Linkability ensures that a derived signature on a set containing restricted ele-
ments is always linkable to the original signature from which it was derived.

Definition 6 (Linkability). We say the scheme satisfies linkability if for all
λ ∈ N, all PPT adversaries have a negligible advantage in winning the following
game in which the following initially empty data structures are maintained:

• QSign: is a list whose entries are triples. The first two components are sets,
whereas the last is a signature.

The linkability game is as follows:

• The challenger runs (sk, vk) $←−− KeyGen(1λ) and gives vk to A. The chal-
lenger also initializes a global counter cnt = 0.

• A has access to a sign oracle which on input (S,Srestrict), returns a signa-
ture σ on the set S. After each invocation, the oracle increments cnt and
updates QSign by computing QSign[cnt] := (S,Srestrict, σ). We will denote the
first component of the i-th entry of QSign, i.e. QSign[i].S, by Si.

• Eventually, A halts by returning a pair (S∗, σ∗).
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The adversary wins if all the following conditions hold:

1. Verify(vk,S∗, σ∗) = 1.
2. For all (Si, σi) returned by the sign oracle, Link(vk,Si, σi,S∗, σ∗)=0.
3. S∗ ∈ (Pall \ Punrestrict), where Pall := ∪cnt

i=1P∗(Si) and Punrestrict := ∪cnt
i=1P∗(Si \

Sirestrict).

The context-hiding requirement ensures that derived signatures on unre-
stricted sets are indistinguishable from fresh signatures on those sets. It guar-
antees that derived signatures cannot be linked to the original signatures from
which they were derived. We will define a few variants of this requirement.

Definition 7 (Adaptive Context-Hiding [7]). This requires that for all
λ ∈ N, all PPT adversaries A have a negligible advantage in the following game:

• The challenger runs (sk, vk) $←−− KeyGen(1λ) and gives (sk, vk) to A.
• A outputs a triple (S, σ,S ′) satisfying the following conditions:

• Verify(vk,S, σ) = 1, S ′ ⊆ S and IsRestricted(vk,S, σ,S ′) = 0.

• The challenger chooses a random bit b
$←−− {0, 1} and responds as follows:

• If b = 0, she returns σ′ $←−− Derive(vk,S, σ,S ′).

• If b = 1, she returns σ′ $←−− Sign(sk,S ′, ∅).
• Eventually, A halts by outputting a bit b′ as her guess for b. A’s advantage
in winning the game is defined as AdvA(λ) := |2 · Pr[b = b′] − 1|.
The above definition can be strengthened by allowing the adversary to choose

the key pair (sk, vk). We refer to this variant as Strong Adaptive Context-Hiding.
Note that both adaptive context-hiding and strong adaptive context-hiding

definitions only protect against polynomial-time adversaries. A stronger variant
is where the distributions of derived signatures and fresh signatures on unre-
stricted sets are statistically close.

Definition 8 (Complete Context-Hiding [7]). This requires that for all
(sk, vk) ∈ [KeyGen(1λ)], for all sets S,S ′ ∈ P∗(M) (where S ′ ⊆ S),
for all signatures σ ∈ [Sign(sk,S, ·)] satisfying Verify(vk,S, σ) = 1 and
IsRestricted(vk,S, σ,S ′) = 0, the following two distributions, which are taken
over the random coins of Sign and Derive, are statistically close:

{(
sk,Sign(sk,S ′, ∅)

)}

sk,S,S′
,

{(
sk,Derive(vk,S, σ,S ′)

)}

sk,S,S′
.

4 Building Blocks

In this section we present the building blocks we use in our constructions.
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4.1 A New Structure-Preserving Combined Signature Scheme

We give here a new efficient combined structure-preserving signature scheme.
The new scheme is an extension of the randomizable signature scheme by Chat-
terjee and Menezes [23]. We extend their scheme to sign multiple messages and to
obtain combined unforgeability without affecting the constant signature size or
the number of verification equations. We identify a nice property of the scheme
which might be of independent interest and find applications beyond the scope
of this paper. We observe that when combined with Groth-Sahai proofs [35], one
can re-randomize (the randomizable) signatures and the underlying Groth-Sahai
proofs without knowledge of the hidden components of the signature. This leads
to much better efficiency as one need not hide all signature components when
proving knowledge of signatures.

As a special case of the new combined scheme, we obtain a new (optimal)
strongly unforgeable structure-preserving signature scheme in the Type-3 bilin-
ear group setting matching the lower bounds [2]. The new combined scheme is
given in Fig. 1.

SPS.KeyGen(P)

◦ Choose x1, . . . , xn, y, z
$←−− Zp.

◦ Ỹ := G̃y, Z̃ := G̃z, X̃i := G̃xi for i = 1, . . . , n.

◦ sk := (x1, . . . , xn, y, z); vk := (X̃1, . . . , X̃n, Ỹ , Z̃)
)

.
◦ Return sk, vk

)

.

SPS.Verifyb(vk,M = (M1, . . . , Mn), σ = (R̃, R, S))
◦ Return 1 iff:

- e(R, G̃) = e(G, R̃)

- e(S, G̃) =
∏n

i=1 e(Mi, X̃i)e(R, R̃)e(G, Ỹ )e(R, Z̃b)

SPS.Signb

(

sk,M = (M1, . . . , Mn) ∈ G
n
)

◦ r
$←−− Zp, R := Gr, R̃ := G̃r.

◦ S :=
∏n

i=1 Mxi
i · Gr2+y+zrb.

◦ Return σ :=
(

R̃, R, S
)

∈ G̃ × G
2.

SPS.Randomize M , σ = (R̃, R, S)
)

◦ r′ $←−− Zp, R′
1 := R · Gr′

, R̃′ := R̃ · G̃r′
,

S′ := S · R2r′ · Gr′2
.

Fig. 1. A Structure-Preserving Signature Scheme with Combined Unforgeability

Correctness of the scheme is straightforward to verify. The signatures pro-
duced by Sign0 are perfectly randomizable as the distribution of randomized
signatures is identical to that of fresh signatures on the same message. We now
prove the following theorem.

Theorem 1. The scheme is a secure combined signature scheme in the generic
group model [42].

Proof. Since the adversary is generic, she can only produce linear combinations of
the signature elements, verification key elements and public parameters in each of
the source groups. The linear combinations represent Laurent polynomials in the
discrete logarithm of those elements. We will prove that no linear combinations
produce Laurent polynomials corresponding to a forgery on a message that was
not queried to the sign oracle.

Public elements in G̃ are G̃, X̃1, . . ., X̃n, Ỹ , Z̃ which correspond to the
discrete logarithms 1, x1, . . ., xn, y, z, respectively. Thus, this means that at the
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it-h sign query on M i, Mi,j (for j = 1, . . . , n) can only be a linear combination
of G, {Rk}i−1

k=1, {Sk}i−1
k=1. Thus, we have

mi,j = ami,j +

i−1
∑

k=1

bmi,j,krk +

i−1
∑

k=1

cmi,j,k (mk,1x1 + . . . + mk,nxn + r2k + y + bkrkz),

where bk = 1 if the k-th signing query was for a strongly unforgeable signature
(i.e. to Sign1) and bk = 0 otherwise.

After q signing queries, m∗, which is the discrete logarithm of the forged
message M ∗ must be of the form

m∗
i = ami

+
q∑

k=1

bmi,k
rk +

q∑

k=1

cmi,k
(mk,1x1 + . . . + mk,nxn + r2k + y + bkrkz),

for i = 1, . . . , n. Similarly, the (R∗, S∗) components part of the forgery can only
be a linear combination of the group elements from G, i.e. a linear combination
of G, {Ri}q

i=1 and {Si}q
i=1 and therefore we have

r∗ = ar +
q∑

k=1

brk
rk +

q∑

k=1

crk
(mk,1x1 + . . . + mk,nxn + r2k + y + bkrkz),

s∗ = as +
q∑

k=1

bsk
rk +

q∑

k=1

csk
(mk,1x1 + . . . + mk,nxn + r2k + y + bkrkz),

where bk = 1 if the i-th signing query was for a strongly unforgeable signature
(i.e. to Sign1) and bk = 0 otherwise. Analogously, the R̃∗ part of the forgery can
only be a linear combination of the elements from G̃. Therefore, we have

r̃∗ = ar̃ +
q∑

k=1

br̃k
r̃k +

n∑

i=1

cr̃i
xi + dr̃y + er̃z

For the forgery to be a valid signature, r∗, r̃∗ and s∗ must satisfy

r∗ = r̃∗ (2)

s∗ = m∗
1x1 + . . . + m∗

nxn + r∗2 + y + b∗r∗z, for b∗ ∈ {0, 1} (3)

By (2), we must have dr̃ = er̃ = 0 and cr̃i
= 0 for all i ∈ [n]. Also, we must have

ar̃ = ar, br̃k
= brk

for all k, and crk
= 0 for all k ∈ [q]. Therefore, have

r∗ = r̃∗ = ar +
q∑

k=1

brk
rk

By (3), we must have

as +
q∑

k=1

bsk
rk +

q∑

k=1

csk
(

n∑

i=1

mk,ixi + r2k + y + bkrkz)
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=
n∑

i=1

m∗
i xi + r∗2 + y + b∗r∗z

Thus, we must have

as+
q∑

k=1

bsk
rk +

q∑

k=1

csk
(

n∑

i=1

mk,ixi + r2k + y + bkrkz)

=
n∑

i=1

m∗
i xi +

(
ar +

q∑

k=1

brk
rk

)2 + y +
(
ar +

q∑

k=1

brk
rk

)
b∗z

Note that there is no term in z, on the left-hand side so we must have ar = 0.
Since now there is no constant term on the right-hand side, we have as = 0.
Thus, we have

q∑

k=1

bsk
rk +

q∑

k=1

csk
(

n∑

i=1

mk,ixi + r2k + y + bkrkz)

=
n∑

i=1

m∗
i xi +

( q∑

k=1

brk
rk

)2 + y +
( q∑

k=1

brk
rk

)
b∗z

Note that on the left-hand side there is no term in rjrk for all k �= j. This means
that on the right-hand side we must have brj

brk
= 0 for all k �= j which implies

that there is only one value of j such that brj
�= 0, whereas brk

= 0 for all k �= j.
Thus, we have

q∑

k=1

bsk
rk +

q∑

k=1

csk
(

n∑

i=1

mk,ixi + r2k + y + bkrkz)

=
n∑

i=1

m∗
i xi + (brj

rj)2 + y + brj
rjb

∗z, for some j ∈ [q].

For the above two sides to equate, we must have bsk
= 0 for all k. Now, rewriting

the left-hand side, we have

csj

n∑

i=1

mj,ixi + csj
r2j + csj

y + csj
bjrjz =

n∑

i=1

m∗
i xi + (brj

rj)2 + y + brj
rjb

∗z,

for some j ∈ [q]. The monomial y implies cs,j = 1. Thus, we can rewrite the
above as

n
∑

i=1

mj,ixi + r2j + y + bjrjz =
n
∑

i=1

m∗
i xi + (brj rj)

2 + y + brj rjb
∗z, for some j ∈ [q].

We now have two cases depending on whether the forgery is a strongly or weakly
unforgeable signature, i.e. depending on whether b∗ = 1 or b∗ = 0.
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• Case b∗ = 0: This case means the forgery is a randomizable signature. For
the two sides to equate, we must also have bj = 0. Therefore, we have

n∑

i=1

mj,ixi + r2j + y =
n∑

i=1

m∗
i xi + (brj

rj)2 + y, for some j ∈ [q].

By the monomial xi, it is clear that we must have mj,i = m∗
i for all i ∈ [n]

and some j ∈ [q] which means the forgery is on a message vector that was
queried to Sign0 and hence the adversary does not win.

• Case b∗ = 1: This case means the forgery is a strongly unforgeable signature.
We have

n
∑

i=1

mj,ixi + r2j + y + bjrjz =
n
∑

i=1

m∗
i xi + (brj rj)

2 + y + brj rjz, for some j ∈ [q].

By the monomial r2j , we must have b2rj
= 1. By the monomial rjz we must

have brj
= bj . This implies that brj

= bj = 1.

We have
n∑

i=1

mj,ixi + r2j + y + rjz =
n∑

i=1

m∗
i xi + (brj

rj)2 + y + rjz, for some j ∈ [q].

The above means that we have m∗
i = mj,i for all i ∈ [n] and r∗ = rj which

means the forgery is a signature that the adversary got from the sign oracle on
the message M j for some j ∈ [q] and thus the adversary does not win. ��
Efficiency of the Scheme. We compare the efficiency of our scheme with
Groth’s scheme [34] which is also secure in the generic group model. The latter
signs messages in G̃

kn yielding signatures in G×G̃
n+1 and requires a verification

key (in the case of a single signer) in G
k × G̃

n, and requires n + 1 pairing-
product verification equations. In our case, by transposing the groups in which
S and vk and M lie, for the same message space ours yields signatures in G ×
G̃

2 and requires a verification key in G
kn+2 and 2 pairing-product verification

equations. Thus, our scheme compares favorably to [34] w.r.t. the signature
size and the cost of verification. The only advantage the scheme in [34] has
over ours is that one can reduce the size of the verification key at the expense
of longer signatures and more verification equations which is not desirable for
the applications in this paper. In addition, randomizability of signatures in [34]
is done via exponentiation which means his scheme does not have the same
desirable randomization compatibility when combined with Groth-Sahai proofs.

4.2 A Combined Tagged Signature Scheme

Tagged signatures [26] are digital signatures where the signing and verification
algorithms take as an additional input a tag τ . As noted by [26], any signature
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scheme that signs a vector of dimension k + 1 can be used as a tagged signature
to sign a vector of k elements. Following the naming of [26] is merely for easing
composition since we need to treat tags differently from the rest of the messages
when presenting our generic construction later on.

A combined tagged signature scheme is just a tagged signature scheme with
combined unforgeability, i.e. it combines both notions of tagged signatures and
combined signatures. The syntax and security of a combined tagged signature
scheme for a message space MCT S and a tag space TCT S over a bilinear group P
generated by BG is analogous to that of a combined signature scheme with the
only difference being that Sign and Verify algorithms take as input an additional
tag. Combined existential unforgeability of tagged signatures under adaptive
chosen-message-tag attack is similar to the combined existential unforgeability
of combined digital signatures.

By setting n = k + 1 in our combined signature scheme from Sect. 4.1, we
obtain a structure-preserving combined tagged signature scheme for tag space
TCT S := G and message space MCT S := G

k.

4.3 Randomizable Non-Interactive Witness-Indistinguishable
Proofs

Let R be an efficiently computable relation. For pairs (x,w) ∈ R, we call x the
statement and w the witness. We define the language LR = {x|∃w : (x,w) ∈ R},
i.e. LR is the set of the statements x in R.

A non-interactive proof system [12] for the relation R allows a prover to
convince a verifier that for some instance x ∈ LR there is a witness w such that
(x,w) ∈ R.

The proof system is defined by a tuple of algorithms (Setup,Prove,Verify). On
input a security parameter 1λ, Setup outputs a common reference string crs. On
input (crs, x, w), Prove outputs a proof π that (x,w) ∈ R. On input (crs, x, π),
Verify outputs 1 if the proof is valid, or 0 otherwise. Informally, completeness of
the proof system requires that honest proofs for valid statements are accepted
by the verifier. Soundness requires that no prover can convince an honest ver-
ifier of an invalid statement x /∈ LR (except for a negligible probability). A
proof of knowledge [24] guarantees that the prover knows the underlying witness
used in the proof. This is formalized by requiring two polynomial-time algo-
rithms (ExtractSetup,Extract); ExtractSetup outputs a common reference string
crs′ (distributed identically to that output by Setup) and an extraction key xk
which allows for witness extraction; On input (crs′, xk, x, π), Extract outputs a
valid witness.

Witness-Indistinguishability [27] requires that the verifier cannot determine
which element of the set R(x) = {w : (x,w) ∈ R} was used in the proof.

A proof system is randomizable if there exists a PPT algorithm Randomize
which on input (crs, x, π), where π is a valid proof for the statement x ∈ LR,
produces a new proof π′ for the same statement. We require that π′ is indistin-
guishable from a fresh proof for the same statement. For formal definitions refer
to [3].
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Groth-Sahai Proofs. Groth-Sahai (GS) proofs [35] are efficient randomizable
non-interactive proofs in the Common Reference String (CRS) model. The lan-
guage for the system has the form

L := {statement | ∃witness : Ei(statement,witness) holds for i = 1, . . . , n} ,

where Ei can be instantiated using different equation types but for our purpose
we only require proofs for the satisfiability of pairing-product equations.

The proof system has perfect completeness, (perfect) soundness, compos-
able witness-indistinguishability/zero-knowledge. Refer to [35] for the formal
definitions.

In this paper, we will be using the SXDH-based instantiation [32,35] of Groth-
Sahai proofs (see Appendix A) which is the most efficient instantiation of the
proof system [32].

5 A Generic Construction of Subset Signatures
with Controlled Context-Hiding

For more generality, we present our construction for the case where the elements
of the set to be signed are vectors of n elements. The case where the elements of
the set are singleton messages is then a special case where n = 1. The tools we
require for our generic construction are a re-randomizable NIWI proof system
NIWI and a combined tagged signature scheme CT S which can sign n mes-
sages. For the sake of maximizing efficiency, we require that the two primitives
are compatible where we can randomize any hidden components of the signature
within the NIWI proof.

The verification key vk of the signer contains the CRS for NIWI crs, the
verification key vkCT S for CT S, the bilinear group public parameters P, and the
security parameter λ, whereas her secret key sk contains the secret signing key
skCT S for CT S.

To sign a set S = {m1, . . . ,m |S|} with a specified restricted subset
Srestrict ⊆ S, the signer first chooses a random tag τS from the tag space
of the combined tagged signature scheme and computes σi

$←−− CT S.Signb

(skCT S , τS ,m i) for all m i ∈ S where b = 1 (i.e. a strongly unforgeable sig-
nature) if m i ∈ Srestrict and b = 0 (i.e. a rerandomizable signature) otherwise.
Note that revealing the whole signature of the tagged signature would allow the
original signer to tell if the signature is valid on the set and the tag even if we
hide the tag: this is because the tag is chosen by the signer herself. Therefore,
we need to hide both the tag as well as the signature components which depend
on the tag. We parse σi as σ̌i ∪ σ̂i where σ̌i contains the components of σi which
depend on the tag τS whereas σ̂i := σi \ σ̌i contains the rest of the signature
components which are independent of the tag. To enforce the controlled context-
hiding property, we necessitate that for all i ∈ [|S|], |σ̂i| ≥ 1, i.e. the set is not
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empty. The signer produces a NIWI proof of knowledge πsig of τS and σ̌i such
that for all i ∈ [|S|] it holds that

CT S.Verifyb(vkCT S , τS ,m i, σi = σ̌i ∪ σ̂i) = 1

The signature on the set S is then Σ :=
({σ̂i}|S|

i=1, πsig

)
.

Note that if the randomizable signatures of the combined tagged scheme are
only partially randomizable, one needs to hide the non-randomizable components
of the signature as part of the witness of the underlying NIWI proof.

To derive a signature on a subset S ′ ⊆ S given a valid signature Σ =
({σ̂i}|S|

i=1, πsig

)
on the set S, one first omits the signatures {σ̂i}mi∈S\S′ from Σ

and adapts the proof πsig accordingly. Now one re-randomizes all {σ̂i}mi∈S′ to
obtain {σ̂′

i}mi∈S′ and re-randomizes the proof πsig into π′
sig accordingly. The

derived signature on the set S ′ is then Σ′ :=
({σ̂′

i}|S′|
i=1, π

′
sig

)
. Note that if

S ′ ∩ Srestrict �= ∅, Σ′ and Σ will be linkable as the signatures on the elements in
S ′ ∩ Srestrict are strongly unforgeable and hence cannot be randomized.

To verify a signature on a set S, one verifies the validity of the proof πsig and
the public parts of the signatures, i.e. σ̂i.

Note that our approach of using a combined tagged signature yields a more
efficient construction than e.g. the approach used by [7] where the signer chooses
a random key pair for a digital signature and certifies the verification key using
her own long-term secret key and uses the new corresponding signing key to sign
the set.

The construction is detailed in Fig. 2 and its security is proven by the follow-
ing theorem.

Theorem 2. The construction is secure if CT S satisfies combined existential
unforgeability under adaptive chosen-message-tag attack, and the NIWI proof
system is sound, witness-indistinguishable and re-randomizable.

Proof. Correctness follows from the completeness of NIWI and the correctness
of CT S and is straightforward to verify. The following 3 lemmata complete the
rest of the proof.

Lemma 1. The construction is completely context-hiding w.r.t. any subset S \
Srestrict if NIWI is perfectly witness-indistinguishable and perfectly re-random-
izable, and CT S is perfectly re-randomizable.

Proof. The prefect witness indistinguishability of NIWI ensures the underlying
NIWI poof πsig contained in a derived signature does not reveal which witness
used in the proof. If this is not the case, we can construct an adversary against
the witness indistinguishability of the NIWI proof system.

The perfect re-randomizability of NIWI ensures that a re-randomized proof
π′
sig cannot be linked to the original proof πsig. Thus far we ensured that the proof

part of the signature does not help the adversary in winning the context-hiding
game.
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KeyGen(λ)

◦ P $←−− BG(1λ).

◦ crs
$←−− NIWI.Setup(1λ).

◦ (skCT S , vkCT S) $←−− CT S.KeyGen(P).
◦ sk := skCT S , vk := λ, P, crs, vkCT S

)

.

◦ Return (sk, vk).

Derive(vk, S, Σ, S′)
◦ Parse Σ as ({σ̂1, . . . , σ̂|S|}, πsig).
◦ Parse vk as λ, P, crs, vkCT S

)

.

◦ Return ⊥ if S′ /∈ P∗(S).
◦ Return ⊥ if Verify(vk, S, Σ) = 0.
◦ For all mi ∈ S′ compute

σ̂′
i

$←−− CT S.Randomize(vkCT S ,mi, σ̂i).

◦ π′
sig

$←−− NIWI.Randomize(crs, πsig).
◦ Return Σ′ := {σ̂′

i}i,mi∈S′ , π′
sig

)

.

IsRestricted(vk, S, Σ, SR)
◦ Parse Σ as ({σ̂1, . . . , σ̂|S|}, πsig).
◦ Parse vk as λ, P, crs, vkCT S

)

.

◦ For all mi ∈ SR

σ̂′
i

$←−− CT S.Randomize(vkCT S ,mi, σ̂i)
Return 1 if σ̂i = σ̂′

i
◦ Return 0.

Sign(sk = skCT S , S = {m1, . . . ,m|S|}, Srestrict)
◦ Return ⊥ if Srestrict S⊆� .

◦ τS
$←−− TCT S .

◦ Σrestrict := {σi
$←−− CT S.Sign1(skCT S , τS ,mi)}i,mi∈Srestrict

◦ Let Σ̌restrict be the signature components in Σrestrict which
depend on τS and Σ̂restrict := Σrestrict \ Σ̌restrict.

◦ Σunrestrict := {σi
$←−− CT S.Sign0(skCT S , τS ,mi)}i,mi∈S\Srestrict

◦ Let Σ̌unrestrict be the signature components in Σunrestrict which
depend on τS and Σ̂unrestrict := Σunrestrict \ Σ̌unrestrict.

◦ Let stm:= (vk, Σ̂unrestrict, Σ̂restrict, S)

◦ πsig
$←−− NIWI.Prove(crs, {Σ̌restrict, Σ̌unrestrict, τS} : stm ∈ L).a

◦ Return Σ := Σ̂unrestrict ∪ Σ̂restrict, πsig

)

.

Verify
(

vk = (λ, P, crs, vkCT S), S = {mi}|S|
i=1, Σ = ({σ̂i}|S|

i=1, πsig)
)

◦ Return 0 if NIWI.Verify(crs, πsig) = 0.
◦ Return 0 if for any i ∈ [|S|] : CT S.Verifyb(vkCT S , ·,mi, σ̂i) = 0.b

◦ Return 1.

Link
(

vk, S1, Σ1 = ({σ̂1,i}|S|
i=1, πsig), S2, Σ2 = ({σ̂2,i}|S|

i=1, πsig)
)

◦ Parse vk as λ, P, crs, vkCT S
)

.

◦ Return 0 if S1 S⊆� 2 and S1 S⊃� 2

◦ For all mi ∈ S1 ∩ S2

Let σ̂1 and σ̂2 be the respective signatures on mi in Σ1 and Σ2

If σ̂1 = σ̂2 and σ̂1 = CT S.Randomize(vkCT S ,mi, σ̂2)
and σ̂2 = CT S.Randomize(vkCT S ,mi, σ̂1) Then Return 1

◦ Return 0.

a L : stm, Σ̌restrict, Σ̌unrestrict, τS
))

: ∀i ∈ [|S|], CT S.Verifyb(vkCT S , τS ,mi, σi = σ̌i ∪ σ̂i) = 1
}

.
b All the components of the signature to be verified here are independent of the tag τS so knowledge

of τS is not required.

Fig. 2. Our generic construction.

What is left now is to show that the remaining components of the sub-
set signature, i.e. the public randomized components of the tagged signature,
which are independent of the tag τS , do not help the adversary either. Since
the context-hiding requirement excludes restricted elements of the set, we have
that all signatures contained in a subset signature Σ are randomizable CT S sig-
natures. The re-randomizability of CT S ensures that re-randomized signatures
are indistinguishable from fresh signatures on the same message. Thus, if the
public parts of the tagged signature can help the adversary win, we can launch
an adversary against the randomizability of the combined tagged signatures. ��
Remark 1. If the security properties mandated by the above lemma hold only
computationally rather than information-theoretically, the construction satisfies
adaptive context-hiding instead.

Lemma 2. The construction is unforgeable if the proof system NIWI is sound
and CT S satisfies combined existential unforgeability under adaptive chosen-
message-tag attack.

Proof. By the soundness of proof system, the adversary against unforgeability
has a negligible advantage in faking proofs for a false statement. This includes
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the case of combining signatures on different sets, i.e. which are on different
CT S tags. We are now left with two cases in which the adversary can win the
unforgeability game:

Case I: The forgery involves a tag that is not used in any of the sign queries.
This corresponds to breaking the chosen-message-tag combined existential
unforgeability of CT S. By extracting the tag and the hidden components of
the signatures from πsig, we can construct an adversary against the existential
unforgeability of CT S. By the security of CT S, this is only possible with a
negligible probability.

Case II: The forgery involves a tag that is used in one of the signing queries.
This also corresponds to breaking the chosen-message-tag combined existen-
tial unforgeability of CT S. Again, by extracting the tag and the hidden com-
ponents of the signatures from πsig, we can construct an adversary against
the combined existential unforgeability of CT S. By the security of CT S, this
is only possible with a negligible probability. ��

Lemma 3. The construction is linkable if CT S satisfies combined existential
unforgeability under adaptive chosen-message-tag attack.

Proof. By the combined existential unforgeability of CT S, the adversary cannot
forge new signatures on subsets that has been signed by the sign oracle and there-
fore it is limited to re-using those it obtained from the sign oracle. Since the game
requires that the subset in the forgery is a subset of one of the restricted subsets
queried to the sign oracle, the original signature contains strongly unforgeable
signatures which cannot be re-randomized. If the latter does not hold, we can
break the combined existential unforgeability of the tagged signature scheme.
By searching in the list of the signatures returned by the sign oracle, we are
guaranteed to be able to find a signature which has the same components as
those contained in the forgery. ��

6 Structure-Preserving Instantiations

We instantiate CT S using our new combined tagged signature scheme from
Sect. 4.2 and instantiate NIWI using the SXDH-based instantiation of the
Groth-Sahai proof system [32,35]. To realize the stronger complete context-
hiding requirement, we instantiate the proof system in the hiding setting which
yields perfectly witness-indistinguishable proofs. If adaptive context-hiding suf-
fices, we can instead instantiate the proof system in the binding setting, in which
case the proofs are only computationally witness-indistinguishable.

A combined tagged signature on m i ∈ S is of the form (R̃i, Ri, Si) ∈ G̃×G
2

where R̃i and Ri are independent of the tag τS . The signer generates a Groth-
Sahai commitment CτS ∈ G

2 to the tag τS and for each m i ∈ S, it commits to
the component Si of the signature to get a Groth-Sahai commitment CSi

∈ G
2,

and produces a proof π̃i ∈ G̃
2 for the following linear pairing-product equation

e(Si, G̃)e(τS , X̃−1
0 ) =

n∏

j=1

e(Mi,j , X̃j)e(Ri, R̃i · Z̃bi)e(G, Ỹ ),
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where bi = 1 if m i ∈ Srestrict and bi = 0 otherwise. We have πsig :=
(
CτS ,

(CSi
, π̃i)

|S|
i=1

)
and the subset signature is Σ :=

(
(Ri, R̃i)

|S|
i=1, πsig

)
. The subset

signature size is (2+3|S|) · |G|+3|S| · |G̃|. When verifying the signature, besides
verifying the proof πsig, for each element of the set, the verifier checks that
e(G, R̃i) = e(Ri, G̃).

We now show how the NIWI proof as well as the public components of the
tagged signatures are randomized which is needed when deriving signatures on
subsets. Further details as well as a proof can be found in Appendix B.

The crs is
(
U = (U1,U2) , Ṽ = (Ṽ1, Ṽ2)

)
∈ G

4 × G̃
4 and the proof system

uses the maps ι : G → G
2 and ι̃ : G̃ → G̃

2. For details of the Groth-Sahai
SXDH-instantiation see Appendix A.

We randomly choose γi
$←−− Zp and set R′

i := Ri · Gγi and R̃′
i := R̃i · G̃γi .

To randomize the (committed) signature component Si, we compute CSi
:= CSi

·
ιG

(
R2γi

i ·Gγ2
i

)
. What is left now is to re-randomize the Groth-Sahai commitments

and proofs so that they are unlinkable to the original ones. We choose r ′
0 =

(r′
0,1, r

′
0,2)

$←−− Z
2
p and r ′

i = (r′
i,1, r

′
i,2)

$←−− Z
2
p for i = 1, . . . , |S| and randomize

the Groth-Sahai commitments by computing C′
τS := CτS · Ur ′

0 and C′
Si

:= CSi
·

Ur ′
i . Providing that all r ′

i for i = 0, . . . , |S| are chosen at random, the new
commitments are uniformly distributed over G2 and are thus independent of the
original ones. To re-randomize proof π̃i, we let π̃′

i := π̃i · ι̃(H̃)r
′Ti · ι̃(X̃−1

0 )r
′
0T .

Again, providing that all r ′
i for i = 0, . . . , |S| are chosen at random, the new

proof is uniformly distributed and is thus independent of the original one.
The proof of the following theorem follows from that of theorem 2.

