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Abstract. We present the first general-purpose digital signature scheme
based on supersingular elliptic curve isogenies secure against quantum
adversaries in the quantum random oracle model with small key sizes.
This scheme is an application of Unruh’s construction of non-interactive
zero-knowledge proofs to an interactive zero-knowledge proof proposed
by De Feo, Jao, and Plût. We implement our proposed scheme on an x86-
64 PC platform as well as an ARM-powered device. We exploit the state-
of-the-art techniques to speed up the computations for general C and
assembly. Finally, we provide timing results for real world applications.
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1 Introduction

The security of most public-key cryptosystems in use today are based on the
intractability of certain mathematical problems, namely integer factorization
and discrete logarithms. However, large-scale quantum computers will be able to
efficiently solve both of these problems, posing a serious threat to modern cryp-
tography. Post-quantum cryptography is the study of classical cryptosystems
that remain secure against quantum adversaries. There are several candidate
approaches for building post-quantum cryptographic primitives: lattice-based,
code-based, hash-based, and multivariate cryptography. Recently, cryptosystems
based on supersingular elliptic curve isogenies were proposed by De Feo, Jao, and
Plût [12], who gave protocols for key exchange, zero-knowledge proof of identity,
and public key encryption. With small key sizes and efficient implementations
[8,17], isogenies provide a strong candidate for post-quantum key establishment.
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Various isogeny-based authentication schemes have been proposed as well,
such as strong designated verifier signatures [20], undeniable signatures [16], and
undeniable blind signatures [19]. However, it was not known whether isogeny-
based cryptography could support general authentication. In this paper, we show
that this is indeed possible by constructing the first digital signature scheme
based on isogenies which is strongly unforgeable under chosen message attack in
the quantum random oracle model.

Our signature scheme is obtained by applying a generic transformation to the
zero-knowledge proof of identity proposed in [12]. Classically, obtaining a secure
digital signature from an interactive zero-knowledge proof can be achieved by
applying the Fiat-Shamir transform [13]. However, its classical security proof
requires certain techniques such as rewinding and reprogramming the random
oracle which do not necessarily apply in the quantum setting. Quantum rewind-
ing is possible in some restricted cases [23,25], but it has been shown to be inse-
cure in general [1]. Further, since random oracles model hash functions which,
in a real world implementation, could be evaluated in superposition by a quan-
tum adversary, we require quantum random oracles which can be queried in a
superposition of possibly exponentially many states. This makes it difficult to
observe an adversary’s queries as measuring the input disturbs the state.

Unruh [24] recently proposed a transformation which remedies these prob-
lems to produce a secure signature in the quantum random oracle model. Its
overhead is generally much larger than Fiat-Shamir – in some cases exponentially
large, making the scheme impractical. Fortunately, applying it to the isogeny-
based zero-knowledge proof incurs only twice as much computation as the Fiat-
Shamir transform, producing a workable quantum-safe digital signature scheme
with small key sizes.

Our Contributions

– We construct the first general-purpose digital signature scheme based on
supersingular elliptic curve isogenies, and prove its security in the quantum
random oracle model.

– We analyze implementation aspects of our scheme and compare parameter
sizes with various post-quantum signature schemes, showing that our scheme
achieves very small key sizes.

– We provide source code1 as well as performance results on x86-64 platforms
and on ARM devices with assembly-optimized arithmetic.

Related Work. Independently of us, Galbraith, Petit, and Silva recently pub-
lished a preprint containing two isogeny-based digital signature schemes [14].
Their second scheme, based on endomorphism rings, is completely unrelated to
our work. Their first scheme, based on the De Feo, Jao, and Plût identifica-
tion scheme, is conceptually identical to our scheme, but they present significant
space optimizations to reduce the signature size down to 12λ2 bits (or 6λ2 if
1 Source code is available at https://github.com/yhyoo93/isogenysignature.

https://github.com/yhyoo93/isogenysignature


A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 165

non-repudiation is not required), compared to our signature size of 69λ2 bits.
However, we note that their signature size is for classical security level λ and as
of this writing their posted preprint contains no signature sizes for post-quantum
security, whereas our signature sizes are given in terms of post-quantum secu-
rity. Moreover, their scheme may be slower, since they use a time-space tradeoff
to achieve such small signature sizes. The performance of their scheme is not
immediately clear, since they provide no implementation results. In this work,
by contrast, we provide a complete implementation of our scheme, as well as
performance results on multiple platforms and source code for reference.

Outline. The rest of the paper is organized as follows. In Sect. 2, we give a
brief preliminary on isogeny-based cryptography and describe the interactive
zero-knowledge proof which will be used to construct our scheme. In Sect. 3, we
describe Unruh’s construction. We construct our isogeny-based digital signature
scheme and analyze its algorithmic aspects and parameter sizes in Sect. 4, and
give security proofs in Sect. 5. Performance results are provided in Sect. 6.

2 Isogeny-Based Cryptography

We consider elliptic curves over a finite field Fq. An isogeny φ : E1 → E2 is
a surjective rational map between elliptic curves which preserves the point at
infinity O. Isogenies are necessarily group homomorphisms E1(Fq) → E2(Fq)
and can be identified with their kernels. This gives a one-to-one correspondence
between isogenies and subgroups of the curve. Two curves E1 and E2 over Fq

are isogenous if and only if #E1(Fq) = #E2(Fq) [22]. The degree of an isogeny
is its degree as a rational map. For separable isogenies, as are all isogenies in
this paper, the degree is equal to the size of the kernel.

