
Comparative Study of Computational
Strategies for Protein Structure Prediction

Fanny G. Maldonado-Nava, Juan Frausto-Solís,
Juan Paulo Sánchez-Hernández, Juan Javier González Barbosa
and Ernesto Liñán-García

Abstract Protein Folding Problem (PFP) is one of the most challenging problems
of combinatorial optimization with applications in bioinformatics and molecular
biology. The aim of PFP is to find the three-dimensional structure of a protein, this
structure is known as Native Structure (NS), which is characterized by the minimal
energy of Gibbs and it is commonly the best functional structure. To find an NS
knowing only the amino acids sequence (primary structure) of a protein is known as
ab initio problem. A protein can take a huge number of different conformational
structures from its primary structure to the NS. For solving PFP, several compu-
tational strategies are applied in order to search structures of protein on a huge
space of possible solutions. In this work, the most popular methods and strategies
are compared, and advantages and disadvantages of them are discussed.

Keywords Protein folding problem � Computational strategies
Ab initio � Threading � Homology

F. G. Maldonado-Nava (&) � J. Frausto-Solís � J. J. González Barbosa
TecNM/Instituto Tecnológico de Ciudad Madero, Ciudad Madero, Mexico
e-mail: fanny_mn@hotmail.com

J. Frausto-Solís
e-mail: juan.frausto@itcm.edu.mx

J. J. González Barbosa
e-mail: jjgonzalezbarbosa@itcm.edu.mx

J. P. Sánchez-Hernández
Universidad Politécnica del Estado de Morelos, Jiutepec, Mexico
e-mail: juan.paulosh@upemor.edu.mx

E. Liñán-García
Universidad Autónoma de Coahuila, Saltillo, Mexico
e-mail: ernesto_linan_garcia@uadec.edu.mx

© Springer International Publishing AG 2018
O. Castillo et al. (eds.), Fuzzy Logic Augmentation of Neural and Optimization
Algorithms: Theoretical Aspects and Real Applications, Studies in
Computational Intelligence 749, https://doi.org/10.1007/978-3-319-71008-2_32

449



1 Introduction

Proteins are molecules, which play a central role in our body. Proteins are needed to
catalyze reactions, transport molecules, and other important functions. Proteins
consist of smaller units named amino acids, attached to one another in long chains
by peptide bonds. A functional protein has a specific three-dimensional structure,
usually named Native Structure (NS), which takes when it is correctly folded.
The NS is biologically active, in which the protein correctly performs its functions.
The natural process of protein folding is not completely understood; this is because
nature takes an unknown path to achieve the native structure in a very fast way [1].

The process of protein folding in living organisms (Natural process of protein
folding, folding of proteins in vivo; or in short, folding) occurs within cells, which
as is well known are prokaryotes in all bacteria and eukaryotes for animals, plants,
and fungi. Understanding the process of protein folding is important because many
human diseases are related to improper folding in vivo; some of these diseases are
[2–4]: Alzheimer’s, Parkinson’s, Prion, Tauopathy, Huntington’s disease,
Creutzfeldt-Jakob disease, Cystic Fibrosis, Gaucher disease, and Sickle Cell
Anemia. In fact, recent specialized publications have noticed that incorrect folding
of proteins (or misfolded) is involved with most of the diseases not caused by
infectious agents and is involved in the progression of hundreds of diseases [4, 5].

Protein Folding Problem has been studied for the last 50 years and is one of the
biggest unsolved problems in science [3, 6]. PFP is an NP-Hard problem [7, 8],
which consists in determining the native structure of a protein, this structure is the
one in which the Gibbs free energy is the lowest [9]. Due to the amount of con-
formations that a protein can take, computational methods are becoming important.
Some methods for the study of the tertiary structure of the proteins have been
developed are X-ray Crystallography and Nuclear Magnetic Resonance (NMR).
These methods are regularly very expensive and their processes can consume very
long time [10, 11]. Thus, the NS prediction is necessary and it has become one of
the most important challenges of modern computational biology [7]. Different
computational approaches for finding the three-dimensional structure have been
proposed over the last decades. These approaches can be classified into three cat-
egories: (a) ab initio, (b) homology, and (c) threading. The main challenge is to
understand how the information included in the amino acids sequence can be
translated into a three-dimensional structure (functional structure), in order to
develop computational algorithms that can predict a protein structure correctly.

