
Updatable Tokenization: Formal Definitions
and Provably Secure Constructions

Christian Cachin(B), Jan Camenisch, Eduarda Freire-Stögbuchner,
and Anja Lehmann

IBM Research, Zurich, Switzerland
{cca,jca,efr,anj}@zurich.ibm.com

Abstract. Tokenization is the process of consistently replacing sensitive
elements, such as credit cards numbers, with non-sensitive surrogate val-
ues. As tokenization is mandated for any organization storing credit card
data, many practical solutions have been introduced and are in commer-
cial operation today. However, all existing solutions are static yet, i.e.,
they do not allow for efficient updates of the cryptographic keys while
maintaining the consistency of the tokens. This lack of updatability is
a burden for most practical deployments, as cryptographic keys must
also be re-keyed periodically for ensuring continued security. This paper
introduces a model for updatable tokenization with key evolution, in
which a key exposure does not disclose relations among tokenized data
in the past, and where the updates to the tokenized data set can be made
by an untrusted entity and preserve the consistency of the data. We for-
mally define the desired security properties guaranteeing unlinkability of
tokens among different time epochs and one-wayness of the tokenization
process. Moreover, we construct two highly efficient updatable tokeniza-
tion schemes and prove them to achieve our security notions.

1 Introduction

Increasingly, organizations outsource copies of their databases to third parties,
such as cloud providers. Legal constraints or security concerns thereby often
dictate the de-sensitization or anonymization of the data before moving it across
borders or into untrusted environments. The most common approach is so-called
tokenization which replaces any identifying, sensitive element, such as a social
security or credit card number, by a surrogate random value.

Government bodies and advisory groups in Europe [6] and in the United
States [9] have explicitly recommended such methods. Many domain-specific
industry regulations require this as well, e.g., HIPAA [13] for protecting patient

This work has been supported in part by the European Commission through the
Horizon 2020 Framework Programme (H2020-ICT-2014-1) under grant agreement
number 644371 WITDOM and through the Seventh Framework Programme under
grant agreement number 321310 PERCY, and in part by the Swiss State Secretariat
for Education, Research and Innovation (SERI) under contract number 15.0098.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 59–75, 2017.
https://doi.org/10.1007/978-3-319-70972-7_4

60 C. Cachin et al.

information or the Payment Card Industry Data Security Standard (PCI
DSS) [10] for credit card data. PCI DSS is an industry-wide set of guidelines that
must be met by any organization that handles credit card data and mandates
that instead of the real credit card numbers only the non-sensitive tokens are
stored.

For security, the tokenization process should be one-way in the sense that the
token does not reveal information about the original data, even when the secret
keys used for tokenization are disclosed. On the other hand, usability requires
that a tokenized data set preserves referential integrity. That is, when the same
value occurs multiple times in the input, it should be mapped consistently to
the same token.

Many industrial white papers discuss solutions for tokenization [11,12,14],
which rely on (keyed) hash functions, encryption schemes, and often also non-
cryptographic methods such as random substitution tables. However, none of
these methods guarantee the above requirements in a provably secure way, backed
by a precise security model. Only recently an initial step towards formal security
notions for tokenization has been made [5].

However, all tokenization schemes and models have been static so far, in the
sense that the relation between a value and its tokenized form never changes and
that the keys used for tokenization cannot be changed. Thus, key updates are a
critical issue that has not yet been handled. In most practical deployments, all
cryptographic keys must be re-keyed periodically for ensuring continued security.
In fact, the aforementioned PCI DSS standard even mandates that keys (used
for encryption) must be rotated at least annually. Similar to proactively secure
cryptosystems [8], periodic updates reduce the risk of exposure when data leaks
gradually over time. For tokenization, these key updates must be done in a
consistent way so that already tokenized data maintains its referential integrity
with fresh tokens that are generated under the updated key. None of the existing
solutions allows for efficient key updates yet, as they would require to start from
scratch and tokenize the complete data set with a fresh key. Given that the
tokenized data sets are usually large, this is clearly not desirable for real-world
applications. Instead the untrusted entity holding the tokenized data should be
able to re-key an already tokenized representation of the data.

