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Preface

There is an international recognition of the importance of proof and proving in
students’ learning of mathematics at all levels of education, and of the difficulties
faced by students and teachers in this area. Also, existing curriculum materials tend
to offer inadequate support for classroom work in this area. All of these paint a
picture of proof and proving as important but difficult to teach and hard to learn.
A rapidly expanding body of research has offered important insights into this area,
leading to an upsurge of publications on various aspects of proof and proving
(mathematical, cognitive, social, pedagogical, philosophical, etc.) in all mathe-
matics education research journals and in books or specialized volumes (e.g.,
Hanna and de Villiers 2012; Hanna et al. 2010; Reid and Knipping 2010;
Stylianides 2014, 2016; Stylianides and Stylianides 2017; Stylianou et al. 2010).
The state of the art in this research area has been summarized and discussed in
several literature reviews (Harel and Sowder 2007; Mariotti 2006; Stylianides et al.
2016, 2017), which have shown not only the progress we have made as a field over
the past few decades in addressing key questions related to proof and proving but
also that there are still many open questions for which research-based responses are
sorely needed.

This book explores new trends and developments in mathematics education
research related to proof and proving, the implications of these trends and devel-
opments for theory and practice, and directions for future research. With contri-
butions from researchers working in 12 different countries (Canada, Chile, France,
Germany, Hong Kong, Israel, Italy, Japan, Norway, Peru, the UK, and the USA),
the book brings also an international perspective to the discussion and debate of the
state of the art in this important area.

The book is organized around the following four parts, which reflect the breadth
of issues addressed in the book. Under each part (essentially a theme), there are four
main chapters and a concluding chapter offering a commentary on the theme
overall. Although several chapters addressed issues that spanned several themes,
practical considerations related to the organization of the book necessitated a
best-fit approach.
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• Part I: Epistemological Issues Related to Proof and Proving (Chaps. 1–5);
• Part II: Classroom-based Issues Related to Proof and Proving (Chaps. 6–10);
• Part III: Cognitive and Curricular Issues Related to Proof and Proving (Chaps.

11–15);
• Part IV: Issues Related to the Use of Examples in Proof and Proving

(Chaps. 16–20).

The book’s main chapters (i.e., all but the four commentary chapters) are
extended and revised versions of papers that were presented at Topic Study Group
18, titled “Reasoning and Proof in Mathematics Education”, of the 13th International
Congress on Mathematical Education (July 2016, Hamburg, Germany). Associated
with this Topic Study Group, which we co-chaired, there were 68 contributions in
three categories: 21 8-page papers (regular presentations), 35 4-page papers (oral
communications), and 12 posters; the book’s main chapters derived from the first
category. These contributions passed through a rigorous, stepwise review process
that included several cycles of feedback and revision. The first key step in the process
was the review and subsequent extension/revision of the contributions prior to their
acceptance as regular presentations at the Congress; each contribution was reviewed
by at least two members of the Topic Study Group organizing team, which com-
prised Paolo Boero, Mikio Miyazaki, David Reid, and the two of us as co-chairs. The
second key step in the process was the extension/revision of the contributions based
on the feedback received during the Congress and the overall discussions that
happened during the work of the Topic Study Group. The third key step in the
process was the review of the post-Congress revisions by two other contributors
of the book and one of us as the Handling Editor; this review led to another sub-
stantial round of extension/revision. Most chapters were accepted for inclusion in the
book at the end of the third step; a few others underwent a further round of revision
that was overseen by the Handling Editor. The four commentary chapters were
written by invited contributors—Keith Weber and Paul Dawkins (Chap. 5), Ruhama
Even (Chap. 10), Lianghuo Fan and Keith Jones (Chap. 15), and Orit Zaslavsky
(Chap. 20)—and were reviewed only by us. Finally, Gabriele Kaiser, the ICME-13
Monograph Series Editor, reviewed the whole book before it was sent to production.

We wish to thank the participating authors for their dedication and cooperation;
the reviewers and commentators for their diligent work; the presenters and audience
of our Topic Study Group for their feedback and insight; the members of the study
group organizing team, Paolo Boero, Mikio Miyazaki, and David Reid, for their
valuable inputs; and Gabriele Kaiser, the Monograph Series Editor, for her support
throughout the production process.

Cambridge, UK Andreas J. Stylianides
La Jolla, USA Guershon Harel
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Chapter 1
Reflections on Proof as Explanation

Gila Hanna

Abstract This chapter explores the connection between two distinct ways of
defining mathematical explanation and thus of identifying explanatory proofs. The
first is the one discussed in the philosophy of mathematics, in which a proof is
considered explanatory when it helps account for a mathematical fact, clarifying
why it follows from others. It is concerned with intra-mathematical factors, not with
pedagogical considerations. The second definition is the one current among
mathematics educators, who consider a proof to be explanatory when it helps
convey mathematical insights to an audience in a manner that is pedagogically
appropriate. This latter view brings cognitive factors very much into play. The two
views of explanation are quite different. The chapter shows, however, citing
examples, that insights from what are considered by philosophers of mathematics to
be explanatory proofs can sometimes form a basis for explanatory proofs in the
pedagogical sense and thus add value to the curriculum.

Keywords Mathematical proof � Mathematical explanation � Explanatory proof
Proof teaching � Epistemology

Mathematical Explanations

Over the past four decades the philosophy of mathematics has shifted markedly
away from a focus on the logical foundations of mathematics and towards a detailed
study of mathematical practice. There has been a remarkable increase in publica-
tions on the concept of explanation in mathematics (with some ensuing influence on
mathematics education as well). As pointed out by Mancosu (2011), the discussion
of mathematical explanation has encompassed two areas:
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The first area addresses the problem of whether mathematics can play an explanatory role in
the natural and social sciences. The second deals with the problem of whether mathematical
explanations occur within mathematics itself. (para. 1)

By explanations within mathematics, often referred to as “intra-mathematical
explanations”, philosophers mean mathematical explanations of mathematical facts,
as opposed to “scientific explanation using mathematics”. This chapter will be
concerned with intra-mathematical explanations and their implications for mathe-
matics education.

When philosophers of mathematics discuss intra-mathematical explanations,
they are unsurprisingly not concerned with pedagogy. They see such explanations
simply as another facet of mathematics, one that is not designed with an audience in
mind (other than mathematicians and philosophers of mathematics). They are
correct in this view, because they use the term “explanation of a fact” in the sense of
“accounting for a fact”, similar to its use in the natural sciences. An example from
the natural sciences might be an “explanation” of the occurrence of four seasons by
pointing to the fact that the Earth tilts on its axis at an angle of 23.5° relative to our
orbital plane, causing each hemisphere to be oriented toward the sun for half of the
year and away from it for the other. The tilt of the Earth “explains” or “accounts
for” the seasons. This type of explanation is meant as an essentially scientific
explanation; it is not directed to a specific audience and it is not concerned with
pedagogical considerations.

Intra-mathematical Explanations

The nature of mathematical explanation has long been a topic of debate among
philosophers of mathematics (Cellucci 2008; Mancosu 2011; Steiner 1978).
Though philosophers have come to a consensus on the central importance of
mathematical explanation and accordingly have looked more closely at what may or
may not count as explanation in mathematics, they widely diverge in their
conclusions.

Some have gone as far as to argue that there are no explanations within math-
ematics. Zelcer (2013), for example, restates the accepted view that explanations in
mathematics should be taken to be analogous to scientific explanations, “not mere
stylistic features that communicate mathematics more clearly or in a psychologi-
cally more satisfying …way”, but goes on to maintain that “given what we expect
from a theory of explanation [meaning akin to scientific explanation], nothing
comparable is possible in mathematics” (p. 176). This is a minority view. Most
philosophers agree that intra-mathematical explanations do exist and think that most
of them take the form of a proof.

If one were to take the position that an explanation is simply a deductive
argument, then all proofs would automatically be explanations. However, almost all
mathematicians make the very useful distinction between proofs that only
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demonstrate that a fact is true and proofs that also show why it is true. The latter are
known as “proofs that explain”. Certainly the distinction is not black and white, and
indeed mathematicians do attribute to proofs various degrees of explanatory power
(Mancosu 2011; Sandborg 1997).

In this chapter I take as a point of departure the distinction between proofs that
merely prove and proofs that also explain, and I also accept the majority view that
intra-mathematical explanations do exist, as evidenced by examples to be shown. (It
is perhaps worth reiterating here that the term “proofs that explain” refers not to
mere explanations, but to valid mathematical proofs that happen to possess the
additional feature of explanatory power.)

Later I will survey three different philosophical accounts of intra-mathematical
explanation, each of which offers criteria that can be used to identify mathematical
explanations, and in particular explanatory proofs. These accounts deal with
philosophical issues, not pedagogical ones, but this does not preclude them from
having implications for the pedagogy of mathematics. In discussing each of these
philosophical accounts, I will point out how some of the criteria they offer might be
put to good use by mathematics educators in developing pedagogical explanations.
To set the stage I will first discuss the nature of pedagogical explanation.

Pedagogical Explanations

Proof is a central feature of the mathematics curriculum, as it is of mathematics.
Thus a key role of proving in the classroom is to teach proof itself: its use in
justification, its strategies, its techniques, and its various forms. In this role, the
most important goal of proof is to generate an understanding of the need to prove,
of the process of proving, and of the role of deductive reasoning and logical
inference. The focus of the present chapter, however, is on the potential comple-
mentary role of proofs in fostering a greater understanding of other mathematical
concepts and propositions. As will be seen, it is often possible to find the happy
concurrence in which a proof enlightens both the process of proving and the
broader mathematical context with which it deals.

Where the classroom goal at hand is to generate an understanding of a mathe-
matical proposition and the mathematical context in which it is embedded, and a
proof is one vehicle to that end, the proof will clearly be most effective when it
embodies explanation. The teaching of such a proof would be concerned not only
with establishing its conclusion, but also with its main ideas, its overall structure,
and its relationship to other mathematical fields and concepts (Balacheff 2010; De
Villiers 2004; Hanna 1990, 2000; Mason and Hanna 2016).

It is no accident, then, that mathematics educators have been motivated to
examine the idea of an explanatory proof. In this regard mathematics education
does not differ from mathematics itself as much as might be thought. As mentioned,
mathematicians too display concern for explanation. The mathematician Robinson
(2000), for example, sees explanation as the most important role of proof. He
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describes mathematical proofs as having two potential components:
proof-as-guaranty and proof-as-explanation. The former is concerned only with
demonstrating the truth of a theorem, and is judged by its syntactical correctness.
The latter component aims to shed light on why the theorem is true, and is judged
by its explanatory value. As Robinson (2000) puts it, “The explanatory process
caused by the cognitive internalization of a proof … seems to me to be both
(far) more important, (far) more interesting, and (far) more challenging” (p. 280).
His viewpoint is largely shared by mathematicians, so in this respect mathematics
education is entirely reflective of mathematics itself.

In mathematical practice, of course, explanation is addressed by mathematicians
to mathematicians, while in mathematics education it is addressed to a range of
audiences. Understanding depends on the existing knowledge of the learners, on
their developmental level, and on the quality of instruction (Tall et al. 2012; Harel
and Sowder 2007; Mejia-Ramos et al. 2012). What it means to understand a proof
may not admit of a tight definition, but it is generally agreed that it includes the
ability to reproduce a proof, to identify its main idea(s), to see where in the proof
certain assumptions are needed, to see why certain steps are essential, and to follow
the deductive process (Avigad 2008; Hanna and De Villiers 2012; Stylianides and
Stylianides 2009). Mathematics educators are also generally agreed that it is easier
to meet these criteria of understanding when an explanatory proof can be enhanced
by a visual representation (Clements 2014; Inglis and Mejía-Ramos 2009).

Research by Educators

As discussed, the focus of this chapter is on intra-mathematical explanation. It
explores the insights of three philosophers of mathematics on the use of explanatory
proofs to convey understanding among mathematicians, and evaluates these
insights for their applicability to teaching. But this focus is not to imply that
mathematics educators have not addressed the use of explanatory proofs directly
from a pedagogical perspective.

In fact, educators have generated ample research literature on the pedagogical
aspects of proof. Naturally, it has been largely motivated by issues that have arisen
in the teaching and learning of proof at all levels, from elementary to tertiary. Many
of the researchers have touched upon the complex relationship between proof and
explanation. Their priority, however, has not been to offer specific criteria that
might make a particular proof explanatory of a mathematical concept or proposi-
tion, but rather to suggest ways in which the process of proving itself might be
made easier for students to grasp.

I will point out here only a few recent papers by educators that discuss this topic.
Leron and Zaslavsky (2013), for example, proposed engaging students with the
main ideas of a proof by presenting them with “generic proofs”, while Selden and
Selden (2015) argued for dividing the teaching of a proof into a “formal-rhetorical”
part and a “problem-centered” one. Raman (2003) and Raman et al. (2009)
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maintained that directing the attention of students to the “key ideas” of a proof
could foster understanding. Hanna and Mason (2014) discussed the role of such key
ideas in understanding a proof and in remembering and reconstructing it. Lastly,
Stylianides et al. (2016) examined the conditions under which even a proof by
mathematical induction can be explanatory.

On questions of proof and its explanatory nature there has already been a certain
amount of collaboration between scholars in the philosophy of mathematical
practice and those who focus on mathematics education (Hanna et al. 2010); it
would be beneficial for both disciplines to continue the dialogue.

Philosophical Models of Explanation

In this section I will survey accounts by three philosophers of mathematics who
examined intra-mathematical explanation with a view to identifying factors that
make a proof explanatory to others in the discipline. The first two, Steiner (1978)
and Kitcher (1981), are considered by other philosophers of mathematics to have
offered most valuable insights into intra-mathematical explanation (Mancosu 2011),
while the third, Lange (2014), has recently presented a new perspective on aspects
of mathematical explanation. None of these three philosophers were concerned with
pedagogical implications. In the last section, however, I will provide some exam-
ples that show how factors they identified can nevertheless provide guidance to
mathematics educators in choosing explanatory proofs for use in the curriculum.

Mark Steiner: A Characteristic Property

Steiner (1978) presented a model of mathematical explanation that draws upon the
distinction between explanatory and non-explanatory proofs. Seeking to identify the
factors that make a proof explanatory, he first examined Feferman’s attribution of
explanatory power to abstractness and generality. Feferman had stated that
“Abstraction and generalization are constantly pursued as the means to reach really
satisfactory explanations which account for scattered individual results” (Feferman
quoted in Steiner 1978, p. 135), and more concisely that “Of two proofs of the same
theorem, the more explanatory is the more abstract (or general)” (p. 136). Steiner
showed through a few examples, however, that Feferman’s criteria fail to account
for explanatory power (p. 143).

In Steiner’s view, a proof is explanatory when it reveals and makes use of the
mathematical ideas that motivate it, that is, when it makes evident that a “charac-
terizing property” is responsible for making the conclusion true. The “character-
izing property” will change from theorem to theorem, because it is unique to a
given mathematical entity.

1 Reflections on Proof as Explanation 7



As Steiner put it, “an explanatory proof makes reference to a characterizing
property of an entity or structure mentioned in the theorem, such that from the proof
it is evident that the result depends on the property” (1978, p. 143). This criterion is
in effect an answer to the question: “What is it about the proof that makes it possible
to see how the conclusion follows naturally?”

As an example of a proof that makes use of a characterizing property, Steiner
presents the proof of the equation Sn = n(n + 1)/2 commonly known as the Gaussian
proof. In this case the characterizing property is that of symmetry. The proof pro-
ceeds by adding the sequence “1 + 2 + ��� + n” to the same sequence reversed,
“n + (n − 1) + ⋯ + 1”, to give “(n + 1) + (n + 1) + ⋯ + (n + 1) = 2Sn = n
(n + 1)”. This proof, using symmetry, shows why the result is true, and is thus “more
illuminating” than a proof by mathematical induction.

Steiner goes on to show that a geometrical proof accompanied by a visual
demonstration of the same sum is an “even more explanatory proof” (p. 137). He is
ambivalent, however, about asserting a more general link between explanatory
power and the ability to visualize a proof. While admitting that many explanatory
proofs do rely on some “pictorial aspects” such as diagrams, he states that this
criterion “is too subjective to excite” (p. 143).

Steiner’s model was endorsed by several philosophers of mathematics, among
them Weber and Verhoeven (2002) who went on to offer a refined and improved
version. On the other hand, a number of others in the field found much to criticize in
Steiner’s model. Resnik and Kushner (1987) provided a counter-example and
argued that the choice of a characterizing property is bound to be arbitrary. Hafner
and Mancosu (2005) showed that in the case of the proof of Kummer’s convergence
criterion, the explanatory power of the proof cannot be accounted for by Steiner’s
criteria. Molinini (2012) examined the theorem known as the “Euler theorem” that
appears in “Découverte d’un nouveau principe de mécanique” (1750) and discussed
it as it relates to the notion of explanatory proof in mathematical practice. He then
argued that the criteria for mathematical explanation proposed by Steiner are
insufficient. This is what Molinini (2012, p. 123) had to say about Steiner’s model:

… it might be more philosophically profitable to abandon Steiner’s idea that an explanatory
proof depends on a particular property of an entity mentioned in the theorem in favour of an
approach which focuses on the preferences expressed by the mathematicians for some
mathematical concepts or for the particular mathematical framework used to prove a the-
orem. On the other hand, it might be thought that the notion of explanatory proof cannot be
captured simpliciter, as Steiner proposes, but that there is a variety of explanatory
proof-practices in mathematics.

Although Steiner and the others who assessed his model did not concern themselves
with pedagogical explanation, I will show later, as mentioned, that aspects of his
model of mathematical explanation are quite relevant to mathematics education.
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Philip Kitcher: Theoretical Unification

Kitcher (1981, 1989) approaches the concept of explanation by stating that:

…successful explanations … belong to a set of explanations, the explanatory store, ….
Intuitively the explanatory store associated with science at a particular time contains those
derivations which collectively provide the best systematization of our beliefs. (Kitcher
1989, p. 430)

He does not use the term “proofs that explain”, but he does assert that the ideal
explanations are derivations (though of course not all derivations are explanations).

For Kitcher (1981) a derivation is an acceptable explanation for its conclusion
when it is capable of systematizing a set of statements. This means that the
derivation identifies a set of patterns that can be used repeatedly, “… and, in
demonstrating this, it teaches us how to reduce the number of facts we have to
accept as ultimate (or brute)” (p. 432). This leads to what Kitcher refers to as
unification, which he regards as a form of explanation.

According to this approach, a mathematical fact (or scientific fact, for that matter)
is “explained” by showing that it is part of a larger set of facts that share common
patterns, which he calls “unifying explanatory patterns”. Thus “… to explain is to fit
the phenomena into a unified picture insofar as we can” (Kitcher 1981, p. 500). This
view of intra-mathematical explanation will reverberate with mathematics educators
who are pleased if they are able to illuminate a theorem and its proof by reference to
related bodies of mathematical knowledge shared by their students.

Kitcher’s model may not be as relevant to mathematics education as it might
appear, however, because it is difficult to assign to unification per se—fitting a
mathematical fact into a unified picture—any degree of explanatory power in the
cognitive sense. It seems, too, that the methods that might lead to a potential
unification are not necessarily ones that are likely to offer an explanation of the
mathematical fact. The difference between the explanatory process and the process
of unification was put by Halonen and Hintikka (1999, pp. 27–28) as follows:

The explanatory process is geared to a particular explanandum and a particular background
theory. The crux of any one explanatory process lies in finding the ad hoc premises from
which (together with the background theory) the particular explanandum in question fol-
lows. There is not place for any unification in such a process. … In other words, it is not a
matter of explanation, in the sense that it should affect our ideas about the process of
explanation. Instead it is a matter of theory formation and theory selection.

Marc Lange: Symmetry, Unity, and Salience

Lange (2014), embracing the distinction between proofs that only prove and proofs
that both prove and explain, investigated what makes a proof explanatory. He sees
the process of proof as key:
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… I will argue that two mathematical proofs may prove the same theorem from the same
axioms, though only one of these proofs is explanatory. My goal in this essay will be to
identify the ground of this distinction. Accordingly, my focus will be on the course that a
given proof takes between its premises and its conclusion. The distinction between
explanatory and nonexplanatory proofs from the same premises must rest on differences in
the way they extract the theorem from the axioms. (p. 487)

Lange goes on to argue that a proof can be explanatory only if “some feature of
the result is salient” and the proof builds upon that salient feature (Lange 2014,
p. 489). According to him “salience” is a feature that is “worthy of attention” and
that “helps to determine what a proof must do in order to explain why the theorem
holds” (p. 488). When the salient feature of the result is symmetry, for example, “a
proof is privileged as explanatory because it exploits a symmetry in the problem—a
symmetry of the same kind as initially struck us in the fact being explained”
(p. 499). However, Lange does not restrict a salient feature to symmetry alone; he
admits that some feature “… other than its symmetry could likewise be salient,
prompting a why question answerable by a proof deriving the result from a similar
feature of the given” (p. 507).

Lange gives several examples of this situation from number theory and geom-
etry. For example, as shown in Fig. 1.1, symmetry is the salient feature of the
theorem: If ABCD is an isosceles trapezoid (AB parallel to CD, AD = BC) such
that AM = BK and ND = LC, then ML = KN. Thus of all the proofs of this the-
orem, the one that Lange considers explanatory is the one that makes use of a
symmetry argument (Fig. 1.1). Lange (2014) adds:

The theorem (that ML = KN) “makes sense” in view of the figure’s overall symmetry.
Intuitively, a proof that fails to proceed from the figure’s symmetry strikes us as failing to
focus on “what is really going on”: that we have here the same figure twice, once on each
side of the line of symmetry. (p. 502)

His conclusion is that one can speak of a proof that explains only “in a context
where some feature of the result being proved is salient” (p. 507). He allows for

Fig. 1.1 A proof that is
explanatory because it
exploits an overall symmetry
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salient features other than symmetry, but maintains that one cannot expect to find an
explanatory proof for a result that has no salient feature. The examples discussed
below illustrate the value of a salient feature, but not all mathematicians or edu-
cators would agree with Lange that such a feature is the only road to explanatory
power.

The role of symmetry in mathematical proofs, advocated by both Steiner and
Lange, is also strongly supported by Giuseppe Longo, a philosopher of mathe-
matics with an interest in the cognitive foundations of mathematics. In his review of
epistemological perspectives on mathematical concepts and proofs, Longo (2011,
p. 64) affirmed its importance:

I have shown how geometric judgements penetrate proof even in number theory; I argue, a
fortiori, their relevance for general mathematical proofs. We need to ground mathematical
proofs also on geometric judgments which are no less solid than logical ones: “Symmetry”,
for example, is at least as fundamental as the logical “modus ponens”; it features heavily in
mathematical constructions and proofs. (p. 64)

Proofs Considered Pedagogically Explanatory

The following are proofs that show why a result is true in a manner that would be
entirely suitable for classroom use, even though the keys to their explanatory power
stem from the reflections of the philosophers of mathematics discussed above—
who were addressing intra-mathematical explanation in the absence of pedagogical
considerations.

Example 1: Pick’s Theorem

Pick’s theorem provides a simple formula for calculating the area A of a polygon in
terms of the number i of lattice points in the interior of the polygon and the number
b of lattice points on the boundary: A = i + b/2 − 1.

The theorem is named after Georg Pick, who published it in 1899. It is easy to
state and verify, but it is not obviously true. It has been proved in different ways
several times. The reason for reproving is usually to create a proof that is more
explanatory, more elegant, more rigorous, or more general (Sandborg 1997). Some
of these proofs use mathematical induction, some use dissections into minimal
triangles followed by an application of Euler’s polyhedron formula, while others
use partitioning and arguments from graph theory. Blatter (1997) offered yet
another proof, one of a conceptional nature, in the form of a thought experiment
(Gedankenexperiment).

Although the theorem is easily understood, most of its proofs were not within the
grasp of high school students. The following explanatory proof was provided by
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middle- and high-school students at St. Mark’s Institute of mathematics (Tanton
2010) who sought answers to the following questions: (1) “Why are interior points
each worth 1?”, (2) “Why are boundary points each worth ½?”, and (3) “Why is
there a −1?” (p. 34).

The explanatory proof developed by the students could be seen as an application
of Lange’s views on intra-mathematical explanation. As discussed below, the
students took notice of “salient features” of the theorem and were prompted to
formulate three appropriate “why” questions “answerable by a proof deriving the
result from a similar feature of the given” (Lange 2014, p. 507).

The students started by examining a lattice rectangle as shown in Fig. 1.2. The
following is a summary of their reasoning:

Each interior point contributes one full square unit of area and each boundary point dif-
ferent from a vertex half a unit of area. If we extend the sides of the rectangle to make its
exterior angles explicit we can introduce additional area so that each vertex also contributes
half a unit of area. As the exterior angles of any polygon sum to one full turn, this excess in
area amounts to one full square unit. The “−1” in Pick’s formula compensates for this.
(Tanton 2010, p. 34)

They then applied the same reasoning to any simple lattice polygon (Fig. 1.3),
pointing out that:

…diagonal line segments connecting two lattice points are rotationally symmetric about
their midpoints. In particular, any cell (unit square) that is intercepted by such a diagonal
and divided into two parts is matched by a rotationally symmetric cell divided into the same
two parts. (And the matching portions are on alternate sides of the diagonal) (p. 34)

From here they reached the proof of Pick’s area theorem for any polygon, one
which they considered to be a proof without words (Fig. 1.4). They then proceeded
to generalize the results.

This proof, designed for classroom use, nicely demonstrates the explanatory
criterion of symmetry suggested by the philosophers of mathematics, Lange,
Longo, and Steiner, as well as the criterion of salience suggested by Lange.

Fig. 1.2 Lattice rectangle where each boundary point is surrounded with a ½ unit square and
showing the excess area which amounts to one full square unit (thus −1)
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Example 2: The Irrationality of
ffiffiffi

2
p

Here are two indirect proofs (that is, proofs by contradiction: proving p by showing
that not p leads to a contradiction). Most would consider indirect proofs as inher-
ently not explanatory, but this is not necessarily the case. Although the literature of
mathematics education seems to show that many students find indirect proofs
unenlightening and somewhat cognitively demanding (Antonini and Mariotti
2008), it is possible to present some such proofs in ways that show why a result is
true.

The following two indirect proofs do show how proving the result (that
ffiffiffi

2
p

is
not rational) can be made explanatory by revealing the heart of the matter, in
particular when there is a visual aid. The two proofs are both intra-mathematically
and pedagogically explanatory.

2a. Carpet proof of the irrationality of
ffiffiffi

2
p

There are over 30 different proofs of the irrationality of
ffiffiffi

2
p

. This geometric proof,
often referred to as the “Carpet proof”, is attributed to Tennenbaum (Conway and

Fig. 1.3 Each portion outside a unit square with center in the interior of the polygon is replaced
by an equal portion through a rotational symmetry about the diagonal midpoint

Fig. 1.4 Explanatory proof of A = i + b/2 − 1
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Shipman 2013; Miller and Montague 2012). It is a good illustration of how “ge-
ometric judgements penetrate proof even in number theory” (Longo 2011, p. 64).

Assume
ffiffiffi

2
p

is rational. Select the smallest integer-sided square m2 whose area is
the sum of two integer sided congruent squares, so that m2 = 2n2, which means that
an “m � m” square has the same area as two “n � n” ones. As shown in Fig. 1.5,
place two smaller square carpets, of size n2 each, in opposite corners of the larger
square carpet of size m2.

Then the area of overlap will be a square equal in area to the total area not
covered by the two carpets, which is made up of two congruent squares. (This is so
because the statement says that the area of square m2 is equal to the area of 2n2.)
The side of each uncovered square is (m − n) while the side of the overlap is
(2n − m). Clearly, then, the sides of these two uncovered congruent squares and the
overlap square are also whole numbers smaller than the original ones, thus con-
tradicting the assumption of a smallest presentation of

ffiffiffi

2
p

as a rational number.

2b. Proof of the irrationality of
ffiffiffi

2
p

based on parity

The following school proof is based on the concept of parity. This salient feature of
the proof (Lange 2014) happens to be an elementary concept familiar to students.
The explanatory power of this particular proof, also known as the Pythagorean
proof, has been discussed by Steiner (1978) who showed that it is explanatory in the
eyes of philosophers of mathematics. It also happens to be a valuable explanatory
proof when viewed with pedagogical considerations in mind.

Suppose that
ffiffiffi

2
p

were rational. Then
ffiffiffi

2
p

= m/n for some integers m, n in lowest
terms, i.e., m and n have no common factors. Then 2 = m2/n2, which implies that
m2 = 2n2. Hence m2 is even, which implies that m is even. Then m = 2k for some
integer k. So 2 = (2k)2/n2, but then 2n2 = 4k2, or n2 = 2k2. So n2 is even. But this
means that n must also be even, because the square of an odd number cannot be
even. We have just shown that both m and n are even, which contradicts the fact
that m, n are in lowest terms. Thus our original assumption (that

ffiffiffi

2
p

is rational) is
false, so

ffiffiffi

2
p

must be irrational.

Fig. 1.5 Carpet proof of the irrationality of
ffiffiffi

2
p
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Example 3: The Product of Any Three Consecutive Nonzero
Natural Numbers Is Divisible by 6

This result appears in most high-school mathematics curricula. It is often proved by
mathematical induction. The intra-mathematical explanatory proof provided by
Lange (2014, p. 510), however, exploits a salient feature “common to every triple of
consecutive nonzero natural numbers” and the 2-line proof is immediate: “Of any
three consecutive nonzero natural numbers, at least one is even (that is, divisible by 2)
and exactly one is divisible by 3. Therefore, their product is divisible by 3 � 2 = 6.”

In this case the criterion of salience makes the proof explanatory not only
intra-mathematically but also pedagogically. It clearly shows why the claim is true
in a way that would be judged by most educators to potentially lead to a good
understanding of the proof. An interesting discussion of two proofs of the more
general theorem that states: “The product of any k consecutive positive integers
n nþ 1ð Þ. . . nþ k � 1ð Þ is divisible by k!” can be found in a blog post by Gowers
(2010).

Conclusion

The chapter has shown that in the practice of mathematics there is such a thing as
intra-mathematical explanation (which ignores issues of pedagogy), and has then
discussed several ideas put forward by philosophers of mathematics as to what
features of a proof would make it “intra-mathematically explanatory”. Though these
features were not identified and explored for their pedagogical value and thus would
not have necessarily come to the attention of mathematics educators, the chapter has
gone on to show that many of them can nevertheless be of help to mathematics
educators in identifying or creating proofs that are explanatory in the pedagogical
sense.

Three current and influential models of explanation have been discussed, but of
course other valuable models may yet be formulated. Indeed, the notion of
intra-mathematical explanation in general, and in particular the distinction between
a proof that shows that a result is true and a proof that also explains why a result is
true, have been topics of intensive debate among philosophers, in particular among
philosophers of mathematical practice. Unfortunately, to quote Burgess, this has
shown “… rather meager and inconclusive results… And needless to say there are
many quotable things mathematicians have said about such a distinction at one time
or another too, not all by any means pointing in the same direction.” (Burgess 2014,
p. 1347). For example, in Cellucci’s opinion heuristics and the important connec-
tion between explanation and discovery have so far been overlooked:
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What is crucial in a mathematical explanation is not a characterizing property of an entity or
structure mentioned in the theorem, but rather the heuristic value of the hypothesis, its
effectiveness as a means of discovery. While characterizing properties are properties that
entities or structures mentioned in the problem are supposed to possess, the heuristic value
of a hypothesis may depend on entities or structures not mentioned in the problem. (Celluci
2008, p. 207)

It seems clear that the notions of mathematical explanation and of explanatory
proof cannot be captured by a single model. Potential additional models for
explanation in mathematics would most certainly take into consideration approa-
ches such as the use of analogies, examples, and rule-based logic, as well as assess
the roles of intuition and visualization, perhaps while entertaining varying criteria
for the validity of a proof. Educators will have to continue to draw on multiple
resources, rely on their judgment, and be pragmatic when seeking to identify or
construct proofs that are sufficiently explanatory to meet their pedagogical goals.
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Chapter 2
Working on Proofs as Contributing
to Conceptualization—The Case of IR
Completeness

Viviane Durand-Guerrier and Denis Tanguay

Abstract In this chapter, we propose a mathematical and epistemological study
about two classical constructions of the real number system, by Dedekind (cuts) and
Cantor (Cauchy sequences), and the associated proofs of its completeness. In
addition, we present two contrasting constructions leaning on decimal expansions.
Our analysis points out that Dedekind’s construction fosters a conceptualization of
the real numbers leaning strongly on the total ordering of ℚ and ℝ, while putting
aside the metrical aspects. By contrast, the more intricate construction through
Cauchy sequences calls on complex objects, but yields to a better understanding of
the topological relationship between rational and real numbers. We argue that
suitable considerations of decimal expansions and of approximation issues enable
to connect and complement those two approaches. These analyses highlight the
dialectical interplay between syntax and semantics and the crucial role of the
definitions of objects at play in proof and proving. The general didactical issue
pertains to the potential contribution of analyzing proofs as a means for deepening
the understanding of the related objects and of their ensuing conceptualization. We
hypothesize that doing so with Dedekind’s cuts, Cauchy sequences and decimal
expansions open paths towards improving the conceptualization of the real num-
bers, by taking into account the triad discreteness/density/continuity.
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Introduction

In this chapter, we present the first elements of a larger research project about the
relationship between the choices made in constructing and defining mathematical
objects, and the possible proofs induced by these choices. This project is based on
the hypothesis that working with proof is likely to contribute to conceptualization
by prompting a work with the mathematical objects at stake, in agreement with the
syntax-semantics dialectic in proof and proving (e.g. Alcock and Weber 2004). To
initiate this research project, we decided to focus on the concept of continuity, as it
is conveyed by completeness of the real number system. This choice is motivated
by epistemological and didactical considerations.

Ancient Greeks were already aware of the existence of incommensurable
magnitudes whose ratios cannot be expressed as quotients of integers, but such
ratios were not designated as numbers, even though methods—such as Eudoxus’
equimultiples—were developed to compare and process them. With the birth of
Calculus in the seventeenth century, the recourse to real numbers grew insofar as
being systematized in mathematics, well before the emergence of explicit con-
structions, these dating back to the second half of the nineteenth century with,
among others, the ones from Dedekind and Cantor. The need for these construc-
tions became felt with the need for stronger theoretical bases supporting theorems
such as the Intermediate Value Theorem. The latter was largely used, but its jus-
tification only leaned on graphical evidences, or (implicitly) drew on intuitive
results such as the existence of a limiting value for any “magnitude [that] grows
continually but not beyond all limits” (Dedekind 1963a, p. 24). It is the existence of
such limiting values that Dedekind planned to prove “in a purely arithmetical
fashion”, as he will qualify his own approach. These existential statements, utilized
as ‘in-acts-theorems’ (in Vergnaud’s sense 1990), are indeed false in the set Q of
rational numbers, which is incomplete in that respect. For Cantor and Dedekind, the
explicit stake was to extend Q so to be able to prove analytically these results
without resorting to geometrical evidences, and this amounts to ascertain com-
pleteness (Benis Sinaceur 2008b, pp. 45–46). Other constructions of R will come
out afterwards, for instance as the set of infinite decimal expansions, as the power
set of N; or as the set of paths in an infinite binary tree (to be related to binary
expansions). Finally, during the twentieth century, the real number system has been
characterized by its structure of continuous totally ordered field.

In classrooms, teaching approaches vary depending on countries, schooling
levels or even mathematical topics. As far as France is concerned, while during the
“New Math” period, a construction of R through decimal expansions was proposed
at the secondary level (e.g. Lelong-Ferrand 1964), no construction of R has been
kept at this level by the reform that followed, partly in reaction to the New Math
movement which was assessed as badly fitted to teaching and learning. At the
Université de Montpellier, for several years, the real number system is introduced in
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an axiomatic form, the Supremum Axiom1 having been selected to characterize
completeness. The definition through infinite decimal expansions is sometimes
proposed, in parallel with specifying the nature of real numbers.

We hypothesize that whatever the adopted approach, the notion of completeness
remains the most difficult to conceptualize. Bergé (2010), for one, stresses the
difficulties met by undergraduate students having taken four courses in Analysis
and who replied to a questionnaire.

For most of the students, doing typical exercises involving the supremum does not lead to
the understanding that R is the set that contains all the suprema of its bounded above
subsets. Few students can perceive that the notion of Cauchy sequences comes from the
necessity of characterizing the kind of sequences that ‘must’ converge—an essential insight
required to further develop mathematical analysis—and that completeness is related to the
issue whether a limit is guaranteed to lie in R. (Op. cit., p. 226)

In our work, we assume that working on proof is fruitful as regards the concep-
tualization processes in mathematics (e.g. Frege 1971). This assumption motivates
the trend of our research, which falls within a larger project in mathematical
didactics about the conceptualization of real numbers, and the consideration of the
triad discreteness/density/continuity, instead of the mere dyad discreteness/
continuity. The general didactical issue under study is: what in-depth work on
the objects at stake can be envisaged through analyzing proofs?

To carry out such a research, it is necessary to take into account dialectical
interplays between mathematical, epistemological and didactical studies. We pro-
pose here a first reflection work where mathematical and epistemological consid-
erations are networked, as prolegomena to the didactical studies. We will look into
the two constructions of R having been historically the first formally set up, and
will examine to what proof of the Supremum Theorem (or Axiom) these con-
structions lead to, according to the authors under consideration. In addition, we will
present two contrasting constructions relying on decimal expansions.

Definition of Real Numbers by Cuts

Among the first ‘constructions’ of R to appear during nearly the same period around
1870 (Meray, Cantor, Heine, Kossac and Weierstrass…), the one by Dedekind
(1872) is most likely the more formally accomplished. Let us recall some of its
salient features.

1Any nonempty subset of ℝ which is bounded above has a supremum (or least upper bound).
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Creation of Irrational Numbers

A cut is a partition (A1, A2) of Q such that for all a1 2 A1, a2 2 A2, we have
a1 < a2. Any rational q induces two cuts, considered as ‘non-essentially-distinct’,
one in which q is the maximum of A1 and one in which q is the minimum of A2. The
‘non-completeness’ of Q is due to the fact that there exist cuts that are not induced
by rational numbers, for instance the cut in which A2 ¼ fq 2 Qj0\q and 2\q2g
and A1 is its complement (in Q). Dedekind shows that any integer that is not the
square of an integer gives rise to such a cut, these cuts (bound to correspond to
irrational numbers) thus being infinitely many. Indeed, for every cut that is not
produced by a rational number, Dedekind creates a new irrational number,
unequivocally defined by this cut. He then states that to each cut corresponds a real
number, rational or irrational, and from this point onwards he designates by R the
‘system’ of all these numbers (Dedekind 1963a, pp. 15–19). Let us look into the
way Dedekind ‘recovers’ ordering, and extends it to this new set by resorting
decisively to the density2 (for the usual order) of Q. Let (A1, A2) and (B1, B2) be two
cuts. If A1 and B1 are not equal (as sets), then there exists a1 2 A1 which is not in
B1. Then a1 = b2 for a b2 2 B2, since (B1, B2) is a partition. If a1 is the only
member of A1 in this case, then it is easy to show that a1 is the maximum of A1 and
b2 the minimum of B2, so that the cuts (A1, A2) and (B1, B2) are
non-essentially-distinct, and equal in R: If there exist at least two elements
a1 and a01 in A1 which are not in B1, then the infinity of rational numbers between
a1 and a01 (density of Q) are at the same time in A1 and in B2. In that case, Dedekind
says that “the numbers a and b corresponding to these two essentially different cuts
(A1, A2) and (B1, B2) are different, and further that a is greater than b, that b is less
than a, which we express in symbols by a > b as well as b < a” (Dedekind 1872,
1963a, b, p. 17, emphasis in original). Dedekind shows that it is a total order on R.
Clearly, it corresponds to the usual order on Q when the numbers induced by the
cuts are rational.

Continuity of the Set of Real Numbers

Dedekind shows afterwards that the set R thus obtained is ‘continuous’—we would
rather say ‘complete’ nowadays—by showing that any cut of R is induced by a
unique q 2 R: We may assess the elegance of the construction in the light of the
simplicity of this proof, which goes as follows. Suppose that (A1, A2) is a cut of R:
It gives rise to a cut A1 \Q;A2 \Qð Þ of Q, which is denoted A0

1;A
0
2, and to it there

corresponds an element of R denoted q. If r is any number distinct from q, then we

2We are referring here to density-in-itself, or intrinsic density with respect to order <, according to
which between two rational numbers there is always a third one (different from the first two) and
hence, infinitely many.
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consider q 2 Q among the infinity of rationals between q and r (cf. the discussion
on order). If r < q < q, then q is in A0

1 and thus also in A1, so much that r is also in
A1. If q < q < r, it is the contrary and r 2 A2. So any element r of R is either
smaller than q and in A1 or greater than q and in A2, and q is indeed the unique real
number performing the cut (A1, A2).

Dedekind then shows that the operations + and � on Q can adequately be
extended to R and are compatible with the order on R: arguments that are essen-
tially based on order and ‘continuity’ (in Dedekind’s sense), and that are in fact
undertaken formally only for addition.

Proofs of the Main Theorems Leaning on Cuts
and Completeness

Dedekind comes finally to the very motivation of the construction, which is to
prove the standard theorems of ‘infinitesimal analysis’ with the sole recourse to the
‘arithmetic’ (as he states it himself) of the new set, constructed as an extension of
Q. In this way, he will show first “one of the most important theorem [that] may be
stated in the following manner: ‘if a magnitude x grows continually but not beyond
all limits, it approaches a limiting value’” (Dedekind 1963a, pp. 24–25). In the
current terminology, we would say that any bounded above increasing (real)
function f has a limit. The proof consists in considering, on the one hand the set
M of upper bounds for the images of f, on the other hand the set M′ of numbers that
are not upper bounds, and to show that (M′, M) is a cut of R. By the just established
continuity of R; this cut is performed by a unique real number, and it is shown that
this number is the expected limiting value. With similar arguments although
somewhat more intricate, Dedekind shows afterwards that a function, satisfying the
analog of the ‘Cauchy criterion’ for sequences, has a limit (in R).

Since we chose the Supremum Theorem (or Axiom) as a focal point, let us
mention that in the more recent elaboration of Rudin (1976), who takes back
Dedekind’s construction almost as it is, the Supremum Theorem is indeed the first
consequence drawn from the theorem (explicitly attributed to Dedekind by Rudin)
according to which any cut (A, B) of R is produced by an element of R, this element
being either the maximum of A or the minimum of B. Rudin’s proof that any
nonempty bounded subset E of R has a supremum consists in considering the cut
(A, B), where A ¼ a 2 Rj9e 2 E such that a\ef g; the sought-after supremum
being then the minimum of B.
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A ‘Set Theoretic’ Viewpoint that Mobilizes Actual Infinity

Dedekind’s project is to clear analytical proofs out of their recourse to geometrical
arguments, but it does not prevent him from relying strongly on the (metaphorical)
image of the number line to identify the object, in this case the cut, from which the
construction will be built. As a matter of fact he makes no secret of it, and mentions
from the outset this property of ‘separability’ of the line by its points, as the one he
seeks to reproduce in the new set to be constructed.

One can also notice that sequences are absent, not only from his construction but
also from the analytical theorems that he infers from it, and that are rather stated in
terms of ‘varying magnitudes’ (i.e. functions). To our knowledge, the idea of
sequence is evoked only one time, with the word ‘successive’ in the quotation “a
variable magnitude x which passes through successive definite numerical values…”
(Dedekind 1963a, p. 24).

Regarding the proofs of the Supremum Theorem or of the Theorem of increasing
bounded functions, they require the mere introduction of a well-chosen cut,
expressing in terms of cuts the inequalities in the hypotheses. The conclusion then
follows almost directly from completeness ‘à la Dedekind’. Arguments related to
‘passages to the limit’ or ‘successive approximations’ are absent, to such an extent
that in the conceptualizations, prompted by the construction as much as by its
exploitation, actual infinity is dominating, and potential infinity is solicited as little
as possible. It is worthwhile recalling here that Dedekind (1888) is the first to have
given a definition of an infinite set.

64. Definition. A system S is said to be infinite when it is similar3 to a proper part of itself
(32); in the contrary case, S is said to be a finite system. (Dedekind 1963b, p. 63).

Didactical Implications

Dedekind’s construction of the set of real numbers highlights the role of order, and
the insufficiency of density-in-itself, to warrant continuity. As shown in
Durand-Guerrier (2016), this is a challenging issue in university mathematics
education, especially because of the pervasiveness of the (figural) image of the line,
which triggers moving directly from discreteness to continuity. Indeed, as Longo
(1999, p. 403) writes: “The points are collected in the trace, which makes their
individuality disappear. These points become evident again, as isolated points,
when two lines cross each other.” Durand-Guerrier (2016) proposes a teaching
situation in which students are asked to prove the existence of a fixed-point for any
increasing function from a finite segment of N into itself. Then, they are asked to

3According to Definition 32 from the same source, ‘similar’ means in a one-to-one correspondence
(or bijection).
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study the possible generalizations to increasing functions from the bounded interval
[0; 1] into itself, first when [0; 1] is restricted to the set of finite decimal expansions,
then when it is restricted to Q, and finally when [0; 1] is in R: The generalization is
only possible in the setting of real numbers, thanks to R completeness. A classical
proof relies on the construction of the cut of [0; 1] defined by x 2 0; 1½ �; f xð Þ� xf g:
This subset is nonempty (it contains 0) and bounded above by 1; in R, it has a least
upper bound (lub) and this lub is a fixed point for the function. The teaching
situation is aimed at fostering the understanding of the relationship between dis-
creteness, density-in-itself and continuity, for an ordered set of numbers. In addi-
tion, we hypothesize that introducing the real number system through Dedekind’s
cuts and engaging students in proof and proving, with the main theorems presented
above as objectives, would strengthen their capability related to existence proofs.

Real Numbers as Limit of Fundamental Sequences

During the same period when Dedekind built his system of real numbers, Cantor,
working on trigonometric series, was developing his own theory of irrational
numbers (Belna 1996, pp. 102–103). The first presentation of this theory was
published in Cantor (1872), where he introduces the notion of fundamental
sequence, in modern words “Cauchy sequence”. According to Belna (1996,
pp. 125–146), for Cantor, such sequences are to converge; and when they are not,
he introduces a new number, that he calls an irrational number. It is defined by its
position within Q, the set of rational numbers, and by the possibility of extending
the operations on Q: The link with the numerical line is established a posteriori.
Cantor poses that once an origin and a unit have been chosen, each point is defined
by its abscissa. Cantor shows that in the case of an abscissa not being rational, there
exists at least one fundamental sequence that determines this point, and he adds an
axiom ascertaining that, for each magnitude, there exists a corresponding point on
the line. Belna reminds us that Cantor did not introduce explicitly an equivalence
relation between fundamental sequences, contrary to how this theory is presented in
modern undergraduate and graduate textbooks, for reasons of both rigor and
intelligibility. These reasons motivate our choice of accounting for this theory
through the reworking proposed by Burrill (1967) and by Lelong-Ferrand and
Arnaudiès (1977).

Construction of a Totally Ordered Field

Recall that a sequence anð Þn2N is called ‘fundamental’, or a ‘Cauchy sequence’, if it
satisfies the Cauchy criterion: 8e[ 0; 9N 2 N such that 8n;m 2 N, n�m[N )
an � amj j\e: Burrill denotes by C the set of all Cauchy sequences of rational
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numbers. He shows that these sequences are bounded, and that C is closed under
term-by-term addition, subtraction, multiplication and division (provided the usual
precautions for division).

He also shows that every convergent sequence of rational numbers is a Cauchy
sequence, whereas the reciprocal is false. Now, the intuitive idea is that Cauchy
sequences should converge. Hence the need for constructing a new set as an ordered
field extension of Q, in which it will be possible to prove that every Cauchy
sequence is convergent. The idea is to regard two Cauchy sequences as equivalent if
and only if their difference converges to zero. So an equivalence relation * is

defined on C by setting anð Þ� bnð Þ , an � bnð Þ !n!1
0, and it is now a matter of

identifying the set of real numbers with the quotient set C=� . It follows easily that
if (an) converges to a in Q, then (bn − an) converges to 0 if and only if (bn)
converges to a, so that in every equivalence class of C, either every sequence
converges to the same rational limit, or none of them converges (to a rational limit).
Hence a class of convergent sequences corresponds (canonically) to the rational
being their shared limit, and this allows identifying Q with a subfield of C=� :

The next step is to define the order on C=� : To characterize a relation such as
(an) � (bn) between classes, one should account for the class of (bn − an) being
greater or equal to h, the class of the identically zero sequence. Burrill defines a
Cauchy sequence (an) to be ‘non-negative’ if and only if for every e > 0, there exists
a rank N such that for all n > N, −e < an. He then shows that every Cauchy
sequence (an) is either non-negative, or such that (−an) is non-negative, and that the
two will be simultaneously so if and only if they belong to h. The proof rests
decisively on the Cauchy criterion, and indeed the first result is not true in general
for sequences that do not satisfy it. This is apparent in the formalism, since the
statement “the sequence (−an) is non-negative” is formalized by a universal
statement, so that it cannot be the negation of the statement “(an) is non-negative”.
Because of that, the proof offers the opportunity to work on the definition of the
Cauchy criterion and on its meaning. Burrill’s proof uses reductio ad absurdum by
establishing, in a concise way, a result that contradicts the Cauchy criterion satisfied
by the given sequence.

To define order, Lelong-Ferrand and Arnaudiès (1977) define concurrently
non-negative and non-positive sequences, and prove by a direct reasoning that the
union of the two classes is C. We hypothesize that an analytical work on these two
proofs would allow undergraduate students: first, to cope with the concept of
Cauchy sequence in Q, and in particular to develop reasoning about properties that
are true ‘save for a finite number of terms’, i.e. true only from a certain rank on;
second, to identify the role played by definitions in proof and proving; third, to
work on the articulation between syntax and semantics, by acknowledging that
certain forms can be non-equivalent syntactically—e.g. (−an) is non-negative and
the negation of (an) is non-negative—while being so semantically, because of the
properties at issue and in connection with the alternation of quantifiers.

Now, the order on C=� is defined by setting: anð Þ� bnð Þ , bn � anð Þ is
non-negative. Burrill shows: that this order is independent of the chosen
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representatives; that it is compatible with the operations, i.e.
a� b ) aþ c� bþ c; a� b and 0� c ) a � c� b � c; and that it is a total order
on C=� (because either (bn − an) is non-negative, or (−(bn − an)) is).

A Proof, via the Infimum Theorem, that the Field Thus
Constructed Is Complete

It remains to show that the ordered field (C=� , +, �) is complete. Burrill writes:
“Proof of completeness is the only nontrivial part of the construction” (Burrill 1967,
p. 146). Surprisingly, he does not show, as one would expect, that every Cauchy
sequence in C=� is convergent. It is, as we will see, what is done by
Lelong-Ferrand and Arnaudiès in line with Dedekind, whose proof of the ‘conti-
nuity’ of R amounts to proving that by repeating the construction, one does not get
a new set. As far as Burrill is concerned, he gets out of the logic of his construction
so to speak, in showing instead that the Infimum Theorem is verified in C=� : The
arguments will rely on the ideas of decimal expansions and successive
approximations.

For any c 2 Q, let u cð Þ 2 C=� denotes the class of the constant sequence (c).
A bounded above subset B of C=� being given, Burrill constructs a sequence (ct)
of (finite) decimal expansions, such that for all t 2 N: u(ct) is a lower bound for B
and u ct þ 1

10t

� �
is not; ctþ 1 ¼ ct þ nt

10tþ 1; where nt is a integer between 0 and 9. Burrill
then shows that the class of C=� represented by (ct) is the sought infimum for B:
He concludes that the constructed set is a complete ordered field and that, because
such a number system is unique as he established in his Chap. 7, it is the same
ordered field that he had constructed in Chap. 6, using infinite decimal expansions.

Let us pause for a first reflection about this construction. The privileged objects
are sequences, more precisely Cauchy sequences. We may certainly appraise the
construction as being more abstract than Dedekind’s one, the elements of the new
set—equivalence classes of Cauchy sequences—being more complex, and certainly
more difficult to relate to the intuitive support of the number line. Moreover, the
understanding that Q is ‘naturally included’ in the constructed set is far less
immediate than with cuts. The idea that we are ‘completing’ Q by adding missing
elements is also more difficult to conceptualize, unless one is already well aware
that in Q, the non-convergent Cauchy sequences are these sequences whose terms
are ‘piling’ at the edge of the ‘holes’ in Q, and has grasped in what way the
construction amounts to fill these holes in.

Burrill’s proof of the Infimum Theorem obliges him to introduce auxiliary
constructions through successive decimal approximations, in reference to the first
construction of R he gave previously in his book (see below). But by a paradoxical
fair return, these arguments allow Burrill: to reinject a form of numerical-geometric
intuition in his approach; to display the approximations by which the passage to the
limit will be driven; and hence to precede the recourse to actual infinity with a line
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of reasoning drawing on potential infinity, thus facilitating the involved conceptual
leap. In our view, this illustrates the complementarity of the two approaches, to
make sense out of the concept of real numbers. Dedekind’s approach with cuts
supports a deeper understanding of the concept of least upper bound and of its uses
in Analysis, while Cantor’s approach fosters the ideas of sequences, of successive
approximations, and ‘actualizes’ the passage from potential infinity to actual
infinity.

A Proof, via Cauchy Sequences, that the Set of Real Numbers
Is Complete

Save some details, the construction of Lelong-Ferrand and Arnaudiès (1977) is the
same as Burrill’s one. The essential difference is in their proof of completeness,
which consists in proving that Cauchy sequences in C=� converge in C=� . It
should be noted that from the outset, Lelong-Ferrand and Arnaudiès call ‘numerical
line’ this set and designate it by R. Having partitioned R in Rþ [R, via a defi-
nition of positivity (of Cauchy sequences) analogous to Burrill’s one, the authors
use the property a 2 Rþ , �a 2 R� to set aj j ¼ max a;�af g; thus extending
from Q to R the absolute value and the associated distance, contrary to Dedekind
who considers that ‘continuity’ must be dissociated from metric (Benis Sinaceur
2008a, pp. 38–39). The authors then feel the need to situate ‘metrically’ the rational
numbers in R through approximations theorems. Among these, Lelong-Ferrand and
Arnaudiès show that R verifies the Archimedes’ axiom and that Q is dense in R.
Before proving completeness, they show that any Cauchy sequence of rational
numbers converges to the real number it represents in the quotient set, as one would
expect. From this argumentation, we will examine a ‘passage to the limit’ rather
subtle, whose justification is not much detailed in their text.

Let ynð Þn2N be a Cauchy sequence in Q representing b 2 R. The rational e 2 0
being fixed, there exists N eð Þ 2 N such that n[ p[NðeÞ ) yn � yp

�� ��e; i.e. yp �
e\yn\yp þ e: Then the authors state that p being fixed, one sees “by the very
definition of the order relation on R” (op. cit., p. 17) that for all p[NðeÞ, yp �
e� b� yp þ e; from what they infer that b is the limit of (yn).

But since p, and therefore n, depend on e, we may evaluate that the inequalities
yp � e� b� yp þ e either are not necessarily true for all p, or are not true for all e.
Let us look more closely into this last step by coming back to the underlying
definitions. For a fixed p depending on e, saying that for each n > p, the inequalities
yp � e\yn\yp þ e hold in Q amounts to say that the sequences yn � yp þ e

� �
n2N

and yn � yp � e
� �

n2N are respectively non-negative and non-positive (keeping in
mind that e is here fixed and is not the e intervening in the definition of positivity).
If we denote by b the class of (yn), yp and e being represented in R by themselves
because they are rationals, we then have 0 � b − yp + e and b − yp − e � 0 by
definition of the order in R; i.e. that yp � e� b� yp þ e : So we did show that for
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any e > 0, there exists a N(e) such that for all p > N(e), yp � b
�� ��e; this being the

definition of convergence in R save for e belonging to Q instead of R. But it is not a
problem because of the (proven) density of Q in R.

The completeness of R is then established by Lelong-Ferrand and Arnaudiès. Let
(xn) be a Cauchy sequence of elements of R. Their idea is to construct a sequence of
rational numbers (yn) sufficiently close to (xn) by choosing, for each n 2 N, a
rational yn verifying xn � 1

n\yn\xn þ 1
n (density of Q in R). Using an argument

similar to the one we just discussed, it is shown, in an otherwise relatively standard
fashion, that (xn) converges to b, the class of (yn) in R.

One may assess the complexity of the interplay between potential infinity and
actual infinity in this context, where the conclusions about limits are obtained under
the condition that the ‘slippery’ validity of the inequalities can ceaselessly be
repelled further, ‘at infinity’. And this is in addition to the need for coordinating two
‘chases’ at infinity: one for each object of the sequence (xn), and the ‘diagonal’ one,
so to speak, of the sequence itself. As far as the Supremum Theorem is concerned,
Lelong-Ferrand and Arnaudiès prove it essentially as in Rudin, the authors having
introduced cuts in the ensuing chapter and having shown that in R, “For every cut
(A, B) there exists a unique real number c verifying for all a 2 A and all b 2 B,
a � c � b.”

Didactical Implications

In line with the contemporary structuralist methods of the twentieth century, the
reworking of Cantor’s theory by Burrill and by Lelong-Ferrand and Arnaudiès are
modern ‘formalizations’ and by comparison, Cantor’s development could be
assessed as less rigorous. But this formal approach tends to hide the nature of the
mathematical objects at play. By presenting the last two proofs of the completeness
property, we have tried to show the necessity of going back to the very nature of the
objects in play and to their properties, when constructing and producing proofs; and
this underlines the crucial role played by the dialectic between syntax and semantics
in proof and proving. This supports our claim that working on proofs with
undergraduates may contribute to conceptualization. Providing empirical evidence
for this conjecture is one of the goals of the didactical component to be developed
within the current research project.

Real Numbers as Decimal Expansions

The two constructions that we have presented so far are rather theoretical, and
weave very few connections with what students are experiencing at the secondary
level, where decimal numbers are widely used in mathematics as well as in other
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subjects (e.g. physics or economy). So, for pragmatic reasons, it would seem rather
natural to introduce the real numbers through their decimal expansions. An example
of such an approach is given in Perrin (2005). In the introduction of the chapter
devoted to real numbers, Perrin recalls that the set of rational numbers is an ordered
field, and that its order is dense-in-itself, but states that this field is ‘too small’ and
needs to be ‘completed’. To support this, he shows that an integer that is not a
perfect square has no square root in the set of the rational numbers. He then recalls
that rational numbers have repeating decimal expansions, and introduces the idea of
considering non-periodic decimal expansions as numbers, but claims the necessity
of first building up the set of real numbers. This brings him to give an axiomatic
definition of R as “The unique Archimedean ordered field that satisfies the property
of adjacent sequences4: if two sequences unð Þ and vnð Þ are adjacent, then they
converge to a common limit” (Perrin 2005, pp. 97–98, our translation). The author
gives an example to stress that this axiom does not hold in the subfield of rational
numbers. He then shows that a decimal expansion defines a real number, thanks to
the adjacent sequences axiom; conversely, he shows that any real number has a
decimal expansion by introducing its nth decimal approximations, in excess and by
default. In addition to this axiomatic definition of R, Perrin proposes, in an
appendix to the chapter in question, a construction of the set of real numbers relying
on decimal expansions, which consists in doing the previous work upside down
(op. cit., pp. 103–107). He defines a real number as being any proper decimal
expansion (i.e. without a period of repeating nines) and introduces, using intervals,
the definition of convergence for a sequence of real numbers. Given a real number x
(a proper decimal expansion), he shows that the two sequences defined by the nth
decimal approximations, respectively in excess and by default, are adjacent
sequences in the set of rational numbers, and converge to x in the set of real
numbers. He then shows that the property of adjacent sequences holds in the set of
real numbers that he has just constructed.

Considering our focus on the links between the way objects are introduced and
the related proofs, we will now present how Burrill (1967), in “Foundations of real
numbers”, chooses his definition of ‘real number’. He bases it directly on the
definition of integers, in such a way that “it will be unnecessary to engage in a
preliminary discussion of the rational number system” (p. 75). His definition relies
on “the usual way of visualizing real numbers […] in terms of their representation
to the base 10” (p. 75). According to Burrill, real numbers can be viewed as chains
a0 a1 a2 a3… of integers, where the first integer a0 is arbitrary and all others lie
between 0 and 9. This motivates the way he develops the system of real numbers in
a formal way (his wording), as we will see below, leaning solely on the properties
of integers.

Let us now begin the formal development of the real number system. We
continue the convention that I denotes both the set and the system of integers;

4Recall that two sequences (un) and (vn) are said to be adjacent if (un) is increasing, (vn) is
decreasing, for each n 2 N, un � vn and finally, (un − vn) converges to zero.
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as before Ix signifies the set of all non-negative integers, and
I9 ¼ n: n 2 I; 0� n� 9f g. Let < be the collection of all functions f such that

(a) f is from Iw into I,
(b) f nð Þ 2 I9 if n� 1;
(c) for anym 2 Ix; there is some n 2 Ix with n[m and f nð Þ 6¼ 9.

A real number is defined to be a member of <: (Op. cit., p. 77).
He introduces the symbol h for the function that maps all non-negative integers

onto 0; and he denotes ep the function that maps p onto 1, and all other
non-negative integers onto 0, e0 being ‘the unit’, simply written e. He defines the
order as being the lexicographic order, giving rise to the relation < (less than); he
proves that h is different from e (Theorem 1), that the relation < is transitive in <
(Theorem 2), and that � is a linear order for < (Theorem 3).

He then shows that “a non empty subset of < that is bounded below has an
infinum”, this of course amounting to completeness. In his proof (p. 79), he uses the
following property of I: “in the set I of integers, every non-empty subset that is
bounded below has a minimum”, and proceeds inductively. We summarize the
proof. Let S be a nonempty subset of < bounded below by g (recall that g and
elements of S are functions from Ix into I). The set of images of 0 by the functions
in S is a subset of I bounded below by g 0ð Þ; and hence has a minimum, which is
denoted a0. Burrill then defines recursively a sequence a0, a1, a2, …, an, …, such
that a0 2 I and for all n� 1; an 2 I9. He shows that the function h defined, for
n 2 Ix, by h nð Þ ¼ an; is a real number, i.e. it satisfies the conditions (a), (b) and (c).
For (a) and (b), it is direct because of the construction of h; for (c), Burrill proves it
by contradiction, showing that it is not possible for h to “terminate by nines”. He
then proves by contradiction that h is a lower bound for S, and finally proves that no
real number k greater than h is a lower bound for S.

Section “Real Numbers as Limit of Fundamental Sequences” of the chapter is
devoted to the system that Burrill calls <x, of those real numbers that “terminate in
zeros” (pp. 80–84). It is defined as the infinite union over k of all the subsets <k of
<, defined by <k ¼ f : f 2 < and for all n[ k; f nð Þ ¼ 0f g: He then introduces the
kth approximating function fk of a given real number f ; fk being in <k, and he shows
that f ¼ sup fk: k 2 Ixf g:

Didactical Implications

The comparison between these two ways of constructing the set of real numbers
through decimal expansions highlights the importance of the definitions being
chosen for the objects, when moving to proofs. Both authors consider that the
construction of R through decimal expansions is the most natural, but while Perrin
remains within the usual aim of completing Q, Burrill’s primary construction of R
is done directly from the integers, focusing on order and recursion and referring, for
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integers and their properties, to Peano’s axioms. At the core of the proof of com-
pleteness by Perrin, we came across the kth approximations in excess and by
default, that gives a central role to terminating decimals. This emphasizes the dyad
terminating decimal/non-terminating decimal, which remains often implicit at the
secondary schooling level. By using the axiom of adjacent sequences for com-
pleteness, this construction could be considered as a pragmatic match to the con-
struction using Cauchy sequences. On the other hand, by focusing on order and the
integers’ properties, Burrill shows, in his system, that a real number is the supre-
mum of the set of its kth approximations by default. To the extent that order is
prevailing over metric considerations, his construction could be considered as a
pragmatic match to Dedekind’s construction. In our view, such an analysis high-
lights the different facets and uses of decimal expansions, and calls for being more
precise and careful when tasks involving real numbers as decimal expansions are
scrutinized, before being used in teaching whether intended for university students
or for secondary level students.

Conclusion

We are interested in the opportunities offered by working on proofs to deepen the
knowledge about mathematical objects, in relation with their (possible) definitions.
Having brought back the main elements of Dedekind’s and Cantor’s definition of
R, we studied: first, the proofs of R completeness; second, the proofs of the
Supremum Theorem from Dedekind and Rudin in the setting of cuts, and from
Burrill and Lelong-Ferrand and Arnaudiès in the setting of Cauchy sequences. In
addition, we proposed two contrasting constructions leaning on decimal expan-
sions. By this, we want to stress the importance of the way objects are being defined
towards molding the proofs, even when the approaches seem at first sight rather
similar (e.g. defining real numbers as decimal expansions).

From this study, we retain the following main features:

– The proof of R completeness in Dedekind’s construction is simple, and ensues
directly from defining real numbers by cuts, with an explicit recourse to the
density (with respect to order) of Q. The proof of the Supremum Theorem then
follows more or less directly. But as these proofs bring into play the sole actual
infinity, they do not provide any pragmatic access to real numbers. The notion of
cut appears as a powerful means for proving the existence of limits or of
suprema without approaching their value, mainly because it rests on order,
without resorting to distance. We may think that, in turn, this prevalence of the
order relation over the metric does not foster the topological foundations, or
generalizations, of Analysis, since the topology is then the one induced by order
on the line, and its (potential) extensions (e.g. to the plane) are unclear.

– As far as Cauchy sequences are concerned, they provide a proof of R com-
pleteness that is complex, and requires juggling with several types of objects:
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elements of Q, Cauchy sequences of rational numbers, real numbers as equiv-
alence classes, and so on. The lines of reasoning demand here a clever under-
standing of Cauchy sequences, with a tricky interplay between potential infinity
and actual infinity. An important step leans on the fact that any real sequence
can be approximated by a sequence of rational numbers. Specifying this idea to
the real numbers themselves enables one to better situate, metrically and in due
course topologically, real numbers with respect to rational numbers.

– The proof by Burrill, based on the construction of R starting from the integers,
points out the possibility of shortcutting the construction of Q, and of moving
directly from integers to real numbers through order properties, at the core of the
construction. By contrast, the construction through decimal expansions pro-
posed by Perrin highlights in the construction itself the role played by decimal
approximations and by the density in R of finite decimal expansions.

