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Abstract. We introduce the notion of homomorphic proxy re-
authenticators, a tool that adds security and verifiability guarantees
to multi-user data aggregation scenarios. It allows distinct sources to
authenticate their data under their own keys, and a proxy can trans-
form these single signatures or message authentication codes (MACs) to
a MAC under a receiver’s key without having access to it. In addition,
the proxy can evaluate arithmetic circuits (functions) on the inputs so
that the resulting MAC corresponds to the evaluation of the respective
function. As the messages authenticated by the sources may represent
sensitive information, we also consider hiding them from the proxy and
other parties in the system, except from the receiver.

We provide a general model and two modular constructions of our
novel primitive, supporting the class of linear functions. On our way, we
establish various novel building blocks. Most interestingly, we formally
define the notion and present a construction of homomorphic proxy re-
encryption, which may be of independent interest. The latter allows users
to encrypt messages under their own public keys, and a proxy can re-
encrypt them to a receiver’s public key (without knowing any secret key),
while also being able to evaluate functions on the ciphertexts. The result-
ing re-encrypted ciphertext then holds an evaluation of the function on
the input messages.

1 Introduction

Proxy re-cryptography [11] is a powerful concept which allows proxies to trans-
form cryptographic objects under one key to cryptographic objects under another
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key using a transformation key (a so called re-key). In particular, proxy re-
encryption has shown to be of great practical interest in cloud scenarios such as
data storage [12,16], data sharing [49], publish-subscribe [15] as well as cloud-
based identity management [41,42,47,50]. In contrast, other proxy re-primitives,
and in particular proxy re-signatures (or MACs), seem to unleash their full
potential not before considering them in combination with homomorphic prop-
erties on the message space. Interestingly, however, this direction has received
no attention so far. To this end, we introduce the notion of homomorphic proxy
re-authenticators (HPRAs), which allows distinct senders to authenticate data
under their own keys, and an evaluator (aggregator) can transform these single
signatures or message authentication codes (MACs) to a MAC under a receiver’s
key without knowing it. Most importantly, the aggregator can evaluate arith-
metic circuits (functions) on the inputs so that the resulting MAC corresponds
to the evaluation of the respective function. Furthermore, we investigate whether
we can hide the input messages from the aggregator. On the way to solve this, we
formally define the notion of homomorphic proxy re-encryption (HPRE). Data
aggregation is the central application of our framework, but it is not limited to
this application.

Motivation. Data aggregation is an important task in the Internet of Things
(IoT) and cloud computing. We observe a gap in existing work as the important
issue of end-to-end authenticity and verifiability of computations on the data
(aggregation results) is mostly ignored. We address this issue and propose a
versatile non-interactive solution which is tailored to a multi-user setting. The
additional authenticity features of our solution add robustness to errors occurring
during transmission or aggregation even in the face of a non-trusted aggregator.

Multi-User Data Aggregation. Assume a setting where n senders, e.g., sensor
nodes, regularly report data to some entity denoted the aggregator. The aggre-
gator collects the data and then reports computations (evaluations of functions)
on these data to a receiver. For example, consider environmental monitoring of
hydroelectric plants being located in a mountainous region, where small sen-
sors are used for monitoring purposes. Due to the lack of infrastructure (e.g.,
very limited cell coverage) sensors are not directly connected to the Internet and
collected data is first sent to a gateway running at the premise of some telecom-
munication provider. This gateway aggregates the data and forwards it to some
cloud service operated by the receiver.

Obviously, when the involved parties communicate via public networks, secu-
rity related issues arise. Apart from achieving security against outsiders, there
are also security and privacy related issues with respect to the involved parties.

In general, we identify three main goals. (1) End-to-end authenticity, i.e., pro-
tecting data items from unauthorized manipulation and preserving the source
authenticity. (2) Concealing the original data from the aggregator and the
receiver, and, even further, concealing the result of the computation from the
aggregator. Clearly, in (2) we also want to conceal data from any outsider.
(3) Establishing independent secret keys for the involved parties so that they
do not share a single secret. Latter facilitates a dynamic setting.
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Below, we present such an aggregation scenario, discuss why straightforward
solutions fall short, and sketch our solution. Then, we discuss the problems
popping up when we require stronger privacy guarantees and show how our
primitives help to overcome these issues.

Authenticity and Input Privacy. In our first scenario, the n senders each hold
their own signing key and within every period sender i reports a signed data
item di to the aggregator. The aggregator must be able to evaluate functions
f ∈ F (where F is some suitable class of functions, e.g., linear functions) on
d1, . . . , dn so that a receiver will be convinced of the authenticity of the data
and the correctness of the computation without fully trusting the aggregator
(recall the end-to-end authenticity requirement). Moreover, although the inputs
to the aggregator are not private, we still want them to be hidden relative to
the function f , i.e., so that a receiver only learns what is revealed by f and
d̂ = f(d1, . . . , dn), as a receiver might not need to learn the single input values.

A central goal is that the single data sources have individual keys. Thus, we
can not directly employ homomorphic signatures (or MACs). Also the recent con-
cept of multikey-homomorphic signatures [25,26,33] does not help: even though
they allow homomorphic operations on the key space, they do not consider trans-
formations to some specific target key.1 With HPRAs we can realize this, as the
aggregator (who holds re-keys from the senders to some receiver) can transform
all the single signatures or MACs to a MAC under the receiver’s key (with-
out having access to it). Moreover, due to the homomorphic property, a MAC
which corresponds to the evaluation of a function f on the inputs can be com-
puted. The receiver can then verify the correctness of the computation, i.e., that
d̂ = f(d1, . . . , dn), and the authenticity of the used inputs (without explicitly
learning them) using its independent MAC key.