Our Contributions. As a solution for these problems, this paper introduces a
model for updatable tokenization (UTO) with key evolution, distinguishes mul-
tiple security properties, and provides efficient cryptographic implementations.
An updatable tokenization scheme considers a data owner producing data and
tokenizing it, and an untrusted host storing tokenized data only. The scheme
operates in epochs, where the owner generates a fresh tokenization key for every
epoch and uses it to tokenize new values added to the data set. The owner also
sends an update tweak to the host, which allows to “roll forward” the values
tokenized for the previous epoch to the current epoch.

We present several formal security notions that refine the above security
goals, by modeling the evolution of keys and taking into consideration adap-
tive corruptions of the owner, the host, or both, at different times. Due to the

Updatable Tokenization 61

temporal dimension of UTO and the adaptive corruptions, the precise formal
notions require careful modeling. We define the desired security properties in the
form of indistinguishability games which require that the tokenized representa-
tions of two data values are indistinguishable to the adversary unless it trivially
obtained them. An important property for achieving the desired strong indis-
tinguishability notions is unlinkability and we clearly specify when (and when
not) an untrusted entity may link two values tokenized in different epochs. A
further notion, orthogonal to the indistinguishability-based ones, formalizes the
desired one-wayness property in the case where the owner discloses its current
key material. Here the adversary may guess an input by trying all possible val-
ues; the one-wayness notion ensures that this is also its best strategy to reverse
the tokenization.

Finally, we present two efficient UTO constructions: the first solution
(UTOSE) is based on symmetric encryption and achieves one-wayness, and indis-
tinguishability in the presence of a corrupt owner or a corrupt host. The sec-
ond construction (UTODL) relies on a discrete-log assumption, and additionally
satisfies our strongest indistinguishability notion that allows the adversary to
(transiently) corrupt the owner and the host. Both constructions share the same
core idea: First, the input value is hashed, and then the hash is encrypted under
a key that changes every epoch.

We do not claim the cryptographic constructions are particularly novel. The
focus of our work is to provide formal foundations for key-evolving and updat-
able tokenization, which is an important problem in real-world applications.
Providing clear and sound security models for practitioners is imperative for
the relevance of our field. Given the public demands for data privacy and the
corresponding interest in tokenization methods by the industry, especially in
regulated and sensitive environments such as the financial industry, this work
helps to understand the guarantees and limitations of efficient tokenization.

Related Work. A number of cryptographic schemes are related to our notion
of updatable tokenization: key-homomorphic pseudorandom functions (PRF),
oblivious PRFs, updatable encryption, and proxy re-encryption, for which we
give a detailed comparison below.

A key-homomorphic PRF [3] enjoys the property that given PRFa(m) and
PRFb(m) one can compute PRFa+b(m). This homomorphism does not immedi-
ately allow convenient data updates though: the data host would store values
PRFa(m), and when the data owner wants to update his key from a to b, he must
compute Δm = PRFb−a(m) for each previously tokenized value m. Further, to
allow the host to compute PRFb(m) = PRFa(m) + Δm, the owner must provide
some reference to which PRFa(m) each Δm belongs. This approach has several
drawbacks: (1) the owner must store all previously outsourced values m and
(2) computing the update tweak(s) and its length would depend on the amount
of tokenized data. Our solution aims to overcome exactly these limitations. In
fact, tolerating (1) + (2), the owner could simply use any standard PRF, re-
compute all tokens and let the data host replace all data. This is clearly not
efficient and undesirable in practice.

62 C. Cachin et al.

Boneh et al. [3] also briefly discuss how to use such a key-homomorphic
PRF for updatable encryption or proxy re-encryption. Updatable encryption
can be seen as an application of symmetric-key proxy re-encryption, where the
proxy re-encrypts ciphertexts from the previous into the current key epoch.
Roughly, a ciphertext in [3] is computed as C = m + PRFa(N) for a nonce
N , which is stored along with the ciphertext C. To rotate the key from a to
b, the data owner pushes Δ = b − a to the data host which can use Δ to
update all ciphertexts. For each ciphertext, the host then uses the stored nonce
N to compute PRFΔ(N) and updates the ciphertext to C ′ = C + PRFΔ(N) =
m+PRFb(N). However, the presence of the static nonce prevents the solution to
be secure in our tokenization context. The tokenized data should be unlinkable
across epochs for any adversary not knowing the update tweaks, and we even
guarantee unlinkability in a forward-secure manner, i.e., a security breach at
epoch e does not affect any data exposed before that time.