Theorem 3. The instantiation is a secure subset signature with controlled com-
plete context-hiding if the SXDH assumption holds and the combined tagged sig-
nature scheme from Sect. 4.2 is secure.

6.1 Efficiency Comparison

We compare in Table 1 the efficiency of our scheme for the case of traditional sub-
set signatures (i.e. where the restricted subset is empty) with the most efficient
existing scheme [7].

Table 1. Efficiency comparison between our instantiations and existing schemes.

Scheme |Σ| |vk| |sk| Model Setting

[7] (22+7|S|)·|G| (|M| + 16) ·
|G| + 2 · |T|

6 · |Zp| STD Type-1

Ours (2 + 3|S|) ·
|G|+3|S| · |G̃|

4 · |G|+ 7 · |G̃| 3 · |Zp| STD Type-3
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Besides enjoying much shorter signatures, our scheme also has shorter
(constant-size) keys. Our scheme being in the most efficient Type-3 setting enjoys
shorter group elements’ sizes than those in Type-1 setting. Also, note that after
the recent advances in solving the discrete logarithm problem in finite fields
of small characteristic, e.g. [9,33], it is nowadays recommended [9,33] to base
Type-1 instantiations on large-characteristic bilinear groups which means much
larger group elements. For the sake of comparison, note that, for example, at
128-bit security level, elements of G and G̃ in Type-3 are 256 and 512 bits long,
respectively, whereas their small-characteristic and large-characteristic Type-1
counterparts have sizes 512 and 1536, respectively. Therefore, it is clear that our
instantiations outperform existing ones. The only component of our scheme that
is not based on a standard (static) intractability assumption is the tagged signa-
ture. Note that the security of [7] also relies on a non-standard q-type assumption
(the q-SFP assumption [1]).

A SXDH-Based Groth-Sahai Proofs

Here we give the SXDH-instantiation of Groth-Sahai proofs [32,35].
Let B := G

2, B̃ := G̃
2 and H := T

4, with all operations performed compo-
nentwise. Define

F :

{
B × B̃ −→ H

(X1, Y1), (X̃2, Ỹ2) �−→
(

e(X1, X̃2), e(X1, Ỹ2), e(Y1, X̃2), e(Y1, Ỹ2)
) .

We will use the • notation instead of F for vectors. To generate the crs, the
trusted party randomly chooses ai, ti

$←−− Z
×
p for i = 1, 2 and computes Q :=

Ga1 , U := Gt1 , V := Qt1 , Q̃ := G̃a2 , Ũ := G̃t2 , Ṽ := Q̃t2 . We now set

U1 = (G,Q) ∈ B,

U2 =
{ U t1

1 = (U, V ) Binding Setting
U t1
1 · (1G, G−1) =

(
U, V · G−1

)
Hiding Setting

∈ B.

Ṽ1 = (G̃, Q̃) ∈ B̃,

Ṽ2 =

⎧
⎨

⎩

Ṽt2
1 =

(
Ũ , Ṽ

)
Binding Setting

Ṽt2
1 · (1

G̃
, G̃−1) =

(
Ũ , Ṽ · G̃−1

)
Hiding Setting

∈ B̃.

The crs is then the set (U ,V) where U = (U1,U2) ∈ B
2 and Ṽ =

(
Ṽ1, Ṽ2

)
∈ B̃

2.
Under the SXDH assumption, one cannot tell a binding key from a hiding key.

To define the commitment schemes used by the proof system, we need the
two maps ι : G → B and ι̃ : G̃ → B̃ which are defined as follows:

ι :
{
G −→ B

X �−→ (1G,X) ι̃ :
{
G̃ −→ B̃

X̃ �−→ (1
G̃
, X̃)
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To commit to a group element X ∈ G, the commitment algorithm GSCommitG

chooses r = (r1, r2)
$←−− Z

2
p and computes CX := ι(X) · Ur . We have

CX =
{(

G(r1+t1r2),X · Q(r1+t1r2)
)

Binding Setting(
G(r1+t1r2),X · Q(r1+t1r2) · G−r2

)
Hiding Setting

Similarly, to commit to a group element X̃ ∈ G̃, the commitment algorithm
GSCommit

G̃
chooses s = (s1, s2)

$←−− Z
2
p and computes CX̃ := ι̃(X̃)·Ṽs

. We have

CX̃ =
{(

G̃(s1+t2s2), X̃ · Q̃(s1+t2s2)
)

Binding Setting(
G̃(s1+t2s2), X̃ · Q̃(s1+t2s2) · G̃−s2

)
Hiding Setting

We now define the map ιT as follows:

ιT :
{
T −→ H

ζ �−→ (1T, 1T, 1T, ζ)

The equations we prove are pairing-product equations of the form:

n∏

j=1

e(Aj , Ỹj)
m∏

i=1

e(Xi, B̃i)
m∏

i=1

n∏

j=1

e(Xi, Ỹj)αi,j = tT (4)

In fact, all the equations we prove are linear equations (Eq. 5) where αi,j = 0
for all i, j.

n∏

j=1

e(Aj , Ỹj)
m∏

i=1

e(Xi, B̃i) = tT (5)

B More Details of the Instantiation

Each signature in the set contains a proof for the following linear equation

e(Si, G̃)e(τS , X̃−1
0 ) =

n∏

i=j

e(Mi,j , X̃j)e(Ri, R̃i · Z̃bi)e(G, Ỹ ) (6)

We have

CτS := GSCommitG(τS) = ι(τS) · Ur0 =
(
G(r0,1+t1r0,2), τS · Q(r0,1+t1r0,2))

CSi
:= GSCommitG(Si) = ι(Si) · Uri =

(
G(ri,1+t1ri,2), Si · Q(ri,1+t1ri,2))

The proof for the above linear equation is given by

π̃i := ι̃(G̃)r
T
i · ι̃(X̃−1

0 )r
T
0 =

((
1
G̃
, G̃ri,1 · X̃−r0,1

0

)
,
(
1
G̃
, G̃ri,2 · X̃

−r0,2
0

)) ∈ B̃
2
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As noted in [35], we can omit the 1
G̃

components from the proof which halves
the size of the proof into G̃

2. To verify the proof, one needs to check the following
equation:

F
(CSi , ι̃(G̃)

)

F
(CτS , ι̃(X̃−1

0 )
)

= ιT

(
n
∏

j=1

e(Mi,j , X̃j)e(Ri, R̃i · Z̃bi)e(G, Ỹ )
)(

U • π̃i

)

(7)
We show now how to randomize the public components of the signature, i.e.

Ri and R̃i (which are part of the statement) and the Groth-Sahai commitments

and proof accordingly. One chooses γi
$←−− Zp and sets R′

i := Ri · Gγi and
R̃′

i := R̃i · G̃γi . We also randomize the (committed) signature component Si

using the same randomness γi as follows:

CSi
:= CSi

· ι
(
R2γi

i · Gγ2
i
)

=
(
G(ri,1+t1ri,2), Si · R2γi

i · Gγ2
i · Q(ri,1+t1ri,2)

)

We now re-randomize the Groth-Sahai commitments and proofs to make
them unlinkable to the original ones. We choose r ′

0 = (r′
0,1, r

′
0,2)

$←−− Z
2
p and

r ′
i = (r′

i,1, r
′
i,2)

$←−− Z
2
p for i = 1, . . . , |S| and compute

C′
τS := CτS · Ur ′

0

=
(
G

(
(r0,1+r′

0,1)+t1(r0,2+r′
0,2)

)

, τS · Q

(
(r0,1+r′

0,1)+t1(r0,2+r′
0,2)

))

C′
Si

:= CSi
· Ur ′

i

=
(
G

(
(ri,1+r′

i,1)+t1(ri,2+r′
i,2)

)

, Si · R2γi

i · Gγ2
i · Q((ri,1+r′

i,1)+t1(ri,2+r′
i,2))

)

Providing that all r ′
i for i = 0, . . . , |S| are chosen at random, the new commit-

ments are uniformly distributed over B and are thus independent of the original
ones. We now show how to re-randomize proof π̃i into π̃′

i accordingly.

π̃′
i := π̃i · ι̃(G̃)r

′Ti · ι̃(X̃−1
0 )r

′T0

=
((

1
G̃
, G̃ri,1+r′

i,1 · X̃−(r0,1+r′
0,1)

0

)
,
(
1
G̃
, G̃ri,2+r′

i,2 · X̃
−(r0,2+r′

0,2)

0

))

Since r ′
i for i = 0, . . . , |S| are chosen at random, the new proof is uniformly

distributed and is thus independent of the original one. To verify the proof, one
needs to check the following equation:

F
(C′

Si
, ι̃(G̃)

)
F

(C′
τS , ι̃(X̃−1

0 )
)

= ιT

( n∏

j=1

e(Mi,j , X̃j)e(R′
i, R̃

′
i·Z̃bi)e(G, Ỹ )

)(
U•π̃′

i

)

(8)
We now show that the new proofs will be accepted by the verify algorithm.

Lemma 4. The randomized proof π̃′
i verifies correctly.

Proof. Our proof is for a binding CRS. The proof for a hiding CRS is very
similar.
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By expanding the left-hand side of the verification equation (Eq. 8), we have

F
(

C′
Si

, ι̃(G̃)
)

F
(

C′
τS , ι̃(X̃

−1
0 )
)

= F
((

G

(
(ri,1+r′

i,1)+t1(ri,2+r′
i,2)
)

, Si · R
2γi
i · G

γ2
i · Q

(
(ri,1+r′

i,1)+t1(ri,2+r′
i,2)
))

,
(
1
G̃
, G̃
))

F
((

G

(
(r0,1+r′

0,1)+t1(r0,2+r′
0,2)
)

, τS · Q

(
(r0,1+r′

0,1)+t1(r0,2+r′
0,2)
))

,
(
1
G̃
, X̃

−1
0

))

=
(
1T, e

(
G

(
(ri,1+r′

i,1)+t1(ri,2+r′
i,2)
)

, G̃
)
, 1T, e

(
Si · R

2γi
i · G

γ2
i · Q

(
(ri,1+r′

i,1)+t1(ri,2+r′
i,2)
)

, G̃
))

(
1T, e

(
G

(
(r0,1+r′

0,1)+t1(r0,2+r′
0,2)
)

, X̃
−1
0

)
, 1T, e

(
τS · Q

(
(r0,1+r′

0,1)+t1(r0,2+r′
0,2)
))

, X̃
−1
0

))

=
(
1T, e

(
G

(
(ri,1+r′

i,1)+t1(ri,2+r′
i,2)
)

, G̃
)
,1T, e

(
Si · R

2γi
i · G

γ2
i , G̃

)
e
(
Q

(
(ri,1+r′

i,1)+t1(ri,2+r′
i,2)
)

, G̃
))

(
1T, e

(
G

(
(r0,1+r′

0,1)+t1(r0,2+r′
0,2)
)

, X̃
−1
0

)
, 1T, e

(
τS , X̃

−1
0

)
e
(
Q

(
(r0,1+r′

0,1)+t1(r0,2+r′
0,2)
)

, X̃
−1
0

))

Similarly, by expanding the right-hand side of Eq. 8, we have

ιT

( n∏

j=1

e(Mi,j , X̃j)e(R′
i, R̃

′
i · Z̃bi)e(G, Ỹ )

)(
U • π̃′

i

)

= ιT

( n∏

j=1

e(Mi,j , X̃j)e(R′
i, R̃

′
i · Z̃bi)e(G, Ỹ )

)

((
G,Q

)
,
(
Gt1 , Qt1

)) •
((

1
G̃
, G̃ri,1+r′

i,1 · X̃−(r0,1+r′
0,1)

0

)
,

(
1
G̃
, G̃ri,2+r′

i,2 · X̃−(r0,2+r′
0,2)

0

)))

=
(
1T, 1T, 1T,

n∏

j=1

e(Mi,j , X̃j)e(R′
i, R̃

′
i · Z̃bi)e(G, Ỹ )

)

(
1T, e

(
G, G̃ri,1+r′

i,1 · X̃−(r0,1+r′
0,1)

0

)
, 1T, e

(
Q, G̃ri,1+r′

i,1 · X̃−(r0,1+r′
0,1)

0

))

(
1T, e

(
Gt1 , G̃ri,2+r′

i,2 · X̃−(r0,2+r′
0,2)

0

)
, 1T, e

(
Qt1 , G̃ri,2+r′

i,2 · X̃
−(r0,2+r′

0,2)

0

))

=
(
1T, 1T, 1T,

n∏

j=1

e(Mi,j , X̃j)e(R′
i, R̃

′
i · Z̃bi)e(G, Ỹ )

)

(
1T, e

(
G, G̃ri,1+r′

i,1 · X̃−(r0,1+r′
0,1)

0

)
e
(
Gt1 , G̃ri,2+r′

i,2 · X̃
−(r0,2+r′

0,2)

0

)
,

1T, e
(
Q, G̃ri,1+r′

i,1 · X̃
−(r0,1+r′

0,1)

0

)
e
(
Qt1 , G̃ri,2+r′

i,2 · X̃−(r0,2+r′
0,2)

0

))

=
(
1T, 1T, 1T,

n∏

j=1

e(Mi,j , X̃j)e(R′
i, R̃

′
i · Z̃bi)e(G, Ỹ )

)

(
1T, e

(
G, G̃ri,1+r′

i,1
)
e
(
G, G̃t1(ri,2+r′

i,2)
)
e
(
G, X̃

−(r0,1+r′
0,1)

0

)
e
(
G, X̃

−t1(r0,2+r′
0,2)

0

)
,

1T, e
(
Q, G̃ri,1+r′

i,1
)
e
(
Q, G̃t1(ri,2+r′

i,2)
)
e
(
Q, X̃

−(r0,1+r′
0,1)

0

)
e
(
Q, X̃

−t1(r0,2+r′
0,2)

0

))

It is clear both sides equate and hence the proof π̃′
i verifies correctly.

This concludes the proof. ��
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Abstract. MDS matrices are important components in block cipher
algorithm design, which provide diffusion of input bits. Recently, many
constructions of MDS matrices focused on lightweight constructions. All
MDS matrices constructions were over Galois field. In this paper, we give
new construction of MDS matrices which is over Galois ring GR(2n, k) =
Z2n [x]/(f(x)), where f(x) is a basic irreducible polynomial of degree k
over Z2n . We first construct Hadamard matrices over U(GR(2n, k)) by
adding some signs on the entries of the matrices (i.e. performing entry-
wise multiplication with enabling Hadamard (1,−1)-matrices). We give
complete enumerations of 4 × 4 and 8 × 8 enabling Hadamard (1,−1)-
matrices. We prove that there is no 2 × 2 orthogonal MDS matrix over
Galois ring GR(2n, k) and construct 4×4 orthogonal MDS matrices over
GR(2n, k).

Keywords: Cryptography · Diffusion matrices · MDS matrices ·
Orthogonal matrices · Galois rings

1 Introduction

It is well-known that MDS matrices are used for diffusion in the design of block
cipher algorithms, for example, AES, other AES-like block ciphers and authenti-
cated encryption algorithms use MDS matrices to mix the input bits to achieve
diffusion of bits. Recently, the construction of MDS matrices is an active area of
research. Most of the research focuses on the construction of lightweight MDS
matrices [6–8,10–12]. While some constructions of MDS matrices are from BCH
codes [1], algebraic-geometry codes [2], Gabidulin codes [3], polynomials [9] and
compact Cauchy matrices [5], etc., all these constructions are over Galois field
(F2k = F2[x]/(f̄(x)), where f̄(x) is an irreducible polynomial of degree k over
F2). The problem with these constructions is that to mix more bits, it is required
to construct bigger MDS matrices, e.g. 16 × 16 or 32 × 32 MDS matrices over
F2k . In order to solve this problem, we propose constructing MDS matrices over
Galois ring (GR(2n, k) = Z2n [x]/(f(x)), where f(x) is a basic irreducible poly-
nomial of degree k over Z2n).

c© Springer International Publishing AG 2017
M. O’Neill (Ed.): IMACC 2017, LNCS 10655, pp. 307–330, 2017.
https://doi.org/10.1007/978-3-319-71045-7_16
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The algebraic structure of Galois ring GR(2n, k) is different from that of
Galois field F2k , for example, not all the nonzero elements in GR(2n, k) are
invertible, which is not the case in F2k . So, we first need to study and prove some
properties of Galois ring GR(2n, k), especially, which elements of GR(2n, k) are
unit elements and square elements, etc. Using these properties, we will construct
MDS matrices over GR(2n, k) via Hadamard matrices and construct orthogonal
MDS matrices.

The organization of this paper is as follows. In Sect. 2, we give some proper-
ties of Galois ring GR(2n, k). These properties will be used to construct MDS
matrices. In order to construct orthogonal MDS matrices, we first construct
Hadamard matrices over GR(2n, k) in Sect. 3. In Sect. 4, we give a definition
of MDS matrices over GR(2n, k) and prove the necessary and sufficient condi-
tion between MDS matrices over GR(2n, k) and F2k . In Sect. 5, we construct
4 × 4 orthogonal MDS matrices over GR(2n, k) and prove that there is no 2 × 2
orthogonal MDS matrix over GR(2n, k). Finally, we give a conclusion in Sect. 6.

2 Preliminaries

In this section, we will briefly discuss the properties of Galois ring, especially
unit elements and square elements in Galois ring; and also the relation via an
epimorphism between Galois ring and finite field.

Let n ≥ 3 and k ≥ 2 be positive integers, F2 be the finite field of 2 elements
and Z2n be the ring of integers modulo 2n. Let F2[x] and Z2n [x] be the polynomial
rings over F2 and Z2n respectively. Suppose f̄(x) is an irreducible polynomial of
degree k over F2 and f(x) is a basic irreducible polynomial of degree k over Z2n

with f̄(x) ≡ f(x) mod 2. Then finite field is F2k = F2[x]/(f̄(x)) and Galois ring
is GR(2n, k) = Z2n [x]/(f(x)); and there is an epimorphism μ from GR(2n, k) to
F2k such that μ(α) = ᾱ where α and ᾱ are the root of f(x) and f̄(x) respectively.
That is,

μ : GR(2n, k) = Z2n [x]/(f(x)) −→ F2k = F2[x]/(f̄(x))

μ(
k−1∑

i=0

aiα
i) =

k−1∑

i=0

āiᾱ
i,

where ai ∈ Z2n and āi ≡ ai mod 2 for i = 0, · · · , k − 1.
As μ is an epimorphism, then for any β, γ ∈ GR(2n, k), one has
(a) μ(0) = 0, (c) μ(β + γ) = μ(β) + μ(γ),
(b) μ(1) = 1, (d) μ(βγ) = μ(β)μ(γ).

Note: For other representation of elements in Galois ring GR(2n, k), please refer
to [4].

We first give a definition of unit element in GR(2n, k) and find the total
number of unit elements in GR(2n, k).

Definition 1. An element β is called unit element if there exists an element
γ ∈ GR(2n, k) such that βγ = 1, otherwise, β is called a non-unit element. We
denote the units of GR(2n, k) by U(GR(2n, k)).
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Lemma 1. If β ∈ GR(2n, k) is a unit element, then μ(β) is a unit element in
F2k . Furthermore, |U(GR(2n, k))| = 2(n−1)k(2k − 1).

Proof. As β is a unit element, there exists γ ∈ GR(2n, k) such that βγ = 1.
Hence, μ(βγ) = 1 and μ(βγ) = μ(β)μ(γ) = 1. That is, there is an element
μ(γ) ∈ F2k such that μ(β)μ(γ) = 1. Therefore, μ(β) is a unit element in F2k .

If a =
∑k−1

i=0 aiα
i ∈ GR(2n, k) is a non-unit element, then all ai are

even integers and the total number of non-unit elements is 2k(n−1). Therefore,
|U(GR(2n, k))| = 2kn − 2k(n−1) = 2k(n−1)(2k − 1). ��

Now, we define a square element in U(GR(2n, k)) and prove that certain
elements of U(GR(2n, k)) are non-square elements.

Definition 2. An element β is called a square element if there exists an element
γ ∈ GR(2n, k) such that β = γ2, otherwise, β is called a non-square element.

Remark 1. 1 is a square element in U(GR(2n, k)) as 12 = 1.

Lemma 2. If a and b are non-square and square elements in U(GR(2n, k))
respectively, then ab is a non-square in U(GR(2n, k)).

Proof. Assume that ab is a square in U(GR(2n, k)), then there exists c ∈
U(GR(2n, k)) such that c2 = ab. As b is a square in U(GR(2n, k)), we have
b = d2 for some d ∈ U(GR(2n, k)). Therefore, a = (cd−1)2. This implies that
a is a square, contradicting the assumption that a is a non-square. Hence, we
proved the lemma. ��
Lemma 3. For n ≥ 3, any square element in U(GR(2n, k)) has exactly 2k+1

square roots. If β ∈ U(GR(2n, k)), then the 2k+1 square roots of β2 are ±β +
∑k−1

i=0 2n−1δiα
i, where δi ∈ {0, 1} for 0 ≤ i ≤ k − 1. Furthermore, the number of

square elements in U(GR(2n, k)) is 2k(n−2)−1(2k − 1).

Proof. Let β, γ ∈ U(GR(2n, k)) be such that β2 = γ2. We shall show that γ =
±β+

∑k−1
i=0 2n−1δiα

i for some δi ∈ {0, 1}. As β2 = γ2, we have (γ−β)(γ+β) = 0.
Let 2j1 (resp. 2j2) be the highest power of 2 that divides β−γ (resp. β+γ). Then
j1, j2 ≥ 0, and γ −β = 2j1u1 and γ +β = 2j2u2 for some u1, u2 ∈ U(GR(2n, k)).
As (γ − β)(γ + β) = 0, we must have j1 + j2 ≥ n.

Suppose j1, j2 ≥ 2. Then 2γ = (γ − β) + (γ + β) = 2j1u1 + 2j2u2, so that
2 = (2j1u1 + 2j2u2)γ−1 = 4(2j1−2u1 + 2j2−2u2)γ−1. But this implies that 1 ≡
2(2j1−2u1 + 2j2−2u2)γ−1 mod 2n−1, a contradiction. Thus, it is not the case
that j1, j2 ≥ 2, i.e. one of them must be ≤ 1. Assume that j1 ≤ 1. Then
j2 ≥ n − 1 as j1 + j2 ≥ n. So, γ + β = 2j2u2 = 2n−1v2 for some v2 ∈ GR(2n, k).
Note that 2n−1v2 is of the form

∑k−1
i=0 2n−1δiα

i for some δi ∈ {0, 1}. Thus,
γ = −β + 2n−1v2 = −β +

∑k−1
i=0 2n−1δiα

i if j1 ≤ 1. Similarly, one can show that
if j2 ≤ 1, then γ = β +

∑k−1
i=0 2n−1δiα

i.
We have shown that if β2 = γ2, then γ = ±β +

∑k−1
i=0 2n−1δiα

i for some
δi ∈ {0, 1}. This implies that a square element in U(GR(2n, k)) has at most
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2k+1 square roots. To show that in fact a square element has exactly 2k+1 square
roots, in the following we verify that any γ of this form satisfies γ2 = β2.

γ2 = (±β +
k−1∑

i=0

2n−1δiα
i)2

= β2 +
k−1∑

i=0

22n−2δ2i α
2i + 2

k−1∑

i=0,j=0,i �=j

22n−2δiδjα
i+j + 2β

k−1∑

i=0

2n−1δiα
i

= β2. (as 22n−2 ≡ 0 mod 2n)

We also note that the elements of the form ±β +
∑k−1

i=0 2n−1δiα
i with

δi ∈ {0, 1} are pairwise distinct. It is clear that elements of the form β +
∑k−1

i=0 2n−1δiα
i (resp. −β +

∑k−1
i=0 2n−1δiα

i) are pairwise distinct. Now, suppose
β +

∑k−1
i=0 2n−1δiα

i = −β +
∑k−1

i=0 2n−1δ′
iα

i. Then 2β =
∑k−1

i=0 2n−1(δ′
i − δi)αi,

or equivalently β ≡ ∑k−1
i=0 2n−2(δ′

i − δi)αi mod 2n−1. Note that 2n−2 is even as
n ≥ 3. Thus, all coefficients of β are even and so β is not a unit, contradiction.
We conclude that the elements of the form ±β +

∑k−1
i=0 2n−1δiα

i with δi ∈ {0, 1}
are pairwise distinct. Hence, a square element in U(GR(2n, k)) has exactly 2k+1

square roots.
Define a function θ from U(GR(2n, k)) to U(GR(2n, k)) by θ(z) = z2 for

z ∈ U(GR(2n, k)). For each θ(z), there are exactly 2k+1 preimages that map to
θ(z). Hence, |Im θ| = 2k(n−1)(2k − 1)/2k+1 = 2k(n−2)−1(2k − 1). ��
Lemma 4. Let j and l be integers such that 0 ≤ j < k

2 and 0 ≤ l < 2n−2. If
2 | ci, for all i 	= 2j, i ≤ k − 1, then −5lα2j +

∑
i�=2j, i≤k−1 ciα

i is not a square
in U(GR(2n, k)).

Proof. Let μ be the epimorphism from GR(2n, k) to F2k . Assume that
−5lα2j +

∑
i�=2j, i≤k−1 ciα

i is a square in U(GR(2n, k)), then there exists a ∈
U(GR(2n, k)) such that a2 = −5lα2j +

∑
i�=2j, i≤k−1 ciα

i and a =
∑k−1

i=0 aiα
i.

Then, we have μ(a)2 = μ(a2) = ᾱ2j and so μ(a) = ᾱj . This implies that
a = (2a′

j + 1)αj + 2
∑

i�=j, i≤k−1 a′
iα

i, where aj = 2a′
j + 1 and ai = 2a′

i for
i 	= j, i ≤ k − 1. Thus,

a2 = (1 + 4a′
j + 4(a′

j)
2)α2j + 4aj

∑

i�=j, i≤k−1

a′
iα

i + 4

⎛

⎝
∑

i�=j, i≤k−1

a′
iα

i

⎞

⎠

2

= −5lα2j +
∑

i�=2j, i≤k−1

ciα
i. (1)
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As 5l ≡ 1 mod 4, there exists u ∈ Z such that 5l = 4u + 1. Then (1) becomes

(−2 − 4u)α2j = (4a′
j + 4(a′

j)
2)α2j + 4

⎡

⎢
⎣aj

∑

i�=j, i≤k−1

a′
iα

i +

⎛

⎝
∑

i�=j, i≤k−1

a′
iα

i

⎞

⎠

2
⎤

⎥
⎦

−
∑

i�=2j, i≤k−1

ciα
i.

Thus,
2α2j ≡

∑

i�=2j, i≤k−1

c̄iα
i mod 4,

where c̄i ≡ ci mod 4 for i 	= 2j, i ≤ k − 1. Note that the left hand side has the
term α2j , while the right hand side does not. This is a contradiction. Therefore,
we conclude that −5lα2j +

∑
i�=2j, i≤k−1 ciα

i is not a square in U(GR(2n, k)). ��
Corollary 1. −1 is a non-square element in U(GR(2n, k)).

3 Hadamard Matrices

In this section, we will construct Hadamard matrices over U(GR(2n, k)) by con-
sidering Hadamard matrices over F2k and introducing some signs on the entries
of the matrices. We first give a definition of Hadamard matrices as follows.

Definition 3. An m×m matrix M is called Hadamard matrix if MMT = cIm,
where c is a constant, MT is the transpose of M and Im is the identity matrix.
Furthermore,

(1) If c = 1, then M is called orthogonal matrix.
(2) If c = 1 and MT = M , then M is called involutory matrix.

Definition 4. Let R be a ring. A 2 × 2 matrix of the form
[
a0 a1
a1 a0

]

, where

a0,a1 ∈ R, is called 2 × 2 pseudo Hadamard matrix over R and is denoted
by PHD(a0,a1). For r ≥ 2, define a 2r × 2r matrix M over R by M =[

M1 M2

M2 M1

]

, where Mi is a 2r−1 × 2r−1 pseudo Hadamard matrix over R for

i = 1, 2. The matrix M is called 2r × 2r pseudo Hadamard matrix over R.
We denote M by PHD(a0, · · · ,a2r−1), where M1 = PHD(a0, · · · ,a2r−1−1) and
M2 = PHD(a2r−1 , · · · ,a2r−1).

Any 2 × 2 pseudo Hadamard matrix over F2k is a Hadamard matrix, but a

pseudo Hadamard matrix M =
[
a0 a1
a1 a0

]

over U(GR(2n, k)) may not always be

a Hadamard matrix as MMT 	= (a20 + a21)I2 if 2a0a1 	= 0 in GR(2n, k). But, the
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matrix M over U(GR(2n, k)) can be made into a Hadamard matrix by adding
some signs on the entries of the matrix M as follows.

[
a0 a1
a1 −a0

]

,

[
a0 a1

−a1 a0

]

.

It is easy to check that the above two matrices are 2 × 2 Hadamard matrices
over U(GR(2n, k)). This construction of adding signs on the entries of matrix
M can be considered as entry-wise multiplying a pseudo Hadamard matrix with
a (1,−1)-matrix, that is, a matrix whose entries are either 1 or −1.

Notation: We denote 
 as the entry-wise multiplication of two m×m matrices
M = (mij) and S = (sij), that is, M 
 S = (mijsij).

With this notation, the above 2 × 2 Hadamard matrices can be written as
follows:

[
a0 a1
a1 −a0

]

=
[
a0 a1
a1 a0

]



[

1 1
1 −1

]

,

[
a0 a1

−a1 a0

]

=
[
a0 a1
a1 a0

]



[

1 1
−1 1

]

.

Therefore, a pseudo Hadamard matrix can be made into a Hadamard matrix by
performing entry-wise multiplication with a (1,−1)-matrix.

Definition 5. Let R be a commutative ring with unity of characteristic 	= 2.
If S is a (1,−1)-matrix such that PHD(a0, · · · ,am−1) 
 S is Hadamard for any
a0,a1, · · · ,am−1 ∈ R, then we call S an enabling Hadamard (1,−1)-matrix
with respect to R. We denote the Hadamard matrix PHD(a0, · · · ,am−1)
S by
HD(a0, · · · ,am−1;S).

Remark 2. If R is a commutative ring with unity of characteristic 2 (e.g. F2k),
then m × m pseudo Hadamard matrix PHD(a0, · · · ,am−1) over R is always a
Hadamard matrix and is denoted by HD(a0, · · · ,am−1; I), where I is the (1,−1)-
matrix whose entries are all 1.

For the rest of the paper, we will always assume that R is a commutative
ring with unity of characteristic 	= 2, and we say that a (1,−1)-matrix is an
enabling Hadamard (1,−1)-matrix if it is an enabling Hadamard (1,−1)-matrix
with respect to R.

In the following, we construct 2 × 2 Hadamard matrices over R by listing
eight 2 × 2 enabling Hadamard (1,−1)-matrices.