Adding Output Privacy. In our second scenario, we additionally want data pri-
vacy guarantees with respect to the aggregator. This can be crucial if the aggre-
gator is running in some untrusted environment, e.g., the cloud. We achieve this
by constructing an output private HPRA. In doing so, one has to answer the
question as how to confidentially provide the result of the computation to the
receiver and how to guarantee the authenticity (verifiability) of the computation.
We tackle this issue by introducing a HPRE where the homomorphism is com-
patible to the one of the HPRA. The sources then additionally encrypt the data
under their own keys and the aggregator re-encrypts the individual ciphertexts
to a ciphertext under a receiver’s key and evaluates the same function f as on the
MACs on the ciphertexts. This enables the receiver to decrypt the result d̂ using
its own decryption key and to verify the MAC on d̂ together with a description
of the function f . In addition, we use a trick to prevent public verifiability of the
signatures from the single data sources, as public verifiability potentially leaks
the signed data items which trivially would destroy output privacy.

1 While the homomorphic properties might allow one to define a function mapping to
a target key, it is unclear whether handing over the description of such a function to
a proxy would maintain the security requirements posed by our application.
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Contribution. Our contributions in this paper can be summarized as follows.

– We introduce the notion of homomorphic proxy re-authenticators (HPRA).
Our framework tackles multi-user data aggregation in a dynamic setting. For
the first time, we thereby consider independent keys of the single parties, the
verifiability of the evaluation of general functions on the authenticated inputs
by the sources, as well as privacy with respect to the aggregator.

– As a means to achieve the strong privacy requirements imposed by our secu-
rity model, we formally define the notion of homomorphic proxy re-encryption
(HPRE), which may be of independent interest.

– We present two modular constructions of HPRA schemes for the class Flin of
linear functions, which differ regarding the strength of the provided privacy
guarantees. On our way, we establish various novel building blocks. Firstly,
we present a linearly homomorphic MAC which is suitable to be used in
our construction. Secondly, to achieve the stronger privacy guarantees, we
construct a HPRE scheme for linear functions. All our proofs are modular in
the sense that we separately prove the security of our building blocks; our
overall proofs then build upon the results obtained for the building blocks.
Thus, our building blocks may as well easily be used in other constructions.

Related Work. Subsequently, we review related work. As our focus is on non-
interactive approaches, we omit interactive approaches where clients download
all the data, decrypt them locally, compute a function, and send the results back
along with a zero-knowledge proof of correctness (as, e.g., in [24]).

Proxy Re-Cryptography. Proxy re-encryption (PRE) [11] allows a semi-trusted
proxy to transform a message encrypted under the key of some party into a
ciphertext to the same message under a key of another party, where the proxy
performing the re-encryption learns nothing about the message. This primitive
has been introduced in [11], further studied in [30] and the first strongly secure
constructions have been proposed by Ateniese et al. in [5]. Boneh et al. construct
PRE in the symmetric setting [14]. Follow-up work focuses on even stronger (IND-
CCA2 secure) schemes (cf. [17,39,43,44]). Since we, however, require certain
homomorphic properties, we focus on IND-CPA secure schemes (as IND-CCA2
security does not allow any kind of malleability). In previous work by Ayday
et al. [7], a variant of the linearly homomorphic Paillier encryption scheme and
proxy encryption in the sense of [30] were combined. Here, the holder of a key
splits the key and gives one part to the proxy and one to the sender; with the
drawback that the secret key is exposed when both collude. We are looking for
proxy re-encryption that is homomorphic, works in a multi-user setting but is
collusion-safe and non-interactive, i.e., re-encryption keys can be computed by
the sender using only the public key of the receiver without any interaction
and a collusion of sender and proxy does not reveal the receiver’s key. Also
note that, as our focus is on practically efficient constructions, we do not build
upon fully homomorphic encryption [27], which allows to build HPRE using
the rather expensive bootstrapping technique. In concurrent work Ma et al.
[40] follow this approach and propose a construction of a PRE scheme with
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homomorphic properties which additionally achieves key privacy. They build
upon [28] using the bootstrapping techniques in [4] and apply some modifications
for key privacy. While their construction can be seen as a HPRE in our sense,
they do not formally define a corresponding security model and we are not aware
of a suitable formalization for our purposes.

Proxy re-signatures, i.e., the signature analogue to proxy re-encryption, have
been introduced in [11] and formally studied in [30]. Later, [6] introduced
stronger security definitions, constructions and briefly discussed some applica-
tions. However, the schemes in [6] and follow up schemes [38] do not provide
a homomorphic property and it is unclear how they could be extended. The
concept of homomorphic proxy re-authenticators, which we propose, or a related
concept, has to the best of our knowledge not been studied before.

Homomorphic Authenticators. General (non-interactive) verifiable computing
techniques (cf. [48] for a recent overview) are very expressive, but usually pro-
hibitive regarding proof computation (proof size and verification can, however,
be very small and cheap respectively). In addition, the function and/or the data
needs to be fixed at setup time and inputs are not authenticated. Using homo-
morphic authenticators allows evaluations of functions on authenticated inputs
under a single key (cf. [19] for a recent overview). They are dynamic with respect
to the authenticated data and the evaluated function, and also efficient for inter-
esting classes of functions. Evaluating results is typically not more efficient than
computing the function (unless using an amortized setting [8,21]). Yet, they
provide benefits when saving bandwidth is an issue and/or the inputs need to
be hidden from evaluators (cf. [22,32]). Computing on data authenticated under
different keys using so called multi-key homomorphic authenticators [25,26,33],
has only very recently been considered. Even though they are somewhat related,
they are no replacement for what we are proposing in this paper.