Every isogeny φ : E1 → E2 with degree d has a unique dual isogeny φ̂ : E2 →
E1 of the same degree such that φ̂ ◦ φ : E1 → E1 is the multiplication map
P �→ [d]P . The set of isogenies mapping a curve E to itself forms a ring under
pointwise addition and composition, called the endomorphism ring. A curve E is
supersingular if its endomorphism ring is isomorphic to an order in a quaternion
algebra, and ordinary otherwise. All supersingular elliptic curves over finite fields
of characteristic p are isomorphic to curves defined over Fp2 .

The �-torsion group of E is defined as E[�] = {P ∈ E(Fp2) : [�]P = O}. If �
is coprime to p, then E[�] ∼= (Z/�Z)2, thus an �-torsion group is generated by
two elements of order �.

2.1 Zero-Knowledge Proof of Identity

We use primes of the form p = �eA

A �eB

B f ± 1 where �A, �B are small primes
(typically 2 and 3) with roughly �eA

A ≈ �eB

B , and f is a small cofactor to ensure p is
prime. The public parameters consist of a prime p = �eA

A �eB

B f ±1, a supersingular
curve E(Fp2) of order (�eA

A �eB

B f)2, and generators PB, QB of the �eB

B -torsion
subgroup E[�eB

B ].
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E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

Fig. 1. Each arrow is labelled by the isogeny and its kernel.

The zero-knowledge proof takes place over the diagram in Fig. 1. Peggy (the
prover) has a secret point S generating the kernel of the isogeny φ : E → E/〈S〉.
Her private key is S (or any generator of 〈S〉) and her public key is the curve
E/〈S〉 and the images of the public generators φ(PB), φ(QB).

In order to prove her knowledge of 〈S〉 to Vic (the verifier), Peggy chooses a
random point R of order �eB

B defining an isogeny ψ : E → E/〈R〉. Note that

(E/〈S〉)/〈φ(R)〉 = E/〈R,S〉 = (E/〈R〉)/〈ψ(S)〉
In other words, the diagram in Fig. 1 commutes.

Peggy computes the isogenies in the diagram and sends to Vic the two non-
public curves. Vic sends her a challenge bit b ∈ {0, 1}, and Peggy reveals some
of the isogenies depending on b, which Vic then verifies.

More precisely, Peggy and Vic run the following protocol:

1. – Peggy chooses a random point R of order �eB

B .
– She computes the isogeny ψ : E → E/〈R〉.
– She computes the isogeny φ′ : E/〈R〉 → E/〈R,S〉 with kernel 〈ψ(S)〉

(alternatively the isogeny ψ′ : E/〈S〉 → E/〈R,S〉 with kernel 〈φ(R)〉).
– She sends the commitment com = (E1, E2) to Vic, where E1 = E/〈R〉

and E2 = E/〈R,S〉.
2. Vic randomly chooses a challenge bit ch ∈ {0, 1} and sends it to Peggy.
3. Peggy sends the response resp where

– If ch = 0, then resp = (R,φ(R)).
– If ch = 1, then resp = ψ(S).

4. – If ch = 0, Vic verifies that R and φ(R) have order �eB

B and generate the
kernels for the isogenies E → E1 and E/〈S〉 → E2 respectively.

E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

b = 0

E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

b = 1

Fig. 2. Hidden isogenies are indicated by dashed lines. Bolded lines indicate the iso-
genies revealed by Peggy on challenge b. In either case, the revealed isogenies do not
leak information about the secret isogeny φ.
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– If ch = 1, Vic verifies that ψ(S) has order �eA

A and generates the kernel
for the isogeny E1 → E2 (Fig. 2).

To achieve λ bits of security, the prime p should be roughly 6λ bits (see
Sect. 5) and this protocol should be run λ times. If Vic successfully verifies all
λ rounds of the protocol, then Peggy has proved her identity (knowledge of the
private key S) to Vic. Otherwise, Vic rejects.

3 Unruh’s Construction

Unruh’s construction [24] transforms an interactive zero-knowledge proof system
into a non-interactive one. The construction satisfies online extractability which
allows us to extract the witness (private key) from a successful adversary without
rewinding. It also avoids the problem of determining the query inputs of the
quantum random oracle by including its outputs in the proof (signature) and
“inverting” them in the security proof. See [24] for the full security proof.

We fix a binary relation R. A statement x holds if there exists w such that
(x,w) ∈ R. In this case, we call w a witness to x. In a proof system, a prover P
tries to prove a statement x to a verifier V (in other words, to convince V that
P knows a witness w to x). We assume that all parties have access to a quantum
random oracle H which can be queried in superposition.

3.1 Sigma Protocols

A sigma protocol Σ = ((P 1, P 2), V ) is an interactive proof system consisting of
three messages in order: a commitment com = P 1(x,w) made by the prover,
a challenge ch chosen uniformly at random by the verifier, and the response
resp = P 2(x,w, com, ch) computed by the prover based on the challenge. Then
V outputs V (x, com, ch, resp), indicating whether they accept or reject the proof.

Let Σ = (P, V ) be a sigma protocol where P = (P 1, P 2). We define the
following properties of sigma protocols (from [24, Sect. 2.2]):

Completeness: If P knows a witness w to the statement x, then V accepts.
Special soundness: There exists a polynomial time extractor EΣ such that,

given any pair of valid interactions (com, ch, resp) and (com, ch′, resp′) with
ch 
= ch′ that V accepts, EΣ can compute a witness w such that (x,w) ∈ R.

