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Abstract In this paper we propose using interval type-2 fuzzy logic for the opti-
mization of parameters the form dynamic using the Differential Evolution algo-
rithm. For this particular work we use Benchmark mathematical functions for the
experiments that were performed adhering to the rules of the competition for the
IEEE Congress on Evolutionary Computation (CEC) benchmark set of 2015. We
are presenting a comparison against the winning paper of the competition IEEE
Congress on Evolutionary Computation (CEC) to verify how good the proposed
method Fuzzy Differential Evolution algorithm really is.

Keywords Differential Evolution algorithm � Fuzzy Differential Evolution
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1 Introduction

The use of algorithms based on nature has become very common in evolutionary
computation and metaheuristics. In this paper we propose to use one of these
algorithms, in particular the Differential Evolution integrating fuzzy logic for
dynamically adapting its parameters.

Differential Evolution (DE) is one of the latest evolutionary algorithms that has
been proposed in the literature. It was created in 1994 by Price and Storn in an
attempt to solve the Chebychev polynomial problem. The following years after that
these two authors also proposed the DE for optimization of nonlinear and
non-differentiable functions on continuous spaces [20].

Fuzzy logic or multi-valued logic is based on the fuzzy set theory proposed by
Zadeh in 1965, which can help us with modeling expert knowledge, through the use
of if-then fuzzy rules. Fuzzy set theory provides a systematic calculus to deal with
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linguistic information, and improves the numerical computation by using linguistic
labels stipulated by membership functions [16].

In addition, in reviewing the recent literature there are papers on Differential
Evolution applications that use this algorithm to solve real world problems [23, 24].
In the last years the concept of fuzzy logic has been used to adapt certain parameters
in metaheuristic algorithms [15, 17, 18, 26–28], which demonstrate the importance
and the improvement of these algorithms.

Regarding related works that use fuzzy logic to optimize the performance of
metaheuristic algorithms we can find some relevant ones in [4, 5, 11–13].

In addition, related work with regards to the Special Session & Competition on
Real-Parameter Single Objective Optimization at CEC-2015 can also be mentioned,
like the works that obtained the first place: A Self-Optimization Approach for
L-SHADE Incorporated with Eigenvector-Based Crossover and Successful-Parent-
Selecting Framework on CEC 2015 Benchmark Set [8] (rank 1).Finally, the other
works presented in the Special Session & Competition on Real-Parameter Single
Objective Optimization at CEC-2015 [1–3, 6, 8, 19, 21, 22, 29, 30].

The rest of the paper is organized in the following form: Sect. 2 describes the
Differential Evolution algorithm. Section 3 describes the proposed methods using
the fuzzy logic approach. Section 4 presents the experimentation with the
Benchmark functions. Finally, Sect. 5 offers the Conclusions.

2 The Differential Evolution Algorithm

Differential Evolution algorithm (DE) is an optimization method belonging to the
category of evolutionary computation that can be applied in solving complex
optimization problems. The differential evolution consists mainly of 4 steps [20]:

• Initialization
• Mutation
• Crossing
• Selection

This is the mathematical form of the Differential Evolution algorithm [13, 14]:
Population structure

Px;g ¼ xi;g
� �

; i ¼ 0; 1; . . .;Np, g ¼ 0; 1; . . .; gmax ð1Þ

xi;g ¼ xj;i;g
� �

; j ¼ 0; 1; . . .;D� 1 ð2Þ

Pv;g ¼ vi;g
� �

; i ¼ 0; 1; . . .;Np� 1; g ¼ 0; 1; . . .; gmax ð3Þ
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vi;g ¼ vj;I;g
� �

; j ¼ 0; 1; . . .;D� 1 ð4Þ

Pv;g ¼ ui;g
� �

; i ¼ 0; 1; . . .;Np� 1; g ¼ 0; 1; . . .; gmax ð5Þ

ui;g ¼ uj;I;g
� �

; j ¼ 0; 1; . . .;D� 1 ð6Þ

Initialization

xj;i;0 ¼ randjð0; 1Þ � bj;U � bj;L
� �þ bj;L ð7Þ

Mutation

vi;g ¼ xr0;g þ F � xr1;g � xr2;g
� � ð8Þ

Crossover

Ui;g ¼ ðuj;i;gÞ ¼
vj;i;g if randjð0; 1Þ�Cr or j ¼ jrand

� �
xj;i;g otherwise:

( )
ð9Þ

Selection

Xi;gþ 1 ¼ Ui;g if f Ui;g
� �� f Xi;g

� �
Xi;g otherwise:

� �
ð10Þ

3 Proposed Method

We propose using DE enhanced with fuzzy logic to dynamically modify the F
parameter (mutation) during execution of the algorithm. We have previously work
with the Differential Evolution algorithm using fuzzy logic and this method was
called Fuzzy Differential Evolution, and we are now extending this previous work
by using new and more complex functions to verify in more detail the efficiency of
the proposed algorithm [14]. The way in which we integrate a fuzzy system
algorithm can be found in Fig. 1, where we have the flowchart of the Differential
Evolution algorithm and we have a component with Interval-type 2 fuzzy logic,
which dynamically calculates the F parameter (mutation) to then make calculations
in the algorithm. Figure 2 shows the structure for the Interval-type 2 fuzzy system,
which contains one input and one output.

Figure 3 shows the input variable (Generation) that has 3 membership functions
and is granulated in the Low, Medium and High values that were used by each
membership function are symmetric the ranges are as follows:

• Low: �0:5859 �0:08598 0:4141 �0:4193 0:08068 0:5807½ �
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• Medium: �0:08333 0:4167 0:9167 0:08333 0:5833 1:083½ �
• High: 0:4167 0:9167 1:417 0:5833 1:083 1:583½ �

Figure 4 presents the output variable (F) has 3 membership functions and is
granulated in Low, Medium and High values that were used by each membership
function are symmetric the ranges are as follows:

Fig. 1 Propose method with Interval-type 2 fuzzy logic

Generation (3) F (3)

Type2Fdec
(mamdani)

3 rules

Fig. 2 Fuzzy system
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• Low: �0:5859 �0:08598 0:4141 �0:4193 0:08068 0:5807½ �
• Medium: �0:0807 0:419 0:919 0:086 0:586 1:09½ �
• High: 0:4167 0:9167 1:417 0:5833 1:083 1:583½ �

Figure 5 represents the rules of the interval-type 2 fuzzy logic and the Fig. 6
shows the surface of the interval-type 2 fuzzy system.

Fig. 3 Input generation

Fig. 4 Output F parameter

Fig. 5 Rules for the fuzzy
system
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4 Results of the Experiments

In this paper we consider the set of CEC 2015 Benchmark Functions to perform the
experiments and thereby be to [7, 9, 10, 25].

Below a brief description of the set of CEC 2015 Benchmark Functions is
presented.

Table 1 shows the set of 15 CEC 2015 Benchmark Functions used in this paper.
For the experiments we use the metrics given by the comments of CEC’15

Benchmark Functions, are comprised of 15 minimization problems and the
experiments for all functions are performed with different dimensions and for this
competition are of D = 10, 30, 50, 100.

Tables 2 and 3 show the comparison between the article that obtained the first
place in the competition of the CEC´15 and our proposed method [8].

Figures 7, 8, 9 and 10 represent the comparison graph for each dimension
D = 10, D = 30, D = 50 and D = 100.