Aggregator-Oblivious Encryption (AOE). AOE [45,46] considers data provided
by multiple producers, which is aggregated by a semi-honest aggregator. The
aggregator does not learn the single inputs but only the final result. Follow-up
work [10,31,34] improved this approach in various directions. Furthermore, [23]
introduced a method to achieve fault tolerance, being applicable to all previous
schemes. There are also other lines of work on data aggregation, e.g., [18,36],
[29,37]. Very recently, [35] combined AOE with homomorphic tags to additionally
provide verifiability of the aggregated results. Here, every user has a tag key and
the aggregator additionally aggregates the tags. Verification can be done under a
pre-distributed combined fixed tag key. Their approach is limited to a single func-
tion (the sum) and requires a shared secret key-setting, which can be problematic.

In all previous approaches it is impossible to hide the outputs (i.e., the aggre-
gation results) from the aggregator. In contrast to only hiding the inputs, we
additionally want to hide the outputs. In addition, we do not want to assume
a trusted distribution of the keys, but every sender should authenticate and
encrypt under his own key and the aggregator can then perform re-operations
(without any secret key) to the receiver.
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2 Preliminaries

Unless stated otherwise, all algorithms run in polynomial time and return a
special symbol ⊥ on error. By y ← A(x), we denote that y is assigned the output
of the potentially probabilistic algorithm A on input x and fresh random coins
(we may also use sans serif font to denote algorithms). Similarly, y ←R

S means
that y is assigned a uniformly random value from a set S. If a and b are strings,
a‖b is the concatenated string and �a‖b means extending the vector �a with element
b. For a sequence of vectors (�vi)i∈[n] of length �, we use f((�vi)i∈[n]) to denote the
element-wise application of the function f , i.e., f((�vi)i∈[n]) := (f(vi1)i∈[n], . . . ,
f((vi�)i∈[n])). We let [n] := {1, . . . , n} and let Pr[Ω : E] denote the probability
of an event E over the probability space Ω. A function ε(·) : N → R≥0 is called
negligible, iff it vanishes faster than every inverse polynomial, i.e., ∀ k : ∃ nk :
∀ n > nk : ε(n) < n−k. A polynomial function is denoted by poly(·).

Let G1 = 〈g〉, G2 = 〈ĝ〉, and GT be cyclic groups of prime order q. A paring
e : G1 × G2 → GT is an efficiently computable, bilinear, non-degenerate map.
For simplicity we present our results in the (symmetric) Type-1 setting where
G1 = G2. We stress that there are tools [1,3] to automatically translate them to
the more efficient (asymmetric) Type-3 setting. Henceforth we use BG to denote
a description of a bilinear group and use boldface letters to denote elements in
GT . We formally define bilinear group generation and the required computational
hardness assumptions in the full version.

Linearly Homomorphic MACs. Our definition is inspired by [2] and cov-
ers homomorphic MACs for the family of linear function classes {F lin

pp}, further
referred to as HOM-MAC.

Definition 1 (HOM-MAC). A HOM-MAC is a tuple (P,G,S, C,V) of algorithms
defined as:

P(κ, �) : Takes a security parameter κ and an upper bound � on the vector length
as input and outputs public parameters pp, determining the message space
M�, function class F lin

pp containing functions f : (M�)n → M�, as well as a
tag space being exponentially large in κ, where �, n ≤ poly(κ).

G(pp) : Takes the public parameters pp as input and outputs a secret key sk.
S(sk, �v, id, τ) : Takes a MAC key sk, a vector �v, an identifier id, and a tag τ as

input, and outputs a MAC μ.
C(pp, f, (μi)i∈[n]) : Takes public parameters pp, a function f ∈ Flin and a sequence

of valid MACs (μi)i∈[n] on vectors (�vi)i∈[n] as input, and outputs a MAC μ
on �v = f((�vi)i∈[n]).

V(sk, �v, μ, τ, (idi)i∈[n], f) : Takes a MAC key sk, a vector �v, a MAC μ, a tag τ , a
sequence of identifiers (idi)i∈[n], and a function f ∈ Flin as input, and outputs
a bit.

A linearly homomorphic MAC is required to be correct and unforgeable.
Formal definitions are presented in the full version.

Proxy Re-Encryption. A proxy re-encryption (PRE) scheme is an encryption
scheme that allows a proxy to transform a message m encrypted under public
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key rpkA of party A into a ciphertext to m under rpkB for another party B, so
that the proxy learns nothing about m. A PRE scheme is called non-interactive if
party A can produce a re-encryption key from A to B locally by having access to
its private key and only B’s public key, collusion-safe if the proxy colluding with
either of the parties can not recover the other parties private key, unidirectional
if a re-encryption key only allows transformations in one direction (e.g., from A
to B), and single-use if one ciphertext can be transformed only once. For our
formal definitions, we largely follow [5].

Definition 2 (PRE). A PRE is a tuple (P,G, �E , �D,RG,RE) of algorithms,
where �E = (E i)i∈[2] and �D = (Di)i∈[2], which are defined as follows:

P(1κ) : Takes a security parameter κ and outputs parameters pp.
G(pp) : Takes parameters pp and outputs a key pair (rsk, rpk).
RG(rskA, rpkB) : Takes a secret key rskA and a public key rpkB and outputs a

re-encryption key rkA→B.
E i(rpk,m) : Takes a public key rpk and a message m and outputs a ciphertext c.

RE(rkA→B , cA) : Takes a re-encryption key rkA→B and a ciphertext cA under
rpkA, and outputs a re-encrypted ciphertext cB for rpkB.

Di(rsk, c) : Takes a secret key rsk and a ciphertext c, and outputs m.

A PRE scheme needs to be correct. This notion requires that for all security
parameters κ ∈ N, all honestly generated parameters pp ← P(1κ), all key pairs
(rskA, rpkA) ← G(pp), (rskB , rpkB) ← G(pp), all re-encryption keys rkA→B ←
RG(rskA, rpkB), all messages m it holds with probability one that

∀ i ∈ [2] ∃ j ∈ [2] : Dj(rskA, E i(rpkA,m)) = m, and

∃ i ∈ [2] ∃ j ∈ [2] : Dj(rskB ,RE(rkA→B , E i(pkA,m))) = m.