Honest-verifier zero-knowledge (HVZK): There is a polynomial time sim-
ulator SΣ with outputs of the form (com, ch, resp) that are indistinguishable
from valid interactions between a prover and an honest verifier by any quan-
tum polynomial time algorithm.

Note that the isogeny-based zero-knowledge proof of identity from the previ-
ous section is a sigma protocol. We will show in Sect. 5 that it satisfies all three
properties listed above.
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3.2 Non-interactive Proof Systems

A non-interactive proof system consists of two algorithms: a prover P (x,w) out-
putting a proof π of the statement x (which has witness w), and a verifier V (x, π)
outputting whether it accepts or rejects the proof π of x.

For a non-interactive proof system (P, V ), we define the following properties
(from [24, Sect. 2.1]):

Completeness: If (x,w) ∈ R, then V accepts the proof π = P (x,w).
Zero-knowledge (NIZK): There exists a polynomial time simulator S such

that, given the ability to program the random oracle, S can output proofs
indistinguishable from those produced by P by any quantum polynomial time
algorithm.
The simulator is modeled by two algorithms S = (Sinit, SP ), where Sinit

outputs an initial circuit H simulating a quantum random oracle, and SP is
a stateful algorithm which may reprogram H and produce proofs using H.

Simulation-sound online-extractability: (with respect to a simulator S =
(Sinit, SP )) There exists a polynomial time extractor E such that, if a quan-
tum polynomial time algorithms A with quantum access to H ← Sinit and
classical access to the prover SP outputs a new valid proof of a statement x,
then E can compute (extract) a witness w of x.

Remark 1. Granting A classical access to the simulated prover SP is analogous
to granting the adversary access to a classical signing oracle in a chosen message
attack in the context of signatures. We could allow A to have quantum access to
SP , corresponding to a quantum chosen message attack as defined in [6]. We do
not know whether Unruh’s construction remains secure under this relaxation.

3.3 Unruh’s Construction

Unruh’s construction transforms a sigma protocol Σ into a non-interactive proof
system (POE , VOE) so that, if Σ satisfies completeness, special soundness, and
HVZK, then the result is a complete NIZK proof system with simulation-sound
online extractability.

Suppose we have a sigma protocol Σ = (PΣ , VΣ) with PΣ = (P 1
Σ , P 2

Σ), where
there are c possible challenges in the challenge domain Nch and the parties want
to run the protocol t times, where t depends on the security parameter λ (in our
signature scheme we will have Nch = {0, 1}, c = 2, and t = 2λ). Let G,H be
quantum random oracles, where G has the same domain and range. We define
a non-interactive proof system (POE , VOE) where POE and VOE are given by
Algorithms 1 and 2 respectively.

The idea is to simulate the interaction in Σ by setting the challenge
J = J1‖ . . . ‖Jt as the output of the random function H. However, instead of
evaluating H on the commitments (comi)i alone as in the Fiat-Shamir trans-
form, we also include the hashes hi,j = G(respi,j) of the responses respi,j to
each possible challenge chi,j , for each commitment comi. Then the produced
proof consists of the commitments, an ordering of all possible challenges, hashed
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Algorithm 1. Prover: POE on input (x,w)
// Create t · c proofs and hash each response

for i = 1 to t do
comi ← P 1

Σ(x, w)
for j = 1 to c do

chi,j ←R Nch \ {chi,1, . . . , chi,j−1}
respi,j ← P 2

Σ(x, w, comi, chi,j)
hi,j ← G(respi,j)

// Get challenge by hashing

J1‖ . . . ‖Jt ← H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)

// Return proof

return π ← ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji
)i)

responses to the corresponding challenges, and the responses to the challenges
given by J1‖ . . . ‖Jt. The verifier can then take the data to reproduce J1‖ . . . ‖Jt,
check that the data was produced properly, and verify the responses (respi,Ji

)i

for each round of Σ.
The main theorem of [24] proves that this construction is secure in the quan-

tum oracle model. Its proof is based on the fact that the random oracle G is
indistinguishable from a random permutation, and replaces G with an efficiently
invertible function (a random polynomial of high degree) which is unnoticeable
by any quantum polynomial time adversary. This allows the hashes to be inverted
to obtain the hidden responses in the adversary’s forged proof.

Theorem 1. ([24, Corollary 19]). If Σ satisfies completeness, special sound-
ness, and HVZK, then (POE , VOE) is a complete non-interactive zero-knowledge
proof system with simulation-sound online extractability in the quantum random
oracle model.

Algorithm 2. Verifier: VOE on input (x, π), where
π = ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji

)i)
// Compute the challenge hash

J1‖ . . . ‖Jt ← H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)

for i = 1 to t do
check chi,1, . . . , chi,m pairwise distinct
check hi,Ji = G(respi)
check VΣ(x, comi, chi,Ji , respi) = 1

if all checks succeed then
return 1

3.4 Signatures from Non-interactive Zero-Knowledge Proofs

A digital signature scheme consists of three algorithms:
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– Keygen(λ): takes a security parameter λ and outputs a key pair (pk, sk).
– Sign(sk,m): signs the message m using sk, outputting a signature σ.
– Verify(pk,m, σ): takes the public key of the claimed signer and verifies the

signature σ on the message m.