Over the last decades, many algorithms have been proposed and tested as a
solution to PFP. Most common algorithms are Simulated Annealing (SA), Genetic
Algorithms (GA), Ant Colony Optimization (ACO), Tabu Search (TS), and among
other. The most successful algorithms for solving PFP are SAL algorithms
(Simulated Annealing Like algorithms) [12]; these successful methods are usually
hybridized with other heuristics. Despite the efforts made so far, just a little number
of protein sequences have been solved, which has motivated the scientific com-
munity on working on more powerful algorithms [10]. Recently, new and more
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efficient SAL algorithms have been proposed; as Golden Ratio Simulated
Annealing (GRSA), which is part of these successful SAL algorithms [13]. GRSA
is important because has obtain very good results in the case of peptides, particu-
larly the Met-enkephalin, which is commonly studied in PFP area.

This paper is organized as follows: in Sect. 2, three strategies for Protein Folding
Problem are presented. Section 3, describes three important methods presented in
CASP. In Sect. 4, PFP for ab initio approach is described and an energy function is
presented. Finally, conclusions for this work are discussed.

2 Computational Strategies

Many computational methodologies and algorithms have been proposed as a
solution to the PFP. Strategies used in these algorithms can be classified in three
categories: ab initio, homology, and threading. The main difference between these
strategies is the information they need to address the problem.

2.1 Ab Initio Approach

Ab initio strategy is perhaps the most difficult approach for protein structure pre-
diction. As is shown in Fig. 1, ab initio looks for the three-dimensional structure
using only the amino acids’ sequence and it does not require other information of
the target protein. Ab initio methods are based on basic physics and quantum
mechanics, this is on the thermodynamic hypothesis which points out that the NS of
a protein is the one for which the free energy achieves the global minimum [9].

Ab initio methods provide a natural approach to obtain structures from protein
sequences without referring any information or any appropriate templates. This
strategy is clearly the most difficult, but the most useful approach. As any other
strategy, ab initio presents some advantages and disadvantages. Ab initio methods
are useful when appropriate templates cannot be consulted, that is, when sufficiently
homologous proteins have not been found or when the template does not provide an
appropriate structure. New folds can be predicted by this strategy, since there are

Fig. 1 Ab initio approach
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still proteins whose native structures have not been solved, an ab initio method does
not need templates from any library. This strategy requires a lot of computational
processing time because of the complexity of the problem. In addition, because PFP
is an NP-hard problem [7], heuristic algorithms are currently considered as the best
alternative; however, these algorithms do not guarantee to achieve exactly the
optimal solution. As a consequence, the research of ab initio algorithms is focused
on peptides and proteins with a limited number of amino acids (60–150). However,
to study small proteins could lead to finding general algorithm solutions for solving
the real challenge that is PFP.

For ab initio strategy, PFP is considered as an optimization problem, where the
goal is identifying the values of the variables (angles) which describe the minimum
energy of the protein. Ab initio methods simulate the protein conformational space
using an energy function, which describes the internal energy of the protein and its
interactions with the environment. An ab initio algorithm consists of three com-
ponents: (1) a geometric representation, (2) an energy function, and (3) a searching
technique.

2.2 Homology Approach

Known as comparative modeling or template-based modeling, this strategy is based
on the understanding of protein evolution, mainly in two facts: (a) proteins that
have a homologous sequence, will have similar three-dimensional structures, and
(b) proteins structures are more conserved than their sequences. Many proteins can
be solved by this approach. Figure 2 illustrates this strategy. Homology process
starts with the identification phase, in which an identification of homologous pro-
teins should be done from PDB (Protein Data Bank), phase two is an alignment,
which is carried out between the target protein and its homologous (template), and
next, a method for modifying the structure should be applied for optimizing the
model and get to the final three-dimensional structure of the target protein.

Comparative modeling exploits the fact that evolutionarily related proteins with
similar sequences, as measured by the percentage of identical residues at each

Fig. 2 Homology approach
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position based on an optimal structural superposition, often have similar structures.
The complexity of the problem becomes smaller than other strategies, since this
approach takes advantage of the reduction of the conformational search space,
because the process uses a template of a protein whose three-dimensional structure
has already been found. When a homolog protein is found, this method is applicable
to almost all proteins [14]. If the homology between proteins is high (bigger than
35%) the three-dimensional structure can be found in many cases [15]; however, the
use of templates and heuristic algorithms may obtain the NS in almost of the cases.

One of the main disadvantages of this strategy is that only structures of proteins
with known homologous sequences can be predicted. If the degree of homology is
low, the method must use a more powerful algorithm to be able to find the
three-dimensional structure, since with a lower homology the quality of the model
will be smaller.

2.3 Threading Approach

Known as fold recognition, this strategy construct protein from known templates
even if there is no homologous protein deposited in the Protein Data Bank.
Threading models the protein with experimental structures as templates, is a dif-
ferent approach from the homology in terms of the methodology. In Fig. 3, this
strategy is shown. The term threading is stand for the process of aligning a protein
sequence into a backbone structure and evaluate the compatibility with a set of
potential scores or energy functions. Threading is based on the observation that the
number of unique protein folds in nature is much smaller than number of proteins.