Thereby i and j determine the level of the ciphertexts. We will henceforth use
the following semantics: first-level ciphertexts (E1) cannot be re-encrypted by a
proxy, whereas second-level ciphertexts (E2) can be re-encrypted.

In addition, a PRE needs to be IND-CPA secure. We, henceforth, only require
a relaxed IND-CPA notion which we term IND-CPA−. It is clearly implied by the
original IND-CPA notion from [5] (some oracles are omitted and the adversary
only gets to see a second-level ciphertext).

Definition 3 (IND-CPA−). A PRE is IND-CPA− secure, if for all PPT adver-
saries A there is a negligible function ε(·) such that

Pr

⎡
⎢⎢⎣
pp ← P(1κ), b ←R {0, 1}, (skt, pkt) ← G(pp),
(skh, pkh) ← G(pp), rkt→h ← RG(skt, pkh),
(m0,m1, st) ← A(pp, pkt, pkh, rkt→h),
c ← E2(mb, pkt), b� ← A(st, c)

: b = b�

⎤
⎥⎥⎦ ≤ 1/2 + ε(κ).

We remark that RG as defined in [5] also takes the target secret key to cover
interactive schemes. As we only deal with non-interactive ones, we omit it.
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3 Homomorphic Proxy Re-Authenticators

We introduce homomorphic proxy re-authenticators (HPRAs) and rigorously for-
malize a suitable security model. Our goal is to obtain a flexible framework with
various possible instantiations. Accordingly, our definitions are rather generic.
We stress that both the source and receiver re-key generation, besides the secret
key of the executing party, only require public inputs, i.e., are non-interactive.

Definition 4 (HPRA). A homomorphic proxy re-authenticator (HPRA) for a
family of function classes {Fpp} is a tuple of PPT algorithms (Gen,SGen,VGen,
Sign,Verify,SRGen,VRGen,Agg,AVerify), where Verify is optional. They are
defined as follows:

Gen(1κ, �) : Takes security parameter κ and vector length � and outputs param-
eters pp, determining the message space M�, function class Fpp containing
functions f : (M�)n → M�, as well as a tag space being exponentially large
in κ, where �, n ≤ poly(κ).

SGen(pp) : Takes parameters pp as input, and outputs a signer key (id, sk, pk).
VGen(pp) : Takes parameters pp, and outputs a MAC key mk and auxiliary

information aux.
Sign(sk, �m, τ) : Takes a signer secret key sk, a message vector �m, and a tag τ as

input, and outputs a signature σ.
Verify(pk, �m, τ, σ) : Takes a signer public key pk, a message vector �m, a tag τ ,

and a signature σ as input, and outputs a bit b.
SRGen(ski, aux) : Takes a signer secret key ski, some auxiliary information aux,

and outputs a re-encryption key rki.
VRGen(pki,mk, rki) : Takes a signer public key pki and a MAC key mk, as well

as a re-encryption key rki as input, and outputs an aggregation key aki.
Agg((aki)i∈[n], (σi)i∈[n], τ, f) : Takes n aggregation keys (aki)i∈[n], n signatures

(σi)i∈[n], a tag τ , and a function f ∈ Fpp as input, and outputs an aggregate
authenticated message vector Λ.

AVerify(mk, Λ, ID, f) : Takes a MAC key mk, an aggregate authenticated message
vector Λ, n identifiers ID = (idi)i∈[n], and a function f ∈ Fpp. It outputs a
message vector and a tag (�m, τ) on success and (⊥,⊥) otherwise.

Security Properties. Below we define the oracles, where the public param-
eters and the keys generated in the security games are implicitly available to
the oracles. While most oracle definitions are fairly easy to comprehend and
therefore not explicitly explained, we note that the RoS oracle is used to model
the requirement that signatures do not leak the signed data in a real-or-random
style. The environment maintains the initially empty sets HU and CU of hon-
est and corrupted users (CU is only set in the output privacy game). Further,
it maintains the initially empty sets S, RK and AK of signer, re-encryption and
aggregation keys, and an initially empty set SIG of message-identity pairs.

SG(i) : If S[i] �= ⊥ return ⊥. Otherwise run (idi, ski, pki) ← SGen(pp), set S[i] ←
(idi, ski, pki), and, if i /∈ CU set HU ← HU ∪ {i}. Return (idi, pki).



132 D. Derler et al.

SKey(i) : If i /∈ HU return ⊥. Otherwise return S[i].
Sig((ji)i∈[n], ( �mi)i∈[n]) : If S[ji] = ⊥ for any i ∈ [n], or there exists u, v ∈ [n], u �=

v so that ju = jv, return ⊥. Otherwise sample a random tag τ and compute
(σji

← Sign(S[ji][2], �mi, τ))i∈[n], set SIG[τ ] ← SIG[τ ] ∪ {(�mi, S[ji][1])} for
i ∈ [n], and return (σji

)i∈[n] and τ .
RoS((ji)i∈[n], (�mi)i∈[n], b) : If S[ji] = ⊥ or ji ∈ CU for any i ∈ [n] return ⊥.

Otherwise sample τ uniformly at random and if b = 0 compute (σji
← Sign(

S[ji][2], �mi, τ))i∈[n]. Else choose (�ri)i∈[n] ←R (M�)n where M is the message
space and compute (σji

← Sign(S[ji][2], �ri, τ))i∈[n]. Finally, return (σji
)i∈[n].

SR(i) : If S[i] = ⊥ ∨ RK[i] �= ⊥ return ⊥. Else, set RK[i] ← SRGen(S[i][2], aux)
and return RK[i].