A digital signature scheme is strongly unforgeable under chosen message
attack (SUF-CMA) if, for any quantum polynomial time adversary A with clas-
sical access to the signing oracle sig : m �→ Sign(sk,m), A cannot produce a new
valid message-signature pair with non-negligible probability.

Suppose we have a function Keygen generating a public-private key pair
(pk, sk) such that no quantum polynomial-time algorithm can recover a valid sk
from pk with non-negligible probability. A proof of identity can be viewed as
proving the statement x = pk with witness w = sk, where (x,w) ∈ R if and only
if (x,w) is a valid key pair that can be generated by Keygen.

In this sense, a digital signature is basically a non-interactive zero-knowledge
proof of identity, except that we need to incorporate a specific message into each
proof (signature). This is done by including the message as a part of the state-
ment x = (pk,m), and the relation R ignores the message m; i.e. ((pk,m), w) ∈ R
if and only if (pk, w) is a valid key pair. Thus, from a NIZK proof of identity
(P, V ), we obtain a digital signature scheme DS = (Keygen,Sign,Verify) where
Sign(sk,m) = P ((pk,m), sk) and Verify(pk,m, σ) = V ((pk,m), σ).

Theorem 2. ([24, Theorem 23]). If (P, V ) is a NIZK proof of identity satisfying
simulation-sound online-extractability, then the signature scheme DS above is
SUF-CMA in the quantum random oracle model.

Proof (sketch). Since (P, V ) is zero-knowledge, there is a polynomial time simu-
lator that can indistinguishably simulate proofs (signatures) by reprogramming
the random oracle. If an adversary can forge a new valid message-signature pair
by querying the simulator, then by simulation-sound online-extractability, we
can efficiently extract a witness sk. �

4 Isogeny-Based Digital Signature

We propose our isogeny-based digital signature scheme based on the results from
previous sections. Let Σ denote the isogeny-based zero-knowledge proof of iden-
tity described in Sect. 2.1. Applying Unruh’s construction to Σ, we obtain a
non-interactive proof of identity (POE , VOE), from which we get a digital signa-
ture scheme:

Public Parameters. We have the same public parameters as in Σ: a prime
p = �eA

A �eB

B f ± 1, a supersingular curve E of cardinality (�eA

A �eB

B )2 over Fp2 ,
and generators (PB , QB) of the torsion group E[�eB

B ].
Key Generation. To generate keys, select a random point S of order �eA

A ,
compute the isogeny φ : E → E/〈S〉, and output the key pair (pk, sk) where
pk = (E/〈S〉, φ(PB), φ(QB)) and sk = S.
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Signing. To sign a message m, set Sign(sk,m) = POE((pk,m), sk).
Verification. To verify the signature σ of message m, set Verify(pk,m, σ) =

VOE((pk,m), σ).

Algorithms 3, 4, and 5 give explicit descriptions of (Keygen,Sign,Verify).

Algorithm 3. Keygen(λ)
Pick a random point S of order �eA

A

Compute the isogeny φ : E → E/〈S〉
pk ← (E/〈S〉, φ(PB), φ(QB))
sk ← S
return (pk, sk)

Algorithm 4. Sign(sk,m)
for i = 1 to 2λ do

Pick a random point R of order �eB
B

Compute the isogeny ψ : E → E/〈R〉
Compute either φ′ : E/〈R〉 → E/〈R, S〉 or ψ′ : E/〈S〉 → E/〈R, S〉
(E1, E2) ← (E/〈R〉, E/〈R, S〉
comi ← (E1, E2)
chi,0 ←R {0, 1}
(respi,0, respi,1) ← ((R, φ(R)), ψ(S))
if chi,0 = 1 then

swap(respi,0, respi,1)
hi,j ← G(respi,j)

J1‖ . . . ‖J2λ ← H(pk, m, (comi)i, (chi,j)i,j , (hi,j)i,j)

return σ ← ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji
)i)

4.1 Algorithmic Aspects

We describe some of the lower-level algorithmic aspects of our signature scheme.
Full details can be found in [8,12]. For efficiency in our implementation, we
mainly follow [8] for their algorithms and representations of parameters.

Sampling Torsion Points. Let P,Q be fixed generators for the torsion group
E[�e]. To sample a point R of order �e, we choose m,n ∈ Z/�e

Z, not both
divisible by �, and compute R = [m]P + [n]Q. Since R and [k]R generate the
same subgroup 〈R〉 = 〈[k]R〉 for any k not divisible by �, we can replace R by
P + [m−1n]Q or [mn−1]P + Q, depending on which coefficient is coprime to �.

For simplicity, we ignore the coefficient of P as in [8] where it is shown that,
for certain pairs of generators P,Q related by distortion maps, each value of
n ∈ {1, 2, . . . , �e−1 − 1} gives a point R = P + [�n]Q of full order �e generating
distinct subgroups. Note that this procedure samples from �e−1 − 1 possible
subgroups (Fig. 3).
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E E/〈S〉φ

R1 ←R E[�eBB ] Rt ←R E[�eBB ]. . .

. . .

. . .