Proposition 1. The following eight matrices are enabling Hadamard (1,−1)-
matrices
[

1 1
1 −1

]

,

[

1 1
−1 1

]

,

[

1 −1
1 1

]

,

[−1 1
1 1

]

,

[−1 −1
−1 1

]

,

[−1 −1
1 −1

]

,

[−1 1
−1 −1

]

,

[

1 −1
−1 −1

]

.

Proof. Let M be a 2 × 2 matrix M =
[
a0 a1
a1 a0

]

over R. It is easy to check that

if S is any of the above eight matrices, then M 
 S are Hadamard matrices
over R. ��
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By observing the eight 2 × 2 enabling Hadamard (1,−1)-matrices in Propo-
sition 1, we have the following lemma.

Lemma 5. If
[

a1 b1
b2 a2

]

is a 2 × 2 enabling Hadamard (1,−1)-matrix, then,

(a) a1b1 = −a2b2, (b) a1b2 = −a2b1, (c) a1a2 = −b1b2.

Proof. It is easy to check that the eight 2 × 2 enabling Hadamard (1,−1)-
matrices in Proposition 1 satisfy all the equations above. ��

3.1 4 × 4 Hadamard Matrices

In Proposition 1, we constructed 2 × 2 enabling Hadamard (1,−1)-matrices.
Now, we will construct all 4 × 4 enabling Hadamard (1,−1)-matrices in the
following proposition.

Proposition 2. Let S be a 4 × 4 (1,−1)-matrix, i.e.

S =

⎡

⎢
⎢
⎣

a1 b1 c1 d1
b2 a2 d2 c2
c3 d3 a3 b3
d4 c4 b4 a4

⎤

⎥
⎥
⎦ =

[
S1 S2

S3 S4

]

,

where each Si is a 2 × 2 (1,−1)-matrix for 1 ≤ i ≤ 4. Then S is a 4 × 4
enabling Hadamard (1,−1)-matrix if and only if S1, S2, S3, S4 are 2×2 enabling
Hadamard (1,−1)-matrices and the following system of equations holds:

c3 = b1b2c2d1d3, b3 = −b1d1d3, a3 = −a1c1c3,
c4 = b1b2c1d2d4, b4 = −b2d2d4, a4 = −a2c2c4.

(2)

Moreover, there are 256 4 × 4 enabling Hadamard (1,−1)-matrices.

Proof. Let R be a commutative ring with unity of characteristic 	= 2 and a,b, c,d
be arbitrary elements of R. Suppose

M := HD(a,b, c,d;S) =

⎡

⎢
⎢
⎣

a1 b1 c1 d1

b2 a2 d2 c2
c3 d3 a3 b3

d4 c4 b4 a4

⎤

⎥
⎥
⎦ =

[
M1 M2

M3 M4

]

,

where zi is either z or −z for 1 ≤ i ≤ 4 and z ∈ {a,b, c,d}. As M is Hadamard,
we have

MMT =
[

M1M
T
1 + M2M

T
2 M1M

T
3 + M2M

T
4

(M1M
T
3 + M2M

T
4 )T M3M

T
3 + M4M

T
4

]

= (a2 + b2 + c2 + d2)I4.

Thus, S is enabling Hadamard (1,−1)-matrix if and only if M1M
T
1 + M2M

T
2 =

(a2 + b2 + c2 + d2)I2 = M3M
T
3 + M4M

T
4 and M1M

T
3 + M2M

T
4 = 0 for any

a,b, c,d ∈ R.
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We first examine the condition that M1M
T
1 + M2M

T
2 = (a2 + b2 + c2 +

d2)I2 = M3M
T
3 + M4M

T
4 . As a,b, c,d could be arbitrary, we may take c =

0 = d (in this case M2 = 0) to see that M1 = HD(a,b;S1) is Hadamard. Thus,
S1 is a 2 × 2 enabling Hadamard (1,−1)-matrix. Similarly, S2, S3, and S4 are
2 × 2 enabling Hadamard (1,−1)-matrices. Conversely, assuming S1, S2, S3, S4

are 2 × 2 enabling Hadamard (1,−1) matrices, it is easy to check that M1M
T
1 +

M2M
T
2 = (a2 +b2 + c2 +d2)I2 = M3M

T
3 + M4M

T
4 . Hence, M1M

T
1 + M2M

T
2 =

(a2 + b2 + c2 + d2)I2 = M3M
T
3 + M4M

T
4 holds if and only if S1, S2, S3, S4 are

2 × 2 enabling Hadamard (1,−1)-matrices.
Now we shall consider the condition M1M

T
3 + M2M

T
4 = 0, or equivalently

a1c3 + b1d3 + c1a3 + d1b3 = 0, a1d4 + b1c4 + c1b4 + d1a4 = 0,

b2c3 + a2d3 + d2a3 + c2b3 = 0, b2d4 + a2c4 + d2b4 + c2a4 = 0.

Note that a,b, c,d are arbitrary. So, we may set b = 0 (this implies that
b1 = b3 = 0) in the first equation to get a1c3 +c1a3 = 0. Similarly, one may set
a = 0 (this implies that a1 = a3 = 0) to obtain b1d3 + d1b3 = 0. Using similar
argument, we conclude that

a1c3 + c1a3 = b1d3 + d1b3 = a1d4 + d1a4 = b1c4 + c1b4 = 0
b2c3 + c2b3 = a2d3 + d2a3 = b2d4 + d2b4 = a2c4 + c2a4 = 0.

As ai = aai for 1 ≤ i ≤ 4 (and the same holds whenever a is replaced by b
or c or d), we note that the above system of equations holds if and only if the
following holds (note that the following system of equations holds in R if and
only if it holds in Z as char(R) 	= 2):

a1c3 + c1a3 = 0, a1d4 + d1a4 = 0,
b1d3 + d1b3 = 0, b1c4 + c1b4 = 0,
b2c3 + c2b3 = 0, b2d4 + d2b4 = 0,
a2d3 + d2a3 = 0, a2c4 + c2a4 = 0.

These equations can be expressed in the following matrix form.
⎡

⎢
⎢
⎣

c1 0 a1 0
0 d1 0 b1
0 c2 b2 0
d2 0 0 a2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

a3

b3
c3
d3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

c2 0 a2 0
0 d2 0 b2
0 c1 b1 0
d1 0 0 a1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

a4

b4
c4
d4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦ .

We will simplify the equation on the left by performing elementary row opera-
tions as follows.
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L =

⎡

⎢
⎢
⎣

c1 0 a1 0
0 d1 0 b1
0 c2 b2 0
d2 0 0 a2

⎤

⎥
⎥
⎦ −→

⎡

⎢
⎢
⎣

1 0 a1
c1

0
0 1 0 b1

d1

0 1 b2
c2

0
1 0 0 a2

d2

⎤

⎥
⎥
⎦ −→

⎡

⎢
⎢
⎣

1 0 a1
c1

0
0 1 0 b1

d1

0 0 b2
c2

− b1
d1

0 0 a1
c1

−a2
d2

⎤

⎥
⎥
⎦ −→

⎡

⎢
⎢
⎣

1 0 a1
c1

0
0 1 0 b1

d1

0 0 1 − c2b1
b2d1

0 0 1 − c1a2
a1d2

⎤

⎥
⎥
⎦ −→

⎡

⎢
⎢
⎢
⎣

1 0 a1
c1

0
0 1 0 b1

d1

0 0 1 − c2b1
b2d1

0 0 0 c1a2
a1d2

− c2b1
b2d1

⎤

⎥
⎥
⎥
⎦

.

By Lemma 5(a), we have a2
a1

= − b1
b2

and c1d1 + c2d2 = 0. Hence,

c1a2

a1d2
− c2b1

b2d1
=

a2

a1

(
c1d1 + c2d2

d1d2

)

= 0.

Therefore, the equation L·(a3, b3, c3, d3)T = 0 holds if and only if c3− c2b1
b2d1

·d3 = 0
(i.e. c3 = b1b2c2d1d3) and b3 = −b1d1d3 and a3 = −a1c1c3.

By similar computation, we may perform elementary row operations on the
right matrix as follows.

R =

⎡

⎢
⎢
⎣

c2 0 a2 0
0 d2 0 b2
0 c1 b1 0
d1 0 0 a1

⎤

⎥
⎥
⎦ −→ · · · −→

⎡

⎢
⎢
⎢
⎣

1 0 a2
c2

0
0 1 0 b2

d2

0 0 1 − c1b2
b1d2

0 0 0 c2a1
a2d1

− c1b2
b1d2

⎤

⎥
⎥
⎥
⎦

.

By Lemma 5(a), we have a1
a2

= − b2
b1

and c1d1 + c2d2 = 0. Hence,

c2a1

a2d1
− c1b2

b1d2
=

a1

a2

(
c1d1 + c2d2

d1d2

)

= 0.

Therefore, the equation R · (a4, b4, c4, d4)T = 0 holds if and only if c4 =
b1b2c1d2d4 and b4 = −b2d2d4 and a4 = −a2c2c4. Thus, the condition M1M

T
3 +

M2M
T
4 = 0 holds if and only if (2) holds.

Hence, S is a 4×4 enabling Hadamard (1,−1)-matrix if and only if (2) holds
and S1, S2, S3, S4 are 2 × 2 enabling Hadamard (1,−1)-matrices. From these
conditions, we observe that to construct a 4 × 4 enabling Hadamard (1,−1)-
matrix S, one may choose S1 (and also S2) to be any 2 × 2 enabling Hadamard
(1,−1)-matrix (there are 8 possible choices each for S1 and S2) and d3 (and also
d4) can be chosen to be either 1 or −1 (so there are 2 choices each for d3 and
d4). Once S1, S2, d3, d4 are fixed, the remaining values (i.e. c3, b3, a3, c4, b4, a4) are
uniquely determined by (2). Note that by construction, (2) is satisfied and S1, S2

are 2×2 enabling Hadamard (1,−1)-matrices. Moreover, it is easy to check that
S3 and S4 are 2× 2 enabling Hadamard (1,−1)-matrices. Therefore, S is a 4× 4
enabling Hadamard (1,−1)-matrix. Hence, in total, there are 8 ∗ 8 ∗ 2 ∗ 2 = 256
enabling Hadamard (1,−1)-matrices of dimension 4 × 4. ��



316 C. H. Tan and T. F. Prabowo

From Proposition 2 above, we give a detailed algorithm for constructing 4×4
enabling Hadamard (1,−1)-matrices in Appendix A. Below we list some 4 × 4
enabling Hadamard (1,−1)-matrices.

⎡

⎢
⎢
⎣

1 1 1 1
−1 1 −1 1
−1 1 1 −1
−1 −1 1 1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1 1 1 1
−1 1 1 −1
−1 −1 1 1
−1 1 −1 1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

−1 1 1 1
−1 −1 −1 1
−1 1 −1 −1
−1 −1 1 −1

⎤

⎥
⎥
⎦ .

3.2 8 × 8 Hadamard Matrices

In this subsection, we shall construct all possible 8 × 8 enabling Hadamard
(1,−1)-matrices.

Let S be an 8 × 8 (1,−1)-matrix, say

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 b1 c1 d1 e1 f1 g1 h1

b2 a2 d2 c2 f2 e2 h2 g2
c3 d3 a3 b3 g3 h3 e3 f3
d4 c4 b4 a4 h4 g4 f4 e4
e5 f5 g5 h5 a5 b5 c5 d5
f6 e6 h6 g6 b6 a6 d6 c6
g7 h7 e7 f7 c7 d7 a7 b7
h8 g8 f8 e8 d8 c8 b8 a8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
S1 S2

S3 S4

]

, (3)

where S1, S2, S3, S4 are 4 × 4 (1,−1)-matrices.

Lemma 6. If S1 and S2 are two fixed enabling Hadamard (1,−1)-matrices in
(3) and a1b3

a4b2
= e4f1

e2f3
, then there are 16 possible choices for S3, S4 such that S is

an enabling Hadamard (1,−1)-matrix.

Proof. The proof is given in Appendix B. ��
Proposition 3. There are 219 = 524288 8 × 8 enabling Hadamard (1,−1)-
matrices.

Proof. The matrix S1 can be chosen to be any 4×4 enabling Hadamard (1,−1)-
matrix. By Proposition 2, there are 256 choices for S1. The matrix S2 is also a
4×4 enabling Hadamard (1,−1)-matrix. However, we must choose S2 such that
the condition in Lemma 6 is satisfied, that is a1b3

a4b2
= e4f1

e2f3
. Thus, the number of

choices for S2 is 1
2 ∗ 256 = 128. For each choices of S2, there are 16 choices for

S3 and S4. Hence, in total, there are 256 ∗ 128 ∗ 24 = 219 = 524288 enabling
Hadamard (1,−1)-matrices of dimension 8 × 8. ��

From Lemma 6, we give a detailed algorithm for constructing 8 × 8
enabling Hadamard (1,−1)-matrices in Appendix C. Some examples of 8 × 8
enabling Hadamard (1,−1)-matrices obtained from this algorithm are given in
Appendix D.
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4 MDS Matrices

In this section, we will define MDS matrices over U(GR(2n, k)) and examine
some of their properties.

Definition 6. Let F be either finite field or Galois ring. Let M be an m × m
matrix over F . If every r × r submatrix of M is non-singular for all 1 ≤ r ≤ m,
then M is an MDS matrix.

Remark 3. A square matrix over a ring is non-singular if and only if its deter-
minant is a unit.

Lemma 7. Let μ be the epimorphism from GR(2n, k) to F2k and M = (aij) be
an m×m matrix over U(GR(2n, k)), where aij ∈ U(GR(2n, k)) is the (i, j)-entry
of the matrix. Suppose M̄ := μ(M) = (μ(aij)) over F2k . Then, μ(det(M)) =
det(M̄), where det(M) is the determinant of M .

Proof. This is true as μ is a ring homomorphism and the computation of deter-
minant of a matrix only involves addition and multiplication of its entries. ��
Theorem 1. Let μ be the epimorphism from GR(2n, k) to F2k . An m×m matrix
M = (aij) over U(GR(2n, k)) is MDS if and only if M̄ = μ(M) = (āij) is an
m × m MDS matrix over F2k , where āij := μ(aij).

Proof. (=⇒) Suppose M is an MDS matrix over U(GR(2n, k)). Assume that
M̄ is not MDS over F2k . Then, there exists r × r submatrix S̄ of M̄ such that
det(S̄) = 0 in F2k . Let S be the corresponding r × r submatrix of M . Then, by
Lemma 7, we have det(S) /∈ U(GR(2n, k)). This contradicts the fact that M is
an MDS matrix over U(GR(2n, k)). Hence, M̄ is MDS over F2k .

(⇐=) Suppose M̄ is an MDS matrix over F2k . Assume that M is not MDS
over U(GR(2n, k)), then, there exists r×r submatrix S of M such that det(S) /∈
U(GR(2n, k)). Consider the corresponding submatrix S̄ = μ(S) of M̄ . By Lemma
7, we have det(S) = 0 in F2k . This contradicts the fact that M̄ is an MDS matrix
over F2k . Hence, M is MDS over U(GR(2n, k)). ��

By the above theorem, every MDS matrices over F2k can be easily extended
to MDS matrices over U(GR(2n, k)). We give a proposition on how to ensure
that a Hadamard matrix is an MDS matrix.

Proposition 4 (Proposition 4 of [12]). Given an m × m Hadamard matrix M
over F

∗
2k = F2k \ {0} with the sum of the first row of M being not equal to 0. If

all submatrices of M of order less than or equal to m
2 are non-singular, then M

is MDS.

Proposition 5. Given a 4×4 Hadamard matrix M over F∗
2k = F2k\{0} with the

first row of M being [u1, u2, u3, u4] such that ui 	= uj for i 	= j and
∑4

i=1 ui 	= 0.
If uiuj 	= usut for (i, j) 	= (s, t), where 1 ≤ i, j, s, t ≤ 4, then M is MDS.
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Proof. By Proposition 4, we only need to check that all 1×1 and 2×2 submatrices
of M are non-singular. It is clear that all 1×1 submatrices of M are non-singular
as ui 	= 0 for all 1 ≤ i ≤ 4. Since M is Hadamard, then any 2 × 2 submatrix

S =
[

a b
c d

]

of M falls into one of the following two cases.

(1) a = d, b = c: Then det(S) = a2 + b2 = (a + b)2. Since a 	= b, therefore,
det(S) 	= 0.

(2) a, b, c, d are distinct: Then det(S) = ad + bc. Since ad 	= bc for a, b, c, d ∈
{u1, · · · , u4}, then we have det(S) 	= 0.

Combining the two cases above, all 2 × 2 submatrices of M are non-singular.
Hence, M is MDS. ��

5 Orthogonal MDS Matrices

In order to have the same MDS matrix structure for encryption and decryption,
it is necessary to convert an m×m Hadamard MDS matrix M (MMT = cIm) to
an orthogonal MDS matrix (M̃M̃T = Im), where M̃ = 1√

c
M and M̃T = 1√

c
MT .

In this section, we will examine the existence and construction of 2×2 and 4×4
orthogonal MDS matrices.

Lemma 8. If a,b ∈ U(GR(2n, k)) and a2 + b2 ∈ U(GR(2n, k)), then a2 + b2

is not a square in U(GR(2n, k)).

Proof. The proof is given in Appendix E. ��
Corollary 2. There is no 2 × 2 orthogonal MDS matrix over U(GR(2n, k)).

Proof. Assume that there exists 2 × 2 orthogonal MDS matrix over

U(GR(2n, k)), say M =
[
a b
c d

]

. Then, we have a2 +b2 = 1 ∈ U(GR(2n, k)). By

Lemma 8, a2 + b2 is a non-square. This is a contradiction. Therefore, there is
no 2 × 2 orthogonal MDS matrix over U(GR(2n, k)). ��

Now, we will construct 4 × 4 orthogonal MDS matrices of the form M =
HD(a,b, c,d;S) over U(GR(2n, k)), where S is a 4 × 4 enabling Hadamard
(1,−1)-matrix. We note that a2 + b2 + c2 + d2 = 1 and a,b, c,d must be
distinct. First, we construct 4 × 4 orthogonal MDS matrices over F2k as follows.

Proposition 6. Let k be even integer and ξ ∈ F2k such that F
∗
2k =

{1, ξ, · · · , ξ2
k−2}. Let ω = ξ(2

k−1)/3 and z ∈ F
∗
2k \ {1, ω, ω2}. Then the 4 × 4

Hadamard matrix M = HD(1, z, zω, zω2; I) is an orthogonal MDS matrix over
F2k , where I is the (1,−1)-matrix whose entries are all 1.
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Proof. Since ω3 = 1, then we have

1 + z2 + (zω)2 + (zω2)2 = 1 + z2(1 + ω + ω2) = 1.

Hence, M is an orthogonal matrix. By Proposition 4, we only need to check that
all 1 × 1 and 2 × 2 submatrices of M are non-singular. It is clear that all 1 × 1
submatrices of M are non-singular as 1, z, zω, zω2 	= 0. There are C4

2 × C4
2 = 36

2 × 2 submatrices of M (not necessarily distinct), which are listed as follows.
[

1 z
z 1

]

,

[
1 zω
z zω2

]

,

[
1 zω2

z zω

]

,

[
z zω
1 zω2

]

,

[
z zω2

1 zω

]

,

[
zω zω2

zω2 zω

]

,

[
1 z

zω zω2

]

,

[
1 zω

zω 1

]

,

[
1 zω2

zω z

]

,

[
z zω

zω2 1

]

,

[
z zω2

zω2 z

]

,

[
zω zω2

1 z

]

,

[
1 z

zω2 zω

]

,

[
1 zω

zω2 z

]

,

[
1 zω2

zω2 1

]

,

[
z zω
zω 1

]

,

[
z zω2

zω 1

]

,

[
zω zω2

z 1

]

,

[
z 1
zω zω2

]

,

[
z zω2

zω 1

]

,

[
z zω
zω z

]

,

[
1 zω2

zω2 1

]

,

[
1 zω

zω2 z

]

,

[
zω2 zω
1 z

]

,

[
z 1

zω2 zω

]

,

[
z zω2

zω2 z

]

,

[
z zω

zω2 1

]

,

[
1 zω2

zω z

]

,

[
1 zω

zω 1

]

,

[
zω2 zω
z 1

]

,

[
zω zω2

zω2 zω

]

,

[
zω 1
zω2 z

]

,

[
zω z
zω2 1

]

,

[
zω2 1
zω z

]

,

[
zω2 z
zω 1

]

,

[
1 z
z 1

]

.

By computing the determinants of all the 36 submatrices, their determinants are
as follows.

1 + z2, z2ω + zω2, zω + z2ω2, z2ω + z2ω2,

1 + z2ω2, 1 + z2ω, z + z2, z2 + z2ω, z2 + z2ω2.

Since z 	= 1, ω, ω2; ω 	= 1 and ω2 	= 1, therefore, all of the above are non-zero.
Hence, M is an orthogonal MDS matrix over F2k . ��

In the following, we will construct two types of 4×4 orthogonal MDS matrices
over U(GR(2n, k)). First, we recall the general setting of U(GR(2n, k)) and F2k .

Let n ≥ 3, k ≥ 4 even and GR(2n, k) = Z2n [x]/(f(x)) be a Galois
ring, where f(x) is a basic irreducible polynomial of degree k over Z2n . Let
F2k = F2[x]/(f̄(x)), where f̄(x) ≡ f(x) mod 2 and α be a root of f(x), μ
is an epimorphism from GR(2n, k) to F2k such that ᾱ := μ(α) is a primitive
element in F2k .

Theorem 2. Let ω ∈ F2k such that ω3 = 1. Let z, c,d ∈ U(GR(2n, k)) such that
μ(z) ∈ F2k \{1, ω, ω2}, ω = μ(c) and ω2 = μ(d). Then a 4×4 Hadamard matrix
M = HD(1, z, zc, zd;S) is an orthogonal MDS matrix over U(GR(2n, k)), where
S is an enabling Hadamard (1,−1)-matrix if one of the following holds:
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(1) k = 4, f(x) = x4 + x + 1, c = α2 + α, d = α2 − α − 1,
(2) k = 6, f(x) = x6 + x5 + 1, c = α5 + α4 + α3 + 1, d = α5 + α4 − α3,
(3) k = 8, f(x) = x8+x7+x2+x+1, c = α7−α5−α3+α, d = α7−α5+α3+α+1,
(4) k = 10, f(x) = x10 + x5 + x2 + x + 1, c = α5 − α, d = α5 + α + 1.

Proof. By Proposition 6, in order to show that M is an orthogonal MDS matrix
over U(GR(2n, k)), it suffices to show that μ(c)3 = 1, μ(d) = μ(c)2 and z2 +
(zc)2 + (zd)2 = 0 in GR(2n, k). First, it is easy to check that μ(c)3 = 1 and
μ(d) = μ(c)2 are true for (1)-(4). To show z2 + (zc)2 + (zd)2 = 0, it suffices to
show that s := 1 + c2 + d2 = 0. We show this as follows.

(1) s = 1 + (α2 + α)2 + (α2 − α − 1)2

= 1 + (α4 + α2 + 2α3) + (α4 + α2 + 1 − 2α3 − 2α2 + 2α)

= 2(α4 + α + 1)

= 0. (as α4 + α + 1 = 0)

(2) s = 1 + (α5 + α4 + α3 + 1)2 + (α5 + α4 − α3)2

= 2(α10 + α8 + α6 + 1) + 4α9 + 2(α5 + α4 + α3).

Since α6 = −α5 − 1, α9 = α5 − α3 + α2 − α + 1,

α7 = α5 − α + 1, α10 = −α5 − α4 + α3 − α2 + α − 1,

α8 = −α5 − α2 + α − 1,

it follows that s = 0.

(3) s = 1 + (α7 − α5 − α3 + α)2 + (α7 − α5 + α3 + α + 1)2

= 2(α14 + α10 + α6 + α2 + 1) + 4(−α12 + α8 − α6) + 2(α7 − α5 + α3 + α)

= 2[(α14 + α10 − α6 + α2 + 1 + α7 − α5 + α3 + α) + 2(−α12 + α8)].

Since α8 = −α7 − α2 − α − 1, α12 = −α7 − α6 − α4 + α3 − α2 − 1,

α10 = −α7 − α4 − α2 − 1, α14 = −α6 + α5 − α4 + α3 + α,

it follows that s = 0.

(4) s = 1 + (α5 − α)2 + (α5 + α + 1)2

= 2(α10 + α2) + 2(α5 + 2α)

= 2(α10 + α5 + α2 + α + 1)

= 0. (as α10 + α5 + α2 + α + 1 = 0)

Hence, the Hadamard matrices given in (1)–(4) are orthogonal MDS matrices
over U(GR(2n, k)). ��
Theorem 3. Let 4 | k. Let β be a primitive element of subfield of F2k of 24

elements such that
∑3

i=0 β2i = 1. Let zi ∈ U(GR(2n, k)) such that μ(zi) = β2i ∈
F2k for 0 ≤ i ≤ 3. Then a 4×4 Hadamard matrix M = HD(z0, z1, z2, z3;S) is an
orthogonal MDS matrix over U(GR(2n, k)), where S is an enabling Hadamard
(1,−1)-matrix if one of the following holds
(1) k = 4, f(x) = x4 + x + 1, z0 = α3 + α + 1, z1 = α3 − 1, z2 = α3 + α2 + 1,
z3 = α3 − α2 − α,
(2) k = 8, f(x) = x8 +x7 +x6 +x5 +x2 +x+1, z0 = α7 −α6 −α5 −α4 −α3 −α,
z1 = α7+α6−α3+α+1, z2 = α6−α5−α4+α3+α2+α+1, z3 = α6−α3+α2+α+1,
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(3) k = 16, f(x) = x16 + x15 + x10 + x9 + x4 + x3 + 1,
z0 = α15 + α14 + α13 − α9 + α8 − α6 + α4 + α2 + 1,
z1 = α14 + α13 + α12 + α10 + α9 + α5 − α2 + α + 1,
z2 = α14 − α11 + α8 + α7 + α4 + α2 − 1,
z3 = α15 + α14 − α12 − α11 + α10 + α7 + α6 − α5 + α2 + α.

Proof. By Proposition 5, in order to show that M is an orthogonal MDS matrix
over U(GR(2n, k)), it suffices to show that μ(zi) = μ(z0)2

i

for 1 ≤ i ≤ 3,
∑3

i=0 μ(zi) = 1 and
∑3

i=0 z
2
i = 1 in U(GR(2n, k)). First, it is easy to check that

μ(zi) = μ(z0)2
i

for 1 ≤ i ≤ 3 and
∑3

i=0 μ(zi) = 1 are true for (1)-(3). Now, we
show that s := z20 + z21 + z22 + z23 = 1 as follows.

(1) s = (α3 + α + 1)2 + (α3 − 1)2 + (α3 + α2 + 1)2 + (α3 − α2 − α)2

= (α6 + α2 + 1 + 2α4 + 2α3 + 2α) + (α6 + 1 − 2α3) + (α6 + α4

+1 + 2α5 + 2α3 + 2α2) + (α6 + α4 + α2 − 2α5 − 2α4 + 2α3)
= 3 + 4α6 + 2α4 + 4α3 + 4α2 + 2α

= 1 (as 4α6 = −4α3 − 4α2, 2α4 = −2α − 2)
(2) s = (α7 − α6 − α5 − α4 − α3 − α)2 + (α7 + α6 − α3 + α + 1)2

+(α6 − α5 − α4 + α3 + α2 + α + 1)2 + (α6 − α3 + α2 + α + 1)2

= 1
(3) s = (α15 + α14 + α13 − α9 + α8 − α6 + α4 + α2 + 1)2

+(α14 + α13 + α12 + α10 + α9 + α5 − α2 + α + 1)2

+(α14 − α11 + α8 + α7 + α4 + α2 − 1)2

+(α15 + α14 − α12 − α11 + α10 + α7 + α6 − α5 + α2 + α)2

= 1.

Hence, the Hadamard matrices given in (1)–(3) are orthogonal MDS matrices
over U(GR(2n, k)). ��

6 Conclusion

In this paper, we worked on MDS matrices over Galois ring (GR(2n, k)) which
are different from the MDS matrices over Galois field (F2k). For the construc-
tion of MDS matrix over U(GR(2n, k)), first, we studied the properties of
Galois ring and investigated what are the unit elements and square elements
in GR(2n, k). Secondly, we gave a proof of necessary and sufficient conditions
between MDS matrices over F2k and U(GR(2n, k)). This result enables us to
extend MDS matrices from F2k to U(GR(2n, k)). Thirdly, in order to con-
struct orthogonal MDS matrices over U(GR(2n, k)), we constructed Hadamard
matrices over U(GR(2n, k)) by adding some signs on the entries of the matri-
ces (i.e. performing entry-wise multiplication with enabling Hadamard (1,−1)-
matrices). We gave complete enumerations of 4×4 and 8×8 enabling Hadamard
(1,−1)-matrices. Then, we consider those Hadamard matrices which are MDS
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matrices. Fourthly, we proved that there is no 2 × 2 orthogonal MDS matrix
over U(GR(2n, k)) and constructed some 4 × 4 orthogonal MDS matrices over
U(GR(2n, k)). In the future work, we will construct 8 × 8 orthogonal MDS
matrices over U(GR(2n, k)).

Acknowledgment. The authors would like to thank the anonymous reviewers for
insightful comments and invaluable suggestions, which help us to improve this paper.

Appendices

A Algorithm for Constructing 4 × 4 Enabling Hadamard
(1,−1)-matrices

Algorithm 1. Constructing 4 × 4 enabling Hadamard (1,−1)-matrix
1. Randomly choose a1, b1, b2, c1, d1, d2, d3, d4 ∈ {1,−1}
2. Set a2 = −a1b1b2
3. Set c2 = −c1d1d2
4. Set c3 = b1b2c2d1d3, b3 = −b1d1d3, a3 = −a1c1c3
5. Set c4 = b1b2c1d2d4, b4 = −b2d2d4, a4 = −a2c2c4

B Proof of Lemma 6

To prove Lemma 6, we first prove the following two lemmas.
Let R be a commutative ring with unity of characteristic 	= 2 and a,b, · · · ,h

be arbitrary elements of R. Suppose

M := HD(a,b, · · · ,h;S) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 b1 c1 d1 e1 f1 g1 h1

b2 a2 d2 c2 f2 e2 h2 g2

c3 d3 a3 b3 g3 h3 e3 f3
d4 c4 b4 a4 h4 g4 f4 e4
e5 f5 g5 h5 a5 b5 c5 d5

f6 e6 h6 g6 b6 a6 d6 c6
g7 h7 e7 f7 c7 d7 a7 b7

h8 g8 f8 e8 d8 c8 b8 a8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
M1 M2

M3 M4

]

, (4)

where zi is either z or −z for 1 ≤ i ≤ 8 and z ∈ {a,b, · · · ,h}.