– From a didactic standpoint, we formulate the hypothesis that the construction
through Dedekind’s cuts and the related proofs foster a comprehension of
completeness as a passage from density to continuity, when density is understood
with respect to order, thus being intrinsic to Q, in contrast with the (topological)
density ofQ inRwhich is external toQ. In our view, this passage from density to
continuity is the main obstacle to an adequate conceptualization of real numbers
(Durand-Guerrier 2016), whereas the literature in didactics (e.g. Gravemeijer and
Doorman 1999) has a tendency to focus on the passage from discreteness to
continuity. On the other hand, Cauchy sequences foster the appropriation of the
links between the idea of successive approximations, bringing potential infinity
into play, and the notion of limit, leaning on actual infinity. We furthermore
hypothesize that, to be operational, these two trends must be conjoined with an
approach leaning on infinite decimal expansions: a real number is viewed as the
supremum of the set of its decimal expansions rounded down to the nearest 10−n,
or as the limit of the (Cauchy) sequence formed by these expansions. Indeed,
these expansions allow relating the idea of approximation, pertaining to distance,
to the lexicographic order on expansions, which is their natural order, ‘natural’ as
much geometrically as numerically or semiotically.
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Chapter 3
Types of Epistemological Justifications,
with Particular Reference to Complex
Numbers

Guershon Harel

Abstract Epistemological justification is one of the essential constructs of DNR—
a conceptual framework for the learning and teaching of mathematics. In this
chapter, I distinguish among three types of epistemological justification:

(1) Sentential epistemological justification (SEJ). This refers to a situation when
one is aware of how a definition, axiom, or proposition was born out of a need
to resolve a problematic situation.

(2) Apodictic epistemological justification (AEJ). This pertains to the process of
proving. It is when one views a particular logical implication, a ! b, in
causality, or explanatory, terms—how a causes b to happen. This can take place
in two forms. One might observe a, asks what are its possible consequences,
and finds out that b is a consequence of it. Or one might observe b, asks about
its causes, and finds out that a is a cause of it.

(3) Meta epistemological justification (MEJ). This refers to a situation when one
not only possesses SEJ and AEJ, but also he or she is aware of how the
sentence or the implication came into being.

These three types will be illustrated with examples from the field of complex
numbers.

Keywords Epistemological justification � Intellectual need � DNR-based instruc-
tion in mathematics

This chapter rests heavily on earlier publications dealing with DNR-based
instruction in mathematics1 (DNR, for short), a conceptual framework for the
learning and teaching of mathematics (see, e.g., Harel 2008a, b, c, 2013a, b). Its
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main goals are: (a) to offer a new classification for the construct of epistemological
justification, and (b) to further analyze this construct. Its definition is inextricably
linked to the construct of intellectual need (Harel 2013a) and rests on four of the
eight DNR premises. They are:

Knowledge of Mathematics: Knowledge of mathematics consists of two related
but different categories of knowledge: all the ways of understanding and ways of
thinking that have been institutionalized throughout history.
Knowing: Knowing is a developmental process that proceeds through a continual
tension between assimilation and accommodation, directed toward a (temporary)
equilibrium.
Knowledge-Knowing Linkage: Any piece of knowledge humans know is an
outcome of their resolution of a problematic situation.
Subjectivity: Any observations humans claim to have made are due to what their
mental structure attributes to their environment.

The definitions of intellectual need epistemological justification are as follows:

If K is a piece of knowledge possessed by an individual or community, then, by the
Knowing-Knowledge Linkage Premise there exists a problematic situation S out of which
K arose. S (as well as K) is subjective, by the Subjectivity Premise, in the sense that it is a
perturbational state resulting from an individual’s encounter with a situation that is
incompatible with, or presents a problem that is unsolvable by, her or his current knowl-
edge. Such a problematic situation S, prior to the construction of K, is referred to as an
individual’s intellectual need: S is the need to reach equilibrium by learning a new piece of
knowledge. Thus, intellectual need has to do with disciplinary knowledge being created out
of people’s current knowledge through engagement in problematic situations conceived as
such by them. One may experience S without succeeding to construct K. That is, intellectual
need is only a necessary condition for constructing an intended piece of knowledge…. [If
one constructs K and, in addition, is aware of] how K resolves S, we say that that person has
constructed an epistemological justification for K… [Epistemological justification, thus, is a
conscious relation between S and K] … It constitutes the geneses of mathematical
knowledge—the perceived reasons for its birth in the eyes of the learner. (Harel 2013b,
p. 122)

An individual’s epistemological justification may not, and often does not,
coincide with the historical epistemological justification. For example, a mathe-
matician’s epistemological justification for real analysis as a field is unlikely to
initially be formed in the same way it was formed historically, which, according
to Bressoud (1994), was intellectually necessitated from Fourier’s solution to
Laplace’s equation, @2z=@w2 þ @2z=@x2 ¼ 0:

In Harel (2013b), I discussed in length the following five categories of intel-
lectual need, along with their cognitive origins and their role in the learning and
teaching of mathematics:

(1) Need for certainty. This is the need to prove, to remove doubts. One’s certainty
is achieved when one determines, by whatever means he or she deems
appropriate, that an assertion is true.
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(2) Need for causality. This is the need to explain—to determine a cause of a
phenomenon, to understand what makes a phenomenon the way it is. This need
does not refer to physical causality in some real-world situation being mathe-
matically modeled, but to logical explanation within the mathematics itself.

(3) Need for computation. This need includes the need to quantify and to calculate
values of quantities and relations among them by means of symbolic algebra.

(4) Need for communication. This consists of two reflexive needs: the need for
formulation—the need to transform strings of spoken language into algebraic
expressions—and the need for formalization—the need to externalize the exact
meaning of ideas and concepts and the logical justification for arguments.

(5) Need for structure. This need includes the need to re-organize knowledge
learned into a logical structure.

The goal of this chapter is to discuss categories of epistemological justification,
in relation to this variety of intellectual need, in the context of complex numbers,
one of the DNR-based curricula which has been investigated recently (Harel
2013b). I distinguish among three categories of epistemological justifications:

(1) Sentential epistemological justification (SEJ). This refers to a situation when
one is aware of how a definition, axiom, or proposition was born out of a need
to resolve a problematic situation. It is called so because it pertains to sentences
with objective and logical meaning.

(2) Apodictic epistemological justification (AEJ). This pertains to the process of
proving; hence, the term apodictic. It is when one views a particular logical
implication, a ) b, in causality, or explanatory, terms—how a causes b to
happen; that is how a explains the presence of b. This can take place in two
forms. One might observe a, asks “What are its possible consequences?”, and
finds out that b is a consequence of it. Or one might observe b, asks, “What are
its causes?”, and finds out that a is a cause of it.

(3) Meta epistemological justification (MEJ). This refers to a situation when one
not only understands that a sentence is a resolution to a problematic situation or
views an implication in explanatory terms, but also he or she is aware of how
the sentence or the implication came into being.

The three categories emerged from analyses revolving around the questions
whether mathematics instruction attends to students’ intellectual need when intro-
ducing mathematical statements and proofs, and whether students are aware of such
a need when they experience it. In the rest of this chapter, I will illustrate these
types of epistemological justification with examples in the context of complex
numbers. These are mere illustrations, not claims of existence. Their potential value
is that they might be used as indicators and conceptual labels of empirical obser-
vations, established through accepted research methodologies, in the sense of
Corbin and Strauss (1990), and possibly as initial hypothetical models for student
reasoning, again to be substantiated empirically.

For the sake of completeness, I outline the general steps in the flow of lesson that
is structured around the construct of intellectual need:
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(1) Recognize what constitutes an intellectual need for a particular population of
students, relative to a particular subject (in our case complex numbers).

(2) Translate this need into of a set of problematic situations which the students can
potentially understand.

(3) Help students elicit the concepts from their solutions to these problems.

Figure 3.1 depicts the DNR elements discussed in this chapter. For a fuller
discussion of these and other DNR elements, see Harel (2008a, b, c, 2013a, b, in
press).

Before proceeding, a word on the relationship between epistemological justifi-
cation and reasoning and proof (the subject of this volume) is in order. Brousseau
(1997), in his characterization of the work of the mathematician versus that of the
teachers, writes:

Before communicating what she thinks she has discovered, a mathematician must first
identify it. It is not easy, within the maze of thoughts, to distinguish what has potential of
becoming new knowledge of interest to others…. In addition, all irrelevant reflections must
be suppressed …. One must conceal the reasons which led her in these directions and the
personal influences which guided success. …

The teacher’s work is to some extent the opposite of the [mathematician’s]; she must
produce a recontextualization and a repersonalization of the knowledge … (emphases
added; pp. 21–22)

The notion of epistemological justification and its various instantiations, as
described in this chapter, pour content into the processes of “recontextualization
and repersonalization of knowledge” referred to by Brousseau, in that they can
potentially provide the teacher with cues as to the constituents of reasoning and
proof she advised to attend to in her instruction.

In addition, there is an inherent pedagogical inconsistency in instruction that
emphasizes rigor without attention to the origin and need of that rigor. For on the
one hand this type of instruction demands justification of conjectures and asser-
tions, but ignores the need to justify their origins. As a consequence, students feel
aliens in knowledge construction. This and several other papers aim at raising an
awareness of this inconsistency, in hope that other scholars would conduct studies
of the efficacy of the ideas surrounding the notion of epistemological justification.

Instances of Sentential Epistemological Justification (SEJ)

The first part of this section discusses fleetingly the historical development of
complex numbers. (For a fuller account of this history, see Tignol 1980.) This
development begins in a form of a need for computation—to find a solution to the
cubic equation. The 16th Century mathematicians partially resolved this need by
first finding a formula to the equation, x3 þmx ¼ n. The solution was discovered
first by del Ferro and again by Tartaglia. In both cases, no justification was provided
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to the solution. A combination of the need for computation—to find a formula for
the general cubic equation, x3 þ ax2 þ bxþ c ¼ 0—and the needs for certainty and
causality—to prove the formula, possibly in an explanatory manner—led Cardano
to the resolution of both needs. In modern terms, his formula can be stated as
follows:

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q
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where

y ¼ xþ a
3
; p ¼ b� a2

3
; and q ¼ c� a

3
bþ 2

a
3

� �3

As the mathematicians of the time looked into this new result, they encountered
baffling behaviors which raised doubts in the validity of the formula, triggering the
need for certainty.

First, the cubic formula, unlike the quadratic formula, which was known at the
time, did not yield all the roots.

Second, the formula often yields complicated expressions for simple roots. For
example, while x ¼ 1 is a solution—the only solution—to the equation, x3 þ x ¼ 2,

the cubic formula yields the complex expression, x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

3
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a solution.
Third, and most perplexing, behavior of the cubic formula is that in certain cases

the formula yields meaningless expressions when “real” roots are known. For

example, for x3 ¼ 15xþ 4, the formula yields, x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffiffiffiffiffiffiffiffiffi�121

p
3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ffiffiffiffiffiffiffiffiffiffiffi�121

p
3
p

,
where it can easily be seen that x ¼ 4 is a root.
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Fig. 3.1 DNR elements pertaining to the concern of this chapter
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Fourth, and of particular importance, when simplification procedures were
applied to the latter “meaningless” expressions involving aþ b

ffiffiffiffiffiffiffi�1
p

, treating them
as if they were meaningful, the cubic-root addends often yielded expected results.

For example, the addends in x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffiffiffiffiffiffiffiffiffi�121

p
3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ffiffiffiffiffiffiffiffiffiffiffi�121

p
3
p

, turned out to be,
respectively, 2þ ffiffiffiffiffiffiffi�1

p
and 2� ffiffiffiffiffiffiffi�1

p
, which, in turn yields the solution,

x ¼ 2þ ffiffiffiffiffiffiffi�1
p� �þ 2� ffiffiffiffiffiffiffi�1

p� � ¼ 4, as expected. While this work (by Bombelli)
provided some assurance about the validity of the cubic formula, it engendered
further puzzlement: How is it possible that meaningless expressions turn under
legitimate manipulations into meaningful results?

These behaviors led to further investigations into the meanings and roles of the
expressions, aþ b

ffiffiffiffiffiffiffi�1
p

. When these meanings and roles were found, these
expressions received the status of numbers and were defined as such.

This account is an example of SEJ. It manifests an understanding of the defi-
nition (a sentence) of complex numbers as a consequence of certain intellectual
needs, particularly the need for computation. Clearly, one may understand complex
number possessing its SEJ.

The development of complex numbers provides another example of SEJ, this
time for the emergence of crucially important theorem—the Fundamental
Theorem of Algebra (FTA). The emergence of complex numbers as an extension of
the field of real numbers raised the question, Is there a need for further extensions?
That is to say, does the complex field contain all the solutions to any polynomial
equation? This question, which saliently belongs to both the need for computation
and the need for structure, was answered affirmatively by Gauss. Thus, under-
standing the FTA as a resolution to these needs is another example of
SEJ. Unfortunately, seldom do abstract algebra students possess such an under-
standing, as our experience shows. On multiple occasions, I asked students who
completed successfully an abstract algebra course, what is fundamental about the
FTA? And what question does the FTA answers? In all cases, none of the students
was able to answer these questions.

Instances of Apodictic Epistemological Justification (AEJ)

In this section, I illustrate apodictic epistemological justification by restructuring
Cardano’s proof for the cubic formula as to delineate its underlying ideas, rendering
it a causal proof. In fact, in Cardano’s proof the solution formula is only a sufficient
condition for the cubic equation. The following proof, formulated in modern
symbolism, is a slight modification of Cardano’s proof, in that it uses the identity,
ðuþ vÞ3 ¼ u3 þ 3u2vþ 3v2uþ v3, thereby making Cardano’s solution formula
equivalent to the cubic equation (Harel 2013a):
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To solve the equation

x3 þ pxþ q ¼ 0 ð3:1Þ

where p; q 6¼ 0, let x ¼ uþ v:
By cubing both sides of Eq. (3.1), expanding, and factoring uv, we get

x3 � 3uvx� u3 þ v3
� � ¼ 0 ð3:2Þ

Equations (3.1) and (3.2) are equivalent if and only if

uv ¼ � p
3

u3 þ v3 ¼ �q

�
ð3:3Þ

System (3.3) is equivalent to the system,

v ¼ � p
3u

33 u3ð Þ2 þ 33qu3 � p3 ¼ 0

�
ð3:4Þ

The quadratic equation in system (3.4) is equivalent to
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By symmetry between the variables u and v in system (3.3) and the second
equation of the same system, we get that system (3.4) is equivalent to
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Hence, x is a solution to Eq. (3.1) if and only if
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This proof rests on the ingenious idea of conceiving of a solution x as a sum of
two numbers, uþ v, for the purpose of reducing the cubic equation into a system of
equations, which, in turn, is reducible to a quadratic equation. The critical questions
relevant to AEJ is: How to intellectually necessitate the various elements of this
proof to the students for whom the unit is intended, making its various steps
explanatory in the eyes of the student?

In what follows I describe briefly the process I implemented in a teaching
experiment with secondary mathematics teachers, which aimed at answering this

3 Types of Epistemological Justifications … 41



question. The process consists of a sequence of lessons encapsulated into a
sequence of the following four perturbation-resolution pairs:

Perturbation 1: How to solve systems of equations of a new kind?

The first lesson begins with word problems whose solution requires the solution of
systems of the form

uv ¼ P
u3 þ v3 ¼ Q

�
ð�Þ

Typically the teacher participants are familiar with simple systems, mostly 2� 2
and 3� 3 linear systems, and so the only difference here is the form of the system.
As can easily be seen, system (*) is of the same form as that of system (3.3) in the
proof of the cubic formula presented above.

Resolution: Reduce the system into a quadratic equation (RQE).

The participants, after some struggle reduced this system into the quadratic equa-

tion, u3ð Þ2�Qu3 þP3 ¼ 0:

Perturbation 2: What to do if the system is not reducible to a quadratic equation?

As the participants practiced the RQE technique on a family of systems involving
products and cubes of unknowns, they encountered one system for which the
technique leads to an irreducible 6-degree polynomial equation. The system was of
form, with P ¼ �2 and Q ¼ 32:

uv
uþ v ¼ P
u3 þ v3 ¼ Q

�
ð��Þ

Resolution: Reduce the system into a cubic equation (RCE).

After failed attempts to solve this system, the participants were reminded (in Lesson
2) that the three expressions, uv, uþ v, and u3 þ v3, in system (**) were parts of the
identity, ðuþ vÞ3 ¼ u3 þ 3u2vþ 3uv2 þ v3. In turn, this led to a reduction of system
(**) into the cubic equation, ðuþ vÞ3 � 3Pðuþ vÞ2 � Q ¼ 0. The technique
developed was then applied to a series of systems, all were designed to be reducible
to “easily solvable” cubic equations, i.e., equations that can be solved by finding
one root of the equation through trial and error or by the Rational Root Theorem,
and then finding the rest of the roots by the Division Theorem.

Perturbation 3: What to do if the RCE leads to a cubic equation that is not “easily
solvable?”

The participants were then introduced to the following system:
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uvðuþ vÞ ¼ 8
u3 þ v3 � 2u� 2v ¼ �31

�
ð� � �Þ

They successfully used the RCE technique to reduce this system into the cubic
equation, x3 � 2xþ 7 ¼ 0, but since the equation has no rational roots, they were
not able to solve it by trial and error or the Rational Root Theorem. This difficulty,
in turn, led to the question: How to solve cubic equations? That is: Is there a
solution formula for cubic equations, as in the case of quadratic equations?

Resolution: Develop a formula for cubic equations; first focus on those without
the second term.

Since the problem at hand is solving the equation, x3 � 2xþ 7 ¼ 0, Lesson 3 retains
its focus on equations of the same form; namely: x3 þAxþB ¼ 0. By revisiting the
solutions to systems (*) and (**) along with extensive discussions and reflections
on the techniques used this far, the participants successfully develop a solution to
the equation. The solution amounts to a generic proof of Cardano’s formula.

Perturbation 4: What to do with cubic equations with a second term?

In Lesson 4, the participants encountered an obstacle: neither the cubic formula
known this far nor the re-application of the technique applied to develop it (i.e., the
combination of RQE and RCE techniques) are successful for solving equations
involving a second term.

Resolution: Reduce equations with a second term into ones without a second
term.

Lesson 5 begins by revisiting the quadratic equation, x2 þBxþC ¼ 0, and showing
the participants how the change of variable x ¼ yþ �B

2 reduces the equation to one
without the second term, and how, similarly, the change of variable x ¼ yþ �B

3 in
the cubic equation x3 þBx2 þCxþD ¼ 0 leads to a cubic equation without the
second term, resulting in a cubic equation of a desired form: x3 þAxþB ¼ 0. With
this knowledge in hand, the cubic formula for the most general cubic equation was
derived by the participants.

Figure 3.2 represents this sequence perturbation-resolution pairs, rendering
Cardano’s proof into a corresponding sequence of apodictic epistemological
justifications.2

2This sequence of perturbation-resolution pairs was finalized after several iterations of teaching
experiments. In Harel (2013b), I describe the role the instructor played in necessitating for the
students certain paths to resolve perturbations.
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Instances of Meta Epistemological Justification (MEJ)

MEJ is a subtle cognitive phenomenon, definitely more so than SEJ and AEJ. In all
of the examples I discussed in the previous section, one might develop an under-
standing of how the definition of complex number was born out of the five intel-
lectual needs that emerged during the development of the cubic formula, leading up
to the definition of “complex number”.3 But, in this process one might not know the
actual struggle—the pitfalls and insights—the community went through to arrive
into satisfactory, institutionalized resolutions of these needs. Similarly, one might
understand the re-presentation of Cardano’s proof as a causal proof, but he or she
may not be aware of the essential mental processes the author of this modified proof
carried out in the process of obtaining it. Through exerted effort of reflection, the

Fig. 3.2 Cardano’s proof as a sequence of apodictic epistemological justifications

3For example: The need for computation for the development of the cubic formula; the needs for
causality, communication, and structure for the resolution of the puzzling aspects of the formula;
and the need for certainty for its proof.
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individual might gain an awareness of such a process, whereby gaining MEJ for the
respective knowledge. For example, in the original Cardano’s proof the solution
formula is only a sufficient condition for the cubic equation. By recognizing the
existence of this gap and comparing the original proof to the modified proof, one
might observe the following important difference: The identity ðuþ vÞ3 ¼
u3 þ 3u2vþ 3v2uþ v3 was generated in the new proof precisely to make the solu-
tion formula a true formula—that is, to make the cubic equation equivalent to the
cubic formula, in that a number satisfies one if and only if it satisfies the other.

Contrast with Current Instructional Treatment of Complex
Numbers

Current instructional treatment of mathematics in general and of complex numbers
in particular for high-school students is devoid of epistemological justification.
Students are simply given the definition of complex number as an expression of the
form: aþ b

ffiffiffiffiffiffiffi�1
p

, where a and b are real numbers. They then are taught how to
apply arithmetic operations to such expressions. The following conversation
between the author of this chapter and undergraduate students who learned complex
number in their high schools demonstrates the impoverished understanding of
complex numbers students have. These students were participants on a teaching
experiment involving complex numbers (see Harel 2013b). When the aþ b

ffiffiffiffiffiffiffi�1
p

first appeared in the development described earlier, the question about the meaning
of such expressions was raised. Then the conversation along ensued:

Students
ffiffiffiffiffiffiffi�1

p
is the complex number i.

Teacher What does this mean?
Students It means that i2 ¼ �1
Teacher So we define i to be a number such that i2 ¼ �1. This is fine, but for

what purpose?
Students To solve the equation, x2 þ 1 ¼ 0:
Teacher That is true. But consider this: We create a new number, i, to turn an

equation with no solution into one with a solution. Why then don’t we do
the same for other equations, such as xþ 1 ¼ xþ 2 or its equivalents?
Why don’t we create numbers for such equations to turn them into
equations with a solution?

Students That was what we were told in school. Really, why don’t we?—Why do
we treat x2 þ 1 ¼ 0 differently from all other equations that don’t have
solutions?

This was productive dialogue for it fostered a need with the students to better
understand how complex numbers came about and the role they serve in
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mathematics. The dialogue also demonstrates that the way complex numbers are
traditionally introduced in elementary algebra is abrupt and rather contrived.

Concluding Remark

I have defined in this chapter three categories of epistemological justification,
sentential epistemological justification (SEJ), apodictic epistemological justifica-
tion (AEJ) and meta epistemological justification (MEJ). While SEJ and MEJ are
new contributions, AEJ is akin to Leron’s (1983, 1985) idea of structural proof,
Steiner’s (1978) debate on mathematical explanation, and Hanna’s (1990, fol-
lowing Steiner) distinction between proofs that prove and proofs that explain.

The pedagogical goal of structural proof, as stated by Leron, is to make the
learner aware of the ideas hidden in the traditional, linear presentation of proofs.
The source “structure” here intends to convey the essential act of the method: the
process of restructuring a linear presentation of a proof, as is commonly presented
in textbooks or research papers, to a multi-dimensional presentation that conveys
possible thought processes involved in the construction of a proof, how one comes
up with a piece of knowledge K to resolve a problematic situation S. Leron, and
others (e.g., Alibert and Thomas 1991), discusses many excellent examples to
illustrate the application of the method in converting linear proofs into a structural
proof.

The notion of causal, or explanatory, proof has been discussed in the literature of
the philosophy of mathematic (Steiner 1978) and of mathematics education (Hanna
1990; Hanna et al. 2010), and both can be traced to Aristotle’s definition of sci-
entific knowledge. The contribution of our notion of AEJ relative to these works is
in the specific and elaborate connection of epistemological justification to a variety
of intellectual needs, in its emphasis on the subjective learner, and its emphasis on
proof production, not only proof comprehension.
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Chapter 4
Mathematical Argumentation
in Elementary Teacher Education:
The Key Role of the Cultural Analysis
of the Content

Paolo Boero, Giuseppina Fenaroli and Elda Guala

Abstract The problem dealt with in this chapter concerns how to prepare
prospective elementary teachers to develop students’ argumentative skills in school,
in spite of difficulties deriving from present school culture and past teacher edu-
cation in Italy. The salient features of a course on mathematical argumentation,
aimed at making prospective elementary teachers free from those influences and
enable them to perform autonomous professional choices, are described. The
development of the competence of Cultural Analysis of the Content (CAC) is
motivated as a condition for teachers’ professional autonomy. Specific educational
choices and some results concerning the development of participants’ CAC in the
course at stake are presented and discussed.

Keywords Mathematical argumentation � Elementary teacher education
Cultural analysis of the content � Argumentation and proof

Introduction

The necessity of promoting mathematical reasoning and proof at every school level
is widely acknowledged now, and in many countries national programs and
guidelines for curricula take it into account. In the Italian Guidelines for Curriculum
(MIUR 2012), two “goals for the development of competencies” out of eleven for
grade V (10-year-olds) concern mathematical argumentation. One of the main
problems to be tackled in order to attain such goals concerns teacher education,
given the school cultural environment in which teachers will have to teach. In Italy,
great difficulties in promoting these aims at the elementary school level (grades I–V)
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derive from two factors: misunderstandings among teachers about the nature of
mathematical reasoning; and the prejudice existing in present school culture about
children’s lack of capacity to develop genuine mathematical reasoning (particularly
as concerns mathematical argumentation and proof).

These are inter-related factors, rooted in the New Mathematics movement, on the
one side, and in the interpretation of some ideas from Piaget, on the other. In Italy
(differently from other countries, like France), New Mathematics was never
implemented in national programs; however New Mathematics was (during the
sixties and the early seventies) an object of a massive national teacher training
program. It also inspired some parts of widely adopted textbooks. The failure of
related teaching experiences was usually interpreted by teachers as a consequence
of the abstract nature of mathematical reasoning, considered to be out of the reach
of elementary school students (Pellerey 1989). Note that, till the end of the last
century, elementary school teacher education took place in a 4-year specialized high
school, where teaching of Piaget’s theory (the only theory taught from the field of
developmental psychology) concerned a few rough ideas about the stages of
intellectual development. As a result, in many Italian grade I–V classes, mathe-
matics is taught as a set of notions concerning numbers and geometrical entities,
and as practical recipes about how to solve a standardized set of word problems,
contrary to the National Guidelines for the Curriculum.

Since the end of the last century, elementary teacher preparation has been
reformed. Prospective teachers have to complete a 4-year (after 2010, 5-year)
master’s course in Sciences of Elementary Education, including 22 credits in
Mathematics and Mathematics Education. In spite of these changes, however,
elementary teacher education still faces several difficulties in the case of mathe-
matical argumentation: besides the school culture and traditions (see above), most
of our prospective teachers were not good in mathematics in secondary school, and
frequently were even afraid of it. Similar difficulties exist in other countries.
Stylianides, Stylianides and Shilling—Traina (2013) consider obstacles inherent in
prospective elementary teachers’ “weak mathematical (subject matter) knowledge
about reasoning-and-proving, and counterproductive beliefs about its teaching”
(p. 1563). One of the problems that we have tried to solve in our research concerns
how to enable prospective teachers to identify and master the skills related to
mathematical argumentation (see later), which may be accessible to elementary
school students and whose educational relevance goes beyond the boundaries of
mathematics. For this reason, we tried to develop the competence of Cultural
(epistemological, historical and anthropological) Analysis of the Content
(CAC) (Boero and Guala 2008) in teacher education courses, in particular in the
case of mathematical argumentation.

Our chapter addresses the framing, implementation, and a partial account of the
results of this implementation, of a course on mathematical argumentation. The
course belongs to the set of mathematics and mathematics education integrated
courses for elementary teacher education at our university; they are planned and
taught by a team of mathematics educators including the authors of this chapter.
Two inter-related main aims of the course (corresponding to the negative factors
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described above) were: making prospective elementary school teachers aware of
different, historically legitimate ways of proving in mathematics, and their salient
features; and dispelling their doubts (and the prejudice resulting from present school
culture) about the possibility that elementary school students may have access to
mathematical argumentation (proving in particular). In this chapter we will provide
some evidence about the effectiveness of the performed theoretical and method-
ological choices we made to achieve those aims through the development of par-
ticipants’ CAC competence. We may observe that, in spite of their specific
motivation in the Italian context, the aims of the course can be of broader interest,
especially in those countries where guidelines for curricula stress the importance of
developing mathematical argumentation as early as the elementary school.

Theoretical Framework

Research for Innovation

The development of our courses for elementary teacher education at the university
level was strongly influenced by our research experience in the design and
implementation of long term teaching experiments in elementary and lower sec-
ondary school. They conformed to the paradigm of research for innovation, shared
by several researchers in Italy (see Arzarello and Bartolini Bussi 1998). In our case,
we planned our first teacher education courses according to Schoenfeld’s ideas
(Schoenfeld 1994) on the crucial role of problem solving at an adult level in teacher
preparation. Then we moved to a gradual enrichment of theoretical perspectives
resulting from the necessity of tackling problems emerging from the analysis of the
implemented courses, and from the needs of professional development, taking into
account the situation of elementary school teaching of mathematics in Italy as
described earlier. The CAC construct (Boero and Guala 2008) became a key ref-
erence for the design of our courses. In the specific case of the course addressed,
after 2013, to develop students’ competencies related to mathematical argumenta-
tion (according to the National Guidelines for Curriculum), we realized that we
needed further theoretical tools to plan our courses: in particular, we adapted
Habermas’ elaboration on rationality in order to compare different ways of proving
(Boero 2006) and argumentation in different cultural domains (Guala and Boero
2017). The development of the CAC competence helped to focus prospective
teachers’ attention on the anthropological and historical dimension of
argumentation.
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Cultural Analysis of the Content (CAC) Competence

We assume that teachers need to develop a competence of CAC, important for the
teacher’s cultural autonomy (see Boero and Guala 2008; Boero et al. 2014). CAC
competence is different from theorized kinds of teacher knowledge like Pedagogical
Content Knowledge (Shulman 1986) or Mathematical Knowledge for Teaching
(Ball et al. 2008): first, CAC is more focused on the capacity of performing an
activity relevant for professional choices, rather than on specific knowledge needed
for them; second, it concerns cultural aspects, which were only partially considered
in research on teachers’ knowledge and conceptions, particularly in the case of
proof and proving. Regarding teachers’ knowledge about proof, Stylianides and
Ball (2008) considered some epistemological characteristics of proof
(logical-linguistic aspects) and of related tasks suitable to engage students in
proving, while Knuth (2002) dealt with the functions of proof and related teachers’
conceptions. Anthropological and historical-epistemological aspects of argumen-
tation and proof (the relationships between argumentation in different domains and
mathematical proof, the historical evolution of criteria of legitimacy for mathe-
matical proof, etc.) are scarcely considered in the literature on teachers’ knowledge.

We think that the competence of dealing also with those aspects of argumentation
(and proof in particular) is crucial for the teacher for different reasons. First of all (and
this is particularly true in Italy, for the reasons indicated in the Introduction) the teacher
must be aware of the different ways of dealing with proof through the history. When
planning didactic sequences and situations, and when analyzing students’ productions,
the historical analysis of proof and proving suggests awide set of possible approaches to
mathematical argumentation in the classroom and possible historical references
for difficulties met by students (see Radford et al. 2000 for general considerations,
Grabiner 2012, and Guala and Boero 2017 for specific issues concerning proof and
proving). Second, the relevance ofmathematical argumentation stems not only from its
role in mathematical enculturation, but also from its relationships with general encul-
turation and extra-school culture (see Siu 2012, for an intercultural perspective).
Mathematical argumentation is a key component of mathematical activities and, at the
same time, strictly related to argumentative competences in other domains and in
everyday life. The development of the CAC competence for mathematical argumen-
tation (and proof in particular) was the main goal of the course; it was gradually made
explicit for participants during the course.

Habermas’ Construct of Rationality

As adapted to mathematics education in previous research (Boero 2006), Habermas’
construct of rationality offers an analytical tool to compare proving in different
mathematical domains (Guala and Boero 2017) and, given a mathematical domain, in
different historical periods and cultures (cf. Durand-Guerrier et al. 2012). It also
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points out some general, common requirements for different kinds of mathematical
reasoning and proving (as rational behavior).

According to Habermas (1998), rationality in discursive practices consists of
three inter-related components:

• epistemic rationality, as rationality of knowing (consciously moving from
knowing something, to knowing why it is true in a given cultural context);

• teleological rationality, as rationality of doing (consciously moving from pro-
ducing strategies to achieve the aim of the activity, to evaluating those strategies
in the perspective of reinvesting some of them in the future);

• and communicative rationality, as rationality of communicating (through the
conscious search for adequate means to reach the interlocutor’s understanding).

The Habermas’ construct of rationality was used, in this course, as a tool for
planning and managing our teaching at the university level; it did not become an
explicit tool for prospective teachers (differently from a parallel course for sec-
ondary school teacher education—see Guala and Boero 2017). The reasons for this
choice were the limited available time, together with the lack of a sufficient
prospective teachers’ background in history and epistemology of mathematics. We
will discuss this choice in the last section of this chapter.

Argumentation and Toulmin’s Model

While adapting Habermas’ construct of rationality to mathematical activity (in par-
ticular, to proving), Toulmin’s model of argumentation was identified as a valuable
analytical tool for epistemic rationality (see Boero et al. 2010). According to Tsamir’s
(2008) criteria for introducing theoretical tools in teacher education, Toulmin’smodel
of argumentation (Toulmin 2008) was explicitly taught in our course as a tool for
identifying argumentation and dealing with it in task design and in the analysis of
participants’ and students’ argumentative productions. In particular, in the course at
stake we defined “argumentation” as an oral or written text organized around one
nuclear argumentative step, or some enchained nuclear steps. Inspired by Toulmin’s
model, a nuclear argumentative step may be represented this way:

Data -------------------- Claim

|

Warrant

Among the advantages of this model (and its schematic representation) we
would like to point out how it allows to identify lacking parts in students’ argu-
mentation, to classify different kinds of mathematical argumentation according to
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the nature of warrants (e.g., empirical vs theoretical warrants) and to design
argumentative tasks (e.g., tasks asking for the identification of an inappropriate
warrant). Some examples will be provided later.

Other Theoretical Elaborations

Other theoretical elaborations of different origins (made locally coherent for our
purposes) served as references for specific aspects of our work. Some of them had
been objects of explicit teaching in the other courses taught by us. They were:
Vygotsky’s elaboration about the role of language, the teacher’s role in the stu-
dents’ zone of proximal development, and the everyday concepts—scientific con-
cepts dialectics; and Vergnaud’s theory of conceptual fields (particularly as
concerns the components of a concept: Vergnaud 1990). In particular, in the course
at stake the zone of proximal development was evoked several times, when dis-
cussions with participants concerned transcripts of classroom interactions in ele-
mentary school. Participants tried to identify instances of pupils’ argumentative
performances beyond the level of their own autonomous elaboration, and how they
had been driven by the teacher’s prompts or some schoolmates’ contributions.
Vergnaud’s theory served as a tool to identify, in particular, the role of argumen-
tation in the development of pupils’ mastery of concepts, in the perspective of
Vygotsky’s everyday concepts—scientific concepts dialectics (see Douek 1999).

Engeström’s elaboration on expansive learning, related to the development of
identity and autonomy in educational programs (Engeström and Sannino 2010), and
the construct of Field of Experience (Dapueto and Parenti 1999) inspired the
planning of the course at stake. In particular, the expansive learning construct
served as a reference to engage participants in activities of production of new
knowledge on professional relevant issues, and of self-evaluation of their perfor-
mances related to the aims of the course (see below). The construct of Field of
Experience was used to identify suitable cultural domains for argumentation and
discuss them with participants, in the perspective of their use for the development of
argumentative competencies in elementary school.

The Course

The course on mathematical argumentation was introduced in 2014/15 in the Genoa
University curriculum for the master’s degree in Sciences of Elementary Education
as a fourth year course. Our decision was a consequence of the difficulties met to
deal in a homogeneous, coherent way with various aspects of the subject in the
other courses of mathematics and mathematics education.

In this chapter, for practical reasons related to available documents, we will focus
on the 2015/16 version of the course, similar to that of the previous year.
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42 prospective teachers (hereafter called ‘participants’) attended this 24-hour course
during a period of 7 weeks, in Autumn 2015 (with at least 12 further homework hours
during the course, and more than 36 h of self-reflective activities on the participants’
personal learning trajectory after the end of the course—see below: Participants’
assessment). All their written productions and some audio-recordings of classroom
discussions were available. One of the authors was the teacher of the course.

The Design of the Course

The design of the course was inspired by three principles, related to our theoretical
framework:

• focus on the CAC of mathematical argumentation, starting from its framing
through Toulmin’s model;

• narrow connection, established through the four parts of the course, between
analysis of elementary students’ behaviors in classroom argumentative activi-
ties, participants’ argumentative activities at an adult level and task design on
argumentation (see Zazkis 2008; Stylianides and Ball 2008);

• method choices (including evaluation) in line with the aim of developing CAC
competence on mathematical argumentation.

As concerns method and evaluation issues, and focus on the development of
CAC competencies, the course is representative of the whole set of mathematics
and mathematics education integrated courses of the master’s degree in Sciences of
Elementary Education at the Genoa University.

The Content

The course’s main content was mathematical argumentation, for three reasons:

• it is one of the key subjects in the National Guidelines for Curricula of grades I
to VIII (6-to-14-year-old students);

• the emphasis on argumentation is new in Italian elementary schools, and no
didactical tradition exists at this school level (see Introduction), thus teachers
need to be prepared to deal with it in the classroom;

• systematic practice of argumentation is strictly related to the development of
mathematical concepts (Vergnaud 1990) when dealing with key content of the
elementary school curriculum, in the transition from every day to scientific
concepts (Douek 1999).

Identifying mathematical argumentation in students’ mathematical productions
from elementary school was the aim of the first part of the course (about 15% of the
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whole course). Toulmin’s model was explicitly introduced to promote this com-
petency, and to prompt reflection on some epistemological and logical-linguistic
features of argumentation, when dealing with mathematical content; in particular,
the nature of warrants (empirical, general/based on properties, or formal/syntactic).

The aim of the second part (about 40% of the course) was to develop partici-
pants’ competencies about task design on argumentation, starting with single tasks
in different fields of experience (Calendar, Seasons, Money and purchases,
Grammar, Classroom productions, Numbers and operations, Space and geometry),
then moving to a sequence of tasks on a given content in the mathematical field of
experience. Reflection on epistemological and logical-linguistic features of ques-
tions, suitable to activate argumentation, helped participants to move from identi-
fication of argumentation to the production of tasks in a given context of shared
knowledge aimed at developing elementary students’ argumentative competencies.
In this part of the course, based on participants’ task design, analogies and differ-
ences of argumentation as a discursive activity across different domains were dis-
cussed, with explicit reference to the anthropological relevance of argumentation
since the ancient Greeks. Note that in this part of the course, the concern for
students’ ways of dispelling doubts about the truth of statements (or of falsifying
statements), and the focus on different criteria for assessing truth, together with
pupils’ ways of communicating their reasoning, gradually emerged as a major
object of interest for participants, even if Habermas’ construct of rationality was not
explicitly introduced.

The third part of the course (about 30%) was aimed at identifying different ways
of justifying a mathematical statement in elementary theory of numbers, through
participants’ personal activities of conjecturing and proving in mathematics.
Historical (going back to Euclid’s arithmetic) and epistemological considerations
helped distinguish between algebraic-formal justifications (based on the use of the
algebraic language) and verbal-semantic justifications (referring to basic knowledge
about numbers) (see Guala and Boero 2017). In this phase, participants became
protagonists of argumentation and proving activities, and at the same time evalu-
ators of their mates’ productions. The subsequent analysis of 5th grade (10–
11 years old) students’ productions on the same tasks helped participants to become
aware of those students’ potential in conducting a deductive reasoning, when
inferences are based on the meaning of arithmetic propositions.

The fourth part of the course (about 15%) was aimed at further developing
participants’ task design competencies. This time, tasks had to be addressed to
develop elementary students’ mathematical argumentation (general claims and
general warrants, related to arithmetic properties known by students).

Teaching Method

The course was organized according to a model of “laboratory course”, with 2–3
worksheets to be completed individually each week in the classroom (and 1 or 2
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worksheets to be completed each week as homework). Worksheets usually con-
tained an informative part (reminder of the content of previous lectures, and/or brief
introduction to new definitions, elements of theory, etc.), followed by open ques-
tions. Each worksheet working phase was followed by a discussion, guided by the
teacher, based on some participants’ productions (selected by the teacher) and/or on
some elementary school students’ productions on related issues. The role of the
teacher was to lead the discussion and to introduce (when appropriate) new cultural
elements, theoretical tools, etc. connected to the content of the discussion. The
percentage of classroom time devoted to individual work was about 35% (about 30’
for each worksheet). Worksheets were collected by the teacher and given back to
participants at the end of the course, for self-assessment purposes. Participants’
CAC activities were the object of most tasks; thanks to the organization of the
course, this choice resulted in participants’ production of knowledge on the content
of the tasks (cf. Engeström and Sannino 2010), and at the same time it developed
their CAC competence. The method of participants’ assessment was conceived to
create the best conditions for their engagement in CAC activities, during and after
the course.

The Participants’ Assessment

Participants’ CAC competence cannot be assessed through a traditional written or
oral exam, because the relationship with the teacher, needed for participants’
development of the CAC competence, is incompatible with the kind of subordi-
nation to the teacher inherent in the traditional system of evaluation. Wisely for-
mulated interviews might work better than traditional oral exams, but still
participants should prepare themselves to answer questions posed by the teacher,
not to self-pose questions and develop an inner dialogue on what they have learnt.
Usually, participants’ relation with mathematics (and other disciplines as well) is
dominated by the need of showing to the teacher that they know what the teacher
wants them to learn. In the perspective of becoming professionals, participants
should move towards an autonomous taking in charge of their knowledge as a
corpus of mathematical notions and practices, and reflections about their roots and
connections with present culture and children’s extra-school experiences.
Participants need also to reflect on their own learning trajectory. This is an
important occasion to realize how learning (in mathematics, as well as in other
domains) is not a linear, ideal path, undermined in reality by possible mistakes, but
a very complex, non-linear process, where pitfalls and weaknesses may be
important occasions for moving ahead, according to a personal evolution which
usually differs from that of ones’ own mates. Reflecting on their learning process is
also an occasion for participants to learn to analyze their future students’ actual
learning trajectories out of the traditional right/wrong dichotomy, and to overcome
the idea of an ‘optimal’ universal learning trajectory. As a consequence of the
necessity to move towards such an autonomous and active role, in the last years,
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participants’ assessment in our courses has been based on their written retrospective
analysis of their personal work during the course and related difficulties, and on
their synthesis of their own learning itinerary. In both cases, precise reference is
requested to their individual written productions: thus the participants’ attention is
contractually addressed (during the course, and in the final reflective analytical and
synthetic activity) to their growing up as CAC expert teachers. Evaluation criteria
by the teacher include the precise correspondence between the performed analysis
and synthesis and the participant’s written productions, and the quality of her
analysis.

Three Snapshots from the Course

We have chosen three short segments from the 2015 course in order to show how
planning of the course resulted in teaching and learning activities. Their synthetic
presentations (“snapshots”) should provide the reader with information on the
activities, which have been referred to in the pieces of participants’ self-reflective
reports to be presented in the next section. The snapshots will also present some
typical tasks of the first three parts of the course, and how participants dealt with
them. Some tasks have been based on classroom productions of elementary school
students, collected by school teachers who performed research activities with us on
the development of students’ argumentation at the elementary school level.

First Snapshot

This derives from the first part of the course. Participants were requested to identify
traces of argumentation (according to their conception of argumentation) in three
texts of 2nd grade (7-year-old) students at the end of the year. Those students had to
write down a previously learnt criterion to identify even numbers (by checking if
the last digit on the right is even), and to justify it according to what had been
discussed in the classroom under the guidance of the teacher: each number is a sum
of powers of ten and of the number represented by the last digit; if the last digit is
even, the given number is even, because it is the sum of even numbers (an already
shared knowledge). The first text presents the criterion in a clear, detailed way,
without any justification for it:

I. Even numbers are those integer numbers, which are divisible by 2; odd numbers are those
integer numbers, which are not divisible by 2. In order to identify an even number one must
check if the last digit is even.

The second text contains not only the criterion, but also a complete justification
for it, based on a generic example (Mason and Pimm 1984), expressed in a rather
unclear (at a first reading) and not completely explicit way. In our faithful
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translation into English, we maintained the Italian word “che”, used by this student
with three different meanings (like in Italian poor speech): as “and” (in the first
case), as “because” (in the second and third case), and as a pronoun (“which”, in the
fourth case):

II. Even numbers are those divisible by 2, “che” [and] if a number ends by 0, 2, 4, 6, 8 is
even, “che” [because] when for instance I take 34 it is even, “che” [because] 30+4 with 30
divisible by 2 and 4 even makes even+even, “che” [which] is even.

The third text clearly presents the criterion and an incomplete justification (the
second warrant is lacking). At the end of the worksheet, participants were requested
to write down what an argumentation was for them:

III. Even numbers are identified by the last digit on the right, which must be even. In other
words: if the last digit on the right is even, the number is even. Indeed if the last digit on the
right is even, we make the addition with the remaining even part of the number.

One half of the participants thought that the first text is argumentative (in line
with their conception of argumentation as a “clear presentation of a procedure or an
idea”). The other half of participants thought that argumentation consists in pro-
viding justifications or motivations for a claim, thus they qualified the first text as
non-argumentative, but one third of them did not identify argumentation in the
second text, and were in doubt about argumentation in the third text.

After comparison of their productions and discussion, participants were provided
with Toulmin’s (nuclear) model of argumentation; then they were requested (in
worksheet 2) to identify argumentation (and re-write the text accordingly) in the
second text, and to complete the argumentation in the third text.

Second Snapshot

This comes from the second part of the course. Participants dealt, in worksheet 7,
with the following task proposed in a 2nd grade classroom (7-year-old students):

Discuss the following text written by your schoolmate Maria:

Another criterion to check if a number is odd is to add its digits, and check if the sum is
odd. For instance 27: 7+2=9 is odd, and 27 is odd.

Participants had to analyze some children’s very rich productions (most par-
ticipants made an appropriate use of Toulmin’s model); then participants were
requested to produce other tasks with similar logical characteristics in different
domains (arithmetic, grammar, natural sciences, etc.) for 2nd grade and for 4th–5th
grade children. One half of the participants met difficulties to produce such kind of
tasks. In some cases, they produced false claims, but were not able to find examples
that apparently validate them; in other cases they produced true claims with suitable
examples to validate them. Some participants’ good productions, in mathematics
and in other domains, helped their mates to focus on the core element of Maria’s
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text. Here are some sentences proposed by participants for tasks similar to the
original one:

Discuss the following text written by a schoolmate of yours:

(For 2nd grade,) The first names, which end on the right with the letter a, identify female
people. For instance: Anna ends with a, and is the name of a female person.

(For 4th grade.) Odd numbers are prime numbers. For instance: 13 is odd, and is a prime
number.

(For 5th grade.) Global warming is a fake. For instance: according to Internet, in Piemonte
(the region of Turin), February 2012 was the coldest month of the last century.

The long (55′) discussion about participants’ productions (particularly for pro-
ductions like the third one) brought to the fore the importance of developing
children’s critical attitude toward this kind of statements: they have been used, and
still are used, to convince people about the validity of a statement in different fields.
The cultural-anthropological relevance of argumentative competencies emerged in
this part of the course as a major motivation for their development since elementary
school.

Third Snapshot

This comes from the third part of the course.
Two of the tasks for participants were as follows:

– (Worksheet 17) What can you say about the common divisors of any two consecutive
natural numbers? Justify your conjecture in a general way.

– (Worksheet 21) What can be said about the GCD [greatest common divisor] of all the
products of two consecutive even numbers? Justify your conjecture in a general way.

Participants identified true conjectures, but one half of them met great difficulties
in producing general justifications for them. This happened even in the case of the
second task (Worksheet 21), in spite of a detailed discussion of some participants’
productions for the first task (Worksheet 17), and of an analysis of 5th graders’
productions for the same conjecturing and proving task. Note that participants had
experienced proof in high-school for a number of theorems, going from a dozen to
more than 40 (according to the type of high-school) presented by the teacher at the
blackboard, with reference to the proofs displayed in the textbooks, and then
studied at home and individually reproduced to get the passing mark. Reflections on
the limitations of transmissive teaching in this domain were one of the follow-ups
from this part of the course. The role of generic examples (Mason and Pimm 1984),
taken from some children’s productions on the same tasks, came again to the fore as
a possible transition means from checking the validity of a statement by using
examples, to producing a mathematical proof. Also, the difference between
algebraic-formal proofs and verbal-sematic proofs is put into evidence, and further
reinforced through another conjecture, concerning the GCD of the products of three
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consecutive natural numbers. In that case, an algebraic-formal proof requires
knowledge of combinatorics, or of modular arithmetic; however, a verbal-semantic
proof is rather easy by considering the distribution of the multiples of 2 and 3 on the
number line. Then some photocopies of pages taken from Euclid’s books on
arithmetic theorems were distributed and three easy proofs were discussed.

In this part of the course, most participants realized that proving based on
semantic inferences was a legitimate way of proving, and that it had been a vehicle
of mathematical knowledge development for about two thousand years in Western
civilization. The following excerpt from a discussion shows how three participants
(P1, P2, P3) contributed to the comparison between algebraic-formal and
verbal-semantic proving for arithmetic theorems:

P1 I was surprised when the teacher said that 10-year-old students may prove
simple arithmetic theorems. Now I understand that proving arithmetic
theorems does not need Algebra (pause) I understand the words are sufficient.
10-year-olds may use words to prove.

P2 Yes, me too, I was surprised with 10-year-olds’ proving, because I thought that
only proving arithmetic theorems with Algebra was acceptable in
Mathematics.

P1 In these photocopies we see a lot of proofs by Euclid, he was able to prove, to
establish the truth of those statements.

P3 Only by words and segments! A little bit like in Geometry! Reasoning is based
on thinking, on looking at segments and imagining numbers.

P2 As lengths of segments.

Participants also realized that verbal-semantic proving is strictly connected with
argumentation in other cultural domains (like the social and natural sciences). In her
utterances during a classroom discussion, a participant developed connections
between proving in Mathematics and argumentation in Ecology under the teacher’s
prompts:

P It seems to me that this kind of reasoning is important, is relevant not
only in mathematics. (pause) Data, claims and warrants may be different.

Teacher What do you mean by “different”?
P Yes, different (pause). Like in a discourse on warming, on global

warming (pause). Data may be (pause) data: increase of CO2 from cars
and industries. Claim may be (pause) expansion of deserts. Warrant: the
increase of temperatures as a consequence of increase of CO2 in the
atmosphere.

Teacher What in common with reasoning in arithmetic?
P I don’t know exactly (pause) perhaps the logic aspect, the structure of

argumentation (pause) perhaps more precisely: verbal reasoning, the use
of words according to the same structure. In arithmetic we reflect on the
meaning of sentences on numbers, (pause) while here there are more
complex things.
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(The teacher writes the proposed example concerning global warming on
the blackboard, according to Toulmin’s model.)

P Yes, I see a claim, in this case a real fact, supported by a warrant, in this
case one of the effects of the increase of CO2 in the atmosphere.

The two reported excerpts provide evidence about how CAC competence has
been developed during the course. However we may observe how in both cases the
lack of a suitable tool (which might have been the rationality construct) did not
allow participants to deepen the comparison between different kinds of proving (in
the first case); and to clarify the nature of the common aspects and the differences
between argumentation in the two domains, in the second case. We will discuss this
issue in the last section.

Analysis of Participants’ Self-reflective Reports

The evaluation of the effectiveness of the choices performed to frame, plan and
manage the course concerns different aims (including the development of
task-designing competencies and the use of Toulmin’s model for argumentation).
Here, we consider the development of CAC competencies on the subject of
mathematical argumentation. Criteria, chosen to evidence the quality of partici-
pants’ CAC specific performances in self-reflective reports, are related to the nature
of the CAC competence and to Habermas’ construct, as adapted to to mathematical
argumentation:

(i) the identification and precise wording of the nature of argumentation (in
terms of the kind of warrants and strategic choices: semantic or syntactic
warrants; a list of examples, or generic examples, or strategies aimed at
generality in the reasoning; etc.) in her own, or other participants’, or chil-
dren’s texts;

(ii) the identification and precise wording of lacking warrants, or illegitimate
inferences, or bad strategic choices; in her own, or other participants’, or
children’s mathematical productions;

(iii) the identification (through CAC when appropriate) and precise wording of
difficulties (and their roots) in the participant’s learning trajectory, be they
overcome or not..

The following quotes from participants’ final self-reflective reports are related to
the three reported snapshots (e.g. A2 refers to the second snapshot). Superscripts i),

ii), iii) will be inserted in the quotes in order to put into evidence some instances of
our coding of participants’ texts according to the criteria (i), (ii), and (iii) we
described earlier.

Participant A is a representative of the 30% of higher level participants—those
whose final self-reflective reports systematically satisfied all the above criteria.
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A1: In worksheet 1, I was not able to identify the second text as the only one being fully
argumentative, because my idea of argumentation was influenced by a model of clear
presentation of one’s ideas, even if no justification for them was included iii). The con-
catenation of two Toulmin’s cycles was another problem met by me in the second work-
sheet iii). I tried to get a unique step of reasoning, with an only partial warrant for it ii).
Through comparison with my colleagues’ productions, I started to identify the usefulness of
Toulmin’s model as a tool for analyzing argumentation, particularly in complex argu-
mentation, when the claim of the first step becomes a data for the second step (and so on) i).

A2: While I was able, in worksheet 7, to produce other tasks in mathematics similar to that
based on Maria’s idea, I met a lot of difficulties to produce similar tasks in other
non-mathematical domains. It was like if a wall separated mathematics from other domains
partial iii). My task: “Find the mistake in the sentence: the water freezes because the tem-
perature is –5 °C” did not correspond to Maria’s task, because the warrant is a case of a
more general correct justification ii). I did not understand, at the beginning, the common
structure of a local coincidence with no general correspondence in the relationship between
warrant and claim i), iii). Some tasks produced by my colleagues (….) helped me to both
reach deeper understanding about the nature of Maria’s mistake, and to identify the
importance for life of the competence at stake.

A3: I engaged a lot in proving tasks from worksheets 17 and 21 by using algebraic methods,
because I thought that only in that way were a proof a true mathematical proof iii). I was
unsuccessful in both cases, because I was not able, aftermore than 3 years, to use the algebraic
language (learnt in high-school) iii). In the first case, I was not able to get any useful algebraic
formalization; in the second case, I made a mistake by writing 2(n+2) instead of 2n+2 to
represent the second even number ii)! Then I was surprised by two facts: the possibility of a
non-algebraic deductive proof based on knowledge of elementary arithmetic properties (as a
legitimate mathematical proof, since Euclid) i), and the fact that such proof was accessible to
5th grade students, against my idea about their limited reasoning skills (probably related to my
idea of mathematical reasoning as essentially based onmanipulation of algebraic symbols iii)).
The use of a generic example for the task ofworksheet 17was difficult to accept forme because
it was related to the use of examples (in high-school I learnt that examples may be used only to
disprove conjectures iii)). But now I realize that if we consider the example of 15 and 16 andwe
see that 5 (a divisor of 15) cannot be a divisor of 16 because the remainder is 1, and the same
happenswith 3, then this way of reasoningmay be generalized to get a general deductive proof
(based on 1 as the remainder of the division of the second number by a divisor of the previous
number, different from 1) i).

Participant B is a representative of the group of 30% lower level participants—
those whose self-reflective reports only partially satisfied, here and there, some of
the above criteria:

B1: While dealing with worksheet 1, I had a vague idea of argumentation as a logical matter
related to inferential reasoning (according to my memory of what I learnt about Aristotle in
the high-school in the course of Philosophy), but I did not succeed in identifying argu-
mentation in the second text and in re-writing it as an argumentative text (worksheet 2)
partial ii). I was not able to use Toulmin’s model at that time because it was something very
abstract and far from actual texts iii). Now I would be able to use it, as I did in the last
worksheet. And now I think to better understand what Aristotle wrote.

B2: It was (and it still is) difficult for me to find the deep reason why Maria’s criterion is not
acceptable. Yes, I realized that it did not work in the case of 35, but what was the underlying
logical pitfall? Some of my colleagues explained it in different ways, but still the core idea is
not clear for me partial iii). After some difficulties, I produced two similar tasks in other domains
in Worksheet 7, but I must say that it was by imitation, not by understanding partial iii).
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B3: I was able to validate the statement of worksheet 17 by using algebraic language i) (I
was a good student in mathematics in high-school), but not the statement of worksheet 21.
Concerning alternative ways of proving it, by reference to the properties of the number line,
I realized that it is possible to prove the second statement by making reference to that
knowledge partial i). But in the case of the first statement, the use of a generic example for me
does not escape the reference to numerical examples, thus: why may we consider it as a
bridge towards a GENERAL proof? partial iii)

Participants’ performances in their self-reflective reports provide some evidence
about the maturation of the CAC competence in the case of mathematical argu-
mentation not only among the highest level participants, but for all of them,
according to the chosen criteria (at least as concerns, for some issues, the awareness
of personal persistent difficulties and not achieved aims—see B2, B3). In the
reported excerpts, we may identify phenomena occurring in many other reports:
how previous historical and epistemological knowledge became a component (in-
tegrated with further knowledge) of the maturation of the CAC competence (A3,
B1); and how participants were enabled to put into question previous conceptions
about argumentation (A1) and proof (A3), and to identify crucial epistemological
(A1) and anthropological (A2) aspects of argumentative competencies, even if in
some cases maturation did not result yet in full mastery of them (B2, B3).

Discussion

Some elements of the self-reflective reports suggest that a crucial role for participants’
maturation of their CAC competence was played by the evaluation system integrated
with the methodological choices of the course. The participants’ practice of CAC was
guided through the worksheets, then collectively shared and enhanced during the
related discussions. After the end of the course a precise correspondence between
participants’ self-evaluation and personal worksheets was required. All this allowed
participants to identify their strengths and weaknesses concerning CAC not only for
their teacher but also for themselves, thus opening the way to the autonomous practice
and improvement of CAC. Participants moved from specific knowledge on argumen-
tation and proof, acquired during the course (or before), towards its conscious use: to
analyze cultural achievements; to establish links betweendifferent cultural domains (see
A2); and to identify different, valuable mathematical practices related to historical and
personal evolution of mathematical reasoning (see A3). All of them are important
components of teachers’ professional competence related to CAC.

Looking back to the course through the transcripts (cf. the reported snapshots),
we have seen how participants gradually became accustomed to being responsible
for their knowledge. Questions traditionally addressed to teachers in school (and
even at the university level, in standard mathematicscourses or education sciences
courses), like “Is what I wrote correct?”, gradually became self-addressed questions
—a fundamental step towards learning to evaluate textbooks and analyzing stu-
dents’ productions in the school in an autonomous way. But the analysis of

64 P. Boero et al.



participants’ self-reflective reports, and the comparison with participants’ perfor-
mances in parallel courses for secondary school teachers (see Guala and Boero
2017), raises a question: what about the explicit introduction in this course (or in
another course) of Habermas’ construct of rationality? Indeed participants lack a
vocabulary (and a perspective) to identify different rationalities (within mathe-
matics, and in the comparison with other cultural domains), which might contribute
to their CAC; and also to get a deeper insight into their own work and into students’
work in terms of epistemic, teleological and communicative components.
Constraints resulting from limited available time and participants’ epistemological
and historical background might be overcome through a different coordination of
content with the other courses.

What happens when our prospective teachers enter the school? We may say that
sporadic follow-ups at schools, after the degree, of participants in our courses provide
evidence about the difficulties met by some of them in using their CAC competence.
Difficulties are mainly due to the fact that educational choices resulting from CAC are
scarcely compatible with both the transmissive teaching that prevails in schools and
the present school culture (especially when teaching is planned by teams of teachers,
as is usual inmany Italian elementary schools) (cf. Stylianides et al. 2013, for a similar
situation in another country). However, it is interesting to observe that positive results
are emerging in schools (usually situated in “problematic” districts) where several
young teachers coming from the present university teacher education program may
work together. We have kept in touch with some of these young teachers. Their
requests for suggestions from us and their examples of performed teaching activities
on argumentation show how they try to develop argumentative skills by identifying
suitable tasks in different cultural domains, according to the opportunities offered by
local situations. They also engage in analyzing students’ performances in those
activities beyond the “right-wrong” dichotomy, by trying to identify the features of the
students’ individual argumentative processes.
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Chapter 5
Toward an Evolving Theory
of Mathematical Practice Informing
Pedagogy: What Standards for this
Research Paradigm Should We Adopt?

Keith Weber and Paul Christian Dawkins

Abstract In this chapter, we provide commentary on the four preceding chapters on
proof in mathematics education. We contend that each of these chapters considers how
Mathematical Practice can inform Pedagogy (MPP) research. We use these chapters to
begin a discussion on what factors mathematics educators should consider when pro-
ducing and evaluating MPP research. Each chapter seeks to inform mathematics edu-
cation using the philosophy or history ofmathematics.We argue that ourfield continues
to borrow from these relevant fields without clear criteria for evaluating such research
and without a framework for the transposition across disciplines. The chapters also all
entail meta-mathematical learning goals for students and pre-service teachers.We raise
questions about the exact intent of these learning goals and assessment of such learning
whose answers would enhance the contributions of MPP research.

Keywords Mathematical practice � Mathematics � Pedagogy � Proof
Teaching

Mathematical Practice Informing Pedagogy

This chapter represents the authors’ reflections on and response to the previous four
chapters. In attempting to conceptualize the four chapters separately and as a whole,
we formulated a description of what (in our understanding) they shared with one
another and with some prior literature. We call this common pattern of research
“mathematics practice informing pedagogy,” which we explain and explore
hereafter.
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Commonalities in These Book Chapters

In contemporary mathematics education, we generally accept that there is a rela-
tionship between what professional mathematicians do and how mathematics is
taught. This is especially the case with mathematical proof (Dawkins and Weber
2017; Weber et al. 2014). In particular, the four chapters in this volume illustrate
that the practices of mathematicians can inform what it is that we want students to
learn and how instruction should be designed. We observed two commonalities
among these chapters. First, each chapter is consistent with Manin’s famous dictum
that “good proofs are proofs that make us wiser” (cited in Aigner and Schmidt
1998). In their own way, each chapter illustrated how the role of proof in the
classroom goes beyond persuading students that mathematical claims are true, but
advances some other pedagogical goals as well. Second, each chapter uses math-
ematical practice to inform what those pedagogical goals ought to be and how those
pedagogical goals might be achieved. For rhetorical convenience, we will call
research that satisfies the second commonality as Mathematical Practice informing
Pedagogy (MPP) research. MPP research on proof has been present in mathematics
education for some time, at least since De Villiers’ (1990) seminal paper on the
purposes of proof, and several of the authors of these chapters previously have
made important contributions to MPP research (e.g., Boero 2007; Durand-Guerrier
2016; Hanna 1990; Harel 2007). We believe that the authors’ chapters represent a
promising trend toward MPP research in the mathematics education literature on the
teaching and learning of proof.

The aim of this chapter is to use the four chapters to critically analyze MPP
research. While MPP research on proof is becoming increasingly common, the field
currently lacks standards that MPP research should meet and criteria by which it
can be evaluated. In this section, we summarize the contributions of each chapter. In
our summaries, we highlight how each chapter satisfies the two commonalities that
we discuss in the previous paragraph, describe how we think each chapter signif-
icantly advances the field, and raise critical questions that came to us as we read the
chapter. In the next section, we attempt to synthesize the critical questions that we
listed. In particular, we list broad criteria that we think the field ought to consider
when evaluating MPP research and we will highlight the challenges for finding
systematic ways to form explicit criteria.

Summaries of the Contributed Chapters

Hanna: Criteria for Mathematical Explanations in the Classroom

The goal of Hanna’s chapter was to explore what makes an explanatory proof in a
pedagogical setting. Hanna’s premise was that in mathematical practice, proofs
often provided mathematicians with something beyond conviction that a claim was
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true; proofs sometimes provided mathematicians with an explanation for why
claims were true. Hence, Hanna was using mathematicians’ practice as a basis for
what our pedagogical goals with respect to proof should be. In the past, other
researchers have also claimed that pedagogical proofs should be explanatory when
possible (e.g., De Villiers 1990; Hanna 1990; Hersh 1993) but there is a lack of
agreement on what explanatory pedagogical proofs should be (c.f., Weber 2010a).
Hanna noted that we cannot simply adapt philosophers’ definitions of explanatory
proofs because philosophers and mathematics educators have different disciplinary
aims. However, she argued that we can form analogs for some of philosophers’
characterizations that are appropriate for mathematics education purposes.

Hanna distinguished between intra-mathematical explanations (explanatory
proofs in philosophy) and pedagogical explanations as the two operate within
different contexts and assume vastly different levels of expertise. Inasmuch as there
is precedent for translating such philosophical criteria to pedagogical contexts (even
in our own work: Dawkins 2015), it is necessary to address the translation
explicitly. The three criteria for a proof being explanatory identified (regarding
intra-mathematical proofs) are proofs depending upon a characteristic property,
proofs that support theoretical unification, and proofs that use salient properties.
Hanna provides examples of proofs that could be used pedagogically that, in her
estimation, satisfy each of these criteria. The goal, however, is that these criteria
could serve a generative and/or explanatory role in talking about when and why a
proof is pedagogically explanatory.

Hanna’s chapter makes several important contributions. Her criteria for a proof
being explanatory that could guide the development of pedagogical examples of
proof or proving activities. More generally, Hanna raised the important point that
the translation from philosophers’ interpretation of mathematical practice to peda-
gogical recommendations is complicated, particularly because different stakehold-
ers (philosophers, mathematicians, researchers, and teachers) have different aims.
Hanna’s chapter can serve as a model for how an MPP researcher can manage this
complexity in making practical suggestions that satisfy the needs of all the different
stakeholders.

Reading the chapter raised the following questions to us. To what extent does
mathematical explanation actually guide mathematical practice? What evidence
would be appropriate to persuade mathematics educators of the importance of
explanation in mathematical practice? How can we assess when students perceive
characteristic properties, theoretical unification, or salient properties and the influ-
ence of such judgments? Since even university mathematics students cannot dis-
tinguish between a proof and an invalid argument (e.g., Ko and Knuth 2013; Selden
and Selden 2003; Weber 2010b), is it feasible for proof to provide explanation for
all students? Would a focus on explanation take emphasis away from the more
urgent goal of developing students’ ability to gain conviction from proofs and
follow the logical chain of reasoning within a proof?
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Durand-Guerrier and Tanguay: Systematizing the Real Line

Durand-Guerrier and Tanguay’s chapter highlighted several ways in which math-
ematicians have systematized the real line. Durand-Guerrier and Tanguay observed
that the role of definitions and axioms not only affects what needs to be justified and
what is permissible in a justification—a point Mariotti (2006) previously high-
lighted with regard to reference theories—but the authors also noted that different
systematizations emphasize and downplay different aspects of the real line (e.g.,
order relations, completing the rationals, decimal representations). Dedekind cuts
accentuate the linear ordering properties of the real line while minimizing the
metrical properties of the real line while Cauchy sequences do the opposite. The
authors highlighted how studying the proofs in these (and other) systematizations
provides learning opportunities for students, but the learning opportunities that are
present depend upon the systematization being used. Durand-Guerrier and Tanguay
used the different systematizations that mathematicians generated for the real line to
show how different proofs (within these systematizations) could contribute to stu-
dents’ understanding of the real line.