VR(i) : If S[i] = ⊥ ∨ RK[i] = ⊥ ∨ AK[i] �= ⊥ return ⊥. Else, set AK[i] ← VRGen(
S[i][3],mk, RK[i]).

VRKey(i) : Return AK[i].
A((σji

)i∈[n], (ji)i∈[n], τ, f) : Check validity of all σji
, whether f ∈ Fpp, whether

SIG[τ ] = ⊥, and return ⊥ if any check fails. Further, check whether there
exists u, v ∈ [n], u �= v so that ju = jv and return ⊥ if so. Obtain (akji

)i∈[n]

from AK and return ⊥ if AK[ji] = ⊥ for any i ∈ [n]. Set SIG[τ ] ← ⋃
i∈[n]{(�mji

,

S[ji][1])} and return Λ ← Agg((akji
)i∈[n], (σji

)i∈[n], τ, f).

We require a HPRA to be correct, signer unforgeable, aggregator unforgeable,
and input private. We formally define those notions below. Intuitively, correct-
ness requires that everything works as intended if everyone behaves honestly.

Definition 5 (Correctness). A HPRA for a family of function classes {Fpp} is
correct, if for all κ, for all � ≤ poly(κ), for all pp ← Gen(1κ, �) determining Fpp,
for all n ≤ poly(κ), for all ((idi, ski, pki) ← SGen(pp))i∈[n], for all (mk, aux) ←
VGen(pp), for all (�mi)i∈[n], for all τ , for all (σi ← Sign(ski, �mi, τ))i∈[n], for
all (aki ← VRGen(pki,mk,SRGen(ski, aux)))i∈[n], for all f ∈ Fpp, for all Λ� ←
Agg((aki)i∈[n], (σi)i∈[n], τ, f) it holds that (Verify(pki, �mi, τ, σi) = 1)i∈[n] and that
AVerify(mk, Λ�, ID, f) = 1, where we sometimes omit to make the domains of the
values over which we quantify explicit for brevity.

Signer unforgeability requires that, as long as the aggregator remains honest,
no coalition of dishonest signers can produce a valid aggregate authenticated
message vector Λ with respect to function f ∈ Fpp so that Λ is outside of
the range of f evaluated on arbitrary combinations of actually signed vectors.
Aggregator unforgeability is the natural counterpart of signer unforgeability,
where the aggregator is dishonest while the signers are honest.2

2 It is impossible to consider both, signers and aggregators, to be dishonest at the
same time, as such a coalition could essentially authenticate everything. This is in
contrast to the setting of proxy re-encryption, where it makes sense to model security
in the face of receivers colluding with the proxy.
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Definition 6 (T-Unforgeability). Let T ∈ {Signer,Aggregator}. A HPRA for
family of function classes {Fpp} is T-unforgeable, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr

⎡
⎢⎢⎢⎢⎣

pp ← Gen(1κ, �),
(mk, aux) ← VGen(pp),
(Λ�, ID�, f�) ← AOT(pp, aux),
(�m, τ) ← AVerify(mk, Λ�, ID�, f�)

:

�m �= ⊥ ∧ f� ∈ Fpp ∧
0 < n, � ≤ poly(κ) ∧(

� (�mj)j∈[n] : (∀ j ∈ [n] :
(�mj , id

�

j) ∈ SIG[τ ]) ∧
f�((�mj)j∈[n]) = �m

)

⎤
⎥⎥⎥⎥⎦

≤ ε(κ),

where OT := {SG(·),SKey(·),SR(·),VR(·),A(·, ·, ·)} for T = Signer and OT :=
{SG(·),Sig(·, ·),SR(·),VR(·),VRKey(·)} for T = Aggregator.

Input privacy captures the requirement that an aggregate authenticated mes-
sage vector does not leak more about the inputs to f as the evaluation result
and the description of f would leak on their own.

Definition 7 (Input Privacy). A HPRA for a family of function classes {Fpp}
is input private if for all κ ∈ N, for all � ≤ poly(κ), for all pp ← Gen(1κ, �)
determining Fpp, for all f ∈ Fpp implicitly defining n, for all tags τ , and for all
(�m11, . . . , �mn1) and (�m12, . . . , �mn2) where f(�m11, . . . , �mn1) = f(�m12, . . . , �mn2),
for all (mk, aux) ← VGen(pp), for all ((ski, pki) ← SGen(pp))i∈[n], (aki ← SRGen(
ski, aux,VRGen(pki,mk)))i∈[n], the following distributions are identical:

{Agg((aki)i∈[n], (Sign(ski, �mi1, τ))i∈[n], τ, f)},

{Agg((aki)i∈[n], (Sign(ski, �mi2, τ))i∈[n], τ, f)}.

Additionally, a HPRA may provide output privacy. It models that the aggre-
gator neither learns the inputs nor the result of the evaluation of f .

Definition 8 (Output Privacy). A HPRA for a family of function classes
{Fpp} is output private, if for all PPT adversaries A there is a negligible function
ε(·) such that:

Pr

⎡
⎢⎢⎣
pp ← Gen(1κ, �), (CU, st) ← A(pp), b ←R {0, 1},
(mk, aux) ← VGen(pp),O ← {SG(·),SKey(·),
RoS(·, ·, b),SR(·),VR(·),VRKey(·)},
b∗ ← AO(aux, st)

: b = b∗

⎤
⎥⎥⎦ ≤ 1/2 + ε(κ).

4 An Input Private Scheme for Linear Functions

Now we present our first HPRA for the family of linear function classes {F lin
pp}.

The main challenge we face is to construct a signature scheme with an associated
HOM-MAC scheme, where the translation of the signatures under one key to a
MAC under some other key works out. Since we believe that our HOM-MAC may
as well be useful in other settings we present it as a standalone building block
and then proceed with our full construction, where HOM-MAC is used as a
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P(κ, �) : Run BG ← BGGen(1κ), fix H : Zq → G, choose (gi)i∈[�] ←R (G∗)�, and return
pp ← (BG, H, (gi)i∈[�], �).