Lemma 9. Suppose S1, S2, S3, S4 are 4 × 4 enabling Hadamard (1,−1)-
matrices. Then S is an 8 × 8 enabling Hadamard (1,−1)-matrix if and only
if the following conditions hold:
(a1) −a4

a3

g3
h4

+ d1
d2

g2
h1

= 0, (a2) − c4
c3

e3
f4

+ b1
b2

e2
f1

= 0,
(b1) −a3

a4

g4
h3

+ d2
d1

g1
h2

= 0, (b2) − c3
c4

e4
f3

+ b2
b1

e1
f2

= 0,
(c1) −a2

a1

g1
h2

+ d3
d4

g4
h3

= 0, (c2) − c2
c1

e1
f2

+ b3
b4

e4
f3

= 0,
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(d1) −a1
a2

g2
h1

+ d4
d3

g3
h4

= 0, (d2) − c1
c2

e2
f1

+ b4
b3

e3
f4

= 0;
(e) g5 = a3a4g3h4h5, f5 = b1b3f1h3h5, e5 = c3c4e3f4f5,

d5 = −d1h1h5, c5 = −c1g1g5, b5 = −b1f1f5, a5 = −a1e1e5,
(f) g6 = a4a3g4h3h6, f6 = b2b4f2h4h6, e6 = c4c3e4f3f6,

d6 = −d2h2h6, c6 = −c2g2g6, b6 = −b2f2f6, a6 = −a2e2e6,
(g) g7 = a1a2g1h2h7, f7 = b3b1f3h1h7, e7 = c1c2e1f2f7,

d7 = −d3h3h7, c7 = −c3g3g7, b7 = −b3f3f7, a7 = −a3e3e7,
(h) g8 = a2a1g2h1h8, f8 = b4b2f4h2h8, e8 = c2c1e2f1f8,

d8 = −d4h4h8, c8 = −c4g4g8, b8 = −b4f4f8, a8 = −a4e4e8.

Proof. Note that MMT =
[

M1M
T
1 + M2M

T
2 M1M

T
3 + M2M

T
4

(M1M
T
3 + M2M

T
4 )T M3M

T
3 + M4M

T
4

]

. As S1, S2,

S3, S4 are 4×4 enabling Hadamard (1,−1)-matrices, we have M1M
T
1 +M2M

T
2 =

(a2 + b2 + · · · + h2)I4 = M3M
T
3 + M4M

T
4 . Thus, S is an enabling Hadamard

(1,−1)-matrix if and only if M1M
T
3 + M2M

T
4 = 0 for any a,b, · · · ,h. The last

equations are equivalent to the following system of sixteen equations:

a1e5 + b1f5 + c1g5 + d1h5 + (e1a5 + f1b5 + g1c5 + h1d5) = 0,
b2e5 + a2f5 + d2g5 + c2h5 + (f2a5 + e2b5 + h2c5 + g2d5) = 0,
c3e5 + d3f5 + a3g5 + b3h5 + (g3a5 + h3b5 + e3c5 + f3d5) = 0,
d4e5 + c4f5 + b4g5 + a4h5 + (h4a5 + g4b5 + f4c5 + e4d5) = 0,

...
a1h8 + b1g8 + c1f8 + d1e8 + (e1d8 + f1c8 + g1b8 + h1a8) = 0,
b2h8 + a2g8 + d2f8 + c2e8 + (f2d8 + e2c8 + h2b8 + g2a8) = 0,
c3h8 + d3g8 + a3f8 + b3e8 + (g3d8 + h3c8 + e3b8 + f3a8) = 0,
d4h8 + c4g8 + b4f8 + a4e8 + (h4d8 + g4c8 + f4b8 + e4a8) = 0.

Note that a,b, · · · ,h are arbitrary. So, we may set b = c = d = 0 (this implies
that b1 = b5 = c1 = c5 = d1 = d5 = 0) in the first equation to obtain
a1e5+e1a5 = 0. Using similar argument, we conclude that the first four equations
are equivalent to

a1e5 + e1a5 = 0, c3e5 + e3c5 = 0,

b1f5 + f1b5 = 0, d3f5 + f3d5 = 0,

c1g5 + g1c5 = 0, a3g5 + g3a5 = 0,

d1h5 + h1d5 = 0, b3h5 + h3b5 = 0,

b2e5 + e2b5 = 0, d4e5 + e4d5 = 0,

a2f5 + f2a5 = 0, c4f5 + f4c5 = 0,

d2g5 + g2h5 = 0, b4g5 + g4b5 = 0,

c2h5 + h2c5 = 0, a4h5 + h4a5 = 0.
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As ai = aai for 1 ≤ i ≤ 8 (and the same holds whenever a is replaced by
b, c, d, e, f, g, or h), we note that the above system of equations holds for any
a,b, · · · ,h if and only if the following system of equation holds (note that
the following system of equations holds in R if and only if it holds in Z as
char(R) 	= 2):

a1e5 + e1a5 = 0, c3e5 + e3c5 = 0,

b1f5 + f1b5 = 0, d3f5 + f3d5 = 0,

c1g5 + g1c5 = 0, a3g5 + g3a5 = 0,

d1h5 + h1d5 = 0, b3h5 + h3b5 = 0,

b2e5 + e2b5 = 0, d4e5 + e4d5 = 0,

a2f5 + f2a5 = 0, c4f5 + f4c5 = 0,

d2g5 + g2h5 = 0, b4g5 + g4b5 = 0,

c2h5 + h2c5 = 0, a4h5 + h4a5 = 0.

These equations can be expressed in the following matrix form

W (5) · (a5, b5, c5, d5, e5, f5, g5, h5)T = 0,

where

W (5) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1 0 0 0 a1 0 0 0
0 f1 0 0 0 b1 0 0
0 0 g1 0 0 0 c1 0
0 0 0 h1 0 0 0 d1
0 e2 0 0 b2 0 0 0
f2 0 0 0 0 a2 0 0
0 0 0 g2 0 0 d2 0
0 0 h2 0 0 0 0 c2
g3 0 0 0 0 0 a3 0
0 h3 0 0 0 0 0 b3
0 0 e3 0 c3 0 0 0
0 0 0 f3 0 d3 0 0
h4 0 0 0 0 0 0 a4

0 g4 0 0 0 0 b4 0
0 0 f4 0 0 c4 0 0
0 0 0 e4 d4 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 a1
e1

0 0 0
0 1 0 0 0 b1

f1
0 0

0 0 1 0 0 0 c1
g1

0
0 0 0 1 0 0 0 d1

h1

0 0 0 0 1 − c4e3
c3f4

0 0
0 0 0 0 0 1 0 − b3f1

b1h3

0 0 0 0 0 0 1 − a4g3
a3h4

0 0 0 0 0 b1e2
b2f1

− c4e3
c3f4

0 0
0 0 0 0 0 0 0 d1g2

d2h1
− a4g3

a3h4

0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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The matrix on the right above (called W̃ (5)) is obtained by performing
elementary row operations to W (5). Thus, W (5) · (a5, b5, · · · , h5)T = 0 if and
only if conditions (a1), (a2), and (e) hold. Summarizing what we have done
so far, recall that S is an enabling Hadamard (1,−1)-matrix if and only if
M1M

T
3 + M2M

T
4 = 0. Using this matrix equation, we derive the equation

W (5) · (a5, b5, · · · , h5)T = 0, which is equivalent to W̃ (5) · (a5, · · · , h5)T = 0.
Similarly, from M1M

T
3 + M2M

T
4 = 0, we may derive W (i) · (ai, bi, · · · , hi)T = 0,

for i = 6, 7, 8, where W (i) are as follows.

i W (i) by replacing index in W (5)

6 1 → 2, 2 → 1, 3 → 4 and 4 → 3
7 1 → 3, 2 → 4, 3 → 1 and 4 → 2
8 1 → 4, 2 → 3, 3 → 2 and 4 → 1

For each 6 ≤ i ≤ 8, using elementary row operations similar to those being
performed to W (5), we show that W (i) · (ai, bi, · · · , hi)T = 0 holds if and only if
W̃ (i) ·(ai, bi, · · · , hi)T = 0. Finally, we observe that the last equation holds if and
only if conditions (b1), (b2), and (f) are satisfied when i = 6. Similarly, when
i = 7 (resp. 8), the equation is equivalent to conditions (c1), (c2), and (g) (resp.
(d1), (d2), and (h)). Hence, S is an 8 × 8 enabling Hadamard (1,−1)-matrix if
and only if conditions (a)–(h) hold. ��
Lemma 10. In Lemma 9, the four conditions (a1) – (d1) and (a2) – (d2) are
equivalent to a1b3

a4b2
= e4f1

e2f3
.

Proof. (i) We first prove that conditions (a1) and (a2) are equivalent to a1b3
a4b2

=
e4f1
e2f3

. It is clear that (a1) is equivalent to a4d2
a3d1

= g2h4
g3h1

and (a2) is equivalent
to b1c3

b2c4
= e3f1

e2f4
. We then note that

a4d2
a3d1

= −a4d3
a2d1

(as d2
a3

= − d3
a2

) b1c3
b2c4

= − b1d3
b2d4

(as c3
c4

= −d3
d4

)
= a4b3

a2b1
(as d3

d1
= − b3

b1
) = b3d1

b2d4
(as d3

b3
= −d1

b1
)

= −a4b3
a1b2

(as a2
b2

= −a1
b1

) = −a1b3
a4b2

(as d1
d4

= −a1
a4

)
= −a1b3

a4b2
g2h4
g3h1

= − f2h4
f3h1

(as g2
g3

= − f2
f3

) e3f1
e2f4

= − e4f1
e2f3

(as e3
f4

= − e4
f3

)
= f2e4

f3e1
(as h4

h1
= − e4

e1
)

= − f1e4
f3e2

(as f2
e1

= − f1
e2

)

Hence, (a1) is equivalent to a4d2
a3d1

= g2h4
g3h1

, which in turn is equivalent to a1b3
a4b2

=
e4f1
e2f3

. Also, (a2) is equivalent to b1c3
b2c4

= e3f1
e2f4

, and so it is also equivalent to
a1b3
a4b2

= e4f1
e2f3

.
(ii) We now prove that (b1) and (b2) are equivalent to a1b3

a4b2
= e4f1

e2f3
. It is clear

that (b1) is equivalent to a3d1
a4d2

= g1h3
g4h2

and (b2) is equivalent to b1c3
b2c4

= e1f3
e4f2

.
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Note that

a3d1
a4d2

= a4d2
a3d1

b1c3
b2c4

= −a1b3
a4b2

(by (i))
= −a4b3

a1b2
(by (i))

g1h3
g4h2

= − g2h3
g4h1

(as g1
h2

= − g2
h1

) e1f3
e4f2

= − e2f3
e4f1

(as e1
f2

= − e2
f1

)
= g2h4

g3h1
(as h3

g4
= −h4

g3
) = − e4f1

e2f3

= − f1e4
f3e2

(by (i))

Hence, both (b1) and (b2) are equivalent to a1b3
a4b2

= e4f1
e2f3

.
(iii) We now prove that (c1) and (c2) are equivalent to a1b3

a4b2
= e4f1

e2f3
. Clearly, (c1)

is equivalent to a2d4
a1d3

= g4h2
g1h3

and (c2) is equivalent to b4c2
b3c1

= e4f2
e1f3

. Note that

a2d4
a1d3

= d2d4
a3a1

(as a2
d3

= − d2
a3

) b4c2
b3c1

= − b1c2
b3c4

(as b4
c1

= − b1
c4

)
= a4d2

a3d1
(as d4

a1
= −a4

d1
) = b1c3

b2c4
(as c2

b3
= − c3

b2
)

= −a4b3
a1b2

(by (i)) = −a1b3
a4b2

(by (i))
g4h2
g1h3

= − g4h1
g2h3

(as h2
g1

= −h1
g2

) e4f2
e1f3

= e1f3
e4f2

= g3h1
g2h4

(as g4
h3

= − g3
h4

) = − e4f1
e2f3

(by(ii) )
= g2h4

g3h1

= − f1e4
f3e2

(by (i))

Hence, both (c1) and (c2) are equivalent to a1b3
a4b2

= e4f1
e2f3

.
(iv) Finally, we prove that (d1) and (d2) are equivalent to a1b3

a4b2
= e4f1

e2f3
. Clearly,

(d1) is equivalent to a1d3
a2d4

= g3h1
g2h4

and (d2) is equivalent to b3c1
b4c2

= e3f1
e2f4

. By
(iii), a1d3

a2d4
= g3h1

g2h4
is equivalent to a1b3

a4b2
= e4f1

e2f3
and b3c1

b4c2
= e3f1

e2f4
is equivalent

to a1b3
a4b2

= e4f1
e2f3

. Hence, both (d1) and (d2) are equivalent to a1b3
a4b2

= e4f1
e2f3

.
Therefore, we complete the proof of the Lemma. ��

Lemma 6 can now be obtained as a corollary of Lemmas 9 and 10.

Proof of Lemma 6. By Lemma 10, conditions (a)–(d) in Lemma 9 are satisfied.
Thus, S is an 8 × 8 enabling Hadamard (1,−1)-matrix as long as S3 and S4

satisfy conditions (e)–(h) in Lemma 9. Note that in these conditions, there is
no restriction on h5, h6, h7, h8. Thus, each hi can be chosen to be either 1 or
−1 (for 5 ≤ i ≤ 8). So, there are 24 = 16 possible ways to choose h5, h6, h7, h8.
Once they are fixed, the other entries of S3 and S4 are uniquely determined by
conditions (e)–(h) of Lemma 9. Hence, there are 16 possible choices for S3, S4

such that S is an enabling Hadamard (1,−1)-matrix. ��
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C Algorithm for Constructing 8 × 8 Enabling Hadamard
(1,−1)-matrices

Algorithm 2. Constructing 8 × 8 enabling Hadamard (1,−1)-matrices
A. Generating S1 which is the same as Algorithm 2 for constructing

4 × 4 enabling Hadamard (1,−1)- matrices
B. Generating S2: Randomly choose e1, f1, f2, g1, h1, h2, h3 ∈ {−1, 1}

Compute
1. e2 = −e1f1f2, g2 = −g1h1h2

2. g3 = f1f2g2h1h3, f3 = −f1h1h3, e3 = −e1g1g3
3. h4 = a3a4d1d2g2g3h1

4. g4 = f1f2g1h2h4, f4 = −f2h2h4, e4 = −e2g2g4
C. Generating S3, S4

5. Constructing 5th-row of S: Randomly choose h5 ∈ {−1, 1}
Compute
(i) g5 = a3a4g3h4h5, f5 = b1b3f1h3h5, e5 = c3c4e3f4f5
(ii) d5 = −d1h1h5, c5 = −c1g1g5, b5 = −b1f1f5, a5 = −a1e1e5

6. Constructing 6th-row of S: Randomly choose h6 ∈ {−1, 1}
Compute
(i) g6 = a4a3g4h3h6, f6 = b2b4f2h4h6, e6 = c4c3e4f3f6
(ii) d6 = −d2h2h6, c6 = −c2g2g6, b6 = −b2f2f6, a6 = −a2e2e6

7. Constructing 7th-row of S: Randomly choose h7 ∈ {−1, 1}
Compute
(i) g7 = a1a2g1h2h7, f7 = b3b1f3h1h7, e7 = c1c2e1f2f7
(ii) d7 = −d3h3h7, c7 = −c3g3g7, b7 = −b3f3f7, a7 = −a3e3e7

8. Constructing 8th-row of S: Randomly choose h8 ∈ {−1, 1}
Compute
(i) g8 = a2a1g2h1h8, f8 = b4b2f4h2h8, e8 = c2c1e2f1f8
(ii) d8 = −d4h4h8, c8 = −c4g4g8, b8 = −b4f4f8, a8 = −a4e4e8

D Examples of 8×8 Enabling Hadamard (1,−1)-matrices

In the following, we list some 8×8 enabling Hadamard (1,−1)-matrices obtained
from Algorithm 2.⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1

−1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1
1 1 1 1 −1 −1 −1 −1

−1 1 −1 1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1

−1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1
1 1 1 1 −1 −1 −1 −1

−1 1 −1 1 1 −1 1 −1
−1 −1 1 1 −1 −1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1

−1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 1 1 −1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1

−1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1

−1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1

−1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
−1 −1 1 1 −1 −1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

E Proof of Lemma 8

Proof of Lemma 8. Let γ = a2 + b2. If γ is a square in U(GR(2n, k)), then
there is a β ∈ U(GR(2n, k)) such that β2 = γ. We have (β−1a)2 + (β−1b)2 = 1.
Therefore, it is sufficient to show that there does not exist a,b ∈ U(GR(2n, k))
such that a2 + b2 = 1.

Let a =
∑k−1

i=0 aiα
i and b =

∑k−1
i=0 biα

i. Let μ be the epimorphism from
GF (2n, k) to F2k . Assume that a2 + b2 = 1, then μ(a2) + μ(b2) = 1, which
implies that μ(a) + μ(b) = 1. Thus, the parity of ai and bi are the same (i.e.
ai ≡ bi mod 2) for 1 ≤ i ≤ k − 1; and exactly one of a0 and b0 is odd, while the
other is even. Without loss of generality, assume that b0 is odd. Then, a0 is even.
Let A = {0, 1, · · · , k − 1}, O = {i | ai odd} and E = A \ O. Let ao =

∑
i∈O

aiα
i,

ae =
∑

i∈E
aiα

i, bo =
∑

i∈O
biα

i and be =
∑

i∈E\{0} biα
i. Then we have

(
k−1∑

i=0

aiα
i

)2

+

(
k−1∑

i=0

biα
i

)2

= 1

(ao + ae)2 + (b0 + bo + be)2 = 1
(a2o + a2e + 2aoae) + (b20 + b2

o + b2
e + 2b0bo + 2b0be + 2bobe) = 1

a2o + b2
o + b20 + 2b0bo ≡ 1 mod 4,

where a2e ≡ 0 mod 4, 2aoae ≡ 0 mod 4, b2
e ≡ 0 mod 4, 2b0be ≡ 0 mod 4, 2bobe ≡

0 mod 4.
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Since b20 ≡ 1 mod 4 and 2b0 ≡ 2 mod 4, then we have

a2o + b2
o + 2bo ≡ 0 mod 4

⎛

⎝
∑

i∈O

aiα
i

⎞

⎠

2

+

⎛

⎝
∑

i∈O

biα
i

⎞

⎠

2

+ 2
∑

i∈O

biα
i ≡ 0 mod 4

∑

i∈O

a2
iα

2i +
∑

i∈O

b2iα
2i + 2

∑

i∈O, i �=j

(aiaj + bibj)αi+j + 2
∑

i∈O

biα
i ≡ 0 mod 4

∑

i∈O

(a2
i + b2i )α

2i + 2
∑

i∈O, i �=j

(aiaj + bibj)αi+j + 2
∑

i∈O

biα
i ≡ 0 mod 4.

Note that a2
i + b2i ≡ 2 mod 4, aiaj + bibj ≡ 2 mod 4 and 2bi ≡ 2 mod 4 for

i, j ∈ O with i 	= j. Hence, we have

2
∑

i∈O

α2i + 2
∑

i∈O

αi ≡ 0 mod 4

2

⎛

⎝
∑

i∈O

α2i +
∑

i∈O

αi

⎞

⎠ ≡ 0 mod 4.

This implies that all coefficients of αi in
∑

i∈O
α2i +

∑
i∈O

αi are even, or equiv-
alently, μ(

∑
i∈O

α2i +
∑

i∈O
αi) = 0, i.e.

∑

i∈O

ᾱ2i +
∑

i∈O

ᾱi = 0, (5)

where ᾱ = μ(α). We may also compute
∑

i∈O
ᾱ2i +

∑
i∈O

ᾱi in F2k as follows.

∑

i∈O

ᾱ2i +
∑

i∈O

ᾱi = (
∑

i∈O

ᾱi)2 +
∑

i∈O

ᾱi

= (
∑

i∈O

ᾱi)(1 +
∑

i∈O

ᾱi)

	= 0. (as
∑

i∈O

ᾱi 	= 0 and 1 +
∑

i∈O

ᾱi 	= 0)

This contradicts (5). Therefore, we conclude that a2 + b2 is a non-square in
U(GR(2n, k)). ��

References

1. Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion lay-
ers using shortened BCH codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014.
LNCS, vol. 8540, pp. 3–17. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46706-0 1

https://doi.org/10.1007/978-3-662-46706-0_1
https://doi.org/10.1007/978-3-662-46706-0_1


330 C. H. Tan and T. F. Prabowo

2. Augot, D., Fouque, P.-A., Karpman, P.: Diffusion matrices from algebraic-geometry
codes with efficient SIMD implementation. In: Joux, A., Youssef, A. (eds.) SAC
2014. LNCS, vol. 8781, pp. 243–260. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-13051-4 15

3. Berger, T.P.: Construction of recursive MDS diffusion layers from gabidulin codes.
In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 274–
285. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4 18

4. Bini, G., Flamini, F.: Finite Commutative Rings and Their Applications, Kluwer
International Series in Engineering and Computer Science 680. Kluwer Academic
Publishers, Dordrecht (2002)

5. Cui, T., Jin, C.I., Kong, Z.: On compact Cauchy matrices for substitution permu-
tation networks. IEEE Trans. Comput. 64(7), 2098–2102 (2015). https://doi.org/
10.1109/TC.2014.2346180

6. Chand Gupta, K., Ghosh Ray, I.: On constructions of involutory MDS matri-
ces. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013.
LNCS, vol. 7918, pp. 43–60. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38553-7 3

7. Gupta, K.C., Ray, I.G.: Cryptographically significant MDS matrices based on cir-
culant and circulant-like matrices for lightweight applications. Crypt. Commun. 7,
257–287 (2015). https://doi.org/10.1007/s12095-014-0116-3

8. Gupta, K.C., Pandey, S.K., Venkateswarlu, A.: On the direct construction of recur-
sive MDS matrices. Des. Codes Crypt. 82(1–2), 77–94 (2017). https://doi.org/10.
1007/s10623-016-0233-4

9. Gupta, K.C., Pandey, S.K., Venkateswarlu, A.: Towards a general construction
of recursive MDS diffusion layers. Des. Codes Crypt. 82(1–2), 179–195 (2017).
https://doi.org/10.1007/s10623-016-0261-0

10. Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS
matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 121–139. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 7

11. Sajadieh, M.I., Dakhilalian, M., Mala, H., Omoomi, B.: On construction of invo-
lutory MDS matrices from Vandermonde matrices in GF (2q). Des. Codes Crypt.
64(3), 287–308 (2012). https://doi.org/10.1007/s10623-011-9578-x

12. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48116-5 23. Extended version is in
Cryptology ePrint Archive, Report 2015/258 (2015). http://eprint.iacr.org/

https://doi.org/10.1007/978-3-319-13051-4_15
https://doi.org/10.1007/978-3-319-13051-4_15
https://doi.org/10.1007/978-3-319-03515-4_18
https://doi.org/10.1109/TC.2014.2346180
https://doi.org/10.1109/TC.2014.2346180
https://doi.org/10.1007/978-3-642-38553-7_3
https://doi.org/10.1007/978-3-642-38553-7_3
https://doi.org/10.1007/s12095-014-0116-3
https://doi.org/10.1007/s10623-016-0233-4
https://doi.org/10.1007/s10623-016-0233-4
https://doi.org/10.1007/s10623-016-0261-0
https://doi.org/10.1007/978-3-662-52993-5_7
https://doi.org/10.1007/s10623-011-9578-x
https://doi.org/10.1007/978-3-662-48116-5_23
http://eprint.iacr.org/


Cryptanalysis



MILP-Based Cube Attack
on the Reduced-Round WG-5 Lightweight

Stream Cipher

Raghvendra Rohit(B), Riham AlTawy, and Guang Gong

Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

{rsrohit,raltawy,ggong}@uwaterloo.ca

Abstract. The cube attack is a powerful cryptanalytic tool for the
analysis of stream ciphers, which until recently were investigated in a
blackbox scenario with a minimal consideration to their internal and
polynomial structures. In this paper, we analyze the lightweight stream
cipher WG-5, which offers 80-bit security, using cube attacks in a non-
blackbox polynomial setting employing the division property. WG-5 is
a lightweight instantiation of the eSTREAM submission Welch-Gong
stream cipher which provides mathematically proven random properties
for its generated keystream. Our cube attack is automated using Mixed
Integer Linear Programming models to theoretically bound the complex-
ity of the superpoly recovery. The results of such an attack enable us to
recover the secret key of WG-5 after 24 rounds of initialization utilizing
26.32 keystream bits in 276.81 time. Our attack on WG-5 has significantly
lower data complexity than the algebraic attacks presented in the liter-
ature, albeit higher in computational complexity, it fits a more realistic
scenario where large amount of data is hard to collect in lightweight
constrained applications. Moreover, our attack is the first one to investi-
gate the nonlinear feedback-based initialization phase of WG-5. Hence,
such results are considered the best cryptanalytic ones in the case that
the cipher runs a nonlinear key generation phase. Finally, our results
are interesting in the sense that they enable us to argue how the design
choices of WG-5 hinder the extension of cube attacks to more rounds in
contrast to Grain 128a and Trivium, where such attacks can cover more
than half of the number of initialization rounds.

Keywords: Welch-Gong stream cipher · Cube attacks · Division
property · MILP · Lightweight stream ciphers

1 Introduction

The eSTREAM project [3] which was launched in 2004 is one of the first initiative
that aimed to identify and recommend stream ciphers that fall under two profiles,
(I) software oriented and (II) hardware efficient designs, for standardization.
c© Springer International Publishing AG 2017
M. O’Neill (Ed.): IMACC 2017, LNCS 10655, pp. 333–351, 2017.
https://doi.org/10.1007/978-3-319-71045-7_17
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Profile II category received 25 submissions and the project was finalized after
three phases of analysis by recommending the three stream ciphers Grain v.1 [14],
Trivium [8], and Mickey 2.0 [7]. Following the finale of the eSTREAM project,
the work on stream cipher design has slowed for a while, however, it is revived
again by the current NIST lightweight standardization competition [17].

By investigating most of the recent stream cipher proposals such as Sprout [5],
Fruit [27], Lizard [13], Plantlet [19], and Flip [18], one can easily spot that there is
a noticeable class of them that follow a Grain-like structure where two Feedback
Shift Registers (FSRs) are used to provide a guarantee on minimum periodic-
ity. While some of them opt for utilizing one Linear Feedback Shift Register
(LFSR) with a primitive polynomial to prove a minimum bound on the period
of the keystream sequence, others employ one Non-Linear Feedback Shift Regis-
ter (NLFSR) with known maximum periodicity. Nevertheless, all the previously
mentioned proposals fail to provide guarantees for other important randomness
criteria such as runs, t-tuple distribution, and ideal 2-level autocorrelation [12].
On the other hand, another class of cipher such as the eSTREAM profile II
submission Welch-Gong (WG) cipher [20] follows a more rigorous approach to
provide mathematically proven randomness properties which are not provided
by other ciphers. More precisely, WG adopts only one LFSR that produces m-
sequences followed by the Welch-Gong filtering transformation during keystream
generation. Such a transformation is theoretically proven to generate a balanced
keystream with long period, large and exact linear complexity, t-tuple distri-
bution, and ideal 2-level autocorrelation. However, such desirable randomness
properties which are provided by filtering m-sequences generated by the LFSR
come with the price of the feasibility of a range of algebraic attacks [21,23], which
are not applicable on other ciphers that employ NLFSRs during keystream gen-
eration. Nevertheless, in both classes of ciphers, NLFSRs are utilized during
the state initialization phase and accordingly, the analysis of such phase pro-
vides better comparison to their resistance to attacks targeting their non-linear
feedback-based state initialization.

In this paper, we investigate the security of the nonlinear initialization phase
of WG-5 [4] which is a lightweight version of the eSTREAM submission WG [20].
WG-5 is a word oriented stream cipher that provides all the aforementioned ran-
domness criteria. WG resists time-memory-data trade-off attacks by utilizing a
state size that is double the size of the offered security, thus having a hard-
ware footprint that ranges between 1229 and 1235 GEs for a throughput of 100
kbps. The best cryptanalytic result available for WG-5 is a univariate algebraic
attack over the extension field F25 that recovers the secret key using around 215

keystream bits in 233 time [23]. Such attack [23] is applicable on WG-5 only
when it runs a linear feedback keystream generation phase. The results of this
paper are summarized as follows.
Our contributions. We analyze WG-5 with respect to non-blackbox
polynomial-based cube attacks. More precisely, given the complicated struc-
tures of stream ciphers, conventional cube attacks always regard them as
blackbox functions, and the attack was only proven feasible if its complexity
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falls within the practical experimental range. In our analysis, we adopt the
techniques from [25] which takes the polynomial structure of the analyzed stream
cipher into consideration by tracing the propagation of a specific division prop-
erty [24] through the initialization rounds. Accordingly, the propagation of the
division property offers a theoretically proven bound on the number of key bits
involved in the superpoly and the complexity of its recovery. Moreover, we further
automate our attacks by proposing Mixed Integer Linear Programming (MILP)
models for the division trails and then feed them to another MILP model for
the whole attack. In what follows, we list our contributions.

– For the 24-round reduced initialization phase of WG-5, we model the divi-
sion trail through the WG-5 permutation as an Sbox trail propagation which
reduces the number of MILP inequalities and increases the solver chances in
optimizing our model. We also provide the algorithmic description of all the
proposed MILP models that we employ in our attack. The optimization of
such models leads to a full key recovery when given 26.32 keystream bits with
276.81 time complexity.

– We present an argument which shows that the design choices in terms of
feedback and filtering tap positions of WG-5 offer more security against cube
attacks than Grain 128a and Trivium where such attacks break more than
half the number of rounds of their initialization phases.

The rest of the paper is organized as follows. In Sect. 2, we recall the prin-
cipals of the cube attack, division property, and how to model division trails
using MILP. The specification of the WG-5 stream cipher is given in Sect. 3. In
Sect. 4, we explain the details of the attack on the initialization phase of the
WG-5 stream cipher, and how we model the WG-5 permutation as an Sbox to
further reduce the number of MILP variables. Moreover, we give an algorith-
mic description of all MILP models used in our analysis and list the cube attack
results and complexities. Furthermore, we compare our results on WG-5 to other
cryptanalytic results available in the literature. In Sect. 5, we give an argument
on the relation between the design parameters of WG-5 and the applicability
of the cube attack, and further contrast such parameters to those of Grain and
Trivium where cube attacks cover more than half the number of rounds of their
initialization phases. Finally, the paper is concluded in Sect. 6.