This chapter makes several important contributions: The foundational properties
of the real line are important for students to distinguish and coordinate, which might
be fruitfully done via various systematizations or even by comparing different
systematizations. Further, this chapter highlights that the systematizations that we
choose can have conceptual consequences for students based on what the sys-
tematization takes for granted and what it constructs. The proofs within these
systematizations are not merely bookkeeping but can be an important pedagogical
device toward understanding the relationship between properties of a concept.

We considered the following questions as we read this chapter: Do the authors’
intended pedagogical goals include merely the properties of the real number line or
do they also include aspects of mathematical axiomatization? If understanding
axiomatization were a meta-goal of instruction, how would we know if it were
achieved (a question with which we have wrestled in our own work, Dawkins 2017,
in press)? How could we engage students with one or more of these axiomatizations
to productively challenge students’ implicit realism about the number line (meaning
students sense that numbers simply exist rather than being constructed or defined)?

Harel: Solving Cubics to Produce an Epistemic Justification
for Complex Numbers

The goal of Harel’s chapter was to consider how to produce a student’s intellectual
need for complex numbers. He presented a historical analysis of how complex
numbers emerged from a proof that the cubic equation could solve cubic polyno-
mials and he argued that this proof can create a similar epistemological justification
for complex numbers on the part of the student. Thus, Harel was using
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mathematicians’ practice to inform how proof can contribute to the pedagogical
goal of establishing intellectual need for new mathematical objects.

In his chapter, Harel used mathematicians’ justification for the cubic equation as
a locus for postulating various forms of epistemological justification for mathe-
matical knowledge, meaning an individual’s conscious link between knowledge
and the problem resolved by that piece of knowledge. He proposed a sequence of
tasks reflecting historical developments that contributed to the legitimacy of com-
plex numbers within mathematical practice. Harel noted that secondary teachers
may lack understanding of why mathematicians chose to create a solution to a
problem such as “What is the solution to x2 ¼ �1?” (as opposed to “What is the
solution to xþ 1 ¼ x?”). This is one instance of the broader mathematical practice
of expanding mathematical systems to include formerly nonsensical entities
(complex numbers, non-Euclidean geometries, intersections of parallel lines,
infinity as a number or infinite cardinalities). Harel traced Cardano’s method of
solving cubic equations, which yielded a complicated set of formulas that, even
when resolving in integer solutions, require computation with complex numbers.
Harel posited that this counterintuitive phenomenon could warrant legitimizing
complex numbers for teachers in a similar way that it did for Cardano and his
contemporaries. The underlying principle is to demonstrate the coherence and
consistency of operating with complex numbers to solve this accessible task in
which they unexpectedly arose. This then provides the grounds on which Harel
postulated three types of epistemic justification. Part of Harel’s argument for this
endeavor and the distinctions among the epistemic justifications is the anticipated
value for K-12 teachers to hold stronger epistemic justifications for the mathematics
they teach.

Harel’s chapter makes several important contributions. His task sequence can be
used by practitioners to develop better epistemic justifications to motivate the
complex numbers. More broadly, Harel illustrated the general theme that proofs can
be used to motivate an epistemic need, a common phenomenon in mathematical
practice that is usually absent in mathematics classrooms.

As we read this chapter, we wondered about the following. Harel’s analysis was
informed by the historical development of the cubic equation, but the historical
development was only discussed briefly and important details such as the com-
petitive mathematical environment at the time (creating the social need to solve
equations that your mathematical opponents could not) were omitted. Harel
acknowledged that his historical treatment was not comprehensive, saying that this
aspect of the paper would be only “discussed fleetingly”. Would a more extended
treatment of the history of mathematics have strengthened the chapter or would it be
extraneous? How important is epistemic justification for the instruction of complex
numbers within the secondary curriculum compared with the other forms of
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knowledge we might encourage teachers to construct? How can we measure the
existence and influence of such meta-conceptions among practicing teachers?

Boero, Fenaroli, and Guala: Contextualizing and Expanding
Elementary Preservice Teachers’ Conceptions of Proof

Whereas the other chapters presented broad epistemological ideas for how we can
inform mathematical instruction, Boero, Fenaroli, and Guala’s contribution differed
in that it contains an empirical study with evidence of student learning. The study
reported on the nature and efficacy of a curriculum that the authors developed to
foster particular understandings of proof. The authors call the desired competence
Cultural Analysis of the Content (CAC). This reflects their goal that elementary
teachers recognize and legitimize forms of argumentation that were acceptable at
earlier points in history within mathematical practice (even though some of these
forms might not be acceptable to contemporary mathematicians) and are appro-
priate for elementary instruction: most notably arguments by generic example. Like
the other chapters, here we see the authors using some aspect of mathematical
practice (a wide variety of proofs have been permissible in different historical
periods) to inform the goals of pedagogy (future teachers should be aware that there
are many kinds of proofs and open to different types of students’ justifications).

The cycle of mathematical activities and reflection on student arguments strikes
us as rich and useful. The authors report meaningful shifts in student conceptions of
acceptable proof as measured by their reflective writings. Specifically, several
participants improved their ability to recognize generic examples and appreciate
their implicit generality. Some students fell short of some target understandings in
part because they struggled to recognize when two arguments are of the same form
(an implicit test for validity). This finding is certainly important and warrants
further exploration. This chapter portrays a nice model for fostering
meta-conceptions about proving and trying to assess their development in situ.

This chapter motivated the following questions: Given that the proof standards
assumed in the project are less compatible with contemporary mathematicians’
views of proving, how do the goals of this project translate to secondary and tertiary
mathematics instruction? To what extent are modern views of proof the aim of
elementary education and to what extent should elementary education privilege the
standards of today’s mathematicians? To what extent should earlier views of
proving that are no longer held by contemporary mathematicians inform instruction
in elementary mathematics teaching? Are the particular methods of proving
championed in this approach as valuable for the instruction of secondary and
university students?
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Framing the Authors’ Contributions in a Broader
Paradigm

The Need for a Broader Paradigm

We argued that the four chapters that we summarized were instances of MPP
research. In each case, the authors of these chapters highlighted some purpose that
proof served for the mathematical community. The authors then recommended that
pedagogical proofs can serve the same role in a classroom community. The authors
then advocated providing students with examples of justifications that satisfied
these criteria to provide students with clear vistas for these high-level ideas.

As mathematics educators continue to produce MPP research, we contend that
shared criteria for evaluating this research are needed. At present, we observe that
MPP research has developed in a piecemeal manner without much consistency in
how authors support their arguments. We posit that our research community lacks
clear standards for deciding whether particular MPP research makes a meaningful
contribution to mathematics education research or whether the pedagogical rec-
ommendations developed in this research are promising. As a result, we personally
find that we largely evaluate the quality of MPP contributions by the extent to
which they resonate with our way of thinking. Of course, this is not a viable way to
develop a robust and coherent literature corpus, especially as mathematics educators
notoriously disagree about the nature of proof itself (e.g., Balacheff 2008). We
elaborate on this point throughout this section.

In this section, we introduce three broad issues that we think mathematics
educators should consider when evaluating MPP research. These issues are:

(i) By what standards should we judge mathematics educators’ assertions about
mathematical practice?

(ii) If we form pedagogical goals based on (particular views of) mathematical
practice, how can we determine if these pedagogical goals have been
achieved?

(iii) Are the pedagogical goals endorsed by mathematics educators sufficiently
important to be included in an already overcrowded mathematics
curriculum?

In other words, how do we verify that any stated pedagogical goals are true to
mathematical practice, available for assessment, and essential for instruction? We
contend that these issues are critical for evaluating MPP research but generally have
received scant attention in the mathematics education literature. In particular, these
issues were not discussed in the chapters that we are commenting upon nor are they
discussed in our own MPP work.
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Evaluating Claims About Mathematical Practice

If researchers are going to make pedagogical recommendations based on claims
about mathematical practice, then it is desirable that these claims accurately reflect
how mathematicians practice their craft. Hence, it is reasonable to ask the fol-
lowing: How accurate do claims about mathematical practice need to be? Should
the practices attributed to mathematicians reflect the views or behaviors of the
majority of mathematicians (measured by some chosen threshold) or merely be
acceptable within identifiable communities of mathematical practice? To what
extent is it incumbent upon the authors to justify their claims about mathematical
practice? How should mathematics educators evaluate the justifications that are
provided? The answers to these questions are not straightforward. Claims about
mathematical practice in MPP research often utilize findings and techniques from
traditions outside of mathematics education. The authors in this volume borrowed
from the philosophy and the history of mathematics; other MPP researchers have
adapted methods and cited findings from disciplines such as psychology and
sociology. The authors of MPP research generally do not have formal training in
these disciplines; the reviewers and readers of MPP manuscripts usually lack the
expertise to rigorously evaluate research from these disciplines. Even if the authors
and readers shared the background to evaluate the claims about mathematical
practice in an MPP paper, it still might be undesirable for authors to comprehen-
sively warrant their claims about mathematical practice. If the authors provided
extensive justifications for their claims about mathematical practice, this could draw
attention away from the pedagogical recommendations that are the main point of
the paper and lead to papers that violate the word count limits in some journals.

What we have observed is that MPP researchers frequently warrant their claims
about mathematical practice by appealing to select mathematicians and commen-
tators whose stances align with contemporary mathematics educators while ignor-
ing other mathematicians and commentators who express alternative points of view.
For instance, the distinguished mathematician William Thurston wrote an essay in
which he argued that mathematical knowledge is contained in the mental models of
individual mathematicians and the social fabric of the mathematical community
rather than the formal proofs contained in mathematics papers (Thurston 1994).
Many mathematics educators who conduct MPP research, including us, have cited
Thurston’s essay as evidence that informal mathematical reasoning and social
community are more important than logical formalism for the growth and verifi-
cation of mathematical knowledge. However, Arthur Jaffe and Frank Quinn, emi-
nent mathematicians in their own right, responded to Thurston’s essay. Jaffe and
Quinn (1994) objected that Thurston’s perspective was not representative of the
mathematical community as the broader community mostly viewed the formal
proofs that appeared in papers as the primary sources of mathematical knowledge.
Jaffe and Quinn are seldom cited by mathematics educators. Similarly, mathematics
educators are keen to cite Lakatos’ (1976) Proofs and Refutations to stress the
fallibility and corrigibility of mathematical knowledge, yet rarely acknowledge
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well-known philosophical critiques of Lakatos’ work (e.g., Feferman 1998). As
mathematicians are a heterogeneous group who hold a variety of viewpoints, there
is a wide range of conflicting claims about mathematical practice held by individual
mathematicians and commentators. Consequently, one can use the quotation of an
individual mathematician to support a wide range of inconsistent claims about
mathematical practice.

Let us consider these ideas in the context of Hanna’s chapter. Hanna makes an
empirical descriptive assertion about mathematical practice:

[A]lmost all mathematicians make the very useful distinction between proofs that only
demonstrate that a fact is true and proofs that also show why it is true. The latter are known
as ‘proofs that explain’.

Hanna does not justify this assertion other than to say that “philosophers have
come to a consensus on the central importance of explanation”,1 but Hanna uses
this claim as a point of departure to illustrate ways that explanatory proofs can play
a useful role in mathematical classrooms.

It is fair to ask, is Hanna’s claim true? Do almost all mathematicians distinguish
between proofs that explain and proofs that do not? Several scholars have observed
that mathematicians rarely discuss mathematical explanations (Avigad 2006;
Resnik and Kushner 1987; Zelcer 2013). Zelcer (2013) extended this argument,
noting that references to mathematical explanation are sparse even among mathe-
maticians who write reflective essays on their craft. Zelcer reasoned that “if
mathematics did countenance explanations then we would expect to find more
discussion by mathematicians. But we find almost no such discussion” (p. 180).
Mejia-Ramos and Inglis (2017) corroborated Zelcer’s claims. Mejia-Ramos and
Inglis first observed that the instances of mathematicians discussing explanation in
the philosophical literature are largely attributed to three individual mathematicians
—Poincare, Halmos, and Thurston. Mejia-Ramos and Inglis then reported the
results of a corpus analysis, finding references to proofs that “explain why” occur
infrequently in the mathematics literature. As a point of comparison, Mejia-Ramos
and Inglis observed that talk of explanations for why phenomena occur are far more
common in the physics literature. We do not raise these issues to say that Hanna’s
assertion about mathematical practice is wrong, only that this assertion hardly
represents settled science.

We use our preceding analysis to raise several questions about Hanna’s chapter
that have relevance for all MPP work.

(i) If an MPP author makes an empirical claim about mathematical practice, to
what extent is she obligated to support it? Should empirical claims about
mathematical practice require empirical evidence? Is it appropriate to justify

1Here, it might be better to state, “philosophers who study mathematical explanation have come to
a consensus that mathematical explanation is important”. In Horsten’s (2016) survey of the phi-
losophy of mathematics, mathematical explanation is only cursorily mentioned as one of several
future topics that are generating interest. There might not yet be enough interest in the philo-
sophical community for a consensus to be formed on this topic.
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claims about almost all mathematicians by appealing to individual mathe-
maticians who might not be representative of their communities?

(ii) Claims about mathematical practice, or more generally the philosophy or
history of mathematics, are rarely “settled science.” To what extent should
MPP researchers discuss debate around these issues? Hanna acknowledged
that skeptics of mathematical explanation such as Zelcer existed, but quickly
dismissed Zelcer’s position “as a minority view” in the philosophy com-
munity, which is (to our knowledge) an accurate assertion. Is this sufficient?
More generally, would delineating the contours of the debate about the
philosophy or history of mathematics be illuminating to the reader or would
it merely waste valuable journal space and distract the reader from the more
important points that the author was trying to make?

(iii) To what extent does the accuracy of MPP researchers’ claims about math-
ematical practice matter? In Hanna’s case, suppose that only some mathe-
maticians distinguished between explanatory and non-explanatory proofs. Or
even suppose that only a few mathematicians did so. To what extent would
that weaken the support for the pedagogical recommendations that she
provided? It may be that the most honest justification for some aspects of
mathematics education practice are located in the transposition of mathe-
matical proof to the classroom rather than in mathematicians’ practices of
proof. In this case, it would be helpful to accurately locate the warrants for
these beliefs and practices.

To avoid misinterpretation, the questions we raised about Hanna’s chapter
should not be read as critiques as her work. Her contribution was in accord with the
current norms for MPP research. Instead our intention is to open about a more
general conversation about how MPP research should be presented. If Hanna has
committed any sins of omission in her chapter, we have been guilty of the same
transgressions in our own MPP work. Indeed, the issues that we raised are pertinent
to all the epistemological chapters in this volume. Regarding Durand-Guerrier and
Tanguay’s chapter, the authors exposit various axiomatizations of the real line
without precisely laying forth their interpretation of the role and nature of axioms
within mathematical practice. Some constructions begin with the limitations of the
rationals while others assume the decimal representation of numbers. Some con-
structions extend naturally to the plane while others do not. By what standard to we
evaluate these options for the classroom? In our own work on axiomatizing in
planar geometry (Dawkins 2017, in press), we observe the recurrent alternation
between students interpreting axioms as referential descriptions of familiar objects
(e.g., the real line, the Euclidean plane) and as stipulated constructions of mathe-
matical objects (e.g., an irrational number, the Hyperbolic plane). Traditional views
of mathematical practice hold that axioms, like definitions, are stipulated rather than
referential, which suggests that students should view them as such. However, from
a cognitive standpoint axioms of familiar objects like the real line are referential in
creation and stipulated in application. Dawkins (in press) observes both limiting and
productive aspects of referential reasoning about axioms. Durand-Guerrier and
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Tanguay do not convey their view of axiomatizing in mathematical practice nor
their goals for student interpretation of constructions of familiar objects (like irra-
tional numbers). We see this as another instance of how MPP research would
benefit from a clearer framework for characterizing mathematical practice and how
to transpose those practices to the classroom at various levels of instruction.

Assessing Pedagogical Goals

Each of these chapters set forth high-level goals for student learning—what we
consider meta-conceptions of mathematical practice. We recognize that this rep-
resents part of the broader shift in mathematics education toward engaging students
in authentic mathematical processes so they can adopt (and teach) mathematical
epistemologies. Being that we have published studies in a similar vein (e.g.,
Dawkins 2017), we recognize the value in such work and appreciate the inherent
difficulty in assessing such knowledge. Nevertheless, we observe that only Boero
et al. provide clear means for assessing the targeted meta-conceptions. To avoid
misinterpretation, this is not a critique of these chapters; assessments should only be
designed after researchers have a good theory of what it is that should be assessed.
Further, lack of clear means of assessing knowledge does not invalidate efforts to
support student learning of that knowledge.

We believe this issue is of paramount importance if the mathematics education
community intends to build on these chapters and design instruction to achieve the
pedagogical goals that the authors proposed. It would be unreasonable for us to
expect the authors to propose specific assessments in their chapters. What we
suggest instead is that MPP researchers can provide directions for assessment. Let
us consider Harel’s chapter on sequencing proofs to develop the epistemic need for
complex numbers. How would a researcher or a teacher determine if Harel’s
sequence, or another instructional sequence, was successful in achieving Harel’s
goals? Would this involve a qualitative analysis of individual students’ responses to
a question such as “why is it useful to study complex numbers?” Consider also the
interesting question proposed in Harel’s chapter—why do mathematicians want to
introduce a solution to the equation x2 = 1 but not x + 1 = x? Would a successful
answer to these questions involve a reference to the proof that was produced? Or
would the efficacy of the instruction be determined through students’ collective
activity as they worked through the instructional sequence? If so, what types of
classroom practice could serve as evidence that the learning goal was achieved?

Prioritizing Pedagogical Goals

In each of the chapters, the authors identify pedagogical goals that can be formed by
studying mathematicians’ practice. We posit that for the mathematics education
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community to develop better methodological standards for MPP work, we must
recognize the implicit arguments by which such knowledge goals are identified and
endorsed. We argue that the learning goals in these chapters rely on some form of
the following implicit warrant: these meta-conceptions of proving practice have
helped the researcher (and possibly readers) think about mathematical and ped-
agogical issues, so teachers might benefit from such knowledge as well. This
(clearly tentative) warrant provides plausible evidence that the learning goals could
be valuable, though gaining evidence about the effects of such knowledge on future
teaching practice is incredibly challenging.

What the implicit warrant does not address is the relative value of the identified
meta-conceptions compared with the myriad of other learning goals that could be
adopted in mathematics classrooms and pre-service teacher training. Hanna attends
to whether students can see proofs that unify bodies of mathematical theory. Harel
attends to the quality of teachers’ epistemological justifications for complex num-
bers. Durand-Guerrier and Tanguay attend to different systematizations of the real
number line. Boero et al. attend to the standards of mathematical proof in various
centuries. On the one hand, we agree that these learning goals are valuable. All
things being equal, we would be pleased if these pedagogical goals were attained.
On the other hand, these goals strike us personally as somewhat esoteric and we
wonder whether a large portion of our own students would achieve them. This does
not deny the contribution of these chapters, since each also contains more modest
learning goals: perceiving particular proofs as explanatory, learning the properties
of the real line, or recognizing generic examples. Rather we identify these different
level learning goals to frame the question: what are the roles of the highest level
learning goals for the instructional agenda described or implied in MPP work?

Do we expect a large portion of students to attain those goals? If so, then we
must attend more carefully to how valuable that knowledge is compared to the
instructional opportunity cost. If we do not expect most students to achieve these
goals, then how can we properly qualify their role in the presentation of our
learning activities? We anticipate that in these chapters (as in our own work on
meta-conceptions), these goals provide a conceptual orientation for teaching
mathematical content and learning opportunities for our strongest students. We
cannot answer these questions for the authors of these chapters, but we think
making the question explicit could advance our field’s pursuit of MPP research.

Summary

The chapters that we surveyed each make valuable contributions to the emerging
field of MPP research. To advance the contributions of these chapters and future
work in this vein, we raised several questions about how such research is presented
and assessed. As a field, we generally lack clear methodological criteria for
transposing ideas from the history or philosophy of mathematics into the mathe-
matics education literature. Furthermore, we recognize that there are implicit
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warrants operative in such transpositions that should be identified and addressed in
order to provide a rich and productive methodology for future TPP research. We
hope the issues that we have raised can lead to a broader discussion on the role of
MPP research in mathematics education and the standards by which it should be
evaluated.
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Chapter 6
Constructing and Validating the Solution
to a Mathematical Problem: The Teacher’s
Prompt

Maria Alessandra Mariotti and Manuel Goizueta

Abstract Drawing on the hypothesis that an epistemology of school mathematics
is interactively constituted in the classroom, we assume that different epistemo-
logical stances may lead students to get differently involved in the production and
evaluation of arguments as part of their mathematical activity. Based on a case
study, in this chapter we focus on how students exploit teacher’s interventions to
produce arguments to validate different solutions to a mathematical problem within
a problem-solving situation. We show that it may happen that teacher’s interven-
tions do not have the intended effect, in spite of their potential to foster students’
reflection upon the adequacy of these solutions to the proposed empirical situation.
Instead, a particular interpretation of the situation emerges through reflection on the
solution ultimately validated by the teacher. We depart from this observation to
discuss some aspects of the mathematical culture of the classroom.

Keywords Classroom mathematical culture � Validity � Validity construction
Argumentation � Mathematical problem � Teacher intervention

Introduction

A growing number of research studies highlight the role of argumentation in
mathematical thinking and, consequently, in teaching and learning mathematics at
all school levels. These studies support the idea that mathematical activity does not
draw solely on deductive arguments, and that non-deductive arguments play a
relevant role in advancing mathematics (Inglis et al. 2007). This has led some
researchers to claim that a culture of argumentation is to be developed in the
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mathematics classroom, and that it should include practices, knowledge and
meta-knowledge in relation to the production and evaluation of arguments as part of
the classroom mathematical culture, along with the needed awareness to autono-
mously control such processes (Boero 2011). In order to foster such a culture, it is
necessary to know more about the relationship between the construction of math-
ematical ideas and argumentation, the difficulties students face when engaging
argumentative practices, and the challenges faced by teachers who seek to make
argumentation central to the mathematics classroom (Ball et al. 2002). Tackling
these issues might help teachers and researchers better understand how a culture of
argumentation can be deliberately developed in the classroom. In turn, this might
help better understand students’ mathematical thinking development and perhaps
overcome common prejudices suggesting that young students are not capable of it
(see Boero et al. this volume).

Drawing on data coming from an empirical study concerning a probabilistic
situation problem, in previous contributions we have argued that an epistemology
of school mathematics is interactively constituted in the classroom and that it is
necessary to understand how it is shaped by and constraints students’ argumentative
practices (Goizueta et al. 2014). We have illustrated how different epistemological
stances may lead students to get involved differently in the production and evalu-
ation of arguments, and the difficulties students and teacher face when dealing with
a variety of arguments in classroom conversations (Goizueta and Mariotti 2015).
Here, we focus on a pair of secondary students to account for how different
arguments emerge in the process of constructing and validating different solutions
to a mathematical problem within a problem-solving situation. We particularly
focus on how the teacher’s interventions are exploited by the students to advance
their mathematical work, and on their consequences for validating the specific
solution to the given problem. Through our analysis, we aim at showing that the
solution finally proposed by the group does not emerge from the students’ under-
standing of and reflection on the empirical situation. Instead, reflection on the
empirical situation occurs ex post facto (i.e., after the teacher’s final validation of
the solution), somehow reversing the expected solving process. In our example,
specific features of the empirical situation, previously neglected, are then inferred
from the solution ultimately validated by the teacher.

Theoretical Perspective

Following Yackel and Cobb (1996) we consider that doing and learning mathe-
matics relates to participating in particular mathematical cultures. We conceive of
the mathematics classroom as a particular social context, in which a particular
mathematical culture is developed within and by the interaction between teacher
and students. This development is influenced by views of mathematics and of
mathematics teaching and learning historically produced within broader cultures, of
which students and teacher are also members. Thus, the mathematical culture of the
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classroom is not a pre-given one, but emerges in relation to socio-historical con-
ditions and shows specific features in relation to its context of development.

Participating in the development of a mathematical culture means producing
some mathematical propositional knowledge (e.g., definitions and theorems), but
also understanding why and how to justify this knowledge and when and how to
use it. This implies developing an epistemological control on the mathematical
knowledge at stake. In accordance with Steinbring (2005), we assume that a situ-
ated epistemology of school mathematics is constituted in classroom interaction.
Moreover, as part of this socially constituted school mathematics epistemology,
practices aimed at deciding what to believe and on what basis (i.e., epistemic
practices) are interactively developed together with a criterion of mathematical
validity. A central consequence of these assumptions is the necessity for interpre-
tative research to reconstruct the situated conditions in which (and from which) the
validity of mathematical productions is interactively justified in the classroom.

In this perspective, we see validity as related to contingent constraints that are
considered good reasons to support/reject a claim in a particular context of justi-
fication, and not necessarily restricted to absolute standards (Goizueta et al. 2014).
This implies that validity is not a property of claims themselves, but emerges from
the mode they are contextually dealt with. It should be stressed that whatever is
considered as a good reason, must not necessarily be explicit or even stateable, nor
the individuals must be aware of it in a conscious way, it might be enacted
implicitly in successful social participation (Ernest 1998).

In classroom interaction, participants are aware of the asymmetric roles played
by the teacher and the students. According to these roles, the teacher represents the
discipline of mathematics (Voigt 1995). Within this asymmetric interaction, the
interplay between teacher’s interventions (requests and evaluations) and students’
reactions, mediated by (normally implicit) criteria for selection and acceptance of
mathematical productions, fosters the emergence of situated epistemic practices.
These practices are expected to evolve in time, as teacher and students engage in
constructing and validating mathematical knowledge in increasingly sophisticated
ways. Therefore, we conceive of the epistemology of school mathematics as a
dynamic system that enables and constrains mathematical activities, which,
reflexively, contribute to its constant development.

Like Ernest (1998), we consider that knowledge construction is a social, dia-
logical human activity. We see social interaction as a means to produce, revise,
correct and validate knowledge, and argumentation as the common core of such
epistemic practices. It is by offering arguments to support or criticize one’s own and
other’s claims that the dialogical dimension of knowledge construction is deployed.
Within this frame, we speak of argumentation to refer to certain aspects of social
interaction, and not to some meta-communicative activity that is undertaken ex
professo to secure the validity of ordinary actions (Krummheuer 1995). An
exchange is argumentative whenever it conveys reasons to establish the epistemic
status of some claim, either explicitly or implicitly. For instance, while trying to
find a solution to a problem, students may perform some calculations that already
express reasons to support the validity of a solution. In that case, the process of
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calculating itself presents an argumentative nature. As Krummheuer, we consider
that an exchange can be reconstructed by the participants or by an observer in order
to express its argumentative nature in what we call an argument (for a particular,
theory-driven way to reconstruct arguments see Pedemonte, this volume). This
implies that being argumentative is not a property of texts (written or spoken)
themselves, but emerges from the mode they are contextually interpreted.

Participants, Task and Data Collection

The experiment we report about was part of the larger Ph.D. study of the second
author (Goizueta 2015), in which two different experimental situations, regarding
two different teachers and classrooms, were considered. The participants in the
experimental situation we report here were twenty-one 14/15-year-old students and
their teacher in a secondary school mathematics classroom in Catalonia, Spain. The
data we present in this report comes from two lessons. It was a problem-solving
setting, with time for small group work and whole-class discussion, what consti-
tuted a common working situation for the class. The researchers suggested the
following task:

Two players are flipping a coin in such a way that the first one wins a point with every head
and the other wins a point with every tail. Each is betting €3 and they agree that the first to
reach 8 points gets the €6. Unexpectedly, they are asked to interrupt the game when one of
them has 7 points and the other 5. How should they split the bet? Justify your answer.

The task was intended as an introduction to probability and aimed at setting
grounds for discussing basic notions such as random game, (non) equiprobable
events, etc. This was the first contact for the group with probability in the context of
school mathematics. We were aware of the high complexity of the task, related to
the lack of shared school probabilistic notions (Wilensky 1997), and expected the
students to tackle the problem drawing upon their arithmetical knowledge and tools.
The choice of the content topic was inspired by Ruthven and Hofmann (2013), who
consider probability as especially appropriate for making complementary epistemic
approaches emerge in secondary mathematics.

In order to solve the problem, it is necessary a “translation” effort between the
empirical situation and mathematics, in both directions. That is, on the one hand,
some empirical elements and relationships that define the situation must be inter-
preted mathematically; and on the other hand, the mathematical results obtained
must be interpreted in empirical terms to give a meaningful answer to the problem.
The validity of a solution to the problem is related to how well it represents the
empirical situation (as it is interpreted by the solver), thus in order to secure such
validity, it might be necessary to provide an argument explicitly referring to the
relationship between the solution and the situation. It is precisely through the
assessment of the representativeness of different solutions that different interpre-
tations of the empirical situation might emerge and, consequently, a variety of
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solving processes can be scrutinized. The comparison of competing solutions by the
students is expected to foster different arguments to support or reject them. It is
within such activity that basic notions of probability are expected to emerge and be
discussed in order to account for different interpretations of the situation and in
relation to different solutions.

The considerations above, together with previous results concerning the use of
this problem with secondary students (Paola 1998) and studies related to different
historical solutions given by mathematicians (Fenaroli et al. 2014), suggested this
problem might be a good candidate to promote a rich argumentative environment in
the classroom and to foster the discussion of mathematical, but also
meta-mathematical issues. The novelty of the task was expected to prevent students
from using mechanical approaches based on well-established solving strategies. In
line with the pedagogical approach by Zaslavsky (2005) and Brown (2014), we
expected uncertainty about the validity of competing solutions to generate a
reflexive environment in the classroom, as well as the need to produce a variety of
arguments.

For data collection, three small groups were videotaped and written protocols
were collected. The obtained data were coded with the aid of qualitative data
analysis software. We conducted interpretative analyses following a constant
comparison approach on the codified data (Strauss and Corbin 1998). In a later
stage, based on the triangulation with two other researchers familiar with the the-
oretical perspective (i.e., seeking consensus in relation to the interpretation of data),
these analyses allowed us to construct a number of themes in order to account for
the mathematical activity in the classroom. These themes are narrative texts that
articulate the most relevant aspects of the analyzed data in accordance with the
theoretical perspective adopted (van Manen 1990). Through this process, the
relationship between specific teacher’s interventions and the construction of
the validity of students’ mathematical work emerged as a relevant aspect of the
mathematical activity in the classroom.

The Teacher’s Interventions and the Students’
Mathematical Work

During the two lessons, Dan, the teacher, often emphasizes the need to justify any
proposed solution to the problem. He’s initial comment, when introducing the
problem, exemplifies this.

001 Dan: You must give an argument. You cannot say: this. No, [you must
say] this because of some reason, some argument. (…) You must
justify your answer.

This and similar comments along the lessons could be thought of as attempts to
establish justification as an essential feature of any acceptable solution to the

6 Constructing and Validating the Solution … 89



problem. However, Dan does not explicitly elaborate on what counts as justification
in this context. While interacting with the groups, Dan tends, on the one hand, to
make explicit evaluations of the students’ solution’s validity; on the other hand, he
offers hints that relate the solution he expects to empirical aspects of the situation
proposed in the problem’s wording. Although his interventions could foster critical
reflections about the students’ own solutions in relation to how well they represent
the empirical situation, we do not observe among the students explicit reflections in
this direction. Instead, students exploit Dan’s interventions only to discard specific
solutions that were negatively evaluated, identify specific expected features, and
construct new solutions accordingly. Following this hint-guidance by the teacher,
the three observed groups finally arrive to the expected (probabilistic) solution,
whose validity is ultimately confirmed by the teacher. It is just after the teacher’s
validation that we can observe within the groups explicit reflections on the ade-
quacy of the solution to the empirical situation and its dynamic. That is, once the
teacher accepts a particular solution, the empirical situation is interpreted and
conceptualized accordingly.

To illustrate this process, which was observed in all three groups, in the
following we focus on the group composed by Tess and Jay and analyze the
transcripts of students’ interactions. Within the transcripts, numbers on the first
column indicate speaking turns. Group work on the first and second lesson, and
whole group discussion where numbered independently.

Exploiting the Teacher’s Hints to Progress
in the Mathematical Work

In early stages of the approach to the problem, the students explore a first mathe-
matical solution, which we could paraphrase: ‘if by winning 8 points a player gets
€6, for each point won a player should get €0.75’. Jay falsifies this solution offering
a counterexample that draws on a variation of the problem (cf. Komatsu et al. this
volume, who elaborates on the relevance of counterexamples in advancing proof
construction and validation).

030 Tess: What if we do: if eight winning tosses are worth six euro, seven
winning tosses… how much are they worth?

031 Jay: How did you do that? What did you do?
032 Tess: Proportion [uses calculator]. This one gets five point twenty five

euro.
033 Jay: But then imagine that the other one won seven as well. ‘Cause he

could. Then he should also get the same and no, no…
034 Tess: Right, that’s true! This is wrong.

Jay’s argument [33] and Tess’ agreement [34] indicate that they consider that
numerical variations of the problem might inform about the validity of the solution,
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what suggests that they expect a valid solution to be applicable in general. Jay
exploits a particular variation to notice that the solution does not adequately rep-
resent an empirical datum, namely, that six euros must be distributed. The solution
is thus falsified by noticing that it does not adequately represent the empirical
situation. The group then comes up with a new solution, corresponding to dis-
tributing the money proportionally to the points won, and ascertains that the
amounts of money distributed add up to six in two different numerical variations,
namely when the game has stopped and the score is four points to three, and when
the game stops tied at seven points. The students take this fact as support for the
new solution’s validity. After this inductive argument, the group presents the
numerical results to the teacher as the solution to the problem; what indicates a high
level of confidence in the solution’s validity. When reporting their work to Dan, the
students only propose the numerical results (€3.5 for the winning player and €2.5
for the opponent) without explaining the process carried out to obtain and validate
them. Both the argument for the falsification of the first solution (a counter example
implicitly drawing on the solution’s general applicability) and the inductive argu-
ment supporting the second one are omitted in the interaction with the teacher.

Dan’s reaction does not facilitate the emergence and discussion of the students’
arguments. He rejects the solution presented by the group and offers new hints
related to specific features of the expected solution.

068 Dan: If I was the winning player I would not be satisfied. Would you? I
wouldn’t.

Later on, when Tess insists on the proportional model:

146 Tess: But why is it not right, Dan?
147 Dan: Because it is not. It’s not about what you have done, but what has

yet to be done. The possibilities that are yet to be done. (…) You
have to see the future. What can happen from seven? Who could
win? What are the possibilities for one player and the other? Do
some schemes, do some graphs. Check it out. [leaves]

Dan interventions explicitly convey his negative evaluation of the numerical
results’ (and hence implicitly of the solution’s) validity [68, 147]. He hints the
students about specific features of the expected solution: the winning player should
get more money [68] and what can still happen and not to what has already
happened during the game must be considered [147]. It is likely that Dan’s aim is to
offer some ideas to reflect on the empirical situation, its relevant elements and their
relationships, in order to construct the expected solution. His initial (and continu-
ous) emphasis on justification reinforces this interpretation. Dan’s hints could lead
students to reflect on the relationship between the proposed solution and the
empirical situation by addressing crucial questions, e.g., why should the winning
player get more money? or why what can still happen should be considered and not
what has already happened? In turn, such reflections could potentially lead the
students to new understandings about the empirical situation and, through them, to
show that the proportional solution does not adequately represent it. On such basis,
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more representative solutions could abductively emerge. Nevertheless, in none of
the groups we observe such reflections. Instead, students operationalize Dan’s hints
to identify new sets of numerical data, with which to calculate new numerical
results in line with perceived teacher’s expectations. The following conversation
between Tess and Jay illustrates this way of exploiting the teacher’s hints.

178 Tess: See? There are four options. Three give the victory to this and
one to this.

179 Jay: (…) Yes, yes, yes, of four possibilities, player one has three.
180 Tess: Of four possible final scores, three are player one’s victories and

just one [is] player two’s [victory]. That’s it!

Here, following Dan’s hints, Tess considers what can happen in terms of pos-
sible final scores and uses them to propose a new distribution: each player receives
an amount proportional to the number of favorable final scores [178, 180]. After
doing the calculations, she notices that this solution gives more money to the
winning player than the previous one (€4.5). The construction of this new solution
to the problem and its purported validity seem to be mainly founded on the per-
ceived accordance to Dan’s hints rather than sprouting from students reasoning, as
was for the previous cases. This interpretation is confirmed the next lesson, when
the group reports to the teacher the new numerical results.

015 Tess: Dan, would this be OK? [notes: “6 � ¾ = 4.5€” and
“6 � ¼ = 1.5€”].

016 Dan: I think I wouldn’t be satisfied with that. If I was this [winning
player]. (…)

019 Jay: But, we focused on the remaining tosses, and not on the past
ones. (…)

022 Dan: Let’s see, not all possibilities have the same probability. Do you
understand? Here you have three and one, but they are not
equally possible. Do you understand? (…) it is not three and one.
Well, it is three and one, but this one… The three and the one
might not have the same weight. Do you understand?

As before, the students do not present the rationale behind the emergence of the
new solution, nor does Dan propitiate its discussion. Jay briefly refers to it [19], but
seemingly to stress that they followed Dan’s indications, and not to justify the
underlying reasoning. The teacher negatively evaluates the numerical results [16]
and provides a new hint that could foster students’ reflection on empirical aspects of
the situation [22] (e.g., the likelihood of different final scores). Later on, Dan will
suggest the group to construct a tree representation of the possible evolution of the
game, a hint that will allow Tess to produce a new solution, corresponding to the
expected probabilistic one.
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Exploiting the Teacher’s Validation to Interpret
the Empirical Situation

057 Tess: Player two has twelve point five percent of possibilities of
winning.

058 Jay: How did you get that?
059 Tess: [tree representation on her notes (Fig. 6.1)] Fifty percent of fifty

percent is twenty-five percent. Fifty percent of twenty-five
percent is twelve point five percent. So this one has fifty percent
plus twenty-five percent plus twelve point five percent. He has
eighty-five point five percent. (…) So we should multiply six by
eighty-seven point five percent. (…)

062 Dan: I like that better. [leaves]

Tess knows that getting heads or tails is equally likely; this seems clear from
what she says [57, 59]. She uses this idea, expressed as a percentage, together with
the tree representation suggested by the teacher (Fig. 6.1) to describe how “pos-
sibilities” evolve with each toss [59]. By adding up these possibilities she obtains
two percentages (corresponding to each player’s probability of winning) that uses to
distribute the money: 87.5% of the bet for the winning player and 12.5% for the
opponent, what correspond to €5.25 and €0.75€. This new solution and numerical
results are in line with the teacher’s hints: the winning player gets more money and
each final score has a different “weight” (expressed as a percentage). From what
Tess says and does, it is not possible to understand in what sense is she considering
the relationship between this solution and the empirical situation. She might be
mainly manipulating the numerical data to obtain a solution in line with the tea-
cher’s hints. In any case, the underlying argument justifying the validity of the

Fig. 6.1 Tree representation of the possible game evolution
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solution to the problem seems to draw on its agreement and on the agreement of the
numerical results with the teacher’s expectations. This time Dan expresses satis-
faction with the student’s solution [62].

It is just after what is taken as the teacher’s validation of the solution and
numerical results that the students autonomously reflect on their relation to the
empirical situation.

070 Jay: So, clearly, they could have tossed the coin any number of times
before.

071 Tess: Yes, previous tosses do not matter. It is about the remaining
tosses. But then, the number you must get to doesn’t matter
either.

072 Jay: What?
073 Tess: For example, if the goal is ninety-nine points and one has won

ninety-eight and the other one ninety-five… It doesn’t matter.
074 Jay: So, what we did before was not right.
075 Tess: No. That was poop.
076 Jay: I don’t understand why that can’t be as well. Just because Dan

says that, but…

Reflecting on the solution, Jay seems to realize that the points won are irrelevant
to calculate the amounts of money corresponding to each player [70]. Tess com-
plements Jay’s inference by noticing the irrelevance of the total of points needed to
win the game [71, 73]. This is a key feature of the probabilistic approach that, as we
observe, does not emerge from the empirically grounded reflection on and under-
standing of the situation. Instead, this feature is inferred from the solution that has
been validated by the teacher. Reflection on and understanding of the empirical
situation does not occur as a means to produce the ‘correct answer’, but follows the
questioning of the teacher’s validation of the solution (076 “Just because Dan says
that, but …”). Thus, validity does not emerge from considering the solution’s
representativeness of the empirical situation. Instead, once validated by the math-
ematical authority of teacher, the students seem to look for an interpretation of the
situation that could accommodate features inferred from the warranted solution.
That is, the empirical situation is interpreted and conceptualized ex post facto, in
accordance with the solution validated by the teacher.

Jay’s last comments [74, 76] and the fact that Tess does not address them
suggest that, despite having arrived to the expected (probabilistic) solution, the
probabilistic nature of the empirical situation is not yet clear to the students. It
seems that, for these students and this specific task, the teacher’s authoritative
validation of the solution does not suffice to achieve personal conviction. This
might indicate that, although the teacher’s mathematical authority suffices to
sanction the validity of the solution, his interventions lack the explanatory power
(cf. Hanna, this volume) needed in this case to help the student relate the solution to
specific features of the empirical situation. Moreover, the students do not discuss
this issue with the teacher, nor do they further reflect on the different solutions and
their relation to the empirical situation to clarify it.
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During whole group discussion, and after the probabilistic solution was pre-
sented by a student and agreed by the whole group, Dan elaborates on how some
students proceeded for its construction.

023 Dan: Look, some of you have reversed the reasoning. You have to do
some reasoning in order to arrive to the solution. But not from the
solution justify the argument. Is that clear?

This interventions by Dan suggests that he has observed that some of the groups
reached a probability-related interpretation of the situation just after the solution
“was arrived at”. However, since none of the students replied to Dan’s final
question, nor he further discusses students’ approaches to solve the problem, it is
not possible to know what is Dan referring to or how the students interpret what is
said. Nevertheless, it seems clear that Dan considers the approach of some groups to
the construction of the probabilistic solution as problematic. In view of our analysis
of Jay and Tess’s approach, Dan’s intervention is relevant, but it is seemingly not
sufficient to illuminate crucial aspects of mathematical activity (e.g., the use of
abductive reasoning to infer a mathematical solution that represents the empirical
situation). Although this looks like a good occasion for Jay to raise his concern
about the validity of the solution preferred by the teacher, he does not intervene. It
is possible that he has reached a new understanding about the empirical situation
after his classmate’s presentation, allowing him to convincingly justify the proba-
bilistic solution’s validity. But it might also be the case that he does not perceive
raising his concerns about the justification of the agreed solution as a mathemati-
cally relevant part of the ongoing mathematical activity.

Final Discussion

Our analysis shows that the teacher’s interventions and didactical choices are
critical to advancing and validating mathematical production, but also that this
might happen in unintended ways. This resonates with the results of Pedemonte
(this volume), who points out particular aspects of teacher’s arguments that might
be critical in helping students develop their own arguments to tackle proof tasks.

Although Dan’s interventions could foster empirically grounded reflections
about the representativeness of the proposed solutions, and are seemingly intended
that way, we do not observe among the students explicit reflections to this regard.
The students exploit the teacher’s interventions to discard rejected solutions, and
operationalize the offered hints to construct new ones satisfying perceived expec-
tations. In this process, the crucial mathematical activity consisting of systemati-
cally reflecting on the relationship between the solution and the empirical situation
seems to be neglected or at least not sufficiently exploited by the students. The
mathematical authority of the teacher emerges as a major support for the argu-
mentative construction, rejection and validation of successive solutions. As a
consequence, features of the empirical situation relevant to its probabilistic
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interpretation (e.g., probabilities’ independence of past events) do not reflectively
emerge as criteria to warrant validity. Instead, these features are (deductively)
inferred from the solutions preferred by the teacher, so that a particular interpre-
tation of the empirical situation comes out as a (deductive) consequence of the
solution validated by the teacher.

We do not claim that such way of proceeding is mathematically meaningless; in
fact, considering the deductive consequences of mathematical solutions is a relevant
practice within experimental sciences in order to test solutions’ validity. But we
argue that developing an understanding of the epistemological implications of this
and other epistemic practices is crucial for the construction of a culture of argu-
mentation as part of students’ mathematical and scientific literacy. In the example
discussed above, teacher’s interventions and the way they are exploited do not seem
to help the students address the relationship between validity and representative-
ness. This way of exploiting the teacher’s interventions might be the students’ way
to adjust to what they perceive as expected from them as mathematics learners in
that particular mathematics classroom culture, namely to produce the solution
expected by the teacher; a common feature of many mathematics classrooms. If this
is the case, important opportunities for constructing mathematical and
meta-mathematical knowledge are missed due to representations of what is (in)
adequate in the mathematical culture of the classroom. If we expect argumentation
to be central to students’ mathematical work and to constitute a means for the
construction of mathematical and meta-mathematical knowledge and the develop-
ment of mathematical thinking, justification must be a relevant goal, a valued
activity and an object of explicit reflection within the classroom mathematical
culture.

To help teachers develop such mathematical culture in the classroom, Boero
et al. (this volume) suggest that it is worth planning and implementing pre-service
teacher courses centered in mathematical argumentation. Argumentation oriented
courses might help future teachers design and plan activities in which students take
responsibility for the validity of mathematical productions and its discussion, and in
which the explanatory power of mathematical arguments is taken into consideration
(Hanna, this volume). Such activities might help the deliberate construction of an
epistemology of school mathematics in line with pedagogical objectives. To this
regard, long term studies aimed at understanding how an epistemology of school
mathematics is interactively developed as part of the classroom mathematical cul-
ture are essential, both to understand how to guide this development and to inform
future teachers’ education accordingly.
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Chapter 7
Addressing Key and Persistent Problems
of Students’ Learning: The Case of Proof

Andreas J. Stylianides and Gabriel J. Stylianides

Abstract Research has provided a strong empirical and theoretical basis about
major difficulties students face with proof, but it has paid less attention to the design
of interventions to address these difficulties. In this chapter we highlight the need
for more research on classroom-based interventions in the area of proof, and we
discuss what might be important characteristics of interventions that specifically
aim to address key and persistent problems of students’ learning in this area. In
particular, we make a case for interventions with the following three characteristics:
(1) they include an explanatory theoretical framework about how they “work” or
“can work” in relation to their impact on students’ learning; (2) they have a narrow
and well-defined scope, which makes it possible for them to have a relatively short
duration; and (3) they include an appropriate mechanism to trigger and support
conceptual change. Although our discussion of these characteristics focuses on the
area of proof, the characteristics can be applicable also to interventions that aim to
address key and persistent problems of students’ learning in other areas.

Keywords Cognitive conflict � Proof � Intervention � Misconception
Learning � Design-based research

Introduction

Several scholars have expressed concern that mathematics education research has
played an inadequate role in supporting improvement of classroom practice, espe-
cially improvement of students’ learning of mathematics (e.g., Ruthven and
Goodchild 2008; Stylianides and Stylianides 2013; Wiliam and Lester 2008).
Students’ learning of proof is no exception to this trend (Stylianides et al. 2016, 2017).
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According to a recent review of the state of research in the area of proof, Stylianides
et al. (2017) concluded that, while research has provided a strong empirical and
theoretical basis about different difficulties students face with proof, it has paid less
attention to the design of interventions that will aim to address these difficulties. This
state of affairs undermines efforts to elevate the status of proof in students’ mathe-
matical experiences, because some significant problems of students’ learning in the
area of proof remain without solutions and create obstacles to further learning in this
area. Indeed, it would be unrealistic to expect that, if left to their own devices, indi-
vidual teachers, textbook authors, or other stakeholders would be able to successfully
navigate a pedagogically arduous territory and design appropriate and adequate
learning experiences to help students overcome significant difficulties they face in the
area of proof.

Thus, there is a pressing need for researchers to embark on the design of
classroom-based interventions in the area of proof, specifically interventions that
would aim to address key and persistent problems of students’ learning. One form
these problems can take, which is the form we focus on in this chapter, is that of
common and hard-to-remediate student misconceptions about key aspects of proof.
An example of such a misconception is that a single counterexample is not suffi-
cient to refute a false mathematical generalization (e.g., Mason and Klymchuk
2009; Zaslavsky and Ron 1998). Another misconception, to which we return later
in the chapter for illustration purposes, is that a few confirming cases are enough to
establish the truth of a mathematical generalization (e.g., Morris 2007; for a review,
see Harel and Sowder 2007). The latter misconception relates to one of the “solid
findings” of research on mathematics teaching and learning identified by the
Education Committee of the European Mathematical Society (2011): that “many
students provide examples when asked to prove a universal statement” (p. 50,
emphasis in original), i.e., students tend to consider that empirical arguments are
proofs of mathematical generalizations. The Education Committee noted the fol-
lowing about this misconception that help explain why we consider it to be an
example of a key and persistent problem of students’ learning in the area of proof:

[C]onsiderable evidence exists that many students rely on validation by means of one or
several examples to support general statements, that this phenomenon is persistent in the
sense that many students continue to do so even after explicit instruction about the nature of
mathematical proof, and that the phenomenon is international … (Education Committee of
the European Mathematical Society 2011, pp. 50–51)

Recognizing the need for more research on classroom-based interventions in the
area of proof raises the following question: What might be some important char-
acteristics of interventions that aim to address key and persistent problems of
students’ learning in the area of proof? In this chapter we discuss this question,
drawing on our own intervention-based research in the area of proof and other
relevant literature. Our primary aim is to draw attention to this significant but
inadequately researched topic, and to discuss ideas that can serve as a starting point
for a conversation in the field about how to organize classroom-based interventions
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in the area of proof so as to gain leverage in addressing more programmatically the
serious problems that students face with proof.

Before we review, as a background for the chapter, selected prior research on
classroom-based interventions in the area of proof, we clarify our use of key terms,
drawing on Stylianides and Stylianides (2013, p. 334). Although the term “inter-
vention” has been used in different ways, our use of it in this chapter is similar to its
standard use in medicine where an intervention denotes “action taken to improve a
situation” (Stevenson and Lindberg 2012). In our case, the situation in need for
improvement is an aspect of students’ learning in the area of proof that deviates
from conventional knowledge, while the action taken to improve the situation is
purposefully designed classroom instruction. Also, we use the term “classroom”
broadly to denote a formal learning setting at any level of education: elementary,
secondary, or university (including teacher education). Finally, we use the term
“learning” in a broad way, too, to include not only cognitive but also affective
aspects of students’ mathematical experience.

Background: Existing Research on Classroom-Based
Interventions

Although there are notable examples of research studies on classroom-based
interventions in the area of proof at least as early as the 1930s (Fawcett 1938), the
number of these studies is small and acutely disproportionate to the number of
studies that documented problems of students’ learning. In this section we briefly
present five recent classroom-based interventions that were all satisfactorily suc-
cessful in promoting their intended goals in the area of proof. The first two inter-
ventions focused on the secondary school level (in the domain of geometry) and the
other three on the university level. For a more detailed discussion of these and other
related interventions the reader can refer to Stylianides et al. (2017). Also we are
currently guest-editing a special issue in Educational Studies in Mathematics on the
same topic (Stylianides and Stylianides 2017).

Mariotti’s (2013) intervention aimed to introduce 15–16-year-old students in
Italy to the deductive approach in geometry, a goal that is often difficult for
instruction to promote. The intervention extended over a 2-year period and used the
dynamic geometry environment Cabri-Géomètre (hereafter, Cabri). The Cabri tools
initially available to the students corresponded to the straightedge and compass
tools used in the traditional paper-and-pencil environment. As the students devel-
oped different geometrical constructions, the Cabri menu was expanded to include
new commands, which then became theorems available for use in subsequent
constructions. With the teacher’s mediating role, the notion of proof in the inter-
vention served as a tool that ensured the validity of new constructions based on the
available commands and as a key aspect of the social contract in the classroom
whereby constructions had to be justified before they became theorems.
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Jahnke and Wambach’s (2013) intervention with eighth-grade students in
Germany aimed to develop students’ understanding that a proof is based upon
certain assumptions, another important but hard-to-achieve learning goal. The
intervention extended over eight geometry lessons and was contextualized in the
attempts of ancient Greeks to model the path of the sun, the so-called “anomaly of
the sun.” The students were asked to put themselves in the position of the ancient
astronomers and to assume that available to them were only the methods and tools
that were known at the time. These restrictions were similar to the restrictions
imposed on the Cabri tools available to the students in Mariotti’s (2013) study and
were an important factor to students becoming more conscious of the role of
assumptions in building a deductive theory.

In Stylianides and Stylianides (2009) we reported on an intervention that we
developed in a 4-year design experiment in an undergraduate mathematics course
for preservice elementary teachers in the United States. The intervention lasted less
than three hours and aimed to help preservice teachers begin to overcome the
misconception we described in the Introduction—namely, that empirical arguments
offer secure methods of validating mathematical generalizations—and to see an
“intellectual need” (Harel 1998) to learn about secure methods of validation
(i.e., proofs). The intervention involved the implementation of a purposefully
designed task sequence as well as two deliberately engineered “cognitive conflicts”
and associated “conceptual awareness pillars” (both notions are discussed in the
following section) that motivated and supported stepwise progressions in preservice
teachers’ knowledge about proof along a pre-specified learning trajectory. The
learning trajectory began from a naïve empirical conception (Balacheff 1988),
continued to a crucial experiment conception (ibid.), and ended with a
non-empirical conception (Stylianides and Stylianides 2009). An appropriately
adapted version of the intervention was subsequently implemented, with similarly
promising results, in a high attaining secondary mathematics classroom in England
(Stylianides and Stylianides 2014b).

Harel (2001) reported on a two-week intervention that was part of a broader
teaching experiment in an elementary number theory course for lower secondary
preservice mathematics teachers. The intervention aimed to teach proof by math-
ematical induction in a way that addressed major deficiencies of traditional teaching
of this proof method, drawing on a system of pedagogical principles elaborated in
Harel (2010). According to Harel (2001), the most important finding of his inter-
vention was that students changed their “ways of thinking, primarily from mere
empirical reasoning – in the form of result pattern generalization – into transfor-
mational reasoning – in the form of process pattern generalization” (p. 206).

Hodds et al. (2014) reported on a series of experiments they conducted with
undergraduate mathematics students to investigate the effect of an intervention, in
the form of a generic self-explanation training, on students’ proof comprehension.
The training, which took less than 20 min of individual study, aimed to address
some common limitations in undergraduate students’ proof comprehension strate-
gies by focusing students’ attention on logical relationships within a proof.
Following the positive findings of two experiments under lab conditions, the
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research team investigated the effect of the intervention in a genuine pedagogical
setting and found a similar positive effect that persisted for at least three weeks.

Important Characteristics of Interventions to Address Key
and Persistent Problems of Students’ Learning

The review in the previous section shows that the body of research on
classroom-based interventions in the area of proof has produced some notable
results though, of course, much more needs to be done in this area. The review
shows further that, while all interventions aimed to promote important and
hard-to-achieve learning goals in the area of proof, only a few of them aimed
specifically to address key and persistent problems of students’ learning, such as
common and hard-to-remediate student misconceptions about key aspects of proof.
This observation is not a criticism of the aims of different studies; rather, our
intention is to point out the scarcity of research on the particular aim we focus on in
this chapter.

In this section we discuss three characteristics that we consider important for
researchers to take into account as they design classroom-based interventions to
address key and persistent problems of students’ learning. The three characteristics
are summarized in Table 7.1 with an indication also of whether we consider each
characteristic to be desirable or essential given the particular kind of intervention
we focus on herein. The reader will notice that the summary of the three charac-
teristics in Table 7.1 does not mention the word “proof.” Indeed, we consider that

Table 7.1 Important characteristics of interventions that aim to address key and persistent
problems of students’ learning (in the area of proof but also more broadly)

Characteristic Description Desirable or essential?

1. An explanatory
theoretical framework

An account for how the
interventions “work” or “can
work” and thus an
identification of key features of
the interventions to which their
impact can be attributed

Essential for, otherwise, the
interventions’ impact can be
due to idiosyncratic factors and
their successful adaptation for
use in other contexts may be
unlikely

2. A narrow and
well-defined scope

The interventions target few
well-defined learning goals,
which can allow them to have a
relatively short duration

Desirable, though it is hard for
interventions that do not have
this characteristic to fully meet
Characteristic 1

3. An appropriate
mechanism to trigger
and support conceptual
change

The interventions include a
mechanism that can help
trigger and support conceptual
change in relation to the
problem of students’ learning
(e.g., misconception) targeted
by the intervention

Essential for, in the absence of
such a mechanism, the problem
of students’ learning will
persist
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the characteristics can apply also to interventions in areas other than proof.
However, given our focus in this chapter on proof, our discussion of the three
characteristics will center around this specific mathematical area.

In the rest of this section, we first present each characteristic and then we
exemplify it by drawing on our own research in the area of proof. We clarify that do
not suggest that interventions (past or future) that do not meet these characteristics
are lacking; these interventions are simply of a different nature from the one we
focus on in this chapter.

Characteristic 1: An Explanatory Theoretical Framework

We consider essential for research that produces successful interventions in
addressing key and persistent problems of students’ learning in the area of proof (or
in another area of mathematics) to also produce explanatory theoretical frameworks
to account for how the interventions achieved their positive outcomes. Designing
successful interventions is certainly welcome and a major accomplishment in itself,
but the broader contribution of these interventions would nevertheless be limited
without an understanding of how the interventions “work” or “can work” to support
student learning.

The explanatory theoretical frameworks we call for are essentially “design
theories” in a sense that is typical of the ones found in studies using design
experiment methodology (e.g., Cobb et al. 2003; Design-Based Research Collective
2003). We follow Cobb et al. (2003) in characterizing these theories as “relatively
humble in that they target domain-specific learning processes” (p. 9), in our case
important but hard-to-teach learning processes in the area of proof, and we view an
intervention as the “instructional engineering” (Stylianides and Stylianides 2014b)
by which a research team tries to generate these learning processes in the mathe-
matics classroom. Cobb et al. illustrated the meaning of a design theory as follows:

For example, a number of research groups working in a domain such as geometry or
statistics might collectively develop a design theory that is concerned with the students’
learning of key disciplinary ideas in that domain. A theory of this type would specify
successive patterns in students’ reasoning together with the substantiated means by which
the emergence of those successive patterns can be supported. (Cobb et al. 2003, p. 9)

The “successive patterns in students’ reasoning” mentioned in the quotation can
correspond, for example, to the various milestones in a learning trajectory that are
achieved by students in a classroom during the implementation of an intervention.
The “substantiated means” (also mentioned in the quotation) can be, for example,
the actions of the teacher while implementing the intervention and the curricular
resources (e.g., mathematics tasks) used in the intervention, as well as the inter-
actions between these and other components of instruction that are in play during
the intervention (for different frameworks to analyze these interactions in the area of
proof and beyond, see Stylianides 2016b).
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In the absence of an explanatory theoretical framework one cannot exclude the
possibility that the impact of a successful intervention was due to idiosyncratic
factors, including a fortunate coincidence of particular teacher and student char-
acteristics with the coalition of favorable classroom circumstances. It is partly for
this reason that one should expect a research study showing that an intervention
“works” or “can work” to include what Greeno (2006) described as “analytical
hypotheses about what features of the design were responsible for the successes and
limitations of its accomplishments in the circumstances that were in place in the
study, especially ways in which these circumstances were related to design prin-
ciples” (p. 799). In other words, the research team should offer a rational,
evidence-based account of how the substantiated means that were in play during the
intervention supported the successive patterns in students’ reasoning that emerged
from the intervention. Once a design theory about how the intervention plays out, or
can play out, in the classroom is firmly in place thereby specifying the theoretically
essential components of the intervention, decisions can be made about what aspects
of the intervention can be modified and how, and what others should stay invariant,
so as to minimize the risk of poor results when using the intervention in new
contexts (Greeno 2006; Yeager and Walton 2011).

Our own intervention-based research was conducted within the frame of design
experiment methodology, which, as we alluded to earlier in this chapter and
explained elsewhere (Stylianides and Stylianides 2013), is ideally suited to serve the
following two goals: designing interventions that “work” or “can work” in pro-
moting student learning in real classroom settings (goal 1), and developing theory to
explain the mechanisms that supported student learning thereby creating knowledge
that can be useful beyond the local setting wherein it was created (goal 2). None of
these goals can be underestimated or overlooked, and indeed, in the context of
design-based research, it is difficult to see the two goals in isolation of each other.
While “[d]esign experiments are conducted to develop theories [see goal 2], not
merely to empirically tune ‘what works’ [see goal 1]” (Cobb et al. 2003, p. 3), it is
also true that “design-based research that advances theory but does not demonstrate
the value of the design in creating an impact on learning in the local context of study
has not adequately justified the value of the theory” (Barab and Squire 2004, p. 4).
The reference to a study’s “local context” in the previous quotation may raise the
question about whether the study’s findings can be characterized as local and thus of
little broader interest. This is not the case:

Although, as a practical matter, a design experiment is conducted in a limited number of
settings, it is apparent from the concern for theory that the intent is not merely to investigate
the process of supporting new forms of learning in those specific settings. Instead, the
research team frames selected aspects of the envisioned learning and of the means of
supporting it as paradigm cases of a broader class of phenomena. (Cobb et al. 2003, p. 10)

The intervention that we described in the previous section, targeting the
misconception that empirical arguments are proofs of mathematical generalizations,
was originally developed in a university-based design experiment that we con-
ducted in a mathematics course for preservice elementary teachers in the United
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States (Stylianides and Stylianides 2009). To use language from the previous
quotation, this course was the setting where we framed the envisioned learning in
the area of proof and the means of supporting it as a paradigm case of the broader
phenomenon of what it means to help individuals overcome the given miscon-
ception. It was the explanatory theoretical framework that we developed as part of
this research that allowed the successful adaptation of the intervention, which in
turn led to similarly promising results when the intervention was used in a new
context with high-attaining secondary students in England (Stylianides and
Stylianides 2014b). The theoretical framework comprised multiple elements. One
important element concerned the use of mathematics tasks and other instructional
means to engineer cognitive conflicts for students thus supporting them, through a
process of conceptual change, to move away from the misconception that empirical
arguments are proofs. We elaborate on aspects of this element of the theoretical
framework in our discussion of Characteristic 3.

Characteristic 2: A Narrow and Well-Defined Scope

There is no doubt that the overall development of students’ learning of proof can be
achieved only by the synergistic effect of many interventions that collectively
address a wide range of learning goals (including key and persistent problems of
students’ learning) and, collectively, extend over a considerable period of time.
Also, an intervention will likely not achieve its goals once and for all, but rather it
will likely require follow up reinforcement or solidification. Notwithstanding these
points, however, the issue arises as to what might constitute the unit of an inter-
vention in a collection of interventions that together promote students’ learning of
proof. We consider important that the unit be as small as realistically possible, i.e.,
that each intervention that aims to address a key and persistent problem of students’
learning in the area of proof (or in another area of mathematics) has a narrow and
well-defined scope, which in turn can allow the intervention to have also a rela-
tively short duration.

Characteristic 2 offers three major advantages. The first advantage is that the
fulfillment of this characteristic can help with achieving also Characteristic 1 dis-
cussed earlier. Specifically, it is easier to theorize an intervention that has a narrow
and well-defined scope, and possibly a short duration too, due to the relatively
smaller number of factors involved compared to an intervention with a wider scope
and a longer duration. In particular, an intervention with Characteristic 2 makes it
less problematic for researchers to construct analytical hypotheses about the sub-
stantiated means that supported the emergence of specific patterns in students’
learning during the classroom implementation of the intervention (Stylianides and
Stylianides 2014a).

The second advantage relates to the issue of “scaling up” educational innova-
tions (e.g., Cohen and Ball 2007). It is more practical for teachers to incorporate
into their existing curricula an intervention that has Characteristic 2, for otherwise a
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major restructuring of the curricula could be required (Stylianides and Stylianides
2013). Also, if teachers decompose into smaller parts an intervention with a wide
scope and a long duration that was designed as one whole entity, the smaller parts
will likely not carry the theory- and research-informed features that characterized
the overarching intervention thus endangering its effectiveness. This could happen
even when a teacher implemented all the parts but in a different order than in the
overarching intervention.

The third advantage relates to the issue of the fidelity of implementation of an
educational innovation. It is more likely that teachers will implement with higher
fidelity an intervention that has Characteristic 2 than an intervention with a wider
scope and a longer duration, for the latter kind of intervention would include more
action points in the implementation plan from which a potential deviation could
compromise the outcomes. Indeed, high fidelity of implementation of an inter-
vention is important so as to preserve the theoretically essential components of the
intervention and increase the likelihood of obtaining the expected outcomes
(Yeager and Walton 2011).

Of course, it is one thing to desire an intervention with Characteristic 2, given all
of the aforementioned advantages, and another to actually develop such an inter-
vention. Is it realistic to develop interventions that have Characteristic 2? In their
review of randomized experiments on psychological interventions in education,
Yeager and Walton (2011) established this possibility in the area of psychological
interventions, some of which had remarkably short duration (20 min) but never-
theless significant and lasting effects on students’ academic achievement. Our
intervention-oriented research in the areas of proof (Stylianides and Stylianides
2009, 2014b) and problem solving (Stylianides and Stylianides 2014a) suggests
that, despite the fundamental differences between the psychological interventions
discussed in Yeager and Walton (2011) and the kind of classroom-based inter-
ventions we discuss herein, Characteristic 2 can also be achieved in mathematics
education.

In more detail, the way in which the proof intervention discussed in Stylianides
and Stylianides (2009, 2014b) fulfills Characteristic 2 can be easily inferred from
our description of that intervention in the previous section. Important to note here is
how we tried to evaluate the effect of this and other interventions in the larger
collection of short-duration interventions that we designed and implemented in the
university course that provided the context for our design experiment. In the
absence of an experimental research design, the effect of each individual inter-
vention could not be completely isolated from other potential influences in the
course. Yet the effect of each intervention was evaluated in two important ways.

The first way was by comparison of findings related to the intervention across the
five research cycles of the design experiment. From one research cycle to the next
there were no major differences in the design of each intervention, and so we were
able to evaluate the impact of the changes (improvements) we were introducing
over time. The second was by triangulation of findings from multiple data sources
within the same research cycle. The data in the last research cycle of the design
experiment included the following: videos and field notes of the implementation of
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the interventions, students’ written responses to specially designed prompts (see
notion of “conceptual awareness pillars” in the next section) or other student data
(e.g., students’ responses to tasks), students’ responses to a survey and a mathe-
matics test at the beginning and at the end of the course, students’ responses to
particular questions in the homework assignments for the course, and individual
interviews with the students at the end of the course.

The effect of an intervention with Characteristic 2, including the role played by
key factors in it, may also be examined with a randomized controlled trial. If the
intervention can be used stand-alone and has a short duration, this can ease the
handling of the numerous practical challenges. See, for example, the randomized
controlled trials conducted by Jones et al. (2016): the interventions comprised only
three lessons each and their versions in the different conditions varied by only one
key factor, which corresponded to whether it is better to teach mathematical topics
using abstract or contextualized representations.