E/〈R1〉 E/〈R1, S〉
φ′
1

ψ1 ψ′
1

com1 = (E/〈R1〉, E/〈R1, S〉)
ch1 ←R {0, 1}

resp1,0 = (R1, φ(R1))
resp1,1 = ψ1(S)

h1,j = G(resp1,j)

E/〈Rt〉 E/〈Rt, S〉
φ′
t

ψt ψ′
t

comt = (E/〈Rt〉, E/〈Rt, S〉)
cht ←R {0, 1}

respt,0 = (Rt, φ(Rt))
respt,1 = ψt(S)

ht,j = G(respt,j)

J1‖ . . . ‖Jt = H(pk,m, (comi)i, (chi)i, (hi,j)i,j)

σ = ((comi)i, (chi)i, (hi,j)i,j , (respi,Ji
)i)

Fig. 3. An illustration of the signing algorithm running t rounds of the isogeny-based
zero-knowledge proof. For each ZKP round, the signer chooses a random full-order
�eB
B -torsion point R and computes the relevant data in the ZKP and hashes of the

responses (note that these can run in parallel and be precomputed before the message
m is known). The collective data is then hashed together with the message to obtain the
challenge bits J1‖ . . . ‖Jt. The signature σ contains the data necessary for the verifier
to compute J1‖ . . . ‖Jt, and the responses to the challenges.

Computing Isogenies. Isogenies of degree �e can be computed by composing
e isogenies of degree �. Isogeny computation is by far the most expensive process
in isogeny-based systems. Detailed analysis on optimizing isogeny computation
can be found in [8,12].

Representing of Curves and Points. We use projective coordinates for both
points and curve coefficients as in [8] to reduce the number of field inversions.
The curves in our system are isomorphic to Montgomery curves which have
the form E(A,B) : By2 = x3 + Ax2 + x. The Kummer line on a Montgomery
curve, which identifies each point (X : Y : Z) with its inverse (X : −Y : Z),
has efficient point arithmetic and allows us to disregard the Y coordinate in
our computations. This allows us to represent points by just one field element
X/Z in Fp2 . However, to compute linear combinations we require an additional
x-coordinate of P − Q to perform differential addition. We thus include the
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Algorithm 5. Verify(pk,m, σ)
J1‖ . . . ‖J2λ ← H(m, x, (comi)i, (chi,j)i,j , (hi,j)i,j)

for i = 1 to 2λ do
check hi,Ji = G(respi,Ji

)
if chi,Ji = 0 then

Parse (R, φ(R)) ← respi,Ji

check R, φ(R) have order �eB
B

check R generates the kernel of the isogeny E → E1

check φ(R) generates the kernel of the isogeny E/〈S〉 → E2

else
Parse ψ(S) ← respi,Ji

check ψ(S) has order �eA
A

check ψ(S) generates the kernel of the isogeny E1 → E2

if all checks succeed then
return 1

x-coordinate of φ(PB − QB) as part of the public key. Isogeny computations are
unaffected because a point R and its inverse −R generate the same subgroup.

In the Montgomery form, it turns out that there are only two isomorphism
classes of Montgomery curves for a given coefficient value A, and they have the
same Kummer line. So the B coefficient also does not affect our computations,
and curves can also be represented by one field element for their A-coordinate.

4.2 Parameter Sizes

Recall that our primes have the form p = �eA

A �eB

B f ± 1 with roughly �eA

A ≈ �eB

B .
Note that we require primes of bitlength 6λ in order to achieve λ bits of post-
quantum security (see Sect. 5), so we have �eA

A ≈ �eB

B ≈ 23λ.
Since all supersingular curves are defined over Fp2 , each field element requires

12λ bits. Our curves are represented in Montgomery form By2 = x3 + Ax2 + x
where the A-coefficient suffices for isogeny computations. Similarly, a point on
the Kummer line can be represented by their X-coordinate. In both cases, we
need one field element, requiring 12λ bits.

Compression. Azarderakhsh et al. [2] showed that torsion points can be com-
pressed by representing them by their coefficients with respect to a determinis-
tically generated basis (computing 2-dimensional discrete log is polynomial-time
for smooth curves). Their implementation was however very slow. Recent work
by Costello et al. [7] proposed new algorithms accelerating the previous work
by more than an order of magnitude and further reduce public key sizes. Their
improved compression algorithm runs roughly as fast as a round of the ZKP
protocol.

A torsion point used to generate a subgroup can be represented by one coeffi-
cient since we can always normalize the coefficient of one generator. Compressing
two generators of a torsion group requires three coefficients to keep track of their
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relation when computing linear combinations. Each coefficient requires roughly
3λ bits.

We can apply the compression to our signature scheme in two ways: first to
the public key and second to the responses ψ(S) for the rounds where ch = 1.
The private key and the other responses (R,φ(R)) are generated using a 3λ-bit
coefficient and as such do not require additional computation for compression.

Public Keys. The public key has the form pk = (a, x(PB), x(QB), x(PB−QB)),
where a denotes the A-coefficient of the public curve E/〈S〉. These four field
elements require 48λ bits of storage.

We can compress the public key significantly by compressing the torsion basis
(φ(PB), φ(QB)), requiring three 3λ-bit coefficients. Moreover, the X-coordinate
of φ(PB−QB) is no longer required since the full coordinates of φ(PB) and φ(QB)
can be recovered from their compressed coefficients. Thus the compressed public
key requires 12λ bits for the curve and 9λ bits for the generators, for a total of
21λ bits.

Private Keys. The private key S can be stored as a single coefficient n with
respect to a �eA

A -torsion basis PA, QA (i.e. S = PA + [n]QA), requiring 3λ bits.