G(pp) : Choose α ←R Zp and return sk ← (pp, α).

S(sk, �v, id, τ) : Parse sk as (pp, α) and return μ ← e(H(τ ||id) · ∏
j∈[�] g

vj

j , gα).

C(pp, f, (μi)i∈[n]) : Parse f as (ωi)i∈[n] and return μ ← ∏
i∈[n] μ

ωi
i .

V(sk, �v, μ, τ, (idi)i∈[n], f) : Parse sk as (pp, α), f as (ωi)i∈[n], and output 1 if the fol-

lowing holds, and 0 otherwise: μ = e(
∏

i∈[n] H(τ ||idi)ωi
∏

j∈[�] g
vj

j , gα)

Scheme 1. Linearly homomorphic MAC based on [13].

submodule. Both build upon the ideas used in the signature scheme presented
in [13].

A Suitable Linearly Homomorphic MAC. We present our HOM-MAC in
Scheme 1. We can not recycle the security arguments from [13] as we require
the ability to submit arbitrary tags τ to the Sig oracle. Thus we directly prove
unforgeability.

Lemma 1 (Proven in the full version). If the bilinear DDH (BDDH)
assumption holds, then Scheme 1 is an unforgeable HOM-MAC in the ROM.

Our Input Private Construction. In Scheme 2 we present our HPRA con-
struction for the family of linear function classes {F lin

pp}. It allows to authenticate
vectors of length �, so that the same function can be evaluated per vector compo-
nent. In our application scenario we have � = 1. We allow one to parametrize our
construction with an algorithm Eval(·, ·), which defines how to compute f ∈ F lin

pp

on the message vector. When directly instantiating Scheme 2, Eval is defined as
Eval(f, (�mi)i∈[n]) := f((�mi)i∈[n]).

Theorem 1 (Proven in the full version). If HOM-MAC in Scheme 1 is
unforgeable and the eBCDH assumption holds, then Scheme 2 represents a signer
unforgeable, aggregator unforgeable and input private HPRA for the family of
linear function classes {F lin

pp} in the ROM.

5 Adding Output Privacy

An additional goal is that the aggregator neither learns the input nor the output
(output privacy). On our way to achieve this, we formally define the notion of
homomorphic proxy-re encryption (HPRE) and develop an instantiation for the
family of linear function classes {F lin

pp}. Based on this, we extend Scheme 2 to
additionally provide output privacy.
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Gen(1κ, �) : Run BG ← BGGen(1κ), fix H : Zq → G, choose (gi)i∈[�] ←R G
�, and return

pp ← (BG, H, (gi)i∈[�], �).

SGen(pp) : Choose β ←R Zq, set id ← gβ , pk ← (pp, gβ , g
1/β), sk ← (pk, β), and return

(id, sk, pk).

VGen(pp) : Choose α ←R Zq, set aux ← ∅, mk ← (pp, α) and return (mk, aux).

Sign(sk τ,m�, ) : Parse sk as (((BG, H, (gi)i∈[�], �), gβ , ·), β), compute and return σ ←
(σ′ m�, ), where

σ′ ←
(
H(τ ||gβ) · ∏�

i=1 gmi
i

)β

.

Verify(pk σ,τ,m�, ) : Parse pk as ((BG, H, (gi)i∈[�], �), gβ , ·), and σ as (σ′ m�, ′), and return
1 if the following holds and 0 otherwise:

e(H(τ ||gβ) · ∏�
i=1 gmi

i , gβ) = e(σ, g) ∧

SRGen(ski, aux) : Return rki ← ∅.

VRGen(pki,mk, rki) : Parse pki as (·, ·, g1/βi), mk as (·, α), and return aki ← (g1/βi)α.

Agg((aki)i∈[n], (σi)i∈[n], τ, f) : Parse f as (ωi)i∈[n], and for i ∈ [n] parse σi as (σ′
i m�, i)

and return Λ ← (Eval(f, ( �  i)i∈[n]), μ, τ), where

μ ← ∏
i∈[n] e(σ

′ωi
i , aki).

AVerify(mk, Λ, ID, f) : Parse mk as (pp, α), Λ as ( τ,μ,m� ), ID as (gβi)i∈[n] and f as
(ωi)i∈[n] and return ( τ,m� ) if the following holds, and (⊥, ⊥) otherwise:

μ′ =
∏n

i=1 e(gωi , H(τ ||gβi)) · e(
∏�

i=1 gmi
i , g)

)α

m

Scheme 2. HPRA scheme for the family of linear function families {F lin
pp} parametrized

by Eval.

5.1 Homomorphic Proxy Re-Encryption

A homomorphic proxy re-encryption scheme (HPRE) is a PRE which addition-
ally allows the homomorphic evaluation of functions on the ciphertexts. This
functionality firstly allows to aggregate messages encrypted under the same pub-
lic key, and, secondly, to transform the ciphertext holding the evaluation of a
function to a ciphertext for another entity, when given the respective proxy re-
encryption key. We stress that if the initial ciphertexts are with respect to differ-
ent public keys, then one can use the respective re-encryption keys to transform
them to a common public key before evaluating the function. More formally:

Definition 9 (HPRE). A HPRE for the family of function classes {Fpp} is a
PRE with an additional evaluation algorithm EV.
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EV(pp, f,�c) : This algorithm takes public parameters pp, a function f ∈ Fpp, and
a vector of ciphertexts �c = (ci)i∈[n] to messages (mi)i∈[n] all under public key
pk, and outputs a ciphertext c to message f((mi)i∈[n]) under pk.