Characteristic 3: An Appropriate Mechanism to Trigger
and Support Conceptual Change

Our focus on key and persistent problems of students’ learning in the area of proof
(but also more broadly), such as common and hard-to-remediate misconceptions,
implies another essential characteristic of classroom-based interventions that would
aim to address these problems: the inclusion in the interventions of an appropriate
mechanism that can help trigger and support conceptual change in students so that
their new conceptions will align better with conventional knowledge. While the
inclusion of one such mechanism is, we argue, an essential characteristic, the
precise nature of the mechanism can vary according to the needs of each particular
intervention and the learning goal it aims to address.

In the context of our design experiment that we described earlier, the notion of
cognitive conflict (Piaget 1985) was at the core of the mechanism we had developed
and refined over the years of our study to trigger and support conceptual change in
our students. In the early stages of our study, we tried to engineer cognitive con-
flicts for our students by strategically bringing them against mathematical situations
that contradicted their existing conceptions. Yet our experience in the study, which
agreed with prior research and practice, showed that students tended not to rec-
ognize contradictions as problematic for their current conceptions, thus treating
contradictions as exceptions without experiencing a cognitive conflict or feeling an
“intellectual need” (Harel 1998) to modify their existing conceptions.

This problem served as a driving force for the development of our instructional
design and resulted in the genesis of the notion of conceptual awareness pillars
(Stylianides and Stylianides 2009) or simply pillars: these are instructional activ-
ities that aim to direct students’ attention to key issues in a classroom situation
(such as issues related to problematic aspects of students’ learning targeted by an
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intervention), with a consequential (potential) increase in students’ awareness of
their conceptions about those issues. The notion of pillars embodies a relationship
between attention and awareness whereby “[b]eing aware is a state in which
attention is directed to whatever it is that one is aware of” (Mason 1998, p. 254).
A pillar can take different forms: it can be a teacher’s question for students to
consider or reflect on an issue that was raised, or was intended to be raised, as a
result of students’ engagement with a task that aimed to provoke cognitive conflict
for students; it can be simulated student talk or dialogue that raises a particular issue
and creates a context for productive discussion about or reflection on the issue
among students; and so on.

We found that having appropriately designed pillars prior to and after each
“potential cognitive conflict” (Zazkis and Chernoff 2008) in our interventions
increased the likelihood of these becoming actual cognitive conflicts for students,
with more students engaging in reflection on the emerging contradictions in their
conceptions. Specifically, a well-designed pillar before a contradiction (in the form
of a counterexample) that was intended to create a cognitive conflict for students
often directed students’ attention to their current conceptions thus helping them
become more aware of these conceptions, while a pillar after such a contradiction
directed students’ attention to the problematic nature of their original conceptions
thus triggering among them a process of reflection and revision of these conceptions
(Stylianides and Stylianides 2009, 2014a, b). Designing the pillars to be successful
in serving these important functions was an act of “empirical tinkering” (Morris and
Hiebert 2011) over the cycles of our design experiment. Important to note also is
that the pillars were only one among several elements of the overall instructional
design and underpinning theoretical framework that we used to trigger and support
conceptual change among students in the area of proof; elaborating on other ele-
ments is beyond the scope of this chapter.

Conclusion

Classroom-based interventions with the three characteristics we discussed in this
chapter are not common, but this is not surprising given that intervention-oriented
research is not as developed as other kinds of research in the area of proof
(Stylianides et al. 2016, 2017) but also more broadly (Stylianides and Stylianides
2013). As we explained earlier, we are not suggesting that interventions that do not
have the three characteristics are lacking. After all, our focus has been on a par-
ticular kind of interventions: those that aim to address key and persistent problems
of students’ learning. Yet, we argued, interventions with the three characteristics
have something important to offer in our efforts as a field to advance students’
learning of proof (as well as learning in other areas of mathematics) and, thus,
deserve more attention by future research.

If these characteristics guide the design of a collection of classroom-based
interventions as part of a larger research program targeting key and persistent
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problems of students’ learning in the area of proof, then at least one other char-
acteristic will emerge as being crucially important: a coherent and articulated
conceptualization of the nature of proof in school (or even university) mathematics.
For example, our previous discussion of the misconception that a few confirming
cases suffice to establish the truth of a mathematical generalization, in the inter-
vention reported in Stylianides and Stylianides (2009), implies a conceptualization
of proof whereby empirical arguments are excluded from the set of arguments that
meet the standard of proof. The many benefits of having a clear conceptualization
of the nature of proof have already been discussed in the literature (e.g., Balacheff
2002; Reid 2005; Stylianides 2007, 2016a). Beyond these benefits, the possible lack
of such a conceptualization can create serious problems (pedagogical, epistemo-
logical, theoretical) in future efforts to put together existing interventions with the
three characteristics in a comprehensive curriculum for school (or university)
mathematics to address key and persistent problems of students’ learning in the area
of proof. For example, an inconsistent meaning of proof across these interventions
can exacerbate the problem of diversity of teachers’ perceptions of proof in the
curriculum and of the different pedagogical approaches to proof one might expect to
see implemented in these teachers’ classrooms (Davis, this volume).

A related priority for research in this area is to find ways to make the research
knowledge produced by promising classroom-based interventions accessible to, and
usable by, many teachers. Without underestimating the complexity of the problem,
a possible way to make progress in addressing it would be through curricular
resources that aim to support teacher learning alongside student learning of proof.
Such curricular resources—often referred to as educative curricular resources—
have the potential to support instructional reform (e.g., Ball and Cohen 1996) and
are particularly important in the area of proof given that not only students but also
many teachers face difficulties with proof (e.g., Harel and Sowder 2007; Stylianides
et al. 2017). Unfortunately, though, the treatment of proof in existing curricular
resources (notably textbooks) is limited in terms of supporting student or teacher
learning. This has been indicated, for example, by the results of a collection of
studies published in a special issue (Stylianides 2014) and elsewhere (Davis 2012;
Sears and Chávez 2014; Stylianides 2008, 2009; Thompson et al. 2012; Wong and
Sutherland, this volume). Obviously, there is a long way to go before it becomes the
norm for curricular resources to include rich and appropriately designed tasks for
students to engage with proof as well as detailed instructional plans and guidance
for teachers for how they may implement promising interventions in the classroom.
Toward this end, we (as a field) need appropriate frameworks for the design of
different kinds of tasks that can afford students with the range of opportunities
required for broad learning in the area of proof (for discussion of one such
framework, see Stylianides 2016a). Also we need appropriate frameworks and
analytic approaches that can allow us to study, in connected ways, the affordances
of the tasks in the interventions and factors that influence their classroom imple-
mentation (for discussion of such frameworks and approaches, see Stylianides
2016b).

110 A. J. Stylianides and G. J. Stylianides



References

Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. Pimm
(Ed.), Mathematics, teachers and children (pp. 216–235). London: Hodder & Stoughton.

Balacheff, N. (2002). The researcher epistemology: A deadlock for educational research on proof.
In F. L. Lin (Ed.), Proceedings of the 2002 International Conference on Mathematics:
Understanding Proving and Proving to Understand (pp. 23–44). Taipei, Taiwan: NSC and
NTNU. Pre-publication Version Retrieved November 25, 2011 from www.tpp.umassd.edu/
proofcolloquium07/reading/Balachef_Taiwan2002.pdf.

Ball, D. L., & Cohen, D. K. (1996). Reform by the book: What is—Or might be—The role of
curriculum materials in teacher learning and instructional reform? Educational Researcher, 25
(9), 6–8.

Barab, S., & Squire, B. (2004). Design-based research: Putting a stake in the ground. Journal of
the Learning Sciences, 13(1), 1–14.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in
educational research. Educational Researcher, 32, 9–13.

Cohen, D. K., & Ball, D. L. (2007). Innovation and the problem of scale. In B. Schneider & S.
McDonald (Eds.), Scale-up in education: Ideas in principle (Vol. I, pp. 19–36). Lanham, MD:
Rowman & Littlefield.

Davis, J. D. (2012). An examination of reasoning and proof opportunities in three differently
organized secondary mathematics textbook units. Mathematics Education Research Journal,
24, 467–491.

Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for
educational inquiry. Educational Researcher, 32(1), 5–8.

Education Committee of the European Mathematical Society. (2011). Do theorems admit
exceptions? Solid findings in mathematics education on empirical proof schemes. EMS
Newsletter, 82, 50–53.

Fawcett, H. P. (1938). The nature of proof. 1938 Yearbook of the National Council of Teachers of
Mathematics. New York, NY: Bureau of Publications, Teachers College, Columbia University.

Greeno, J. G. (2006). Theoretical and practical advances through research on learning.
In J. L. Green, G. Camilli, & P. B. Elmore (with A. Skukauskaite & E. Grace) (Eds.),
Handbook of complementary methods in education research (pp. 795–822). Washington, D.C.:
American Educational Research Association.

Harel, G. (1998). Two dual assertions: The first on learning and the second on teaching (or vice
versa). The American Mathematical Monthly, 105, 497–507.

Harel, G. (2001). The development of mathematical induction as a proof scheme: A model for
DNR-based instruction. In S. Campbell & R. Zaskis (Eds.), Learning and teaching number
theory: Research in cognition and instruction (pp. 185–212). Dordrecht, The Netherlands:
Kluwer.

Harel, G. (2010). DNR-based instruction in mathematics as a conceptual framework. In S. Barath
& L. English (Eds.), Theories of mathematics education (pp. 343–367). Berlin: Springer.

Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching
of proof. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and
learning (pp. 805–842). Greenwich, CT: Information Age.

Hodds, M., Alcock, L., & Inglis, M. (2014). Self-explanation training improves proof
comprehension. Journal for Research in Mathematics Education, 45, 62–101.

Jahnke, H. N., & Wambach, R. (2013). Understanding what a proof is: A classroom-based
approach. ZDM—The International Journal on Mathematics Education, 45, 469–482.

Jones, I., Inglis, M., Gilmore, C., & Bisson, M. J. (2016). Measuring conceptual understanding:
The case of teaching with abstract and contextualised representations (Final Project Report).
London: Nuffield Foundation. Retrieved November 10, 2016 from http://www.
nuffieldfoundation.org/sites/default/files/files/MCU_FINALREPORT.pdf.

7 Addressing Key and Persistent Problems of Students’ Learning … 111

http://www.tpp.umassd.edu/proofcolloquium07/reading/Balachef_Taiwan2002.pdf
http://www.tpp.umassd.edu/proofcolloquium07/reading/Balachef_Taiwan2002.pdf
http://www.nuffieldfoundation.org/sites/default/files/files/MCU_FINALREPORT.pdf
http://www.nuffieldfoundation.org/sites/default/files/files/MCU_FINALREPORT.pdf


Mariotti, M. A. (2013). Introducing students to geometric theorems: How the teacher can exploit
the semiotic potential of a DGS. ZDM—The International Journal on Mathematics Education,
45, 441–452.

Mason, J. (1998). Enabling teachers to be real teachers: Necessary levels of awareness and
structure of attention. Journal of Mathematics Teacher Education, 1, 243–267.

Mason, J., & Klymchuk, S. (2009). Using counter-examples in calculus. London: Imperial College
Press.

Morris, A. K. (2007). Factors affecting pre-service teachers’ evaluations of the validity of students’
mathematical arguments in classroom contexts. Cognition and Instruction, 25(4), 479–522.

Morris, A. K., & Hiebert, J. (2011). Creating shared instructional products: An alternative
approach to improving teaching. Educational Researcher, 40(5), 5–14.

Piaget, J. (1985). The equilibrium of cognitive structures. Chicago, IL: University of Chicago Press
(Original work published 1975).

Reid, D. (2005). The meaning of proof in mathematics education. In M. Bosch (Ed.), Proceedings
of the 4th Conference of the European Society for Research in Mathematics Education
(pp. 458–468). Sant Feliu de Guixols, Spain. Retrieved December 11, 2011 from http://
ermeweb.free.fr/CERME4/CERME4_WG4.pdf.

Ruthven, K., & Goodchild, S. (2008). Linking researching and teaching: Towards synergy of
scholarly and craft knowledge. In L. D. English (Ed.), Handbook of international research in
mathematics education (2nd ed., pp. 561–588). New York, NY: Routledge.

Sears, R., & Chávez, O. (2014). Opportunities to engage with proof: The nature of proof tasks in
two geometry textbooks and its influence on enacted lessons. ZDM—The International Journal
on Mathematics Education, 46(5), 767–780.

Stevenson, A., & Lindberg, C. A. (Eds.). (2012). New Oxford American Dictionary (3rd ed.).
Oxford: Oxford University Press. http://www.oxfordreference.com/view/10.1093/acref/
9780195392883.001.0001/acref-9780195392883. Accessed March 25, 2013.

Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in
Mathematics Education, 38, 289–321.

Stylianides, A. J. (2016a). Proving in the elementary mathematics classroom. Oxford, UK: Oxford
University Press.

Stylianides, A. J., Bieda, K. N., & Morselli, F. (2016). Proof and argumentation in mathematics
education research. In A. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The second handbook of
research on the psychology of mathematics education (pp. 315–351). Rotterdam, The
Netherlands: Sense Publishers.

Stylianides, A. J., & Stylianides, G. J. (2013). Seeking research-grounded solutions to problems of
practice: Classroom-based interventions in mathematics education. ZDM—The International
Journal on Mathematics Education, 45(3), 333–341.

Stylianides, A. J., & Stylianides, G. J. (2014a). Impacting positively on students’ mathematical
problem solving beliefs: An instructional intervention of short duration. Journal of
Mathematical Behavior, 33, 8–29.

Stylianides, G. J. (2008). Investigating the guidance offered to teachers in curriculum materials:
The case of proof in mathematics. International Journal of Science and Mathematics
Education, 6, 191–215.

Stylianides, G. J. (2009). Reasoning-and-proving in school mathematics textbooks. Mathematical
Thinking and Learning, 11, 258–288.

Stylianides, G. J. (Ed.). (2014). Reasoning-and-proving in mathematics textbooks: From the
elementary to the university level. International Journal of Educational Research [Special
Issue], 64, 63–148.

Stylianides, G. J. (2016b). Curricular resources and classroom use: The case of mathematics.
New York: Oxford University Press.

Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the transition from empirical arguments
to proof. Journal for Research in Mathematics Education, 40, 314–352.

Stylianides, G. J., & Stylianides, A. J. (2014b). The role of instructional engineering in reducing
the uncertainties of ambitious teaching. Cognition and Instruction, 32(4), 374–415.

112 A. J. Stylianides and G. J. Stylianides

http://ermeweb.free.fr/CERME4/CERME4_WG4.pdf
http://ermeweb.free.fr/CERME4/CERME4_WG4.pdf
http://www.oxfordreference.com/view/10.1093/acref/9780195392883.001.0001/acref-9780195392883
http://www.oxfordreference.com/view/10.1093/acref/9780195392883.001.0001/acref-9780195392883


Stylianides, G. J., & Stylianides, A. J. (Eds.). (2017). Research-based interventions in the area of
proof. Educational Studies in Mathematics [Special Issue], 96(2), 119–274.

Stylianides, G. J., Stylianides, A. J., & Weber, K. (2017). Research on the teaching and learning of
proof: Taking stock and moving forward. In J. Cai (Ed.), Compendium for research in
mathematics education (pp. 237–266). Reston, VA: National Council of Teachers of
Mathematics.

Thompson, D. R., Senk, S. L., & Johnson, G. J. (2012). Opportunities to learn reasoning and proof
in high school mathematics textbooks. Journal for Research in Mathematics Education, 43,
253–295.

Wiliam, D., & Lester, F. K. (2008). On the purpose of mathematics education research: Making
productive contributions to policy and practice. In L. D. English (Ed.), Handbook of
international research in mathematics education (2nd ed., pp. 32–48). New York, NY:
Routledge.

Yeager, D. S., & Walton, G. M. (2011). Social-psychological interventions in education: They’re
not magic. Review of Educational Research, 81, 267–301.

Zaslavsky, O., & Ron, G. (1998). Students’ understanding of the role of counter-examples. In A.
Olivier & K. Newstead (Eds.), Proceedings of the 22nd Annual Meeting of the International
Group for the Psychology of Mathematics Education (Vol. 4, pp. 225–232). Stellenbosch,
South Africa.

Zazkis, R., & Chernoff, E. J. (2008). What makes a counterexample exemplary? Educational
Studies in Mathematics, 68, 195–208.

7 Addressing Key and Persistent Problems of Students’ Learning … 113



Chapter 8
How Can a Teacher Support Students
in Constructing a Proof?

Bettina Pedemonte

Abstract This chapter analyzes the one-to-one interaction between student and
teacher when student is engaged in constructing a geometrical proof. This analysis
shows that it is not easy for the teacher to modify the student’s argumentation based
on conceptions that can hardly evolve into theorems. The teacher’s intervention can
be considered effective if it doesn’t completely “interrupt” cognitive unity between
the student’s argumentation and proof, but opposite it encourages the continuity
between them. Toulmin’s model, used to analyze the student’s argumentation and
the teacher’s intervention, highlights that the teacher’s intervention needs to
become a rebuttal in student’s argument to invalidate it. The incorrect argument is
refused by student only if the teacher’s rebuttal has the same backing of the student
argument and it is “coherent” with the student warrant.

Keywords Argumentation � Proof � Cognitive unity � Conceptions
Toulmin’s model � Teaching

Introduction

Proving is tightly connected to the on-going argumentation activity involved in
solving a problem (Boero et al. 1996; Pedemonte 2005, 2007). Engaged in math-
ematical problem-solving, learners proceed based on their understanding of math-
ematical concepts and related process. This activity doesn’t initially have the
structure of what will be considered as mathematical proof. Instead, it is a tangle of
intuitions, know-how, knowledge and a variety of mental constructs allowing
learners to make choices and to take decisions. Following Confrey (1990) and
Balacheff (2009), I use the term conception to refer to these complex mental
structures. When students construct their argumentations to produce proof, they use
their conceptions (Balacheff 2009), which are at the basis of argumentation activity,
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even if in the proof (considered as final product in the proving activity) they might
not be present. Educational research analyzed how students’ conceptions strongly
affect the construction of proof (Pedemonte 2005) and how different students’
conceptions interact in the construction of a single proof (Pedemonte and Balacheff
2016). This research showed that sometimes students are not able to construct proof
because argumentations are based on conceptions that cannot evolve into theorems.
From a didactical point of view, it is important to find solutions to help students to
overcome this difficulty. This chapter can be considered an extension of these
studies. It focuses on interaction between teacher and students when the students are
constructing proof to solve an open problem (Arsac 1991) in Geometry. The aim of
this chapter is to analyze which kind of teacher intervention can be considered
effective to support students in constructing proof when they are mobilizing con-
ceptions that hardly can evolve into theorems.

Cognitive Continuity Between Argumentation and Proof

Educational research highlighted that when students solve an open problem using
an argumentation activity to construct a conjecture, continuity between argumen-
tation and proof, called cognitive unity (Boero et al. 1996) can be observed.

During the production of the conjecture, the student progressively works out his/her
statement through an intensive argumentative activity functionally intermingled with the
justification of the plausibility of his/her choices. During the subsequent statement-proving
stage, the student links up with this process in a coherent way, organizing some of pre-
viously produced arguments according to a logical chain. (Boero et al. 1996, p. 119)

This phenomenon is referred to by the authors as cognitive unity. Experimental
research about cognitive unity (Boero et al. 1996; Garuti et al. 1996, 1998;
Pedemonte 2005, 2008) shows that proof is more achievable to students if an
argumentation activity is developed for the construction of a conjecture. Indeed,
students can construct the proof by organizing some of the previously produced
arguments in a logical chain.

When students solve open problems they generally produce an argumentation to
construct and/or justify their conjecture. This argumentation can be used to con-
struct a proof validating the conjecture. Thus, the relationship between argumen-
tation and proof is connected to the relationship between conjecture and theorem.
A theorem is composed of three elements: a statement, a proof and a mathematical
theory (Mariotti et al. 1997). The theorem exists because there is a mathematical
theory (a system of shared principles and deduction rules) which allows con-
struction of a proof, thereby validating the statement. Likewise, a conjecture is
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constituted by a statement, an argumentation and a system of conceptions
(Pedemonte 2005). The argumentation can be related to the conjecture in two ways:
it can contribute to the construction of a conjecture, so it precedes the statement, or
it can justify a conjecture, previously constructed as a ‘‘fact’’, so it comes after-
wards. In both cases, conjecture is based on arguer’s conceptions (Balacheff 2009).
These conceptions belong to the arguer’s system of knowledge, that is not neces-
sarily a mathematical theory.

Therefore, some conceptions can prevent cognitive continuity (Garuti et al. 1996;
Pedemonte 2005) between argumentation and proof. I refer to incorrect concep-
tions, namely conceptions that cannot evolve into theorems because they are not
supported by a mathematical theory. When the argumentation supporting the
conjecture is based on incorrect conceptions, two possibilities can be envisioned:
(1) the proof is not constructed because the student cannot replace the incorrect
conception by a theorem (2) an “incorrect proof” is produced based on the con-
ception used in the argumentation. In both cases, students need to change the
resolution strategy to construct a proof. A didactical intervention could be very
useful to help student to invalidate the incorrect conception to construct a different
argument supporting a new conjecture. However, from a didactical point of view, it
is a challenge to understand which intervention could be effective to support the
student in changing the strategy to solve the problem in a different way. As
highlighted by Tsujiyama and Yui (this volume) examples of unsuccessful argu-
ments can facilitate students’ reflection on their process of planning a proof and also
this aspect should be account by the teacher.

This chapter shows that a teacher’s intervention can be considered effective if it
doesn’t completely “interrupt” cognitive unity between the student’s argumentation
and proof, but opposite it encourages the continuity between them. The teacher
should not “replace” the incorrect student’s conception used to construct the con-
jecture, with a new one. The teacher’s intervention needs to be part of the student’s
argumentation to maintain the continuity between student’s argumentation and
proof.

Toulmin’s model is used to analyze how teacher’s intervention can be part of
student’s argument (as rebuttal) and under which conditions it becomes a new
warrant in the student’s argument. I will show that the teacher’s intervention seems
to be effective if it “acts’ on the warrant and the backing of the student’s argument.

Toulmin’s Model

In this chapter, Toulmin’s model is used to analyze when teacher’s intervention can
support cognitive unity between the student’s argumentation and proof. In partic-
ular, the model is used here not to focus in the relationships that exists between
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arguments, but in the relationships between the different components of a given
argument. This is also the reason why this model was embraced by a large number
of researchers in mathematics education (Inglis et al. 2007; Knipping 2008;
Krummehuer 1995; Lavy 2006; Nardi et al. 2012; Pedemonte 2005, 2007, 2008;
Weber and Alcock 2005; Wood 1999; Yackel 2001; Yackel and Rasmussen 2002).

An argument provides a standpoint (an assertion, an opinion) which is called a
claim in Toulmin’s terminology. Data are produced supporting the claim.
A warrant provides the justification for using the data in support of the data-claim
relationships; it can be expressed as a principle or a rule and it acts as a bridge
between the data and the claim. This is the ternary base structure of an argument,
but auxiliary elements may be necessary to describe it. Toulmin describes three of
them: the qualifier, the rebuttal and the backing. The warrant imparts different
degrees of force to the conclusion it justifies, which may be indicated by a qualifier
such as ‘necessarily’, ‘probably’ or ‘presumably’ attached to the transition from the
data to the claim. In the latter case, we may need to mention conditions of rebuttal
“indicating circumstances in which the authority of the warrant would have to be set
aside” (Toulmin 1958, p. 101). So, a warrant can be defended by appeal to a
backing that can be expressed in the form of categorical statements of fact (Toulmin
1958, p. 105). A backing can be provided by a system of taxonomic classification,
by a statute, by statistical results, or by a mathematical theory. The type of the
backing could change greatly as one moves from one field of argument to another
(Toulmin 1958, p. 104). Then, Toulmin’s model of argument contains six related
elements organized as showed in Fig. 8.1.

Fig. 8.1 Toulmin’s model of
argumentation
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Some warrants authorize us to accept claim unequivocally, given the appropriate data -
these warrants entitle us in suitable cases to qualify our conclusions with the adverb
“necessarily”; other authorize us to make the step from data to conclusion either tentatively,
or else subject to conditions, exceptions or qualifications. (Toulmin 1958, p. 100)

In this last case, warrants are not based on theorems but on student’s concep-
tions. These conceptions (that can appear explicit in the warrant or in the backing of
the student’s argument) do not necessarily lead to correct conclusions (Pedemonte
and Balacheff 2016). When this is the case I can consider them as incorrect con-
ceptions. When student uses an incorrect conception to construct a conjecture, the
claim of the argument is in general not correct. Therefore, a teacher’s intervention
could be necessary to invalidate the argument and help student to modify the
resolution strategy to solve the problem.

Thus, the teacher’s intervention assumes the role of rebuttal in student’s argu-
mentation. Indeed, a statement can be considered as a rebuttal in the argument when
it is the basis for incorporating into dialectical interaction a role of the opponent
(Freeman 1991; Slob 2006). Toulmin’s rebuttal allows for the introduction of
counter-considerations provided by the voice of the other (Slob 2006). The tea-
cher’s intervention as voice of the other can be incorporated as rebuttal in the
student’s argument.

In the next section, two examples of teacher’s intervention are provided to see
how they can be incorporated in the student’s argumentation.

Method

The following case studies are taken from a research project designed to analyze
how teacher interventions affect students in the construction of proof. I have
observed that when teacher interacts with student during a problem-solving activity,
the student’s argumentation can be strongly affected by the teacher intervention.

I have analyzed sixteen 11th grade Italian students interacting with their teacher
while they were solving the following geometrical open-problem (taken from
Camargo et al. 2007).

Fig. 8.2 Figure presented in Cabri-Geometry

In isosceles triangle ABC, determine the 
position of the point P, on the base of 
the triangle, so that the sum of the 
distances from P to the congruent sides 
of the triangle is minimum. Justify your 
answer.
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This is not a standard problem for the analyzed students. However, students’
background knowledge and skills were wide enough to allow them to construct a
conjecture and to produce a proof. At the mentioned grades, they have been taught
mathematical proof, hence they were aware that the current didactical contract
required the construction of a proof even though this is not written in the
description of the task. They knew all theorems necessary to solve the proposed
problem. Furthermore, they were familiar with the use of Cabri-Geometry where
the problem was presented. Students were also provided with a paper with the
statement of the problem and room to write comments, calculations and responses
to the questions.

The experiment lasted about 30 min.
In general, the students started the exploration moving the point P on the base of

the triangle. Some students explored the “limit case” locating P on one of the
endpoints of the segment AB. Some students inserted other points on the segment
AB and drew auxiliary lines to have the possibility to compare different distances.
In general, it was not spontaneous for students to realize that the sum of distances is
invariant. The teacher’s intervention was often necessary to help students to find a
correct strategy to solve the problem.

The analysis of the relationship between the student’s argumentation and the
teacher’s intervention is based on Toulmin’s model. This scheme is used to analyze
whether the teacher’s intervention can be enclosed in student argumentation, which
role it assumes inside it and under what conditions it is strong enough to affect the
student’s argumentation and proof.

Analysis

It was observed that the teacher’s didactical intervention was often not effective in
supporting student in the construction of the proof.

Two interactions between student and teacher have been selected from a case
study. The purpose of the analysis is to highlight two different ways students’
argumentations can be developed when a teacher’s intervention is constructed to
support students in the construction of a proof:

• Case 1: the teacher’s intervention doesn’t affect the student’s proof
• Case 2: the teacher’s intervention runs as an external rebuttal in the student’s

argumentation and it is useful to the student to construct proof.

Students’ and teacher’s argumentations were audio recorded and transcribed.
Their utterances were selected and the argumentative steps were reconstructed. The
texts have been translated from Italian into English.
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An extract of Case 1 and Case 2 are presented below.
The student’s text is in the left column while comments and analyses are

reported in the right column.
Case 1. Valentina is exploring the problem in Cabri-Geometry. She moves point

P on the segment AB silently. Then, she inserts another point in the segment AB
and she seems to compare the distances: point P is situated in the middle of the
segment AB, the other point is moved on AB (Fig. 8.3).

1. V: …According to me the sum of 
the distances is minimum when… 
probably, when point P is in the 
middle

2. T: Why?
3. V: Because if you insert point P

here, this distance (shows segment 
8) is longer (in respect to segment 
5)

4. T: Yes, but the other distance 
(segment 3) is shorter…

5. V: Yes, but less, I mean… for 
example if this distance is 5 and 
the other is 5… in this case, this 
distance could be 8 and this 
distance could be 3… however
longer than the other.

Fig. 8.3 Figure constructed by Valentina in
Cabri-Geometry

The distances (5, 5 and 3, 8) are not really 
calculated. Valentina suggests these distance to 
support her conjecture but she doesn’t verify in 
Cabri-Geometry. Valentina’s argument can be 
represented as follows:
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At this point, the argumentation starts and Valentina constructs a conjecture. She
thinks that the sum of distances is minimum when point P is situated in the middle
of segment AB.

Let’s see the interaction between Valentina and the teacher.
The teacher tries to modify Valentina’s conjecture acting on the qualifier of her

argument. She asks Valentina if she is sure about her reasoning. However, despite
teacher intervention, Valentina doesn’t change her argument. She considers the
limit case to validate her conjecture.

6. T: Are you sure?
7. V: Yes, if you consider the limit case

(the point is moved on point A) … this 
is the longest (the segment 8, that 
represents now the limit case), while 
P is in the middle you have the 
minimum.

8. T: mmm, ok…

Valentina argument can be represented as 
follows:

The teacher proposes a new figure to help Valentina to modify her conjecture: in
Cabri-Geometry she constructs the symmetrical triangle in respect to segment AB.
The reflecting image is congruent to the original triangle. Then she constructs the
symmetrical of segment DP in respect to the segment AB (as shown in Fig. 8.4).
The idea of the teacher is to help Valentina to see that the figure constructed inside
the two triangles is a rectangle. In this way, Valentina could deduce that the sides of
a rectangle are equal and then the two distances are equal.
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8. T: … but consider these two paths…
you can construct the symmetrical 
triangle. You can see that the 
reflected image is congruent to the 
triangle ABC. Now, we can construct 
the segment that is symmetrical to 
segment DP (she constructed 
segment EP). Observe this 
quadrilateral. What can you see?

9. V: What can I see?
10. T: For example, look at these two 

sides of the quadrilateral … 
11. V: I see that this side is equal to this 

side (Valentina is considering the 
rectangle)

12. T: And what about the angles?
13. V: They are right angles
14. T: So this quadrilateral is a…
15. V: A rectangle? 

Fig. 8.4 Figure constructed by the teacher to 
help Valentina to modify her argument

We can represent the teacher argument in the 
following way:

The teacher’s intervention is a rebuttal in Valentina’s argument because it
introduces counter-considerations to invalidate Valentina’s conjecture and to help
her modify her resolution strategy. However, this rebuttal is not strong enough to
modify Valentina’s conjecture. As a matter of fact, when the teacher asks Valentina
what is the minimal distance, her answer is still the same: the minimal distance is
when P is in the middle of the segment AB.

8 How Can a Teacher Support Students in Constructing a Proof? 123



16. T : Yes! It is a rectangle… this side is 
equal to this side.  So what is the 
minimal distance?

17. V: The minimal distance? It is … the 
minimal distance is when point P is 
in the middle!

Valentina argument can be represented as 
follows:

Despite the teacher intervention Valentina does not solve the problem and does
not change her conjecture. The reason is that the teacher’s intervention does not
affect Valentina’s conception.

If we compare the teacher’s argument and Valentina’s argument we can see that
backings are different in the two arguments: Valentina is looking at the drawing, the
backing of her argument is in the spatio-graphic setting. The teacher argument is in
the spatio-graphic setting and in the geometrical setting. There is no connection
between the two conceptions even if Valentina follows the teacher’s reasoning.

The rebuttal provided by the teacher is not considered by Valentina as a
counter-argument but as a different argument, not connected to her reasoning. For
the teacher, the symmetrical triangle is useful to prove the equality among dis-
tances, but Valentina does not understand it. She does not see the connection
between the symmetrical triangle and the problem.

In this example, the teacher’s intervention seems to “interrupt” cognitive unity
between the student’s argumentation and proof. However, Valentina refuses the
teacher’s intervention and she reconstructs the continuity in her argumentation
following her own reasoning based on her previous conception.

Valentina does not construct proof to the problem.
Case 2. Francesco is exploring the problem in Cabri-Geometry. He moves point

P on the base AB until it coincides with point A. He constructs the segment AD (as
shown in Fig. 8.5) to represent the limit case. Then he moves point P in another
position along segment AB to compare segment AD with the sum of the distances
of point P from the two sides of the triangle: EP + PF in Fig. 8.5. Francesco thinks
that the sum EP + PF is longer than segment AD.
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1.F: I do not know…I really do not know
2.T: Try to construct a conjecture
3.F: it seems to me that we can obtain the 

minimum sum when P is in A… or in 
B… Is it correct?

4.T: Let’s see… Why according to you 
this segment AD is shorter than the 
sum 
EP +PF? 

5.F: because you see… it seems to me that 
to do EP+PF you have to do more. AD 
is a straight line

Fig. 8.5 Figure constructed by Francesco in 
Cabri-Geometry

Francesco argument can be represented in the 
following way:

To help Francesco, the teacher suggests him to construct a segment perpen-
dicular to AD. This perpendicular segment is useful to make visible that segment
AD is equal to the sum of the segments EP and PF. Starting from Francesco
drawing, the teacher asks the student to add an “element”, the segment PQ (as
shown in Fig. 8.6), that can help Francesco to modify his reasoning, (not to produce
another reasoning as in Case 1).

The teacher is analyzing the drawing from a geometrical point of view: RD is
equal to PF because CB and QP are parallel as far as RD and PF. Furthermore, QP
is perpendicular to RD. So the figure RPFD is a rectangle. In a similar way, AR and
EP are equal because the two triangles AEP and ARP are congruent. The teacher is
trying to help Francesco see that in the drawing segments EP and AR are equal as
far as segments RD and PF. The new configuration that is constructed by the
students under the guidance of the teacher offers a way to compare the two lengths.

The teacher is moving inside the spatio-graphic setting, where Francesco
argument is constructed, but the backing of the teacher’s argument is Geometry.
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Therefore, she is connecting the spatio-graphic setting (backing in Francesco’s
argument) with the geometrical setting.

The teacher’s intervention does not replace Francesco’s conception but it does
help him invalidate it acting in the warrant and in the backing of the student’s
argument.

Fig. 8.6 Francesco constructs the 
segment AD and the teacher asks him to 

construct QP

6. T: Ok, what happen if I construct the 
perpendicular for P to this segment 
(AD)? Try to construct it. 

Francesco constructs the perpendicular 
and labels the points Q and R.

7. F: RD is equal to PF and…oops…it 
seems that… no because this is 

The teacher’s intervention runs as a rebuttal in 
student’s argument, as shown in the following 
representation. 

The student’s argument changes after the 
teacher’s intervention.

longer…no wait these two segments 
are equal. I was wrong: EP+PF is 
equal to AD because EP is equal to 
AR because… These are two equals 
triangles! 
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In this second example the intervention of the teacher is useful to modify
Francesco’s argumentation. The rebuttal provided by the teacher is useful to modify
Francesco argument because it can invalidate it, acting on the backing. The
backings in Francesco’s argumentation and in the teacher’s argumentation are very
closed. Even if the teacher’s intervention is oriented in the geometrical setting,
Francesco can follow it because the segment he inserts in his drawing runs as a link
between the spatio-graphic and the geometrical settings.

Cognitive unity between student’s argumentation and proof is not interrupted by
the teacher’s intervention. Opposite, it supports the continuity in Francesco’s
argumentation because it becomes part of it. Francesco solves the problem and
constructs a proof as shown in Fig. 8.7.

Discussions and Conclusions

The use of Toulmin’s model (1993) highlighted some important aspects. We have
observed that there is a tight relation between conceptions summoned by student
and the modal qualifier and the rebuttal in his argumentation (Toulmin 1958;
Pedemonte 2005). If student conception is incorrect, an external rebuttal (produced
by a person different from the arguer) can be constructed to invalidate the argument.
We have observed that rebuttal produced from the teacher is effective when it acts
on the warrant and the backing of the student’s argumentation. The teacher’s
rebuttal should have the same backing of the student argumentation and it should be
“coherent” with the student warrant (Case 2).

In other words, the cognitive continuity between argumentation and proof
(Pedemonte 2005) should be maintained to make rebuttals effective for the con-
struction of proof. In Case 2 the teacher’s intervention is effective because it does
not interrupt the cognitive continuity between the student’s argumentation and
proof. The teacher’s intervention acts as a rebuttal in the student’s argument
invalidating his conception but not replacing it, as in Case 1. In Case 2, the tea-
cher’s intervention supports the cognitive continuity between argumentation and

Fig. 8.7 Proof constructed by Francesco
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proof and the student can construct proof even if his initial conception was not
correct. Opposite, in Case 1 the teacher is not able to invalidate the student’s
conception because she replaces the student’s argument by her own argument. The
external rebuttal is not effective to modify the student’s argument because it does
not affect the warrant and the backing of the student’s argument.

This analysis was performed on a limited number of students, so results cannot
be generalized. This is a work in progress research that needs to be experimented in
other contexts and with a larger number of students.

However, even if the experiment was not part of the students’ regular mathe-
matics classes, this research has classroom-based issues related to proof and
proving. The fine grain analysis of the teacher’s intervention, and specifically the
analysis of teacher–student interaction is of great interest for the development of a
more complex analysis of classroom interaction on argumentation and proof. The
analysis of the teacher’s interventions in respect to the students’ arguments shows
how students arguments can be affected by the teacher intervention. This resonates
with the results of Goizueta and Mariotti (this volume) that show how students
exploit teacher’s interventions to produce arguments to validate different mathe-
matical models within a problem-solving situation. It is the quality of the inter-
vention and the role that it assumes inside the specific student’s argument that can
modify the claim of the student. The teacher’s intervention can run as a rebuttal
inside a student’s argument and not inside another one. Consequently, inside the
class it is probably more difficult for the teacher to choose the “good intervention”
to support students in the construction of proof.
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Chapter 9
Proof Validation and Modification
by Example Generation:
A Classroom-Based Intervention
in Secondary School Geometry

Kotaro Komatsu, Tomoyuki Ishikawa and Akito Narazaki

Abstract Recent curriculum reforms underline mathematical activity related to
proof validation, but few studies have explicitly addressed proof validation at the
secondary school level. This chapter reports on our study of this issue. We suggest a
specific kind of task for introducing proof validation in secondary school geometry
and define the meanings of proof validation and proof modification in terms
of Lakatos’s notion of the local counterexample. We briefly report on a
classroom-based intervention implemented using such tasks in a lower secondary
school in Japan. We then analyze the results of a task-based questionnaire con-
ducted after the intervention to investigate how well the students did in proof
validation and modification. The analysis shows that student failure in proof vali-
dation arose mainly from their difficulty with producing diagrams that satisfied the
condition of the proof problem.

Keywords Proof validation � Proof modification � Example generation
Local counterexample � Classroom-based intervention � Task design

Introduction

Proving is a fundamental activity in mathematical practice, and proof and proving
are recognized as central to the substantial mathematical learning of all students
(e.g., Stylianides et al. 2017). In our research, proofs refer to deductive arguments
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that show the paths from the suppositions of statements/conjectures to the con-
clusions by using statements that are already accepted as true. Although empirical
arguments based on examples are not considered as proofs, example generation
plays several roles in proof-related activity (e.g., Buchbinder, this volume; Reid and
Vargas, this volume). Proof-related activity includes not only constructing proofs,
but also making conjectures, and examining the truth of conjectures/statements and
the validity of proofs even after the proofs are constructed. In particular, our study
considers this proof-related activity from the fallibilism of mathematics (Lakatos
1976). As shown in Lakatos’s description of the mathematical history of polyhedra
and uniform convergence, example generation after proof construction is helpful in
improving statements and proofs (Komatsu 2017).

One aspect of such proof-related activity is proof validation (Selden and Selden
1995, 2003), in which one examines arguments constructed as proofs to determine
whether the arguments constitute legitimate proofs (a more elaborate definition of
proof validation will be given later). Several studies on proof validation have been
conducted in the field of mathematics education, giving many insights into how
undergraduate students, trainee and in-service teachers, and professional mathe-
maticians do proof validation (Alcock and Weber 2005; Inglis and Alcock 2012;
Knuth 2002; Ko and Knuth 2013; Segal 1999; Selden and Selden 2003; Weber
2008, 2010).

However, there remain two issues that need to be addressed. First, few studies
have investigated proof validation at the secondary school level (McCrone and
Martin 2004; Reiss et al. 2001). Recent curriculumreforms have emphasized
mathematical activity involving proof validation; for example, the Common Core
State Standards Initiative (2010) in the United States lists the activity of con-
structing viable arguments and critiquing the reasoning of others as one of the
standards for mathematical practice. The latest national curriculum in England also
declares that, as part of mathematical reasoning, “pupils should be taught to […]
assess the validity of an argument and the accuracy of a given way of presenting
information” (Department for Education 2014, pp. 5–6). Given these requirements,
proof validation should be introduced into secondary school mathematics. The
studies by McCrone and Martin (2004) and by Reiss et al. (2001) are relevant in
that they investigate whether secondary school students can discern the invalidity of
circular arguments (in which conclusions are used as suppositions). For instance,
McCrone and Martin (2004) surveyed 18 American high school students and
showed that only 22% of the students correctly judged a circular argument invalid.
However, because proof validation involves more than identifying circular argu-
ments, it remains necessary to address other types of proof validation.

Second, participant activity in most of the previous studies ended at proof val-
idation, and few studies have focused on how the participants might modify
arguments that they judge to be invalid. Alcock and Weber (2005) conducted a
related study in which they requested participating undergraduates to check an
argument and modify it if needed. However, Alcock and Weber did not focus on the
undergraduates’ modifications, treating them as a relatively minor topic. In our
view, proof modification is equally as important as validation from an educational
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perspective because it can provide students with the opportunity to revise their
mathematical knowledge, skills and thinking, and repeatedly taking this opportunity
may help foster a more reflective attitude in students.

In this chapter, we report on our research into these two issues. The structure of
the chapter is as follows. First, we illustrate a specific kind of task for introducing
proof validation and modification into secondary school geometry. Second, we give
a short report of a classroom-based intervention implemented using such tasks at a
lower secondary school in Japan. Third, we analyze a post hoc task-based ques-
tionnaire to investigate how well the students did in proof validation and modifi-
cation. Finally, we conclude by discussing the results of this questionnaire, the
implications for teaching, and possible directions for future research.

Proof Validation and Modification in Secondary School
Geometry

To introduce proof validation into geometry classes at the secondary school level,
we consider a specific kind of mathematical task: proof problems with diagrams
(Komatsu 2017; Komatsu et al. 2014). Proof problems with diagrams are defined as
tasks in which statements are described with reference to particular diagrams with
labels, typically featuring one diagram per problem. An example is shown in
Fig. 9.1, where the statement can be proved by showing \QAC = \PBD and
\QCA = \PDB using the inscribed angle theorem.

We adopt the specific interpretation of these tasks in which the relevant state-
ments are considered with respect to certain general classes to which the diagrams
given in the tasks belong, rather than only for the given diagrams. For instance, we
take it that the statement in Fig. 9.1 argues that triangle AQC is always similar to
triangle BPD if points A and B are on circle O and the stated condition is satisfied
(e.g. Fig. 9.2a, b). This interpretation enables students to use examples for proof
validation by drawing diagrams that satisfy the conditions of statements and
deciding whether the constructed proofs are applicable to these diagrams. In the
above example, the proof for the diagram shown in Fig. 9.1 is invalidated by
Fig. 9.2b, which rejects the use of the inscribed angle theorem as the reason for
showing \QCA = \PDB because angle QCA is no longer an inscribed angle

As shown in the diagram, two circles O and O' intersect 
at points P and Q, and two points A and B are located 
on circle O. Draw line AP and let point C be the 
intersection point of the line and circle O'. Draw line 
BQ and let point D be the intersection point of the line 
and circle O'. Prove ∆AQC ~ ∆BPD.

Fig. 9.1 Example of proof problem with diagram
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corresponding to arc PQ of circle O′. The proof needs to be modified by altering this
reason to the inscribed quadrilateral theorem, which states that ‘an interior angle is
equivalent to the exterior angle of the opposite angle.’

One of the characteristics of proof problems with diagrams is that the conditions
of some (but not all) of the tasks are ambiguous because hidden assumptions may
exist within the diagrams given in the tasks (Komatsu 2017; Stylianides 2007). As
illustrated, these hidden assumptions can create opportunities for checking whether
the constructed proofs are always valid by transforming the given diagrams. The
tasks addressed in this chapter may appear as typical proof tasks in school geom-
etry; students are usually presented with proof tasks that are described with dia-
grams and labels (Herbst and Brach 2006). However, our study capitalizes on the
subset of proof problems with diagrams in which hidden assumptions exist in order
to introduce proof validation into secondary school geometry.

To define proof validation and proof modification involving proof problems with
diagrams, we borrow certain terms from Lakatos (1976), who differentiated
between two types of counterexamples: global counterexamples and local coun-
terexamples. A global counterexample, which is a counterexample in the conven-
tional sense, refutes an entire statement, while a local counterexample rejects a step
in a proof. In the aforementioned illustration, the case of Fig. 9.2b constitutes a
local counterexample because it rejects the proof for the diagram shown in Fig. 9.1;
however, it does not constitute a global counterexample because the statement,
namely the similarity of triangles AQC and BPD, remains true. Based on Lakatos’s
terminology, we define proof validation as inspecting whether there are local
counterexamples to proofs. Consequently, we define proof modification as, upon
noticing the existence of local counterexamples, constructing proofs that are valid
for the local counterexamples.

Note that the meaning of proof validation in this study is different from that in
the literature. Previous studies on the subject have focused on identifying fallacies
in invalid arguments, such as circular arguments, the falsity of reasons used to
deduce certain lines, the mismatch of arguments in which the converses of target
propositions are proved, and the inappropriateness of global counterexamples being
used to show the falsity of propositions (e.g. Alcock and Weber 2005; Ko and
Knuth 2013; McCrone and Martin 2004; Selden and Selden 2003). In contrast, our
study deals with not-completely-invalid proofs, namely proofs that are valid in
certain domains, and invites students to determine whether there are cases to which
the proofs are not applicable.

Fig. 9.2 Diagrams that
satisfy the problem condition
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By implementing and analyzing classroom-based intervention, we previously
showed that individual tasks in the form of proof problems with diagrams are useful
to some extent for eliciting mathematical activity relevant to proof validation and
modification (Komatsu 2017). However, the students in our previous research were
not fully involved in the proof validation because, in the implemented lessons, the
local counterexample was given by the teacher, rather than being discovered by the
students. This was because we anticipated that, as students are usually not familiar
with proof validation, finding local counterexamples by transforming diagrams
would be difficult for them. We address this issue in this study by designing task
sequences through which students can be gradually introduced to proof validation
and modification. In the following section, we briefly report one of the interventions
implemented using the designed task sequence, and we analyze the results of our
post hoc task-based questionnaire to investigate how well the students did in proof
validation and modification.

Methods

Background

The study reported in this chapter was conducted as part of larger research on
curriculum development for explorative proving (Miyazaki et al. 2016). The pur-
pose of this study was to develop task sequences for facilitating student activity
related to proof validation and modification in secondary school geometry through
implementing classroom-based intervention. This chapter reports on one of the
intervention, carried out by the second author of this chapter in his classroom at a
lower secondary state school, involving 29 Japanese ninth-graders (aged 14–
15 years old). The mathematical capabilities of the participating students were
average for Japan according to the observation of the second author, who has
18 years of teaching experiences across several secondary schools in Japan.

Design of the Intervention

Three lessons (50 min per lesson) were used for our research: the first two lessons
for the intervention, and the last lesson for the task-based questionnaire. The
intervention was implemented over a relatively short duration (two lessons), with
the specific purpose of introducing students to proof validation and modification
(Stylianides and Stylianides, this volume).

The task sequence in the first two lessons was developed so that students could
gradually experience proof validation and modification activity. For instance,
because we anticipated that it would be difficult for students to discover local
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counterexamples independently by transforming diagrams without any prior
experience, the first lesson was designed to present students with a diagram that
constituted a local counterexample. Building on this experience, the second lesson
was designed to invite students to discover local counterexamples by themselves.
The proof problems used in the first and second lessons (which will be described in
the results section) differed in terms of difficulty; in the second lesson, we used a
task that was more difficult than the one in the first lesson.

The intervention was designed through close collaboration between the first
author (researcher) and the second author (teacher). The first author initially drafted
a task sequence and rough lesson plans, after which we discussed them in order to
craft detailed lesson plans. In doing this, we took into consideration the usual
practice in the classroom. Typical lessons in this classroom followed a
problem-solving style consisting of task setup by the teacher, student individual and
small-group work, and a concluding whole-class discussion (Stigler and Hiebert
1999). We organized our intervention in a similar way; the teacher began each
lesson by providing one proof problem with a diagram, the students engaged in
proof construction and then proof validation/modification, and finally the teacher
led the whole class in a discussion where the students shared their thoughts
regarding proof validation and modification. The second author carried out these
lessons, and the first author observed them as a non-participant. We also held
post-lesson discussions to reflect on the results of the lessons. During the lessons,
the teacher used GeoGebra to demonstrate transforming diagrams, but the students
were not allowed to use GeoGebra.

Task-Based Questionnaire

The third lesson was used for the task-based questionnaire (Fig. 9.3), which was
based on the proof problem shown in Fig. 9.1. After proving the statement in
Fig. 9.1, the students individually worked on this questionnaire for approximately
20 min. The students were intended to experience transforming diagrams in the first
two lessons, and we expected that this experience could provide the students with
the required mathematical background for considering different configurations of
diagrams in the questionnaire. The students were familiar with the inscribed angle

Q1: Place point A on various places on circle O and find a 
case that rejects your proof.

Q2: Which part of your proof is rejected by this case?

Q3: Modify your proof to show ΔAQC ~ ΔBPD even in this 
case.

Fig. 9.3 Task-based questionnaire
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theorem, the inscribed quadrilateral theorem, and proof construction for showing
the similarity of triangles.

Students were regarded as successful in proof validation if they gave correct
answers to Q1 and Q2. Students were regarded as successful in both proof vali-
dation and modification if they gave correct answers to Q1–3. We anticipated that
there might be students who, in spite of producing diagrams that we as observers
regard to be local counterexamples, were not able to answer which parts of their
proofs were rejected by the diagrams; that is, they correctly answered Q1, but not
Q2. These students were assessed as unsuccessful in proof validation because they
drew the diagrams without recognizing them as local counterexamples.

Data Analysis

The classroom-based intervention was videotaped and transcribed, and the students’
worksheets were collected. The following section gives a short report of the
implemented intervention based on these data. After that, we focus on the students’
answers to the task-based questionnaire. Based on the aforementioned criteria, the
first and third authors independently assessed whether each student succeeded in
proof validation and modification. We then synthesized our classifications, and any
discrepancies were discussed until we reached a consensus. Afterwards, we cate-
gorized all the correct and incorrect answers to identify the main difficulties the
students encountered. English translations of the original Japanese tasks and stu-
dents’ answers are given. All the students’ names presented in this chapter are
pseudonyms.

Results

The Implemented Intervention

The first lesson involved the task shown in Fig. 9.4, in which the students proved
the statement by showing \BPA = \CPD and \BAP = \CDP using the equality of
vertical angles and the inscribed angle theorem, respectively. The teacher then used
GeoGebra to move point A and present the diagram shown in Fig. 9.4b, which the
students recognized to be a local counterexample to their proofs because the pre-
vious reasons for \BPA = \CPD and \BAP = \CDP could not be employed.
After that, the students engaged in proof modification by, for instance, changing the
reason for \BPA = \CPD from the equality of vertical angles to the identity of the
angles.

The second lesson involved the task in Fig. 9.5, in which the students proved the
statement by showing \PAC = \PBD and \PCA = \PDB using the inscribed
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angle theorem. Then, the teacher prompted the students to find local counterex-
amples to their proofs independently by drawing various diagrams. The local
counterexample typically discovered by the students was the case shown in
Fig. 9.6a, placing point A on arc PQ of circle O. They found that the reason for
\PAC = \PBD did not apply, so they replaced it with the inscribed quadrilateral
theorem. The teacher then introduced another local counterexample from a certain
student’s worksheet (Fig. 9.6b), where line AQ was a tangent line to circle O′ and
points C and Q were regarded as being coincident. However, the class did not
further examine this case because proof modification for it required another theo-
rem, namely the alternate segment theorem, which the students had not yet learnt.

The third lesson involved the aforementioned task-based questionnaire. The
students initially tackled the proof problem in Fig. 9.1. Because the teacher asked
successful students to help students who found the proof difficult, all of the students
completed full proofs. All of their proofs were based on showing \QAC = \PBD
and \QCA = \PDB using the inscribed angle theorem. The following proof was
written on the blackboard by a student, Takumi, and was shared in the classroom:

Regarding ΔAQC and ΔBPD,

Since inscribed angles corresponding to arc PQ in circle O are equal,

\QAC = \PBD ð9:1Þ

Similarly, since inscribed angles corresponding to arc PQ in circle O′ are also equal,

As shown in the diagram, there are 
four points A, B, C, and D on circle 
O. Draw lines AC and BD, and let 
point P be the intersection point of 
the lines. Prove ΔPAB ~ ΔPDC.

Fig. 9.4 Task and local counterexample shown by the teacher (the first lesson)

As shown in the diagram, two circles O and O' intersect 
at points P and Q, and two points A and B are located 
on circle O. Draw line AQ and let point C be the 
intersection point of the line and circle O'. Draw line 
BQ and let point D be the intersection point of the line 
and circle O'. Prove ΔPAC ~ ΔPBD.

Fig. 9.5 Task used in the second lesson
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\QCA = \PDB ð9:2Þ

From (9.1) and (9.2), since the two pairs of angles are equal, ΔAQC * ΔBPD.

After that, the students individually worked on the task-based questionnaire. We
failed to collect the questionnaires from two students, so the answers given by 27
students were analyzed.

The Results of the Task-Based Questionnaire
on Proof Validation

Sixteen students (59%) succeeded in proof validation by producing diagrams that
constituted local counterexamples to their proofs in Q1 and indicating which parts
of their proofs were rejected by the diagrams in Q2. The local counterexample
discovered by most students (12 students) was the case where point A was on arc
PQ of circle O. For instance, Ren drew the diagram shown in Fig. 9.7a and
answered in Q2 that “[the part stating] ‘since inscribed angles corresponding to arc
PQ in circle O are equal, \CAQ = \DBP’ [is not valid].” Five students produced a
case where point C was on arc PQ of circle O′ (Fig. 9.2b). The number of dis-
covered local counterexamples was larger than the number of students who suc-
ceeded in proof validation because several students produced two or three local
counterexamples.

Fig. 9.6 Local
counterexample in the
second lesson (from the
students’ worksheets)

Fig. 9.7 Local counterexamples produced by students (from their worksheets)
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It is noteworthy that some students produced special local counterexamples. For
instance, three of the above 12 students placed point A on the intersection point of
segment DP and circle O (in this case, points C and D coincide); Shota drew the
diagram shown in Fig. 9.7b and answered in Q2 that “it is not valid that the
inscribed angles corresponding to circles O and O′ are equal.” Four students drew a
case where line AC was a tangent to circle O or O′ (Fig. 9.7c). The reasons why
many students produced the case of Fig. 9.7a and several students produced special
cases such as Fig. 9.7b, c would be related to the results of the implemented
intervention, as such cases were shared with the whole class in the second lesson
(Fig. 9.6).

There were 11 students (41%) who failed in proof validation. The most typical
incorrect answer, given by four students, was derived from drawing diagrams that
did not satisfy the condition of the problem. For instance, Misaki drew the diagram
shown in Fig. 9.8a, making triangle PQC instead of triangle AQC. There were other
incorrect answers, where three students drew diagrams that satisfied the problem
condition but their proofs remained valid for these diagrams (Fig. 9.8b). These
results indicate that finding local counterexamples by drawing diagrams was dif-
ficult for several students even after the intervention that explicitly focused on
introducing them to proof validation and modification.

The Results of the Task-Based Questionnaire
on Proof Modification

Ten students succeeded in proof modification, properly adjusting their proofs to
cope with the local counterexamples they had discovered. This number accounts for
37% of all the students (10/27) and 63% of the students who succeeded in proof
validation (10/16).

Kaito’s answer to Q3 was typical for the successful students who considered the
case of Fig. 9.7a:

It is enough to change part (9.1) [of the initial proof] to ‘since an interior angle and the
exterior angle that is next to the opposite interior angle are equal in the quadrilateral
inscribed to circle O, \PBD = \QAC.’

Fig. 9.8 Failure to discover
local counterexamples (from
the students’ worksheets)
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In this answer, he changed the reason for \PBD = \QAC from the inscribed
angle theorem to the inscribed quadrilateral theorem. All of the students who
considered the case of Fig. 9.7b performed the same modification, further changing
the reason for the equality of another pair of angles, namely angles QCA and PDB,
from the inscribed angle theorem to the identity of these angles.

Six students succeeded in proof validation, but failed in proof modification. Half
of them attempted to modify their proofs by changing which pair of angles was
referenced instead of the reasons for the equality of the angles. For instance, Aoi
and Nanami considered the case of Fig. 9.7a and tried to modify the parts of their
proofs showing \QAC = \PBD as follows:

Aoi: Since the four points P, B, Q, and A are inscribed to circle O, \BPA = \AQC.
Nanami: Since the quadrilateral PAQB is inscribed to circle O, \AQC = \BPD.

Aoi’s answer is incorrect because angle BPA is equal with angle AQD, not angle
AQC. Nanami’s answer is insufficient because, while angle AQC is equal with
angle BPD, this cannot be derived using only the inscribed quadrilateral theorem. It
is necessary to show that \CQD = \CPD with the inscribed angle theorem, \AQD
= \APB with the inscribed quadrilateral theorem, and then \AQC = \AQD −
\CQD = \APB − \CPD = \BPD. However, she did not use this reasoning, only
superficially changing the referenced pair of angles.

Proof modification for Fig. 9.7c requires the alternate segment theorem. One of
the four students who produced this type of special case was assessed to be
unsuccessful in proof modification because this was her only local counterexample,
and she was not able to modify her proof due to a lack of knowledge of the alternate
segment theorem. The other three students were assessed as successful in proof
modification because they found other local counterexamples and successfully
adjusted their proofs to cope with these local counterexamples.

Discussion

We have relied and built upon previous research on proof validation (e.g. Alcock
and Weber 2005; McCrone and Martin 2004; Selden and Selden 2003) by
addressing proof validation and modification involving local counterexamples at
the secondary school level. Although several students did not succeed in proof
validation/modification in our task-based questionnaire, these results are under-
standable if we take the difficulty of the task into consideration. We conducted our
study in a lower secondary school, the participants already being familiar with the
inscribed quadrilateral theorem that was necessary for proof modification.
However, the Japanese national curriculum specifies that this theorem should be
learnt in the tenth grade in upper secondary schools. Furthermore, if a simpler proof
problem had been used in the questionnaire, such as the task in the first lesson, more
students would likely have succeeded in proof validation and modification.
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The students’ failure in proof validation resulted mainly from their difficulty
with drawing diagrams that satisfied the condition of the proof problem. We con-
jecture that this is a phenomenon that goes beyond our study. Our conjecture is
based on the prevalent practice in schools, where diagrams of proof problems are
usually provided by teachers and textbooks (Herbst and Arbor 2004; Herbst and
Brach 2006). The students therefore have limited opportunity to produce diagrams
by themselves through considering problem conditions, which consequently hin-
ders their skill in proof validation. While this explanation is plausible, it has not
been confirmed, so future research may need to address it.

As mentioned in the beginning of this chapter, proof-related activity consists of
several phases, and we have focused on the particular phase that occurs after proof
construction. In particular, this study defines proof validation and modification in
terms of the discovery of local counterexamples by producing diagrams. This type
of mathematical activity is important in school mathematics. For instance, de
Villiers (2010) examines mathematical experimentation, which includes diagram-
matic evaluation of conjectures and proofs, and lists its functions in the discipline of
mathematics. He argues that “we need to explore authentic, exciting and mean-
ingful ways of incorporating experimentation and proof in mathematics education,
in order to provide students with a deeper, more holistic insight into the nature of
our subject” (de Villiers 2010, p. 220). Therefore, the proof validation and modi-
fication activity examined in this chapter is significant because it allows students to
experience an integration of experimentation and proof, through which they may
build a richer image of mathematics.

To achieve this, we used a specific kind of task, proof problems with diagrams.
This leads to a direct implication for teaching: teachers in secondary schools may
use this kind of task to introduce proof validationand modification into their
geometry classes. Although existing studies have suggested that undergraduates’
capability in proof comprehension and validation could be improved by relevant
training (e.g. Alcock and Weber 2005; Hodds et al. 2014), they have not explored
the kind of task that could be used in the training. This study may offer an approach
to address this issue because, as has been described in the chapter, proof problems
with diagrams can be employed to introduce proof validation involving the dis-
covery of local counterexamples. However, when using such tasks, teachers need to
consider the potential difficulties described in this chapter and prepare appropriate
lessons that help students produce diagrams that satisfy the conditions of problems.

There are several limitations in this study. The intervention reported on in this
chapter was only implemented in a single class at a secondary school in Japan; it is
thus important to reiterate the cycle of the implementation, analysis, and
improvement of classroom-based interventions to develop more robust task
sequences for facilitating the improvement of students’ proof validation and
modification skills. Finally, because the results of the task-based questionnaire are
based on a single proof problem with a relatively small number of participants,
future studies should use different tasks and conduct larger-scale surveys to further
examine these results.
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Chapter 10
Classroom-Based Issues Related to Proofs
and Proving

Ruhama Even

Abstract This commentary chapter focuses on two main issues related to the
challenge of classroom teaching and learning of proofs and proving:
(1) classroom-based interventions, and (2) teacher interventions in students’ argu-
mentation. The chapter uses these two issues to comment on the four chapters
included in Theme 2 of the monograph, and concludes by suggesting another
classroom-based issue that could profit from more systematic work.

Keywords Proof � Proving � Classroom � Interventions � Argumentation

Theme 2 of this monograph focuses on classroom-based issues related to proofs and
proving: essential components of doing and learning mathematics. The four
chapters included in this section deal with two main issues related to the challenge
of classroom teaching and learning of proofs and proving: (1) classroom-based
interventions, and (2) teacher interventions in students’ argumentation. Below I use
these two issues to structure my comments on these four chapters. I conclude my
commentary by suggesting another classroom-based issue that could profit from
more systematic work.

Classroom-Based Interventions

As pointed out in the four contributions to Theme 2, accumulating research sug-
gests that many students encounter difficulties with proofs and proving. A typical
response to research findings that reveal students’ difficulties in mathematics is the
design of interventions that address these difficulties and have the potential to offer
better learning experiences to students. Two of the contributions in this section
(Komatsu et al., this volume; Stylianides and Stylianides, this volume) belong to
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this line of scholarly work. They focus on the issue of classroom-based interven-
tions whose aim is to address difficulties students face so that teaching of proofs and
proving is improved. Each of the contributions uses a different approach to address
this issue.

Stylianides and Stylianides approach the issue of classroom-based interventions by
attending to the scarcity in the mathematics education literature of theoretical
frameworks that can be used to design classroom-based interventions that aim to
address problems of students’ learning. The researchers address this lack in the lit-
erature by proposing a theoretical framework for designing classroom-based
interventions that aim to address key and persistent problems of students’ learning
in the area of proofs and proving (and in other areas as well). Stylianides and
Stylianides discuss and exemplify three characteristics, which they argue are crucial
for any classroom-based intervention: (1) the inclusion of an explanatory theoretical
framework, (2) a narrow and well-defined scope that enables a short duration, and
(3) the inclusion of a mechanism that triggers and supports conceptual change. The
first characteristic they propose, which highlights the importance of “understanding of
how the interventions “work” or “can work” to support student learning” (Stylianides
and Stylianides, this volume, p. 104) can be easily agreed upon. However, the other
two characteristics would probably not receive a full consensus.

I will start with the third characteristic proposed by Stylianides and Stylianides.
This characteristic, which refers to conceptual change, is strongly associated with a
cognitive perspective on learning, centering on the acquisition of knowledge by
individual students. However, it does not fit well with some of the other theoretical
perspectives on learning that are commonly used in mathematics education (e.g.,
Sriraman and English 2009). For example, what would be an equivalent third
characteristic in the case of a situated perspective on learning (Lave and Wenger
1991) where the focus is on changes in students’ participation in the classroom’s
collective activities and practices? In cases where the focus is on changes in the
classroom discourse (e.g., Sfard 2007)? It would be useful to examine what vari-
ations of Stylianides and Stylianides’ “third characteristic” might be employed for
different theoretical perspectives on learning commonly used by the community of
mathematics educators.

The second characteristic in Stylianides and Stylianides’ theoretical framework,
which emphasizes the importance of a short duration for classroom-based inter-
ventions, is particularly thought-provoking, even when only a cognitive perspective
on learning is adopted. The vast literature on misconceptions suggests that “[t]he
reason why misconceptions are stubborn is that they are viable, useful, workable, or
functional in other domains or contexts” (Fujii 2014, p. 454). Thus, one would
typically expect an intervention that address a persistent problem of students’
learning in mathematics, “such as common and hard-to-remediate misconceptions”
(Stylianides and Stylianides, this volume, p. 108) to extend over a considerable
period of time, especially when an explanatory theoretical framework is expected
regarding how the intervention “works”. More research is therefore needed to better
understand which key and persistent problems of students’ learning in the area of
proofs and proving can be addressed by classroom-based interventions that satisfy
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the second characteristic, and what such a requirement might entail. The advantages
of short interventions, as indicated in Stylianides and Stylianides’ contribution,
serve as a good incentive to devote future research efforts in this direction.

The classroom-based intervention described in Komatsu et al. (this volume) is in
line with the second characteristic in Stylianides and Stylianides’ theoretical
framework. Komatsu et al. report on a short (two-lesson) intervention whose scope
is narrow and well-defined, aimed at introducing proof validation and modification
into secondary school geometry. In contrast with other studies, Komatsu et al.’s
novel intervention deals with “not-completely-invalid proofs, namely proofs that
are valid in certain domains, and invites students to determine whether there are
cases to which the proofs are not applicable” (p. 134). In this study, the researchers
used a specific kind of geometrical task: proof problems with diagrams that involve
the discovery of local counterexamples. Komatsu et al. found that students’ failure
in proof validation was closely connected to their difficultly in producing diagrams
that satisfy the conditions of a given problem. This result implies the need for
designing an intervention that addresses that difficulty. Thus, more design work is
required in order to produce a classroom-based intervention aimed at addressing
students’ problems in proof validation and modification that “work”. Hence, in a
way, one needs to design a chain of interconnected interventions, which is in itself
an extended intervention. Time will tell if such classroom-based interventions
would satisfy all three characteristics required by Stylianides and Stylianides’
theoretical framework.