Signatures. The signature contains (comi, chi,j , hi,j , respi,Ji
) for each round

i of the ZKP protocol. Each commitment contains two curves (E1, E2), each
requiring one field element. We need one bit to indicate the first challenge bit
chi,0. We do not need to send chi,1 since chi,1 = 1 − chi,0. The hash hi,j =
G(respi,j) should have bitlength 3λ (this will be justified in Sect. 5.2). Note that
we do not need to send hi,Ji

since it can be computed from respi,Ji
.

The response has a different length depending on the challenge bit Ji. If
Ji = 0, the response (R,φ(R)) can be represented by their coefficients with
respect to the public bases at no additional computational cost, requiring only
3λ bits. If Ji = 1, the response ψ(S) requires 12λ bits as a field element. With
compression, ψ(S) can be represented in 3λ bits.

In total, each round of the ZKP requires roughly 24λ + 1 + 3λ + 3λ+12λ
2 ≈

34.5λ bits on average without compression, and roughly 30λ bits on average
with compression. Although λ rounds of the ZKP sufficed for λ bits of post-
quantum security, the signature requires 2λ rounds of the ZKP protocol due to
the challenge hash being vulnerable to Grover’s algorithm [15] (see Sect 5.3). So
the entire signature has size roughly 69λ2 (60λ2 compressed) bits on average.

For instance, to achieve 128 bits of post-quantum security, our signature
scheme requires 48λ = 6144 bits (768 bytes) for the public key (336 bytes com-
pressed), 3λ = 384 bits (48 bytes) for the private key, and 69λ2 = 1, 130, 496
bits (141,312 bytes) for the signature (122,880 bytes compressed) on average.

Comparison. We compare our parameter sizes with various post-quantum sig-
nature schemes: the stateless hash-based signature SPHINCS-256 [4], a code-
based signature based on Niederreiter’s variant of the McEliece cryptosystem
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Table 1. Comparison of parameter sizes (in bytes) with various post-quantum signa-
ture schemes at the quantum 128-bit security level.

Scheme Public-key size Private-key size Signature size

Hash-based 1,056 1,088 41,000

Code-based 192,192 1,400,288 370

Lattice-based 7,168 2,048 5,120

Ring-LWE-based 7,168 4,608 3,488

Multivariate-based 99,100 74,000 424

Isogeny-based 768 48 141,312

Compressed 336 48 122,880

[5,9], a lattice-based signature BLISS [11], a recent ring-LWE-based signature
TESLA# [3], and the multivariate polynomial-based Rainbow signature [10,18].

It is clear from Table 1 that our isogeny-based signature achieves very small
key sizes relative to the other post-quantum signature schemes. We note that
the variants of the Merkle signature scheme can achieve smaller (32 byte) key
sizes at the same security level, but require state management. We expect future
works in isogenies to improve upon signature sizes and performance to produce
more practical signatures with still compact keys.

5 Security

The security of isogeny-based cryptosystems are based on the following prob-
lems (from [12, Sect. 5]), which are believed to be intractable even for quantum
computers.

Computational Supersingular Isogeny (CSSI) problem: Let φA : E0 →
EA be an isogeny whose kernel is 〈RA〉 where RA is a random point with
order �eA

A . Given EA, φA(PB), φA(QB), find a generator of 〈RA〉.
Decisional Supersingular Product (DSSP) problem: Let φ : E0 → E3 be

an isogeny of degree �eA

A . Given (E1, E2, φ
′) sampled with probability 1/2 from

one or the other of the following distributions, determine which distribution
it is from.

– A random point R of order �eB

B is chosen and E1 = E0/〈R〉, E2 =
E3/〈φ(R)〉, and φ′ : E1 → E2 is an isogeny of degree �eA

A .
– E1 is chosen randomly among curves of the same cardinality as E0, and

φ′ : E1 → E2 is a random isogeny of degree �eA

A

The best known attack for the CSSI problem involves claw-finding algorithms
using quantum walks [21] and takes O(p1/6) time, which is optimal for a black-
box claw attack [26]. Therefore it is believed that a prime with bitlength 6λ
achieves λ bits of post-quantum security.
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5.1 Security of the Zero-Knowledge Proof

It is proven in [12, Sect. 6.2] that our isogeny-based zero-knowledge proof of
identity from Sect. 2.1 satisfies completeness, soundness, and honest-verifier zero-
knowledge under the assumption that the CSSI and DSSP problems are hard.
However, Unruh’s construction requires special soundness.

Theorem 3 ([12, Theorem 6.3]). The isogeny-based zero-knowledge proof of
identity satisfies completeness, special soundness, and HVZK.

Proof. We only prove special soundness. Suppose we are given two valid tran-
scripts (com, 0, resp0) and (com, 1, resp1), where com = (E1, E2). Then we
can use resp0 = (R,φ(R)) to compute the isogeny ψ : E → E/〈R〉. Since
resp1 = ψ(S) is a generator of the kernel of φ′, we can take the dual isogeny
ψ̂ : E/〈R〉 → E, and compute ψ̂(resp1), a generator for 〈S〉 (Fig. 4). �

E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

Fig. 4. If ψ and φ′ are both known, then we can recover the secret subgroup 〈S〉.