Fig. 6 Surface of the fuzzy
system
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Table 2 Comparison between the references and the propose method with D = 10 and D = 30

D = 10 D = 30

Best
SPS-L-SHADE-EIG [8]

Best (FDE
IT2)

Best
SPS-L-SHADE-EIG [8]

Best (FDE
IT2)

f1 0.00E+00 3.50E−03 0.00E+00 2.20E−02

f2 0.00E+00 1.00E+00 0.00E+00 1.11E+00

f3 0.00E+00 0.00E+00 2.00E+01 2.10E+01

f4 0.00E+00 0.00E+00 1.05E−02 5.12E+02

f5 3.12E−01 0.00E+00 6.58E+02 8.18E+03

f6 0.00E+00 0.00E+00 2.68E+01 5.18E−03

f7 0.00E+00 0.00E+00 6.23E−01 3.23E+02

f8 6.02E−08 0.00E+00 2.07E+00 2.40E−03

f9 1.00E+02 1.20E+02 1.02E+02 1.20E+02

f10 2.17E+02 2.04E+03 1.48E+02 3.25E−03

f11 2.61E–02 2.01E+02 3.00E+02 1.70E+03

f12 1.00E+02 1.34E+02 1.02E+02 2.14E+02

f13 3.03E−02 5.09E+01 2.56E−02 1.57E+02

f14 1.00E+02 1.15E+02 3.11E+04 8.35E+04

f15 1.00E+02 1.63E+01 1.00E+02 4.99E+04

Table 1 Summary of the CEC’15 learning-based benchmark suite

No. Functions Fi* = Fi
(x*)

Unimodal functions 1 Rotated high conditioned elliptic
function

100

2 Rotated cigar function 200

Simple multimodal
functions

3 Shifted and rotated Ackley’s function 300

4 Shifted and rotated Rastrigin’s function 400

5 Shifted and rotated Schwefel’s function 500

Hybrid functions 6 Hybrid function 1 (N = 3) 600

7 Hybrid function 2 (N = 4) 700

8 Hybrid function 3 (N = 5) 800

Composition functions 9 Composition function 1 (N = 3) 900

10 Composition function 2 (N = 3) 1000

11 Composition function 3 (N = 5) 1100

12 Composition function 4 (N = 5) 1200

13 Composition function 5 (N = 5) 1300

14 Composition function 6 (N = 7) 1400

15 Composition function 7 (N = l0) 1500

Search range: [–100,100]D
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Table 3 Comparison between the references and proposes method D = 50 and D = 100

D = 50 D = 100

Best
SPS-L-SHADE-EIG [8]

Best (FDE
IT2)

Best
SPS-L-SHADE-EIG [8]

Best (FDE
IT2)

f1 0.00E+00 5.28E−02 0.00E+00 1.21E−01

f2 0.00E+00 2.01E+00 0.00E+00 3.81E+00

f3 2.00E+01 2.13E+01 2.00E+01 2.01E+01

f4 9.01E–05 1.06E+03 1.59E+01 2.29E+03

f5 1.38E+03 1.40E+04 3.98E+03 4.23E+04

f6 5.18E+01 3.11E−03 9.61E+02 9.82E+02

f7 6.49E+00 1.58E+03 9.06E+01 1.52E+04

f8 1.00E+01 1.35E−03 6.87E+02 7.12E+02

f9 1.03E+02 1.20E+02 1.05E+02 3.20E+03

f10 6.79E+02 2.10E−03 1.59E+03 1.78E+03

f11 3.00E+02 2.85E+03 3.01E+02 4.08E+03

f12 1.03E+02 2.97E+02 1.11E+02 3.28E+02

f13 6.99E–02 9.09E+02 5.96E–02 7.11E+02

f14 4.95E+04 2.82E+04 1.09E+05 1.15E+05

f15 1.00E+02 3.78E+05 1.00E+02 2.00E+04

Fig. 7 Comparison with D = 10

Fig. 8 Comparison with D = 30
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5 Conclusions

In conclusion, we can notice that the results obtained using interval-type 2 fuzzy
logic are not as good as we expected, most likely because the fuzzy system is a
simple one input and one output and another part of the footprint uncertainty
membership functions the input and the output is symmetric and not optimized.

We will try to improve our fuzzy system and/or we will make the footprint
uncertainty trail be optimized by some algorithm and thus be able to make a
comparison with statistical test to be able to affirm or reject if our proposed method
is good with the functions Benchmark, But we can also conclude that our diffuse
system for some functions if it is competitive and for those cases means that the
uncertainty footprint is the one indicated for certain functions Benchmark CEC’15.
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