Teacher Interventions in Students’ Argumentation

Classroom-based interventions, like any classroom teaching, involve teacher-
student interactions. This is the focus of the other two contributions in this section
(Goizueta and Mariotti, this volume; Pedemonte, this volume). Both contributions
deal with teacher-student interactions with regard to proofs and proving, focusing
on teacher interventions in students’ argumentation.

Proving is sometimes associated with providing support for or refuting a
mathematical conjecture that has been stated by someone else (e.g., Wiles’ proof of
Fermat’s Last Theorem, a student’s proof to the claim stated in the geometry
problem in Komatsu et al.’s chapter). However, proving is often associated with
other essential characteristics of doing mathematics and argumentation—activities
such as exploring and generating conjectures and mathematical claims, confronting
and evaluating alternative positions, and participating in discussions where math-
ematical arguments are constructed and critiqued.

The setting in Goizueta and Mariotti’s study had the potential to include such
characteristics. Students worked in small groups solving a problem; they were
expected to explore a probabilistic situation and generate conjectures about a suit-
able mathematical model based on interpreting the elements and the relationships
defined by the problem situation. They had to confront and evaluate alternative
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suggestions proposed by their group mates, and participate in discussions where the
validity of a proposed mathematical model is constructed and critiqued using
mathematical arguments connected to the given problem situation.

However, things did not always work as intended. Goizueta and Mariotti noticed
that sometimes during small group work, students interpreted the teacher’s inter-
ventions as signals to alter their conjecture regarding a suitable mathematical
model. Here the validity of a proposed mathematical model was determined by the
authority of the teacher rather than by analyzing the relationship between the model
and the given problem situation. Thus, unintentionally, the teacher’s interventions
distracted students from analyzing the elements and the relationships defined by the
problem situation in order to construct a mathematical model. Instead, only after the
teacher approved a proposed model did students attend to the given problem sit-
uation and interpret it in accordance with the model validated by the teacher.
Goizueta and Mariotti term this intriguing phenomenon ex post facto modeling.

Pedemonte also examined teacher-students’ interactions, focusing on teacher
interventions when students are engaged in constructing a proof. Similar to
Goizueta and Mariotti, Pedemonte shows how student arguments might be affected
by a teacher’s interventions. However, in contrast with Goizueta and Mariotti’s
approach, Pedemonte examined not only cases when the teacher’s interventions
were not effective—or even counterproductive, as demonstrated in Goizueta and
Mariotti’s study—but also cases when the teacher’s interventions were effective. By
using Toulmin’s model for analyzing teachers’ interventions in students’ argu-
mentation, Pedemonte conjectured that to be effective, the teacher’s interventions
should not “interrupt the cognitive continuity between student’s argumentation and
proof. The teacher’s intervention acts as a rebuttal in the student’s argument
invalidating his conception but not replacing it” (p. 127). Pedemonte adds that a
teacher’s intervention is ineffective if it “replaces the student’s argument by her
own argument” (p. 128).

Pedemonte’s hypothesis regarding what makes teachers’ interventions in stu-
dents’ argumentation effective and what makes them ineffective implies that before
intervening, teachers need to understand the student’s argumentation. This is
commonly accepted by the community of mathematics educators as important, yet
it is not an easy task because teachers’ interpretations of students’ work involves
ambiguity and difficulty. Teachers “hear students through” their personal and social
resources, such as the teacher’s lesson plan, her knowledge about the nature and
possible sources of students’ misconceptions, her expectation from a specific stu-
dent, and her own way of solving the mathematics problems she presented to her
students (Even 2005). Thus, understanding what students are saying and doing
should not be regarded as unproblematic or as something certain. This implies that
providing effective teacher’s interventions (in Pedemonte’s terms) might be more
difficult to achieve than perhaps is anticipated.
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Conclusion

The four contributions in the Theme 2 section of the monograph deal with
important classroom-based issues related to proofs and proving. Readers interested
in the teaching and learning of proofs and proving will find in these contributions
valuable information, insights, and ideas. Obviously, four contributions cannot
cover all of the important classroom-based issues related to proofs and proving.
Next, I will discuss another important issue that could benefit from more systematic
research.

Classroom-based interventions—addressed by Stylianides and Stylianides (this
volume) and Komatsu et al. (this volume)—are often associated with revising the
mathematical content to be studied, and developing new curriculum materials. The
important role of curriculum materials in shaping students’ opportunities to learn
mathematics is supported by recent research, which suggests that in many countries
curriculum materials, and especially textbooks, greatly shape mathematics class-
room instruction. Mathematics textbooks are often the main source that teachers use
to plan lessons, choose the content to be taught, and the activities to be conducted
(Eisenmann and Even 2011; Gueudet et al. 2013).

However, curriculum materials are only one factor involved in shaping students’
opportunities to learn mathematics. Accumulating research suggests that students’
opportunities to learn mathematics vary across classrooms taught by different
teachers that use the same textbook (e.g., Ayalon and Even 2016; Even and
Kvatinsky 2010). These studies highlight the prominent and indispensable role that
teachers play in shaping how the curriculum is enacted in the classroom, and it
underscores teachers’ central role in determining the nature of the learning expe-
riences provided to students—a role that no curriculum materials by themselves can
fulfill. This includes prompting students to establish claims and justifications,
encouraging them to critically consider different arguments, and modeling to stu-
dents what constitutes acceptable mathematical proofs. The central role of the
teacher in shaping students’ opportunities to learn proofs and proving was vividly
demonstrated in Goizueta and Mariotti (this volume) and in Pedemonte (this
volume).

Moreover, research also shows that differences in students’ opportunities to learn
mathematics, including proofs and how to prove, occur not only between class-
rooms of different teachers, but also between classrooms taught by the same teacher
and that use the same textbook (Ayalon and Even 2016; Eisenmann and Even
2011). These studies clearly underscore the key role that classrooms—together with
the teacher and the curriculum materials—play in shaping students’ opportunities to
learn mathematics in general and proofs and proving in particular.

For example, Ayalon and Even’s (2016) study comprised two case studies in
which each of two teachers taught in two 7th grade classrooms, and all four
classrooms used the same textbook. Both teachers followed rather closely the
teaching sequence suggested in the textbook, and the classwork in all classrooms
consisted almost entirely of work on tasks from the textbook. However, the two
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teachers adopted different teaching approaches in relation to engaging in proofs and
proving. One teacher prompted students to hypothesize, pressed for justifications, as
well as encouraged critical listening to others’ claims, seldom modeling acceptable
ways of proving. In contrast, the other teacher modeled adequate ways of building
complete proofs, and put little emphasis on involving students in this activity.

Additionally, each teacher’s two classrooms had different characteristics. In the
case of the former teacher, one classroom was cooperative, with highly motivated
students; the other classroom was active but sometimes the students had trouble
engaging in mathematics. In the case of the latter teacher, one classroom was
characterized by active student participation, whereas the other classroom was
characterized by lack of student participation and frequent disciplinary problems.

Analysis revealed that students’ opportunities to engage in proofs and proving
were rather similar in both classrooms of the latter teacher, who adopted a
teacher-centered “modeling” approach. A similarity was also found regarding
students’ opportunities to engage in proofs and proving in both classrooms of the
former teacher—who avoided intervening in students’ argumentation and refrained
from modeling proving—when the class dealt with a topic that mostly required use
of inductive reasoning (investigating algebraic expressions). However, substantial
differences were found between the two classrooms of this teacher with regard to
students’ opportunities to engage in proofs and proving, when dealing with a topic
that required extensive use of deductive reasoning (equivalence of algebraic
expressions). An analysis revealed that it was the interplay among a teacher’s
fundamental teaching approach, the specific characteristics of each of her two
classrooms, and the contrasting characteristics of the two topics that greatly con-
tributed to the similarities and differences found.

Most research studies that examine students’ opportunities to learn mathematics
usually focus on one factor (typically the curriculum or the teacher), contributing
important knowledge about its role in shaping students’ opportunities to learn
mathematics, as was demonstrated by the Theme 2 chapters. However, not much is
known about how students’ opportunities to engage in the mathematics classroom
in mathematics in general, and in proofs and proving in particular, are shaped by the
interplay of several factors, which are intrinsic to classroom teaching and learning.
To date, the interplay of such factors has received little research attention and
researchers often consider them as “noise”. Thus, more research is needed to
advance our theoretical knowledge about how the interplay among the character-
istics of the curriculum, the teacher, and the classroom shape students’ opportunities
to engage in proofs and proving in the mathematics classroom.
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Related to Proof and Proving



Chapter 11
Mathematical Argumentation in Pupils’
Written Dialogues

Gjert-Anders Askevold and Silke Lekaus

Abstract In this chapter, we present some results from a project about mathe-
matical argumentation and proving in the form of dialogues. Tasks were prepared in
the form of written dialogues between two imaginary pupils discussing a mathe-
matical problem, and pupils were invited to write their own dialogues continuing
the mathematical discussion. An analysis of dialogues about fractions written by 33
pupils from two classrooms in Norway in Grades 5 and 6 (10–12-year-olds),
working in small groups, revealed that many of the 5th grade pupils used forms of
argumentation supported by visual representations of fractions, while the 6th gra-
ders used more rule-bound approaches based on conversion. The analysis showed
that three of ten groups in 6th grade used both diagrammatic and narrative argu-
mentation in contrast to 5th grade where half of the groups were able to use these
two kinds of argumentation. Those groups who made use of both types of argu-
mentation were most successful in their argumentation. We relate these findings to
the theory of relational and instrumental understanding in mathematics.

Keywords Mathematical argumentation � Proof � Imaginary dialogues

Introduction

There is wide evidence of the fact that many pupils and even students at college
level have misconceptions about the nature of mathematical proof and cannot
actively construct their own proofs. Stylianides et al. (2017) gave a detailed
overview of research studies in this area giving such evidence. Many students
apparently fail to understand that a proof ensures the truth of a statement and makes
further examination unnecessary. It seems to be difficult for students to move from
empirical thinking, as done in everyday life, to logical-deductive thinking as
required in understanding and producing mathematical proof: “To construct a proof
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requires an essential shift in the learner’s epistemological position: passing from a
practical position (ruled by a kind of logic of practice) to a theoretical position
(ruled by the intrinsic specificity of a theory)” (Balacheff 2010, p. 118). Healy and
Hoyles (2000) studied the proof conceptions of high-attaining 14–15 year old
pupils. They found that many pupils produced empirical arguments instead of
proof. An interview study with the same pupils revealed that many of them were
aware of the fact that these were not proofs, but also that the pupils were not able to
produce more formal arguments. Work by Knuth et al. (2009) with pupils in grades
6–8 revealed similar results and suggests the need for more research about the
relationship between pupils’ proof production competencies and their proof com-
prehension competencies.

The role of proof and proving in school mathematics has received increased
attention in both the mathematics education community and mathematics education
reform initiatives (Knuth et al. 2009). The role that proof can play in providing
explanations and understanding of mathematical content is discussed by Hanna
(this volume). As stated by Harel and Sowder (2007), it seems that “at least some of
the deficiencies in students’ acquisition of more sophisticated proof schemes may
stem from the lack of opportunity to engage in proof-fostering activities” (p. 828).
In Norway, where this study was conducted, Mellin-Olsen (1996) noted the strong
focus on computational exercises and rote learning in textbooks and classroom
practice. In recent years, we observed changes in the Norwegian national curricu-
lum intending to make pupils active users of mathematics. Curriculum development
has resulted in emphasis on five basic skills (oral skills, reading, writing, digital
skills and numeracy) that are to be developed in connection to all mathematical
subjects and which can be related to proving activities, though the word proof is not
mentioned in the Norwegian curriculum for grades 1–10 (pupils aged 6–16).
Proof in mathematics is not only a (potential) curricular topic, but can serve a
number of functions like explanation, systematization, discovery and communica-
tion, as identified by de Villiers (1990). A similar list of categories of intellectual
needs in the learning and teaching of mathematics is given by Harel (this volume).
These functions of proof and proving pervade the descriptions of all basic skills in
the Norwegian curriculum and are thus intended to be a part of all mathematics
teaching and learning. In addition to “asking questions”, “communicating ideas”
and “describing and explaining a process of thought and putting words to dis-
coveries and ideas”, the curriculum requires the pupils to learn to build up “argu-
mentation with help from informal language, precise terminology and the use of
concepts” (Ministry of Education and Research 2013).

In order to contribute to the implementation of the above-mentioned curricular
intentions in the classroom, we started to explore the potential of pupils’ dialogue
writing on different topics in mathematics. Gholamazad (2007, p. 266) states:
“Writing down the dialogue may provide students an opportunity to reflect on their
thinking process and to organize it in a convincing way. In this perspective, the
dialogue can be considered as an intermediate stage between having an overview of
a proof and writing a formal mathematical proof.” In this chapter, we present results
from an analysis of pupils’ written dialogues about fraction problems. Tasks were
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prepared in the form of written dialogues between two imaginary pupils discussing
a mathematical problem, and pupils were invited to write their own dialogues
continuing the mathematical discussion. This was a modification of the method of
imaginary dialogues used by Wille (2011). In addition to exploring the potential of
dialogue writing to support pupils’ ability to build a mathematical argumentation,
we analyzed pupils’ construction of arguments and their conceptions about proofs
as expressed in their written texts.

Theoretical Framework

Hemmi (2008) applied the social practice theories by Lave and Wenger (1991) and
Wenger (1998) to students’ learning processes of mathematical proof and proving.
Proofs were seen as artefacts in mathematical practice that are mostly learned by
enculturation. This refers to the process of newcomers becoming participants in a
community of practice by gradually learning how to talk, act and use artefacts.
A key notion in this context is the condition of transparency. Hemmi found that the
teaching and learning of proofs as artefacts in mathematical practice require a
balance between their visibility (by focusing on their logical structure, function etc.)
and their invisibility (by focusing on explaining, justifying and convincing without
explicitly connecting these to the construction of proofs). Hemmi called this an
“unproblematic” use of proof (p. 414) in contrast to an explicit focus on proof. This
was based on work by Adler (1999) who studied talk as an artefact in mathematical
practice. She revealed a teaching dilemma of transparency concerning the use of
mathematical language. According to her study, explicit teaching of mathematical
language, although necessary, can obstruct the flow in a mathematical discussion
when pupils understand the mathematics that they are discussing, but are expressing
it incorrectly.

A related approach to students’ learning of proof can be found in the work of
Blum and Kirsch (1991) who discussed the significance of preformal proof, which
they defined to be a “chain of correct, but not formally represented conclusions
which refer to valid, non-formal premises” (p. 187). The construction of preformal
proof is a way of arguing where the formal aspects of proof are not paid attention to,
i.e., remain invisible. This can make it an “unproblematic” use of proof (Hemmi
2008). The pupils’ own writing of dialogues containing mathematical argumenta-
tion as done in the project described in this chapter can be considered a first step for
young learners to be guided to the construction of preformal arguments and proofs,
the concept of proof and its formal aspects not being visible.

In our approach to imaginary dialogues, the pupils were always encouraged to
support their writing process by using sketches and drawings. Hanna (this volume)
states that visual representations may enhance explanatory proofs and under-
standing in mathematics. As one of the necessary preconditions for students to
understand, judge or even construct preformal proofs, Blum and Kirsch (1991)
identified the need “to place value on manifold kinds of representations of
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mathematical content, especially to stress reality-oriented basic ideas and to impart
geometric intuitive basic conceptions” (p. 200). The role of visual representations
for the development of mathematical argumentation was thoroughly discussed by
Dreyfus et al. (2012). They referred to several studies that found that visual rep-
resentations play an important role even in the work of professional mathemati-
cians, even though they are not precise and only represent special cases. Among
other aspects, they emphasized the need for a “fluent interplay between analytical
rigour and (often visually based) intuitive insight” (p. 194). The important role of
drawings for the development of pupils’ mathematical understanding in proving
processes is also discussed by Komatsu et al. (this volume).

For the analysis of the argumentation found in the pupils’ written dialogues, the
work of Krummheuer (1999, 2013) provided a powerful tool. As described in
Krummheuer (2013), visual representations in the form of inscriptions play an
important role for mathematical argumentation. He investigated the relationship
between diagrammatic and narrative argumentation in the development of mathe-
matical thinking of children of kindergarten and early primary school age. Based on
the work of the linguist Peirce (1978) about inscriptions and diagrams, Dörfler
(2006) and Krummheuer (2013) developed the notion of diagrammatic argumen-
tation in mathematics. Diagrammatic argumentation consists in the production, use
and transformation of diagrams. Such diagrams are inscriptions together with a
“(conventional) system of rules concerning their production, use and transforma-
tions” (Dörfler 2006, p. 202). Another form of argumentation, which was identified
by Krummheuer (2013), is narrative argumentation which is characterized by “the
invariability of a sequence of sentences” (p. 251). As in a story, the order of events
cannot be changed. The presentation of a narrative argumentation “proceeds mainly
by verbalization” and there are little or no visualizations (Krummheuer 1999,
p. 338). The mathematical concepts underlying such argumentation are often not
introduced explicitly. The ability to use diagrammatic argumentation seems to
precede the development of narrative argumentation. Krummheuer (2013) noticed
that narrative and diagrammatic argumentation appeared blended in the argumen-
tation of young school children but that such a combined appearance of the two
forms of argumentation seemed “to have only little stability as an intermediate stage
in the negotiation process” (p. 260). Working with a problem, pupils argued both by
transforming a diagram (diagrammatic argumentation) and by discussing a problem
verbally (narrative argumentation), but they rarely combined these two kinds of
argumentation other than just briefly, as a short intermediate stage in the process of
finding an answer.

Krummheuer (2013) further conjectured that a combination of diagrammatic and
narrative argumentation that is restricted to describing “the set of rules that pre-
scribes the production and transformation of a mathematical diagram” and pro-
viding a “sequence of sentences that narratively describe only the concrete
application of these rules” could lead to algorithmic, mechanical ways of thinking
(p. 260). This means that the two forms of argumentation would not support each
other in the building of a mathematical argumentation, but that the narrative ele-
ments would only be used to describe the rules for how to create and transform
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diagrams. That type of understanding, restricted to the knowledge of how to apply
rules in a restricted range of known situations, was called instrumental under-
standing by Mellin-Olsen (1984), in contrast to relational understanding that,
roughly speaking, includes knowledge about why the rules work and how they are
connected to the underlying mathematical concepts and objects. Skemp (1976) gave
a thorough description of these two forms of mathematical understanding.

In their study of pupils’ proof conceptions, Healy and Hoyles (2000) used the
term narrative argumentation in a different meaning than Krummheuer, referring to
(often pupils’ own) argumentation in everyday language, possibly supported by
drawings, and avoiding the use of algebraic language. Healy and Hoyles found that
many pupils held simultaneously two conceptions about proofs. The type of
argument that they expected the teacher would appreciate contained formal, alge-
braic language and differed from the type of argument that they would use when
trying to convince themselves. They found that pupils preferred narrative argu-
mentation due to its greater explanatory power and that pupils were more successful
in building deductive argumentation, when using narrative argumentation. This is
related to Hemmi’s notion of transparency: the narrative style of argumentation
without the obligation to use formal mathematical language can be a form of
unproblematic use of proof.

By the pupils’ writing of dialogues as described in this project, we wished to
encourage their mathematical argumentation in a non-formal environment, explic-
itly allowing the use of non-formal language typical for oral conversations. This
kind of task can be regarded a first step for young learners towards the construction
of preformal arguments and proofs, the concept of proof not being visible.

Method

This chapter is based on an analysis of mathematical texts written by pupils from
two classrooms in grade 5 and 6, i.e., pupils aged 10–12, in Norway. We presented
the plans for the project to a group of dedicated mathematics teachers underlining
the importance of an investigative and collaborating atmosphere in the mathematics
classroom. Two volunteering teachers opened their classrooms for our project. The
tasks given to the pupils had the form of short written dialogues of two imaginary
pupils having a conversation about a mathematical problem. In addition, we as
researchers presented the tasks to the pupils gathered in a whole-classroom situa-
tion. The pupils in the classroom were asked to continue writing the dialogues in
small groups while they were investigating the mathematical problems. The pupils
worked on the tasks with both their regular teacher and us being present as assis-
tants, answering general questions about the task, but not giving mathematical
guidance towards a solution. Based on research about the significance of visual
representations (Dreyfus et al. 2012), the pupils were also encouraged to use
drawings to support their thinking. This way of working with mathematical prob-
lems was inspired by the method of imaginary dialogues (Wille 2011, 2013). In
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contrast to Wille’s study, in which the pupils had to work individually, pupils in our
study worked in small groups of 2–4 pupils (with the exception of one pupil who
asked to write individually). We arranged the classes in this way because it was a
new type of assignment and we wished the writing of dialogues to become a good
experience for the pupils where they could rely on each other and have many ideas
to build upon. A total of 33 pupils participated in the two classrooms. We collected
16 dialogues, six in 5th grade and ten in 6th grade. We only had resources to
videotape two groups in each classroom. In this chapter, we mainly report on our
analysis of the dialogues written by the pupils who were giving the most convincing
arguments; unfortunately these pupils were not videotaped.

The Given Task

The task analyzed here was the pupils’ second encounter with mathematical rea-
soning in the form of dialogues. In the previous week, the pupils had worked with a
task designed by Wille (2011) about the limit of the geometrical series (Lekaus and
Askevold 2015). This time we expected them to be more focused on the mathe-
matical argumentation since the task design was familiar. The new introductory
dialogue started with a short conversation between two fictive pupils, called Petter
and Ragnhild, about what is more desirable to get, 1/10 or 1/3 of a cake. The
dialogue then turned to a more formal problem of ordering some given fractions
from least to greatest:

Petter: Yes, with fractions it is like this, they are smaller, when the number in the
denominator is bigger. But listen, Ragnhild, this is only true when the number in
the numerator is 1. What if we have different numbers in the numerator? Does it
make any difference?

Ragnhild: Why do you ask so difficult questions? But perhaps you are right, let us investigate
a little. I want to check which of the following fractions is the biggest and the
smallest one 3

4
2
3

9
12

Petter: Let us also look at the following five fractions: 3
7

4
5

4
8

9
7

3
5

Ragnhild: Fine, we have eight fractions. Let us order them from least to greatest.

The fractions were chosen in a way that made it arithmetically difficult for the
pupils to find a common denominator for all the given fractions. By this, we wanted
to test which approaches the pupils would turn to when a purely rule-bound
approach to the solution was not easy to apply.

The pupils in the two classrooms had some experience in adding and converting
fractions and knew how to compare fractions that have the same denominator. The
pupils were also familiar with some visual representations of fractions used by their
textbooks and teachers. The 5th and 6th graders had similar prior knowledge about
fractions, but the 6th graders had some more computational practice.
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Analysis

The pupils expressed their argumentation in different semiotic systems, like text,
calculations and drawings. However, the dialogues and the corresponding drawings
were produced on separate sheets of paper, so we could not always be sure which of
the sketches the pupils were referring to in their dialogues, but we had in most cases
strong evidence for the correspondence. The dialogues written by the pupils are
fictive conversations, and the fictive characters Petter and Ragnhild might show less
knowledge than the pupils writing the dialogue actually have. It seems unlikely
though that the pupils let both protagonists demonstrate less knowledge than the
pupils themselves had. In the analysis, we therefore treated the demonstrated
knowledge of the fictive characters in the dialogues as a demonstration of the
pupils’ own knowledge and argumentation skills. We analyzed whether the argu-
mentations had characteristics of narrative or diagrammatic argumentation and in
which way the use of visual representations supported the development of math-
ematical argumentation. This included the variety of representations that were used
and the pupils’ ability to switch between and combine different representations or
diagrams. In the cases in which the pupils did not come to a conclusion in the
argumentation process, we examined whether this could be explained by a lack of
ability to merge the two forms of argumentation or by an instrumental application
of either one.

The data for this chapter consist of the six dialogues written by the 5th graders
and the ten dialogues written by the 6th graders. In our analysis, we used both the
term representation and the term diagram. Representations are inscriptions sym-
bolizing mathematical objects, in our case fractions. We considered representations
to be diagrams when transformations were visible in the drawings or other
inscriptions or when the pupils clearly connected or applied a set of rules to a given
representation. Consequently, we only speak about diagrammatic argumentation
when the argumentation was based on the transformation of inscriptions. In cases
when the written dialogues were accompanied by inscriptions (e.g., drawings or
fractions) without any sign of transformation, we considered these to be narrative.
Dialogues that had a narrative form were divided into two groups: those that
contained narrative argumentation in the sense of Krummheuer (2013) and those
that displayed a conversation between the protagonists without any mathematical
argumentation.

Results

All groups of pupils explored the mathematical problem and arranged some of the
fractions in the correct order. In particular, all groups managed to identify the
biggest fraction. Our analysis showed that the 5th and 6th graders used different
forms of argumentation. They built their argumentation on either arithmetic or
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visual representations of fractions. The 5th graders strongly depended on visual
representations, while the 6th graders mostly used approaches based on conversion
of fractions. The groups who used both diagrammatic and narrative argumentation
were the most successful in building an argumentation. A summary of our results is
found in Table 11.1.

Sixth Grade

All groups of pupils wrote a dialogue examining the task and found at least partial
solutions ordering some of the fractions, but only in one of the dialogues from both
classes the task was completed successfully. It was written by a boy from 6th grade,
who we here call Ali, who asked permission to work individually. Ali chose to
approach the problem arithmetically using conversion of fractions. He constructed a
dialogue with a clear narrative structure, telling a story with an introduction, a main
part and a summary. The first part of the dialogue was constructed as a negotiation
between the fictive protagonists about finding a proper method for arranging the
fractions in correct order. Early in the dialogue, Ali made the protagonist Petter
observe that it is “not possible” to find a common denominator. It is not clear
whether Ali was genuinely convinced that this was (theoretically) impossible or
only impossible for him, in practice, to carry out. Ali chose instead the uncommon
method of finding a common numerator, which is quite manageable for the given
fractions. The crucial part of Ali’s written dialogue is shown below, showing the
shift in the mathematical process where the change of strategy takes place from
finding a common denominator to a common numerator.

Petter Okay, we have to get common denominator
Ragnhild Yes sure!
Petter But I don’t believe that it is possible.
Ragnhild What do you mean by that?
Petter 7, 5, 8, 7, 5, 4, 2 and 9 7, 5, 8, 7 and 5 can’t get a common denominator ((Ali’s own

crossing-out))
Ragnhild Are you sure?
Petter Yes, it’s not possible!
Ragnhild Hmm…
Petter But maybe…
Ragnhild What do you mean?
Petter Maybe we can get a common numerator!

Table 11.1 A summary of our findings

Use of
conversion

Arguments based on
visual representations

Use of both diagrammatic and
narrative argumentation

6th graders 6 of 10 1 of 10 3 of 10

5th graders 3 of 6 6 of 6 3 of 6
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It was not clear whether Ali invented this method by himself or whether he
learned it from a more competent person. The dialogue suggested certainty and
comprehension regarding the procedure. It seemed that Ali was confident about the
mathematics and the method. As observed by Wille and Boquet (2009) in similar
cases, the fictive protagonists do not have equal roles: Petter was given the role of
teaching Ragnhild. Nevertheless, Ali made the fictive character Petter praise the
good collaboration several times. This might reflect classroom norms that ask pupils
to encourage peers.

In the main part of the dialogue, the argumentation departed from the standard
procedure, the use of a common denominator, but an explanation was given that
made this departure plausible. This is a characteristic of narrative argumentation
(Krummheuer 2013). The explanation of the details of the new procedure of using a
common numerator had rather the form of diagrammatic argumentation; the
inscription underlying the diagram was a numerical representation of equivalent
fractions. All necessary transformations of diagrams needed to fulfil the argument
were included in the text; see Fig. 11.1 for an example of these. The rationality of
the procedure was explained by the character Ragnhild in a type of summary: “(…)
the fraction with the least denominator (is) the biggest fraction, when the numer-
ators are the same.” The chosen path of argumentation, including both diagram-
matic and narrative arguments, may reflect a relational understanding of fractions:
Ali used standard conversion of fractions in an uncommon way explaining all the
necessary steps in the argument. The resulting dialogue had the characteristics of a
preformal proof: it had a logical structure and all steps were justified in a mathe-
matically correct way, though the style and language were informal.

In only one of the dialogues written by the 6th graders the possibility of using
visual representations was explicitly mentioned. This dialogue was written by three
boys, who seem to have been experimenting with different strategies during the

Fig. 11.1 “Like” means
equal
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writing process. They had the initial heuristic strategy of trying to reduce the
problem to a simpler one, by identifying the biggest, the smallest and the
second-smallest fraction. We sensed some uncertainty when they made their pro-
tagonists say that they “believe” that 3/7 is the smallest and 4/8 is the
second-smallest fraction. Though there were only few inscriptions in this dialogue,
we found a glimpse of diagrammatic argumentation in some notes that showed
calculations of equivalent fractions. Some drawings of fraction circles accompanied
the written dialogue, as shown in Fig. 11.2. They represented all the given fractions,
but there was no evidence that these were transformed and used as a basis for
diagrammatic argumentation. We regarded them therefore as visual representations,
not diagrams.

The fact that the fraction circles were only mentioned briefly in the text, fol-
lowed by the suggestion to find common denominators, indicates that the pupils did
not manage to make use of them. The reason might be that the drawings were too
inaccurate.

The following part of the dialogue had the characteristics of a narrative argu-
mentation. It started with the fictive protagonists agreeing on the new strategy of
finding a common denominator which was presented as if it was a well-known
concept to the protagonists, and thus to the pupils themselves, that required no
further justification. Explanations were rather vague (“48 cannot be common
denominator because there is a 5”) and required the addressee to have some
knowledge about the concepts involved. It may have been an obstacle for solving
the assignment that the pupils did not try or manage to combine the different
approaches.

We take a short look at the obstacles other 6th graders met in their argumentation
process: Some pupils developed short isolated paths of diagrammatic argumentation
based on equivalent fractions, but they did not manage to relate different diagrams

Fig. 11.2 Representation of the given fractions
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to each other and to build their arguments on more than one diagram at a time. For
example, they used conversion of fractions in order to compare separate groups of
fractions that can have common denominator 12 or 35. This approach was found in
five of the ten dialogues. This separation into two groups with a rather obvious
common denominator made us believe that these pupils had rather an instrumental
understanding of the concept of fractions, handling well the technical procedure of
conversion, but not managing to build a complete argumentation on their partial
results.

Other dialogues were narrative in style with a conversation between the pro-
tagonists developing around the task, but they presented no real mathematical
argumentation. In these dialogues, we found opaque explanations like “I looked at
the denominator and a little bit at the numerator, too”, which were not backed up by
the use of diagrams. We also found some pupils simply guessing the correct order
of fractions, expressed by their protagonists saying “I believe that (…)”. We also
found traces of an authoritarian proof scheme (Harel and Sowder 2007) in some of
the 6th graders’ dialogues, when they let their protagonists appeal to an authority,
here represented by a more competent peer, by saying “I trust you” or “you are the
smarter one”.

Fifth Grade

All the 5th graders based their argumentation strongly on visual representations. We
take a closer look at two examples:

The first dialogue written by two girls consisted of three parts: an initial sug-
gestion to use cake diagrams, an arithmetic approach involving conversion of
fractions and a new visual approach, this time by equally long number lines divided
into sections. In this dialogue, we found a mixture of narrative and diagrammatic
argumentation. The initial considerations involving conversion of fractions were
purely narrative and were not supported by any diagrams. The procedure was
described only verbally and seemed to be fully agreed upon by both the fictive
protagonists, stating no further grounds. Though the imprecise terminology “mul-
tiplication” was applied, the fractions 3/4 and 2/3 were converted correctly in order
to compare them to 9/12 (see the excerpt of the girls’ written dialogue below). We
may sense some uncertainty about simplifying fractions, when 4/8 was reduced to
2/4, not 1/2, before comparing it to 3/5.

Ragnhild: Isn’t it easier to convert the fractions?
Petter: Yes, because if we multiply 3/4 with 3 we get the same as 9/12, as long as we

multiply the same above and below.
Ragnhild: Then we try with 2/3. 2/3 multiplied by 4 is 8/12 and that means that 2/3 is less

than 9/12 and 3/4.
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A closer analysis of the seemingly purely arithmetic part of the dialogues
showed nevertheless that some visual representations were used also here to support
the argumentation. The girls concluded that 3/5 is bigger than 2/4, for which we
could not find any argumentation in the text, but only in their sketches of rectangles
and number lines. Although the girls had knowledge about how to convert frac-
tions, they did not combine conversion with the visual approach, and some inac-
curate drawings made the girls draw incorrect conclusions, such as 3/7 being more
than a half.

The major part of the written dialogue contained little argumentation and served
rather as a place to summarize the results of diagrammatic argumentation based on
transformations of rectangular cake diagrams and number lines divided into sec-
tions that were found on separate sheets of paper. The various approaches remained
separate from each other in the written argumentation, but the results of the process
were summarized in a joint number line, as shown in Fig. 11.3. From this figure and
the last line of the dialogue (“I wonder which one is bigger of 4/8 and 3/7”) we
observed that it was not obvious to the girls that 4/8 is the same as one half or that
3/7 is smaller than one half. In this case, when inaccuracy of the diagrams made it
impossible to draw a conclusion, the strong focus on visual representations seems to
have been an obstacle in the argumentation process.

The second dialogue also written by two girls was accompanied by similar visual
representations. These girls used pizzas, squares, number lines, and some arithmetic
methods to visualize and compare fractions. Two paper sheets were covered in
number lines divided into three, four, five or twelve parts. In three places we found
the pupils using these in order to visually compare fractions pairwise. The drawings
of pizzas and squares were few, and we did not find traces of the pupils manipu-
lating them; we regarded them therefore as visual representations, not diagrams.
The dialogue started by justifying that 9/7 is the biggest fraction since the
numerator is two bigger than the denominator. Then the girls made the protagonists

Fig. 11.3 Results of diagrammatic argumentation
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apply a similar argumentation to compare fractions pairwise: they erroneously
concluded that 3/5 is bigger than 9/12, using the incorrect argument that the
numerator was only two smaller than the denominator, while the difference was
three for the other fraction, not taking into account the size of the pieces.
Nevertheless, the pupils recognized equivalent fractions, ignoring their own arith-
metic rule involving differences. They possibly considered their rule again at the
end when they suggested that the two fractions 4/5 and 3/4 might be equal. Based
on visual representation, in this case number lines, they decided that 4/5 is bigger.

The appearance of this dialogue was narrative, but the argumentation had rather
the characteristics of a series of short diagrammatic argumentations (pairwise
comparison of fractions) that were supported by only one type of diagram: number
lines divided into sections. We also found simplification of fractions once but the
pupils did not explore this any further. The girls made an attempt to find and
formulate a rule involving the number of missing pieces in the numerator based on
experiments with the chosen diagram. It seems thus that the use of diagrams sup-
ported an investigative approach to the task though the resulting rule was not
correct.

Though both dialogues were accompanied by drawings and one of them men-
tioned visual representation in the text, the longest parts of the dialogues were
presented as a sequence of considerations that were seemingly developed using
arithmetic methods. There was however strong evidence that visual representations
were used while writing almost all parts of the dialogues and partly also were more
convincing to the pupils. This might indicate that visual argumentation was the
most manageable tool for the pupils, but that they might have thought that an
arithmetic argument was the expected one or a more powerful tool. This seems to
be consistent with findings by Healy and Hoyles (2000) that pupils preferred
arguments expressed in everyday language combined with examples and diagrams
due to their explanatory power, while they believed that the use of formal algebraic
arguments was expected by their teachers.

Discussion

We found notable differences between the methods applied by the pupils from the
two classrooms. The 5th graders used mostly arguments based on visual repre-
sentations, and we found some variety in the chosen representations. They also
made some use of conversion of fractions. The pupils seemed genuinely interested
in investigating the problem; they did not express the need for an authority to
support their method or to check their answer. The 6th graders produced few
drawings and then only fraction circles. Only one group of pupils mentioned these
explicitly in their written dialogue. Six of ten groups used arguments based on
conversion of fractions. In various cases, the pupils referred rather vaguely to
procedures or rules that they had learned or applied earlier. The fact that pupils
referred to rules and procedures without further justification might suggest that the
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application of these procedures without justification was usually accepted by
classroom norms. In some of the dialogues, the pupils mentioned mathematical
notions related to fractions, but they did not put them in relation to each other and
failed to build an argumentation on those: “we have to look at the denominators,
and a little bit at the numerators, too”. We consider this an illustration of what
Mellin-Olsen (1984) called an instrumental understanding of fractions. Those pupils
seemed to master only some of the computational procedures concerning fractions.

The reasons for the occurring differences in the pupils’ argumentation in the two
classrooms are not clear and we can only speculate about the reasons. As found by
Healy and Hoyles (2000), pupils seem to note an increasing expectation to use more
formal mathematical language when they progress in their school careers, and our
findings might reflect this. The differences might also reflect diverse teaching styles
applied in the two classrooms, with the 5th graders possibly being more used to
mathematical investigation and the use of visual representations.

Only one pupil reached a complete and correct solution, using a creative method
based on equivalent fractions. His solution contained sufficient justification and had
the characteristics of preformal proof as defined by Blum and Kirsch (1991). All of
the pupils’ written dialogues had a narrative structure, i.e., a plot with a given order
of actions carried out by the fictive protagonists, but not all of them had the
characteristics of a narrative argumentation, as defined by Krummheuer (2013). In
several dialogues, no real mathematical argumentation was presented. Instead, they
contained vague references to rules concerning numerators and denominators. The
pupils who supported their reasoning by diagrammatic argumentation in the sense
of Krummheuer (2013), using numerical or visual diagrams, were more successful
in developing and conveying their argumentation. Not all of the diagrammatic
argumentation could be found mentioned in the written dialogues, but we could see
in several cases that diagrammatic argumentation had taken place since a devel-
opment of diagrams was visible in the pupils’ drawings and drafts on separate
sheets.

The most important obstacles in the argumentation process seemed to be an
overemphasis on the visual representations and a lack of the ability to combine
different pieces of diagrammatic argumentation to form a longer chain of argu-
mentation. Those pupils who were strongly committed to the visual seemed to
display a beginning relational understanding of the concept of fractions, but inac-
curacy of drawings prevented them from getting the correct result when the frac-
tions were of nearly similar size. In these cases, the development of argumentation
was obstructed by a lack of interplay between analytical rigor and visually based
intuitive insight as discussed by Dreyfus et al. (2012): the chosen diagrams gave
imprecise information in the case of fractions of similar size, which created an
obstacle to the argumentation when the pupils were not combining the visual with
numerical methods.

When the pupils did not combine diagrams in their argumentation, the order of
their investigation seemed arbitrary. The order of the investigated diagrams could
thus be changed, though not the verbal sentences of the dialogue, i.e., the order of
events in the story about the protagonists that was built around the mathematical
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argumentation. In these cases, the use of several diagrams provided no development
in the argumentation and several strands of argumentation remained standing side
by side. We see a connection between this and the conjecture by Krummheuer
(2013) that by a lack of combination of the two types of argumentation their
potential is not fully utilized.

Despite these difficulties, we found that the writing of dialogues between fictive
protagonists helped the pupils to structure the investigation of different represen-
tations and diagrams and to formulate pieces of mathematical argumentation, one
pupil even formulating a preformal proof. Other aspects of dialogue writing that
could be examined further are how pupils use their language to formulate their
arguments and which roles they make the protagonists take in the argumentation
process. We expect these issues to give insight into to pupils’ beliefs about
mathematics and the knowledge and skills needed for engaging in mathematical
argumentation.
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Chapter 12
The Need for “Linearity” of Deductive
Logic: An Examination of Expert
and Novice Proving Processes

Shiv Smith Karunakaran

Abstract Mathematicians have long claimed that the proving process cannot be
considered a “linear” process and that undergraduates may view the proving pro-
cess to be necessarily “linear”. However, there is little empirical research that
supports this familiar claim. Using grounded theory methods, expert and novice
provers of mathematics were examined in the process of proving novel mathe-
matical statements. Expert provers of mathematics were willing to knowingly and
temporarily interrupt the deductive logic of their proving process in order to make
progress towards constructing an eventually complete deductive argument. On the
other hand, novice provers seemed less inclined to behave in a similar manner.
They seemed to rigidly require the deductive logic of the proving process to remain
intact. In light of these findings, implications for mathematics curricula writers and
mathematics instructors are discussed.

Keywords Proof � Proving � Mathematical argumentation � Expert–novice
Deductive thinking

Research has demonstrated that a gap may exist between a novice’s and an expert’s
understanding of the proving process. Raman (2002) posited that a mere presen-
tation of the statement of a theorem and subsequent presentation of the proof may
not engender students’ understanding of the proving process. This assertion is
further supported by Chin and Tall’s (2002) claim that mathematics textbooks
present the process of a mathematical proof “as the development of a sequence of
statements using only definitions and preceding results, such as deductions, axioms,
or theorems” (p. 213). This systematic and step-by-step manner expressed in final
written proofs does not reveal what led the mathematicians to produce the particular
arguments. This may, in turn, promote the memorization of the proofs by the
students without understanding the proving process. Students may look at proof as
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a finished product generated by someone else and not as a constructed argument
that the students themselves could produce.

In fact, Romberg (1992) suggested that mathematics should no longer be thought
of as a finished product, but as a “process of inquiry and coming to know, a
continually expanding field of human creation and invention” (p. 751). This revised
view of mathematics focuses on the perspective that to know mathematics is to do
mathematics. This, in turn, calls for more focus on the mathematical work and
activity of practicing mathematicians, which could subsequently serve as a model
for students’ mathematical activity. Lampert (1990) and Stylianou (2002) have
called for one of the goals of mathematics instruction to better understand the
practices of mathematicians. Furthermore, Weber and Mejia-Ramos (2011) have
also listed as one of the goals of mathematics instruction to be for students to
behave more like mathematicians in proof-related activities or tasks. In other words,
it is important to better understand authentic mathematical practice (as engaged in
by experts), and to use that understanding to realize what authentic mathematical
experiences may be for students. To work towards these goals, researchers (Blum
and Kirsch 1991; Weber 2001) have emphasized how teachers can help students
better learn from and understand a mathematician’s work with proof by making the
act or process of proving clearer to the students. Also, Stylianides (2007) has
emphasized how the notion of proof in all grades should both be true to the nature
of mathematics as a discipline and honor the student as an authentic mathematical
learner. To this end, the study from which this chapter is derived aimed to con-
tribute new knowledge about the similarities and differences between the observed
use of mathematical knowledge by expert provers and novice provers while proving
a mathematical statement.

The Proving Process

Boero (1999) wrote about the general “phases” involved within the process of
proving a conjecture or a mathematical statement. These phases can be described as
follows:

1. Exploration of the content (and limits of validity) of the conjecture; heuristic,
semantic (or even formal) elaborations about the links between hypotheses and
thesis; identification of appropriate arguments for validation, related to the
reference theory, and envisaging of possible links amongst them.

2. Selection and enchaining of coherent, theoretical arguments into a deductive
chain, frequently under the guidance of analogy or in appropriate, specific cases,
etc.

3. Organization of the enchained arguments into a proof that is acceptable
according to current mathematical standards.

4. Approaching a formal proof (Boero 1999).
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Boero also distinguished between mathematical proof as a product, and proving
as the process by which a proof may be generated. He emphasized that these phases
cannot be separated and that they are not used linearly in the process of proving by
mathematicians. As described by Boero (1999), rather than only following a
straight logical argument structure, mathematicians continuously move between
exploratory, inductive, and deductive processes.

Carlson and Bloom (2005) described the more general process of problem
solving in terms of a framework that has four phases. Based on interviews with 12
mathematicians, Carlson and Bloom (2005) developed a “problem-solving frame-
work” that has four phases: orientation, planning, executing, and checking. Carlson
and Bloom’s four phases seem loosely aligned to those of Boero. During the
orienting phase, the problem-solver is involved in the initial engagement with the
problem statement or task. The next phase of planning involves the solver devel-
oping initial conjectures of how to arrive at a viable solution. The phase of exe-
cuting involves carrying out the strategies developed in the planning phase, while
the checking phase involves the verification of the validity of the solution
generated.

In both of these frameworks, of Boero (1999) and of Carlson and Bloom (2005),
as the provers/problem-solvers decide on the viability of their strategies, the con-
jecture–imagine–evaluate subcycle was repeated until a viable solution path was
identified. Unfortunately not much is known about how provers of varying levels of
mathematical expertise attempt to construct a proof. As a step towards addressing
this need for research, this study sought to compare aspects of how graduate stu-
dents of mathematics (considered to be expert provers) and undergraduate students
of mathematics (considered to be novice provers) organize different phases in the
service of proving mathematical statements. Although this study does not explicitly
use the phases of proving or problem solving, as described by Boero (1999) and
Carlson and Bloom (2005) respectively, these phases describe how the processes of
proving and problem solving involve similar themes that highlight how theses
phases can be nonlinear and iterative in nature.

Use of Mathematical Knowledge in Proving

Gaining expertise in the act of doing mathematics, and thus in the process of
proving mathematical statements (which is a subset of doing mathematics),
involves the use of the existing knowledge that the individual has accumulated. It is
not merely the fact that individuals have assimilated this wealth of knowledge, but
also how they call upon the various facets and parts of this knowledge that allows
them to demonstrate expertise in the act of proving mathematical statements. To
this end, it seems useful to examine portions of the mathematical knowledge that
can be inferred as an individual proves a mathematical statement. These inferences
about mathematical knowledge can be drawn from observations of the properties,
objects, procedures, definitions, theorems, and so on, that an individual brings to
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bear in the service of proving a statement. The parts of mathematical knowledge
that are called on during the process of proving are being referred to in this chapter
as resources. It is further posited that an individual’s mathematical knowledge is
comprised of a connected network of such resources. This view of mathematical
knowledge and of doing mathematics as using a network of relations is not novel
within mathematics education research (Hiebert and Lefevre 1986).

Once the individual is observed calling on one or more resources, then he or she
can be reasonably observed acting on these resources. That is, he or she may use the
resources to perform certain actions such as asking a question based on the resource
(s), constructing an example, searching for a counterexample, and using a form of
reasoning. The terms “actions” and “resources” are adapted and expanded from the
work of Wilkerson-Jerde and Wilensky (2011). Those researchers described how
mathematicians use different resources of mathematical understanding and acts of
mathematical understanding in order to read and understand a published, but
unfamiliar mathematical paper about knot theory. Wilkerson–Jerde and Wilensky
do not offer any definition of resources of mathematical understanding other than to
equate them to “specific knowledge” (2011, p. 22) that the mathematicians used in
order to understand the unfamiliar mathematics present in the paper. The concept of
acts of mathematical understanding has been expanded for the purposes of the
present study to include a wider range of actions that the prover may utilize in the
process of proving.

However, simply identifying the resources and the actions an individual uses in
the process of proving does not give sufficient insight into the individual’s rationale
underlying his or her use of the resources and actions. Skemp’s (1976) construct of
relational understanding of mathematics involves knowing not just what to do when
doing mathematics, but also why to do it. The assumption both Skemp and I make
is that individuals make intentional decisions to use what they know and how to use
what they know. Skovsmose (2005) differentiates the notions of action and blind
activity using this same assumption. Blind activity is characterized by automatic
behavior and it assumes that there is no true rationale behind what an individual is
doing. In contrast, an action presupposes some degree of choice and as such
assumes that the individual has a purposeful intention behind performing the said
action. For the present study, I adopt Skovsmose’s notion that any action or set of
actions identified during the process of proving a statement is associated with
intention(s). That is, one cannot truly describe the actions of an individual without
considering the intention behind the actions.

Skovsmose (2005) hints towards going beyond merely identifying singular
actions and the attached intentions. He seems to suggest that it is also important to
identify activities (or actions grouped together, as defined by Skovsmose) and the
intentions behind such activities. Thus, when analyzing an individual’s process of
proving, I also went beyond identifying individual actions (and the resources
involved) to identify groups of actions and resources that seemed to be tied together
with a common intention or intentions. Analogously to Skovsmose’s notion of
activities, I defined these groups of actions and resources as bundles. More
specifically, bundles are defined as subsections of the proving process that consist
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of groups of actions and resources that are clustered together by identifiable
intentions. These identifiable intentions are nested within the assumed larger goal of
proving the statement in question.

The theoretical constructs of bundles, the associated intentions, and the con-
stituent actions and resources were used to describe an individual’s (either an expert
or a novice) use of mathematical knowledge in their dynamic proving process. The
research questions that guided the larger study (Karunakaran 2014) dealt with the
examination of the ways in which expert and novice provers’ use of bundles and
their associated intentions were similar and/or different. The specific research
question reported on here is: How do expert and novice provers of mathematics
sequence their logic in the service of proving novel mathematical statements?

Methods

The research question described previously does not fall under the category of
validating an existing theory of how individuals prove. Instead the research was
about investigating the bundles (and the component resources and actions) and their
associated intentions of different groups of individuals (expert and novice provers
of mathematical statements) in the process of proving a mathematical statement.
The focus of the research lent itself to the adoption of certain grounded theory
methods to guide data collection and data analysis, specifically the data analysis
strategies of open coding, axial coding, selective coding, and constant comparative
analysis (Charmaz 2006; Strauss and Corbin 2008).

A group of novice provers of mathematics and a relatively more expert group
were recruited. The novice group included five undergraduate students who had all
successfully completed at least one proof-based course in real analysis. Placing
such a requirement allowed the researchers to be confident that the members of the
novice group (hereby referred to as Novice Provers or NPs) had been exposed to an
introduction to various mathematical proof strategies, such as proof by mathe-
matical induction, proof by contradiction, and proof by first principles. The expert
group included five doctoral students in mathematics, all of whom had successfully
passed their department’s doctoral qualifying examinations. By requiring that the
members of the expert group (hereby referred to as Expert Provers or EPs) to have
passed doctoral qualifying examinations ensured their experience with doing
mathematics, and more specifically in proving and in the generation of proofs.

All ten participants (NPs and EPs together) were each presented with five real
analysis statements (see Fig. 12.1) in an interview setting using a think-aloud
protocol. These interviews were video-recorded, and then were fully transcribed. As
is shown in the figure, the directions for all five tasks were to “Validate or refute the
following statement.” Presenting this as the direction, and not presenting the more
traditional direction of “Prove that …”, ensured that the initial opinion of the
participants about the truth of the mathematical statement was not merely due to the
format of the directions of the task statement. Also, the statements of Tasks 1 and 4

12 The Need for “Linearity” of Deductive Logic … 175



are false as stated in Fig. 12.1. If the provers came up with a valid proof of why the
statements were false, then the statements were amended by the researcher to make
them true, and the provers were again asked to validate or refute the amended
statement.

Results

Only one of the claims generated by the findings of the larger study is reported here.
This claim involves how the expert and novice provers seemingly differ in their
organization and utilization of deductive logic within the process of proving. The
assumed larger goal for each of the participants was to construct a deductive
argument that validates or refutes the mathematical statement, and as such, it was
expected that both the expert and novice provers would seek to find a sequence of
bundles that when chained together would produce a complete deductive argument
that validates or refutes the mathematical statement. Such a complete deductive

Fig. 12.1 The five tasks presented to both the expert and novice provers
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argument should contain no interruptions in the deductive logic from one bundle to
the next. In other words, a deductive rationale could be identified for every step of
the final deductive argument generated. And as was expected, both the expert and
novice provers sought to generate such a complete and uninterrupted deductive
sequence of bundles, especially when they were observed to easily move through
the proving process without getting “stuck” anywhere.

An instance of a prover making efficient progress or progress in which the prover
was not observed getting “stuck” occurred with Kevin (NP) as he made progress
through Task 2 (see Fig. 12.1 for the statement of Task 2). In his work on Task 2,
Kevin was initially observed working with a bundle in which he looked for a
contradiction between the two given properties of the function g(x). He further
validated this by stating his intention, “I was kind of hoping to get to a nice
contradiction to show that there didn’t exist a function that could satisfy all these
statements.” He did this by trying to symbolically manipulate the two equations
given in the properties. However, he did not immediately arrive at an obvious
contradiction. At this point, his intention seemed to change because he noticed a
pattern in the three values he generated for the function i.e., g 0ð Þ ¼ 1;ð
g

ffiffiffi
2

p� � ¼ 1
1� ffiffi

2
p ; and g � ffiffiffi

2
p� � ¼ 1

1þ ffiffi
2

p Þ. This indicated a change in bundles and the

new bundle seemed to have the new intention of generating a function that is
consistent with the three values generated for the function. Kevin initially made a
prediction that the function g xð Þ ¼ 1

x�1 might satisfy the given properties in Task 2.
However, he quickly refuted this claim. His second prediction, g xð Þ ¼ xþ 1, was
consistent with all three values that he generated. Once again, his intention seemed
to change to now wanting to verify the validity of the function g xð Þ ¼ xþ 1 with
the given properties, and this corresponded to a change in his work to a bundle in
which he verified that his predicted function was consistent with the two properties.
This sequence of three bundles (finding a contradiction ! predicting a function
consistent with generated values ! verifying the validity of g xð Þ ¼ xþ 1) has no
interruptions in the deductive logic. That is, there were no instances in this sequence
of bundles in which he needed to assume the deductive validity of any claim.

Kevin’s (NP) behavior of seeking a sequence with no interruptions in the
deductive logic was not unique to him. The other novice provers and the expert
provers also were observed with the same behavior, as long as the prover seemed to
make quick progress with the proving of the statement. However, when the provers
seemed to struggle more with finding such a sequence of bundles, the expert provers
demonstrated that they were willing to include interruptions in the deductive logic as
they sequenced bundles, and as such, were more flexible in their sequencing of
bundles. Moreover, the expert provers seemed willing to consider sequencing
bundles together even when they had only an intuitive rationale for doing so. For
instance, when working on Task 3 (see Fig. 12.1 for the statement of Task 3), Julie
(EP) reasoned validly that the function f xð Þ ¼ cos

ffiffiffi
1

p
x

� �þ cos
ffiffiffi
2

p
x

� �þ � � � þ
cos

ffiffiffi
n

p
xð Þ is periodic for n = 1. She then examined the function for n = 2 (i.e.,

f xð Þ ¼ cos
ffiffiffi
1

p
x

� �þ cos
ffiffiffi
2

p
x

� �
) and stated that the summands cos

ffiffiffi
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p respectively. She then made a claim that the

function f xð Þ ¼ cos
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cannot be periodic because the periods of

cos
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p
x

� �
and cos

ffiffiffi
2

p
x

� �
are not rational multiples of each other. She explained that

this latest claim was unsubstantiated, but she was going to assume that it was valid in
order to make progress with the proving process. In fact, she broke the proof of the
statement in Task 3 as being comprised of two steps (see Fig. 12.2). She then stated,
“I don’t know how to prove this first step.” She went on to prove the second step, and
arrived at a finished, albeit not fully justified argument.

Bartok (EP) also illustrated flexibility in the sequencing of bundles in his work
with Task 1 (see Fig. 12.1 for the statement of Task 1). After Bartok correctly
generated a counterexample for the original statement for Task 1, he was presented
with the modified statement that asked to validate or refute that the series

P1
n¼1 an

always diverges. When considering how to approach the modified statement,
Bartok brought up the harmonic series. He quickly concluded that the harmonic
series is not an example of the type of series being considered in the modified Task
1, since the harmonic series does not satisfy the inequality condition present in the
modified statement. He also made an additional observation that the “harmonic
[series] doesn’t quite get up to [the inequality] condition.” When asked to further
explain his observation, he proceeded to explain that for the harmonic series,
1
2n þ 1

2nþ 1\
1
n, but “only barely”. For example, for n = 1, the left side of the

inequality is 1
2 þ 1

3 ¼ 5
6, which is just “barely” less than 1. This led Bartok to make

the following statement:

Um, which means that… if [the terms of the harmonic series] were a bit bigger it would
satisfy [the inequality in the statement of Task 1] which means that… this would say that
any thing that satisfies this would be slightly bigger than the harmonic series.

Fig. 12.2 Julie’s written out
steps outlining her argument
validating the statement in
Task 3
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Bartok (EP) was asked to explain why he thought that any series that would
satisfy the inequality condition would be “slightly bigger” than the harmonic series.
He made it clear that he did not have any “mathematical” or deductive rationale for
the claim, but that he intuitively believed this to be true. At this point, he stated that
the modified statement was true. He elaborated on his conclusion by stating that
since the terms of any series that satisfied the inequality condition would be bigger
than the terms of the harmonic series, and since the harmonic series is known to be
a diverging series, that would mean that the series

P1
n¼1 an would also diverge

(using the Direct Comparison Test for Divergence). However, he was clear that he
would need to “formally prove” his intuitive claim. The rest of Bartok’s work for
Task 1 involved trying to prove that for any sequence anf g that satisfies the
inequality condition, an � 1

n ; 8n. In this instance, Bartok was willing to interrupt
the deductive logic in his sequencing of bundles by allowing himself to intuitively
accept the truth of the claim that the terms of any series satisfying the inequality
condition in Task 1 needs to correspondingly be bigger than the terms of the
harmonic series.

When expert provers are faced with a question regarding the validity of a claim
(e.g., Bartok’s intuitive claim or Julie’s unsubstantiated claim) that needs to be
resolved for the proving process to move forward without any interruptions in the
deductive sequencing of bundles, it seems to be acceptable to the expert provers to
assume the validity of the claim in order to make further progress. They seem not to
have the requirement that every step of the proving process has to be mathemati-
cally resolved in a linear fashion. They seem capable of setting aside a question
temporarily, even though they clearly recognize that the question or claim needs to
eventually be resolved completely. In other words, the expert provers seem to allow
for interruptions (namely, setting aside a deductively unresolved question tem-
porarily) within a deductive sequence of bundles (see Fig. 12.3).

This is in contrast to the work of most of the novice provers who seem to require
all the questions to be fully answered (have no interruptions in the deductive logic
in the sequencing of bundles) in order to make progress with the proving process
(see Fig. 12.4).

Fig. 12.3 Expert provers’ sequencing of bundles in their proving process
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Discussion

The results described here focus on how expert provers may use intuition in order to
assume the answers to questions that are yet unresolved, in order to move on with
their proving process. The expert provers also are aware that the interruptions in the
deductive logic of the sequencing of bundles (perhaps by using intuition to validate
claims) need to eventually be deductively resolved for them to successfully produce
a proof. So, if the sequence of bundles generated by allowing for interruptions leads
the expert prover to an argument that validates or refutes the mathematical state-
ments, he or she knows that he or she will have to return to each one of those
interruptions to try to produce a deductive argument to resolve them. Thus, expert
provers seem to be aware that they may need to move back and forth between
allowing interruptions and then having to return later to deductively resolve those
interruptions. In contrast, the novice provers in this study seem to require sequences
of bundles to have uninterrupted deductive logic to be able to move on with the
proving process. The novice provers’ proving process does seem to be consistent
with what Boero (1999) called the linear model of proof and with what Reiss and
Renkl (2002) described to be the false conception held by students about the
linearity of proof. Boero (1999) wrote that a linear model of proof involves just a
straight logical argument structure and does not involve transitioning back and forth
between exploratory, inductive, and deductive processes. Reiss and Renkl (2002)
described students having a false conception that a “proof is a straight-forward,
deductively deduced, systematic and logical sequence of steps” (p. 32). Novice
provers in this study acted in a manner that suggests that they could have possessed
this false conception of proof. As such, this study provides empirical evidence to
support the claim that expert and novice provers approach the sequencing of
bundles in different ways.

Fig. 12.4 Novice provers’ sequencing of bundles in their proving process
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At the outset of attempting to prove the mathematical statements, expert provers
in this study were observed being comfortable using intuitive reasoning to resolve
questions that may arise while moving from one bundle to the next. This behavior is
not completely explained by other research in expert proof production and proving
(Hanna and Barbeau 2008; Rav 1999; Weber 2001, 2004; Weber and Alcock 2004,
2009). Weber and Alcock (2004) distinguished between syntactic and semantic
proof productions. Syntactic proof productions are characterized solely by the use
of correctly stated definitions and other facts present in the mathematical statement
in order to produce a proof. Semantic proof productions are characterized by the use
of examples, diagrams, and other instantiations to suggest more formal methods to
produce the proofs. These two forms of proof productions also seem consistent with
the two forms of proof described by Rav (1999). Rav described two forms of proof:
derivations or formal proofs, and conceptual or informal proofs. Derivations or
formal proofs are analogous to Weber and Alcock’s syntactic proof productions and
are described as “syntactic objects of some formal system” (Rav 1999, p. 11). These
proofs are strictly bound by the rules of logical inference. On the other hand,
conceptual proofs or informal proofs are akin to Weber and Alcock’s (2004)
semantic proof productions and are rigorous arguments that are deductively sound,
but may not contain precise mathematical definitions. Rav (1999) posits that
mathematicians readily accept conceptual proofs and this notion is consistent with
Weber and Alcock (2004). Rav describes conceptual proofs to be more conducive
to understanding the structure of why mathematical statements are true. The
behavior of the expert provers described here does not seem consistent with either
semantic proof productions or conceptual proofs. These analogous forms of proofs
both require a deductive argument structure. The proving process that was followed
by expert provers in this study was characterized by allowing for intuitively
resolved interruptions in the deductive logic in order to move from one bundle to
the next.

The results reported here has implications for the developers of mathematics
curricula. The display and treatment of proofs in many current undergraduate
mathematics textbooks have tended towards presenting both the proving process
and proofs in a strictly sequential or linear style (Alibert and Thomas 1991). The
current study offers evidence of how expert provers do not engage in the proving
process in a strictly linear or sequential manner. As an implication of these results,
undergraduate curriculum developers are presented with an argument for the pre-
sentation of proofs in textbooks to reflect the nonlinear manner in which the
proving process can occur and convey to students the idea that it is acceptable to
assume the truth of a statement during the proving process as long as one eventually
returns to address that assumption. Moreover, this argument extends to the curricula
of lower grades. In fact, Wong and Sutherland (this volume) demonstrate that a
common curriculum used in grades 10–12 in Hong Kong could benefit from a more
in-depth presentation of proof-related examples.

In a similar manner, this study has implications for undergraduate mathematics
instructors who teach proof and proving. Just like the presentation in the textbooks,
undergraduate mathematics instructors may present proving as a sequentially
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derived series of steps. This presentation may lead to students having very little
understanding of how the proof was developed (Raman 2002). More recent
research echoes the need for more coherent presentation of proofs during under-
graduate instruction. Gabel and Dreyfus (2017) discuss the use of an intervention
designed to help an undergraduate mathematics instructor to present a proof as
more of a coherent story, and to more completely link the different parts of the
proof. Also, Tsujiyama and Yui (this volume) discuss how merely presenting
accurate, complete, and successful arguments to students will not necessarily
deepen their understanding of the argument. In fact, the presentation and exami-
nation of unsuccessful arguments allowed students to be able to compare and
contrast the successful and unsuccessful arguments (Tsujiyama and Yui, this vol-
ume). This in turn offered the students a context in which they could explore why
the successful argument worked, and why the unsuccessful argument failed
(Tsujiyama and Yui, this volume).
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Chapter 13
Reasoning-and-Proving in Algebra
in School Mathematics Textbooks in Hong
Kong

Kwong-Cheong Wong and Rosamund Sutherland

Abstract To promote learning mathematics with understanding, mathematics
educators in many countries recommend that proof (and proof-related reasoning)
should play a central role in school mathematics. In response to this recommendation,
this study examines the opportunities for students to learn reasoning-and-proving
from solving algebra problems in a popular school mathematics textbook from Hong
Kong. The study adopts the methodology of Stylianides (2009). Results show that
such opportunities are relatively limited. Furthermore, the overwhelming majority of
the demonstration proofs require little reasoning. There are almost no opportunities
for conjecturing, but many instances of empirical non-proof arguments. Overall, the
results suggest that proof plays a marginal role in school mathematics in Hong Kong.

Keywords Reasoning-and-proving � School mathematics textbooks
Algebra � Hong Kong

Introduction

Besides verifying the truth of a mathematical statement, proof can have many other
functions in mathematics, including explanation, which can promote sense making
and understanding in mathematics (de Villiers 1990). As a consequence, many
mathematics educators around the world, especially those in the U.S., recommend
that proof and proof-related reasoning permeate school mathematics across all
grade levels and content areas (e.g., Ball et al. 2002; NCTM 2000; Stylianou et al.
2010; Hanna and de Villiers 2012). Furthermore, since textbooks can have an
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influence on what the student learns, many studies have been conducted in different
countries to examine the opportunities for students to learn reasoning and proof
from school mathematics textbooks (e.g., Hanna and de Bruyn 1999; Nordström
and Löfwall 2005; Stacey and Vincent 2009; Stylianides 2009; Thompson et al.
2012; Davis 2012; Bieda et al. 2014; Davis et al. 2014; Fujita and Jones 2014;
Otten et al. 2014a, b; Hunte 2016). However, almost all of these studies were
conducted in Western countries and few have been conducted in East Asian
countries (e.g., Singapore, South Korea, Hong Kong) where students have con-
sistently performed very well in international studies of mathematics achievement
such as TIMSS (e.g., Mullis et al. 2012). The present study aims to complement the
research knowledge of the field by examining the opportunities for students to learn
reasoning and proof when they are solving algebra problems in a popular secondary
school mathematics textbook from Hong Kong. It is expected that the results
obtained will shed light on how reasoning and proof is being treated in school
mathematics in one of those high-achieving countries (or regions) and provide
insights into the influences that Chinese culture may have on issues concerning
understanding in school mathematics.

Literature Review

As mentioned above, in recent years many studies have been conducted in different
countries to examine the opportunities for students to learn reasoning and proof
(RP) from school mathematics textbooks. In this section we briefly review this body
of literature, which can roughly be classified into three phases according to the
sophistication of the analytic frameworks used. In the first phase, the analytic
frameworks used were rather primitive. This phase started with Hanna and de
Bruyn (1999), who examined two popular Ontarian grade-12 advanced-level
mathematics textbooks, in the topics of algebra, geometry, functions and relations,
exponents and logarithms, and trigonometry, using a framework consisting of three
categories: proof, discussion of proof, and non-proof. They found that one textbook
had 21% of its expository items and 21% of its exercises involving proof or
discussion of proof compared to 17% and 16%, respectively, in the other. In
Sweden, Nordström and Löfwall (2005) investigated proof in two popular Swedish
upper secondary mathematics textbooks, in the topics of algebra, geometry,
statistics and probability, functions and calculus, exponents and logarithms,
trigonometry and complex numbers. They found that even in geometry “the
occurrence of proof or discussion of proof was very low compared to the Ontarian
textbooks” (p. 451). In Australia, Stacey and Vincent (2009) examined the modes
of reasoning used in seven topics in the exposition sections of nine Australian
grade-8 mathematics textbooks. They found a total of seven modes of reasoning:
deduction using a general case, deduction using a specific case, deduction using a
model, concordance of a rule with a model, experimental demonstration, appeal to
authority, and qualitative analogy. They also found that “deductive explanations
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were common for some topics (especially multiplication of negative integers and
area of a trapezium [both 100%]) but infrequent for others (especially division of
fractions [only 17%])” (p. 285).