5.2 Security of the Signature

Theorem 2 implies that our isogeny-based signature scheme obtained in Sect. 4 is
SUF-CMA. However, one important detail in Unruh’s proof is that the quantum
random oracle G must have the same domain and range for both response types,
so that one can substitute G with a random polynomial and invert hashes in the
security proof. In Sect. 4.2, we described compression techniques giving us a few
variants of our signature scheme with a space-time tradeoff (we could compress
the public key, the responses, or both), and we also took G to be a random oracle
outputting hashes of bitlength k ≈ 3λ. While Unruh’s proof applies directly to
our compressed signatures, it is invalid in our uncompressed signature scheme
where the responses can have bitlength k or 4k. In this case, the only way to
apply Unruh’s construction directly is to pad the shorter responses to 4k bits.
G should then output hashes of bitlength 4k so that the domain and range of G
are both equal to {0, 1}4k, increasing signature sizes by roughly 18λ2 bits.

We show by an ad-hoc argument that compression is not necessary—the
uncompressed signature scheme remains secure when G outputs hashes of
bitlength k ≈ 3λ. Let DSu denote the uncompressed signature scheme and DSc

denote the scheme where the responses ψ(S) are compressed.

Theorem 4. DSc is SUF-CMA in the quantum random oracle model.
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Proof. Since all responses are represented by bitstrings of length k, the security
of DSc follows from Theorem 2. �
Theorem 5. DSu is SUF-CMA in the quantum random oracle model.

Proof. Suppose there exists a quantum polynomial-time adversary A breaking
the SUF-CMA security of DSu. We show that, given a classical signing oracle
to an instance of DSc with quantum random oracle Gc : {0, 1}k → {0, 1}k, we
can forge a new valid message-signature pair for DSc using A.

Suppose we are given the public key pk and a signing oracle to an instance
of DSc with quantum random oracles Gc and H. Let C0, C1 denote the set of
possible responses to the challenge ch = 0, 1 respectively in DSc. Note that
both sets have cardinality roughly 2k and consist of k-bitstrings. We create an
instance of DSu with the same setup, except the quantum random oracle Gu is
to be defined as follows.

Let U0, U1 denote the set of possible responses to the challenge ch = 0, 1
respectively in DSu. Then we have C0 = U0 and |C1| = |U1|, but the elements
of U1 are 4k-bitstrings. Let C : U1 → C1 denote the compression map taking the
field representation of a point ψ(S) in U1 to its compressed coefficient represen-
tation in C1. Then C is a bijection that can be computed efficiently both ways
since the compression map is injective and its inverse just computes the linear
combination. Let G′

u : {0, 1}4k → {0, 1}k be a quantum random oracle such that
G′

u(z‖x) = Gc(x) for all x ∈ {0, 1}k, where z denotes the all-zeros string of
length 3k. Define Gu : {0, 1}4k → {0, 1}k where

Gu(x) =

⎧
⎪⎨

⎪⎩

G′
u(z‖C(x)) if x ∈ U1

G′
u(C−1(y)) if x = z‖y where y ∈ C1

G′
u(x) otherwise

Since Gu just permutes the inputs according to the bijection C (with MSB zero-
padding) before applying the quantum random oracle G′

u, it follows that Gu is
indistinguishable from G′

u. Hence A can break DSu when instantiated with Gu.
We give A the same public key pk with quantum random oracles Gu and H.

When A makes a signing query on a message m, we relay it to the DSc signing
oracle to get back a signature

σ = ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji
)i)

where J1‖ . . . ‖Jt = H(pk,m, (comi)i, (chi,j)i,j , (hi,j)i,j) and hi,j = Gc(respi,j).
We simply decompress all responses respi,Ji

in σ where chi,Ji
= 1, and give this

modified σ to A. Since Gu(C−1(y)) = G′
u(z‖y) = Gc(y) for all y ∈ C1, and

Gu(x) = Gc(x) for all x ∈ C0 (with MSB zero-padding of input), it follows that
the hi,j ’s are still valid hashes in DSu with Gu. Hence the modified σ is a valid
signature for m in DSu.

Therefore we can answer A’s signing oracle queries so that A can forge a
new valid message-signature pair (m,σ) in DSu. By similar reasoning, we can
then re-compress the new signature without recalculating the hashes to obtain
a valid message-signature pair for DSc, contradicting Theorem 4. �
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5.3 Number of Rounds

To achieve λ bits of security, the protocol must be run at least t = 2λ times, since
a quantum adversary can choose arbitrary bits J1‖ . . . ‖Jt, compute simulated
proofs using J1‖ . . . ‖Jt as challenge, then perform a pre-image search on H using
Grover’s algorithm [15] to find a message m that will give the required hash. A
faster collision attack does not seem to apply since an adversary must know the
challenge bits beforehand in order for their simulated proofs to be verifiable with
non-negligible probability. Thus to achieve λ bits of security against quantum
attacks, our signature scheme runs the zero-knowledge proof t = 2λ times.

We have seen that, in the underlying zero-knowledge proof, revealing
responses to both challenges b = 0, 1 will allow anyone to compute the secret
isogeny. Consequently, it is crucial that our signature scheme does not use the
same commitment twice. We show that this happens with negligible probability.