2 Cube Attacks and the Division Property

In [25], Todo et al. proposed a method to apply cube attacks on stream ciphers
employing the propagation of specific division trails. The consequence of their
technique is that the application of the cube attack does not have to consider the
analyzed cipher as a blackbox in order to recover its superpoly (the most difficult
step in cube attacks) because the utilization of some specific division trails exploit
the polynomial structure of the stream cipher. More precisely, since the cube
attack is a kind of higher-order differential attack [16] and the division property
is a technique to find higher-order differential trails, then the division property
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can be used to analyze the Algebraic Normal Form (ANF) of the superpoly by
investigating multiple division trails corresponding to a given cube. In order to
better understand how we utilize this method in our analysis of the initialization
phase of WG-5, in what follows, we recall the concepts and definitions related
to the cube attack and division property.

2.1 Cube Attack

The cube attack [9] is based on higher-order differential cryptanalysis to recover
the secret key of the investigated primitive by analyzing the ANF of the summa-
tion of a set of its outputs corresponding to a set of inputs. Unlike block ciphers,
stream ciphers are easily evaluated in the forward direction to compute their
output keystream and very hard to invert them. Accordingly, the cube attack
has been extensively used in the analysis of stream ciphers [6,10,11,25] because
the attacker has to manipulate the input and analyze the output without eval-
uating the cipher in the backward direction. More formally, let the analyzed
stream cipher take an n-bit secret key k = (k0, k1, · · · , kn−1) and an m-bit
IV = (v0, v1, · · · , vm−1), then, the first keystream bit is given by the polynomial
f(k, v) which operates on n + m bits to output 1 bit. After sufficiently enough
initialization rounds, the polynomial f(k, v) becomes very complicated, thus the
role of the cube attack is to simplify it by computing the higher-order differen-
tial of this polynomial which results in what is called the superpoly, that is the
result of summing a set of polynomials

⊕
f(k, v) corresponding to a cube. Such

a cube is a set of different public input variables taking all possible values and is
denoted by CI . If the structure of the superpoly is simple enough (e.g., linear or
quadratic), then its ANF can be analyzed and secret variables can be recovered.
Formally, let the set of public indices I = {i1, i2, · · · , i|I|} ⊂ {0, 1, · · · ,m − 1}
denote the cube indices, then the polynomial f(k, v) can be represented as:

f(k, v) = tI · p(k, v) + q(k, v),

where tI = vi1vi2 · · · vi|I| , p(k, v) is a polynomial that does not contain any of the
cube indices variables (vi1 , vi2 , · · · , vi|I|), and q(k, v) is independent of at least
one variable from (vi1 , vi2 , · · · , vi|I|).

Let the cube CI denote the set of all the possible 2|I| values of
(vi1 , vi2 , · · · , vi|I|), and the remaining input n + m − |I| variables are set to
some constant values, then the summation of f(k, v) over all values of the cube
CI is given by ⊕

CI

f(k, v) =
⊕

CI

tI · p(k, v) +
⊕

CI

q(k, v).

Since such summation reduces tI to 1 because the set CI has only one possibility
where all the |I| variables are equal to 1, and q(k, v) vanishes because it misses
at least one variable from the cube variables, then the above equation denotes
the superpoly which is given by

superpoly :
⊕

CI

f(k, v) = p(k, v).
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If the ANF of the superpoly is simple enough, then an attacker can query the
encryption oracle with the chosen cube CI . Hence, the returned first keystream
bits are summed to evaluate the right-hand side of the superpoly and accordingly,
secret variables can be recovered by solving a system of equations.

2.2 Division Property

The division property [24] is a generalization of the integral attacks [15] and a
method to find higher-order differential trails. Moreover, a more refined bit-based
division property is proposed in [26] and is defined as follows

Definition 1 (Bit-based division property [26]). Let X be a multiset whose
elements take a value of Fn

2 . Let W be a set whose elements take an n-dimensional
vector of binary elements. The multiset X has the division property D1,n

W
if it

fulfills the following conditions1:

⊕

x∈X

πu(x) =

{
unknown if there exists w ∈ W s.t u � w,

0 otherwise,

where u,w, x ∈ F
n
2 , πu(x) =

∏n−1
i=0 xui

i and u � w if ui ≥ wi for all i.

An attacker selects a set of chosen messages with a specific division property
and traces its propagation until it reaches a round from where onwards the
division property can not propagate. Accordingly, in the case of a cube attack,
one prepares a set of 2|I| chosen IV s where the variables (vi1 , vi2 , · · · , vi|I|) take
all the possible values. The division property of such a chosen set is D1,n

v , where
vi = 1 if i ∈ {i1, i2, · · · , i|I|} and vi = 0 for all remaining indices. Then one
evaluates the propagation of this division property D1,n

v for r rounds. We denote

by {v} def
= W0 → W1 → · · · → Wr a r round division property propagation

where Wi ⊆ F
n
2 for 0 ≤ i ≤ r. Furthermore, we call (w0, w1, . . . , wr) ∈ W0 ×

W1 × . . . × Wr a r round division trail if wi−1 can propagate to wi by division
property propagation rules for all i ∈ {1, 2, . . . , r} [26,28]. The i-th bit at round
r is balanced if Wr does not contain a unit vector whose i-th element is 1.
MILP models for division property. The propagation of the division prop-
erty becomes infeasible when the input block size increases because the size of
the corresponding Wi increases too. Particularly, in order to determine if the
i-th bit at round r is balanced, one has to try all possible division trails with a
given input division property and prove that there is no division trail that leads
to a division property at round r with a unit vector where the i-th bit equals 1.
However, in [28], a MILP-based method was proposed that allowed the efficient
propagation of the division property for larger input spaces. More precisely, a
MILP solver [1] is used to efficiently evaluate the feasibility of all division trails
that cover the analyzed r rounds which are modeled by specific MILP models,
and a higher-order differential trail is found if the solver determines that there
1 “unknown” in Definition 1 means the xor sum can be 0 or 1 with probability p �= 1.
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is no division trail. MILP models that describe the propagation of the division
property through different ciphers utilize the following three models [25,28]. Note
that we refer to ‘+’ as integer addition in all the MILP models.

– MILP model for Copy. Let the division trail through a copy be denoted by
a → (b1, b2, . . . , bm), then the following inequalities are used to model such
propagation:

M.var ← a, b1, b2, . . . , bm as binary.

M.con ← a = b1 + b2 + . . . + bm.

– MILP model for XOR. Let (a1, a2, · · · , am) → b denote the division trail of
XOR, then the following inequalities are sufficient to describe the propagation
of the division property:

M.var ← a1, a2, · · · am, b as binary.

M.con ← a1 + a2 + · · · + am = b.

– MILP model for AND. Let (a1, a2, · · · , am) → b denote the division trail for
AND, then the following inequalities are used to describe the propagation:

M.var ← a1, a2, · · · am, b as binary.

M.con ← b ≥ ai for i = 1, 2, · · · ,m.

In what follows, we give the description of the WG-5 stream cipher and how
we use the division property to launch a cube attack on its initialization phase.

3 Specification of the WG-5 Stream Cipher

WG-5 [4] is a lightweight instantiated version of the eSTREAM submission
word oriented WG stream cipher. It utilizes an 80-bit secret key, an 80-bit ini-
tialization vector and a 32-stage LFSR defined over the extension field F25 .
As depicted in Fig. 1, the LFSR is defined using the primitive polynomial
x32 + x7 + x6 + x4 + x3 + x2 + γ, where the polynomial belongs to F25 [x],
γ = α4+α3+α2+α+1, and α is a root of x5+x4+x2+x+1 with its polynomial ∈
F2[x]. We denote the state of WG-5 at i-th round by Si = Si[0]||Si[1]|| . . . ||Si[31],
where Si[j] = (si5j , s

i
5j+1, s

i
5j+2, s

i
5j+3, s

i
5j+4) for 0 ≤ j ≤ 31. The 80-bit secret

key (k0, k1, . . . , k79) and 80-bit initialization vector (v0, v1, . . . , v79) are denoted
by K[0]||K[1]|| . . . ||K[15] and IV [0]||IV [1]|| . . . ||IV [15], respectively. The cipher
runs in two phases: initialization and keystream generation (KSG) phase. The
initialization phase runs for 64 rounds with the output of WG-permutation
(WGP) feedback into the state, whereas the non-linear feedback is not used
during the KSG phase. We now formally describe the WG-5 cipher. Initially, the
state is loaded with K and IV as follows:

S0[j] =

{
K[j mod 2], if j ≡ 0 mod 2
IV [j mod 2], if j �≡ 0 mod 2
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Fig. 1. Structure of WG-5

We use WG-5 with decimation 3 in our analysis2. The state update function
is given by Si+1[j] = Si[j +1], 0 ≤ j ≤ 30 and Si+1[31] = γSi[0]⊕Si[2]⊕Si[3]⊕
Si[4] ⊕ Si[6] ⊕ Si[7] ⊕ WGP((Si[31])3). During the KSG phase, the keystream
bit is given by zi−64 = Tr(WGP(Si[31])3), where Tr : F25 → F2 denotes the
Trace function. The corresponding boolean representation of keystream bit is
given by zi−64 = si155 + si156 + si157 + si158 + si159 + si155s

i
156 + si155s

i
157 + si155s

i
159 +

si156s
i
158 + si156s

i
159 + si155s

i
156s

i
157 + si155s

i
157s

i
158 + si155s

i
157s

i
159 + si155s

i
158s

i
159 +

si156s
i
157s

i
158 + si156s

i
158s

i
159. The state is then updated as follows:

Si+1[j] = Si[j + 1], 0 ≤ j ≤ 30 and

Si+1[31] = γSi[0] ⊕ Si[2] ⊕ Si[3] ⊕ Si[4] ⊕ Si[6] ⊕ Si[7], for i ≥ 64.

In the following section, we describe our attack on the initialization phase
of WG-5, and explain all the proposed MILP models used in our analysis. More
detailed explanation is provided in the full paper [22].

4 Cube Attack on WG-5

We adopt the techniques presented in [25,28] to propose the cube attack on
WG-5. The attack procedure consists of two phases: offline phase and online
phase.

1. Offline phase. The goal of this phase is to recover a superpoly that is almost
balanced3 for a given cube CI . It consists of three steps:

2 We use decimation 3 as the degree of each of the component functions for WGP is
4, whereas it is 3 for decimation 1.

3 f : F
n
2 → F2 is almost balanced if f = 0 for ≈ 2n−1 values and f = 1 for the

remaining values.
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Step 1.1: Create a MILP model M for WG-5 whose initialization is reduced
to R rounds. The model encodes the division property propagation
for R rounds to check the feasibility of all R-round division trails.

Step 1.2: Choose a cube CI by flipping bits in I = {i1, i2, . . . , i|I|} and then
evaluate the secret variables involved in the superpoly. Let J =
{kj1 , kj2 , . . . , kj|J|} denotes the set of involved secret variables4.

Step 1.3: Choose a value in the constant part of IV and compute
⊕CI

f(k, v) = p(k̄, v̄), where k̄ = {kj1 , kj2 , . . . , kj|J|}, v̄ =
{(v0, v1, . . . , v79) − (vi1 , vi2 , . . . , vi|I|)} and all the possible combi-
nations of kj1 , kj2 , . . . , kj|J| are tried out, then p(k̄, v̄) is recovered
and stored in a list for all values of k̄. Assuming the best case
that we can recover the balanced superpoly in a single trial, the
time complexity of this phase is bounded by 2|I|+|J|. However, if
N cubes are used, the time complexity is given by N2|I|+|J|.

2. Online phase. The goal of this phase is to recover the entire secret key. This
phase is further divided into two steps.

Step 2.1: Use the balanced superpoly recovered in the offline phase and
query the cube CI to the encryption oracle to obtain the value
of p(k̄, v̄) which is then compared to the previously stored values.
Then one bit is recovered from J as p = 0 for 2|J|−1 values and
p = 1 for the remaining half values. To recover more than 1 bit we
use multiple cubes.

Step 2.2: Guess the remaining secret key values.

In what follows, we describe all the steps of the attack.

4.1 Automating the Cube Attack on WG-5 Using MILP

We start by modelling the division property propagation for each of the functions
used in WG-5. We use COPY, XOR and AND operations described in Sect. 2
to model all the functions in the initialization and key generation phases.
MILP model for the WG-permutation (WGP). To model the WG-
permutation, we can use its boolean representation which is given in Sect. 5.
However, this approach results in large number of MILP variables and constraints
due to its high non-linearity and involvement of terms of up to degree 4 in each of
the component function. Hence, we use an alternative approach, we treat WGP
as a 5-bit Sbox. Let (x0, x1, x2, x3, x4) and (y0, y1, y2, y3, y4) be the input and
output of the WGP Sbox, respectively. We use the inequality generator() func-
tion in Sage [2] and Algorithms 1 and 2 in [28], and consequently find that only
12 inequalities are sufficient to model the division property propagation through
the WGP Sbox. The inequalities are given by:

4 Step 1.2 is computationally feasible because of MILP.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x0 + 2x1 + 2x2 + 2x3 + 6x4 − 3y0 − 3y1 − 3y2 − 3y3 − 3y4 ≥ −1
4x3 − y0 − y1 − y2 − y3 − y4 ≥ −1
4x0 − y0 − y1 − y2 − y3 − y4 ≥ −1
−x0 − x2 − x3 − y0 + 4y1 − y2 − y3 − 2y4 ≥ −4
−6x0 − 3x1 − 6x3 − 6x4 + 2y0 − 4y1 + 3y2 − y3 + 2y4 ≥ −19
−3x0 − x1 − x2 − 3x3 − 2x4 + 9y0 + 7y1 + 8y2 + 9y3 + 9y4 ≥ 0
x0 + x1 + x2 + x3 + x4 − 3y0 − 3y1 − 3y2 − 3y3 + 5y4 ≥ −2
−x0 − 3x2 − 3x3 − 2x4 + y0 + y2 + y3 − 2y4 ≥ −8
−x0 − x1 + 2x2 − x3 − x4 − y0 − 2y1 − 2y2 + 3y3 − y4 ≥ −5
−x0 − 2x1 − 2x2 − 2x3 − x4 − 2y0 − y1 − y2 − y3 + 5y4 ≥ −8
−2x0 − x1 − 2x2 − 2x4 + y0 + y1 − y2 + y4 ≥ −6
−x0 − x2 − x3 + y0 − y4 ≥ −3.

Algorithm 2 describes the MILP model for the WG-permutation.
MILP model for the feedback function (FBK). The function FBK in Algo-
rithm 3 generates the MILP variables and constraints for the feedback function
γSi[0] ⊕ Si[2] ⊕ Si[3] ⊕ Si[4] ⊕ Si[6] ⊕ Si[7]. Since γ = (1, 1, 1, 1, 1), we model
γSi[0] as Si[0].
MILP model for KSG. The function KSG in Algorithm 4 creates the MILP
variables and constraints for the keystream bit z = sR155+sR156+sR157+sR158+sR159+
sR155s

R
156 +sR155s

R
157 +sR155s

R
159 +sR156s

R
158 +sR156s

R
159 +sR155s

R
156s

R
157 +sR155s

R
157s

R
158 +

sR155s
R
157s

R
159+sR155s

R
158s

R
159+sR156s

R
157s

R
158+sR156s

R
158s

R
159. Furthermore, the bitwise

AND and XOR operations are modeled using Algorithm 5.
We now present the MILP model for WG-5 in Algorithm 1. The function

WG5EVAL evaluates all division trails for WG-5 whose initialization rounds are
reduced to R. The number of MILP variables and constraints required in each
function are given in Table 1.

Table 1. WG-5: MILP variables and constraints

Function # of variables # of constraints

WGP 15 17

FBK 65 35

KSG 79 63

R round of WG-5 160+159R + 5R 161 + 115R + 10R

4.2 Evaluating Involved Secret Variables and Superpoly Recovery

We prepare a cube CI by flipping bits in I = {i1, i2, . . . , i|I|} and then, we
evaluate the involved secret variables in superpoly using the generic algorithm
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Algorithm 1. MILP model for the initialization of WG-5
1: function WG5Eval(R)
2: Prepare empty MILP Model M
3: M.var ← S0[j] for 0 ≤ j ≤ 31
4: for i = 1 to R do
5: (M, S′, a) = WGP(Si−1)
6: (M, S′′, b) = FBK(S′, [0, 2, 3, 4, 6, 7])
7: for j = 0 to 30 do
8: Si[j] = S′′[j + 1]
9: end for

10: M.con ← S′′[0] = 0
11: M.var ← Si[31] as binary
12: M.con ← Si[31] = a + b
13: end for
14: (M, S′′′, z) = KSG(SR)
15: for j = 0 to 31 do
16: S′′′[j] = 0
17: end for
18: M.con ← z = 1
19: end function

proposed in [25]. We have given the description of the utilized algorithm (Algo-
rithm 6) in Appendix B for the sake of completeness. The inputs to Algorithm 6
are the cube indices set I and the MILP model M for WG-5. The model M
evaluates all the division trails for R rounds with input division property given
by vi = 1 for i ∈ I and vi = 0 for i ∈ {(0, 1, . . . , 79) − I}. The reader is referred
to [25] for the detailed explanation of Algorithm 6.
Searching cubes. We limit our search for the cubes to indices I such that
2|I|+|J| < 280. Table 2 lists the cubes we found that satisfies the above condition.
Note that searching all

(
80
|I|

)
cubes is infeasible and the cubes in Table 2 are the

best so far for WG-5 according to our experimental results.
Recovering a balanced superpoly. We choose a value in the constant part
of the IV and vary all 24 × 270 values to recover p(k5, k6, . . . , k74, v̄) where
v̄ = ({v0, v1, . . . , v79}−{vj | j ∈ Ii}) for 1 ≤ i ≤ 5 and R = 24. We also store 270

values of p(k̄, v̄) as they will be used again in the online phase. We assume that
we can recover a balanced superpoly in 1 trial for each of the cubes in Table 2.
We expect that such an assumption holds with a high probability as there are
80-|Ii| = 76 values in the constant part of IV .

4.3 Key Recovery for 24 Rounds

We use the balanced superpolys recovered in offline phase for cubes I1, I2, I3, I4
and I5 (see Table 2) in the online phase. We query the cube CIi to the encryp-
tion oracle and compute the sum ⊕CIi

f(k, v). We then compare this sum with
⊕CIi

f(k, v) = p(k5, k6, . . . , k74, v̄) stored in the offline phase for all possible
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Table 2. Involved secret variables in superpoly for cube indices I ∈ {I1, I2, I3, I4, I5}

Rounds Involved secret variables J Time complexity log2(.)

15 {k5, k6, . . . , k54} 54

16 {k5, k6, . . . , k54} 54

17 {k5, k6, . . . , k59} 59

18 {k5, k6, . . . , k59} 59

19 {k5, k6, . . . , k64} 64

20 {k5, k6, . . . , k64} 64

21 {k5, k6, . . . , k69} 69

22 {k5, k6, . . . , k69} 69

23 {k5, k6, . . . , k74} 74

24 {k5, k6, . . . , k74} 74

I1 = {0, 1, 2, 3}, I2 = {0, 1, 2, 4}, I3 = {0, 1, 3, 4}, I4 = {0, 2,
3, 4}, I5 = {1, 2, 3, 4}.
Here, time complexity means the complexity to recover the
superpoly.

combinations of {k5, k6, . . . , k74}. We discard the values of {k5, k6, . . . , k74}
for which the sum is different. Since, we are using a balanced superpoly,
p(k5, k6, . . . , k74, v̄) = 0 for 269 values and equals 1 for the remaining 269 val-
ues. Thus, one bit of secret information can always be recovered. We use cubes
I1, I2, I3, I4 and I5 in our attack and hence can recover 5 secret variables. We
then guess remaining 75 bits to recover the entire secret key. The attack time
complexity for 24 rounds is then given by 5 × 274 + 275 ≈ 276.81.

4.4 Attack Comparison with Algebraic Attacks

The univariate algebraic attacks [23] exploits the fact that WG-5 is updated
linearly during the keystream generation phase. Hence, using the trace repre-
sentation of zt, it is possible to find a multiple g (also known as annihilator) of
filtering function f i.e. fg = 0 and g contains only one term of hamming weight
3. This lowers the data and time complexity of the conventional algebraic attack
to 215 and 233, respectively. The applicability of such attacks does not hold if
the nonlinear WGP is feedback into the state during KSG phase because the
concept of annihilator functions no longer exists. On the other hand, the attack
proposed in this paper is not affected by the nonlinear feedback of WGP into
state during KSG phase. Moreover, our attack requires significantly low data
complexity which enables a more realistic attack scenario in constrained appli-
cations where the available online data that may be queried by an adversary
under a given key is usually limited by the running protocol. In summary, we
can attack 24 rounds of the initialization phase of WG-5 with data and time
complexity of 26.32 and 276.81, respectively.
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5 Comparison of the Initialization Phase of WG-5 with
Those of Grain128a and Trivium

In this section, we present an argument to show how the initialization phase of
WG-5 is more resistant to cube attacks than those of Grain128a and Trivium.
We particularly choose Grain128a and Trivium because both are eSTREAM
finalists and also they offer the same level of security as WG-5. We give a brief
description of both stream ciphers in Appendix C.

We now look at the state update functions of both Grain128a and Trivium
more carefully and deduce the following observations:

– For Trivium, the degree of z is 3 after 81 rounds. The algebraic degree of z
can only be increased by AND terms s90s91, s174s175 and s285s286. Thus, the
round at which the degree of z equals 3 is min(90, 174 − 93, 285 − 177) = 81.

– For Grain128a, the degree of z is 6 after 32 rounds. The maximum index in h
function is 95 (for b95 term). At round 32 (127-95) only the degree of b95 is 4
and the remaining terms are of degree 1. Hence, the degree of z is 6 because
of b12b95s94 term.

On the other hand, for WG-5 we find that the degree of z is 6 in 1 round only.
The degree of each component of S1[31] = γS0[0] ⊕ S0[2] ⊕ S0[3] ⊕ S0[4] ⊕
S0[6] ⊕ S0[7] ⊕ WGP((S0[31])3) = (s1155, s

1
156, s

1
157, s

1
158, s

1
159) equals 4. This can

be deduced from the boolean representation of the component functions of the
WG-permutation given below.

y0 = x0x1x3x4 + x0x1x4 + x0x2x3x4 + x0x2x3 + x0x2x4 + x0x4 + x0

+ x1x2x3 + x1x2 + x1x3 + x3x4

y1 = x0x1x2x3 + x0x1x2x4 + x0x1x2 + x0x1x3 + x0x1x4 + x0x1

+ x0x2x4 + x0x2 + x0x3x4 + x0x4 + x1x2x3x4 + x1x4 + x1

+ x2x4 + x2 + x3x4

y2 = x0x1x2x3 + x0x1x4 + x0x1 + x0x2 + x0x3x4 + x1x2x3x4 + x1x2

+ x1x4 + x2x3x4 + x2x3 + x2x4 + x2 + x3x4 + x3 + x4

y3 = x0x1x2x3 + x0x1x3 + x0x1 + x0x2x3x4 + x0x2x3 + x0x2x4

+ x0x3x4 + x0x4 + x1x2x4 + x1x3x4 + x1x3 + x1

y4 = x0x1x2x4 + x0x1x2 + x0x1x3x4 + x0x1 + x0x2x3x4 + x0x2

+ x0x3x4 + x0x3 + x0x4 + x1x2x3 + x1x2x4 + x1x2 + x1x3

+ x1x4 + x1 + x2x3x4 + x2x3 + x2x4 + x4

Since z at round 1 is given by s1155 + s1156 + s1157 + s1158 + s1159 + s1155s
1
156 +

si155s
1
157+s1155s

1
159+s1156s

i
158+si156s

i
159+s1155s

1
156s

1
157+s1155s

1
157s

1
158+s1155s

1
157s

1
159+

s1155s
1
158s

1
159 + s1156s

1
157s

1
158 + s1156s

1
158s

1
159, then the degree of z is 6.

Based on the degree comparison of 32 rounds of Grain128a and 81 rounds of
Trivium with 1 round of WG-5, we see that degree in WG-5 grows much faster.
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We also observe that all the 5 bits processed by WGP at the i-th round are used
to generate the keystream bit at round (i + 1) along with 5 × 6 = 30 new bits
from the feedback function. This is not the same case with Grain128a because the
updated bits b127 and s127 in i-th round are used in keystream bit at i + 32 and
i+33, respectively. Similarly, for Trivium the values of t1, t2 and t3 at i-th round
are used in keystream bit at i+90, i+81 and i+108 rounds, respectively. Thus,
cubes of higher dimension whose superpoly involves few secret variables exist
for both Grain128a and Trivium. For example, Todo et al. [25] experimentally
found 92 dimension cube for 183 rounds Grain128a whose superpoly involves
16 secret key bits. Also, for Trivium reduced to 832 rounds, they found a 72
dimension cube which has only 5 secret variables in its superpoly. We tried some
cubes of higher dimension for WG-5 and found that all the 80 secret variables
are involved in the superpoly. The best cubes we have found are listed in Table 2
and they can cover 24 rounds of WG-5. Thus, based on the above observations,
we conclude that the initialization phase of WG-5 is more stronger than those
of Grain128a and Trivium with respect to cube attacks.

6 Conclusion

In this paper, we have investigated the lightweight stream cipher WG-5 with
respect to non-blackbox cube attacks. Specifically, we have utilized the division
property to find higher-order differential trails corresponding to a set of chosen
initial values generated from specific cubes, and consequently the structure of
the superpoly is recovered. Moreover, we have automated the process of the
propagation of the division property by proposing MILP models for the WG-5
initialization and keystream generation phases. We have further modeled the WG
permutation as an Sbox to reduce the number of variables and inequalities in the
model which raises the chances of the MILP solver to find a feasible solution. The
results of our cube attack reveals low data complexity requirements which when
compared to the existing algebraic attacks, offer a more realistic attack scenario
for lightweight constrained applications where the amount of data available to
attacker under a given key is restricted by the running protocol. Also, unlike
algebraic attacks, our attack is applicable on WG-5 whether it runs a linear or
nonlinear keystream generation phase. Finally, the findings of our analysis enable
us to argue that the WG-5 design parameters in terms of feedback and filtering
tapping positions inhibit the extension of the cube attack to more rounds, in
contrast to Grain128a and Trivium where such an attack covers more than half of
the rounds of their initialization phases. Thus, we conclude that the initialization
phase of WG-5 is more resistant to cube attacks than Grain’s and Trivium’s.
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by the National Institute of Standards and Technology (NIST) and Natural Sciences
and Engineering Research Council of Canada (NSERC).
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A MILP Models for WG-5 Components

Algorithm 2. MILP model for WGP
1: function WGP(S) � S = (s0, s1, . . . , s159)
2: M.var ← s′

155+i, xi, yi as binary for 0 ≤ i ≤ 4
3: M.con ← s155+i = s′

155+i + xi for 0 ≤ i ≤ 4
4: Add constraints to M according to the WGP inequalities 4.1
5: for j = 0 to 30 do
6: S′[j] = S[j] � S′[j] = (s′

5j , s
′
5j+1, s

′
5j+2, s

′
5j+3, s

′
5j+4)

7: end for
8: return (M, S′, [y0, y1, y2, y3, y4])
9: end function

Algorithm 3. MILP model for the FBK function in WG-5
1: function FBK(S, I)
2: for i ∈ I do
3: M.var ← s′

5i+j , x5i+j as binary for 0 ≤ j ≤ 4
4: end for
5: M.var ← yi as binary for 0 ≤ i ≤ 4
6: for i ∈ I do
7: M.con ← s5i+j = s′

5i+j + x5i+j for 0 ≤ j ≤ 4
8: end for
9: for j = 0 to 4 do

10: temp = 0
11: for i ∈ I do
12: temp = temp + x5i+j

13: end for
14: M.con ← yj = temp
15: end for
16: for j ∈ {(0, 1, . . . , 31) − I} do
17: S′[j] = S[j]
18: end for
19: return (M, S′, [y0, y1, y2, y3, y4])
20: end function
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Algorithm 4. MILP model for the KSG operation in WG-5
1: function KSG(S)
2: (M, S1, a1) = AND(S, [155, 156])
3: (M, S2, a2) = AND(S1, [155, 157])
4: (M, S3, a3) = AND(S2, [155, 159])
5: (M, S4, a4) = AND(S3, [156, 158])
6: (M, S5, a5) = AND(S4, [156, 159])
7: (M, S6, a6) = AND(S5, [155, 156, 157])
8: (M, S7, a7) = AND(S6, [155, 157, 158])
9: (M, S8, a8) = AND(S7, [155, 157, 159])

10: (M, S9, a9) = AND(S8, [155, 158, 159])
11: (M, S10, a10) = AND(S9, [156, 157, 158])
12: (M, S11, a11) = AND(S10, [156, 158, 159])
13: (M, S12, a12) = XOR(S11, [155, 156, 157, 158, 159])
14: M.var ← z as binary
15: M.con ← z =

∑12
i=1 ai

16: return (M, S12, z)
17: end function

Algorithm 5. MILP model for AND and XOR operations in WG-5
1: function AND(S, I)
2: M.var ← s′

i, xi as binary for i in I
3: M.var ← y as binary
4: M.con ← si = s′

i + xi for i in I
5: M.con ← y ≥ xi for i in I
6: for i ∈ {(0, 1, . . . , 159) − I} do
7: s′

i = si
8: end for
9: return (M, S′, y)

10: end function
11: function XOR(S, I)
12: M.var ← s′

i, xi as binary for i in I
13: M.var ← y as binary
14: M.con ← si = s′

i + xi for i in I
15: temp = 0
16: for i ∈ I do
17: temp = temp + xi

18: end for
19: M.con ← y = temp
20: for i in {(0, 1, . . . , 159) − I} do
21: s′

i = si
22: end for
23: return (M, S′, y)
24: end function
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B A Generic Algorithm for the Evaluation of the
Involved Secret Variables in a Superpoly [25]

Algorithm 6. MILP model to find involved secret variables in superpoly
1: function extractSecretVariables(MILP model M, Cube Indices I)
2: M.var ← ki as binary for 0 ≤ i ≤ n − 1, � k0, k1, . . . , kn−1 are secret variables
3: M.var ← vi as binary for 0 ≤ i ≤ m − 1, � v0, v1, . . . , vm−1 are public variables
4: M.con ← vi = 1 for i ∈ I
5: M.con ← vi = 0 for i ∈ {(0, 1, . . . , m − 1) − I}
6: M.con ←∑n−1

i=0 ki = 1
7: do
8: solve MILP model M
9: if M is feasible then

10: pick j ∈ {0, 1, . . . , n − 1} s.t kj = 1
11: J = J ∪ {j}
12: M.con ← kj = 0
13: end if
14: while M is feasible
15: return J
16: end function

C Description of Grain128a and Trivium

Grain128a is a NLFSR based stream cipher of Grain family with two 128-bit
states represented by (b0, b1, . . . , b127) and (s0, s1, . . . , s127). The state is loaded
with 128-bit key and 96-bit IV as follows (b0, b1, . . . , b127) = (k0, k1, . . . , k127)
and (s0, s1, . . . , s127) = (iv0, iv1, . . . , iv95, 1, . . . , 1, 0). The initialization phase
runs for 256 rounds with the state update function given by

g ← b0 + b26 + b56 + b91 + b96 + b3b67 + b11b13

+ b17b18 + b27b59 + b40b48 + b61b65 + b68b84

+ b88b92b93b95 + b22b24b25 + b70b78b82

f ← s0 + s7 + s38 + s70 + s81 + s96

h ← b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94

z ← h + s93 + b2 + b15 + b36 + b45 + b64 + b73 + b89

(b0, b1, . . . , b127) ← (b1, b2, . . . , b127, g + s0 + z)
(s0, s1, . . . , s127) ← (s1, s2, . . . , s127, f + z).