In the second phase, two more sophisticated frameworks were proposed based
on their respective conceptualizations of proof-related constructs. This phase started
with Stylianides (2009), who gave a conceptualization of reasoning-and-proving-
(RP) to encompass four major proof-related activities: identifying patterns (definite
and plausible), making conjectures, providing proofs, and providing non-proof
arguments. Based on this conceptualization, he proposed an analytical framework
to examine the RP opportunities in a reform-oriented grades 6–8 textbook series in
the topics of algebra, number theory and geometry. He found that about 40% of the
examined tasks were RP tasks and about 5% were proof-providing tasks. He found
also that 97% of the plausible patterns and 88% of the definite patterns did not lead
to conjectures, and 70% of the conjectures did not lead to proofs. Thompson et al.
(2012) proposed a conceptualization of proof-related reasoning (RP) and devel-
oped an analytic framework for textbook analysis, which was used to examine the
RP opportunities in twenty U.S. contemporary high school mathematics textbooks
in the topics of exponents, logarithms and polynomials. They found that 5.4% of
the exercises contained RP.

In the third phase, the two influential analytical frameworks by Stylianides
(2009) and Thompson et al. (2012) were adapted to conduct textbook analysis of
RP opportunities. Using a framework adapted from Stylianides (2009), Davis
(2012) examined the dispersion of RP involving polynomial functions set within
three differently organized (conventional, hybrid and reform-oriented) secondary
mathematics textbooks in the U.S., and found that they contained, respectively, 4%,
9%, and 22% RP instances within the exercise sections. In another study, Davis
et al. (2014) examined RP opportunities in two U.S. reform-oriented secondary
advanced algebra textbooks. They found that 10.80% were RP tasks within exercise
sections and 24.75% were RP sentences within exposition sections in one textbook
compared to 15.76% and 30.23%, respectively, in the other. They found also that
patterns in both textbooks were rarely used to develop conjectures or valid argu-
ments. Using a framework adapted from Thompson et al. (2012), Otten et al.
(2014a, b) examined RP opportunities for students (ages 13–16) in six U.S. sec-
ondary geometry textbooks. They found that about 25% of the exercises were RP
tasks and less than 5% were proof-constructing tasks. They found also that it was
rare for the RP process itself to be an explicit object of reflection. Also in the U.S.,
Bieda et al. (2014), in order to complement the research on RP in secondary
mathematics, analyzed seven grade-5 elementary mathematics textbooks for RP
opportunities. They adapted their framework from Stylianides (2009) and
Thompson et al. (2012), and found 3.7% of the examined tasks involving RP. In
Japan, Fujita and Jones (2014) analyzed the geometry component of a popular
grade-8 Japanese textbook, using a framework based mainly on the work associated
with the Third International Mathematics and Science Study (TIMSS) and informed
by the work of Stylianides (2009) and of Thompson et al. (2012). They found that
70% of the examined exercises involved direct proofs and 24% involved making
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conjectures before proving. More recently, Hunte (2016) employed the framework
of Otten et al. (2014a) to examine the RP opportunities in six geometry topics
(triangles, congruent triangles, similar triangles, Pythagoras’ theorem, quadrilaterals
and circles) in three secondary textbooks. He found that the three textbooks had,
respectively, 32%, 35% and 77% RP tasks within their exercise sections.

Several observations can be made about the studies reviewed above. First, RP
opportunities in different textbooks varied greatly—from 3.7% (Bieda et al. 2014)
to 77% (Hunte 2016). Second, higher grade levels tended to have more RP
opportunities. Third, geometry tended to have more RP opportunities than algebra.
Finally, reform-oriented curricula (which are proof-favouring) tended to have more
RP opportunities than conventional curricula. But as noted by Cai and Cirillo
(2014) one should be cautious about making comparisons between the findings
across these studies, since different studies used different frameworks and methods
(e.g., sampling and unit of analysis).

Against this background, our study set out to examine the opportunities for
students to learn RP from solving algebra problems in a popular school mathe-
matics textbook from Hong Kong.

The Context: Hong Kong SAR

Hong Kong, being a Special Administrative Region (SAR) of China, has its own
school curriculum, which is mandated by its Education Bureau and is different from
that in China. In 2009, the Hong Kong SAR Government (HKSARG) launched its
New Senior Secondary (NSS) Mathematics Curriculum for students of Years 10–12
(ages 15–17). This new curriculum consists of two parts: the Compulsory Part and
the Extended Part, the latter being more advanced and optional (see Education
Bureau HKSARG 2007). In the present study, we focused on the Compulsory Part
of the curriculum, since this part is the common core that all students have to study.
Comprising three strands (“Algebra and Number”, “Measures, Shape and Space”,
and “Data Handling”), this Compulsory Part is aimed at developing in students: “(a)
the ability to think critically and creatively, to conceptualize, inquire and reason
mathematically, and to use mathematics to formulate and solve problems in daily
life, as well as in mathematical contexts and other disciplines; (b) the ability to
communicate with others and express their views clearly and logically in mathe-
matical language; …” (ibid., p. 2). These aims are not in any way unique—similar
aims can be found, for example, in the Common Core Standards for School
Mathematics in the United States (CCSSI 2010). Among these aims, one can find
some indications of reasoning and proof (e.g., “to reason mathematically” and “to
communicate with others and express their views clearly and logically in mathe-
matical language”). Schools in Hong Kong are free to choose textbooks from a
wide range produced by commercial publishers, but usually choose textbooks from
the recommended textbook list provided by the Education Bureau, because these
textbooks are guaranteed to be fully aligned with the new curriculum. The textbook
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series chosen for this study is New Century Mathematics (NCM) (Leung et al.
2014–2016), which is on the recommended textbook list and is coauthored by a
prominent mathematics educator. Based on anecdotal evidence (to the best of our
knowledge, there is no publication on the market statistics), NCM is one of the
most, if not the most, popular textbooks currently in use in Hong Kong. Our
rationale for choosing to conduct a textbook analysis instead of other means to
investigate students’ opportunities to learn reasoning and proof is that teachers in
Hong Kong use textbooks frequently in their everyday planning and instruction.
This has been pointed out by, for example, Tam et al. (2014):

To many teachers [in Hong Kong], textbooks, rather than the official curriculum and
assessment guides, are the ‘curriculum documents,’ as they rely heavily on textbooks in
their teaching. (p. 101)

About this point, Leung and Park (2002) also noted:

It seems that the [system] in Hong Kong … [is] relying on a kind of division of labour
where the role of curriculum developers and textbook writers is to make sure that good
pedagogy is embedded in the curricula and the textbooks. The teacher’s role then is to
follow the curriculum faithfully, and make sure that students follow the suggested proce-
dures. This will free up teachers’ time for preparation and allow them to have a heavier
teaching load. (p. 128)

Therefore, it is likely that the treatment of reasoning and proof in textbooks
influences teacher’s instructional decisions and thus their students’ opportunities to
learn reasoning and proof.

Analytic Framework and Method

There are different notions of proof in mathematics education research (see, e.g.,
Stylianides 2007; Reid and Knipping 2010). In this study, we followed the
influential conceptualization of the notion of proof in the context of school math-
ematics by Stylianides (2007), which emphasizes the socio-cultural aspects of
students’ proving practice:

Proof is a mathematical argument, a connected sequence of assertions for or against a
mathematical claim, with the following characteristics: 1. It uses statements accepted by the
classroom community (set of accepted statements) that are true and available without
further justification; 2. It employs forms of reasoning (modes of argumentation) that are
valid and known to, or within the conceptual reach of, the classroom community; and 3. It
is communicated with forms of expression (modes of argument representation) that are
appropriate and known to, or within the conceptual reach of, the classroom community.
(p. 291) (emphasis in original)

This conceptualization of proof (and proving) is compatible with the analytic
framework by Stylianides (2009) that we adapted in this study. Our reason for
adapting Stylianides’ framework is that our research project, of which this study
was part, has similar aims to his, namely, we both aimed to investigate the
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reasoning and proof opportunities designed for students in one strategically selected
textbook series across different levels and different content areas. Stylianides’
(2009) framework is based on his conceptualization of reasoning-and-proving
(RP), a term he proposed to describe the overarching activity that encompasses all
of the four major proof-related mathematical activities: (a) identifying patterns,
(b) making conjectures, (c) providing proofs, and (d) providing non-proof argu-
ments. As shown in Table 13.1, the first two activities are grouped into the category
of making mathematical generalizations and the latter two into the category of
providing support to mathematical claims. The idea behind this conceptualization is
that making mathematical generalizations (identifying a pattern and conjecturing)
and providing support to mathematical claims (proving) are two fundamental and
interrelated aspects of doing mathematics (Boero et al. 2007). Furthermore, there
are two kinds of pattern: plausible and definite; two kinds of proof: generic example
and demonstration; and two kinds of non-proof argument: empirical argument and
rationale. An important difference between Stylianides’ original framework and our
adapted version of his framework is that we use a broader category of
Demonstration than his; specifically, we include in the category of Demonstration
also “Proof by Definition” and “Proof by Calculation” (see Table 13.3) which are
frequently used in the exercises of the textbook series we examined.

In this study, following Hanna and de Bruyn (1999), we focused on the
Compulsory Part of the curriculum and examined all the algebraic chapters (i.e.,
chapters in the “Algebra and Number” strand) in Year 10 of the chosen textbook
series. (For RP opportunities in the other two strands, see Wong 2017a, b.) This
involved all of the eight chapters in Books 4A and 4B of New Century
Mathematics: Chapter 1 Number Systems, Chapter 3 Quadratic Equations in One
Unknown, Chapter 4 Basic Knowledge of Functions, Chapter 5 Quadratic
Functions, Chapter 6 More about Polynomials, Chapter 7 Exponential Functions,
Chapter 8 Logarithmic Functions, and Chapter 9 Rational Functions. Following
Stylianides (2009), we focused on the exercise sections in these chapters. In each of
these chapters, exercises were categorized under various headings: Q&A, Review
Exercise, Instant Drill, Instant Drill Corner, Exercise, Supplementary Exercise,
Class Activity, Inquiry & Investigation, and Unit Test. Within each category, there
are usually many tasks. A task here means, following Stylianides (2009, p. 270),
any problem in the exercises or parts thereof that have a separate marker. Task

Table 13.1 The analytic framework (Stylianides 2009, p. 262)

Reasoning-and-proving

I. Making mathematical generalizations II. Providing support to mathematical claims

(a) Identifying a
pattern

(b) Making a
conjecture

(c) Providing a
proof

(d) Providing a non-proof
argument

1. Plausible
pattern
2. Definite pattern

3. Conjecture 4. Generic
example
5.
Demonstration

6. Empirical argument
7. Rationale
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served as unit of analysis in this study and there were totally 3241 tasks to be
analyzed and categorized into the seven subcategories of the constituent RP
activities set out in Table 13.1. In a manner similar to Hanna and de Bruyn (1999)
and Otten et al. (2014a), to decide whether a task was an RP task, we looked at its
form in the students’ textbook (e.g., key phrases such as “Prove that…”, “Explain
your answer.”). In cases where this was not clear, we consulted the Teacher’s
Manual (which contains suggested solutions, but only suggested solutions, to all the
exercises) in order to infer what type of response was expected for students.

Examples of Analysis

Although there is a considerable amount of exercises in these algebraic chapters, as
far as the coding process was concerned, tasks involving reasoning-and-proving
opportunities (RPTs) were classified into three types: Type-1, Type-2 and Type-3.

(A) Type-1 RPTs explicitly ask for justification (or explanation) and their usual
forms are “Prove that…” and “Explain your answer.” (Philosophically, justifying
may not be the same as explaining, see, e.g., Kasachkoff (1988), but we do not
venture to go into this controversial issue here.)

Example 1 (see Fig. 13.1) belongs to Type-1 since it explicitly states “Explain
your answer”. While Task (a) is not a proof task, Task (b) is and is coded as
“Demonstration—Proof by Calculation” as, according to the Teacher’s Manual 4B
(p. 15), the student has to provide a deduction (or calculation steps) as shown in
Fig. 13.1 to justify (or explain) the answer. Reid and Knipping (2010, p. 124) call
this proof method “mechanical deduction”. Though this type of deduction involves
mechanical algebraic manipulations and little reasoning, logically it should be
regarded as proof (see also Slomson 1996, p. 11, “Proofs as Calculations”).

(B) Type-2 RPTs implicitly ask for justification and their usual form is
“Determine whether…” The aim of these RPTs is to check students’ understanding
of definitions.

Let f(x) = 2x be a function.

(a) Find the values of f(2), f(3) and f(6).
(b) Is the value of f(6) f(2) equal to that of f(3)?  Explain your answer.

Solution (from Teacher’s Manual): 

(a)  f(2) = 22 = 4;  f(3) = 23 = 8;  f(6) = 26 = 64

(b) f(6) f(2) = 64 4 = 16;  f(3) = 8
16 ≠ 8   

the value of f(6) ÷ f(2) is not equal to that of f(3).

Example 1 

Fig. 13.1 Tasks 10(a) and 10(b) of Exercise 4B of Chapter 4 Basic Knowledge of Functions of
Book 4A (p. 26)
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Example 2 (see Fig. 13.2) belongs to Type-2 since it does not explicitly ask for
justification. However, according to the Teacher’s Manual 4A (p. 7), justification is
required (by appealing to the definitions “zero is neither positive nor negative” and
“any integer x can be written as x/1”, respectively, for (a) and (b)). Both tasks are
coded as “Demonstration—Proof by Definition”. Task (c) can be proved to be false
by giving a counter-example, e.g., “9”, which is a real number but not irrational.
This task is therefore coded as “Demonstration—Proof by Counter-Example”.

(C) Type-3 RPTs are special in that they are usually templates for illustrating
reasoning-and-proving. Tasks of this type are usually found in Class Activity or
Inquiry & Investigation. In the process of coding, Type-3 RPTs are dually coded in
that, on the one hand, the task is coded as a separate unit of analysis as in the coding
of Type-1 and Type-2 RPTs, and, on the other hand, the task is coded as part of the
constituent activity (or activities) of RP being illustrated.

Example 3 (see Fig. 13.3) belongs to Type-3, which means that it needs to be
dually coded. First, each task is coded as a separate unit of analysis. In this
example, none of the tasks 1(a), 1(b), 1(c) and 1(d) has any RP opportunities for the
student. Task 2 is coded as “Conjecture”. Then, each task is coded as part of the
constituent activity (or activities) of RP being illustrated, which, in this example, is
using an empirical argument to establish a definite pattern. So, tasks 1(a), 1(b), 1(c),
1(d) and 2 are all coded as “Empirical Argument” and “Definite Pattern”.

Example 4 (see Fig. 13.4) also belongs to Type-3 and so it needs to be dually
coded. First, each task is coded as a separate unit of analysis. In this example, none
of the tasks 1, 2, 3, 4, 5, conclusion and extension has any RP opportunities for the
student. Then, each task is coded as part of the constituent activity (or activities) of
RP being illustrated, which, in this example, is using a generic example to prove a
result. So, tasks 1, 2, 3, 4, 5 and conclusion are all coded as “Generic Example”.
Note that here the task extension is not part of the RP activity being illustrated and
so is not coded as “Generic Example”.

Example 5 (see Fig. 13.5) belongs to Type-3, which means that it needs to be
dually coded. First, each task is coded as a separate unit of analysis. In this
example, none of the tasks 1(a), 2(a), 2(b), 3, 4 and conclusion has any RP
opportunities. Tasks 1(b) and 2(c) are coded as “Rationale” because there is a
statement used in their respective arguments in the Teacher’s Manual 4A (p. 26),
which is not properly justified (namely, in 1(b), “a2 is an even number and so a is

Determine whether each of the following statements is true (T) or false (F). 

(a) Zero is a positive integer. 
(b) All integers are rational numbers.
(c) All real numbers are irrational numbers.

Example 2 

Fig. 13.2 Tasks 1(a), 1(b) and 1(c) of Exercise 1A of Chapter 1 Number Systems of Book 4A
(p. 11)
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an even number too” and, in 2(c), “b2 is an even number and so b is an even number
too”). Task extension on its own is coded as “Rationale” since there is a statement,
“a2 is a multiple of 3 and so is a multiple of 3 too”, which is not properly justified in
its proof in the Teacher’s Manual 4A (p. 26). Then, each task is coded as part of the
constituent activity (or activities) of RP being illustrated, which is, in this example,
using a proof by contradiction to show that 2 is an irrational number. So, tasks 1(a),

Objective: To investigate the relation among the dividend, the divisor, the quotient and the remainder in the division of 
polynomials.

1.     Complete the following table.

Dividend Divisor Quotient Remainder Divisor × quotient + remainder
(a) x + 2 x
(b) 4x – 5 x + 1
(c) 2x2 – x + 1 x – 3
(d) x3 + x2 – x –1 x + 2

2.   From the results of Question 1, what do you think about the relation among the dividend, the divisor, the quotient 
and the remainder?

Example 3 

Fig. 13.3 Tasks of Class Activity 1 of Chapter 6 More about Polynomials of Book 4A (p. 11)

Exploring the principle of the method of completing the square

Inquiry

Apart from comparison with the perfect square identity, is there any other way to explain the principle of the method of 
completing the square? 

Investigation Steps

Try to make the quadratic polynomial x2 + 14x a perfect square according to the following steps.

1. Draw a square of side x units. What is its area?
2. Divide the coefficient 14 of x in the quadratic polynomial by 2 and get 14/2.
3. Add a rectangle of length x units and width 14/2 units to the top and the right sides of the square in Step 1 (see Fig. 

I). What is the total area of the figure?

4. In order to make the figure in Step 3 form a larger square, what figure should be fitted in the top right corner of the 
figure (see Fig. II)? What is the area of this small figure?

5. What constant should be added to x2 + 14x in order to make it a perfect square?

Conclusion

For the quadratic polynomial x2 + bx, area of the larger square + total area of the two rectangles + area of the smaller 

square = x2 + 2 × _______ × x + ( _______ )2 = ( ________ )2

Extension

Try to use the geometric method above to solve the quadratic equation x2 + 10x = 39.

Example 4

Fig. 13.4 Tasks of 5.1 Inquiry & Investigation of Chapter 5 Quadratic Functions of Book 4A
(p. 44)
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1(b), 2(a), 2(b), 2(c), 3, 4 and conclusion are all coded as “Demonstration—
Proof by Contradiction”. Task extension on its own is also coded as “Demonstration
—Proof by Contradiction”.

Results and Discussion

As shown in Table 13.2, there are relatively limited opportunities (410 out of 3241
tasks, i.e., 13%) as compared to, for example, 40% of Stylianides (2009) reviewed
above, for students to learn reasoning-and-proving in the algebraic chapters in Year
10 of the chosen textbook series. This lack of attention to reasoning and proof in
algebra is somewhat expected, given that the curriculum mentions proof only in the
learning targets of geometry, namely, to “formulate and write geometric proofs
involving 2-dimensional shapes with appropriate symbols, terminology and rea-
sons” (Education Bureau HKSARG 2007, p. 15). Nonetheless, this lack of attention
to reasoning and proof in algebra is still in contrast to the international call that
reasoning and proof should permeate school mathematics at all levels and across all
content areas in order for reasoning and proof to become a “habit of mind” (see,
e.g., NCTM 2000, p. 56). A consequence that might be attributed to this lack of
emphasis on reasoning and proof in the curriculum is that, as informed by TIMSS
2011 (Mullis et al. 2012, pp. 148 and 150), “Hong Kong students in general do well
in Knowing items, and relatively badly in Reasoning items” (Leung 2015, p. 3).

Exploring whether √2 is a rational number or an irrational number

Inquiry

Is √2 a rational number or an irrational number?

Investigation Steps

Let √2 = a/b, where a and b are positive integers, and they do not have any common factor (except 1).

1. (a) By squaring both sides of √2 = a/b, express a2 in terms of b.
(b) Using the result of (a), explain why 2 is a factor of a.

2.  Since 2 is a factor of a, we can let a = 2k, where k is an integer.
(a) By squaring both sides of a = 2k, express a2 in terms of k.
(b) Using the results of 1(a) and 2(a), express b2 in terms of k.
(c) Is 2 a factor of b? Explain your answer.

3.  Using the results of 1(b) and 2(c), what is a common factor (except 1) of a and b?

4.  Does the result in Question 3 contradict the assumption that a and b do not have any common factor (except 1)?

Conclusion

√2 is (a rational number / an irrational number).

Extension

Prove that √3 is an irrational number.

Example 5 

Fig. 13.5 Tasks of Inquiry & Investigation of Chapter 1 Number Systems of Book 4A (p. 32)
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Furthermore, the majority of these reasoning-and-proving opportunities (364 out
of 410, i.e., 88.8%) were categorized as Providing Support to Mathematical Claims,
and only a small proportion (46 out of 410, i.e., 11.2%) were categorized as Making
Mathematical Generalizations (in which there were only 4 instances of Conjecture).
This shows not only that there were almost no opportunities for conjecturing in the
algebraic chapters of the textbook series, but also that making mathematical gen-
eralizations (identifying a pattern and conjecturing) and providing support to
mathematical claims (proving) were treated, in large part, in isolation from each
other. This disjunction between making mathematical generalizations and providing
support for those mathematical claims is not unique to the context of Hong Kong—
see, for example, Stylianides (2009) and Davis et al. (2014) reviewed above for the
case in the U.S., and Davis (this volume) for the case in Ireland. However, some
would argue that such treatments are problematic, as these activities are both
fundamental and interrelated aspects of doing mathematics (see, e.g., Boero et al.
2007; Cañadas et al. 2007; Pedemonte 2007). According to these research studies,
some kind of continuity, called cognitive unity, exists between the construction of a
conjecture and the construction of its proof in such a way that the argumentation
activity developed to produce the conjecture can be used to construct the proof “by
organizing in a logical chain some of the previously produced arguments”
(Pedemonte 2007, pp. 24–25).

Furthermore, within the main category of Providing Support to Mathematical
Claims, the majority of the reasoning-and-proving opportunities were
Demonstration (280 out of 364, i.e., 77%). However, as shown in Table 13.3, out of
these 280 demonstration proofs, 50% were Proof by Definition or Proof by
Counter-Example like those used in our Example 2, whose aim is just to check
students’ understanding of definitions. Another 47% were Proof by Calculation,

Table 13.2 Frequency and
distribution of RP tasks across
RP subcategories

Reasoning-and-proving subcategory Frequency (%)

I. Making mathematical generalizations: 46 (11.2)

(a) Identifying a pattern: 42 (10.2)

1. Plausible pattern 9 (2.2)

2. Definite pattern 33 (8.0)

(b) Making a conjecture: 4 (1.0)

3. Conjecture 4 (1.0)

II. Providing support to mathematical
claims:

364 (88.8)

(c) Providing a proof: 304 (74.1)

4. Generic example 24 (5.9)

5. Demonstration 280 (68.3)

(d) Providing a non-proof argument: 60 (14.6)

6. Empirical argument 57 (13.9)

7. Rationale 3 (0.7)

Total 410 (100)
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that is, proof (or, explanation) by giving a deduction (or, calculation steps) without
stepwise justifications as in our Example 1, though such deduction itself may not be
explanatory—this point was also observed by Reid (1998) in the context of sec-
ondary school mathematics in China. All these demonstration proofs required little
reasoning. On the other hand, those proofs and non-proofs requiring more sub-
stantive reasoning like Generic Example and Rationale were found only in a small
number of instances of Class Activity or Inquiry & Investigation. If they were not
covered in class due to time constraints, then the student would not have oppor-
tunities to learn these important types of reasoning. A final point is that there were
many instances of Non-Proof—Empirical Argument (57), more than double those
of Proof—Generic Example (24). This might mislead students into believing that an
empirical argument is sufficient to establish truth in mathematics—a widespread
misconception among students and even teachers (see, e.g., Stylianides and
Stylianides 2009).

All of the above results seem to suggest that reasoning and proof plays only a
marginal role in school mathematics in Hong Kong. Given that all those non-RP
exercises in the textbook (which are the overwhelming majority) focused on
practicing and memorizing mathematical concepts and procedures, the above
results to some extent confirm the previous findings that in secondary school
classrooms in Hong Kong students’ activities mainly focus on practicing and
memorizing mathematical concepts and procedures (e.g., Leung 2001). Some
would argue that such a treatment of reasoning and proof in school mathematics is
problematic, as it deprives students of opportunities to experience proof as a vehicle
for sense making and understanding in mathematics education.

Interestingly, in spite of this, Hong Kong students still consistently outperform
their Western counterparts in school mathematics—an instance of the so-called
“Paradox of the Chinese learner” (Watkins and Biggs 1996). The fact that school
mathematics textbooks in Hong Kong stress drilling of procedural skills to a great
extent may be due to influences from Chinese culture (or, more specifically, the
Confucian heritage culture or CHC) which believes that “the process of learning
often starts with gaining competence in the procedure, and then through repeated
practice, students gain understanding” (Leung 2006, p. 43) (see also Fan et al. 2004;
Marton et al. 1996).

As a final remark, we want to point out that the RP opportunities we found in the
textbook series are only potential opportunities, as the teacher may not assign all the
exercises with RP opportunities to students, even though Hong Kong teachers rely

Table 13.3 Frequency and
distribution of proof methods
used in Demonstration

Proof method Frequency (%)

Proof by calculation 131 (47)

Proof by definition 111 (40)

Proof by counter-example 28 (10)

Proof by contradiction 10 (4)
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heavily on textbooks in their teaching. Thus the results we obtained can only be
claimed as a best-case analysis of the RP opportunities.
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Chapter 14
Irish Teachers’ Perceptions
of Reasoning-and-Proving Amidst
a National Educational Reform

Jon D. Davis

Abstract The syllabi driving the secondary mathematics education reform in
Ireland expect students to engage in two components of reasoning-and-proving
(RP) (Stylianides in For Learn Math 28:9–16, 2008): making mathematical gener-
alizations (pattern identification and conjecturing) and providing support to math-
ematical claims (providing a proof/non-proof argument). This study examines the
perceptions of pattern identification, conjecturing, and proof by 22 Irish teachers
with varying levels of teaching experience via semi-structured interviews. These
teachers perceived pattern identification and conjecturing as disconnected from
proof construction. Indeed, teachers struggled to define conjecturing and proof.
There also appeared to be a bifurcation in students’ classroom experiences with RP
processes. Teachers stated that the experiences with proof of students with perceived
lower ability levels ended at pattern identification while higher-level students rarely
engaged in pattern identification and focused on memorizing proofs due to the
influence of high stakes assessments. The implications of these results are discussed.

Keywords Proof-and-reasoning � Curriculum � Reform � Teacher perceptions

Introduction and Background

Given that proof has historically appeared solely in secondary school geometry
(Fujita and Jones 2014; Herbst 2002), teachers tend to consider proof as residing
within this content area (Furinghetti and Morselli 2011). An expansive body of
research has documented the struggles that students experience with proof (e.g.,
Healy and Hoyles 2000) and the deleterious effects of traditional proof instruction in
geometry (Schoenfeld 1989). Lampert’s (1990) work with fifth-grade students
illustrated that it is possible for the teacher and students to co-construct a classroom
environment where students make conjectures and engage in the development of
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valid mathematical arguments. Despite such proof of concept studies, teachers
encounter similar struggles in identifying valid proofs (Knuth 2002a) and under-
standing the limits of empirical evidence (Martin and Harel 1989). Teachers also
hold conceptions about the teaching of proof. For instance, in addition to formal
proof, which was suitable only for some students, teachers also believed that proofs
could be informal, consisting of empirical arguments (Knuth 2002b), which were
suitable for all students. Indeed, teachers may harbor the conception that only stu-
dents of perceived high ability can construct proofs (Furinghetti and Morselli 2011).
Additionally, Dickerson and Doerr (2014) found that a group of 17 high school
mathematics teachers stated that the most important proof purposes were: enhancing
students’ understanding of mathematics and developing generalizing skills that
could be used in other areas. Knuth (2002a) found that a group of 16 practicing
secondary school mathematics teachers identified proof as having a number of
different purposes (e.g., establishment of truth), but did not see how proof could
promote understanding. Knuth (2002b) found that the majority of teachers in his
study defined proof as a logical or deductive argument demonstrating the truth of an
assertion. The remaining teachers defined proof as a convincing argument.

Although there are a number of different ways to define understanding, one way
is via relational and instrumental understanding (Skemp 1976). Skemp defined
relational understanding as knowing both what to do in particular situations as well
as why it is important to do those things. Instrumental understanding, in contrast,
involves knowing rules without the knowing the reasons behind these rules.
DeVilliers’ (1991) work with 17 14-year-old pupils’ exploration of geometric ideas
in a dynamic geometry system found that while they were convinced of the validity
of the ideas after a few manipulations, they did desire to understand why these ideas
held true. Thus, even when convinced that a mathematical idea is true, students are
still interested in gaining a relational understanding of these ideas. Such findings
suggest that students’ desire for relational understanding can be leveraged to
motivate them to engage in proofs that serve an explanatory role.

In 2010 Ireland implemented Project Maths, a reform of their secondary math-
ematics educational system intended to promote student learning through
problem-solving, investigations, and the use of real-world contexts. Research
involving teachers who piloted this reform suggest that it involves practices that are
a significant departure from previous classroom instruction in Ireland (National
Council for Curriculum and Assessment [NCCA] 2012). For instance, teachers
spoke about rote learning, memorization, a focus on mathematical procedures, and a
presentation of procedures without justification before implementation of Project
Maths. Two representations of the Project Maths reform are the syllabi for junior
certificate students (ages 12–15) and senior certificate students (ages 16–18), each
of which contains content objectives separated by three ability levels listed in
ascending order of difficulty: foundation level (FL), ordinary level (OL), and higher
level (HL). The standards appearing in these syllabi were designed for teachers to
use as they craft classroom instruction. Reasoning-and-proving (RP) processes
(Stylianides 2008) involving identifying patterns (plausible and definite),
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constructing conjectures, and providing support for mathematical claims appear
throughout these documents (Davis 2014), but are especially singled out in a
section titled, Synthesis and Problem-Solving Skills, that appears in each content
strand as seen in Fig. 14.1. Figure 14.1 reveals that students are expected to identify
patterns and develop conjectures. Students are asked to craft arguments when they
explain their findings, justify their conclusions, and draw relevant conclusions.

In research reported elsewhere (Davis 2014) I found that junior certificate stu-
dents were provided with fewer opportunities to develop conjectures and develop
arguments than senior certificate students. In addition, each syllabus contained a
preponderance of pattern identification, conjecture formulation, and proof con-
struction outcomes that were not tied to specific mathematics content objectives.
These standards were designed for teachers to use as they craft classroom
instruction and given these disparities teachers may provide students with fewer
opportunities to engage in RP during the enacted curriculum. The presence of RP
processes in all content strands in this section of the syllabus led to questions
surrounding teachers’ conception of the role of proof in different content strands.

The centrality of RP processes in the development of mathematical knowledge
by mathematicians has been pointed out by Stylianides and Silver (2009) in citing
the work of Polya (1954), Atiyah (1984/1986) and Schoenfeld (1983). Research by
Stylianides (2008) on one set of middle school textbooks found that 10% of tasks
involved pattern identification, 1% of tasks involved conjecturing, and 5% of tasks
involved demonstrative arguments. Otten et al. (2013) examined six US geometry
textbooks for the presence of RP processes and found that the majority of these
elements appeared on introductory proof units with less than 5% of exercises in
other chapters involving RP processes. Wong and Sutherland (this volume) also
found that 13% of tasks in a popular Hong Kong grade 10 algebra textbook series
involved RP processes. Research involving US students’ experiences with proof in
geometry suggests that teachers skip tasks involving proof (Thompson and Senk
2014), rarely use technology such as dynamic geometry (Thompson and Senk), or
reduce the cognitive demand of problems requiring arguments when enacted (Sears
and Chávez 2014). Thus, given these findings it is likely that school students do not
routinely experience pattern identification, conjecturing, and proof as a coordinate

Fig. 14.1 Synthesis and problem-solving skills from the syllabus for senior certificate students
(NCCA 2014)
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set of activities. Moreover, it is important to note that these RP processes do not
necessarily have to follow a linear sequence. Karunakaran (this volume) has pointed
out that mathematicians may interrupt their deductive logic in their process in order
to complete their deductive arguments.

This study provides a unique contribution to the research body by using
Stylianides’ (2008) framework to examine a group of Irish teachers’ mathematical,
psychological, and pedagogical perspectives about RP processes and the connec-
tions between pattern identification and proof and the connections between con-
jecturing and proof. This study also sheds light on how mathematics teachers in
transition from one set of educational experiences to another perceive RP processes.
Specifically, this study was designed to answer the following research questions:

1. How does a group of Irish post-primary teachers perceive pattern identification
and conjecturing and their roles in the development of proof arguments?

2. How does a group of Irish post-primary teachers define proof, position proof
with regard to a mathematics content area, and envision the role of proof for
students with different perceived abilities?

3. How does a group of Irish post-primary teachers conceive the role of proof in
promoting understanding?

4. How does a group of Irish post-primary teachers perceive of the synthesis and
problem-solving skills section of the syllabus that contains RP processes?

Methods

Stylianides (2008) introduced the term reasoning-and-proving (RP) to encompass
the interconnected nature of four activities: pattern identification; conjecturing;
constructing non-proof arguments; and developing proof arguments. These pro-
cesses involve three components: mathematical, psychological, and pedagogical.
The mathematical component consists of the examination of an activity for the
presence of the aforementioned RP processes by a mathematically knowledgeable
person. The psychological component seeks to understand how an individual who is
engaged in solving a mathematical problem perceives RP processes. The peda-
gogical component has two subcomponents. First, it seeks to discern the relation-
ship between the mathematical component of a problem with the solver’s
psychological component of a problem. Second, it seeks to understand the teacher
moves that will enable the mathematical component of a task to become transparent
to the solver.

This study makes use of all three components within Stylianides’ (2008)
framework. The focus of the psychological component is the teacher as solver and
in the pedagogical component the teacher assumes the role of knowledgeable other
with the interviewer seeking to understand the teacher moves that he or she takes to
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help students understand the mathematical nature of tasks involving RP processes.
Participants were not presented with particular tasks, but in the course of the
semi-structured interviews (described in more detail below) teachers either pre-
sented mathematical tasks as examples on their own or were pressed to provide
examples. These tasks were then examined from a mathematical perspective to
better understand the validity of the psychological component exhibited by the
teachers and the nature of the teacher moves taken to make the mathematical
perspective transparent to students (pedagogical component). If teachers did not
provide examples and instead talked about RP processes in general, these
descriptions were compared to their descriptions in Stylianides. This framework
was chosen as the Project Maths syllabi contain these different RP processes (Davis
2014).

Post-primary teachers working with senior cycle mathematics students (ages 15–
18) within a 50-mile radius of Limerick, Ireland were recruited for this study. The
teaching experience and gender of these teachers appear in Table 14.1. teaching
experience was broken down into three categories: low (0–5 years), medium (6–
14 years), and high (15–30 years). Interview questions associated with each of the
research questions appear in the Appendix. The semi-structured nature of the
interviews enabled the author to follow-up on some teachers’ responses when they
lacked sufficient details. Participants would occasionally provide examples from
their classes where they engaged their students in RP processes. Twenty-two
teachers were asked about pattern identification, 18 teachers were asked about
conjecturing, and 21 teachers were asked about proof during semi-structured
interviews lasting between 30 min and one hour during the 2012–2013 school year.
The interview length varied as teachers were interviewed during the school day and
had variable amounts of time for the interview. The variable interview lengths as
well as the semi-structured nature of the interviews led to differing numbers of
teachers answering the different questions associated with the interview questions.
Each interview was audiotaped and transcribed and coded using HyperResearch
(Researchware 2011) qualitative analysis software. Qualitative data analysis
methods of analytic induction and constant comparison were used to identify and
refute interpretations for themes and relationships appearing within the data (Miles
et al. 2014).

Table 14.1 Participating
teachers’ experience and
gender

Experience

Low Medium High

6 8 8

Gender

Female Male

12 10

14 Irish Teachers’ Perceptions of Reasoning-and-Proving Amidst … 203



Results

Pattern Identification

Seventeen out of twenty-two teachers most closely connected pattern to a specific
mathematics unit, Sequences and Series, as seen in the following interview excerpt.

Interviewer: Is the identification of patterns connected to the construction of proofs at all?
Aidan: Um, I’m being brutally honest but, I haven’t taught the patterns, sequences, series
[sic] section yet.

This excerpt also illustrates an important problem with connecting patterns with
a specific unit, namely, students may experience a great deal of instruction before
engaging in pattern identification. It also promotes in teachers a perspective that
patterns are not a unifying mathematical activity that occurs across a variety of
mathematics content areas. This stands in contrast to the Synthesis and
Problem-Solving Skills section that appears in each content strand of the syllabus.
The particular unit mentioned by the teacher in this excerpt provides students with
opportunities to identify patterns in arithmetic and geometric sequences. Indeed, in
the senior cycle ordinary level teacher handbook for Project Maths this is the only
unit out of twelve that contains the word “patterns” in its title.

Additionally, sixteen of the teachers did not see pattern identification as a step
leading towards proof. Indeed, for eight of these teachers the identification of
plausible patterns was synonymous with proof, especially for students learning
mathematics at the FL and OL.

Cassidy: Ah, another example that I can think of is okay when I’m doing the laws of
indices. You know and you work away with them and then you come to this one and any
number to the power of 0 is equal to 1. And, I kind of turn around to them and I say well, I
mean do you not think that looks a bit crazy? Where are they getting that from you know?
Anything to the power of 0 equals 1. So I go back and I’d say, “Well actually I’ll show you
where it comes from. You know you don’t need to learn this or anything off by heart but
just it’s interesting to look at.” And maybe I’ll [do] 2 cubed and 2 squared and 2 to the
power of 1. And then I’ll get them to type into their calculators, uhm 2 to the power of
minus 1, 2 to the power of minus 2, 2 to the power of minus 3 and we’ll take a look at the
kind of pattern that emerges. And if you work it from either side, from let’s say the positive
powers to the negative powers you can easily see by the pattern when you have 2 to the
power of 0 what you should get is 1, uhm, as your answer.
Interviewer: So does that prove that any number to the 0 power is 1?
Cassidy: Well, you can try other numbers. And you keeping getting the same answers so we
have done it, we’ll do 2 and I’ll say, “Okay we’ll check out to see if this works for three and
then it does prove that any number to the power of 0 equals 1.” I think anyway. I think it
proves it enough to them that they can accept it then.
Interviewer: Okay, proves that it is always true.
Cassidy: Yes.
Interviewer: You use the words “enough for them” would it be different for you?
Cassidy: No. Personally, I would accept that.
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Indeed, the excerpt above suggests that Cassidy was not likely to see pattern
identification as a necessary step in moving towards a proof, as pattern identifi-
cation appeared to be sufficient for her in showing that a mathematical idea always
held true. According to the teachers, HL students, on the other hand, were more
likely to spend less time with pattern identification and focus more on the con-
struction of proofs. In the excerpt below, Ashling confirms the different types of RP
activities in her classroom for students of different perceived abilities. In this
excerpt, “activity” refers to an opportunity for students to identify a mathematical
pattern.

Interviewer: So with the ordinary level classroom you’d focus more on the activity?
Ashling: Yes.
Interviewer: So, given a finite amount of time in the classroom, you focus more on the
activity and then less time on the formal proof?
Ashling: Yes.
Interviewer: Okay.
Ashling: But in the ordinary group [sic].
Interviewer: Okay, with the ordinary level. And maybe with the higher level it’s less time
on the activity and more time on the proof?
Ashling: Yes.

Conjecturing

Out of 18 teachers asked about conjecturing, nine teachers were not able to define it
at all. Four teachers provided incorrect definitions such as checking the reason-
ableness of an answer, assumptions when beginning a proof (2 teachers), and
corollary. Two teachers were able to provide correct definitions of conjecture. Three
teachers’ responses were coded as unknown as it was not possible to categorize
their definitions. Due to time constraints during the interview I only provided five of
the nine teachers with the definition of a conjecture as an educated guess. Even
when provided with the definition these teachers did not connect conjecturing with
the object of proof development. Consider the excerpt below.

Interviewer: Some people define a conjecture as a reasonable guess, or a reasonable
hypothesis of what might happen.
Seamus: An educated guess.
Interviewer: Yeah, more or less. So does that play a role in the construction of a proof?
Seamus: It does, yeah.
Interviewer: Can you give an example of where students have done that in your classroom?
Seamus: Well they can rule something out. I know we were talking about the different
methods of approaching a question. Well you could use conjecture quickly to rule some-
thing out whether it will work or not to solve the proof.

In this excerpt, the teacher considers conjecturing as a way to rule out a method
to construct a proof. One of the four teachers who incorrectly defined conjecturing
also connected this act to problem-solving. When cast in this light conjecturing was
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seen as a check on the reasonableness of the answer or how to approach the solving
of a problem. The other three teachers connected conjecturing to proof, but in
nonstandard ways like the following: valid assumptions that can be made at the
beginning of a proof; confusing conjecture with corollary; and confusing conjecture
with axiom. None of the 18 teachers asked about conjecturing saw a connection to
proof in terms of the object of a proof. The excerpt below is an example of this
phenomenon.

Interviewer: So I hear you talking about conjectures in terms of making sure that the answer
that you get from the calculator is reasonable, so going back to the example from geometry
where the sum of the two interior angles equals the exterior angle, you show them a lot of
examples in an ordinary level class. Do you then ask them to make a guess about whether
they think it’s always true or do you just go right to the proof then?
Simon: Personally I would say that I ordinarily go right to the proof.

Proof Development

Eleven out of 21 teachers defined proof as a logical derivation similar to what was
found by Knuth (2002b). This is seen in the following excerpts from Ashling and
Murtagh.

Interviewer: Our study is really focusing on reasoning-and-proving so something we have
been asking teachers is your definition of what a mathematical proof is. So how would you
define that?
Ashling: A set of logical steps and come out with an answer that’s true.
Interviewer: So the focus of our study is really on reasoning-and-proving. And so, what
we’ve been asking the teachers for is their definition of a mathematical proof.
Murtagh: I suppose a proof involves a number of logical steps that you follow to reach a
conclusion. There might be some prerequisite knowledge in those steps or there might be
some previous theorems or proofs that you already understand, or there might be an axiom
that doesn’t need to be proved, but you take those pieces of information and you piece them
together until you can reach a logical conclusion about what you set out to prove to begin
with.

Five teachers were not able to define a proof, but were only able to describe
proof techniques such as proof by contradiction or provided theorems as definitions
of proofs such as the irrationality of two. An example of the latter is seen below.

Interviewer: …How would you define what a mathematical proof is?
Shauna: Mathematical proof?
Interviewer: Ah huh.
Shauna: Well, something that has been well, discovered, years ago that um, say for example
like um, like there’s, the angles of a triangle add up to 180. That can be proven pretty easily
and it doesn’t necessarily have to be just taken as a given. You know you can take up all the
triangle [sic] into the three angles and see that yourself or measure them with a protractor.
You know in junior ones they’d cut off all the angles at the three corners and then actually
put them together, make them 180. Things like that, but also then there’s lots of ones then
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that are taken, that’s given really without proving it like say the area of a triangle is half b
times c. It would be a lot more complicated to prove that, but it can be done.

Shauna’s response also implies that a proof can be constructed through a series
of examples such as cutting the corners off a set of triangles and showing that they
form 180°. Four additional teachers considered a set of examples to denote a proof
and one teacher’s definition was connected to a pattern and especially how that
pattern could be converted into a proof. If teachers did not provide specific
examples of proof within a content area, they were asked which content areas proof
appears in. These teachers were then asked a follow-up question about other content
areas where proof appears. If teachers embedded their proof examples in a specific
content area then teachers were asked about other content areas where proof can
occur in school mathematics. The most popular content area mentioned by 20 out of
22 teachers in which proof occurred was geometry.

Kaitlin: Well, it’s again I think proof, I think Geometry, very much Geometry, I think
theorems I mean that’s what I think when I think proof. Do you know? But other than that I
don’t really.

The next most frequent category was number (6 out of 22 teachers), followed by
trigonometry (4 out of 22 teachers), and algebra (2 out of 22 teachers). A total of 18
teachers were asked a follow-up question about proof in other areas. Of these
teachers only four mentioned algebra or provided valid examples of proof in
algebra; four teachers mentioned calculus such as the use of first principles to prove
differentiation formulas. In order to further probe teachers’ understanding of proof
in other content areas a total of ten teachers were asked specifically about proof in
the statistics and probability content strand. One teacher replied that she did not
know if proof appeared in this content strand. Two teachers provided invalid
examples of proof in statistics and probability, three teachers did not answer the
question, and three teachers stated that proof did not appear in this content strand.
This suggests that teachers either do not construct proofs for probability ideas such
as the addition rule or, if they do justify these ideas, they do not consider them to be
proofs. That is, their definitions for proof while devoid explicitly of a content area
as in the logical derivation definition above may indeed be context dependent.

A total of 15 teachers were either asked about proof for students with different
perceived ability levels or described proof experiences for students of different
perceived ability levels. Fourteen teachers stated that HL students had very different
proof experiences than OL and FL students. For instance, Catherine noted that she
would use the word “proof” among HL students and not with FL students because
the use of this terminology would inspire anxiety in FL students. Hugh stated that
HL students worked on more difficult proofs and four teachers noted that these
proofs would be more abstract than those worked on by OL or FL students. Kerry
not only noted that HL students would be asked to create proofs, but that they also
would be expected to create diagrams to assist in developing proofs. Additionally,
Kian noted, that HL students would be assessed on their ability to prove on the high
stakes exams given at the end of the senior cycle. However, due to the presence of
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proof on these exams for HL students Fiona admitted that she would delay the
instruction of proof until right before the exams. Brian and Iona admitted that
because HL students would be asked to reproduce proofs that they had already seen
the students would resort to memorizing these proofs with less of an emphasis on
understanding. Aidan noted that neither FL nor OL students were asked to construct
proofs in his classroom. As four teachers stated, OL students would most likely
encounter proof through teacher led presentations. Three teachers stated that FL
students’ experiences with proof centered around applying the results of a theorem
to find an answer such as a missing angle.

Connection Between Proof and Understanding

In order to ascertain teachers’ conceptions about proof a total of twelve teachers
were asked if proof promotes understanding. Two teachers felt that proof did not
promote students’ understanding of mathematical ideas. Hugh’s definition of
understanding focused on applying mathematical ideas. He elaborated that as the
development of a proof did not involve its application, proof was disconnected from
understanding. Four teachers felt that proof was tied to understanding, but that
understanding was compartmentalized to developing a proof. That is, a proof
required understanding on the part of students, but that understanding did not
necessarily apply to other areas of mathematics. Two other teachers stated that
proof was connected to understanding the origin of mathematical objects. Two
other teachers noted that the results of proof were used in solving problems
oftentimes set within real-world contexts and therefore promoted understanding.
One teacher stated that proof involved verification of mathematical ideas (e.g.,
knowing that), but not necessarily knowing why mathematical ideas were true. This
delineation is similar to Skemp’s (1976) descriptions of instrumental and relational
thinking. The last teacher believed that proof promoted understanding due to the
fact that constructing a proof required making connections. This work enabled
students to make connections across different mathematical ideas, which for this
teacher was emblematic of understanding.

Connection to Syllabus Vis-à-Vis Synthesis
and Problem-Solving

Recall that the Synthesis and Problem-Solving section of the syllabus contained a
number of reasoning-and-proving components. A total of 22 teachers were asked
what the section of the syllabus titled Synthesis and Problem-Solving meant to them
in order to understand teachers’ perceptions of this section of the syllabus. Twenty of
the teachers did not connect this section to RP. Nearly all of the teachers did not
recognize this section as connected to the syllabus. Instead they parsed this title into
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its constituents: problem-solving and synthesis. They described problem-solving as
best they could, but when it came to synthesis eight teachers did not know how to
define this terminology. Two teachers did connect problem-solving and synthesis to
a component of RP, proof. These connections are seen in the following two excerpts.

Nora: Synthesis, I’m not sure about that word, but um, problem-solving I suppose, trying to
work through some logical steps to get from start to the end of the problem, I suppose.
Kerry: Ah, I suppose kind of understanding the question and reading the words and, um,
creating if you like, like I said, an equation or a table and making sense of or, the synthesis
part is kind of the creating the table or drawing the graph, and then they’re analyzing, and
they’re arriving at their answer, or they’re justifying their answer saying why it’s true or not
true. So that would be my understanding of the synthesis and the problem-solving.

Discussion

Teachers’ Perceptions of RP and Students’ Abilities

The Project Maths leaving certificate syllabus distinguishes different content goals
for students at the FL, OL, and HL levels. However, the syllabus makes no dis-
tinctions when it comes to students’ experiences with three key RP processes:
pattern identification, conjecture development, and the development of arguments.
It is expected that all of these students be given opportunities to engage in all three
of these processes. Yet, the interviews suggested that there is a bifurcation in
classroom experiences for FL/OL and HL students, neither of which supports the
goals of the syllabus nor promotes the interconnected nature of RP processes. FL
and OL students were less likely to engage in the construction of arguments and HL
students were less likely to identify patterns due to the influence of high stakes
exams. FL/OL students’ experiences in RP typically involved pattern identification.
A sizeable minority of teachers felt that this pattern identification was sufficient for
these students to show that mathematical ideas always held true and that pattern
identification promoted student understanding. Yet the examples given of patterns
suggested that they showed that something was true but not necessarily why it was
true. The presence of pattern identification as a form of proof is similar to an
empirical proof scheme as noted in previous research (Knuth 2002b; Martin and
Harel 1989). While HL students were more likely to engage in the construction of
proofs, these arguments were likely to be memorized by students and taught in a
way to promote their quick recall due to high stakes assessments. This memo-
rization is akin to the instrumental understanding (Skemp 1976) displayed by sixth
grade students in Askevold and Lekaus (this volume). These results are similar to
the beliefs held by a group of grade 10 geometry students in the United States with
respect to proof (Schoenfeld 1989). The influence of these high stakes examinations
could be harnessed by Project Math personnel to more closely promote the goals of
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the leaving certificate syllabus by including questions where FL, OL, and HL
engage in pattern identification, conjecturing, and proof development across of
range of content areas.

Teachers’ Perceptions of RP as an Interconnected Set
of Processes

The results of this study suggest that teachers do not view RP as a set of inter-
connected actions. Pattern identification was not connected to conjecturing or proof
and for some teachers, pattern was synonymous with proof suggesting that for these
teachers empirical arguments appeared to constitute valid proofs as researchers have
found at the high school level in the USA (Knuth 2002b). Conjecturing was not
connected to pattern identification or to proof. Indeed, teachers struggled to define
conjecture and when provided with a definition they were more likely to connect it
to problem-solving than proof or pattern identification. Teachers’ disconnections
are further supported by their responses that pattern occurred primarily in one
mathematical unit and proof appeared predominantly in geometry. The latter
finding is similar to what has been reported in the body of research around proof
(e.g., Herbst 2002). This fixation on proof in geometry also appears in curriculum
from other places around the world such as Hong Kong (Wong and Sutherland, this
volume). These findings as well as teachers’ struggles to describe the synthesis and
problem-solving section appearing within each content strand of the syllabus
suggest that teachers are not attending to this section of the leaving certificate
syllabus. While Stylianides (2008) saw RP processes as interconnected and part and
parcel to the work of mathematicians, the teachers in this study did not. This may
reflect how these teachers themselves experienced instruction as students in sec-
ondary mathematics classrooms in Ireland or in the university where instruction
may focus more on finished proofs and not how those proofs were developed
(Stylianou et al. 2015). Consequently, professional development for Irish
post-primary teachers could be fashioned around these processes to assist these
individuals in understanding the synthesis and problem-solving skills that appear in
each content strand, point out the ubiquitous of these processes, and provide
examples to teachers for how they can implement these pattern identification,
conjecturing, and developing arguments in the secondary mathematics classroom
across a variety of different content strands.

Teachers’ Perceptions of Proof

The teachers interviewed for this study held a number of perceptions about proof.
The majority of teachers defined proof as a logical derivation similar to teachers
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from Knuth’s (2002b) study had found. This study provides more evidence of
teachers’ struggle with proof. That is, teachers struggled in defining a proof, con-
sidered proof techniques such as proof by contradiction to be a definition of proof,
or confused a proof with the products of a proof (e.g., theorems). Five teachers saw
examples as valid proof, which resonates with previous research studies (e.g.,
Knuth 2002b). Additionally, the teachers in this study tended to connect proof with
geometry similar to previous research (Furinghetti and Morselli 2011). Taken as a
group these findings suggest that teachers may be fixated on the instructional
aspects of proof. That is, they may see proof primarily through their work with
students and not as learners of mathematics or as individuals who engage in
mathematical work and make use of proof in that work. This is seen in their
definitions of proof as methods to complete a proof (e.g., proof by contradiction) or
the use of examples to illustrate the result of a proof that they use in their daily work
with students.

This work builds on a previous study completed by Knuth (2002a) and
Dickerson and Doerr (2014) as it seeks to describe teachers’ perceptions with regard
to the connections between proof development and understanding and it also seeks
to further explicate teachers’ conceptions with regard to a lack of connection
between proof and understanding. Knuth found that a group of sixteen teachers did
not view understanding as a role that proof can take in mathematics. However, the
vast majority (16/17) of teachers interviewed by Dickerson and Doerr saw proof as
promoting understanding in a number of different ways. This study found the
number of teachers making connections between proof and understanding to lie
between these two studies. This study found that five teachers did not connect proof
construction to understanding. Four of these teachers saw understanding as con-
nected to the use of mathematics to solve problems set within real-world contexts,
so called applications of mathematics. Recall that this was one of the goals of the
Project Maths reform.

Seven teachers saw proof as connected to understanding. That understanding
was constrained to proof construction for several teachers, but three teachers saw
proof as promoting understanding in a number of interesting ways such as the
origin of mathematical ideas and connections across mathematical ideas. In addi-
tion, teachers also saw proof as promoting students problem-solving capabilities.
These findings suggest other ways that teachers perceive the connections between
proof and understanding besides those described by Dickerson and Doerr (2014)
such as proofs developing transferrable thinking skills or metacognitive thinking
skills. Additionally, these findings suggest that while teachers may harbor unpro-
ductive conceptions around proof such as seeing it as limited to geometry, they can
also possess progressive conceptions such as linking proof with understanding.
Such connections to understanding can be leveraged by those wishing to engineer
professional development to help teachers see the value of engaging all students in
the development of support for mathematical claims.
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Conclusion

This study examined the mathematical, psychological, and pedagogical components
of RP processes as seen through the eyes of a group of Irish post-primary teachers.
Although mathematicians invoke these processes as they develop mathematical
ideas, teachers themselves did not see these processes as connected at all. This
study serves as another testament to the disjuncture between school mathematics
and mathematics as practiced by mathematicians (Schoenfeld 1989). While this
study adds to our understanding of teachers’ perceptions about RP processes and
their interconnectedness, it also speaks more broadly to curriculum reform and
teachers’ perceptions. Although RP processes appear in the leaving certificate
syllabus, teachers were not cognizant of this component of the syllabus as it did not
contain specific mathematics content. This finding serves as a strong argument in
favor of interweaving valued mathematical processes with content standards in the
design of national curriculum documents.

Appendix

Research question Interview questions

(1) How does a group of Irish post-primary
teachers perceive pattern identification and
conjecturing and their roles in the
development of proof arguments?

• Does the identification of patterns ever play
a role in constructing a proof?

• What is your definition of a conjecture?
• Do you think conjectures have any role in
proof as you define it and as you understand
it?

(2) How does a group of Irish post-primary
teachers define proof, position proof with
regard to a mathematics content area, and
envision the role of proof for students with
different perceived abilities?

• What is your definition of a mathematical
proof?

• You have given me an example of proof in
the area of geometry and it’s linked to
learning mathematics, understanding
mathematics. Does proof play as important
a role in learning other content areas as it
does in geometry?

• Is your definition of a proof the same for
students in foundation, ordinary, and higher
levels?

(3) How does a group of Irish post-primary
teachers conceive the role of proof in
promoting understanding?

• Does proof play a role in understanding as it
is described in Project Maths? If so, how? If
not, why not?

(4) How does a group of Irish post-primary
teachers perceive of the synthesis and
problem-solving skills section of the syllabus
that contains RP processes?

• Something that appears in the leaving
certificate syllabus at the end of each of the
content strands is something that is called
synthesis and problem-solving. Can you
describe what that means to you?
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Chapter 15
About the Teaching and Learning
of Proof and Proving: Cognitive Issues,
Curricular Issues and Beyond

Lianghuo Fan and Keith Jones

Abstract In this commentary we provide an analytical look at the four studies
reported within this theme of the volume and we discuss related issues and insights
that we obtained from these studies. We offer a focused view of each study in the
same order as presented in the four preceding chapters, and we conclude that these
studies not only provide new insights into various cognitive and curricular issues in
the teaching and learning of proof and proving, but also raise additional issues in
relation to curriculum, textbooks and teacher education and professional develop-
ment. Based on our analysis, we contend that mathematics education research in the
area of proof and proving is still at an early stage, given that most studies are
relatively small-scale and exploratory in nature. Further theoretical and method-
ological work, and more in-depth studies, especially larger-scale confirmatory and
experimental studies, are needed to move research in this area forward.

Keywords Proof and proving � Cognition � Curriculum � Textbook analysis
Teacher education

Introduction

Issues relating to the teaching and learning of proof and proving (including related
topics such as reasoning, explanation, argumentation and justification) have
received mounting attention in research on mathematics education over the last two
decades, and researchers have approached the issues from different perspectives in
relation to pedagogy, curriculum, cognition, assessment and so on (see, e.g., Fan
et al. 2017; Komatsu et al. 2017; Mariotti 2006; Miyazaki et al. 2017; Stylianides
et al. 2017). The third theme of this volume consists of four chapters that address
proof and proving with a particular focus on cognitive and curricular issues. In this
commentary, we take each chapter in the sequence within the theme and discuss

L. Fan (&) � K. Jones
University of Southampton, Southampton, UK
e-mail: l.fan@southampton.ac.uk

© Springer International Publishing AG 2018
A. J. Stylianides and G. Harel (eds.), Advances in Mathematics
Education Research on Proof and Proving, ICME-13 Monographs,
https://doi.org/10.1007/978-3-319-70996-3_15

215



issues and insights we developed while engaging with these chapters. It should be
noted that this commentary is not intended to present a comprehensive review of the
chapters, nor to discuss in depth their strengths or weaknesses; rather the com-
mentary positions the chapters within the research field and uses this as a spring-
board for considering what forms of future research would be most useful. The
commentary closes with a summary of our more general observations and, based on
our earlier considerations, some conclusions in relation to the theme.

Students’ Learning of Proof and Proving

The first two chapters of this theme both focus on students’ learning of proof and
proving. In Askevold and Lekaus’s chapter, Mathematical argumentation in Pupils’
Written Dialogues, the researchers invited 33 fifth and sixth graders, aged 10–12,
from two Norwegian primary classrooms, to write their own dialogues after they
were given an introductory dialogue between two imaginary pupils about what is
more desirable to be given, 1/10 or 1/3 of a cake. In this way, the participating
pupils were expected to explain how eight given fractions 3/4, 2/3, 9/12, 3/7, 4/5, 4/
8, 9/7, and 3/5 should be put in order from the least to the greatest. All pupils except
one worked in groups of 2–4 to produce the dialogues. The researchers collected six
dialogues from the fifth graders and 10 from the sixth graders. The results showed
that while the sixth graders, compared with the fifth graders, used more rule-bound
approaches based on conversions of fractions (60% vs. 50%), the fifth graders had a
much higher percentage in using visual representation (100% vs. 10%) and in using
both diagrammatic and narrative argumentation (50% vs. 30%).

We think it is meaningful to know how students at different grade levels perform
in the area of proof and proving, in this case making mathematical argumentation,
and, more importantly, why they perform differently and what might be the con-
tributing factors to such difference. In Askevold and Lekaus’s study, although the
authors admit that the reasons for the difference were unclear, they argued that it
might reflect the fact that students seem to note an expectation to use more formal
mathematical language as they progress through school and that it might also reflect
diverse teaching approaches applied in the two classrooms.

In our view, the difference revealed in Askevold and Lekaus’s study fits with
other research (e.g., Healy and Hoyles 2000) that, as students move to higher grade
levels, they tend to think that their teachers expect abstract ways of representing
mathematical concepts and that using more concrete and visual (pictorial/
diagrammatic) representations is something that is used at a lower grade level
(see also Leong et al. 2015). This is at odds with the professional practice of
mathematicians where visual (pictorial/diagrammatic) representations are highly
valued and frequently used (Burton 2004; Giaquinto 2007). This is an issue that
warrants further investigation.

No doubt other influences play a part, as well. For example, the curriculum
(including the textbooks) and, in particular, students’ prior learning experiences,
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might well be relevant factors for explaining the differences found by Askevold and
Lekaus. In this regard, it would be particularly interesting to know what learning
experience (including home experience) might have helped the sixth grader who,
uniquely, as reported in the study, used the method of finding a common numerator
to compare the fractions. To tackle the issues of curriculum (including textbooks)
and students’ prior learning experiences may require different methods; for
example, interview, curriculum and textbook analysis, and longitudinal study—all
of these are undoubtedly more challenging.

Using interviews with a think-aloud protocol, Karunakaran’s chapter, The Need
for ‘Linearity’ of Deductive Logic: An Examination of Expert and Novice Proving
Processes, compared the performances of five undergraduate mathematics students
(whom he called “novice provers”) with five advanced doctoral students majoring
in mathematics (whom he called “expert provers”) in their proving process with five
novel mathematics statements in real analysis. He found that the advanced doctoral
students were willing to knowingly, and temporarily, interrupt the deductive logic
in their proving process, while the undergraduate students seemed less inclined to
behave in a similar manner. The researcher used the empirical evidence obtained to
argue that Expert and Novice provers approach the sequencing of ‘bundles’, which,
according to the researcher, consist of groups of actions and resources that are
clustered together by identifiable intentions (Karunakaran, this volume) in the
proving process, in different ways. More specifically, expert provers showed more
non-linearity while novice provers demonstrated more linearity in their proving
process.

The issue which arose for us after reading Karunakaran’s study was why there
were these differences; the researcher did not elaborate on this issue, which may be
explored in future research. The study divided mathematical provers into the novice
and expert groups based on their stages of learning mathematics. However, many
researchers, especially at the school level, have reported that students in the same
learning stages or grade levels show remarkable differences in mathematical
problem solving (e.g., Krutetskii 1976) and in geometric proving (e.g., Senk 1989;
Usiskin 1982). In this regard, research could usefully focus on what are the possible
contributing factors, and to what extent they contribute to such differences.

Karunakaran identified two implications of the results from the perspectives of
curriculum developers, and undergraduate mathematics instructors; that many cur-
rent undergraduate mathematics textbooks tend to present proof and proving in a
linear style, and that undergraduate mathematics instructors may present proving as a
sequential series of steps. Given that textbooks, especially traditional textbooks, are
static and space or length-limited, and, moreover, that the presentation in textbooks
needs to be concise and coherent, it remains a challenge how a textbook can be
written or developed to present proofs to “reflect the nonlinear manner in which the
proving process can occur and convey to students the idea that it is acceptable to
assume the truth of a statement during the proving process as long as one eventually
returns to address that assumption” (Karunakaran, this volume, p. 181). In this
regard, a dynamic and interactive e-textbook could possibly offer new and better
solutions about this issue (for papers on e-textbook development, as well as other
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related matters, see Jones et al. 2014). As to teachers/instructors, it seems to us that
they can indeed play a larger part (compared with the textbooks) in providing stu-
dents with experience of learning mathematics proofs in a suitably nonlinear manner.
There is work to be done here in terms of research on teacher knowledge and
professional development (Fan 2014).

Opportunities for Students to Learn
‘Reasoning-and-Proving’

In the chapter,Reasoning-and-Proving inAlgebra in SchoolmathematicsTextbooks in
Hong Kong, Wong and Sutherland focused on the opportunities for students to learn
‘reasoning-and-proving’ from solving Algebra problems in a popular school mathe-
matics textbook from Hong Kong. Here, the four major proof-related activities of
‘reasoning-and-proving’, as proposed by Stylianides (2009), comprising identifying
mathematical patterns, making conjectures, providing non-proof arguments, and
providing proofs, were adapted. Identifying mathematical patterns was sub-divided
into plausible patterns and definite patterns; providing non-proof arguments was
sub-divided into ‘empirical argument’ and ‘rationale’ (basically a statement of a result),
while providing proofs was sub-divided into ‘generic example’ and Wong and
Sutherland’s adapted definition of ‘demonstration’ that included proof by definition
and proof by calculation. For their analysis, Wong and Sutherland selected the algebra
chapters (i.e., chapters in the ‘Algebra and Number’ strand) from the Hong Kong
mathematics textbook for Year 10 students. Tasks involving reasoning-and-proving
opportunities were coded as Type-1 (ones that explicitly asked for justification or
explanation; their usual forms were “Prove that” and “Explain your answer”), Type-2
(ones that implicitly asked for justification; their usual form was “Determine whether
…”), or Type-3 (what Wong and Sutherland called templates for illustrating
reasoning-and-proving).

Wong and Sutherland found that of 3241 tasks in the algebra chapters, some 410
(i.e., 13%) designed opportunities for students to learn ‘reasoning-and-proving’.
What is more, they found almost no opportunities for conjecturing in the Algebra
chapters and that identifying a pattern and providing support for proving were treated
rather in isolation. Indeed, the majority of the reasoning-and-proving opportunities
(280 out of 364, i.e., 77%) were classified as ‘demonstration’ (i.e., proof by definition
and proof by calculation). Wong and Sutherland concluded that their analysis con-
firmed, to some extent, the findings of previous studies of secondary school class-
rooms in Hong Kong that student activities mostly focus on practicing and
memorizing mathematical concepts and procedures (e.g., Leung 2001) and that their
findings fit with the insight that, in international comparisons, Hong Kong students
generally do better in ‘knowing’ than in ‘reasoning’ (e.g., Leung 2015). Needless to
say, as Fan et al. (2013) have argued, there are many factors influencing students’
learning. In studies about textbooks, the issues of whether the selected textbooks are a
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good representation of all the available textbooks for students to use, and whether the
students whose academic performances were compared did use the textbooks, cannot
be underplayed or taken for granted. We note further that, while all TIMSS studies
(except TIMSS 1995) involved only fourth and eighth grade students, the textbook
analyzed in the study of Wong and Sutherland is for tenth grade students. Clearly
there is a gap in the research evidence and, we think, more research with a different
research methodology is needed to draw a more confirmative conclusion about
whether there exists any direct causal relationship between the textbooks and the
students’ achievements.