Additionally, we require the following compactness notion (analogous to [20]).

Definition 10 (Compactness). A HPRE for the family of function classes
{Fpp} is called compact if for all pp ← P(1κ) and for all f ∈ Fpp the running time
of the algorithms �D is bounded by a fixed polynomial in the security parameter κ.

Besides the straightforward adoption of correctness, IND-CPA− remains iden-
tical (EV is a public algorithm). However, we require an IND-CPA− variant, where
the adversary may adaptively choose the targeted user. To the best of our knowl-
edge, such a notion does not exist for PRE. We introduce such a notion (termed
mt-IND-CPA−) and show that it is implied by the conventional IND-CPA notions.

Definition 11 (mt-IND-CPA−). A (H)PRE is mt-IND-CPA− secure, if for all
PPT adversaries A there is a negligible function ε(·) such that

Pr

⎡
⎢⎢⎣
pp ← P(1κ), b ←R {0, 1},
(skh, pkh) ← G(pp),O ← {G(·),RG(·)},
(m0,m1, i

�, st) ← AO(pp, pkh),
c ← E2(mb, pki�), b� ← A(st, c)

: b = b�

⎤
⎥⎥⎦ ≤ 1/2 + ε(κ),

where the environment holds an initially empty list HU. G and RG are defined as:

G(i) : If HU[i] �= ⊥ return ⊥. Otherwise, run (ski, pki) ← G(pp), set HU[i] ←
(ski, pki), and return pki.

RG(i) : If HU[i] = ⊥ return ⊥. Otherwise, set rki→h ← RG(HU[i][1], pkh) and
return rki→j.

Lemma 2 (proven in the full version). Every IND-CPA− (and thus every
IND-CPA) secure PRE also satisfies mt- IND-CPA− security.

HPREConstruction for the Family of Linear Function Classes. We state
our construction in Scheme 3. Essentially, we build upon the PRE scheme in
[5, third attempt] and turn it into a HPRE for the family of linear function
classes {F lin

pp}, henceforth referred to as HPRElin. For the desired homomorphism
we use a standard trick in the context of ElGamal-like encryption schemes: we
encode messages m ∈ Zq into the exponent and encrypt gm. Decryption then
yields m′ = gm and one additionally needs to compute m = logg m′ to obtain
m. Thus, for the schemes to remain efficient, the size of the message space
needs to be polynomial in the security parameter. While this might sound quite
restrictive, we stress that in practical settings one deals with numerical values
where messages in the order of millions to billions are by far sufficient. Thus,
this type of decryption is not a limitation and entirely practical.

As EV is a public algorithm it does not influence IND-CPA security. Thus,
our argumentation is identical to [5] and we can use the following theorem.
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P(1κ) : Run BG ← BGGen(1κ), and return pp ← BG.

G(pp) : Choose (a1, a2) ←R Z
2
q, and return (rskA, rpkA) ← ((a1, a2), (ga1 , ga2)).

RG(rskA, rpkB) : Parse rskA as (a1A, ·) and rpkB as (·, ga2B ) and return rkA→B ←
(ga2B )a1A .

E1(rpk, m) : Parse rpk as (ga1 , ·), choose k ←R Zq, and return c ← (gk,gm · (ga1)k, 1)

E2(rpk, m) : Parse rpk as (ga1 , ·), choose k ←R Zq, and return c ← (gk,gm · (ga1)k, 2)

RE(rkA→B , cA) : Parse cA as (c1, c2, 2) and return c ← (e(c1, rkA→B), c2, R)

D1(rsk, c) : Parse c as (c1, c2, c3) and rsk as (a1, a2), and return gm ← c2 ·c−a1
1 if c3 = 1

and gm ← c2 · c
−1/a2
1 if c3 = R.

D2(rsk, c) : Parse c as (c1, c2, 2) and rsk as (a1, a2), and return gm ← c2 · e(g, c−a1
1 ).

EV(pp, f,�c) : Parse f as (ω1, . . . , ωn) and �c as (ci)i∈[n], and return c ← ∏
i∈[n] c

ωi
i ,

where multiplication and exponentiation is component-wise.

Scheme 3. HPRElin based on [5, third attempt].

Theorem 2 (cf. [5]). If the eDBDH assumption holds in (G, GT ) then Scheme 3
is an IND-CPA secure HPRElin.

We note that compactness of Scheme 3 (Definition 10) is easy to verify.

HPRElinfor Vectors. We extend HPRElin to vectors over Zq, while preserving the
support for re-encryption and the homomorphic properties. It turns out that we
can employ a communication efficient solution. That is, borrowing the idea of
randomness re-use from [9] and applying it to HPRElin, we can reduce the size of
the ciphertexts as long as no re-encryption is performed. Upon setup, we have
to fix a maximal length � of the message vectors. The secret and the public
keys are then of the form rsk ← (rski)i∈[�] = ((a1i, a2i))i∈[�], rpk ← (rpki)i∈[�] =
((ga1i , ga2i))i∈[�], where (a1i, a2i)i∈[�] ←R (Z2

q)
�. First and second level encryption

are defined as

E1
� (rpk, �m) := (gk, (gmi · rpki[1]k)i∈[�], 1), and

E2
� (rpk, �m) := (gk, (gmi · rpki[1]k)i∈[�], 2), respectively.

Decryption Dj
�(·, ·) of a ciphertext (c[1], (c[i + 1])i∈[�], j) is defined as D1

� (
rsk,�c) := (c[i+1] ·c[1]−rski[1])i∈[�], and D2

� (rsk,�c) := (c[i+1] ·e(c[1], g−rski[1]))i∈[�].
Re-encryption key generation is RG�(rskA, rpkB) := (((rpkB)i[2])(rskA)i[1])i∈[�].
From a second level ciphertext �cA for A and a re-encryption key rkA→B , one can
compute a ciphertext �cB for B as �cB ← RE(rkA→B ,�cA) := ((e(cA[1], rkA→B [i]),
cA[i + 1]))i∈[�]. Note that re-encrypted ciphertexts have a different form.
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Thus we do not need to add the level as suffix. Decryption D1
� (·, ·) for re-

encrypted ciphertexts is D1
� (rsk, (ci)i∈[�]) := (ci[2] · ci[1]−1/rski[2])i∈[�].