During the KSG phase, z is not feedback to the state and directly used as the
keystream bit.
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Trivium is also an NLFSR based stream cipher with state size 288. The 80-
bit key and 80-bit IV are loaded into the state as follows (s0, s1, . . . , s92) =
(k0, k1, . . . , k79, 0, . . . , 0), (s93, s94, . . . , s176) = (iv0, iv1, . . . , iv79, 0, . . . , 0) and
(s177, s178, . . . , s287) = (0, 0, . . . , 0, 1, 1, 1). The state update function of Trivium
is given by

t1 ← s65 + s92

t2 ← s161 + s176

t3 ← s242 + s287

z ← t1 + t2 + t3

t1 ← t1 + s90s91 + s170

t2 ← t2 + s174s175 + s263

t3 ← t3 + s285s286 + s68

(s0, s1, . . . , s92) ← (t3, s0, . . . , s91)
(s93, s1, . . . , s176) ← (t1, s93, . . . , s175)
(s177, s1, . . . , s287) ← (t2, s177, . . . , s286).

The initialization phase runs for 1152 rounds without producing an output while
z is used as the keystream bit during KSG phase.
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4 Institut Universitaire de France, Paris, France
damien.vergnaud@ens.fr

Abstract. Practical implementations of cryptosystems often suffer from
critical information leakage through side-channels (such as their power
consumption or their electromagnetic emanations). For public-key cryp-
tography on embedded systems, the core operation is usually group
exponentiation – or scalar multiplication on elliptic curves – which is
a sequence of group operations derived from the private-key that may
reveal secret bits to an attacker (on an unprotected implementation).

We present lattice-based polynomial-time (heuristic) algorithms that
recover the signer’s secret in popular pairing-based signatures when used
to sign several messages under the assumption that blocks of consecu-
tive bits of the corresponding exponents are known by the attacker. Our
techniques relies upon Coppersmith method and apply to all signatures
in the so-called exponent-inversion framework in the standard security
model (i.e. Boneh-Boyen and Gentry signatures) as well as in the random
oracle model (i.e. Sakai-Kasahara signatures).

Keywords: Cryptanalysis · Side-channel attacks · Lattice attacks ·
Coppersmith’s methods · Pairing-based signatures · Boneh-Boyen
signatures · Gentry signatures · Modular Inversion Hidden Number
Problem

1 Introduction

Pairing-based signatures. An identity-based encryption (IBE) scheme is a public
key encryption scheme in which a user public key is its identity which may be an
arbitrary string such as an email address, a phone number or any other identifier
and the user private key is generated by a trusted authority called the private-
key generator. In their seminal paper proposing the first IBE scheme, Boneh
and Franklin [5] mentioned an interesting transform from an IBE scheme to a
signature scheme (whose observation was attributed to Naor). The transforma-
tion is as follows: the private-key generator public key and secret key correspond
to the public key and secret key of the signature scheme and the user private
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key generation correspond to signatures generation. The well-known short sig-
nature scheme proposed by Boneh, Lynn and Shacham [7,8] can be seen as an
application of Naor transformation to Boneh and Franklin IBE [5].

Pairings (or bilinear maps) are powerful mathematical constructs which have
been used since 2000 to design numerous complex cryptographic protocols.
There are three known pairing-based approaches to design IBE schemes [9]:
full-domain-hash [5], commutative-blinding [3] and exponent-inversion [2–4]. We
focus on the latter framework which gives rise to several short signature schemes
thanks to Naor transformation.

Embedded devices and side-channel attacks. The pairing-based signature schemes
are very well-suited for resource-limited devices since they produce short signa-
tures and their generation involves only one scalar multiplication on an elliptic
curve. In the recent years, theoretical attacks against elliptic curves have shown
little improvements whereas side-channel attacks became a major threat against
elliptic curves implementations [19,20]. These attacks are based on information
gained from the physical leakage of a cryptosystem implementation (such as
timing information, power consumption or electromagnetic leaks).

For elliptic-curve cryptography, the core operation is scalar multiplication
which is usually computed with the binary method: the binary representation
of the (secret) exponent is scanned; for the bit-value zero, a point-doubling is
computed, whereas a point-doubling and a point-addition are calculated when
the bit-value is one. Distinguishing point-doubling from point-addition in power
traces can thus reveal the secret exponent. Classical countermeasures to this sim-
ple power analysis consist of using regular algorithms for scalar multiplication.
In the more involved differential power analysis, the idea is to guess the secret
bit-by-bit, and try to confirm or infirm the guess for each bit thanks to statistical
analysis of several power traces. This approach requires that the same secret is
used to perform several cryptographic operations but since pairing-based signa-
tures in the exponent-inversion framework use a different exponent for each new
signature, they seem immune to differential power analysis.

In [10], Chari, Rao and Rohatgi introduced the so-called template attacks
which aim at exploiting side-channel information when only a limited number
of leakage traces is available. These attacks require that the attacker is able to
perform a profiling of the side-channel leakage. Countermeasures against simple
power analysis attacks might not prevent such template-based attacks since they
exploit data dependent leakages and not only operation dependent leakages.
For pairing-based signatures in the exponent-inversion framework, the signature
generation consists of a single scalar multiplication of a fixed base point where
the exponent depends algebraically on the secret key, the message and some
public randomness. Since the base point is fixed, the first bits of these variable
exponents that are processed during the signature computation can only lead
to a small set of points and we only need to build templates for the points
in this (small) set. In this paper, we show that only a small number of bits of
several such exponents is sufficient to determine the secret key via lattice attacks.
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This approach is similar to lattice attacks [17,24,25] combined with template
attacks [23] that were proposed against the standardized signature scheme DSA
and ECDSA.

Contributions of the Paper

We consider several pairing-based signature schemes in the exponent-inversion
framework. In [26], Sakai and Kasahara presented the first such scheme (whose
security was analyzed in the random oracle model by Zhang, Safavi-Naini and
Susilo in [27]). Boneh and Boyen [2] then presented the first pairing-based sig-
nature whose security can be proven in the standard security model. In 2006,
Gentry [14] proposed yet another scheme using the exponent-inversion paradigm,
with a tighter security proof than the earlier proposals.

These schemes can be described in a general simplified form as follows. Let G
and GT be two cyclic groups of the same prime order p and let g be a generator of
G. We suppose that (G,GT ) are equipped with an efficiently computable bilinear
map e : G×G → GT . Let H : {0, 1}∗ → Zq be a collision-resistant hash function.
Let f, g ∈ Zp[X,Y,M,R] be two polynomials of degree at most one in X and
Y . The key generation picks uniformly at random two integers (x, y) ∈ Zp as
the signing secret key and outputs (gx, gy) ∈ G

2 as the public-key. To sign a
message m ∈ {0, 1}∗, the signer picks uniformly at random r ∈ Zp, computes

σ = gf(x,y,H(m),r)/g(x,y,H(m),r)

and outputs the pair (σ, r) as the signature. The validity of a signature is checked
by verifying whether the following equality holds:

e(σ, gg(x,y,H(m),r)) = e(gf(x,y,H(m),r), g)

where the elements gf(x,y,H(m),r) and gg(x,y,H(m),r) can be computed publicly
from gx, gy, m and r. The three schemes use the following specific polynomials:

– Sakai-Kasahara [26]: f(X,Y,M,R) = 1, g(X,Y,M,R) = X + M
– Boneh-Boyen [2]: f(X,Y,M,R) = 1, g(X,Y,M,R) = X + M + Y R
– Gentry [14]: f(X,Y,M,R) = Y + R, g(X,Y,M,R) = X + M

We present lattice-based polynomial-time algorithms that recover the signer’s
secret (x, y) ∈ Z

2
p in these pairing-based signatures when used to sign a constant

number of messages under the assumption that blocks of consecutive bits of the
corresponding exponents f(x, y,H(m), r)/g(x, y,H(m), r) modulo p are known
by the attacker. We consider known-message attacks and chosen-message attacks
(i.e. where the attacker is allowed to choose the message m). The method of this
paper is heuristic and uses Coppersmith’s lattice technique. Let � denote the
bit-length of p and N denote the number of unknown blocks of each signing
exponent. In a nutshell, we show that one can recover the secret key if the
number of consecutive bits of each unknown block is smaller than the following
theoretical values:
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– Sakai-Kasahara: �/2N2

– Boneh-Boyen: �/2N2

– Gentry: �/N

provided that the number of signatures is sufficiently large (see the corresponding
sections in the paper for more precise bounds). It is interesting to note, that
Gentry scheme which provides the best classical security (tight security reduction
in the standard security model), is the weakest against our class of attacks.

More generally, our lattice-based algorithms can be seen as methods to solve
variants of the modular inversion hidden number problem which was introduced
by Boneh, Halevi and Howgrave-Graham in 2001 [6]. This problem is to find
a hidden number given several integers and partial bits of the corresponding
modular inverse integers of the sums of the known integers and that unknown
integer. It was used in [6] to built a pseudo-random number generator and a
message authentication code scheme. In [22], the authors mentioned that it is
interesting to study a general problem of recovering of an unknown rational
function. One can see our results as a first step towards solving this problem.

The efficiency of our (heuristic) attacks has been validated experimentally.

2 Coppersmith Method

We provide a short description of the Coppersmith method [11,12] for finding
small roots of a multivariate modular polynomial system of equations modulo
an integer p. We refer the reader to [18] for details and proofs.

Problem Definition. Let f1(y1, . . . , yn), . . . , fs(y1, . . . , yn) be irreducible mul-
tivariate polynomials defined over Z, having a root (x1, . . . , xn) modulo a known
integer p namely for i ∈ {1, . . . , s}, we have fi(x1, . . . , xn) ≡ 0 mod p. Our goal
is to recover the desired root (x1, . . . , xn). This problem is generally intractable
but becomes solvable (under some conditions) in polynomial time log(p)O(1)

(for constant n and constant total degree of the input polynomials) if the root
(x1, . . . , xn) is upper-bounded by some values (X1, . . . , Xn) that depends on p
and the degree of the polynomials f1, . . . , fs.

Polynomials Collection. In a first step, one generates a larger collection P
of polynomials {f̃1, . . . , f̃r} linearly independent having (x1, . . . , xn) as a root
modulo pm, for some positive integer m. Usually, the technique consists in taking
product of powers of the modulus p, the polynomials fi for i ∈ {1, . . . , s} and
some well-chosen monomials, such as

f̃� = pm−∑s
j=1 kj,�y

α1,�

1 · · · yαn,�
n f

k1,�

1 · · · fks,�
s

for some positive integers α1,�, . . . , αn,�, k1,�, ks,�. These polynomials
satisfy f̃�(x1, . . . , xn) ≡ 0 mod pm.
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Lattice Construction. In a second step, one denotes as M the set of mono-
mials appearing in collection of polynomials P, and one writes the polynomials
f̃i(y1X1, . . . , ynXn) for i ∈ {1, . . . , r} as a vector bi ∈ (Z)ω, where ω = �M. One
then constructs a lattice L generated by the vectors b1, . . . , br and computes its
reduced basis using the LLL algorithm [21].

Lemma 1. Let L be a lattice of dimension ω. In polynomial time, the LLL
algorithm given as input of basis of L outputs a reduced basis of L formed by
vectors vi, 1 � i � ω that satisfy:

‖v1‖ � ‖v2‖ � . . . � ‖v2‖ � 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i .

Generating New Polynomials. In a third step of the method, one combines
Lemma 2 below (from [16]) and Lemma 1 to obtain n multivariate polynomials
g1(y1, . . . , yn), . . . , gn(y1, . . . , yn) having (x1, . . . , xn) as a root over the integers.

Lemma 2 (Howgrave-Graham). Let h(y1, . . . , yn) be a polynomial over Z

having at most ω monomials. Suppose that:

1. h(x1, . . . , xn) = 0 mod W for some |x1| < X1, . . . , |xn| < Xn and,
2. ‖h(X1y1, . . . , Xnyn)‖ � W√

ω
. Then h(x1, . . . , xn) = 0 holds over the integers.

The LLL algorithm run on the lattice L to obtain n reduced vectors vi, i ∈
{1, . . . , n} that we see as some polynomials h̃i(y1X1, . . . , ynXn), i ∈ {1, . . . , n}.
One can see that for i ∈ {1, . . . , n}, h̃i(x1, . . . , xn) = 0 mod pm, since h̃i is a
linear combination of f̃1, . . . , f̃r. Then if the following condition holds:

2
r(r−1)

4(r+1−n) det(L)
1

r+1−n <
pm

√
ω

,

by Lemmas 1 and 2, h̃i(x1, . . . , xn) = 0, i ∈ {1, . . . , n} holds over the integers
and we then obtain n polynomials having (x1, . . . , xn) as a root over the integers.

Condition. In our attacks, the number of polynomials in the first step is equal
to the number of monomials that appears in the collection, so r = ω = �M.
In the analysis, we let (as usual in this setting) terms that do not depend on p
contribute to an error term ε, and the simplified condition becomes:

det(L) < pm(ω+1−n).

Under the (heuristic) assumption that all created polynomials in the third
step define an algebraic variety of dimension 0, the previous system can be solved
(e.g., using elimination techniques such as resultant computation or Gröbner
basis) and the desired root recovered in polynomial time1 log(p)O(1) (for constant
1 It is well known that the computational complexity of Gröbner basis algorithm may

be exponential or even doubly exponential. In our setting, the number of variables
and the total degree of the input polynomials are fixed and the theoretical complexity
is polynomial in the field size (and thus in the security parameter).
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n and constant total degree of the input polynomials). In this paper, we assume
that these polynomials define an algebraic variety of dimension 0 and we justify
the validity of our attacks by computer experiments.

3 Lattice Attack on Gentry Signatures

3.1 Gentry Signatures

As mentioned in the introduction, Gentry introduced in [14] an IBE scheme
without random oracles with short public parameters and tight security reduc-
tion in the standard security model. In this paragraph, we describe the signature
scheme obtained by applying Naor transformation to Gentry’s IBE. The result-
ing scheme achieves existential unforgeability under chosen-message attacks in
the standard security model.

Let G and GT be two cyclic groups of the same prime order p (where p > 22λ

for a security parameter λ) and let g be a generator of G. We suppose that
(G,GT ) are equipped with an efficient computable bilinear map e : G×G → GT .
Let H : {0, 1}∗ → Zq be a collision-resistant hash function. Gentry signature
scheme is defined by the three following algorithms:

– Key generation. The user picks uniformly at random (x, y) ∈ Z
2
p, computes

h1 = gx and h2 = gy and sets sk = (x, y) and pk = (h1, h2) ∈ G
2.

– Signature generation. Given a message m ∈ {0, 1}∗, the user computes
its hash value H(m), and picks uniformly at random r ∈ Zp. It computes
the signing exponent σ = (y + r)/(x + H(m)) mod p and the group element
s = gσ. The signature is the pair (r, s) ∈ Zp × G.

– Signature verification. Given (r, s) ∈ Zp × G, a verifier accepts it as a
signature on m ∈ {0, 1}∗ if and only if the following equality holds:

e(s, h2g
r) ? = e

(
g, h1g

H(m)
)

3.2 Description of the Attack

In this section, we use Coppersmith’s methods to attack Gentry’s signatures
when the attacker learns some blocks of consecutive bits of the signing exponents.

Let n � 1 be some integer. We suppose that the attacker is given (n +
2) message/signature pairs (mi, (ri, si))i∈{0,...,n+1} as described above (where n
does not depend on the security parameter λ). To simplify the notation in the
following, instead of the hash values H(mi), we assume that the mi belongs to
Zp (for i ∈ {0, . . . , n + 1}).

We assume that the attacker knows some blocks of consecutive bits of the
corresponding signing exponents σi for i ∈ {0, . . . , n+1} and its goal is to recover
the secret keys x and y. From the knowledge of two different signing exponents
σi and σj for integers i, j ∈ {0, . . . , n + 1} with i �= j, the attacker can actually
recover the secrets x and y. Its goal is therefore to recover the hidden bits of two
σi’s in order to obtain x and y.
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We have σi = (y + ri)/(x + mi) mod p for i ∈ {0, . . . , n + 1} which can be
rewritten as:

σi(x + mi) − y − ri = 0 mod p, i ∈ {0, . . . , n + 1}.

We consider a chosen-message attack where the attacker uses an arbitrary unique
message m for all signatures (i.e. mi = m for all i ∈ {0, . . . , n+1}). Eliminating
x and y, in the previous equation, we obtain for a, b, i ∈ {0, . . . , n + 1} with
0 � a < b < i � n + 1:

(ra − rb)σi + (ri − ra)σb + (rb − ri)σa = 0 mod p

Putting σi =
∑N

j=1 xi,j2ki,j + γi, i ∈ {0, . . . , n + 1}, where γi is known to the
attacker and xi,j , j ∈ {1, . . . , N} are unknown and |xi,j | < 2μi,j for some integer
μi,j and with the choice a = 0, b = 1, we obtain a polynomial

fi(z0,1, . . . , z0,N , . . . , zn+1,1, . . . , zn+1,N )

having as root X0 = (x0,1, . . . , x0,N , . . . , xn+1,1, . . . , xn+1,N ) modulo p with:

fi = zi,N +
N−1∑
j=1

ai,jzi,j +
N∑

j=1

bi,jz1,j +
N∑

j=1

ci,jz0,j + γi(r0 − r1) + di mod p

for i ∈ {2, . . . , n + 1}, where
⎧
⎪⎪⎨
⎪⎪⎩

ai,j = 2ki,j /2ki,N mod p
bi,j = 2k1,j (ri − r0)/((r0 − r1)2ki,N ) mod p
ci,j = 2k0,j (r1 − ri)/((r0 − r1)2ki,N ) mod p
di = (γi(r0 − r1) + γ1(ri − r0) + γ0(r1 − ri))/((r0 − r1)2ki,N ) mod p

for i ∈ {2, . . . , n + 1} and j ∈ {1, . . . , N}.
We consider the following collection of polynomials (parameterized by some

integer m ∈ N that does not depend on the security parameter λ):

Pm =
{
fi0,1,...,in+1,1,i0,2,...,in+1,2,...,i0,N ,...,in+1,N

}
,

for all vectors of integers (i0,1, . . . , in+1,1, i0,2, . . . , in+1,2, . . . , i0,N , . . . , in+1,N )
verifying

0 � i0,1 + · · · + in+1,1 + · · · + i0,N , . . . , in+1,N � m

and where the polynomial fi0,1,...,in+1,1,i0,2,...,in+1,2,...,i0,N ,...,in+1,N
is defined by:

z
i0,1
0,1 . . . z

in+1,1
n+1,1 . . . z

i0,N−1
0,N−1 . . . z

in+1,N−1
n+1,N−1z

i0,N

0,N z
i1,N

1,N f
i2,N

2 . . . f
in+1,N

n+1 pm−(i2,N+···+in+1,N ).

One can see that fi0,1,...,in+1,1,i0,2,...,in+1,2,...,i0,N ,...,in+1,N
(X0) = 0 mod pm for all

such vector of integers.
If we use for instance the lexicographical monomial order (with zi,j < zi′,j′

if (j < j′ or (j = j′ and i < i′)) on the set of monomials, we can define an order
over the set of polynomials as:

fi0,1,...,in+1,1,i0,2,...,in+1,2,...,i0,N ,...,in+1,N
< fi′

0,1,...,i′
n+1,1,i′

0,2,...,i′
n+1,2,...,i′

0,N ,...,i′
n+1,N
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if z
i0,1
0,1 . . . z

in+1,1
n+1,1 . . . z

i0,N

0,N . . . z
in+1,N

n+1,N < z
i′
0,1
0,1 . . . z

i′
n+1,1

n+1,1 . . . z
i′
0,N

0,N . . . z
i′
n+1,N

n+1,N .
Using this order, we can write Pm = {f̃i, i ∈ {1, . . . , ω}}, with f̃1 < f̃2 <

· · · < f̃ω where ω is the number of polynomials. Putting U = 2maxi,j μi,j ,
we define the lattice L generated by b1, . . . , bω, where for i ∈ {1, . . . , ω},
bi is the coefficient vector of the polynomial f̃i(Uz0,1, . . . , Uzn+1,1, . . . , Uz0,N ,
. . . , Uzn+1,N ).

One can easily verify that the basis matrix is lower triangular and the
diagonal elements are Uapm−(i2,N+···+in+1,N ), where the integer a is equal to
i0,1 + · · · + in+1,1 + i0,N + · · · + in+1,N . The number of variables is N(n + 2)
and the success condition of Coppersmith’s method is det(L) < pm(ω−N(n+2)),
where ω =

∑
i∈I 1 is the dimension of the lattice with

I = {i = (i0,1, . . . , i0,N , . . . , in+1,N )|0 � i0,1 + · · · + in+1,N � m}.

We have det(L) = Uηpmωp−μ with

μ =
∑
i∈I

i2,N + · · · + in+1,N and η =
∑
i∈I

i0,1 + · · · + in+1,N .

If m is large, we can neglect the N(n+2) term in Coppersmith success condition
and the asymptotic condition becomes:

Uη < pμ.

Using analytic combinatorics methods (see for instance [1] and the references
therein), one can verify that when m tends to ∞, we have η = N(n+2)β(m,N, n)
and μ = nβ(m,N, n), with

β(m,N, n) =
mN(n+2)+1

(N(n + 2) + 1)!
+ o(mN(n+2)+1).

Therefore, the attacker can recover x and y as long as the sizes of each
unknown block in the signatures σi for i ∈ {0, . . . , n + 1} satisfies:

U < p
n

(n+2)N →
n→∞ p

1
N .

We can thus heuristically recover (using large2 constant parameters n and m)
the secret key (x, y) if the number of consecutive bits of each unknown block is
smaller than 	log2(p)
/N .

3.3 Experimental Results

We have implemented the attack in Sage 7.6 on a MacBook Air laptop computer
(2,2 GHz Intel Core i7, 4 Gb RAM 1600 MHz DDR3, Mac OSX 10.10.5). Table 1
2 In order to reach this asymptotic bound, the constructed matrix is of huge dimension

and the resulting polynomial system has a very large number of variables and the
computation which is theoretically polynomial-time becomes in practice prohibitive.
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lists the theoretical bound δtheo = n
(n+2)N and an experimental bound δexp for a

512-bit prime p (corresponding to a 256-bit security level) with (n+2) signatures
(for n ∈ {1, 3, 5}) and a few number of unknown blocks (N � 2). We consider
the family of polynomials Pm with m = 4 and m = 2. We ran 27 experiments
for all parameters and Table 1 gives the average running time (in seconds) of the
LLL algorithm and the Gröbner basis computation.

Table 1. Lattice Attack on Gentry signatures. Average running time (in seconds) of
the LLL algorithm and the Gröbner basis computation.

N n δtheo δexp Dimension m LLL time(s) Gröbner basis time(s)

1 1 0.333 0.32 35 4 3.804 4.603

1 3 0.6 0.49 21 2 0.250 0.699

1 5 0.714 0.49 36 2 0.871 38.374

2 1 0.166 0.16 28 2 1.438 0.650

2 5 0.33 0.29 91 2 191.906 556.715

We denote α the maximum number of least significant bits that the attacker
knows in each signature σj , for all j �= 0 (for instance α = 0 means that it does
not know any least significant bits of the signatures σj , for all j ∈ {1, . . . , n+1}).
If we know at least δexp	log2(p)
+α least significant bits of the signature σ0 then
the Gröbner basis always gives us a system of dimension 0 and we are able to find
the N unknown block of sizes pδexp in each signature σi for i ∈ {0, . . . , n + 1}.
Otherwise, Gröbner basis computations gives us a system of dimension 1 and
we are a priori unable to find the unknown blocks (though it is possible in
some cases to obtain additional information). This system of dimension 1 occurs
because the constructed system admits a large number of “small” solutions. We
give an example of this in Appendix A. However, If the condition mentioned
above is satisfied, we obtain for N = 1 and n + 2 = 3, the success rates given in
Table 2 (over 250 attacks performed for each parameter pair (m, δexp)).

Table 2. Lattice attack on Gentry signatures. Success rates (over 250 attacks per-
formed for each parameter pair (m, δexp)

m = 2 m = 3 m = 4

δexp = 0.3225 100 100 100

δexp = 0.3250 98.4 98.4 99.2

δexp = 0.3275 90.4 92.8 94.4

δexp = 0.3300 66.0 65.2 72.8

δexp = 0.3325 10.0 15.2 17.2

δexp = 0.3350 0 0 0
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4 Lattice Attack on Boneh-Boyen Signatures

4.1 Boneh-Boyen Signatures

Two years before the proposal of Gentry’s IBE, Boneh and Boyen proposed two
IBE schemes in [2] and described one signature scheme obtained using the Naor
transformation in [3]. Their scheme has comparable efficiency properties and also
achieves existential unforgeability under chosen-message attacks in the standard
security model.

With the same notation as above, Boneh-Boyen signature scheme is defined
by the three following algorithms:

– Key generation. The user picks uniformly at random (x, y) ∈ Z
2
p, computes

h1 = gx and h2 = gy and sets sk = (x, y) and pk = (h1, h2) ∈ G
2.

– Signature generation. Given a message m ∈ {0, 1}∗, the user computes its
hash value H(m), and picks uniformly at random r ∈ Zp. It computes the
signing exponent s = 1/(x+H(m)+yr) mod p and the group element σ = gs.
The signature is the pair (r, σ) ∈ Zp × G.

– Signature verification. Given (r, σ) ∈ Zp × G, a verifier accepts it as a
signature on m ∈ {0, 1}∗ if and only if the following equality holds:

e(σ, h1 · gH(m) · hr
2)

?= e (g, g)

4.2 Description of the Attack

In this section, we use the Coppersmith’s methods to attack Boneh-Boyen’s sig-
nature. Let n � 1 be some integer. We suppose that the attacker is given (n+2)
message/signature pairs (mi, (ri, si))i∈{0,...,n+1} as described above (where n
does not depend on the security parameter λ). As above, to simplify the nota-
tion, we replace H(mi) by mi ∈ Zp (for i ∈ {0, . . . , n + 1}). We assume that
the attacker knows some blocks of consecutive bits of the corresponding signing
exponents σi = 1/(x + m + yri) mod p, for i ∈ {0, . . . , n}, where p, ri and mi

are known to the attacker and x and y are kept secret.

As for Gentry signatures, from the knowledge of two different signing exponents,
the attacker can actually recover the secrets x and y and its goal is to recover
the hidden bits of two σi’s in order to recover x and y.

We have σi = 1/(x + mi + yri) mod p for i ∈ {0, . . . , n + 1} and we have:

x + mi + yri − 1
σi

= 0 mod p, i ∈ {0, . . . , n + 1}.

Eliminating x and y and assuming again that the attacker chooses a unique
message m (namely mi = m, for all i ∈ {0, . . . , n + 1}), we obtain, for a, b, i ∈
{0, . . . , n + 1} with 0 � a < b < i � n + 1:

(rb − ri)σiσb + (ri − ra)σiσa + (ra − rb)σaσb = 0 mod p.
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Putting σi =
∑N

j=1 xi,j2ki,j + γi, i ∈ {0, . . . , n + 1}, where γi is
known to the attacker and xi,j , j ∈ {1, . . . , N} are unknown with
|xi,j | < 2μi,j for some integer μi,j and a = 0, we obtain a polyno-
mial f0,b,i(z0,1, . . . , z0,N , . . . , zn+1,1, . . . , zn+1,N ) having as “small” root X0 =
(x0,1, . . . , x0,N , . . . , xn+1,1, . . . , xn+1,N ) modulo p, where:

f0,b,i =
N∑

j=1

N∑
k=1

αb,i,j,kzi,jzb,k +
N∑

j=1

N∑
k=1

α0,i,j,kzi,jz0,k +
N∑

j=1

N∑
k=1

α0,b,j,kzb,jz0,k

+
N∑

j=1

α0,b,i,jzi,j +
N∑

j=1

β0,b,i,jzb,j +
N∑

j=1

γ0,b,i,jz0,j + δ0,b,i mod p

for b, i ∈ {1, . . . , n + 1}, b < i and with known coefficients , where αb,i,N,N = 1.
The set of monomials appearing in the polynomials f0,b,i is:

M =
{

1, za,jzb,k, zi,j : i ∈ {0, . . . , n + 1}
∣∣∣∣
a, b ∈ {0, . . . , n + 1}; a < b
j, k ∈ {0, . . . , N}

}
.

We consider the following set of polynomials:

P = {pm̃, m̃ ∈ M1} ∪ {f0,b,i : b, i ∈ {1, . . . , n + 1}; b < i} ,

where M1 = M\M2 with M2 = {zb,Nzi,N : b, i ∈ {1, . . . , n+1}; b < i}. One can
see that for any polynomial f̃ ∈ P, f̃(X0) = 0 mod p. We can define an order
on the set of monomials such that all the monomials in M1 are smaller than
any monomial in M2 and for zb,Nzi,N , zb′,Nzi′,N ∈ M2, zb,Nzi,N < zb′,Nzi′,N if
(b < b′ or (b = b′ and i < i′)).

Using that order, we can order the set of polynomials from the smallest
element to the greatest as follows:

P = {pm̃1, . . . , pm̃ω1 , f0,1,2, . . . , f0,1,n+1, f0,2,3, . . . , f0,2,n+1, . . . , f0,n,n+1}
= {f̃1, . . . , f̃ω}

where m̃1 < · · · < m̃ω1 , ω1 is the cardinality of M1 and ω is the cardinality of
M.

Putting U = 2maxi,j μi,j , we define the lattice L generated by b1, . . . , bω, where
for each i ∈ {1, . . . , ω}, bi is the coefficient vector of the polynomial

f̃i(Uz0,1, . . . , Uz0,N , . . . , Uzn+1,1, . . . , Uzn+1,N ).