During the process of threading, the target protein is placed, following the
sequential order, into structural positions of a template three-dimensional structure
in an optimal way. This process consists of two phases: (1) select a structural
template from a library, and (2) find the correct replacement between the target
protein against the structural models in the space of possible replacements.
Threading has some advantages; it uses known protein structures as templates for

Fig. 3 Threading approach

Comparative Study of Computational Strategies … 453



sequences of unknown structures. Threading finds the most similar conformation to
the NS that can be uses as an initial solution with other methods. Threading presents
some limitations; these methods are computationally expensive. Identifying
appropriate templates for a given protein is also a problem classified as NP-Hard
[16]. In addition, the NS found with this approach could not be present in the space
of possible conformations.

Many algorithms implement different metaheuristics to provide near optimal
solutions for PFP, considering the limitations and the advantages of the approaches
for protein structure prediction methods, researchers have developed hybrid
methods in their algorithms, which combine principles of the three strategies pre-
sented in this paper.

3 Methods

There is a biannual competition named CASP (Critical Assessment of protein
Structure Prediction), in this competition researchers test their structure prediction
methods. Targets proteins for structure prediction are structures solved, but they are
kept on hold by the Protein Data Bank. Here are presented three protein structure
prediction methods, which use different approaches and different strategies for
constructing three-dimensional protein models. These methods have been presented
and tested in CASP, obtaining good results, so that they have obtained first places in
lasts competitions.

I-TASSER
I-TASSER is a server for protein structure predictions, built by Zhang Lab. This
server was ranked as the number one server for protein structure prediction in
CASP7, CASP8, CASP9, CASP10, CASP11, and CASP12 experiments. The
I-TASSER method is divided in three phases: threading, assembling, and refine-
ment. In the first phase, I-TASSER identifies templates from the PDB (Protein Data
Bank) by a threading approach using LOMETS (which combines algorithms to
generate models by collecting their target-template alignments). In the second
phase, fragments of the threading aligned regions are extracted from the template
structures, and are used to assemble new structural conformations, while ab initio
approach processes the unaligned regions. The assembly is performed by a
replica-exchange Monte Carlo (REMC) Simulation. The low free-energy states are
identified by SPICKER (algorithm to identify the near-native models) through
clustering. In the third phase, a second assembly is performed, the purpose of the
second iteration is to refine the global topology of the cluster centroids. The lowest
energy structures are selected, and the final full-atomic models are obtained by
REMO, and fragment-guided molecular dynamics [10, 17].

QUARK
QUARK is an ab initio structure prediction built by Zhang Lab, which construct 3D
structures models. QUARK was ranked as the No 1 server in free-modeling in
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CASP9 and CASP10 experiments. QUARK models are built from small fragments
(1–20 residues long) by replica-exchange Monte Carlo simulation. This procedure
can be divided into three steps. The first step is for multiple feature predictions and
fragment generation starting from one query sequence. QUARK first predicts a
variety of selected structural features by neural network (NN). In the second step,
the global fold is generated by replica-exchange Monte Carlo (REMC) simulations
by assembling the small fragments, these fragments in QUARK have multiple sizes
from 1 to 20 residues. The third step is full-atomic refinement. QUARK simulations
perform movements of free-chain constructions and fragment substitutions between
decoy and fragment structures. These techniques have increased the efficiency of
conformational search while taking the advantage of the reduction of the confor-
mational search owing to fragment assembly [10, 18].

ROSETTA
ROSETTA is a fragment-based method for the three-dimensional protein structure
prediction problem developed by Baker Lab. Is one of the best-established ab initio
protein folding methods as demonstrated in the last CASP experiments. ROSETTA
uses an assembly strategy to combine native-like structures of fragments of unre-
lated protein structures with similar local sequences using Bayesian scoring func-
tions. The main goal of ROSETTA scoring function is to search for the most
probable structure of a protein given the amino acid sequence. This algorithm
predicts protein structures based on a library of residue fragments. The fragments
are selected according to their sequence similarity with the target protein. The
Rosetta method assumes that short sequence segments have strong local structural
biases. In the first step, fragment libraries for each 3- and 9-residue segment of the
target protein are extracted from the protein structure database. Then, tertiary
structures are generated using a Monte Carlo search of the possible combinations,
minimizing a scoring function [10, 19].