Wong and Sutherland did, of course, point out that ‘reasoning-and-proving’ does
not, in general, always feature prominently in the Algebra component of the school
mathematics curriculum. This can be despite the development of mathematical
reasoning being one of the overall aims of the mathematics curriculum. Here the
findings of Wong and Sutherland are not only in line with the findings of previous
studies of secondary mathematics in Hong Kong but fairly in line with other analyses
of ‘reasoning-and-proving’ opportunities in Algebra textbooks (or textbook sections)
from other countries. For example, in an analysis of two US algebra textbooks, Davis
et al. (2014) found that very few definite pattern opportunities were tied to the
development of mathematical arguments and that conjecturing did not appear as
frequently as other ‘reasoning-and-proving’ activities. This contrasts with analyses of
school geometry textbooks (or textbook sections) by, for example, Fujita and Jones
(2014) in the case of Japan, and Otten et al. (2014a, b) in the case of the USA, which
generally found amuch higher proportion of ‘reasoning-and-proving’ activities in the
respective mathematics textbooks (or textbook sections). This raises the question of
how, in the design of the school mathematics curriculum, the opportunities for
students to learn ‘reasoninhave revealed thatg-and-proving’ are best developed
across the curricular topics of number, algebra, geometry and stochastics. Moreover,
as Fan (2013) pointed out, textbook analysis and comparison can primarily tell us
how a particular topic is treated in the same series of textbooks, or how it is treated
differently across different series of textbooks, but, without further evidence, it
cannot go beyond this to tell us how the treatment of the topic should be improved
and, in the case of textbook comparison, which textbook is better. Taking the Wong
and Sutherland study as an example, if 13% of the 3241 tasks on
‘reasoning-and-proving’ is not adequate, then a further and challenging question is
what percentage would be adequate and how this proportion might be justified.

In the final chapter of this theme, Irish Teachers’ Perceptions of Reasoning-and-
Proving amidst a National Educational Reform, Davis reported the perceptions of
Irish mathematics teachers about pattern identification, conjecturing, and proof from
mathematical, psychological and pedagogical perspectives based on Stylianides’
conceptual framework of ‘reasoning-and-proving’ (Stylianides 2008). The data
were collected from 10 male and 12 female teachers with different teaching
experiences through semi-structured interviews lasting from 30 to 60 min. The
results showed that the participating teachers perceived pattern identification and
conjecturing as disconnected from proof construction, and, moreover, only seven
teachers considered proof as connected to understanding. According to the
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researcher, while ‘reasoning-and-proving’ processes appear in the school mathe-
matics syllabus in Ireland, teachers were not necessarily cognizant of this com-
ponent of the syllabus as it is not reflected in specific mathematics content strands
(in other words, the process and content strands were not interwoven).

The need for greater teacher awareness, and for greater professional develop-
ment, is evident from the results of many studies of teachers’ knowledge in
mathematics that have revealed that “teachers’ knowledge is very insufficient in
quantity and unsatisfactory in quality” (Fan 2014, p. 36). As such, the findings
reported in Davis’ study, though with a particular focus on ‘reasoning-and-proving’
in the Irish education context, are, in general, consistent with those of many other
studies.

As well as agreeing with Davis that part of the problem about teachers’ inade-
quate knowledge of ‘reasoning-and-proving’ can be alleviated by improving the
curriculum design, we think his study highlights the important issue of teacher
education and professional development. Specifically, Davis’ study raises the issue
of how pre-service teacher education, in-service teacher education, and other tea-
cher professional development activities can help prospective and current teachers
to develop adequate knowledge of mathematics, and, in this particular case, of
reasoning and proof. Further research in this direction would be highly valuable.

Concluding Remarks

We are pleased to see that the teaching and learning of proof and proving, being an
important topic, continues to receive increasing attention from mathematics edu-
cation researchers internationally, as evidenced in this theme as well as this volume.
We are encouraged to notice that different researchers have collectively shown the
breadth and depth of the research in this area, and not only have they provided new
insights into various aspects of the teaching and learning of proof and proving, with
a focus on cognitive and curricular issues in particular, but, through their work, also
raised new issues in relation to curriculum, textbooks and teacher education and
professional development.

Nevertheless, it can be seen that mathematics education research in this area is,
overall, still at an early stage, given that most, if not all, of the studies are of
small-scale and exploratory in nature. It is clear to us that more studies, in particular
ones that are large-scale, confirmatory and experimental in nature, are needed to
develop this area of research further. We are sure that the studies reported in this
theme, together with other studies in this volume, can serve as an important
foundation for the international research community to move forward in this valued
area of research in mathematics education.
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Part IV
Issues Related to the Use of Examples

in Proof and Proving



Chapter 16
How Do Pre-service Teachers Rate
the Conviction, Verification
and Explanatory Power of Different Kinds
of Proofs?

Leander Kempen

Abstract In the opening session of a course for first-year secondary (lower track
secondary school) pre-service teachers, the participants were asked to rate the
conviction, verification and explanatory power of four different kinds of proofs (a
generic proof with numbers, a generic proof in the context of figurate numbers, a
proof in the context of figurate numbers using “geometric variables” and the formal
proof). In this study, students’ ratings express their preference for the formal proof
concerning the aspects conviction, verification, and explanatory power. The other
proofs achieve significantly lower ratings, especially in the case of conviction. The
results may open the discussion about the use of generic proofs, the use of figurate
numbers and the concept of proofs that explain.

Keywords Transition to university � Generic proof � Figurate numbers
Function of proof

Introduction

The University of Paderborn requires the course “Introduction into the culture of
mathematics” for all first-year pre-service teachers (lower track secondary school)
to help them to accomplish the transition to higher mathematics. This course has
been developed and taught by Biehler and Kempen (2013). Refining and evaluating
the course is a main focus of the author’s dissertation. In this course, four different
kinds of proofs are used to foster students’ proof skills: the generic proof with
numbers, the generic proof in the context of figurate numbers, the formal proof and
the proof in the context of figurate numbers using “geometric variables” (Kempen
and Biehler 2016). The course’s three main objectives are: (1) to enhance students’
transition to the mathematical formal proof, (2) to promote the mathematical
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symbolic language in a meaningful way and (3) to equip students with
“intellectual-honest” (Stylianides 2007) ways of proving, that can be used in school
mathematics later on. The course is evaluated and refined in a design based research
scenario (Gravemeijer and Cobb 2006). In this chapter I will outline the part of the
project in which students rated the conviction, verification and explanatory power
of the different kinds of proofs in the beginning of the course.

Theoretical Background

In the teaching of mathematical proof, different kinds of proofs have been intro-
duced and discussed by mathematics educators (Dreyfus et al. 2012). In various
domains of education much attention has been paid to the concept of generic proof
(e.g., Rowland 2002; Karunakaran et al. 2014; Stylianides 2010); “A generic proof
aims to exhibit a complete chain of reasoning from assumptions to conclusion, just
as in a general proof; however, […] a generic proof makes the chain of reasoning
accessible to students by reducing its level of abstraction; it achieves this by
examining an example that makes it possible to exhibit the complete chain of
reasoning without the need to use a symbolism that the student might find
incomprehensible” (Dreyfus et al. 2012, p. 204). From a pedagogical point of view,
several important questions arise when using a generic proof: How can one expose
the generality of an argumentation given in a concrete context to a reader of the
proof? How can a reader of a ‘generic proof’ know what part of the concrete
examples presented are meant to be generic? (cf. Biehler and Kempen 2013; Mason
and Pimm 1984; Reid and Vallejo Vargas 2017, this volume). Building on this
discussion, Biehler and Kempen (2013) developed a pedagogical concept of generic
proofs: In a generic proof the generic argument is illustrated in concrete examples
and its validity and generality is explicitly expressed in words. In the following, I
will refer to this concept. (Examples of generic proofs will be given below.)

In contrast to the suggestions in the literature for the use of the generic proofs,
their benefits and usefulness for the learning of mathematical proof has not been
investigated in detail yet. With this research study, I want to contribute to the
ongoing discussion on the usefulness of different kinds of proofs with respect to
conviction, verification and explanation.

In mathematics proofs are said to cover different functions. The most prominent
ones are verification/conviction, explanation, systematization, discovery and com-
munication (e.g., de Villiers 1990). Referring to the work of Hersh (1993) I argue
that there are two important aspects of proofs: conviction and explanatory power. In
dealing with the function conviction, the distinction between relative and absolute
conviction made by Weber and Mejia-Ramos (2015) seems to be fruitful to clarify
two different functions a proof might fulfill. Absolute conviction is about the
mathematical ‘objective’ truth of a statement, verified by a mathematical proof. In
the following, this function of establishing objective truth will be called verifica-
tion. Relative conviction is meant as a personal subjective conviction that a
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statement is or might be true: a reader of a proof “has a relative conviction in a
claim if the subjective level of probability that one attribute to that claim being true
exceeds a certain” (ibid., p. 16). This relative conviction will be meant when using
the term conviction in the following. An important distinction in the teaching of
proofs has been given by Hanna (1989) who distinguishes between proofs that
(only) prove that a theorem is true and proofs that (also) explain why it is true. From
an educational point of view she highlights the function of explanation. In the
following part, I will give a brief theoretical outline on these, as I consider three
different functions of proofs: verification, conviction and explanation.

Verification

Verification is concerned with the ‘truth’ of a statement. A proof verifies a state-
ment by showing that it is a necessary conclusion from axioms or previous proved
theorems. Everyone who agrees with the arguments and logic inferences has to
agree with the concluding results. It is this view on mathematical proof that lends
the finding to be timeless (Weber 2014): The proven theorem will be ‘true’ forever.

Conviction

Mathematical proof is said to be a convincing argument (e.g., Hanna 1989; Hersh
1993). Here, conviction is considered a personal and subjective category (see
above). A proof may convince us that a statement is true, i.e., the reader is per-
suaded without any doubt that the statement holds in every possible case and that no
counterexample may exist. This view on conviction is related to the concept of
“epistemic value” of Duval (1990, 2007). As Reid and Knipping (2010, p. 74)
mention: “it is important to recognize that while logically a statement can only be
true or false, psychologically it can take on one of many values, which Duval
(1990, 2007) calls its “epistemic value””. Accordingly, the epistemic value high-
lights the individual perception of conviction as a personal judgement of whether a
proposition is believed (cf. ibid., p. 74).

Explanation

Hanna (1989) stresses that a proof can give insight as to why a statement is true.
She further states: “I will say that proof explains when it shows what “characteristic
property” entails the theorem it purports to prove” (Hanna 1989, p. 47).
Explanatory proofs often make use of geometric descriptions to reach the conclu-
sion. These kinds of representations are said to be more comprehensible or
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accessible for learners and ease the transition to algebra (compare Flores 2002). As
explicated by Hanna (2017, in this book), explanation can have different meanings.
In the philosophy of mathematics an intra-mathematical focus on explanation is
emphasized, stressing the connections between mathematical statements and their
mutual relationships (compare the quotation by Hanna above). From a pedagogical
point of view, explanation can be understood as conveying some kind of insight,
why a mathematical statement is true. In this sense, explanation is closely related to
the aim of personal understanding. However, for this study, one has to stress that ‘to
explain’ is defined implicitly by what is meant individually by the students.

Following the theoretical considerations above, verification can be considered a
concept that stands for its own. A reader of a proof might perceive the necessity of a
conclusion in a proof or not. However, one might identify a link between expla-
nation and (relative) conviction. Conviction is linked to a personal judgement based
on one’s knowledge and understanding. The initial point of an explanation is a
deficit in someone’s knowledge. Accordingly, an explanation aims at increasing
someone’s knowledge and thus may change his epistemic situation (compare Kiel
1999, p. 72 f.) and therefore may lead to conviction.

Findings from the Literature

Results from different studies suggest that some students do not accept deductive
proofs as verification (e.g., Fischbein and Kedem 1982; Healy and Hoyles 2000; for
an overview, see Reid and Knipping 2010). In these studies, after having seen a
correct deductive proof, some learners did not accept the immanent general verifi-
cation of the proof to cover all possible cases. This non-acceptance of a correct proof
gets even more important when looking at generic proofs. In the study of Tabach
et al. (2010) about half of the secondary school teachers rejected correct generic
proofs due to a perceived lack of generality. In the study of Martin and Harel (1989)
between 42 and 46% of the 101 pre-service teachers gave only low ratings to the
generic proofs (‘particular proof’) concerning verification. Also Dreyfus (2000) and
Knuth (2002) showed that teachers might underestimate proofs making use of
concrete examples and narratives. Kempen and Biehler (2016) identified different
perceptions of generic proofs (with numbers) and found that few students were
convinced by the generic proofs both from a logical and psychological perspective.

In the study of Healy and Hoyles (2000), students were asked to rate different
types of arguments (empirical, algebraic and narrative) with regard to explanatory
power (the answer “…is an easy way to explain to someone in your class who is
unsure”; ibid., p. 403). There, the algebraic arguments had the lowest ratings
concerning explanatory power, whereas the narrative arguments obtained the
highest. Concerning students’ preference for their own approach to prove a theo-
rem, the authors conclude: “students preferred arguments that they could evaluate
and that they found convincing and explanatory, preferences that excluded algebra”
(ibid., p. 426).

228 L. Kempen



Research Questions

This chapter focuses on the degree of conviction, verification and explanatory
power perceived by pre-service teachers when reading different kinds of proofs.
The research question is: How do pre-service teachers (lower track secondary
school) rate the conviction, verification and explanatory power of four different
kinds or proofs (the generic proof with numbers, the generic proof in the context of
figurate numbers, the proof in the context of figurate numbers using “geometric
variables”, and the formal proof) at the beginning of a course for first-year students?

This research question is a part of a wider research project, where the impact of
the course “Introduction into the culture of mathematics” was evaluated with a pre-
and a post-test. The focus of this chapter is on the results of the pre-test that took
place in the first session of the course. The results also give insight into students’
understanding of mathematical proof when entering university.

Methodology

In the first session of the course, the participants were asked to complete a proof
questionnaire (paper and pencil). These students’ had passed the German Abitur
(final secondary school examination) when graduating at the ‘Gymnasium’ (higher
track secondary school). The questionnaire included each type of concrete proof
mentioned above, one type for each statement (see below). The students had to rate
different aspects of the proofs on a six-level Likert scale ([1] totally disagree … [6]
totally agree). The aspects to be rated were verification, generality, conviction,
explanatory power, and acceptance as correct and valid proof. It was then possible
to construct a high reliable scale of “proof acceptance”. In this contribution, the
focus is on the questionnaire’s following three statements: (i) “The reasoning
convinces me that the statement is true” [conviction]; (ii) “The reasoning shows that
the statement is true for every time and 100%” [verification]; (iii) “The reasoning
explains to me why the statement is true” [explanatory power]. In addition to the
following proofs, no further information was given to the students. The items to be
answered (see above) did not contain the annotations “conviction”, “verification”
and “explanation”.

I chose a different statement for each proof being rated. When using four dif-
ferent proofs to one statement in a previous pilot study, I identified influences
between the different proofs that weakened the results. So I made the choice for
using four different statements, even though in this case the ratings of one proof
might be influenced by the correspondent statement. The proofs to be rated in this
study were selected after piloting different kinds of proofs to different statements
twice.
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The students answered the questionnaire by using an anonymous code. Their
answers had no impact on students’ grades in the course in any way. The proofs to
be rated are shown below.

Statement (1): The sum of an odd natural number and its double is always odd.

Generic proof with numbers:

1þ 2 � 1 ¼ 3 � 1 ¼ 3; 5þ 2 � 5 ¼ 3 � 5 ¼ 15; 13þ 2 � 13 ¼ 3 � 13 ¼ 39

The sum of an odd natural number and its double equals three times the initial
number. Since the initial number is an odd number, one obtains the product of two
odd numbers. Since the product of any two odd numbers is always odd, the result
will always be an odd number.

Statement (2): The sum of five consecutive natural numbers is always divisible
by five.

Generic proof in the context of figurate numbers:
In the representation of the sum of five consecutive natural numbers by figurate
numbers, one always obtains the same shape of stairs on the right side. By
transforming these stairs—taking the edge at the bottom right and putting it above
—one always obtains five equal rows. So the result will always be divisible by five
(Fig. 16.1).

Statement (3): The square of an even natural number is always divisible by
four.

Proof with geometric variables:
(This proof was given without any verbal explanation. Here, the geometric vari-
ables are used to express the generality that has to be explained in the case of the
generic proofs above.) (Fig. 16.2).

Fig. 16.1 The sum of five
consecutive numbers
represented by figurate
numbers
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Statement (4): For all natural numbers a; b; c: If b is a multiple of a and c is a
multiple of a, then bþ cð Þ is a multiple of a.

Formal Proof:
Let a; b; c be natural numbers. Since b is a multiple of a, there exists a natural
number n with: n � a ¼ b. Since c is a multiple of a, there exists a natural number m
with: m � a ¼ c. We get: bþ c ¼ n � aþm � a ¼ nþmð Þ � a. Since nþmð Þ is a
natural number, bþ cð Þ is a multiple of a. □

Results

In our study 149 pre-service teachers (94 female and 55 male; age: �a ¼ 21:14) were
asked to rate four different kinds of proofs: the generic proof with numbers
(“GenN”), the generic proof in the context of figurate numbers (“GenFig”), the
formal proof (“FP”), and the proof in the context of figurate numbers using “geo-
metric variables” (“GV”). Here, I am examining on the proofs’ conviction, verifi-
cation and explanatory power. Each aspect was rated on a six-level Likert scale ([1]
totally disagree … [6] totally agree). The results of students’ ratings are shown
below. (Since not all students have answered every question, some results refer to a
sample size less than 149.)

Conviction (ratings of the item “The reasoning convinces me that the statement
is true.”)

Students rated the proof using geometric variables as the proof that was the least
convincing with a median of 3. The generic proof with numbers had a median of 4,
which means “just a little agreement”, but the responses show a higher variation
(first quartile: 2, third quartile 5). The generic proof with figurate numbers (median:
5) and the formal proof (median: 6) were rated the highest (see Fig. 16.3). The

Fig. 16.2 A proof with
“geometric variables” and
figurate numbers
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differences concerning the medians are pairwise highly statistically significant
(p < 0.001), the difference between the medians of “GenN” (4) and “GV” (3) is
significant with ‘only’ p = 0.036 (Wilcoxon-test).

Verification (ratings of the item “The reasoning shows that the statement is
true for every time and 100%.”)

Concerning verification, the generic proof with numbers had the median of 1, which
means “totally disagree”. Having a look at the boxplot (see Fig. 16.4), the position
of the box seems to be considerable (first quartile: 1, third quartile: 2). The generic
proof with figurate numbers and the proof with geometric variables had a median of
2, but the responses show a high variation. The formal proof (median: 6) was rated
the highest (first quartile: 4, third quartile: 6). All differences concerning the
medians are pairwise highly statistically significant (p < 0.001; Wilcoxon-test).

conviction GenN GenFig GV FP

n 145 146 138 145

mean 3.41 4.25 3.02 5.48

median 4.00 5.00 3.00 6.00

SD 1.66 1.50 1.67 .92

Fig. 16.3 Boxplots and statistical data concerning the item “conviction” ([1] totally disagree …
[6] totally agree)

verification GenN GenFig GV FP

n 147 146 137 145

mean 2.01 2.79 2.48 4.88

median 1.00 2.00 2.00 5.00

SD 1.40 1.63 1.56 1.37

Fig. 16.4 Boxplots and statistical data concerning the item “verification” ([1] totally disagree …
[6] totally agree)
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Explanatory power (ratings of the item “The reasoning explains why the
statement is true.”)

With regard to explanatory power, the proof with geometric variables had the
lowest median. In this case, the high variation of ratings is remarkable (first quartile:
1, third quartile: 4). The generic proof with numbers was rated with a median of
four and the generic proof with figurate numbers with a median of five. Concerning
the explanatory power, the formal proof is considered the best (see Fig. 16.5). All
differences concerning the median are pairwise highly statistically significant
(p < 0.001; Wilcoxon-test).

Discussion

In this study, 149 pre-service teachers were asked to rate four different kinds of
proofs (a generic proof with numbers, a generic proof in the context of figurate
numbers, a proof in the context of figurate numbers using “geometric variables”,
and the formal proof) concerning the aspects conviction, verification and expla-
nation. The study took place in the first session of a mathematics course for
first-year students.

At the beginning of the course, the formal proof achieved the highest ratings in
all the three categories: “conviction”, “verification” and “explanatory power”.
Concerning conviction, the generic proofs got the medians of 4 and 5, whereas the
proof with geometric variables was rated the lowest with a median of 3. With regard
to verification, the generic proofs were rejected by most of the students (median of
1 and 2), as was the proof with geometric variables (median of 2). These results also
show that conviction and verification can be distinguished in this study. Most of the
students stated little agreement to the explanatory power of the generic proofs
(medians of 4 and 5). And the proof with geometric variables was only considered
slightly explanatory (median of 3) with high variation.

explan. GenN GenFig GV FP

n 147 145 138 145

mean 3.74 4.39 2.96 5.34

median 4.00 5.00 3.00 6.00

SD 1.51 1.36 1.74 1.09

Fig. 16.5 Boxplots and statistical data concerning the item “explanatory power” ([1] totally
disagree [6] totally agree)
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Comparing the generic proofs, the generic proof in the context of figurate
numbers is rated higher in all three cases (conviction, verification and explanation).
Accordingly, the notational system of figurate numbers seems to be more con-
vincing and explanatory for the students and seems to imply a higher form of
verification for them.

The fact that the formal proof is always rated higher than the generic proofs is a
little surprising, because in the generic proofs the argument is explicitly written
down, in addition to the concrete examples that illustrate the argument. These
results conflict with the assumption that generic proofs are more explanatory by
themselves (compare Hemmi 2006; Rowland 1998). But one can conclude that in
this study, the mathematical symbolic language is perceived as both convincing and
explanatory by the students and that the pre-service teachers accept the verification
fulfilled in the formal proof.

Concerning the proof with geometric variables, one might assume that this kind
of representation might not be known to all students. In addition, this proof was the
only one that was not accompanied by any narrative or algebraic-symbolic
expression. This fact might also explain the high variation of ratings.

It seems obvious that students’ ratings of the proofs also rely on their former
mathematics classes at school. Here, the concept of the didactical contract of
Brousseau (1997) and the theory of socio-mathematical norms of Yackel and Cobb
(1996) can be taken into account to give explanations for students’ choices.
Students learned explicitly and implicitly what kind of argument they might con-
sider as a proof or not during their former mathematics classes at school. In
addition, the content of an argument and its appearance has to be considered. Also
Healy and Hoyles (2000) and Stylianides and Stylianides (2009) stress that the
appearance of an argument influences learners’ evaluation.

Following these considerations, the results do not only depend on the different
kinds of proofs (the appearance) and on the different statements being proved, but
also on the different educational background of the participants. However, as has
been shown above, a geometrical representation does not guarantee that the proof
will be considered explanatory. On the contrary, when the students are not familiar
with this kind of representation, they may not understand the argument. These
findings stress the awareness that a representation is neither self-evident nor
self-explanatory and that its use does not necessarily lead to understanding (cf.
Jahnke 1984). These results can be supported by taking a semiotic perspective. I.e.,
Peirce introduces the term ‘collateral knowledge’ to subsume all the knowledge one
needs to read and to work in a notational system with some kind of representations
he calls diagrams (Hoffmann 2005; Stjernfelt 2000). This collateral knowledge has
to be developed by learners to do mathematics in general and to perform and to
understand mathematical reasoning in particular. Following these considerations,
learners must spent some time to acquire representations and symbols as mathe-
matical tools. Working in and reading a notational system has to be learned
explicitly (as proposed in the context of diagram literacy in Diezmann and English
2001). But as was shown above, when the mathematical symbolic language has
been acquired by a learner, it becomes a convincing and explanatory tool to fulfill
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verification. More research is needed to investigate the role of students’ former
mathematics classes, the content of an argument and its representation when dealing
with mathematical proof.

Having in mind that generic proofs and figurate numbers are said to be useful
and adequate tools to perform reasoning and proving even in school mathematics,
several questions arise: How can school students develop an adequate under-
standing of mathematical proof when they might not understand or accept the
general verification fulfilled by a given (generic) proof either? Do school students
or students at university have enough time to acquire collateral knowledge about all
the representations and symbols the teachers want them to use? How might students
at school and at university learn about the different functions of mathematical proof
when not perceiving them? Following these considerations, it seems valuable to
highlight the meaning of proof acceptance when discussing forms of proofs and
proving in the classroom.

As Hanna (1995) points out, explanatory proof can have different forms
depending on the classroom context and the experience of the learners. According
to the results of this study, one has to consider the explanatory power of the
mathematic symbolic language and to rethink the concept of proofs that prove and
proofs that explain.
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Chapter 17
When Is a Generic Argument a Proof?

David Reid and Estela Vallejo Vargas

Abstract We discuss whether a generic argument can be considered a proof. Two
positions on this question have recently been published which focus on the fussi-
ness of an argument as a deciding criterion. We take a third view that takes into
account psychological and social factors. Psychologically, for a generic argument to
be a proof it must result in a convincing deductive reasoning process occurring in
the mind of the reader. Socially, for a generic argument to be a proof it must
conform to the social conventions of the context. For classroom settings, we suggest
two kinds of evidence that should be reflected in written work in order for a generic
argument to be accepted as a proof. These kinds of evidence reveal the linkage
between the psychological and social factors.

Keywords Generic arguments � Proof � Social perspectives � Psychological per-
spectives � Evidence

Introduction

A generic argument “involves making explicit the reasons for the truth of an
assertion by means of operations or transformations on an object that is not there in
its own right, but as a characteristic representative of its class. The account involves
the characteristic properties and structures of a class, while doing so in terms of the
names and illustration of one of its representatives” (Balacheff 1988, p. 219). The
“characteristic representative of its class” is called a generic example (Mason and
Pimm 1984). Such arguments have been discussed in the mathematics education
literature since Mason and Pimm introduced the terms “generic example” and
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“generic proof”, and this discussion has frequently included debate about if and
when generic argument are acceptable mathematical proofs. For example, Leron
and Zaslasvsky (2013) write,

The main weakness of a generic proof is, obviously, that it does not really prove the
theorem. The “fussiness” of the full, formal, deductive proof is necessary to ensure that the
theorem’s conclusion infallibly follows from its premises. (p. 27)

Yopp et al. (2015) contest this,

We … propose that students can make and judge the viability of generic example argu-
ments and that in certain situations … these arguments can be accepted as proof. (p. 10)

In this chapter we take up this debate, and argue that the main criterion used by
Leron and Zaslavsky as well as Yopp, Ely, and Johnson-Leung to distinguish proofs
from non-proofs, “fussiness”, is not in fact the criterion that is critical in determining
whether an argument using a generic example is a mathematical proof. We take an
alternative view that takes into account also psychological and social factors.

Fussiness

Movshovitz-Hadar (1988) also maintains that a generic argument cannot be a
mathematical proof.

The proof of a generic example should not be confused with a fully general proof. It only
suggests the full proof through a generalizable concrete example. From the purely logical
point of view there is no replacement for the formal proof. (p. 18)

In mathematics education there is wide agreement that formal proofs are needed.
The NCTM (2000) Standards say that students should understand that a proof is an
argument “consisting of logically rigorous deductions of conclusions from
hypotheses” (NCTM 2000, p. 56). The need for logically rigorous deductions based
on previously established propositions is the “fussiness” called for by Leron and
Zaslavsky and which Yopp, Ely, and Johnson-Leung claim generic argument can
achieve “in certain situations”.

But is fussiness actually a characteristic of mathematical proofs? Not if it is
absolute and complete fussiness.

For many mathematical investigations, full mathematical formalization and complete for-
mal proof, even if possible in principle, may be impossible in practice. They may require
time, patience, and interest beyond the capacity of any human mathematician. Indeed, they
can exceed the capacity of any available or foreseeable computing system. (Hersh 1993,
p. 390)

Aberdein (2012) elaborates Epstein’s (2012) model of proof based on mathe-
matical practice. He characterizes mathematical proofs as an argument with two
parallel structures, one argumentational and the other inferential. The inferential
structure has absolute and complete fussiness. Every step is a deduction based on
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and justified by previous propositions. It is fully formal. But it is never actually
presented. As Hersh points out this is usually impossible. Instead, using the
argumentational structure “mathematicians attempt to convince each other of the
soundness of the inferential structure” (Aberdein 2012, p. 362).

This account both conserves and transcends the conventional view of mathematical proof.
The inferential structure is held to strict standards of formal rigour, without which the proof
would not qualify as mathematical. However, the step-by-step compliance of the proof with
these standards is itself a matter of argument, and susceptible to challenge. Hence much
actual mathematical practice takes place in the argumentational structure. (p. 363)

mathematical proofs are not “logically rigorous deductions of conclusions from
hypotheses” as the NCTM asserts. Instead, they are arguments that such deductions
exist. As Hardy observed long ago, proofs do not prove in the formal sense, they
point.

If we were to push it to its extreme we should be led to a rather paradoxical conclusion; that
we can, in the last analysis, do nothing but point; that proofs are what Littlewood and I call
gas, rhetorical flourishes designed to affect psychology, pictures on the board in the lecture,
devices to stimulate the imagination of pupils. (Hardy 1928, p. 18, his emphasis)

Furthermore proofs are not completely fussy.

Mathematical arguments, just like arguments in our daily lives, leave much unsaid. And of
what is said, much is only hints or sketches, with lots explicitly left to the reader. (Epstein
2012, p. 269)

Psychological Factors

Whether or not generic argument are fussy, we believe this is not the criterion that
determines if they are proofs, as proofs are not completely fussy either. To be
proofs, generic argument must fulfill the function of argumentative structures, to
point to the inferential structure, to affect psychology, to stimulate the imagination.
As Fischbein (1982) states, “there are frequent situations in mathematics in which a
formal conviction, derived from a formally certain proof, is NOT associated with
the subtle feeling of ‘It must be so’, ‘I feel it must be so’” (p. 11). So, for some
readers this stimulation of the reader’s mind might be more difficult to achieve
using fussy formal proofs than with generic arguments that qualify as proofs.

As examples of generic argument, we include the three following arguments for

the claim: “Prove that the sum of the first n natural numbers is n nþ 1ð Þ
2 ”.
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Argument 1

Consider the sum 1þ 2þ 3þ 4þ 5þ 6þ 7þ 8þ 9þ 10. Write this sum, and the reverse,
and add them:

1þ 2þ 3þ 4þ 5þ 6þ 7þ 8þ 9þ 10

10þ 9þ 8þ 7þ 6þ 5þ 4þ 3þ 2þ 1

11þ 11þ 11þ 11þ 11þ 11þ 11þ 11þ 11þ 11 ¼ 10� 11

Because the sum was added to itself, dividing 10� 11 by 2 gives the sum.

Argument 2

Consider the sum: 1þ 2þ 3þ 4þ 5þ 6þ 7þ 8

Argument 3

n is either odd or even.

First, consider an odd n, for example 7. Then the sum is 1þ 2þ 3þ 4þ 5þ 6þ 7. You can
rearrange this is to 3 pairs: 1þ 7; 2þ 6; 3þ 5, all adding up to 8, with the 4 in the middle
left out. So the sum is 3� 8þ 4, or in general n�1

2

� �
nþ 1ð Þþ nþ 1

2

� �
, which simplifies to

n nþ 1ð Þ
2

� �
.

Next, consider an even n, for example 8. Then the sum is 1þ 2þ 3þ 4þ 5þ 6þ 7þ 8.
You can rearrange this is to 4 pairs: 1þ 8; 2þ 7; 3þ 6; 4þ 5 all adding up to 9. So the sum

is 4� 9, or in general n
2

� �
nþ 1ð Þ� �

, which simplifies to n nþ 1ð Þ
2

� �
.
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At the level of school mathematics, Stylianides (2007b) provides a conceptu-
alization of the meaning of proof that was built taking into account the four major
elements of any argument:

The four elements are the argument’s foundation (i.e., what constitutes its basis: definitions,
axioms, etc.), formulation (i.e., how it is developed: as a logical deduction, as a general-
ization from particular cases, etc.), representation (i.e., how it is expressed: using everyday
language, algebraically, etc.), and social dimension (i.e., how it plays out in the social
context of the community wherein it is created). (Stylianides 2007a, p. 2)

In Stylianides’ terminology the term “formulation” is ambiguous. Does it refer to
the reasoning going on in the mind of the author, or in the mind of the reader, or is it
independent of any mind? Our examples illustrate this ambiguity. For instance, as
Argument 1’s authors we were thinking of 10 as a generic example, and the
argument as a proof, as it would work in exactly the same way for any number. But
a reader might assume we chose 10 as an example that is sufficiently large to be a
typical number, so that if it works for 10 it would probably work for other numbers.
In Balacheff’s (1988) terminology, the reader sees 10 as a “crucial experiment”, not
a generic example. Or in Aberdein’s (2012) terms we intended our argument to
point to a deductive inferential structure, but the reader might not follow that
pointer. Thus the argument has two possible “formulations”. In one the argument
uses logical deduction on a generic example, and we would consider it a proof. In
the other, it is a generalization from a particular case that has been chosen to be
typical, but is not seen as general. This ambiguity means “formulation” cannot be
independent of a mind; the determination of the formulation of an argument
depends on a psychological process occurring in a reader (who might be the author
of the argument). To be a proof we believe a generic argument must be truly
generic, and that depends on a psychological process that might be different for
different readers. Something similar can be seen with the other two arguments
above.

Social Factors

Even if a generic argument is psychologically a proof, in that it points to a
deductive inference structure, it may still not be socially acceptable as a proof.
Stylianides (2007a) argues that “the convincing power of an argument is by itself
not enough to capture the social dimension of proof in school settings” (p. 12). We
believe that what is psychologically convincing and what is socially convincing are
mostly different. “A proof becomes a proof after the social act of ‘accepting it as a
proof’. This is true of mathematics as it is in physics, linguistics, and biology”
(Manin 1977, p. 48). And it is also true in classrooms.
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An argument that could count as proof in a classroom community should be accepted as
proof by the community – and, thus, it should be convincing to the students – on the basis
of socially accepted rules of discourse that are compatible with those of wider society.
(Stylianides 2007a, p. 15)

Hence, the arguments above might be differently considered from psychological
and social perspectives. It might be a proof in a school community or in ancient
Greece, but might not be a proof in the university mathematical community.

Limiting our view of proofs by just taking into account the “fussiness” of an
argument would not allow us to acknowledge that proof and proving exist also in
social settings, like schools, with their own criteria for proof.

As we noted, at the level of the mathematicians’ community the criteria are
broadly known by all members belonging to that community. But what happens at
school level? Do school students know “a priori” what a generic argument is? Do
they really understand this kind of arguments (either those they write or read)? How
can a mathematics (school) teacher know his/her students actually understand
generic arguments? What would be the classroom criteria for agreeing if and when
an argument is a proof? Can those class rules be determined? How?

We believe that one key point to take into account here is clear rules guiding the
classroom work in the context of proof, which should also include the case of
generic arguments. We return to this in the next section.

Implications for Education: Connecting Psychological
and Social Factors

Many authors have pointed out the importance of working with generic examples
(e.g., Balacheff 1988; Kempen and Biehler 2015; Malek and Movshovitz-Hadar
2011; Mason and Pimm 1984). In any case, we may say that generic arguments are
powerful tools as they can make proof construction accessible to students at any
level.

As we have outlined above, determining if a generic argument is a proof or not
cannot be done solely on the basis of a characteristic of the text itself, like
‘fussiness’. This is the ‘absolutist’ perspective Stylianides et al. (2016) refer to
when discuss perspectives that can be considered in relation to the function(s) of a
proof. We adopt what they call a ‘subjectivist’ perspective, in which psychological
processes occurring in readers and the author of the text are considered, and in
addition we consider the standards for proof in the community. We suggest an
intertwined relationship between the psychological and the social factors as a way
to include the use and understanding of generic arguments in classroom settings.

In mathematics teaching, the teacher is setting and the students are learning the
classroom standards for proof in part through the acceptance or rejection of argu-
ments. If generic arguments are to be accepted in classrooms (as Yopp et al. 2015,
among others, have advocated) then it is important to provide teachers and students
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with a framework in which to decide if a generic argument is a proof or not. There
also needs to be a framework for the social acceptance of proofs that overcomes the
limitation that each individual has access only to their own psychological processes.

In the following sections we outline some criteria that could form such a
framework. This framework seeks to establish a bridge between the psychological
and social factors considered above. This interconnection between these two factors
is relevant in the sense that it can promote the kind of explicitness necessary in
classrooms when discussing whether or not a generic argument is a proof. And as
Selden (2012) notes, “Understanding and constructing such proofs entails a major
transition for students but one that is often supported by relatively little explicit
instruction” (p. 392). Even though the author refers to proofs in general, we believe
that in this context, making this framework explicit in classrooms when working
with generic arguments might help, first, students to be more aware of what their
considerations are when involved in generic arguments writing, and second, it
might also help teachers to have in some way access to the students’ psychology.

The Need for Further Examples

Fischbein (1982) observed that once a mathematics statement has been proven,
there should be no need for further examples. While this is not categorically true, as
examples can have purposes beyond verification (see Lockwood et al. 2012), a
significant difference between a generic example and a specific example is that
additional specific examples add nothing to a generic example. A generic example
provides a model for the generation of endless specific examples, removing the
need to actually produce them. However, multiple specific examples can be
important in the formulation of an argument, as a systematic variation of examples
can be used to reveal the structure of a generic example (see Fig. 17.1).

Fig. 17.1 A generic proof using several examples to show how the structure applies to other cases
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In the classroom, the teacher can ask whether the students believe they need
more examples to verify a statement, and based on their need for more examples
and the use they make of those examples (to provide empirical evidence or to reveal
structure) the teacher can determine if the students understood the examples as
generic or specific. On the other hand, in written work (for instance in written tests)
one might need to have other kind of evidence. We will return to this point later (see
Reconstructing psychology from text).

Understanding

An important difference between a evidence and an argument with a specific
example, or even a set of specific examples, is that a generic argument can be
explanatory. It is difficult to define exactly what makes a proof explanatory.
Steiner (1978) suggests that

An explanatory proof makes reference to a characterizing property of an entity or structure
mentioned in the theorem, such that from the proof it is evident that the result depends on
the property. It must be evident, that is, that if we substitute in the proof a different object of
the same domain, the theorem collapses; more, we should be able to see as we vary the
object how the theorem changes in response. (p. 143)

When applied to a proof using a generic example, this suggests that for an
example to be (psychologically) a generic example, it must be possible to see that as
the example varies in some ways the theorem remains true. For example, in
Argument 1, the final number in the sum can be larger or smaller, but the numbers
must be consecutive and must begin with 1 for the argument to work. The argument
can reveal to a reader the properties of the example that are important and in this
way they explain the theorem. This means that a reader can answer questions like
“Why divide by 2?”, “Why multiply by n + 1?” when given either Argument 1 or
Argument 2. Not all arguments are equally explanatory. Argument 3 makes it more
difficult to understand the division by 2, because the reason for it is slightly different
in the two cases. In contrast, however, a simple example only shows that the
formula works for that example, not why.

Reconstructing Psychology from Text

In written work, the teacher does not have the immediate opportunity to ask the
student questions to determine their thinking. And it is sometimes necessary to
decide if a written text is a generic argument that qualifies as a proof without asking
further questions (for example when evaluating examinations). In educational set-
tings, it is desirable for both teachers and students to have clear criteria for the
evidence that should be included in written work. This evidence should be sufficient
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to allow the teacher to determine whether the students’ attention is on particular/
specific examples or a general structure. We suggest that two kinds of evidence
should be included in written work:

(1) Evidence of awareness of generality;
(2) Mathematical evidence of reasoning.

Evidence of awareness of generality can be revealed by phrases such as “the
same reasoning can be used for the other cases”, or “it also applies to the other cases
involved”, or as in the example seen in Fig. 17.1, the student includes: “this is true
for all even n”. This kind of evidence shows that the author is actually aware that
she is working with an argument that is general enough to be valid in all cases
involved in her statement. This evidence must be part of the awareness the students
should have when presenting a generic argument. The main reason of considering
this as relevant evidence is the need to be sure whether or not the students are aware
that they are not only dealing with empirical evidence, but that their work shows
general structures through the use of their examples. If this is the case, they should
include this as part of their written work.

Mathematical evidence of reasoning, reveals the form of the reasoning behind the
argument. This kind of evidence mainly points to the mathematical reasons for why
the same structure can be extrapolated for other cases from the example(s) given, and
it is based not only on the conditions of the problem given but also on the ground
knowledge the community shares at that point (the social aspect). For example, in
Fig. 17.1, the student is using certain assumptions which seem to be accepted in the
context of her class: the square of a number “n” is a square of dots with “n” rows and
“n” columns of dots; a number is divisible by 4 if you can make groups of 4 dots
without having any dot without grouping it, etc. And based on these assumptions and
her data (she is only working with even numbers), she provides the mathematical
reasons of why the conclusion holds through the use of her examples.

Both kinds of evidence are relevant when working with generic arguments. One
might think of a student including the first kind of evidence in her written work, but
if she does not provide the reasons (mathematical evidence of reasoning) that
support her “apparent” awareness of generality, then the student’s argument could
not qualify as a proof in this classroom environment. Or vice versa, if a student
works on a general well-structured argument through the use of examples, but if she
does not see it as general (she is not aware of this generality), then it is (psycho-
logically) not a proof for that student. In any case, it is a challenge for teachers to
determine whether or not an argument based on an example (or a set of examples) is
a generic proof without having sufficient evidence of both kinds.

In this context, the following questions can be considered to guide students when
writing generic arguments:

(1) Did you state that the argument can be applied to all other cases in discussion?
Can it?

17 When Is a Generic Argument a Proof? 247



(2) Did you describe the reasons (sufficient deductive evidence) behind the generic
argument? That is, have you identified the underlying structure in the example
or examples, and shown why it occurs in every case?

We think that having in mind these two kinds of evidence, the students can be
more aware of what is expected from them when writing a generic argument so it is
clearer that they regard it whether or not as a proof, and it might help a reader
reconstruct the author’s psychology.

These classroom criteria for the kind of evidence that should be provided must
be known by the classroom community. They are also part of the social context for
generic arguments in the classroom. Indeed, these criteria establish a link between
the psychological and social factors since they indicate both what the author finds
convincing using deductive reasoning and whether the argument conforms to the
classroom conventions.

For example, in Argument 1, it is not clear enough that the author is aware that
the argument applies to any natural number. A reader might have this awareness of
generality, but it is a mistake to assume an author has the same awareness without
having evidence. Argument 1[a] shows a variation of Argument 1 that includes
evidence of awareness of generality.

Argument 1[a]

Consider the sum 1þ 2þ 3þ 4þ 5þ 6þ 7þ 8þ 9þ 10. Write this sum, and the reverse,
and add them:

1þ 2þ 3þ 4þ 5þ 6þ 7þ 8þ 9þ 10

10þ 9þ 8þ 7þ 6þ 5þ 4þ 3þ 2þ 1

11þ 11þ 11þ 11þ 11þ 11þ 11þ 11þ 11þ 11 ¼ 10� 11

Because the sum was added to itself, dividing 10� 11 by 2 gives the sum.

The same reasoning can be used for any natural number n, and not only for the case of 10.

The addition of the final line provides evidence of awareness, but the form of the
reasoning behind the argument is still not clear. Argument 1[b] shows a variation of
Argument 1[a] that also includes mathematical evidence that reveals the form of the
reasoning behind the argument.

Argument 1[b]

Consider the sum 1þ 2þ 3þ 4þ 5þ 6þ 7þ 8þ 9þ 10. Write this sum, and the reverse,
and add them:

1þ 2þ 3þ 4þ 5þ 6þ 7þ 8þ 9þ 10

10þ 9þ 8þ 7þ 6þ 5þ 4þ 3þ 2þ 1

11þ 11þ 11þ 11þ 11þ 11þ 11þ 11þ 11þ 11 ¼ 10� 11
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Adding down always gives 11 (one more than the last term in the sum) because in the first
case we are adding 10þ 1 (the last term plus 1), and then we are adding a number that is
one more (1 becomes 2) to a number that is one less (10 becomes 9). The numbers are
consecutive, so the increase in the top row is the same as the decrease in the bottom row.
There is one sum adding down for every number in the top row, which is 10 in this case. So
we multiply the highest number in the sum (10) by one more than the highest number (11).
The product is two times bigger than it should be, because we added
1þ 2þ � � � þ 9þ 10ð Þ twice, so to find the real sum we divide the product 10� 11ð Þ by 2.
The same reasoning can be used for any natural number n, and not only for the case of 10.

With the addition of these last lines the status of Argument 1 becomes less
ambiguous. As readers trying to reconstruct the psychology of the author of
Argument 1, the evidence included in Argument 1[b] gives us a basis to believe
that the author was aware of the generality of the argument, and used deductive
reasoning to arrive at the conclusion. Thus this argument meets the criteria for a
generic argument to be a proof in the classroom. It not only makes the reader aware
of the general character of the argument, but also reflects the author’s awareness of
this generality.

Kempen and Biehler (2015) call the text we added in Argument 1[b] “narrative
reasoning” and say such a text should accompany an argument using generic
examples in order for it to be considered a proof.

It is the narrative reasoning that follows the generic examples, which makes a generic proof
a valid general argument. So it gets possible to stress the differences between purely
empirical examples and valid general arguments. (p. 137)

However, we do not suggest that the only way to provide mathematical evidence
is with the use of narratives. Some students might feel confident using written
words to express their ideas of generality, but others might struggle with linguistic
formulations and be better able to use other representations to express the same
idea. Argument 1[c] (in Fig. 17.2) shows an alternative way to present Argument 1
[b], without the use of much written language.

Fig. 17.2 Argument 1[c] in which markings and labels replace most of the verbal narrative
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In both cases (Arguments 1[b] and 1[c]) the general structure of the argument
has been pointed out, and there is evidence of awareness of generality. Hence these
two examples of generic arguments can be considered proofs, according to the
criteria suggested for the context of written work in a classroom.

Conclusion

Examples can be used when providing an argument that might qualify as a proof.
Depending on whether or not the general structure through the use of examples has
been pointed out in an argument (with the use of narratives, or other representa-
tions), students can count on a more accessible way to present proofs in classroom
settings.

In this article we have argued that the criterion of fussiness is inadequate to
decide if generic arguments are proofs. Instead we suggest two other requirements,
one psychological and one social. Psychologically, for a generic argument to be a
proof it must result in a general deductive reasoning process occurring in the mind
of the reader that convinces the reader that there exists a fully deductive inference
structure behind the argument. Socially, for a generic argument to be a proof it must
conform to the social conventions of the context. In school classrooms or in ancient
Greece a generic argument might be acceptable proof. In a university classroom
exactly the same argument might not be. Searching for properties of an argument
that make it a proof is insufficient because being a proof depends on psychological
and social factors independent of the argument. In school classrooms the social
conventions are partly based on mathematical criteria, but also on the need in
schools for students to convince the teacher that the relevant awareness and rea-
soning occurred.

Mason and Pimm (1984) raised several questions about generic examples when
introducing the concept:

How can you expose the genericity of an example to someone who sees only its specificity?
Apart from stressing and ignoring, and repeating the general statement over and over, how
can the necessary act of perception, of seeing the general in the particular, be fostered?

How can you discern the extent of the generality perceived by someone else when looking
at a particular example together?

Why do we offer students examples in class, and what are they supposed to make of them?
If examples are always examples of something, how can students become aware of that
which the examples are supposed to be exemplifying? (pp. 287–288)

We hope that we have addressed in part these questions, and that we have
contributed to the ongoing conversation on the role of generic examples in proof
and proving.
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Chapter 18
Systematic Exploration of Examples
as Proof: Analysis with Four Theoretical
Frameworks

Orly Buchbinder

Abstract This chapter offers a multi-layered analysis of one specific category of
students’ example-based reasoning, which has received little attention in research
literature so far: systematic exploration of examples. It involves dividing a con-
jecture’s domain into disjoint sub-domains and testing a single example in each
sub-domain. I apply four theoretical frameworks to analyze student data: The
Mathematical-logical framework for the interplay between examples and proof,
Proof schemes framework, Transfer-in-pieces framework, and the Theory of in-
structional situations. Taken together, these frameworks allow to examine the data
from mathematical, cognitive and social perspectives, thus broadening and deep-
ening the insights into students thinking about the relationship between examples
and proving. Implications for teaching and learning of proof in school mathematics
are discussed.

Keywords Example-based reasoning � Proof by cases � Proof-schemes
Transfer in pieces � Instructional situations � Multiple theoretical perspectives

Introduction

Students’ reliance on empirical evidence for proving general statements is a
widespread and well-documented phenomenon (e.g., Balacheff 1988; Healy and
Hoyles 2000). In theorizing about its nature, researchers proposed several useful
constructs such as proof schemes (Harel and Sowder 1998) and example-based
reasoning (Healy and Hoyles 2000). Researchers have also distinguished between
example types and example uses in proving by students (Ellis et al. 2013) and by
mathematicians (Lockwood et al. 2016). Other studies have focused on how stu-
dents understand the interplay between examples and proving (Buchbinder 2010)
and on the relationship between example generation and proof production (Alcock
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and Weber 2010; Sandefur et al. 2013). These studies have shown that example
generation can support proof production, when examples can illuminate the
underlying structure of the proof, or definitions of key mathematical concepts in the
conjecture. Similarly, counterexamples can provide insights into why a particular
conjecture is false, and serve as a vehicle to refine the conjecture.

Despite the reports on productive uses of examples in proving, prevailing evi-
dence shows students rely on supportive examples for drawing general conclusions.
This chapter contributes to this body of knowledge by taking a closer look at one
specific category of students’ example-based reasoning—systematic exploration of
examples. It involves dividing a domain of a statement into disjoint subdomains,
and testing a random example in each subdomain to determine the truth-value of the
statement. This category was identified in a study that examined high-school stu-
dents’ conceptions of the roles of examples in proving (Buchbinder 2010). This
category has been chosen for closer analysis not because of its commonality, but
because even though the overall reasoning was incorrect, students’ arguments seem
to involve quite sophisticated mathematical thinking. Hence, deeper analysis of
responses in this category might shed light on the reasoning processes underlying
students’ thinking, inform our understanding of students’ conceptions of proving
and suggest potential mediating solutions.

I start by presenting the task, followed by two responses produced by students,
which illustrate systematic exploration of examples. Next I will interpret the data
using four theoretical frameworks and discuss how these different types of analysis
illuminate and complement each other.

The Task and the Data

The following task was given to 6 pairs of high-attaining 10th grade students (7
girls and 5 boys) from two Israeli high-schools. All students had prior experience
with proofs in the context of high-school geometry. In the Israeli curriculum,
high-attaining students study Euclidean geometry with emphasis on proof in grades
9 and 10. Geometry is studied concurrently with algebra, which emphasizes
developing proficiency with algebraic techniques. Thus, although students were
proficient in algebra, their experience with proofs in algebra was limited.

The students volunteered to participate in the study, which consisted of a series
of task-based interviews, conducted separately with each pair of students by the
author of this chapter. The mathematical content of the tasks was taken from the
regular middle or high-school curriculum, although the specific tasks were unfa-
miliar to students in both content and structure. The tasks were given in a paper and
pencil form, with no time limitations. Students were allowed to ask clarifying
questions about the wording of the tasks. All interviews were videotaped and
transcribed for analysis.
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During the third interview session, the students were presented with the fol-
lowing task:

The task: A fraction between two fractions
A student took two fractions 1

2 and
3
4, and added the two numerators and the

two denominators in the following way: 1þ 3
2þ 4 ¼ 4

6 ¼ 2
3. The student noticed

that the resulting fraction 2
3 is between the two original ones: 12\

2
3\

3
4. Is this

a coincidence?

The hypothetical student’s observation leads to a conjecture, which can be
written: For any two fractions a

b\
c
d, it is true that:

a
b\

aþ c
bþ d\

c
d. The conjecture is

true, and is known as the mediant property. Several versions of this task have been
used in prior research, for example, Bishop (2001) discussed it in the context of
teacher decision making in the midst of instructional activity. Rowland and Zazkis
(2013) as well as Stylianides and Stylianides (2010) discuss multiple approaches for
proving the mediant property1 as well as applications of versions of this task for
teacher education.

In the context of the study in which the data were collected, the mediant property
was introduced within Is this a coincidence? type of task (Buchbinder and
Zaslavsky 2011). The task consists of the description of steps taken by a hypo-
thetical student, and an observation he/she makes following these steps. The dis-
tinctive design feature of this type of task is that the conjecture is not stated
explicitly; its formulation is left to students, and may vary based on their inter-
pretation of a single example presented in the task. For example, one pair of
students noticed that the numerators and denominators of the two fractions 1

2 and
3
4,

are four consecutive natural numbers, and assumed this to be a set of relevant
fractions. Hence, they formulated and proved that a median property holds for such
fractions. In the two data cases, discussed in this chapter, students took the domain
of the task to be all fractions.

The question accompanying the description and the observation—is this a
coincidence?—implies the need to test whether the observation made by the student
is unique to the single example tested, or an instance of a general rule, which would
then require a proof. To assist the students to interpret the question—is this a
coincidence?—as intended by the researcher, the task included two additional
prompts. One, required students to write down a conjecture as they interpret it from
the task; and second, describe what they think is needed in order to prove or
disprove the conjecture, that is to determine whether the observation made by the
student is a coincidence, or not. Successful completion of the task might involve
testing a few numeric examples to convince oneself that the statement is true,
followed by an algebraic proof to show that the observed property is “not a

1See Nelsen (1993) for several elegant proofs without words of the mediant property.
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coincidence” (Buchbinder and Zaslavsky 2011). Note that in this particular task, A
fraction between two fractions, examples can provide hardly any insight into the
underlying structure of the proof. In order to prove the assumed conjecture, one
needs to change the mode of inquiry from testing examples to creating and
manipulating an algebraic representation of the mediant property.

Such algebraic proof is within the mathematical competence of secondary stu-
dents; indeed, three out of six student pairs produced it. One student pair found
what they thought was a counterexample, but in fact was a calculation error; two
remaining pairs of students justified the conjecture through an approach which I
term systematic exploration of examples, and it is illustrated below.

Illustrative Student Response 1

Neta and Ronit2 divided the domain of all fractions into two subdomains: proper
and improper fractions, and produced, what they thought was a proof of the mediant
property by examining one randomly chosen pair of fractions in each subdomain,
and additional pair of fractions with one fraction chosen from each of the two
sub-domains. As their final answer the students produced the following justifica-
tion, they wrote:

Both fractions smaller then 1: 1þ 1
4þ 2 ¼ 1

3 ! 1
4\

1
3\

1
2 true.

One fraction <1, another fraction >1: 2þ 6
3þ 3 ¼ 4

3 ! 2
3\

4
3\

6
3 true.

Both fractions bigger then 1: 5þ 6
2þ 4 ¼ 11

6 ! 6
4\

11
6 \

5
2 true.

In order to prove that when you add two numerators and two denominators the resulting
fraction is always between the original ones, you need to prove it with other cases that will
fit the rule. Like here, we tried different ones and we proved it that it is not a coincidence.

Note that Neta and Ronit did not consider the case where both fractions are equal
to 1, or the case in which one fraction is equal to one, and the other is not, since
they interpreted the task as being about two non-equal fractions. The next example
illustrates a similar line of reasoning, but with less conventional partition of the
domain of conjecture.

Illustrative Student Response 2

Tami and Natalie noticed that in fractions 1
2 and

3
4 the denominator is greater than the

numerator by 1, and asserted that the conjecture is true for all pairs of fractions

2All names are pseudonyms.
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which have equal difference between the numerator and the denominator, that is,
pairs of fractions: ab and

c
d, such that b� a ¼ d � c. Therefore, the students focused

on two sub-domains: in their words, “fractions that have the same difference
between the denominator and the numerator,” such as 4

7 and
6
9 7� 4 ¼ 9� 6ð Þ and

fractions that do not have this property, for example: 5
12 and 3

4 12� 5 6¼ 4� 3ð Þ.
Tami and Natalie proved the conjecture by checking one example in each
sub-domain by saying:

Tami: This is what we need to prove this [conjecture]. Cases. Here we took fractions with the
same difference and we got: 4

7\
4þ 6
7þ 9\

6
9 which is true. And here we took fractions

where the difference is not the same, and we got the correct answer 5
12\

5þ 3
12þ 4\

3
4. This

means that this is always true.

When pressured to explain their reasoning the following interaction occurred:

Interviewer: I am trying to understand…. In all other tasks, you were constantly saying things
like: “I want to use variables, I want a and x, the numbers bother me.” And here
….

Tami: Because this is a completely different thing! In Geometry, you can play with
angles, you have 180º and so on. And here, you can’t play with it. In algebra, it’s
better to prove with cases: smaller, equal to, inequalities and things like that.
You can substitute numbers because it’s easier than with x-es; x-es are for
general cases when you want to prove that something is true. But here, for each
special case…Like we did here. Let’s say, the difference is the same—it’s true;
the difference is not the same—it’s also true. So, this is what you need—
substitute numbers. Not x-es.

Interviewer: Is this something that you would write on a test?

Tami: Yes, yes. Maybe, I would add something with x-es as well. But if I write x
xþ 1 it’s

the same as writing 3
4. Here the difference is the same, and here it’s the same. So,

what does it matter if I substitute x or a number? It will be the same. So, I prefer
numbers. It’s much easier.

Interviewer: Easier…and do you think it is equivalent?

Tami: Yes.

Towards Interpreting Students’ Responses

Given the setting of the task-based interviews as a part of research study, the
amount of time students devoted to the task (approximately 20 min), and their level
of engagement with it, it is unlikely that students’ responses are the result of
carelessness or time constraints; nor are they a product of insufficient algebraic
knowledge. Students’ use of systematic exploration of examples as a proving
strategy was a conscious choice. Their verbal and written justifications reflect
confidence in the appropriateness of their solutions.
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Other salient features of students’ answers include referring to their examples as
cases, rather than examples; the use of words proof and proof by cases; and
multiple references to inequalities. In mathematics, a proof by cases involves
dividing a domain of a statement into exhaustive cases, and proving a conjecture for
each case, or defining a set of subdomains that span the domain, and proving the
conjecture for each subdomain. For example, certain statements in elementary
number theory are proved by considering the domains of even and odd numbers
separately. It is possible that the two pairs of students thought they were applying
proof by cases by simply checking specific examples in each subdomain, instead of
proving the conjecture holds there.

Another interesting aspect of students’ responses is their multiple reference to
inequalities. To find a solution set of an inequality of the form y\axþ b, one first
graphs the equation y ¼ axþ b which divides the plain into three regions: the two
half plains on each side of the line itself (in case of a strict inequality the line itself
is not a part of the solution set). Then, a common procedure is to test a single
random point in each region to determine the solution set.

The point-testing strategy for solving inequalities is introduced in many sec-
ondary algebra textbooks with minimal or insufficient justification. Boero and
Bazzini (2004) note that this practice is common in many countries and might lead
to “a “trivialisation” of the subject, resulting in a sequence of routine procedures,
which are not easy for students to understand, interpret and control.” (p. 140). But
there are some notable exceptions when this strategy is presented with careful
attention to its mathematical validity. For example, in CME Project’s Algebra 1
textbook (Cuoco et al. 2013), a solution set to a linear inequality in two variables is
described as a collection of rays, where each ray is a solution to a one-variable
inequality for a fixed value of x. From this explanation, a point-testing strategy is
developed as a simplification of examining multiple rays. But when the focus of
instruction shifts from justifying the procedure to performing it fluently, it is not
clear to what extent students remain aware of theoretical grounds underlying and
restricting its applicability.

Solving linear, quadratic and rational inequalities is a part of Israel’s grade 10
curriculum, and point-testing is one of the common ways students are taught to
solve them. Hence, it is possible that students associated the task A fraction between
two fractions with solving inequalities, and applied some version of the
point-testing procedure learned in the context of inequalities to that proving task.

In the following I apply four theoretical frameworks to analyze the data: The
Mathematical-logical framework for example-proof interplay (Buchbinder and
Zaslavsky 2009), Proof schemes framework (Harel and Sowder 1998, 2007),
Transfer-in-pieces (Wagner 2006, 2010), and the Theory of instructional situations
(Herbst and Chazan 2012). My goal of choosing these frameworks was not to be
exhaustive about possible ways to analyze the data, clearly, alternative or additional
frameworks might be suggested further. These particular frameworks were chosen
because they allow to analyze mathematical responses of students working in pairs,
not just individuals. In addition, the frameworks represent three different perspec-
tives: mathematical (The Mathematical-logical framework for example-proof
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interplay), cognitive (Proof schemes framework and Transfer-in-pieces framework),
and social (the Theory of instructional situations). As such, each framework pro-
vides an additional layer of insight into student thinking about the relationship
between examples and proving. In this work, I follow Cobb’s (2007) suggestion to
view different theoretical perspectives as sources for ideas which can illuminate
different aspects of students’ mathematical activity.

Note, that since a comprehensive description of four theoretical frameworks is
not possible within the scope of a single chapter, the frameworks are only briefly
outlined. The reader is referred to the references for the extension.

Interpreting the Data with Four Theoretical Frameworks

Mathematical-Logical Framework for the Interplay Between
Examples and Proving

Buchbinder and Zaslavsky (2009) proposed a mathematical-logical framework that
describes four types of examples: supporting (or confirming), contradicting (or
non-confirming), and irrelevant (type 1 and type 2). The status of each type of
example with respect to proving or disproving a mathematical statement depends on
the type of statement: universal or existential. This status can be one of the fol-
lowing: sufficient (for proving or disproving); insufficient; indicating impossibility
to prove or disprove (e.g., confirming example indicates that an existential state-
ment cannot be disproved); or not enough information (e.g., supporting example
indicates uncertainty whether a universal statement is true or false). The framework
describes the status of all types of examples with respect to the type of statement.

Students’ responses can be mapped on to different aspects of the framework and
analyzed in terms of their alignment, or the lack of thereof, with conventional
mathematics, represented by the framework. Instances of alignment, such as a student
disproving a general statement upon discovering a counterexample, are considered
indicators of understanding of the relevant aspect of the framework; e.g., a status of
contradicting example in refuting a universal statement. Responses misaligned with
conventional mathematical reasoning are considered non-normative rather than as
indicative of misunderstanding. This apparent asymmetry in the interpretation of
mathematically correct and incorrect student work stems from the notion that erro-
neous student responses can mask other elements of conceptual understanding or
alternative mathematical thinking (Buchbinder 2010; Ron et al. 2010).

Since the object of the analysis is a mathematical response, the framework can
be applied to analyze responses of individual students as well as students working
in pairs or even small groups. Analyzing a set of responses to a collection of
carefully chosen mathematical tasks allows to diagnose specific area, or areas, in
which students’ responses are aligned or misaligned with conventional
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mathematics, and reveal strengths and weaknesses in students’ understanding3 of
the examples-proof interplay.

Applying this framework to the two cases presented above, shows that both
student pairs rely on the limited number of supporting examples for proving a
general conjecture. This inappropriate use of inductive inference is misaligned with
conventional mathematical reasoning, and therefore is considered a non-normative
response. As such, it can potentially indicate students’ problematic conception: In
accepting the illegitimacy of generalizing from a small number of supportive
examples. However, it can also reflect an alternative mathematical reasoning, or the
possible miss-application of otherwise correct mathematical ideas. Examining the
data from students’ perspective required application of additional analytic tools, as
described below.

Proof-Schemes Framework

Students’ responses can be interpreted using Harel and Sowder’s (1998) proof
schemes framework, which helps to identify sources of conviction for a particular
person or a community. Harel and Sowder (1998, 2007) define a proof scheme as a
set of processes that an individual, or a community, employs to convince them-
selves or others whether a certain assertion is true or false. The inclusion of a
community in the definition of a proof scheme makes this framework appropriate
for analyzing justifications produced by pairs of students. The taxonomy of proof
schemes consists of three classes, each of which has several sub-classes. In the
external conviction proof schemes the source of conviction resides within an
external authority, such as a book or a teacher, (the authoritarian proof scheme), the
appearance of an argument (the ritual proof scheme), or the presence of symbolic
manipulations (the non-referential symbolic proof scheme). In the empirical proof
scheme the source of conviction is either empirical evidence (the inductive proof
scheme) or perceptual clues (the perceptual proof scheme). The deductive proof
scheme is characterized by increased reliance on generality, operational thought and
logical inference.

In the responses above students utilize a combination of strategically and ran-
domly selected examples to prove a general conjecture. These data can be inter-
preted as evidence of the inductive proof scheme, meaning that what constitutes the
source of conviction and an acceptable mode of justification for the students is
empirical evidence, i.e., supportive examples. However, certain elements of stu-
dents’ responses can be interpreted as evidence of other proof schemes: a trans-
formational proof scheme, which is a sub-category of a deductive proof-scheme, or

3According to the framework, understanding is operationalized as consistent application of
inferences that are aligned with conventional mathematical knowledge.
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an external conviction proof scheme, specifically, ritual and authoritarian proof
schemes.

The data suggest that students seem to attribute greater generality to their
examples than might initially appear. For instance, Tami’s claim of equivalence
between x

xþ 1 and 3
4, and both student pairs’ use of the word cases rather than

examples, suggest that students viewed their examples as representative of some
general entities, or as generic examples (Mason and Pimm 1984; Leron and
Zaslavsky 2013). Harel and Sowder (2007) place a proof by generic example within
the transformational proof scheme. Although there is not enough evidence to claim
that students indeed viewed their examples as generic, the data show that, rather than
relying on the examples per se, both student pairs justified their reasoning by virtue
of the systematic process involved in choosing and testing these examples—the
process which they call “proof by cases.” Possibly, both pairs of students were under
impression that they applied some version of proof by cases in their response.
Viewed from this perspective, students’ proofs could be expressions of the trans-
formational proof scheme, in the sense that students were perusing a goal of proving
a conjecture for all cases by applying, what they thought, was valid logical inference.

On the other hand, students’ response can be an instance of application of
point-testing strategy, which they came to associate with solving of inequalities.
Viewed from this perspective, the proofs produced by students are indicative of the
ritual proof scheme and the authoritarian proof scheme, in the sense that students
might have developed a ritual for how proofs involving inequalities should look
like, instigated by the authority of a teacher of a textbook. The legitimacy of testing
a single or small number of examples in the context of solving certain types of
problems in school algebra, especially when supported by textbooks, can interfere
with students’ developing conceptions of mathematical proof as a general argu-
ment. Students who hold an external conviction proof scheme receive implicit,
unintentional support for reliance on supporting examples.

Transfer-in-Pieces Framework

Scholarship on the transfer of knowledge offers an additional lens for examining
students’ responses. Building on Smith et al.’s (1993) epistemology of
knowledge-in-pieces Wagner’s (2006, 2010) approach of transfer-in-pieces main-
tains that mathematical knowledge is dynamic and highly contextualized. The way
an individual interprets a particular mathematical situation is the result of complex
interactions between one’s prior knowledge and the situational context. Similarly,
an individual interprets two mathematical situations as “similar” or “different”
based on the available knowledge resources and contextual cues of the situation.
Wagner (2010) explains that “to say that resources are cued is to say that they are
actively available and accessible for use, likely serving to provide the language and
explanatory or inferential concepts by which the individual structures the situation”
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(p. 452). It is also important to note, that the transfer-in-pieces framework recog-
nizes that the social situation in which the problem solving takes place can influence
“which ideas have high cueing priority” (ibid.). Thus, application of the
transfer-in-pieces framework seems appropriate for analyzing proving activity of
pairs of students.