One can verify that the basis matrix is lower triangular. The number of variables
is N(n + 2) and the success condition for the Coppersmith’s method is:

det(L) < pω−N(n+2)+1, with ω = �M = N2 (n + 1)(n + 2)
2

+ (n + 2)N + 1.
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We have det(L) = U2N2 (n+1)(n+2)
2 +(n+2)Npω− n(n+1)

2 and the success condition
becomes:

U < p

n(n+1)
2 −N(n+2)+1

2N2 (n+1)(n+2)
2 +(n+2)N .

If n is large and since N is small, we can neglect −N(n+2)+1 which contribute
to a small error term. So the attacker can recover x and y as long as the sizes of
each unknown block in the signatures σi, i ∈ {0, . . . , n + 1} satisfies:

U < p
n(n+1)

2N2(n+1)(n+2)+2(n+2)N →
n→∞ p

1
2N2 .

We can thus heuristically recover the secret key if the number of consecutive
bits of each unknown block is smaller than 	log2(p)
/(2N2).

4.3 Experimental Results

Table 3 lists the theoretical bound δtheo = n(n+1)
2N2(n+1)(n+2)+2(n+2)N and an exper-

imental bound δexp for a 512-bit prime p with (n+2) signatures for a few values
of n ∈ {4, 6, 10} and one or two unknown blocks per signatures.

Table 3. Lattice Attack on Boneh-Boyen signatures. Average running time (in seconds)
of the LLL algorithm and the Gröbner basis computation.

N n δtheo δexp dimension LLL time(s) Gröbner basis time(s)

1 4 0.277 0.293 22 0.205 0.048

1 6 0.306 0.31 29 1.961 1.008

1 10 0.382 0.38 79 75.086 39.669

2 4 0.076 0.08 73 9.185 3.078

2 6 0.087 0.09 129 232.698 397.900

We ran 27 experiments for all parameters and in all cases (for the bound
δexp), the assumption that the created polynomials define an algebraic variety
of dimension 0 was verified. The constructed system was solved using Gröbner
basis and the desired root recovered. Table 3 gives the average running time (in
seconds) of the LLL algorithm and the Gröbner basis computation (using the
same configuration as above).

5 Lattice Attack on Sakai-Kasahara Signatures

5.1 Sakai-Kasahara Signatures

In [26], Sakai and Kasahara presented the first pairing-based signature scheme
in the exponent-inversion framework. Their scheme is very close to Boneh-Boyen
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signature schemes but produces shorter signatures (at the cost of relying on the
random oracle heuristic [27]).

With the same notation as above, Sakai-Kasahara signature scheme is defined
by the three following algorithms:

– Key generation. The user picks uniformly at random x ∈ Zp, computes
h = gx and sets sk = x and pk = h ∈ G.

– Signature generation. Given a message m ∈ {0, 1}∗, the user computes its
hash value H(m). It computes the signing exponent s = 1/(x+H(m)) mod p
and the group element σ = gs. The signature is the group element σ ∈ G.

– Signature verification. Given σ ∈ G, a verifier accepts it as a signature on
m ∈ {0, 1}∗ if and only if the following equality holds:

e(σ, h · gH(m)) ?= e (g, g)

We present in the following an attack on this scheme when the attacker learns
some blocks of consecutive bits of the signing exponents. This computational
problem is related to the Modular Inversion Hidden Number Problem which
was introduced in 2001 by Boneh, Halevi and Howgrave-Graham [6]. In this
problem, the attacker does not know exactly one block of least significant bits
of the signing exponents σi while our attack considers the setting where the
attacker does not know N � 1 different blocks in each σi (for any N).

5.2 Description of the Attack

In this section, we use the Coppersmith’s methods to attack Sakai-Kasahara
signatures. Let n � 1 be some integer. We suppose that the attacker is given
(n + 1) message/signature pairs (mi, si)i∈{0,...,n+1} as described above (where n
does not depend on the security parameter λ). Again, to simplify the notation, we
replace H(mi) by mi ∈ Zp (for i ∈ {0, . . . , n + 1}). We assume that the attacker
knows some blocks of consecutive bits of the corresponding signing exponents
σi = 1/(x + mi) mod p for i ∈ {0, . . . , n} and its goal is to recover x. One can
see that from the knowledge of a value σi, the attacker can actually recover the
hidden number x and it is thus sufficient to recover the hidden bits of a single
σi’s in order to recover x.

We have σi = 1/(x + mi) mod p for i ∈ {0, . . . , n} which can be rewritten as:

x + mi − 1
σi

= 0 mod p, i ∈ {0, . . . , n}.

Eliminating x, we obtain:

(mi − ma)σiσa + σi − σa = 0 mod p a, i ∈ {0, . . . , n}, 0 � a < i � n.

Putting, for i ∈ {0, . . . , n + 1}, σi =
∑N

j=1 xi,j2ki,j + γi, where γi is known to
the attacker and xi,j for j ∈ {1, . . . , N} are unknown with |xi,j | < 2μi,j for some
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integer μi,j , we obtain a polynomial fa,i(z0,1, . . . , z0,N , . . . , zn,1, . . . , zn,N ) having
as root X0 = (x0,1, . . . , x0,N , . . . , xn,1, . . . , xn,N ) modulo p with:

fa,i =
N∑

j=1

N∑
k=1

αa,i,j,kzi,jza,k +
N∑

j=1

βa,i,jzi,j +
N∑

j=1

γa,i,jxa,j + δa,i mod p

for a, i ∈ {0, . . . , n}, a < i and with known coefficients, where αa,i,N,N = 1. The
set of monomials appearing in the polynomials fa,i is:

M = {1, za,jzb,k, zi,j : i ∈ {0, . . . , n}; a, b ∈ {0, . . . , n}; a < b; j, k ∈ {1, . . . , N}} .

We consider the following set of polynomials:

P = {pm̃, m̃ ∈ M1} ∪ {fa,i : a, i ∈ {0, . . . , n}; a < i} ,

where M1 = M \ M2 with M2 = {za,Nzi,N : a, i ∈ {0, . . . , n}; a < i}. One can
see that for any polynomial f̃ ∈ P, f̃(X0) = 0 mod p. We can define an order
on the set of monomials such that all the monomials in M1 are smaller than
any monomial in M2 and for za,Nzi,N , za′,Nzi′,N ∈ M2, za,Nzi,N < za′,Nzi′,N if
(a < a′ or (a = a′ and i < i′)).

Using that order, we can order the set of polynomials from the smallest
element to the greatest as follows:

P = {pm̃1, . . . , pm̃ω1 , f0,1, . . . , f0,n, f1,2, . . . , f1,n, . . . , fn−1,n} = {f̃1, . . . , f̃ω}
where m̃1 < · · · < m̃ω1 , ω1 is the cardinality of M1 and ω is the cardinality of M.
Putting U = 2maxi,j μi,j , we define the lattice L generated by b1, . . . , bω, where
bi is the coefficient vector of f̃i(Uz0,1, . . . , Uz0,N , . . . , Uzn,1, . . . , Uzn,N ) for i ∈
{1, . . . , ω},. One can easily verify that the basis matrix is lower triangular. The
number of variables is N(n+1) and the success condition for the Coppersmith’s
method is:

det(L) < pω−N(n+1)+1,

with ω = �M = N2 n(n+1)
2 + (n + 1)N + 1 and det(L) =

U2N2 n(n+1)
2 +(n+1)Npω− n(n+1)

2 . The success condition then becomes:

U < p

n(n+1)
2 −N(n+1)+1

2N2 n(n+1)
2 +(n+1)N .

If n is large and since N is small, we can neglect −N(n+1)+1 which contributes
to a small error. The attacker can recover x and y as long as the sizes of each
unknown block in the signatures σi, i ∈ {0, . . . , n} satisfies:

U < p
n(n+1)

2N2n(n+1))+2(n+1)N →
n→∞ p

1
2N2 .

We can heuristically recover the secret key of Sakai-Kasahara signatures
if the number of consecutive bits of each unknown block is smaller than
	log2(p)
/(2N2).
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5.3 Experimental Results

Table 4 gives the theoretical bound δtheo = n(n+1)
2N2n(n+1))+2(n+1)N and an experi-

mental bound δexp for a 512-bit prime p with (n + 1) signatures for a few values
of n ∈ {4, 6, 10} and one or two unknown blocks per signatures.

Table 4. Lattice Attack on Sakai-Kasahara signatures. Average running time (in sec-
onds) of the LLL algorithm and the Gröbner basis computation.

N n δtheo δexp dimension LLL time(s) Gröbner basis time(s)

1 4 0.4 0.39 16 0.015 0.009

1 6 0.4285 0.425 29 0.934 0.267

1 10 0.4545 0.45 67 5.082 4.247

2 4 0.1111 0.1111 51 0.728 0.292

2 6 0.1153 0.1153 99 15.308 14.482

We ran 27 experiments for all parameters . As in the attack on Boneh-Boyen
signatures, the assumption that the created polynomials define an algebraic vari-
ety of dimension 0 was verified (in all cases for the bound δexp) and the con-
structed system was solved using Gröbner basis and the desired root recovered.
Table 4 gives the average running time (in seconds) of the LLL algorithm and
the Gröbner basis computation (using the same configuration as above).

6 Conclusion and Open Questions

We presented lattice-based polynomial-time algorithms that recover the signer’s
secret in popular pairing-based signatures when used to sign several messages
under the assumption that blocks of consecutive bits of the corresponding expo-
nents are known by the attacker. This partial information can be obtained in
practice easily through side-channels (such as the power consumption or the
electromagnetic emanations of the device generating the signature).

In order to prevent the leakage of partial information on the exponent, it is
customary to use a probabilistic algorithm to encode the sensitive values such
that the cryptographic operations only occur on randomized data. In [13], Coron
proposed notably to randomize the exponent and the projective coordinates of
the base point. It is an interesting question to extend our attacks in such setting
(as it was done recently for ECDSA in [15]). It is also interesting to study
the security against side-channel attacks of the pairing-based signatures whose
design does not rely on the exponent inversion framework (i.e. based on the full
domain hash framework and the commutative blinding framework).

Our attacks are heuristic and it would be very interesting to provide proven
versions of them (as it was done in [24,25] for ECDSA signatures). It is also inter-
esting to study further the attack against Gentry signatures when the unknown
blocks of consecutive bits overlap. Finally, it would be nice to improve our attacks
on Boneh-Boyen and Sakai-Kasahara signatures.
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A Concrete Attack Examples Against Gentry Signatures

In this section, we present two attack examples on Gentry signatures for a 256-bit
prime p with 3 signatures (r0, σ0), (r1, σ1) and (r2, σ2) and one T -bit unknown
block in each signature, with T = �0.3 log2(p).

We recall that for i ∈ {0, 1, 2}, σi = gsi where si = (y + ri)/(x + m) mod p,
x and y are the secret keys and p, m and ri, i ∈ {0, 1, 2} are public information.
In this example, we took the following random values:

– p = 9b814891e89496e776bfeeebcac5c74130862914fe2b928d40c3a88323dcbaaf

– m = 440f4a9df2936c4aad3856ed0ea5cf3d131ef658fc36c2fa56763373288d5519

– x = 57a7b0913f5202e31555ec9538ff90f38a5e6c53b359edfe1106c8ee9518029a

– y = 259b67be7de53e0546860379bc31ab9bb30caf68c314a956a1719e18d4a24ae2

– r0 = 75c471becf6a9d86aa5480985a95702617892ba84b7662d6bdf3a3c1931abf3b

– r1 = 675e28ffbf96b29365ebda463c3a0a4290a284f9fed9ddd0ccdada587c1f0152

– r2 = 7961b0df3f0a286547f25da59a7c2a7c28764f4335a0aa2cd5a72ba2393a6cd3

– s0 = 45f185a8ce35c2b95b3e1aef9fc516ec9e840c9a5b6b36c70532b10145790401

– s1 = 8f63fe87fd0d67f6594ff44ba86a2755b2b6ad6a0b7ab4aafecae41fca50c713

– s2 = 57de02b444bb7716c021d21162c3727ba904ae6e4d44aca2ad9f4406669e8744

and T = �0.3 log2(p) = 76.
In the first case, we suppose that we do not know any least significant bits

of each signature and show that we are unable to find the unknown blocks since
the Gröbner basis gives us a system of dimension 1.

In the second case, we suppose that we know T + 2 least significant bits of
σ0 but do not know any least significant bits of s1, and s2. We also suppose that
we do not know T intermediate bits of s0 and we show that in this case we are
able to find the unknown blocks since the Gröbner basis gives us a system of
dimension 0.

First Case

– We can write the signatures as:

s0 = 2T · 45f185a8ce35c2b95b3e1aef9fc516ec9e840c9a5b6b3 + z0,

s1 = 2T · 8f63fe87fd0d67f6594ff44ba86a2755b2b6ad6a0b7ab + z1,

s2 = 2T · 57de02b444bb7716c021d21162c3727ba904ae6e4d44a + z2,

where the T -bit numbers z0, z1 and z2 are the unknown blocks.
– We get the polynomial f(y0, y1, y2) defined by:

y2 + 86acc2de9d15dab4df6a8114243623f246376c1103c29ee97a0dd7490f87eb33 y1

+ 14d485b34b7ebc3297556dd7a68fa34eea4ebd03fa68f3a3c6b5d13a1454cf7b y0

+ 11f10fbe97565b062acfb71c6d98f596de6c1e236edaa9168d891d78d66e8c4a

having as root (z0, z1, z2) modulo p.
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– Constructing the lattice with m = 4, after the LLL reduction and the Gröbner
basis computation, we obtain the system of polynomials

{
f1(y0, y1, y2) = y2 − y0 − 5dba86c930521258343
f2(y0, y1, y2) = y1 − y0 + 21c0667cce17b283cee

having indeed (z0, z1, z2) as root over the integers. However, the dimension of
the system is 1 and then we are a priori unable to find the unknown blocks.

Second Case

– We can write the signatures as:

s0 = 36c70532b10145790401 + 279 · z0 + 279+T · 8be30b519c6b8572b67c35df3
s1 = 2T · 8f63fe87fd0d67f6594ff44ba86a2755b2b6ad6a0b7ab + z1

s2 = 2T · 57de02b444bb7716c021d21162c3727ba904ae6e4d44a + z2

where the T -bit numbers z0, z1 and z2 are the unknown blocks.
– If one proceeds like in the attack, we obtain the polynomial f(y0, y1, y2)

defined by

y2 + 86acc2de9d15dab4df6a8114243623f246376c1103c29ee97a0dd7490f87eb33 y1

+ 78836c7dbcc6bee53ea07b359a07fa111e09607336b452976acd0f0ec2a0c985 y0

+ 77b82eec348f27f19cb7a6c1cc895cf7261093b80d067ea4eb7b8da90e1ae306

having as root (z0, z1, z2) modulo p.
– Constructing the lattice with m = 4, after the LLL reduction and the Gröbner

basis computation, one obtains the system of polynomials
⎧
⎨
⎩

f1(y0, y1, y2) = y2 − ca2ad9f4406669e8744
f2(y0, y1, y2) = y1 − 4aafecae41fca50c713
f3(y0, y1, y2) = y0 − f8a2dd93d081934b6d6

having (z0, z1, z2) as root over the integers. The dimension of the system is 0
and one finds readily the unknown blocks.
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Abstract. Lattices over number fields arise from various fascinating
applications in cryptography. In this paper, we present two algorithms
that find a nice, short basis of lattices over arbitrary Euclidean domains.
One of the algorithms finds a reduced basis of lattices over biquadratic
Euclidean rings with overwhelming probability. We prove that its output
is bounded by a constant that depends only on the lattices.

The second algorithm applies to arbitrary norm-Euclidean domain. It
is given without the proof of the output quality, nevertheless, we exper-
imentally verify that the algorithm outputs a reasonably good basis and
it conjecturally supports the quality of our algorithm.

We also show that the proposed algorithms can be used in various
cryptanalytic applications. As a concrete example, we discuss how our
algorithm improves special-q descent step in tower number field sieve
method, which is one of the best known algorithms to solve the discrete
logarithm problem over finite fields.

Keywords: Lattices · Cryptanalysis · Number field sieve · LLL algo-
rithm · Discrete logarithm problems

1 Introduction

Lattices are, frequently considered as, free Z-modules.1 Any free module has a
basis, thus, for a lattice M and a positive integer d, there exists a set (b1, . . . ,bd)
of elements in M such that M = ⊕d

i=1Zbi. The integer d is called the rank or
the dimension of M and it does not depend on the choice of a basis. A lattice
has infinitely many bases, but some of them are more useful than others. In
many cryptographic applications, it is crucial to obtain a good basis of M and
the goal of lattice reduction is to find a such interesting basis consisting of rea-
sonably small and almost orthogonal vectors. There have been many approaches

C. Lee—Supported by Next-Generation Information Computing Development Pro-
gram through the National Research Foundation of Korea(NRF) funded by the Min-
istry of Science, ICT & Future Planning (NRF-2016M3C4A7937116).

1 For a commutative ring R, an R-module is a finitely generated set of elements that
is closed under additions and scalar multiplication by R.

c© Springer International Publishing AG 2017
M. O’Neill (Ed.): IMACC 2017, LNCS 10655, pp. 371–391, 2017.
https://doi.org/10.1007/978-3-319-71045-7_19



372 T. Kim and C. Lee

to find a good reduced basis including the celebrating LLL algorithm [21], BKZ
algorithms [27,28], to name a few.

Let K be a number field and ZK be its ring of integers. Similar to the classical
Z-lattice, we call any ZK-module M a ZK-lattice. Throughout this paper, we
mainly consider a number field K whose ring of integers is a principal ideal
domain (PID). Since any modules over PID are free modules, bases of M are
always well-defined. As for Z-lattices, finding a good basis of a ZK-lattice is of
prime importance in many applications, which is our main object in this paper.

Motivations. Lattices over non-integer rings arise from many attractive appli-
cations in cryptography. As any integral ideals in number fields being also Z-
modules (which we call ideal-lattices), the ideal-lattices are more frequently used
than general lattices. It is not only for the case of lattice-based cryptogra-
phy [6,7,13,14,29], but also the case of various cryptanalysis such as number
field sieve method [4,15,16,18,19].

On the other hand, number fields, where the ideals are defined over, are
usually chosen so that they contain proper subfields, for instance, power-of-prime
cyclotomic fields. For those cases, an integral ideal in a number field L is not only
a Z-lattice, but also a ZK-lattice, where ZK is a ring of integers of a subfield
K ⊂ L. Then it is often desirable to consider a lattice reduction algorithm
directly over ZK rather than Z. This approach has a potential advantage since it
is possible to deal with lattices of smaller dimensions. For instance, the dimension
is reduced to [L : K] over ZK instead of [L : Q] over Z. Remarkably, even a small
decrease in the dimensions makes lattices easier to handle.

Related Works. There have been several attempts [10–12,25] to generalize
the LLL algorithm. Napias [25] proposed an analogue of the LLL algorithm
that can be applied to lattices over five imaginary number fields K = Q(

√−α)
for α = 1, 2, 3, 7, 11. An interesting observation of this approach is that the
algebraic norm NK/Q(a + b

√−α) coincides with the square of the Euclidean
norm ‖(a, b

√
α)‖2 = a2 + αb2. Then the algebraic norm takes the place of the

Euclidean norm which plays a crucial role to prove the bound of the output.
The work in [12] considers the reduction of lattices over complex numbers

whose idea is basically the same as Napias’s approach. A naive generalization
of those works to the case of arbitrary number fields is seemingly not obvious.
One might consider an element in a number field as a complex number and try
to apply the techniques above. Then the output by the reduction only yields a
vector whose entries are complex numbers with small real and imaginary parts.
However, since our goal is to obtain a vector of entries in number fields with
small coefficients with respect to a given basis, it is unsatisfactory to apply the
above techniques directly.

Independently, Fieker and Pohst [10] attempted to generalize the LLL algo-
rithm to any lattices over Dedekind domain. Similarly in [25], they suggested to
use either the trace TrK/Q or the norm NN/Q as a replacement of the Euclidean
norm. However, their approach gives no guarantee on the output bound.
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Fieker and Stehlé [11] suggested an algorithm by viewing the ZK-module as
a high-dimensional Z-lattice. However, this approach is unsatisfactory for our
original motivation, since it works with a high-dimensional lattice.

Our Contributions. In this paper, we propose two analogues of the LLL algo-
rithm. One of our algorithms applies to biquadratic fields K = Q(

√−α,
√

β) such
that ZK is an Euclidean domain with respect to the algebraic norm (we call it
norm-Euclidean ring). To be precise, let θ be a generator of the Galois group
Gal

(
K/Q(

√−α)
) ∼= Z2. Given the input lattice M in Kn, let (c1, . . . , cn) ∈ Kn

be an output vector by our algorithm. Then it satisfies

N
Q(

√−α)/Q

(
n∑

i=1

ciθ(ci)

)

≤ 2n−1NK/Q

(
det(M)

)1/n
.

This algorithm might abort, but the probability is negligible.
As a second contribution, we revisit the algorithm by Fieker and Pohst [10].

In its original paper, they considered the size reduction step2 with respect to the
trace map. However, it is impossible in general, given a ∈ K, to find q ∈ ZK such
that TrK/Q((a − q)(a − q)) is small enough. We observe that, replacing TrK/Q

by NK/Q, it is possible to find efficiently q ∈ ZK such that NK/Q(a − q) is small
enough, when ZK is a norm-Euclidean ring.

Although the output bound has also been unproven, we provide experimental
evidences showing the quality of our algorithms. Our implementation has been
done over lattices of the form that frequently appears in cryptanalysis. Let c :=
(c1, . . . , cn) ∈ Kn be an output vector of our algorithm, our implementation
heuristically shows that

‖c‖∞ � CdNK/Q(det(M))1/d,

where C ≈ 1.02 and d = [K : Q] · n is the dimension of M over Z. Taking it
into account with ‖c‖2 ≤ √

d · ‖c‖∞ (by abusing the notation ‖c‖2 denotes the
Euclidean norm of c considered as a vector in Z

d), the Hermite’s constant of our
reduction is bounded by C ·d1/2d. It is remarkable that this constant is less than
the worst case Hermite factor (4/3)1/4 ≈ 1.075 whenever d ≥ 33 and rapidly
becomes close to the average Hermite factor ≈ 1.02 as d grows.

As an application, we discuss how to improve the special-q descent in the
tower number field sieve (TNFS) algorithms [4,18,19]. Pairing-based cryptogra-
phy has recently suffered a significant loss in security level due to these works.

Organization. In Sect. 2, we briefly recall some backgrounds on lattices and
algebraic number theory. In Sect. 3.1, we present a sub-algorithm required to run
our main algorithms that will be described in Sects. 3.2 and 3.3, respectively. We
show that our algorithms can be applied to some cryptanalysis in Sect. 4 and
verify our algorithms experimentally in Appendix A.
2 In the classical case, it corresponds to, given a ∈ Q, find q ∈ Z such that

|a − q| ≤ 1/2.
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2 Preliminaries

2.1 Number Fields

Throughout this paper, let K be a number field over Q of degree m and L be
its extension of degree n. Denote ZK (resp. ZL) by ring of integers of K (resp.
L). As usual, we simply denote Z by the ring of integers of rational numbers Q.

A number field K of degree m is defined by an irreducible polynomial h ∈ Q[t]
of the same degree, i.e. K = Q(ι) = Q[t]/h(t), where ι is a root of h in the com-
plex field. Denoting by (ι1, . . . , ιm) the distinct complex roots of h, each embed-
ding σi : K → C is the evaluation of a ∈ K, viewed as a polynomial modulo h,
at the root ιi, i.e. σi : a �→ a(ιi). Let r1 be the number of real roots and r2 be the
number of pairs of complex roots so that m = r1 + 2r2. Then we have a canon-
ical embedding σ : K → R

r1 × C
r2 defined by σ : a �→ (σ1(a), . . . , σr1+r2(a)),

where the first r1’s are the real embeddings and σr1+r2+j(a) is the complex con-
jugation of σr1+j(a). The number field K is viewed as Euclidean space endowed
with the inner product 〈a, b〉 =

∑m
i=1 σi(a)σi(b). The algebraic norm is defined

as NK/Q(a) =
∏m

i=1 σi(a).

Proposition 1. Let K = Q(ι) = Q[t]/h(t) be a number field of degree m and
a(ι) =

∑τ
i=0 aiι

i be an element in K for a positive integer τ ≤ m − 1. Then we
have

|NK/Q(a)| ≤ (m + 1)τ/2(τ + 1)m/2‖h‖τ
∞‖a‖m

∞,

where ‖·‖∞ denotes the maximal absolute value of the coefficients.

Euclidean Number Fields. In this paper, we are particularly interested in a
ring of integers that is also an Euclidean domain.

Definition 1. A commutative ring R is said to be Euclidean if there is a map
φ : R\{0} → N such that φ(a) ≤ φ(ab) for any nonzero a, b ∈ R and there exist
q and r in R such that a = bq + r with r = 0 or φ(r) < φ(b). Furthermore,
a number field K is said to be norm-Euclidean if its ring of integers ZK is
Euclidean with respect to the absolute value of the usual field norm NK/Q.

When the field K is either cyclotomic or of low-dimensional, then we have
a perfect classification of which number fields are norm-Euclidean. We present
some lists that we are interested in.

Proposition 2 ([20]). Let Q
(√−α,

√
β
)

be a biquadratic field, then it is norm-
Euclidean if and only if

α = 1, β = 2, 3, 5, 7;
α = 2, β = −3, 5;
α = 3, β = 2, 5,−7,−11, 17,−19;
α = 7, β = 5.
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Proposition 3. Let Q(ζk) be the k-th cyclotomic field, then it is norm-
Euclidean if

k ∈ {1, 3, 4, 5, 7, 8, 9, 11, 12, 15, 16, 20, 24}.

Proof. To see this, refer to [22,24,26].

The norm-Euclideanity of R is equivalent to check, for any a/b in its frac-
tional field K, whether there exists an algebraic integer q ∈ R such that
|NK/Q

(
a
b − q

)| < 1. It is natural to consider the Euclidean minimum which
is defined below.

Definition 2 (Euclidean minimum). For any ξ ∈ K, the value mK(ξ) :=
minq∈ZK

|NK/Q(ξ − q)| is called the Euclidean minimum of ξ and M(K) :=
maxξ∈K

(
mK(ξ)

)
is called the Euclidean minimum of K.

As an easy example, we have M(Q) = 1/2. In particular, the Euclidean
minima of the fields listed in Proposition 2 and Proposition 3 are known [20,23]
(Tables 1 and 2).

Table 1. Euclidean minimum of k-th cyclotomic fields [23]

k 1 3 4 5 7 8 9 12 15 16 20 24

M(Q(ζk)) 1
2

1
3

1
2

1
5

1
7

1
2

1
3

1
4

1
16

1
2

1
5

1
4

Table 2. Euclidean minimum of biquadratic fields [20]

(α, β) (1,2) (1,3) (1,5) (1,7) (2,-3) (2,5) (3,2)

M(Q(
√−α,

√
β)) 1

2
1
4

5
16

1
2

1
3

11
16

≥ 1
4

(α, β) (3,5) (3,-7) (3,-11) (3,17) (3,-19) (7,5)

M(Q(
√−α,

√
β)) 1

4
4
9

≤ 0.46 13
16

< 0.95 9
16

2.2 Lattices

The classical LLL-algorithm returns a basis called LLL-reduced for any given
Z-basis of the lattice M . We briefly recall the notion of the LLL-reduced basis.

Let 〈·, ·〉 be the inner product in a vector space R
d. Denote ‖·‖ by the Euclid-

ean norm in R
d. Given a basis (b1, . . . ,bd) of a Z-lattice M ⊆ Q

d, let (b∗
1, . . . ,b

∗
d)

be the Gram-Schmidt orthogonalization, i.e. b∗
1 = b1 and b∗

i = bi −
∑i−1

j=1 μi,jb∗
j

(2 ≤ i ≤ d), where μi,j = 〈bi,b∗
j 〉/〈b∗

j ,b
∗
j 〉.

Definition 3. A basis (b1, . . . ,bd) of a Z-lattice M is called LLL-reduced with
respect to δ > 0 if it satisfies

|μi,j | ≤ 1/2 for 1 ≤ j < i ≤ d (size reduced)

and
‖b∗

i ‖2 ≥ (
δ − μ2

i,i−1

) ‖b∗
i−1‖2 for 1 < i ≤ d (Lovasz condition).
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Algorithm 1. Rounding algorithm for norm-Euclidean rings
Input: A norm-Euclidean number field K, its Euclidean minimum M(K), the unit

group K× of K, and an element a ∈ K
Output: q ∈ ZK such that NK/Q(a − q) ≤ M(K)
1: Compute r := a − �a�
2: if NK/Q(r) ≤ M(K) then
3: return q := �a�
4: else
5: repeat
6: u ←$ K×

7: until NK/Q(ur − �ur�) ≤ M(K)
8: end if
9: return q := �a� + u−1�ur�

Observe that the constant 1/2 in the size reduced condition is the same as the
Euclidean minimum M(Q). The LLL-reduced condition implies that the LLL
algorithm outputs a reasonably small vector in a lattice.

Proposition 4. Let (b1, . . . ,bd) be a LLL-reduced Z-basis of a lattice M with
respect to δ = 3/4, then

‖b1‖ ≤ 2(d−1)/4 det(M)1/d.

3 Lattice Reduction Algorithms over Euclidean Rings

3.1 Euclidean Algorithm

Assume that the value of the Euclidean minimum of K, M(K), is known. In
this section, we propose a simple algorithm that, given an element a ∈ K,
finds an algebraic integer q ∈ ZK such that |NK/Q(a − q)| ≤ M(K). If K =
Q, we have M(Q) = 1/2 and the algorithm simply corresponds to take the
rounding of elements, i.e. �a� is an integer such that |a − �a�| ≤ 1/2 for any
a ∈ Q. By abusing the notation, define �a� :=

∑m−1
i=0 �ai�ιi ∈ ZK for some

a =
∑m−1

i=0 aiι
i ∈ K. Unfortunately, |NK/Q(a − �a�)| ≤ M(K) does not hold

in general. However, in some cases of norm-Euclidean cyclotomic fields, it is
shown [17] that |NK/Q(a − �a�)| ≤ M(K) + εK , where εK is a small positive
constant only depends on K. For instance, εQ(ζ4) = 0, εQ(ζ3) = 1/24, and εQ(ζ8) =
1/64.

Motivated from this observation, we propose Algorithm 1. The idea is simple.
First, one computes r := a − �a�. If NK/Q(r) ≤ M(K), it is done. Otherwise,
repeat computing u · r for an unit u ∈ K× chosen uniformly at random until
NK/Q(ur − �ur�) ≤ M(K). Then, the algorithm outputs �a� + u−1�ur�. Its
running time depends on the distribution of r =

∑
i riι

i ∈ K (−1/2 ≤ ri ≤ 1/2)
such that NK/Q(r) ≤ M(K).