Recall that p = �eA

A �eB

B f ± 1 ≈ 26λ with �eA

A ≈ �eB

B ≈ 23λ. There are roughly
�eB−1
B −1 ≈ 23λ distinct cyclic subgroups of E[�eB

B ] from which the commitments
are chosen randomly. The zero-knowledge protocol is run 2λ times for each sig-
nature, so if we sign 2s messages, we would select 2s+1λ cyclic subgroups of
E[�eB

B ] at random. An upper bound on the probability that we will select the
same subgroup at least twice is given by the Birthday bound:

2s+1λ(2s+1λ − 1)
2 · 23λ

≤ 22s+2λ2

23λ+1
≤ λ2

2λ−1

for s ≤ λ, which is negligible in λ.

6 Implementations

For maximum performance, we implemented the uncompressed signature scheme
by modifying the Supersingular Isogeny Diffie-Hellman (SIDH) library published
by Costello, Longa, and Naehrig [8]. The SIDH implementation uses fixed public
parameters: the prime p = 2372 · 3239 − 1, the curve E0 : y2 = x3 + x, and
generators PB , QB related by a distortion map. The prime p has bitlength 751,
providing 186 bits of classical security and 124 bits of quantum security.

6.1 Performance

Performance tests of the uncompressed signature scheme were run on an Intel
Xeon E5-2637 v3 3.5 GHz Haswell processor running CentOS v6.8, compiled
with GCC v4.4.7. We also present timing results on the high-performance ARM
Cortex-A57 processor in both C and an optimized arithmetic library on ASM [17].
The Juno platform provides a combination of Cortex-A57 and Cortex-A53 cores
for ARMv8 big.LITTLE technology. However, our software is only benchmarked
on a single high-performance Cortex-A57 core to get the most performance-
oriented results. The software is compiled with Linaro GCC v4.9.4 on a single core
1.1 GHz ARM Cortex-A57 running OpenEmbedded Linux v4.5.0.
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The signing and verifying algorithms are easily parallelizable with linear
speedup, since the computations required for each round of the ZKP proto-
col is independent. We have implemented parallelization for the PC platform.
The timing results are summarized in Table 2.

Table 2. Performance results (in 106 clock cycles) on Intel Xeon E5-2637 v3 3.5 GHz.

Platform Threads Keygen Signing Verifying

1 63 28,776 19,679

PC 2 - 14,474 10,042

4 - 7,449 5,536

ARM (C) - 1,656 767,928 493,797

ARM (ASM) - 123 57,092 36,757

As noted before, the computing costs in the signing algorithm are incurred
almost entirely in the ZKP rounds which can be precomputed offline. With
precomputation, the signing algorithm simply needs to evaluate a hash function
on the data and output the appropriate responses for the signature.

7 Conclusion

We present and implement a stateless quantum-resistant digital signature scheme
based on supersingular elliptic curve isogenies with very small key sizes, useful
for post-quantum applications with strict key size requirements. Combined with
previous works, these results show that isogenies can provide the full range of
public-key cryptographic primitives including key establishment, encryption, and
digital signatures. Though our results are promising, further improvements are
still needed to bring isogeny-based signatures truly into the realm of practicality.
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12. Feo, L.D., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

14. Galbraith, S.D., Petit, C., Silva, J.: Signature schemes based on supersingular
isogeny problems. Cryptology ePrint Archive, report 2016/1154 (2016)

15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC 1996, pp. 212–219. ACM, New York (1996)

16. Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In:
Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160–179. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11659-4 10

17. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Kermani, M.M.: NEON-SIDH:
Efficient implementation of supersingular isogeny Diffe-Hellman key exchange pro-
tocol on ARM. In: Cryptology and Network Security - 15th International Confer-
ence, CANS 2016, Milan, Italy, 14–16 November 2016, Proceedings, pp. 88–103
(2016)

https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-540-88403-3_3
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-11659-4_10


A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 181

18. Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting parameters for the rainbow
signature scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 218–
240. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2 16

19. Seshadri, S.M., Chandrasekaran, V.: Isogeny-based quantum-resistant undeniable
blind signature scheme. Cryptology ePrint Archive, Report 2016/148 (2016)

20. Sun, X., Tian, H., Wang, Y.: Toward quantum-resistant strong designated verifier
signature from isogenies. In: 2012 Fourth International Conference on Intelligent
Networking and Collaborative Systems (2012)

21. Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci.
410(50), 5285–5297 (2009)

22. Tate, J.: Endomorphisms of Abelian varieties over finite fields. Inventiones Math-
ematicae 2(2), 134–144 (1966)

23. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 10

24. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random Ora-
cle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46803-6 25

25. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009)

26. Zhang, S.: Promised and distributed quantum search. In: Wang, L. (ed.) COCOON
2005. LNCS, vol. 3595, pp. 430–439. Springer, Heidelberg (2005). https://doi.org/
10.1007/11533719 44

https://doi.org/10.1007/978-3-642-12929-2_16
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/11533719_44
https://doi.org/10.1007/11533719_44

	A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies
	1 Introduction
	2 Isogeny-Based Cryptography
	2.1 Zero-Knowledge Proof of Identity

	3 Unruh's Construction
	3.1 Sigma Protocols
	3.2 Non-interactive Proof Systems
	3.3 Unruh's Construction
	3.4 Signatures from Non-interactive Zero-Knowledge Proofs

	4 Isogeny-Based Digital Signature
	4.1 Algorithmic Aspects
	4.2 Parameter Sizes

	5 Security
	5.1 Security of the Zero-Knowledge Proof
	5.2 Security of the Signature
	5.3 Number of Rounds

	6 Implementations
	6.1 Performance

	7 Conclusion
	References