Theorem 3. If the eDBDH assumption holds, then the extension of HPRElin as
described above, yields an IND- CPA secure HPRElin for vectors.

Proof (sketch). IND-CPA security of the original scheme implies Theorem 3 under
a polynomial loss: using � hybrids, where in hybrid i (1 ≤ i ≤ �) the i-th
ciphertext component is exchanged by random under the original strategy in [5].

Combining the theorem above with Lemma 2 yields:

Corollary 1. The extension of HPRElin as described above yields an mt-IND-
CPA− secure HPRElin for vectors.

5.2 Putting the Pieces Together: Output Privacy

Our idea is to combine Scheme 2 with the HPRElin presented above. In doing so,
we face some obstacles. First, a näıve combination of those primitives does not
suit our needs: one can still verify guesses for signed messages using solely the
signatures, since signatures are publicly verifiable. Second, switching to a MAC
for the data sources is also no option, as this would require an interactive re-
key generation. This is excluded by our model as we explicitly want to avoid it.
Thus, we pursue a different direction and turn the signatures used in Scheme 2
into a MAC-like primitive by blinding a signature with a random element gr. An
aggregated MAC holding an evaluation of f is then blinded by gf(...,r,...), i.e.,
the receiver needs to evaluate the function f on the all blinding values from the
single sources. Now the question arises as how to transmit the blinding values to
the receiver. Using our HPRElin for vectors yields an arguably elegant solution:
by treating the randomness as an additional vector component, we can use the
re-encryption features of the HPRElin. More importantly, by executing the EV
algorithm the aggregator simultaneously evaluates the function f on the data
and on the randomness so that the receiver can directly obtain the blinding value
f(. . . , r, . . .) upon decryption.

Note on the Instantiation. Augmenting Scheme 2 to obtain Scheme 4 using
HPRElin requires an alternative decryption strategy for the vector component
containing r, as r is uniformly random in Zq and can thus not be efficiently recov-
ered. Fortunately, obtaining r ∈ Zq is not required, as gr (resp. gr) is sufficient
to unblind the signature (resp. MAC). Those values are efficiently recoverable.

Theorem 4 (proven in the full version). If Scheme 2 is signer and aggregator
unforgeable, and HPRElin for vectors is mt-IND-CPA− secure, then Scheme 4 is a
signer and aggregator unforgeable, input and output private HPRA for class Flin.
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Gen(1κ, �) : Fix a homomorphic PRE = (P, G, �E , �D, RG, RE , EV) for class Flin

and the HPRA(EV) = (Gen,SGen,VGen,Sign,Verify,SRGen,VRGen,Agg,
AVerify) from Scheme 2 such that MPRA ⊆ MPRE, run pps ← Gen(1κ, �),
ppe ← P(1κ, � + 1), and return pp ← (pps, ppe).

SGen(pp) : Run (id, sk,pk) ← SGen(pps), (rsk, rpk) ← G(ppe), and return (id, sk,
pk) ← (id, (sk, rsk, rpk),pk).

VGen(pp) : Run (mk,aux) ← VGen(pps), (rsk, rpk) ← G(ppe), and return (mk,
aux) ← ((mk, rsk), (aux, rpk)).

Sign(sk τ,m�, ) : Parse sk as (sk, ·, rpk), choose r ←R Zq, and return σ ← (σ′ ·gr,�c), where

(σ′, ·) ← Sign(sk τ,m�, ) and �c ← E2
�+1(rpk m�, ||r).

SRGen(ski, aux) : Parse ski as (ski, rski, rpki) and aux as (aux, rpk). Obtain rki ←
SRGen(ski,aux) and prki ← RG(rski, rpk), and return rki ← (rki, prki).

VRGen(pki,mk, rki) : Parse pki as pki and mk as (mk, ·), obtain aki ← VRGen(pki,
mk) and return aki ← (aki, rki).

Agg((aki)i∈[n], (σi)i∈[n], τ, f) : For i ∈ [n] parse aki as (aki, (rki, prki)), σi as (σ′
i,�ci).

Output Λ ← (�c′, μ, τ), where

(�c′
i ← RE(prki,�ci))i∈[n], (�c′, μ, τ) ← Agg((aki)i∈[n], (σ′

i,�c
′
i)i∈[n], f).

AVerify(mk, Λ, ID, f) : Parse mk as (mk, rsk) and Λ as (�c, μ, τ), obtain � ′||r ←
D1

�+1(rsk,�c) and return ( τ,m� ) if the following holds, and (⊥, ⊥) otherwise:

AVerify(mk, ( μ,m� · (gr)−1, τ), ID, f) = 1

m

Scheme 4. Output private HPRA scheme for the family of linear function classes {F lin
pp}

with Flin with Eval(·, ·) := EV(pp, ·, ·)

6 Conclusion

In this paper we introduce the notion of homomorphic proxy re-authenticators.
This concept covers various important issues in the multi-user data aggregation
setting not considered by previous works. We present two provably secure and
practically efficient instantiations of our novel concept, which differ regarding
the strength of the privacy guarantees. Our schemes are modular in the sense
that they are constructed from building blocks which may as well be useful in
other settings. One important building block is the concept of homomorphic
proxy re-encryption, which we also introduce and construct in this paper.

Acknowledgements. We thank David Nuñez for his valuable comments on a draft
of this paper.
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