To show the running time of the algorithm, we need the following lemma.
Then Theorem 1 is its simple corollary.
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Lemma 1. With the above notations, the probability of r =
∑m−1

i=0 riι
i ∈ K =

Q[t]/h(t) (−1/2 ≤ ri ≤ 1/2) uniformly chosen at random satisfying NK/Q(r) ≤
M(K) is at least 2mM(K)

(m+1)m‖h‖m−1
∞

.

Proof. It is obvious from Proposition 1, since |NK/Q(r)| ≤ M(K) for any r such

that ‖r‖∞ ≤ M(K)1/m

(m+1)·‖h‖(m−1)/m
∞

.

Theorem 1. Algorithm 1 returns the output with the expected running time of
(m+1)m‖h‖m−1

∞
2mM(K) multiplications by units and the same amount of norm computa-

tions.

The running time of the algorithm is seemingly huge. In practice, however, we
mainly focus on the norm-Euclidean cyclotomic/biquadratic fields and in such
cases m = deg(K) ≤ 8 and ‖h‖∞ = O(1) so that the running time is small
enough. Furthermore, our probability estimation in Lemma 1 is crude and imple-
mentation results show that simply rounding the element a gives the desired
output with very high probability.

On the other hand, taking a random unit u (in step 6) can be simply replaced
by deriving it from the fundamental units of K and test the condition with ui

for incremental i = 1, 2, . . . . To give a concrete example, we tested our algorithm
with K = Q(ζ16) using the SAGE computer algebra system [30]. Among ran-
domly chosen 200,000 elements of r =

∑
i riζ

i
16 with |ri| ≤ 1/2, about 97% of

them have the norm less than 1/2. For the remains, it was enough to consider
uir where u = ζ616 + ζ416 + ζ216 and i is running over 1 ≤ i ≤ 3.

This algorithm may not terminate if the unit u is repeatedly chosen so
that NK/Q(ur − �ur�) > M(K), although we observed experimentally that it
is unlikely to happen.

3.2 LLL Algorithm over Biquadratic Euclidean Rings

In the classical LLL algorithm, the Gram-Schmidt orthogonalization is a crucial
part of the algorithm and it necessarily requires an inner product in a vector
space R

d. Similarly, for ZK-lattices, it is also important to define an inner prod-
uct on Kn to process the orthogonalization.

In this section, we focus on the lattice reduction over K = Q(
√−α,

√
β) that

are listed in Proposition 2. We define an inner product over Kn as follows. First of
all, observe that K contains a subfield K0 := Q(

√−α) that is a norm-Euclidean
quadratic imaginary field.

Definition 4. With the above notations, let θ be a generator of the Galois group
Gal(K/K0) ∼= Z2. Let v = (v1, . . . , vn) and w = (w1, . . . , wn) be vectors in Kn.
We define a bilinear map B : Kn × Kn → K by

(v,w) �→
n∑

i=1

viθ(wi).
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The bilinearity of the map is obvious since θ is an endomorphism on K.
The map is θ-conjugate symmetric, i.e. B(v,w) = θ (B(w,v)). Although it
is possibly B(v,v) = 0 for a nonzero v ∈ Kn, we observe that the set
{v �= 0 ∈ Kn : B(v,v) = 0} ⊂ Kn is of measure 0 in Kn (when Kn is viewed as
a dense subset of R3n, the set is contained in a subspace of dimension at most
3n − 2). Thus, the probability of randomly chosen v satisfying B(v,v) = 0 is
negligible. In our proof, it is essential that B(v,v) ∈ K0 for any v ∈ Kn and
‖(a, b

√
α)‖2 = NK0/Q(a + b

√−α). For a + b
√−α ∈ K0, we abuse the notation

so that ‖a + b
√−α‖2 = NK0/Q(a + b

√−α).
Let (b1, . . . ,bn) be a set of vectors in Kn. Let (b∗

1, . . . ,b
∗
n) be the Gram-

Schmidt orthogonalization with respect to the bilinear map B, i.e. b∗
1 = b1 and

b∗
i = bi − ∑i−1

j=1 μi,jb∗
j (2 ≤ i ≤ n), where μi,j = B(bi,b∗

j )/B(b∗
j ,b

∗
j ).

Definition 5. With the above notations, let {b1, . . . ,bn} be a ZK-basis of a
lattice M . Denote M(K) by the Euclidean minimum of K. Let δ be a positive
constant such that M(K) < δ2 < 1. The basis is called ZK-LLL-reduced with
respect to δ, if it satisfies

‖μi,j · θ(μi,j)‖2 = NK/Q(μi,j) ≤ M(K) for 1 ≤ j < i ≤ n (size reduced)

and

‖Bi‖ ≥ (δ − ‖μi,i−1 · θ(μi,i−1)‖) ‖Bi−1‖ for 1 < i ≤ n (Lovasz condition),

where Bi = B(b∗
i ,b

∗
i ) ∈ K0. We further require Bi �= 0 for all 1 ≤ i ≤ n.

From the definition, we have the following theorem.

Theorem 2. Let {b1, . . . ,bn} be a ZK-LLL-reduced basis for a lattice M with
respect to δ. Then we have

1. ‖Bj‖ ≤ (
δ − M(K)1/2

)j−i · ‖Bi‖ for 1 ≤ j ≤ i ≤ n;

2. ‖B1‖ ≤ (
δ − M(K)1/2

)−(n−1)/2 · NK/Q(det M)1/n.

Proof. From the definition of the LLL-reduced basis, we have ‖Bj‖ ≥ (δ −
M(K)1/2) · ‖Bj−1‖. Then the first statement directly follows from the induction.
Applying this result with j = 1, we have

‖B1‖n ≤ ∏n
i=1(δ − M(K)1/2)1−i · ‖Bi‖

= (δ − M(K)1/2)−n(n−1)/2 · ‖∏n
i=1 Bi‖

= (δ − M(K)1/2)−n(n−1)/2 · ‖det(M) · θ(det(M))‖
= (δ − M(K)1/2)−n(n−1)/2 · NK/Q(det M).

The multiplicativity of ‖·‖ comes from that of NK0/Q(·). ��
For instance, if K = Q(

√−1,
√

3), we can make a choice of δ = 3/4 so that
‖B1‖ ≤ 2n−1NK/Q(det M)1/n.

Now we present Algorithm 2. It is conceptually the same as the classical case.
The algorithm aborts when Bj = 0 for some j, but it happens only with negligible
probability (See the discussion below Definition 4). We show in Theorem 3 that
our algorithm always terminates unless it aborts.
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Algorithm 2. LLL algorithm over biquadratic Euclidean rings
Input: a basis {b1, · · · ,bn} of M ⊂ Z

n
K , Euclidean minimum M(K), the unit group

K×, and a constant factor δ.
Output: LLL-reduced basis {b1, · · · ,bn}.
1: Compute the Gram-Schmidt basis {b∗

1, · · · ,b∗
n} with respect to the bilinear map

B(·, ·)
2: Compute the coefficients μi,j = B(bi,b

∗
j )/B(b∗

j ,b
∗
j ) for 1 ≤ j < i ≤ n and Bi =

B(b∗
i ,b

∗
i ) for 1 ≤ i ≤ n.

3: Set k = 2
4: while k ≤ n do
5: for j = k − 1 to 1 do
6: Compute qj ∈ ZK such that NK/Q(μk,j − qj) ≤ M(K) using Algorithm 1
7: Set bk = bk − qj · bj

8: Update μk,j = B(bk,b∗
j )/B(b∗

j ,b
∗
j ) and Bk for 1 ≤ j ≤ k

9: end for
10: if ‖Bk‖ ≥

(

δ − NK/Q(μk,k−1)
1/2
)

· ‖Bk−1‖ then

11: k = k + 1
12: else
13: Swap bk and bk−1

14: Update b∗
k,b∗

k−1, Bk, Bk−1, and μi,j for 1 ≤ i, j ≤ s
15: k = min{2, k − 1}
16: end if
17: end while

Theorem 3. Let M be a ZK-lattice in Z
n
K and {b1, · · · ,bn} be its basis. Let

X ∈ Z be a such that ‖Bi‖ ≤ X for 1 ≤ i ≤ n. Then Algorithm 2 terminates
and performs O(n2 log X) iterations, unless Bj = 0 for some j.

Proof. The proof is similar to that of the classical case. All we need to show
that is the number of swap is finite. For 0 ≤ i ≤ n, set di =

∏
1≤j≤i‖Bj‖ and

D =
∏

1≤i≤n−1 di. Suppose the swap happened for some k. It is straightforward
to check that di are unchanged for i < k −1 and i ≥ k. By the Lovasz condition,
we observe that dk−1 is multiplied by a factor at most equal to δ. Thus, D is
reduced by a factor at most equal to δ. On the other hand, we have D ≥ 1 since
M is integral. Thus the number of swap must be finite. It is easy to check that
the number of swap is bounded by logδ(X(n−1)n) = O(n2 log X). ��

3.3 LLL Algorithm over General Norm-Euclidean Domains

In this section, we propose another lattice reduction algorithm over general norm-
Euclidean domains. It uses a Hermitian-type bilinear map over Kn for the Gram-
Schmidt orthogonalization.

Definition 6. For a ∈ K, let a �→ a be the complex conjugation induced by
K ⊂ C. Let v = (v1, . . . , vn) and w = (w1, . . . , wn) be vectors in Kn. We define
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a bilinear map H : Kn × Kn → K by

(v,w) �→
n∑

i=1

viwi.

The map is bilinear and conjugate-symmetric. Consider the canonical embedding
σ = (σ1, . . . , σr1+r2) : K → R

r1 ×C
r2 . Then the bilinear map induced by σi(H)

is simply the classical Hermitian inner product on either R
n or C

n. Thus it is
natural to say that H is positive-definite iff σi(H) is positive-definite for all 1 ≤
i ≤ r1 + r2. Similar to Sect. 3.2, we define the Gram-Schmidt orthogonalization
{b∗

1, . . . ,b
∗
n} with respect to the bilinear map H.

Definition 7. With the above notations, the basis {b1, . . . ,bn} is called ZK-
LLL-reduced with respect to 0 < δ < 1 if it satisfies

NK/Q(μi,j) ≤ M(K) for 1 ≤ j < i ≤ n (size reduced)

and

NK/Q

(
Bi+μi,i−1μi,i−1Bi−1

) ≥ δ·NK/Q(Bi−1) for 1 < i ≤ n (Lovasz condition),

where Bi = H(b∗
i ,b

∗
i ).

The Lovasz condition is crucial for the proof that the algorithm ter-
minates. Note that the condition is not equivalent to NK/Q(Bi) ≥(
δ − NK/Q(μi,i−1 · μi,i−1)

)
NK/Q(Bi−1) unlike as the classical case.

In Theorem 4, we show that Algorithm 3 always terminates and runs in a
polynomial time.

Theorem 4. Let M be a ZK-lattice in Z
n
K and {b1, · · · ,bn} be its basis. Let

X ∈ Z be a such that NK/Q(Bi) ≤ X for 1 ≤ i ≤ n. Then Algorithm 3 terminates
and performs O(n2 log X) iterations.

Proof. For 0 ≤ i ≤ n, set di =
∏

1≤j≤i NK/Q(Bj) and D =
∏

1≤i≤n−1 di. The
remain of the proof is similar as before. ��

Although it was impossible to theoretically guarantee the output bound,
we experimentally show that the algorithm outputs a reasonably small basis in
AppendixA.

4 Cryptographic Applications

4.1 Special-q in TNFS Methods

In this section, we discuss how our algorithm can lead practical improvements
on the computation in tower number field sieve (TNFS). The TNFS method
[4,18,19] is a recent variant of the number field sieve (NFS) and its target is
solving the discrete logarithm problem (DLP) over finite fields. In particular,
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Algorithm 3. LLL algorithm over general norm-Euclidean domains
Input: a basis {b1, · · · ,bn} of M ⊂ Z

n
K , Euclidean minimum M(K), the unit group

K×, and a constant factor δ.
Output: LLL-reduced basis {b1, · · · ,bn}.
1: Compute the Gram-Schmidt basis {b∗

1, · · · ,b∗
n} with respect to the bilinear map

H(·, ·)
2: Compute the coefficients μi,j = H(bi,b

∗
j )/H(b∗

j ,b
∗
j ) for 1 ≤ j < i ≤ n and

Bi = H(b∗
i ,b

∗
i ) for 1 ≤ i ≤ n.

3: Set k = 2
4: while k ≤ n do
5: for j = k − 1to 1 do
6: Compute qj ∈ ZK such that NK/Q(μk,j − qj) ≤ M(K) using Algorithm 1
7: Set bk = bk − qj · bj

8: Update μk,j = H(bk,b∗
j )/H(b∗

j ,b
∗
j ) and Bk for 1 ≤ j ≤ k

9: end for
10: if NK/Q

(

Bk + μk,k−1μk,k−1Bk−1

) ≥ δ · NK/Q(Bk−1) then
11: k = k + 1
12: else
13: Swap bk and bk−1

14: Update b∗
k,b∗

k−1, Bk, Bk−1, and μi,j for 1 ≤ i, j ≤ s
15: k = min{2, k − 1}
16: end if
17: end while

pairing-based cryptography has suffered a significant security loss due to these
works. See [3,4,18,19] for more details.

In the setting of TNFS, the target is a finite field of form Fpmn (m and
n are positive integers greater than or equal to 1) and it is represented as a
composition of field extensions, i.e. Fpm = Fp[t]/h(t) and Fpmn = Fpm [x]/ϕ(x).
The polynomial h can be chosen by an attacker with several restrictions that it
is irreducible over Z[t], its coefficients are small (typically we expect ‖h‖∞ =
1), and p is inert in Z[ι] := Z[t]/h(t). For instance, h can be a cyclotomic
polynomial of degree m satisfying the other conditions. Then the attacker selects
two irreducible polynomials f and g in Z[ι][x] so that gcd(f, g) mod p = ϕ using
the methods discussed in the literatures.

Lattice reduction techniques particularly play a key role in two steps called
relation collection step and individual logarithm step, using special-q method.
Recall how the special-q method is done. Consider two number fields K = Q(ι) =
Q[t]/h(t) and Lf = K(αf ) = K[x]/f(x) (we can choose g instead). Let Q be a
prime ideal in ZLf

. Given Q, the task of the special-q algorithm is to collect a
tuple (a0, . . . , aτ−1) ∈ Z[ι]τ such that

– the ideal
( ∑τ−1

i=0 aiαf

)
/Q factors into prime ideals of norm less than

NLf /Q(Q)c for a constant 0 < c < 1;
– the principal ideal

( ∑τ−1
i=0 aiαg

)
factors into prime ideals of norm less than

NLf /Q(Q)c,
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and the pairs have the coefficients bounded by a constant parameter. Then a
main concern turns out to consider the lattice

MQ :=

{

(a0, . . . , aτ−1) ∈ Z[ι]τ :

(
τ−1∑

i=0

aiαf

)

≡ 0 mod Q

}

, (1)

and try to obtain a basis of small coefficients. A naive approach is to consider MQ

as a Z-lattice and running the LLL-algorithm (cf. Appendix 7.1 in [4]). However,
since MQ is naturally a Z[ι]-module, hence our lattice reduction algorithm can
be applied to speed up in finding a reduced basis of MQ.

The Case When ZK is a Norm-Euclidean Ring. Recall that a prime ideal
Q in ZLf

is of the form 〈q, T (αf )〉, where q is a prime ideal in ZK and T is
an irreducible factor of f in (ZK/q)[x] (cf. Proposition 2.3.9 in [9]). Typically,
Q is a prime ideal of norm less than a prescribed smoothness bound, but large
enough. In a such case, prime ideals of degree (which is the same as deg(T ))
more than 1 are less numerous than those of degree 1, so it suffices to consider
prime ideals Q of the form 〈q, αf − γ〉, where f(γ) ≡ 0 mod q.

As ZK being an Euclidean domain, it is also a principal ideal domain. Assume
a generator q ∈ ZK of the ideal q is known.3 Define the matrix of dimension τ
with the coefficients in ZK ,

ΛQ :=

⎛

⎜
⎜
⎜
⎝

q 0 · · · 0
−γ 1

. . .
−γ 1

⎞

⎟
⎟
⎟
⎠

. (2)

One can check that the rows of the matrix ΛQ form a ZK-basis of the lattice MQ.
By using Algorithm 3, we find a reduced basis. The output quality is reasonably
good as shown in AppendixA.

When ZK is Gaussian integers and τ = 2, finding a ZK-reduced basis of ΛQ

was discussed in [4, Appendix 7.1] using the extended Euclidean algorithm. Our
algorithm is a generalization of this approach. To get a better intuition, let us
see in detail the following example.

Example 1. We consider an example to target a finite field Fp12 for the BN
curve [5]. The prime parameter is chosen as p = P (u), where P (x) = 36x4 +

3 This can always be done since we are working with the Euclidean domain. Given a
prime ideal of the form q = 〈π, S(ι)〉 (as usual π is a prime integer and S is a factor
of h modulo π), a generator q is the greatest common divisor of π and S(ι).



Lattice Reductions over Euclidean Rings with Applications to Cryptanalysis 383

36x3+24x2+6x+1 and u = 2158−2128−268+1 (See [2, Section 6.]). Let us take
a polynomial h(t) = Φ5(t) = t4 + t3 + t2 + t + 1, so that ZK = Z[ζ5], where ζ5 is
a 5-th primitive root of unity. Using the SexTNFS method in [18, Section 4.1.],
take for example, f(x) = ϕ(x) = x3 −x2 −u and g(x) = P (x3 −x2). Check that
h is irreducible over Fp since p ≡ 3 mod 5 and f , g and ϕ satisfy the conditions
to be used in exTNFS method.

Take a prime ideal Q = 〈q, αf − γ〉 ⊂ Lf of the norm size log2(NLf /Q(Q)) =
74.29 (we extrapolate this value due to the record of [1], see [18, Sect. 5.]). Our
choice was

q = (q) =
( − 461479ζ35 − 383970ζ25 − 265505ζ5 − 303923

)

and
γ = 16946578643505257763313.

We ran Algorithm 3 on the ZK-lattice MQ that is generated by the rows of the
matrix ΛQ (2). As a result, for instance, when τ = 2, we obtained a ZK-LLL
reduced basis

LLL (ΛQ) =
(

532ζ35 + 850ζ25 + 179ζ5 − 464 224ζ35 + 132ζ25 − 13ζ5 + 367
−649ζ35 + 186ζ25 + 661ζ5 + 73 11ζ35 − 264ζ25 + 35ζ5 − 71

)

.

Note that the largest coefficients in the entries of the reduced basis is 850 and
log2(850) ≈ 9.73. This is compatible with log2

(
NK/Q(q)

1
τm

) ≈ 9.29 which is an
approximation of the size when the reduction is done over Z. Furthermore, the
running time is faster than using the classical algorithm (see Appendix A).

Appendix

A Simulation Results

To verify the quality of the output size of our algorithms, we implemented our
algorithm using the SAGE computer algebra system [30] and carried out sim-
ulations on a desktop PC with Intel Xeon E5 CPU cores at 3.7 GHz. We also
adapted a variant (cf. Algorithm 2.6.3 in [8]) for efficient implementations. We
experimented lattice bases generated by the rows of the following shape.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

q 0 · · · · · · 0
γ1 1 · · · · · · 0

γ2 0 1
. . . 0

...
...

...
. . .

...
γn−1 0 · · · · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where q and γi’s are uniformly randomly chosen algebraic integers in ZK . This
HNF type of bases has potential cryptographic applications, for instance, as
shown in Sect. 4.1. Recall that the above lattice with γi ≡ γi mod q is equivalent
to the lattice generated by Eq. (2).

Let M be a Z-lattice of dimension d. When dealing with the quality of outputs
by lattice reduction, one mainly consider the Hermite factor, ‖b1‖/ vol(M)1/d.
Let us now consider M as a ZK-lattice of dimension n (i.e. [ZK : Z] = d/n).
Let c1 = (c1,1, . . . , c1,n) ∈ Z

n
K be an output by the reduction and define by

‖c1‖∞ := max1≤j≤n‖c1,j‖∞. In our experiments, we will consider a factor
C := ‖c1‖∞/ vol(M)1/d to measure the quality of outputs. Then the classi-
cal Hermite’s constant by our reduction is bounded by C1/d · d1/2d. Note that
vol(M) = NK/Q(det(M)) = NK/Q(q).

We randomly sampled q so that its coefficients are of 100 bits and chose
γi so that its coefficients are of smaller bitsize than that of q. We carried out
our lattice reduction on many lattices sampled in that way and computed the
average of the factor C. As the classical case, we can say that the output quality
is good enough if C1/d is small.

Output Quality of Algorithm 3. We experimented Algorithm 3 with a hun-
dred of n-dimensional Z[ζk]-lattices for each 10 ≤ n ≤ 50 and k = 5, 8 and 16.
Surprisingly, the factor C1/d seems to behave consistently. In other words, it
seems that the factor C depends only (exponentially) on the dimension n (see
Fig. 1) and C1/d is well-bounded by a small constant. To give a concrete exam-
ple, consider 50-dimensional lattices over Z[ζ8]. By running the algorithm over
hundreds of lattices of the above form, we obtained C1/d = C1/4n ≈ 1.02 on aver-
age. The classical Hermite’s constant is then bounded by C1/d · d1/2d ≈ 1.0335
which is smaller than the worst case bound of Hermite factor (4/3)1/4 ≈ 1.0754.
As shown in Fig. 2, we observe that C1/d belongs in the range between 1.01 and
1.05 regardless the dimension of the lattices. As a remark, we used the parameter
M(K) = 1/2 or 1/5 corresponding to K and chose δ = 3/4.

Timing Results of Algorithm 3. All of the ZK-lattices considered above are
also considered as Z-lattices with corresponding dimensions. We compared the
speed of our algorithm with the classical LLL-algorithm. Since our implemen-
tation is far from being well-optimized yet, we avoid to use the internal LLL
function in SAGE for the consistency of the comparison. We tried to use equiv-
alently optimized code implementation for the classical LLL algorithm and our
algorithm. For the completeness, we include our codes in Appendix B.

To give a concrete example, let K = Q(ζ8) and consider a ZK-lattice of
dimension 20. Then it translates to a Z-lattice of dimension 80. To get a reduced
basis, on average, it took 20.40 s over ZK which was much faster than 75.40 s
running over Z. We present the comparison of the average running time in Fig. 3
for ZK = Z[ζ5] and Z[ζ8].
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Fig. 1. Average Hermite factor by Algorithm 3 over ZK-lattices

Comparison of Algorithm 2 and 3 over Z[ζ8]-Lattices. The 8-th cyclo-
tomic fields K = Q(ζ8) is also a biquadratic field since Q(ζ8) = Q(

√−1,
√

2).
Thus both of our proposed algorithms can be applied. We experimented both
algorithms. As a result, it appears that Algorithm 3 performs better than Algo-
rithm 2. To give a concrete example, for 10-dimensional lattices, the average of
the constant for Algorithm 3 was C1/d ≈ 1.012. On the other hand, we have
C1/d ≈ 2.976 on average for Algorithm 2. Algorithm 3 was also better than
Algorithm 2 with respect to the practical running time.
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Fig. 2. Average of C1/d by Algorithm 3 over ZK-lattices
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B SAGE Implementation

1 de f RLLL(b , de l t a =3/4 , ee=1/2) :
2 K=b . ba s e r i ng ( )
3 d=K. degree ( )
4 z=K. gen ( )
5 O=K. maximal order ( )
6 n=b . nrows ( )
7 a s s e r t n>=1 and b . i s s q u a r e ( )
8 F=b . ba s e r i ng ( ) . f r a c t i o n f i e l d ( )
9 d=F. degree ( )

10

11 G=F. ga l o i s g r oup ( )
12 g=G. complex conjugat ion ( )
13

14 bstar=matrix (F , n , n)
15 mu=matrix (F , n , n)
16 B=[F(0) f o r in range (n) ]
17

18 de f rnd ( vv ) :
19 ww=K(0)
20 f o r i in range (d) :
21 ww+=round ( vv [ i ] ) ∗zˆ i
22 re turn ww
23

24 de f euc (a ,mk=1/2) :
25 u=K. un i t s ( )
26 u0=u [ 0 ]
27 tu=u0
28 l=l en (u)
29 q=rnd ( a )
30 r=a−q
31 i f norm( r )<=mk:
32 re turn q
33 e l s e :
34 whi le True :
35 na=tu∗ r
36 nq=rnd (na )
37 nr=na−nq
38 i f norm( nr )<=mk:
39 re turn q+tuˆ(−1)∗nq
40 e l s e :
41 tu∗=u0
42

43 de f dot (v , w) :
44 r e s=K(0)
45 f o r i in range (n) :
46 r e s+=v [ i ]∗ g (w[ i ] )
47 re turn r e s
48

49 de f reduce (kk , l l ) :
50 i f norm(mu[ kk , l l ] )>ee :
51 qq=euc (mu[ kk , l l ] , ee )
52 b [ kk]−=qq∗b [ l l ]
53 mu[ kk , l l ]−=qq
54 f o r i in [ 0 . . l l −1] :
55 mu[ kk , i ]−=qq∗mu[ l l , i ]
56

57 de f swap ( kk ) :
58 b [ kk ] , b [ kk−1]=b [ kk−1] ,b [ kk ]
59 i f kk>1:
60 f o r j in [ 0 . . kk −2] :
61 mu[ kk , j ] ,mu[ kk−1, j ]=mu[ kk−1, j ] ,mu[ kk , j ]
62 tmu=mu[ kk , kk−1]
63 tmubar=g (tmu)
64 tB=B[ kk]+tmu∗tmubar∗B[ kk−1]
65 mu[ kk , kk−1]=tmubar∗B[ kk−1]/tB
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66 tb=bstar [ kk−1]
67 bstar [ kk−1]=bstar [ kk]+tmu∗ tb
68 bstar [ kk]=−mu[ kk , kk−1]∗ bstar [ kk ]+(B[ kk ] / tB)∗ tb
69 B[ kk]=B[ kk−1]∗B[ kk ] / tB
70 B[ kk−1]=tB
71 f o r i in [ kk+1. .kmax ] :
72 t=mu[ i , kk ]
73 mu[ i , kk]=mu[ i , kk−1]−tmu∗ t
74 mu[ i , kk−1]=t+mu[ kk , kk−1]∗mu[ i , kk ]
75

76 k=1
77 kmax=0
78 bstar [0 ]=b [ 0 ]
79 B[0]= dot (b [ 0 ] , b [ 0 ] )
80

81 whi le k<n :
82 # incrementa l gram−schmidt
83 i f k>kmax :
84 kmax=k
85 bstar [ k]=b [ k ]
86 f o r j in [ 0 . . k−1] :
87 mu[ k , j ]=dot (b [ k ] , b s ta r [ j ] ) /B[ j ]
88 bstar [ k]−=mu[ k , j ]∗ bstar [ j ]
89 B[ k]=dot ( bs tar [ k ] , b s ta r [ k ] )
90 a s s e r t B[ k ] !=0
91 # LLL−reduced cond i t i on
92 e l s e :
93 whi le True :
94 reduce (k , k−1)
95 # Lovasz cond i t i on
96 i f (B[ k ] + mu[ k , k−1]∗g (mu[ k , k−1])∗B[ k−1]) . norm ( )<( de l t a ∗ (B[ k

−1]) . norm ( ) ) :
97 swap (k )
98 k=max(1 , k−1)
99 e l s e :

100 f o r l in [ k−2,k − 3 , . . , 0 ] :
101 reduce (k , l )
102 k+=1
103 break
104 re turn b

Listing 1.1. SAGE impelementation of Algorithm 3

1 # the c l a s s i c a l LLL implementation with de l t a=3/4
2

3 de f ZLLL(b) :
4 n=b . nrows ( )
5 a s s e r t n>=1 and b . i s s q u a r e ( )
6 F=b . ba s e r i ng ( ) . f r a c t i o n f i e l d ( )
7

8 bstar=matrix (F , n , n)
9 mu=matrix (F , n , n)

10 B=[F(0) f o r in range (n) ]
11

12 de f reduce (kk , l l ) :
13 i f abs (mu[ kk , l l ] ) >0.5:
14 q=round (mu[ kk , l l ] )
15 b [ kk]−=q∗b [ l l ]
16 mu[ kk , l l ]−=q
17 f o r i in [ 0 . . l l −1] :
18 mu[ kk , i ]−=q∗mu[ l l , i ]
19

20 de f swap ( kk ) :
21 b [ kk ] , b [ kk−1]=b [ kk−1] ,b [ kk ]
22 i f kk>1:
23 f o r j in [ 0 . . kk −2] :
24 mu[ kk , j ] ,mu[ kk−1, j ]=mu[ kk−1, j ] ,mu[ kk , j ]
25 tmu=mu[ kk , kk−1]
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26 tB=B[ kk]+tmuˆ2∗B[ kk−1]
27 mu[ kk , kk−1]=tmu∗B[ kk−1]/tB
28 tb=bstar [ kk−1]
29 bstar [ kk−1]=bstar [ kk]+tmu∗ tb
30 bstar [ kk]=−mu[ kk , kk−1]∗ bstar [ kk ]+(B[ kk ] / tB)∗ tb
31 B[ kk]=B[ kk−1]∗B[ kk ] / tB
32 B[ kk−1]=tB
33 f o r i in [ kk+1. .kmax ] :
34 t=mu[ i , kk ]
35 mu[ i , kk]=mu[ i , kk−1]−tmu∗ t
36 mu[ i , kk−1]=t+mu[ kk , kk−1]∗mu[ i , kk ]
37

38 k=1
39 kmax=0
40 bstar [0 ]=b [ 0 ]
41 B[0]=b [ 0 ] ∗ b [ 0 ]
42

43 whi le k<n :
44 # incrementa l gram−schmidt
45 i f k>kmax :
46 kmax=k
47 bstar [ k]=b [ k ]
48 f o r j in [ 0 . . k−1] :
49 mu[ k , j ]=b [ k ]∗ bstar [ j ] /B[ j ]
50 bstar [ k]−=mu[ k , j ]∗ bstar [ j ]
51 B[ k]= bstar [ k ]∗ bstar [ k ]
52 a s s e r t B[ k ] !=0
53 # LLL−reduced cond i t i on
54 e l s e :
55 whi le True :
56 reduce (k , k−1)
57 i f B[ k]<((3/4−mu[ k , k−1]ˆ2)∗B[ k−1]) :
58 swap (k )
59 k=max(1 , k−1)
60 e l s e :
61 f o r l in [ k−2,k − 3 , . . , 0 ] :
62 reduce (k , l )
63 k+=1
64 break
65

66 re turn b

Listing 1.2. SAGE implementation for the classical LLL algorithm

References

1. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit spe-
cial number field sieve factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 1–12. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-76900-2 1
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