The data above suggests that students’ knowledge of both solving of inequalities
and proving by cases is fragmentized—although students acquired correct mathe-
matical ideas in these areas, they seem to apply them inappropriately. This is not
surprising, since intermediate and partial understanding are natural stages in the
process of growth of knowledge. Moreover, an individual who has been sensibly
using a certain concept in some contexts, may not have developed sufficient
knowledge resources that enable him or her to attend to and interpret available
information that calls for applying this concept in another contextual situation.
Wagner terms such set of knowledge resources a concept projection, and asserts
that the individual who have not have developed sufficient concept projection may
“still struggle or be entirely unable to make use of the concept in a new or unfa-
miliar situation” (Wagner 2010, p. 451). Wagner also suggests that once particular
knowledge resources are cued, they guide how an individual contracts the problem
situation in the way that it appears valid to the individual and affords him or her to
function and interact meaningfully with the problem and with other learners.

Applying the transfer-in-pieces framework to student responses, there is some
evidence to suggest that students have developed correct, but partial mathematical
knowledge of a concept of proof by cases, and of the procedure for solving linear or
rational inequalities. Yet, they have not developed sufficient concept projection that
will allow them to apply these concepts and procedures sensibly in novel situations.
It is possible than, that certain contextual features of A fraction between two
fractions proof-task, such as inequality sign, and algebraic fractions, cued students’
knowledge of solving inequalities. Once these concepts have been cued, they
triggered the use of language and inferential resources appropriate in that context,
such as point-testing approach, rather than solution strategy which would be more
appropriate in the context of proving, including proving by cases.

Instructional Situations Framework

The perspectives discussed above can be further augmented by applying Herbst and
Chazan’s (2012) theory of instructional situations. An instructional situation is a
system of tacit expectations and implicit norms that students and teachers develop
around a particular mathematical content or task type. These norms specify the
types of solutions students are expected to produce that would be deemed
acceptable by teachers. For example, Buchbinder et al. (2015) discuss how in the
instructional situation for solving equations teachers perceived correct mathematical
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solutions that deviate from the standard, canonical method for solving equations
(e.g., dividing all terms of an equation by a common factor as a first step) as
a-typical and less appropriate than canonical solutions.

In their research Herbst and Chazan explore the construct of instructional situ-
ations as a way to study the practice of teaching. But if the norms of instructional
situations develop as mutual expectations of teachers and students, it is reasonable
to assume that students would hold the same, or similar, types of norms of certain
instructional situations. I hypothesize that in the instructional situation for solving
inequalities, point-testing is a type of solution that would be considered normative
and acceptable by both students and teachers. However, in the instructional situa-
tion for doing proofs, testing a few examples would be considered inappropriate
and rightfully rejected by a teacher.

The construct of instructional situations provides a useful lens to analyze stu-
dents’ responses. The students in the study had prior experiences with proving in
geometry, and with solving inequalities in algebra. During the interview, Tami
made a clear distinction between acceptable modes of justification in geometry and
algebra by saying that they are “completely different.” Although she was aware that
“x-es are for general cases when you want to prove that something is true,” she
seemed to interpret the task as being about solving inequalities, saying: “In algebra,
it’s better to prove with cases: smaller, equal to, inequalities and things like that.”
Tami, therefore, recognized proving in geometry and solving algebraic inequalities
as two distinct instructional situations, with different expectations for solving
strategies. Hence if the students interpreted the given proof task as being about
solving inequalities, rather than a situation for proving a general statement, they
might have acted according to expectations they developed for what constitutes an
appropriate solution in the instructional situation for solving inequalities, instead of
applying solution strategies that are appropriate for the instructional situation for
proving.

Discussion

This chapter examined a special category of example-based reasoning: systematic
exploration of examples. Previous studies that explored students’ uses of examples
in proving reported on such strategies as using either random examples, or exam-
ples that follow particular patters, for instance, common examples, unusual
examples, or boundary cases (Ellis et al. 2013). Bell (1976) has identified a cate-
gory of example-based reasoning called “empirical-systematic”, in which students,
attempted to exhaust all possible sets of cases, in a task that has a finite set of such
cases. Balacheff (1988) used the term “crucial experiment”, to describe proving
strategy that relies on carefully selected set of examples. The types of student
arguments discussed in this chapter constitute an additional category of
example-based reasoning, which is a combination of the two previously discussed
in literature: use of random examples and use of systematic examples. Its
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uniqueness stems from the perceived generality students associated with it, con-
sidering it a “proof by cases.” Indeed, students’ solutions bear some resemblance to
this form of mathematical proof, particularly in partitioning the domain of con-
jecture into disjoint sub-domains.

The four theoretical frameworks used to interpret the data should not be viewed
as competing, but rather as complementing each other, with each framework pro-
viding conceptual tools for examining the data from a slightly different perspective.
Buchbinder and Zaslavsky’s mathematical-logical framework takes the conven-
tional mathematical knowledge as a starting point. Its application allowed to
diagnose the particular area in which students’ responses are misaligned with
conventional mathematical knowledge—understanding the role and limitations of
using supporting examples in proving. The mathematical-logical framework cate-
gorizes such students’ responses as non-normative, or simply misaligned with
conventional mathematics, as opposed to erroneous, thus, signaling a need to fur-
ther examine students’ reasoning strategies and look for potential rationality in their
answers. However, since this framework does not conceptualize the perceived
generality of examples by students, additional analytic tools were used to gain
further insights into students’ thinking.

The data were analyzed using Harel and Sowder’s proof schemes framework, to
identify modes of reasoning that students find convincing and acceptable for proving.
A proof scheme is a “collective cognitive characteristic of the proofs one produces”
(Harel 2007, p. 265), hence it is it is not possible to determine or classify participating
students’ proof schemes on account of a single proof they produced. However, since
each proof is “a product of mental act of proving, characterized by a certain proof
scheme” (Harel 2007, p. 266), the analysis carried above aimed to identify charac-
teristics of certain proof schemes within the specific proofs produced by the students.

This analysis suggested that although students’ proofs can be manifestations of
an inductive proof scheme, alternative proof schemes can be involved. In particular,
students might have been following a point testing procedure introduced by a
teacher and/or a textbook, which would be consistent with a ritual or authoritative
proof scheme. Alternatively, students might be under impression that they are
implying proof by cases, viewing their examples as general “cases” representative
of a relevant sub-domain—an approach that could be interpreted as manifestation of
the transformational proof scheme.

Students’ references to solving inequalities and proof by cases were further
analyzed using Wagner’s transfer-in-pieces framework and by applying Herbst and
Chazan’s theory of instructional situations. Wagner’s transfer-in-pieces framework
explored cognitive mechanisms underlying students’ responses, such as contextual
cues associated with inequalities and algebraic fractions. These cues might have
triggered the relevant cognitive structures which provided inferential and linguistic
resources for students to draw on in their solutions. The application of the
transfer-in-pieces framework allowed to examine the data from students’ perspec-
tive, focusing on the cognitive mechanisms and the sources of rationality under-
lying their responses. It helped to identify elements of correct mathematical
knowledge and theorize about how they came into play in students’ solution
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approaches. The theory of instructional situations (Herbst and Chazan 2012) adds a
socio-cultural dimension to the analysis by locating the sources of students’
responses in tacitly held social expectations for what constitutes appropriate and
acceptable solution of certain types of tasks in a mathematics classroom.
Collectively, the four theoretical frameworks provided a variety of tools that illu-
minated different facets of the data.

Cobb (2007) cautions that, although applying multiple theoretical frameworks
can be beneficial, researchers should be mindful of potential conflicts between
them, and if needed, apply appropriate adaptations. One way in which this issue
was addressed in this study, is by choosing theoretical frameworks that are rooted
within the field of mathematics education, as opposed to using theories from other
fields [e.g., see Leron and Hazzan (2009) for an example of analysis that uses
cognitive and evolutionary psychology alongside mathematics education theories].
In addition, two of the frameworks specifically address students’ conceptions of
proving, and three of them originated in the research on learning, except for the
theory of instructional situations, which originated from the research in teaching.
Table 18.1 summarizes the theoretical perspective used in this study, their origins
and what they afforded in terms of the data analysis.

The kind of analysis carried out in this chapter can be potentially extended to
analyzing other instances of students’ use of examples in proving. Bringing toge-
ther multiple theoretical perspectives can deepen and broaden the analysis of stu-
dents’ proofs, and enhance the field’s understanding of students’ conceptions
related to using examples in proving.

Implications for Education

The Mathematical-logical framework for the interplay between examples and
proving (Buchbinder and Zaslavsky 2009) characterizes systematic exploration of
examples as misaligned with general strategies for proving universal statements.
Hence, it is important that students develop understanding of the differences
between systematic exploration of examples and other valid modes of reasoning for
testing and proving conjectures, including proof by cases. The analysis, carried out
in this chapter, can potentially inform design of instructional tasks and practices that
capitalize on correct mathematical ideas embedded in systematic exploration of
examples to compare and contrast it with valid proving strategies. Similarly, ana-
lyzing the problematic aspects of this example-based strategy can serve as a
“springboard for inquiry”, in Borasi’s (1994) terms.

For example, when teaching the topic of solving inequalities, teachers can
emphasize the specificity of applicability of point-testing by discussing with students
why is this strategy valid for this particular purpose. It can then be further contrasted
with proof by cases and with using examples for exploring, rather than proving,
conjectures. Careful design of the appropriate instructional activities can draw on the
analysis afforded by application of Wagner’s (2006, 2010) theory of

18 Systematic Exploration of Examples as Proof … 265



Transfer-in-pieces, by recognizing how the salient features of mathematical tasks,
such as solving inequalities and proving general conjectures trigger students’ lan-
guage and inferential resources. By clarifying the similarities and differences among
the various ways of using examples in proving teachers can help students to develop
concept projections that will allow students to use examples sensibly and appropri-
ately in proving tasks.

The critical role of teacher in this process is particularly emphasized by the
theory of the instructional situations (Herbst and Chazan 2012). Since social norms
are held tacitly, it is possible that teachers are unaware of the conflicting messages
regarding the roles of examples that are conveyed to students in the instructional
situation of solving inequalities, or other instructional situations that do not
specifically focus on proving. Promoting change in this direction would require
supporting teachers in developing such awareness and creating new instructional
situations, in which the role of examples in proving is emphasized and contrasted
with other uses of examples in mathematics.

Table 18.1 Summary of the four theoretical frameworks used in this study

The framework Originated in research
on

Focus of the
analysis in this
study

Affordances of the
analysis

Mathematical-logical
framework for the
interplay between
examples and proving
(Buchbinder and
Zaslavsky 2009)

Students’ conceptions
of proving

How students’
responses compare
to conventional
mathematical
knowledge

Diagnose the area in
which students’
responses are
misaligned with
conventional
mathematical
knowledge

Proof schemes
framework (Harel and
Sowder 1998, 2007)

Students’ conceptions
of proving

Identifying
manifestations of
proof schemes in
students’ proofs

Identify possible
manifestations of
authoritative and/or
transformational
proof schemes, as
alternatives to
inductive proof
scheme

Transfer-in-pieces
(Wagner 2006, 2010)

Students’ transfer of
knowledge within
mathematics

Salient features of
the task, reflected in
students’ proofs,
that cued certain
language and
inferential resources

Suggested cognitive
mechanisms
underlying students’
responses. Identify
elements of correct
mathematical
knowledge in
students’ responses

Theory of instructional
situations (Herbst and
Chazan 2012)

Teachers’ tacit norms
and expectations. Was
adapted based on a
hypothesis that these
norms would be
shared by students

Social norms and
expectations that
are specific to
certain instructional
situations

Located the source of
students’ rationality
in tacitly held,
content specific social
expectations
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Chapter 19
Using Examples of Unsuccessful
Arguments to Facilitate Students’
Reflection on Their Processes of Proving

Yosuke Tsujiyama and Koki Yui

Abstract Proving is an essential component in mathematical activities, but a dif-
ficult one for many students. We assume that one reason for this might be that
Unsuccessful arguments unsuccessful arguments made during the process of
planning a proof do not appear in the completed proof, and therefore students
cannot see how those arguments influenced the proof. If students could reflect on
such arguments, they would be able to learn about proving and effective ways to
derive a proof. Previous studies have provided worked examples showing suc-
cessful ways of deriving a proof to enhance students’ understanding of proving.
However, such examples do not include unsuccessful arguments. This chapter
examines how examples of unsuccessful arguments can facilitate students’ reflec-
tion on their process of planning a proof by designing, implementing, and analyzing
an eighth-grade geometry lesson. It was found that an example of unsuccessful
arguments enabled the students to comprehend why the unsuccessful arguments
failed and why the successful ones worked.

Keywords Proof and proving � Planning a proof � Reflection � Argumentation
Unsuccessful arguments � Worked-out example

Introduction

Students are expected to learn various aspects of proof and proving, which are
central to their experience of school mathematics. For example, they learn what a
proof is, how to establish a proof, and why they need a proof (Hanna and Barbeau
2008; Harel and Sowder 2007; Heinze et al. 2008). Among these, this study focuses
on students’ learning about proving itself, that is, it examines students’ processes of
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proving and the ways in which planning and constructing a proof take place (Boero
1999; Polya 1957/2004).

Planning a proof is considered an argumentative process in which students make
plausible and probable arguments, although they are not sure if such arguments can
be successfully used in the proof. Previous studies have analyzed the argumentation
during the processes of conjecturing and revealed factors that influence the success
or failure of the proof (Garuti et al. 1996; Pedemonte 2007). They focus on a
learning context in which students make a conjecture and then prove it, and they
analyze the relationship between the argumentation and the completed proof. In
contrast, this study focuses on the argumentative processes involved in proving a
given statement and finding new statements to be proved next. In particular, this
chapter focuses on the processes involved in planning a proof, reflecting on the
planning processes, including on the unsuccessful arguments that do not appear in
the completed proof, and tries to apply the findings of the previous studies to this
context.

Although the arguments made during the process of planning a proof may be
unsuccessful, they may help students in learning about proving. Particularly,
reflection on unsuccessful arguments will promote students’ understanding of the
reasons why successful ones worked, while the others did not. This understanding
can help them develop effective ways of planning a proof and finding new problems
(Tsujiyama 2011).

Unsuccessful arguments are usually removed during the process of constructing
a proof and do not appear in the completed proof. Therefore, without teachers’
guidance, students will not be able to review how those arguments influenced the
proof. This leads to the idea of a “heuristic worked-out example” (Reiss et al.
2008). This idea is to be applied to the case of unsuccessful arguments, to help
students learn about the process of planning a proof. Thus, this chapter aims to
examine how examples of unsuccessful arguments facilitate students’ reflection on
their process of planning a proof.

Theoretical Perspective

Reflection on Processes of Proving that Include Unsuccessful
Arguments

Proving a given statement involves two phases: planning and constructing a proof.
Planning a proof is seeking how to connect premises and conclusions of a statement
deductively, and constructing a proof is organizing a connected sequence of
deduction between the premises and conclusions (Tsujiyama 2012). Processes of
proving do not happen in a straightforward manner, but moves back and forth even
in mathematicians’ studies (Boero 1999; Polya 1957/2004). As students are not sure
what the expected proof is like, they may make errors during planning a proof and
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may have to modify them during constructing the proof (Heinze et al. 2008). In
such cases, they need to seek and organize deductive connections again. We focus
on this tentative nature of proving.

From the argumentative perspective (Toulmin 1958/2003), proving is seen as
making plausible and probable arguments in planning a proof and examining those
arguments deductively in constructing the proof. If the arguments made are
unsuccessful on examination, students have to seek other arguments again in
planning a proof (Tsujiyama 2012). Therefore, the simplest process that includes
unsuccessful arguments comprise the following phases: (1) making arguments in
planning a proof; (2) examining the arguments and removing unsuccessful ones in
constructing the proof; (3) seeking alternative arguments in planning the proof; and
(4) refining the alternative arguments and constructing the completed proof. We
propose that if students experience such processes and reflect on them, they will be
able to understand why their initial arguments failed and why alternative arguments
worked. Moreover, they will learn more effective ways of planning a proof.

Several studies in mathematical philosophy discuss aspects of a proof as a
product, although not about the processes of proving, similar to this reflection on
unsuccessful arguments. This aspect is called the “explanatory” function of proof
(Hanna 1989). Roughly, an explanatory proof is one that has a power to answer not
only that a statement is true but also why the statement is true. Weber and
Verhoeven (2002) consider not merely a single theorem and its proof but also
related theorems and their proofs (or disproofs). They suggest that a couple of
explanatory proofs (one of them can be a disproof) answer a why-question of the
form, “Why do mathematical objects of class X have property Q, but not property
Q’?” (Weber and Verhoeven 2002, p. 304). Thus, they consider that it is important
to answer the why-question by contrasting a theorem and its proof with related
theorems and their proofs (or disproofs).

Weber and Verhoeven consider the function of proofs and the why-question to
be answered as the characterizing property of the theorem to be proved. In contrast,
in this chapter, we focus on arguments made during the process of planning a proof
and the question to be answered as “Why did or did not the arguments work?”
However, the two viewpoints can be compared as follows. The former clarifies why
a statement is true by contrasting it with why the related statements are true (or
false). The latter provides the reason for the working of a successful argument by
contrasting it with the reason for the failure of an unsuccessful one. For example,
when students face a proof problem of the form “Given X, show Y,” they can find
several reasonable intermediary premises by backward reasoning from Y (Heinze
et al. 2008). The students may select P1 as one of the premises, go on the bridging
process to X, and successfully obtain a proof. They may also select P2, find it
impossible to bridge X and Y by P2, and fail to obtain a proof. In this situation,
both arguments, P1 implies Y and P2 implies Y, are correct. On the other hand, X
implies P1 is correct while X implies P2 is incorrect. Our assumption is that
reflecting on these arguments will make students realize why P1 works and why P2
does not, and this realization will lead an effective way of selecting successful
intermediary premises in planning a proof.
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Use of Examples of Unsuccessful Arguments

With regard to phases (1)–(4) mentioned previously, the central issue is that
arguments made and removed in (1) and (2) do not appear in the completed proof.
Therefore, however carefully students check the proof, they cannot see how those
arguments influenced it. Thus, we need to consider teachers’ instructions to facil-
itate students’ reflection. This leads to presenting specific type of examples similar
to the students’ activities in (1) and (2). In this respect, we consider “heuristic
worked-out examples” (Reiss et al. 2008).

A heuristic worked-out example comprise a problem, its detailed solution, and
heuristic strategies that guide the problem-solving. Reiss et al. (2008) examined
studies in cognitive science and focused on (traditional) worked-out examples,
which consist of a problem and its detailed solution. According to them, when
students are required to solve problems with regular instruction, they often lack an
understanding of the underlying mathematical principles and solve problems with
strategies that are fundamentally shallow. This may lead to a solution but not
enhance students’ understanding since such strategies occupy cognitive resources in
working memory. On the contrast, (traditional) worked-out examples support stu-
dents in gaining understanding. Reiss et al. applied this idea for effective instruction
in learning of proving and considered more process-oriented examples. Thus, they
included heuristic strategies and introduced “heuristic” worked-out examples in
their work (Reiss et al. 2008, pp. 457–458).

Their idea is based on the assumption that with “regular instruction”, students
often do not gain mathematical understanding by simply solving a given problem.
This is even more significant when learning about planning a proof of a given
statement since its process does not usually appear in the completed proof. Thus, we
apply this idea for learning about planning a proof.

In a heuristic worked-out example, imaginary students engage in proving
activities that mirror the work of expert mathematicians. They begin with finding a
problem, examine it, consider mathematical properties related to it, figure out ideas
for a proof, and successfully construct a proof. Teachers present this successful
example before or during students’ proving activities.

Since our focus is to facilitate students’ reflection on their past processes, we
present an example after the students’ proving activities. In addition, since we
expect students to reflect not only on the successful arguments that appear in the
proof, but also on the unsuccessful ones that have been removed, we provide
examples of unsuccessful arguments. Moreover, we focus on unsuccessful argu-
ments that can be obtained through backward reasoning from the conclusion of a
given statement since such arguments are effective for deriving a proof and can be
used to produce new problems after proving. Presenting such examples, we intend
to encourage students to reflect on their processes of planning a proof based on the
examples and become aware of why their initial arguments failed and why the
modified ones were successful.
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Therefore, we define an example of unsuccessful arguments as an example of
imaginary students’ proving that consists of a plan obtainable through backward
reasoning from the conclusion of a given statement, and the resulting arguments
that cannot complete the proof. To facilitate students’ reflection on their processes
of proving, we present the example after students have finished their proving
activities. We then lead them to compare the example and the completed proof and
examine the processes, especially focusing on unsuccessful arguments that were
made in (1) but removed in (2) and therefore, unclear in the produced proof through
(3) and (4).

Related to utilization of such examples that have explanatory power for students,
Peled and Zaslavsky (1997) proposed the notion of counter-examples that explain.
Our notion of an example of unsuccessful arguments does not offer an explanation
of why a statement is or is not true, as the counter-examples do, but possibly
explains why an argument does or does not work. We examine this through
designing, implementing, and analyzing a lesson.

Methods

We collaboratively designed a geometry lesson using an example of unsuccessful
arguments. The first author developed the task and its aim theoretically, which
involved the expected flow of students’ activities and teacher’s instruction. The
authors then together refined the design of the lesson. The second author imple-
mented the lesson (50 min) with 37 eighth-graders at a junior high school in Japan.
The first author observed the lesson and analyzed how the example facilitated
students’ reflection on their processes of planning a proof.

First, we chose and arranged a suitable problem (Fig. 19.1) such that students
might make unsuccessful arguments through backward reasoning naturally based
on their prior experience, but could still utilize such arguments to modify their plan
toward a proof and to find new statements to be proved next. The students were
required to create a pair of triangles to which AB and DC respectively belong (e.g.
△ABC and △CDA by drawing diagonal AC). We intended the students to
understand why they need diagonal AC (Shimizu 1994) through reflecting on their
processes.

Before coming to eighth-grade, students had studied about the various properties
of parallelograms in empirical ways. In the eighth-grade, they learnt the terms

Problem

Prove that in a quadrilateral ABCD, if AB || DC 
and AD || BC, then AB = DC.

Fig. 19.1 Main problem
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“proof” and “definition”, and they set up several definitions of geometrical objects
and fundamental assumptions (e.g., conditions for congruent triangles and prop-
erties of parallel lines and angles). They learnt that they could prove statements
based on these definitions and assumptions and also how to devise a plan of a proof
of statements related to triangles. Especially to prove that two segments are equal in
length, they learnt to focus on “finding” a pair of triangles to which the two
segments belong respectively as their sides. However, they now need to “create”
such triangles by themselves. Thus, the problem was the first opportunity for them
not only to prove the properties of parallelograms but also to create such triangles in
proving geometrical properties.

In this particular context, it is natural that some students may draw both diag-
onals (AC and BD) creating another pair of triangles AOB and COD, which seem
congruent and to which AB and CD respectively belong. However, they cannot
show that triangles AOB and COD are congruent (noted as △AOB � △COD in
Japan) since they do not have any pair of equal sides. This assumption is plausible
in the above-mentioned context in which students have not proved any properties of
parallelograms, including the fact that diagonals in a parallelogram intersect at their
midpoints. We focus on this idea as an example of unsuccessful arguments.

We prepared three worksheets to facilitate students’ reflection after constructing
a proof, which also enabled our analysis. In sum, the students were:

• given the statement that they were supposed to prove;
• given and required to fill in Worksheet 1 about their plan and resulting proof;
• shown two students’ results that completed the proof on the blackboard;
• shown the example of unsuccessful arguments on the blackboard;
• given and required to fill in Worksheet 2 about their reflection on their processes

of proving; and
• given and required to fill in Worksheet 3 about their comparison between

successful proofs and unsuccessful arguments.

First, the students were given the main problem (Fig. 19.1). Then they devised
their plan, wrote it down, and constructed a proof in Worksheet 1. After two
students who successfully reached correct proofs presented their results on the
blackboard, the teacher showed the students the example of unsuccessful argu-
ments. The students compared and examined the similarities and differences of
these results, and then filled in Worksheet 2, which included the following three
blank columns: (i) what you were troubled by, (ii) how you settled it, and (iii) what
you learned today and what you want to do next. Worksheet 3 included the example
of unsuccessful arguments and a blank column: (iv) what is the significance of
drawing AC or BD? However, due to time constraints, the teacher could not hand
out Worksheet 3 during the lesson. He handed it out at the beginning of the next
lesson and the students filled in column (iv).

We used six video cameras and collected data from the entire classroom
instruction and three individual students’ proving activities. First, we selected one
of the three students who had proposed a plan and arguments similar to the ones
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that we had prepared in the unsuccessful example. We analyzed the student’s
processes of proving through the transcripts, video record, and Worksheet 1. We
then analyzed the student’s reflections through Worksheets 2 and 3.

Results

Processes of Proving

During the lesson, the teacher first asked the students about the empirical knowl-
edge they had gained about parallelograms at the elementary schools; the students
answered that opposite sides are parallel (Fig. 19.2a); opposite sides are equal in
length (Fig. 19.2b); the area is calculated by base times vertical height (Fig. 19.2c);
the diagonals intersect at their midpoint (Fig. 19.2d); and opposite angles have
equal measures (Fig. 19.2e). The teacher put up the following images on the
blackboard and explained that the problem was to prove (b) based on (a). The
students then began solving the problem individually.

The students tackled the problem by marking several segments and angles of
equal size or parallel lines and gradually grasped the difficulty in finding a pair of
triangles to which AB and DC respectively belong. Many of them came up with an
idea of creating such triangles by drawing additional lines, while others could not
proceed and seemed to be stuck. At least five students drew both AC and BD but
could not complete their proof.

Mizu, one of the students (all names are pseudonyms), initially tried to prove it
by drawing both diagonals AC and BD. When 7.5 min had passed, she heard the
teacher say to another student that they were not allowed to use (c), (d), and (e). She
was surprised and cried out “What?” The teacher came over and talked to her.

(a)                                        (b)

(c)                        (d)                          (e)

Fig. 19.2 Properties of parallelograms
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101 Teacher: What happened? What trouble do you have?

102 Mizu: Triangles … I tried to make triangles, as we always prove by triangles
…

103 Teacher: Oh! You made them! Are this and this [pointing at △AOB and △COD
in Mizu’s worksheet] congruent? Then, what? Are you not able to prove
that? Why?

Mizu looked at the blackboard and pointed at (d).

104 Mizu: I made [△AOB and △COD], made uh, but the diagram became similar to
that [pointing at (d)], similar to that where “the diagonals intersect at their
midpoint”

Mizu appeared to clarify her thinking through her conversation with the teacher.
At that point, she nearly gave up.

113 Teacher: What? Are you not able to prove?

114 Mizu: Maybe not.

115 Teacher: Why?

116 Mizu: Well, that center one [pointing at (d)].

117 Teacher: You mean, you cannot prove without using that?

118 Mizu: I cannot prove without using that.

Then, Etsu, the student sitting next to Mizu, joined the conversation and advised
her to change the plan. The teacher urged Mizu to consider Etsu’s advice, and left to
talk to other students.

Mizu followed Etsu’s advice and changed her approach. She erased BD and
other markings, except for AC, and then marked the angles ∠DAC, ∠CAB,
∠DCA, ∠ACB. The teacher then came back to Mizu and confirmed with her the
properties she had already learnt before. Then, she reviewed her notebook. After a
while, she found out and wrote down “alternate interior angles of parallel lines are
equal” in Worksheet 1 and cried out. She had an idea and wrote it down on
Worksheet 1: “to prove AB = CD, it is fine if I can show congruency of△ABC and
△CDA that contain AB and CD,” and continued to write a proof. She finally
completed the proof by showing △ABC � △CDA. During the process, she erased
all the words and almost all the markings in the diagram that she had written down
before she changed the plan, including △AOB and △COD (Fig. 19.3).

Draw additional line from A to C.
Alternate interior angles of parallel lines are equal.
Common sides.
Conditions for congruent triangles

Fig. 19.3 Mizu’s diagram and plan
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Reflection on the Process of Proving

After the teacher confirmed that all the students had written down a plan and proof
in their own way, he asked two students to present their results. One showed
△ABC � △CDA and the other △ABD � △CDB. After the presentations, the
teacher asked all the students, “Why was it necessary to draw AC?” (169 Teacher)
The teacher called on some students to answer and gradually elicited the ideas that
they had used in planning, that is, creating a pair of triangles to which AB and DC
respectively belong. Then the teacher presented the example of unsuccessful
arguments and outlined Mikio’s (an imaginary student in the example) plan and
proof (Fig. 19.4). The teacher emphasized that Mikio was embarrassed since he
could not show △AOB � △COD.

The teacher confirmed with the students that the plan in the example was similar
to the successful ones presented by the two students with regard to creating a pair of
triangles to which AB and DC respectively belong. Then the teacher raised a
question, “Why [did Mikio] get stuck?” (218 Teacher) and asked if anybody had
attempted a similar approach. One of the students answered saying, “In the
hypothesis, uh, side, each side, uh, we cannot show equality of sides, so we cannot
prove” (219 Tobi). Then, Mizu answered thus:

232 Mizu: We can use only these two, uh, in the above [pointing at (a) and (b) on the
blackboard], and we cannot use the three below [i.e. (c), (d), and (e)]

At the end of the lesson, the students wrote down their reflection on Worksheet
2, and four students presented their reflections.

Function of the Example of Unsuccessful Arguments

Mizu filled in columns (ii) and (iii) in Worksheet 2 that she found Etsu’s advice to
change her viewpoint very helpful. She described what troubled her in column
(i) thus:

Mikio’s (imaginary student) plan

To derive AB=CD, I will show the congruence of AOB 
and COD to which AB and DC respectively belong.

Mikio’s proof

I draw AC and BD and make the triangles AOB and COD to which AB and CD 
respectively belong. Then I show AOB ≡ COD to derive the conclusion AB=CD.

In AOB and COD, since AB || DC and alternate angles of parallel lines have equal
measures, BAO = D CO   (1), ABO = CDO   (2)

Fig. 19.4 The example of unsuccessful arguments
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Since I was not allowed to use the property [of parallelograms] that the diagonals intersect
at their midpoints, I could not connect to the conclusion.

This reflection can be considered as a partial explanation of why her initial idea
failed: she was not allowed to use unproven property (d); in other words, it did not
cover the possibility that △AOB � △COD can be shown in another way.
Moreover, this reflection did not seem to be enabled by the example, since she had
stated similar points several times (e.g., 104, 118 Mizu) during the conversation
with the teacher before the example was presented.

At the beginning of the next lesson, the teacher handed out Worksheet 3 and
asked the question, “What is the significance of drawing AC or BD?” Then, Mizu
reviewed the example further, comparing it to her own plan and proof, and wrote
down an additional reflection in column (iv):

Since we have a common side [in △ABC and △CDA], we can show the congruency of the
triangles. In the case of Mikio, we have two diagonals but no common side.

This description indicates a clearer reason why △AOB � △COD failed, by
specifying the absence of a common side. It also explains why the modified
argument worked, which is due to the presence of a common side. Therefore, Mizu
distinguished between the unsuccessful and successful arguments from the per-
spective of the absence and presence of a common side. This reflection was
facilitated by the example, as she clearly stated, “in the case of Mikio.”

This perspective is important didactically and mathematically from two points.
One is that when students try to prove a geometrical property by using conditions
for congruent triangles, it is effective to find or create triangles that not only seem
congruent but also have at least one pair of equal sides. The other is that this
distinction can lead sophisticated understanding of the notion of congruency in
contrast to similarity.

Thus, the example enabled Mizu to compare successful and unsuccessful
arguments and to explain the reason why the successful one worked and the other
failed.

Concluding Remarks

In this episode, the example of unsuccessful arguments enabled Mizu to reflect on
her process of proving and to clarify the reason why the initial arguments failed and
why the modified one worked. This result implies the possibility of using examples
of unsuccessful arguments in learning about proving. Particularly, we applied the
idea of heuristic worked-out examples, which were introduced by Reiss et al.
(2008). However, the approach was different on two counts. First, we presented the
example after the students finished their proving activities to facilitate reflection on
their processes of proving. Second, we focused on the example of unsuccessful
arguments, since we expected students to reflect on not only successful arguments
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that appear in the completed proof, but also unsuccessful ones that were removed
during the processes of proving. These two characteristics are in contrast to the
heuristic worked-out examples, which were presented to students before or during
the processes of proving and typically used successful arguments.

This difference resulted in a different effect on the students’ learning. According
to Reiss et al. (2008), heuristic worked-out examples were effective especially for
low-achieving students. In our case, Mizu was in trouble for a while, but managed
to change her plan and complete a correct proof. This fact implies that we can
consider using examples of unsuccessful arguments to facilitate students’ reflection
on their processes of proving even for high-achieving students.

Further possibilities in using examples of unsuccessful arguments are found in
the next lesson. Mizu continued thinking about the unproved property (d) of par-
allelograms after the lesson was over. She finished it and reported the result in the
next lesson, stating that she had proved △AOB � △COD. She also found that she
could use △AOB � △COD to prove AO = CO and BO = DO, which had trou-
bled her in the previous lesson. This shows the potential of the examples in pro-
moting such problem-posing and problem-solving processes.

In the example of unsuccessful arguments in the lesson, although Mikio’s idea
and Mizu’s initial idea are slightly different, they are also similar in that they both
focused on creating a pair of triangles to which AB and DC respectively belong.
However, Mikio’s arguments failed due to the absence of a pair of equal sides, but
Mizu’s initial idea failed since she was not allowed to use the unproven property
(d). Nevertheless, Mizu not only reflected on her own process concerning the use of
(d) but also distinguished between the unsuccessful and successful arguments
clearly referring to Mikio’s case. Here we see that the example functioned as
facilitator to make Mizu understand why the successful argument worked and the
other did not. However, we cannot pinpoint how exactly the example facilitated this
understanding. We need more detailed analysis and further empirical studies
focusing on this process.

Related to the treatment of the unproven property (d) and the definition of
parallelograms, Nana, the other student sitting next to Mizu, wrote in column (iii) as
follows: “If the premise [of the statement] is not that [AB and DC are] parallel but
[that] the diagonals intersect at [their] midpoints, we will be able to use the triangles
that Mizu focused on, but conversely not be able to use the triangles that we
focused on ([we can] not [use that] alternate-interior angles in parallel lines [have
equal measures]).” In the lesson, Nana had successfully completed the proof before
the conversation of the teacher and Mizu (line 101–118), and listened into the
conversation. From our data, it is not clear whether Nana came up with this idea by
comparing her own proof and Mizu’s initial idea, or by comparing three ideas,
including that of Mikio. In the former case, Mizu simply presenting her unsuc-
cessful attempt would have been enough for Nana to gain the above-mentioned
understanding of the sophisticated meaning of parallelograms. In the latter case,
Nana could have got clearer idea by Mikio’s example since Mikio’s proof stated
more clearly than Mizu’s about what could be shown if △AOB � △COD held.
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Although Nana did not express this mathematically important idea to others, and
it was not taken up in the next lesson, her idea had the potential to lead to the local
organization of properties of parallelograms (Freudenthal 1971), refinement of
undetermined objects to become under-determined or determined through an
examination on their diagrams (Nets 1998), and further inquiry with the refinement
of its definition (Borasi 1992). More detailed considerations are needed, especially
on the treatment of errors, as examples of unsuccessful arguments for such genuine
mathematical inquiries.

The implications of this study are inclined more toward the process-oriented
direction of research on proof and proving. Hanna and Barbeau point out that recent
studies on proof and proving “seem to have dealt primarily with the logical aspects
of proof and with the problems encountered in having students follow deductive
arguments” (Hanna and Barbeau 2008, p. 347) emphasizing the educational value
of processes of proving over the role of proof as a product. If unsuccessful argu-
ments made during processes of proving have various functions similar to that of
proofs, students will have more opportunities to experience the productive aspects
of proof and proving.
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Chapter 20
Genericity, Conviction, and Conventions:
Examples that Prove and Examples
that Don’t Prove

Orit Zaslavsky

Abstract The four chapters in this section address issues related to the use of
examples in proof and proving. Several questions arise from reading these chapters.
I structure this chapter around some of these questions: First questions related to the
nature of (mathematical) examples and their sources, then questions related to
generic proving, including the subjective nature of generic proof, different levels of
genericity, and how students may view generic arguments. I conclude with some
observations regarding rigor and evidence.

Keywords Example-based reasoning � Generic examples � Generic proof
Conviction � Rigor

The four chapters in this section complement each other and together offer a rich
perspective on the nature and roles of examples with respect to proof, in different
contexts. Buchbinder examines how high school students use examples in the
course of forming and verifying a conjecture, related to algebra and number
properties (the median theorem); Tsujiyama and Yui examine the process of
learning to construct a geometric proof in middle school, with the added experience
of discussing an unsuccessful argument; Kempen examines meta aspects related to
pre-service mathematics teachers’ conceptions of proofs, some of which rely on
examples; and Reid and Vallejo Vargas, focus on generic proofs in the context of
school mathematics, from a more theoretical point of view.
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The Many Facets of Examples

What Constitutes an Example?

The term example appears in the literature in various meanings. According to
Zaslavsky (2014), an example is an object for which one can answer the question:
“What is this an example of?”. This view resonates with other approaches to
defining examples, such as Watson and Mason’s (2005), who describe examples as
“objects which satisfy certain conditions” (p. 378), Alcock and Weber’s (2010),
who maintain that an example is a mathematical object satisfying the definition of
some concept, or Mill’s (2014), who considers an example a mathematical object
that is “a specific, concrete representative of a class of mathematical objects, where
the class is defined by a set of criteria” (p. 107).

Goldenberg and Mason (2008) go beyond specifying the conditions that an
example should satisfy and maintain that it is situated within a person’s under-
standing and serves as means for making contact with abstract ideas. Furthermore, a
mathematical entity is considered to be an example only when the person perceives
it to be an instance of a phenomenon, property, class, or idea: “The fundamental
construct is the act of seeing something as an example of some ‘thing’” (ibid,
p. 184, emphasis in the original).

The above implies that an example does not stand alone. There is a subjective
element that depends on the context and the person using the example, and is
connected to both intention and attention. For example, the number 36 can be
viewed as an example of an even number (because it can be represented as 2 � 18),
a multiple of 3 (because it can be represented as 3 � 12), a composite number
(because it can be represented of a product of numbers other than 1 and 36), a
perfect square (because it can be represented as 62), and so on. Each representation
satisfies a defining property and may be used to draw attention to a certain structure.
Hence, in the context of example-use, one needs to articulate what the example
stands for, as inevitably an example carries some attributes that are intended to be
exemplified and others that are irrelevant. Skemp (1987) refers to the irrelevant
features of an example as ‘noise’, while Rissland Michener (1991) suggests that
“one can view an example as a set of facts or features viewed through a certain lens”
(p. 190). The tendency to attend to irrelevant features of an example may explain
the possible disconnect between a concept image and a concept definition (Vinner
1983; Vinner and Dreyfus 1989). According to Vinner, a wrong concept image held
by students, e.g., of an isosceles triangle, might be a result of the set of specific
examples that they have been exposed to. Thus, if students only saw examples of
isosceles triangles that have a horizontal basis, they may attend to this irrelevant
feature and consider it critical, and as a result not identify isosceles triangles that do
not have a horizontal basis.

The notion of an example can be extended beyond examples of well-defined
mathematical concepts. Along this line, the chapters of Tsujiyama and Yui, Reid
and Vallejo Vargas, and Kempen look at examples of arguments or proofs as
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objects of inquiry and try to characterize and evaluate their status and potential
merits. Arguments and proofs can be seen as meta-concepts, according to Zaslavsky
and Shir (2005), who studied students’ and teachers’ conceptions of another
meta-concept—a mathematical definition. Tsujiyama and Yui focus on the merits of
examining examples of imaginary students’ arguments that are ‘unsuccessful’ for a
particular proof of a certain statement as a means to facilitate learning to construct a
proof. They are inspired by Reiss’s et al. idea (2008) of heuristic worked-out
example. By analogy, this can be seen as the use of examples and non-examples in
the course of constructing a concept (Hershkowitz 1990; Hershkowitz and Vinner
1983). In both cases, the inclusion of examples that ‘don’t work’ aims at high-
lighting critical features of the relevant concept or meta-concept (proof). Somewhat
related, Reid and Vallejo Vargas as well as Kempen look at examples of ‘proofs’,
some based on examples and some more deductive, some rather complete and some
that call for additional parts, and question their status. Like in the case of more
straightforward mathematical examples, and even more so, there is a strong element
of subjectivity in the ways in which these authors view their examples and the
properties they attribute to them.

Given the subjective aspect of perceiving an example, a critical question that
arises from the chapters has to do with the evidence (or lack of evidence) we have
for interpreting students’ example-uses. More specifically, how can we know what
exactly students are attending to in an example, what they are noticing about it, how
they are treating it, what sense are they making of it, etc.? Buchbinder addresses
this issue by offering four different yet complementing theoretical frameworks
through which she examines students’ example-use. Reid and Vallejo Vargas
suggest criteria for the evidence that should be included (in students’ written work).

What Constitutes a Generic Example?

As Reid and Vallejo Vargas note, Mason and Pimm (1984) made a further dis-
tinction and coined the term generic example, for an example that for the person
using it conveys the general through the particular.

For example, the absolute-value function f xð Þ ¼ xj j is often used as a generic
example of a function that is continuous everywhere but not differentiable every-
where. The issue of representation plays a critical role in generic examples, as the
representation can either help or impede the structure or general behaviour that is
seen through it. In the case of the absolute-value function, its graph may convey to
some people the essence of why this is the case, without having to go into symbolic
manipulations. Similarly, the cubic function f xð Þ ¼ x3 is often considered a generic
example of an odd function. These examples are what Rissland Michener (1978)
considers model examples, that capture the general features of a concept (or a
result).
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In the context of learning more advanced mathematical concepts, Harel and Tall
(1991) suggest the use of a specific example that “is seen by the teacher as a
representative of the abstract idea” (p. 40). They term this a generic example, and
note that students may abstract wrong properties from such an example.
Interestingly, they look at a generic example from the point of view of the teacher, as
do Movshovitz-Hadar (1988) and Leron and Zaslavsky (2013). From a designer’s
point of view, Movshovitz-Hadar (1988) maintains that a generic example should be
“large enough to be considered a non-specific representative of the general case, yet
small enough to serve as a concrete example” (ibid, p. 17). Leron and Zaslavsky
suggest that “size” be replaced by a measure of the complexity of the example. For
example, when illustrating the procedure for finding all factors of a natural number,
by listing systematically all its factorizations as a product of two factors, the com-
plexity is measured by the number of factors, not by the magnitude of the number.
For this purpose, 169 is less generic than 36 or 42, since the former is too special,
having only 3 factors. We can use 42 as a generic example as follows:

1 × 42 
2 × 21 
3 × 14 
6 × 7 
7 × 6 

One can see through this example (perhaps with some guidance) the general
structure of the procedure, that is, starting with the smallest factor (1) on the left and
increasing it without skipping any factor, until it begins to repeat itself, in a reversed
order. To better ‘cover’ the general case, it would be worthwhile examining also a
perfect square, say 36, as follows:

1� 36

2� 18

3� 12

4� 9

6� 6

This could be an opportunity to point to the two types of numbers—the perfect
square ends with a pair of identical factors while for a number that is not a perfect
square all pairs have distinct factors. As discussed later, this observation can form
the basis for a generic proof that a perfect square of a natural number has an odd
number of divisors.

Note that Balacheff (1988) uses the term generic example differently, that is, to
describe a certain type of proof, actually the third up in the hierarchy of four types
of ‘proof’ that he proposes: Naive empiricism, the crucial experiment, the generic
example, and the thought experiment. It appears that Balacheff attributes a different
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or more restricted meaning than Mason and Pimm. Balacheff’s notion of generic
example falls more readily to the description of a generic proof (see later).

As mentioned above, the chapters in this section extend the more commonly
used notion of a mathematical example to examples of meta-concepts, as mathe-
matical arguments and proofs. It seems that Tsujiyama and Yui, Kempen, and Reid
and Vallejo Vargas, are treating the examples that they present as generic
meta-examples. They are using them to convey their general viewpoints.

Who Is the Source of the Example?

Zaslavsky (2014, 2017) notes that the source of an example has bearing on how a
student may interpret it and what use s/he may make of it. There are differences in
students’ behaviour and in what they may gain from using examples, depending on
whether an example is spontaneously generated, explicitly evoked, or provided as
part of the task. Spontaneous construction of an example may indicate an inner need
to communicate an idea or to make sense of the situation at hand; An evoked
construction of an example refers to being deliberately triggered to use an example
in a certain situation; and a provided example calls for responsive consideration in
the relevant context. The findings of Aricha-Metzer and Zaslavsky (2017) from
proof eliciting task-based interviews with students from a range of age levels
(middle and high school as well as undergraduates), indicate that when the inter-
viewer was the source of an example, more students were able to use the example
productively for proving (compared to cases where the student was the source of the
example). According to Mason (2017) these distinctions provide further insight into
scaffolding and fading, and are closely related to what Love and Mason (1992) refer
to as the ‘gradual internalisation of an action’.

Related to the dimension of the source of an example, the four chapters in this
section address different aspects. Buchbinder reminds us that there are types of
tasks that lend themselves to spontaneous use of examples, as the task type used in
her study: “Is this a coincidence?” (for additional illustration and discussion of
spontaneous example-use elicited by a similar task, based on the mediant property,
see Zaslavsky 2010). This is an example of a task that created uncertainty regarding
the validity of a conjecture (Zaslavsky 2005), thus, as seen in the findings of
Buchbinder, motivated students to systematically explore their initiated examples in
order to gain confidence with respect to its validity.

Tsujiyama and Yui (this volume) present a provided example to their students—
an example of a hypothetical student’s unsuccessful argument for constructing a
proof. This example aimed at raising students’ reflection on their process of con-
structing a proof and encouraging them to analyse why this argument was unsuc-
cessful for proving the given claim, and by this—highlighting the nature of the
successful arguments. As mentioned above, this can be seen as a provided
meta-example. Note that when an example is provided by a teacher or researcher,
the timing may make a difference. For example, Tsujiyama and Yui decided to
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provide the example after the students completed the phase of constructing a proof.
Similarly, Aricha-Metzer and Zaslavsky provided an example that they thought
would be helpful for proving a conjecture only after the students exhausted their
(unsuccessful) attempts, with or without using their own examples.

Reid and Vallejo Vargas as well as Kempen (this volume) relate to the issue of
the source of an example, particularly to provided examples, by introducing the
distinction between an author and a reader of an example, possibly inspired by
Balacheff’s (1988) term of producer. The author is the one who provides the
example, with a certain intention and interpretation in mind, while the reader
interprets it through his or her own lens. I find their distinction extremely helpful in
discussing sense making and subjective aspects of example use and interpretation.
This distinction is closely related to the psychological element that Reid and Vallejo
Vargas discuss and to the phenomenon mentioned by Mason and Pimm (1984) of
the possible “mis-match” between a teacher’s intention and what students attend to
in an example. I would add to the author and reader also the role of a critic, who
can see how both the author and the reader approach an example, and may offer
additional lens through which to examine the example.

The Many Facets of Example-Based Reasoning

Recently, there has been a growing body of research that focuses on example-based
reasoning in mathematics, or more specifically, on the role of examples in
proving-related activities (e.g., Iannone et al. 2011; Knuth et al. 2017; Sandefur
et al. 2013). Example-based reasoning refers broadly to reasoning with examples,
whether the examples are treated generically or not, as examples ‘can provide a
reasoner with a great deal of leverage’ (Rissland Michener 1991). Related to
example-based reasoning in the context of conjecturing and proving, Aricha-Metzer
and Zaslavsky (2017) distinguish between empirical example-use and generic
example-use. By empirical example-use they refer to the use of specific examples to
make sense of, check out, or verify conjectures, focusing on the specifics of an
example without looking at the specifics in a general way, while a generic example-
use implies seeing through the specifics the general case, and includes generic
proving, which is considered a particularly kind of example-based reasoning that
many scholars favour (e.g., Leron and Zaslavsky 2013; Rowland 1998, 2001; Yopp
and Ely 2016).

The chapters in this section of the book focus on example-based reasoning in its
broad sense (Rissland Michener 1991). Research on students’ example-use in the
course of conjecturing and proving has focused until recently mainly on students’
overreliance on examples as sufficient evidence for determining the validity of a
mathematical proposition (e.g., Harel and Sowder 1998; Healy and Hoyles 2000;
Iannone et al. 2011; Knuth et al. 2009). I find it interesting and encouraging that all
four chapters in this section of the book take a different stand, as do other recent
studies (e.g., Ellis et al. 2012; Knuth et al. 2012; Pedemonte and Buchbinder 2011)
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by examining ways to help students become aware of the potential value of
example-based reasoning and ways to use examples in productive and valid ways,
when constructing or making sense of a proof. In particular, Reid and Vallejo
Vargas, and Kempen, offer an analysis of the interplay between examples and
proofs, or more specifically, generic proofs, that illustrate ways in which examples
can and should be used for proving. Even Buchbinder, whose interviewees
exhibited empirical example-use, which reflected over-reliance on specific exam-
ples in drawing general conclusions, chose to take a closer look at the data,
maintaining that “even though the overall reasoning was incorrect, students’
arguments seem to involve quite sophisticated mathematical thinking. Hence,
deeper analysis of responses in this category might shed light on the reasoning
processes underlying students’ thinking, inform our understanding of students’
conceptions of proving and suggest potential mediating solutions.” (ibid). In a way,
all four chapters attempt to capitalize on students’ example-based reasoning.

I turn to some questions arising in from the chapters in this section that relate to a
special kind of example-based reasoning: generic proofs.

What Counts as a Generic Proof?

For Mason and Pimm (1984) “a generic proof, although given in terms of a par-
ticular number, nowhere relies on any specific properties of that number” (ibid,
p. 284). While this description captures the essence of a generic proof, it is rather
vague and does not provide a clear criterion by which to determine whether a
certain manifestation of example-based reasoning constitutes a generic proof for the
‘arguer’ and/or for the ‘listener’. The mere term generic proof implies that this is
considered a certain type of proof. This may explain Reid and Vallejo Vargas’ (this
volume) use of the term generic argument instead of generic proof. Their term may
also reflect the inclusion in the discussion of a wider range of arguments that use
examples, as they ask “When is a generic argument a proof?”.

While there seems to be an agreement in principle on the features of a generic
proof, there do not seem to be well defined criteria for what counts as a generic
proof, even within a given community with shared norms and goals. The main
differences rest on the amount of detail and explanation needed to justify why the
proof carried out on a (generic) example will work for any other one as well.

Reid and Vallejo (this volume) interpret Balacheff’s notion of a generic example
as a generic argument that “involves making explicit the reasons for the truth of an
assertion by means of operations or transformations on an object that is not there in
its own right, but as a characteristic representative of its class. The account involves
the characteristic properties and structures of a class, while doing so in terms of the
names and illustration of one of its representatives.” (Balacheff 1988, p. 219). This
concurs with Dreyfus et al. (2012), on which Kempen (this volume) relies, who
distinguish between example-based arguments, example-based generic arguments
and general arguments.
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Unlike a generic example, a generic proof is always associated with a mathe-
matical claim or conjecture, thus, it is expected that a generic proof convinces the
target person (author, reader, or both) that the claim is true for all cases, unless it is a
false claim, for which a counter-example is sufficient for disproving. Peled and
Zaslavsky (1997) discuss the explanatory feature of a counter-example, which
could be considered a generic (dis)-proof, as it not only disproves but also conveys
the reason why the claim is false.

In addition to the element of conviction, it is expected that a generic proof sheds
light on why the claim is true, as Balacheff asserts that the generic example is “no
longer a matter of ‘showing’ the result is true because ‘it works’; rather, it concerns
establishing the necessary nature of its truth by giving reasons” (ibid, p. 218). With
respect to the necessary nature of the truth of a statement, Leron and Zaslavsky
(2013) point to the need to take into account a possible pitfall that characterizes
generic proofs—when operating on an example, “some phenomena just happen,
automatically”, however, one needs to justify why this will always happen, in every
single case. A careful choice of the example used in a generic proof could help
address this point, as according to Leron and Zaslavsky an example that is
“complex enough” may ensure that all the main ideas of the target proof will
naturally surface in the context of the example. The strength of a generic proof is
that it reduces the level of abstraction and suspends or even eliminates the need to
deal with formalism and symbolism (Dreyfus et al. 2012; Leron and Zaslavsky
2013; Rowland 1998, 2001), and by this may facilitate the transition from inductive
informal to more deductive formal reasoning (Knuth et al. 2017; Stylianides and
Stylianides 2009). This includes providing a sound explanation why the phenom-
ena that is observed for a certain example would work for any other one as well.

Reid and Vallejo Vargas as well as Kempen (this volume) address this issue by
the requirement to be explicit about the reasons that necessitate the truth of the
statement. Note, that “it is crucial to consider who is reading the proof; it is easy to
imagine a proof that is explanatory to one student but not to another and a good
teacher cannot overlook this difference.” (Weber 2010, p. 34). Kempen’s findings
support Weber’s assertion, as the conceptions the participants in his study mani-
fested varied with respect to the degree of conviction and explanatory power they
attributed to different proofs, and moreover, the majority did not perceive these
features the same as the researcher did.

It appears that not only is examplehood in the eyes of the beholder (Zaslavsky
2014), but also “generic proof” is, as illustrated next.

How Do Students Interpret and Use Generic Proofs?

As discussed above, the notion of a generic proof has been addressed by several
researchers, however, research on the actual affordances of using generic proving,
as a pedagogical tool for facilitating viable arguments leading to or supporting
proof, are scarce. I see two main questions that would be particularly interesting to
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pursue: (1) How do students generate and use generic arguments or even proofs
(either by their own initiative or when evoked to do so)? (2) How helpful can
generic proofs that are provided by a teacher or researcher be for students, for
learning to prove?

Reid and Vallejo Vargas (this volume) address the first question, by bringing an
example of a student’s “generic proof using several examples to show how the
structure applies to other cases” of the statement: “The square of an even natural
number is always divisible by four”.

The reason the authors consider this a generic proof, is because the square of an
even number is represented by a square shaped dot pattern and is accompanied by a
detailed explanation, that starts with a dot pattern of the even number is 6 and its
square is 36. She divides the square of 6� 6 ¼ 36 dots into smaller squares of
2� 2 ¼ 4, thus, concludes that the number (62 ¼ 36) is divisible by 4. Until this
point, she has only established that this method of dividing the large square into
2� 2 ¼ 4 squares works for the case of n ¼ 6, that is, for the square 6� 6 ¼ 36:
What is missing is an argument that explains why this method would work for any
even natural number. The student addresses this by writing: “This is true for all
even n, because as the side length increases by 2 dots, so new squares encom-
passing 4 dots are added. As n increases by 2 (next even n), n�1 squares
encompassing 2� 2 dots are added.” (ibid). It appears that the student detected a
pattern by observing the examples she tried (for n ¼ 2; 4; 6; 8), and noticed the
structure in these cases. Yet, once she tried to reason with a general symbol n, she
used the same n to denote an even number as well as the next even number (instead
of nþ 2), and formulated a formal argument. It could be argued that there is not
sufficient evidence that the student understands why this structure would work for
any even number, which is often the case when judging only by written work. This
example indicates the challenge and potential strength of students’ generic proving.
Although we do not have sufficient background information to draw conclusions, it
appears that the student in Reid and Vallejo Vargas’ study used the examples to
help her make sense of the statement and understand why it will always work, and
at the same time to communicate her reasoning.

Within the framework of a large study on the use of examples in learning to
prove (Aricha-Metzer and Zaslavsky 2017; Knuth et al. 2017; Zaslavsky et al.,
forthcoming), we addressed both of the above questions. In individual task-based
interviews, the participants were given, amongst other conjectures, the following
one, used also in Kempen’s study: “If you add any number of consecutive numbers
together, the sum will be a multiple of however many numbers you added up”.

They were asked if they thought the conjecture was true for any 5 consecutive
numbers, and why they thought what they did. This is a rich task and lends itself for
generic proving as well as disproving (depending on the parity of the number of
consecutive integers that are added).

Students who did not find a way to justify (or falsify) this conjecture, were
offered the following prompt, that was meant as the basis for a generic proof:
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Another student had an idea of how to explain this conjecture. For the five consecutive
numbers 5, 6, 7, 8, 9, she decided to write the sum as:

7� 2ð Þþ 7� 1ð Þþ 7þ 7þ 1ð Þþ 7þ 2ð Þ,
and writing it that way helped her explain why the sum must be a multiple of 5.

How do you think that helped her see why the rule is true for any five consecutive
numbers? (Aricha-Metzer and Zaslavsky 2017).

Interestingly yet not surprisingly, there were students who immediately were
able to see through this example the general case and provide a sound explanation
why this will work for any five consecutive numbers, as one of the interviewees
Roger said: “Okay, so I can see now—this is pretty good proof for why it’s, uh, for
why it has to be a multiple of 5 or just a multiple of an odd number in general….”
(ibid). Roger goes on and explains in detail why the conjecture works not only for
five consecutive numbers, but also for any sum of an odd number of consecutive
numbers. Moreover, this example also helped him see why the conjecture does not
hold for an even number of addends, as he noticed the role of the middle term and
the symmetry around it.

On the other hand, Daniel, who was offered the same kind of generic example
for the sum of 2 + 3 + 4 + 5 + 6, still did not see the general idea of the proof, as
seen from his response: “…That helped her understand it better? [This] is just
another way of rewriting 2 + 3 + 4 + 5 + 6. I don’t understand how it helped her
explain it like this…”.

Along the same lines, findings reported by Kempen (this volume) show that a
vast majority of the participants in his study did not attribute the same explanatory
power as he did to the proofs that he considered generic.

How Generic Is a Generic Proof?

A generic proof may convey only some but not all the ideas of a proof, or may not
be equally transparent to all the main ideas of the proof.

Kempen (this volume) brings what he considers a “generic proof in the context
of figurative numbers” of the statement: “The sum of five consecutive numbers is
always divisible by five” (Fig. 20.1).

For Kempen as well as for Reid and Vallejo Vargas, a generic proof should
include explicit verbal or other means of justification why the method/result will
always hold for any case. Along these lines, Kempen (this volume) adds a verbal
explanation to Fig. 20.1.

One question that comes to mind is how insightful this generic proof is for the
more general case. I would say that Kempen’s generic proof of the sum of con-
secutive numbers conveys the reason why the statement works for any five
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consecutive numbers, but does not convey what the role of the oddness of five
plays, or what Roger was able to see through the generic example that was offered
to him (see above)—that is, why the conjecture works for the sum of any odd (but
not even) number of consecutive numbers. This implies, that from the perspective
of the author of the generic proof, in particular if he or she are the teacher, there are
additional considerations regarding the choice and design of a generic proof.

The different levels of genericity of a generic argument or proof is also addressed
by Reid and Vallejo Vargas (this volume). For example, in the third generic
argument that they present for the claim: “The sum of the first n positive integers is
n nþ 1ð Þ

2 ”, they separate between the case when n is odd and when it is even. For an
odd n they write:

First, consider an odd n, for example 7. Then the sum is 1þ 2þ 3þ 4þ 5þ 6þ 7. You can
rearrange this is to 3 pairs: 1þ 7, 2þ 6, 3þ 5, all adding up to 8, with the 4 in the middle
left out. So, the sum is 3� 8þ 4, or in general n�1

2

� �
nþ 1ð Þþ nþ 1

2

� �
, which simplifies to

n nþ 1ð Þ
2

� �
. (Reid and Vallejo Vargas, this volume, p. 242)

The authors recognize that this argument makes it more difficult to understand
why in the general formula we divide by 2 or multiply by nþ 1ð Þ, compared, for
example, to the first argument they bring, which is more transparent to the general
formula.

Similarly, the ‘generic proof with numbers’ that Kempen presents to the state-
ment that: “The sum of an odd natural number and its double is always odd” is also
limited in its genericity:

1þ 2�1 ¼ 3�1 ¼ 3; 5þ 2�5 ¼ 3�5 ¼ 15; 13þ 2�13 ¼ 3�13 ¼ 39

The sum of an odd natural number and its double equals three times the initial number.
Since the initial number is an odd number, one obtains the product of two odd numbers.
Since the product of any two odd numbers is always odd, the result will always be an odd
number. (Kempen, this volume, p. 230, original in italics)

The given examples do not convey why the product is odd, only why the sum is
three times the initial number.

Fig. 20.1 “The sum of five
consecutive numbers
represented by figurate
numbers” (Kempen, this
volume, p. 230)
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When Is There a Need for a Generic Proof?

The necessity principle for learning and in particular with respect to learning to
prove (e.g., Harel 2013; Zaslavsky et al. 2012) is an important one that should guide
many decisions and choices of teachers. In reading the chapters, I was contem-
plating to what extent would it make sense and would it be necessary to use a
generic (figurative or other) proof, rather than a general/deductive proof. Clearly,
the necessity varies from one audience to another. As a rule, I would expect a
generic proof to be particular helpful either when a more general/deductive proof is
not accessible (for example, because it is too complicated and abstract), and/or
when an appropriate notation is either cumbersome or non-existent. By this criteria,
Reid and Vallejo Vargas’ generic arguments for the sum of the first n natural
numbers seem to stem from a genuine necessity, while Kempen’s generic proof of
the sum of an odd natural number and its double may not be equally necessary, as at
a rather early stage, students are able to understand that if you take a number and
add to it its double, you get three times the number. Moreover, this part would work
for any number, not just positive integers. Basically, there are two main ideas in the
general proof—one is based on the fact that this sum is three times the number, and
the second is based on the fact that the product of two odd integers is an odd
integer. Kempen’s proof does not offer any insight to the latter.

To get a sense of a strong need for a generic proof, consider the following
statement: “A natural number has an odd number of factors if and only if it is a
perfect square.”

Constructing a formal proof of this statement can get rather messy, partly
because the issue of notation for the general case is not at all trivial. I have tried this
out with several groups of undergraduate math majors and secondary math teachers,
and noted that many of them reached an impasse. Even a number of mathematicians
who were given this statement, started out and sufficed with generic examples.
Apparently, this statement lends itself well for a generic proof.

I used the number 36 earlier, as a generic example for a procedure to find all the
factors of a number, by listing systematically all its factorizations as a product of
two factors. For many students at all levels, that mere presentation led to an “Aha”
moment with respect to the above statement, where they felt that they instantly
gained insight into the statement and to why it is true for any natural number, that
is, what about a perfect square guarantees that it has an odd number of factors, but
also why any natural number that is not a perfect square must have an even number
of factors. In Reid and Vallejo Vargas’ term (this volume), both the ‘author’ and
many of the ‘readers’ were able to see through the generic example the main idea of
the proof and to articulate it.

Note that the conjecture posed to the participants in Buchbinder’s study, does
not seem to lend itself to generic proving, at least not in its mode of representation.
This may explain why the students did not use examples generically, rather sys-
tematically. There is a different way to present the mediant property in a way that
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lends itself to (graphical) generic proving (Zaslavsky 2010). It would be interesting
to see if and how students’ responses would change accordingly.

On Rigor and Evidence

I conclude with the overarching questions of the place of rigor and evidence in
example-based reasoning.

Reid and Vallejo Vargas refer to what they consider a debate regarding the status
of a generic proof, that is, whether it is acceptable as a mathematical proof. They
raise the issue of “fussiness” (which basically has to do with the degree of rigor that
is expected) discussed by Leron and Zaslavsky (2013), as a major source of this
supposed debate. This view ignores the context of the work of Leron and
Zaslavsky, and the wealth of aspects and considerations discussed in their paper.
Leron and Zaslavsky’s views complement rather than contradict other views in the
field.

As in the status of general proofs, the norms for the degree and kind of rigor that
is required for acceptance of a (generic) proof depend on several elements, such as
the community—whether it is a community of professional mathematicians, a
classroom of a certain grade-level, or other. Even within the mathematics com-
munity there is no consensus regarding the level of rigor that is required. This relates
to the social factor that Reid and Vallejo Vargas discuss. Stylianides (2007) con-
ceptualized the meaning of proof in school mathematics, maintaining the essence of
the meaning of proof in the mathematics community, with modifications. Clearly
the warrants that are expected in school are different than those at the university.

The degree of rigor that is expected in a proof depends not only on the com-
munity but also on the level of sophistication of the proof. Some generic proofs are
more transparent and convincing than others. For example, it can be argued that in
Leron and Zaslavsky’s (2013) Case Study 1, (i.e., the generic proof that a perfect
square of a natural number has an odd number of distinct factors) it is easy to
explain why the method used for the generic example (36) will work for any other
perfect square (as explained earlier in this paper), thus, there is no need for further
rigor. However, in Case Study 2 (ibid), (i.e., the generic proof that every permu-
tation has a unique decomposition as a product of disjoint cycles) it is not obvious
why the same phenomena will occur for a different example, thus, there is a need
for more rigor in order to prove the statement. Yet, even mathematicians are urged
to keep in mind that the main ideas of the proof need to be revealed, as “it will not
do to bury the idea under the formalism” (Mac Lane 1986, p. 378).

Similar to the subjective aspect of genericity that was discussed earlier, there is a
subjective aspect to the acceptance of a generic proof as a proof, even within the
same community of observers (Pauletti and Zaslavsky, in preparation). This sub-
jectivity is also connected to the diverse views Kempen (this volume) found
regarding what he terms verification and Weber and Mejía-Ramos (2015) term
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absolute conviction. It appears that for his participants a formal proof was more
convincing.

As researchers and teachers, we are constantly seeking strong evidence for our
interpretations of students’ understanding, and often feel that the evidence is not
sufficiently compelling and that there is some degree of speculation in our inter-
pretations. In order to accept a student’s example-based argument as a proof—Reid
and Vallejo Vargas require certain kind of evidence indicating that the student is
aware of the generality of the argument beyond the example that is used, and that he
or she can articulate why the claim at hand must hold in the same way and for the
same reasons for any other case/example, based on the norms and conventions of
the classroom community. Argument 1[b] (ibid) is a good example of the kind of
evidence needed. The latter can be seen as the “fussiness” dictated by the com-
munity. The question is—who is the author and who is the reader, and is this
evidence needed for both?

With respect to the issue of evidence, in her chapter, Buchbinder interprets the
participants’ systematic exploration of examples as an over-generalization of a
method they had learned in another context. However, there is no sound evidence
that the students actually learned this method of solving inequalities by dividing the
domain to sub-domains and checking one number from each sub-domain, and even
if they did—they may not have made this connection. Kempen, draws conclusions
from the responses to a written questionnaire regarding the conceptions held by the
participants in his study about the levels of the explanatory power, subjective
conviction, and absolute conviction (what he terms verification) of each of four
types of proofs. It is not clear what meaning the participants attributed to these three
constructs, and what features of the different proofs they attended to. Tsujiyama and
Yui bring evidence that Mizu reflected on her proving plan and gained insight based
on the imaginary student’s (Mikio) unsuccessful arguments. Would she have gained
the same insight if she had not reached a similar impasse on her own?

These questions remain open and call for further investigations and refinements
of our criteria for both rigor and evidence.
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