4 Protein Folding Problem

Protein folding problem is the process of finding the three-dimensional native
structure of a protein, this structure is usually named Native Structure (NS). NS is
the conformation in which the protein performs its biological role. As mentioned
earlier, the PFP since the ab initio approach can be considered as an optimization
problem, where the goal is identifying the set of values of the variables that satisfy
an objective function, that in this case is the energy function. PFP is an enormous
challenge because the space of possible conformations a protein can take is
extremely large [7]. For an ab initio approach PFP can be defined as follows:

• A sequence of n amino acids; a1; a2; a3; . . .; an, that represents the primary
structure of a protein, with a set of dihedral angles rm ¼ r1; r2; r3; . . .; rm,

• An energy function f r1r2. . .rmð Þ that represents the free energy.
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The solution to this problem is to find the native structure such that
f � r1r2. . .rmð Þ represents the minimum energy value, where the optimal solution
r� ¼ r1r2. . .rm defines the best three-dimensional configuration.

The atoms of a protein are represented in three-dimensional Cartesian coordi-
nates. There are four types of torsion angles or dihedral angles presented in Fig. 4,
and defined below:

• Phi /ð Þ is the angle between the amino group and the alpha carbon. Represents
the angle between the amino group (or NH2) of the amino acid i, and the alpha
Carbon Ci in the sequence; it represents the bond angle between the Ni atom of
amino group and the alpha carbon aCið Þ.

• Psi wð Þ is the dihedral angle between the alpha carbon and the carboxyl
group. Psi represents the angle between the carboxyl COOHið Þ group of the
amino acid i, and the alpha carbon i ðCiÞ of the same amino acid. Psi measures
the angle of the covalent bond between the Ci of the carboxyl group, and the
alpha carbon aCið Þ.

• Omega xð Þ is defined for each two consecutive amino acids; it is the angle of
the covalent bond between the atom Ni of amino acid i, and carbon C i�1ð Þ of the
carboxyl group of the amino acid i� 1ð Þ.

• And, Chi vð Þ is defined between the two planes conformed by two consecutive
carbon atoms in the radical group.

Fig. 4 Representation of the
four dihedral angles
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The PFP variables are the set of dihedral angles that satisfies the minimum
energy value.

4.1 Energy Function

The protein’s energy depends on the interaction among their atoms (angles and
distance). Force fields are used to measure the energy of a protein; these include
many interactions among atoms affecting different energies [20]. A force field
includes terms associated with the bond interactions, and terms associated with
no-bond interactions. Some of the most popular and successful force fields are
CHARMM [21], AMBER [22], ECEPP/2 and ECEPP/3 [23].

One of the most used energy functions for PFP is ECEPP/2, that is a relatively
simple force field based on rigid geometry (i.e., constant bond angles and lengths),
with conformations thus defined solely by the backbone and side chain dihedral
angles. In ECEPP/2 the potential energy is given by the sum of the electrostatic
term Eelect, Lennard-Jones term ELJ , and hydrogen-bond term EHB for all pairs of
atoms in the peptide together with the torsion term Etor for all torsion angles [24]:

Ebonded ¼ Eelect þELJ þEHB þEtor ð1Þ

These terms in Eq. (1) are expressed in Eq. (2) through which energy function
ECEPP/2 minimize the energy [24].

Etotal ¼
X

j[ i

Aij

r12ij
� Bij

r6ij

 !
þ 332

X

j[ i

qiqj
erij

þ
X

j[ i

Cij

r12ij
� Dij

r10ij

 !

þ
X

n

Un 1� cos knunð Þð Þ
ð2Þ

where:

• rij is the distance in Å between the atoms i and j.
• Aij;Bij;Cij and Dij are the parameters of the empirical potentials.
• qi and qj are the partial charges on the atoms i and j, respectively.
• e is the dielectric constant which is usually set to e ¼ 2.
• 332 is a factor for using the energy units expressed in kcal/mol.
• Un is the energetic torsion barrier of rotation about the bond n.
• kn is the multiplicity of the torsion angle un.

The energy function ECEPP/3 is a modify version of ECEPP/2. ECEPP/3
contains updated parameters for proline and oxyproline residues. This energy
function is used until recently for PFP.
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5 Conclusions

The study of protein folding problem for finding the three-dimensional structure is
one of most important research problems in Bioinformatics. Over the last decades,
computational methods, and algorithms have been developed for solving
PFP. However, there is no method yet that can predict structures without the need
of information about templates, this is because of the complexity and high con-
formational search space, so that the problem still challenges in bioinformatics and
computer science. Three strategies were described in this paper, these strategies are
now use in algorithms and methods for PFP. Some of these methods are
ROSETTA, I- TASSER and QUARK, which have been three of the most suc-
cessful predictors in the CASP competition. A common characteristic of these
methods is that for some of their processes they use a Monte Carlo method.
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