In the full version of their paper [4], Boneh et al. present a different solution
for updatable encryption that achieves such unlinkability, but which suffers from
similar efficiency issues as mentioned above: the data owner must retrieve and
partially decrypt all of his ciphertexts, and then produce a dedicated update
tweak for each ciphertext, which renders the solution unpractical for our purpose.
Further, no formal security definition that models adaptive key corruptions for
such updatable encryption is given in the paper.

The Pythia service proposed by Everspaugh et al. [7] mentions PRFs with
key rotation which is closer to our goal, as it allows efficient updates of the
outsourced PRF values whenever the key gets refreshed. The core idea of the
Pythia scheme is very similar to our second, discrete-logarithm based construc-
tion. Unfortunately, the paper does not give any formal security definition that
covers the possibility to update PRF values nor describes the exact properties
of such a key-rotating PRF. As the main goal of Pythia is an oblivious and ver-
ifiable PRF service for password hashing, the overall construction is also more
complex and aims at properties that are not needed here, and vice-versa, our
unlinkability property does not seem necessary for the goal of Pythia.

While the aforementioned works share some relation with updatable tok-
enization, they have conceptually quite different security requirements. Starting
with such an existing concept and extending its security notions and construc-
tions to additionally satisfy the requirements of updatable tokenization, would
reduce efficiency and practicality, for no clear advantage. Thus, we consider the
approach of directly targeting the concrete real-world problem more suitable.

An initial study of security notions for tokenization was recently presented by
Diaz-Santiago et al. [5]; they formally define tokenization systems and give sev-
eral security notions and provably secure constructions. In a nutshell, their defi-
nitions closely resemble the conventional definitions for deterministic encryption
and one-way functions adopted to the tokenization notation. However, they do
not consider adaptive corruptions and neither address updatable tokens, which
are the crucial aspects of this work.

Updatable Tokenization 63

2 Preliminaries

In this section, we recall the definitions of the building blocks and security notions
needed in our constructions.

Deterministic Symmetric Encryption. A deterministic symmetric encryption
scheme SE consists of a key space K and three polynomial-time algorithms
SE.KeyGen,SE.Enc,SE.Dec satisfying the following conditions:

SE.KeyGen: The probabilistic key generation algorithm SE.KeyGen takes as
input a security parameter λ and produces an encryption key s

r←
SE.KeyGen(λ).

SE.Enc: The deterministic encryption algorithm takes a key s ∈ K and a message
m ∈ M and returns a ciphertext C ← SE.Enc(s,m).

SE.Dec: The deterministic decryption algorithm SE.Dec takes a key s ∈ K and
a ciphertext C to return a message m ← SE.Dec(s, C).

For correctness we require that for any key s ∈ K, any message m ∈ M and
any ciphertext C ← SE.Enc(s,m), we have m ← SE.Dec(s, C).

We now define a security notion of deterministic symmetric encryption
schemes in the sense of indistinguishability against chosen-plaintext attacks, or
IND-CPA security. This notion was informally presented by Bellare et al. in [1],
and captures the scenario where an adversary that is given access to a left-or-
right (LoR) encryption oracle is not able to distinguish between the encryption
of two distinct messages of its choice with probability non-negligibly better than
one half. Since the encryption scheme in question is deterministic, the adversary
can only query the LoR oracle with distinct messages on the same side (left
or right) to avoid trivial wins. That is, queries of the type (mi

0,m
i
1), (m

j
0,m

j
1)

where mi
0 = mj

0 or mi
1 = mj

1 are forbidden. We do not grant the adversary an
explicit encryption oracle, as it can obtain encryptions of messages of its choice
by querying the oracle with a pair of identical messages.

Definition 1. A deterministic symmetric encryption scheme SE = (SE.KeyGen,
SE.Enc,SE.Dec) is called IND-CPA secure if for all polynomial-time adversaries
A, it holds that |Pr[Expind-cpaA,SE (λ) = 1]−1/2| ≤ ε(λ) for some negligible function ε.

Experiment Expind-cpaA,SE (λ):
s

r← SE.KeyGen(λ)
d

r← {0, 1}
d′ r← AOenc(s,d,·,·)(λ)

where Oenc on input two messages m0,m1 returns C ← SE.Enc(s,md).
return 1 if d′ = d and all values m1

0, . . . ,m
q
0 and all values m1

1, . . . ,m
q
1 are

distinct, respectively, where q denotes the number of queries to Oenc.

64 C. Cachin et al.

Hash Functions. A hash function H : D → R is a deterministic function that
maps inputs from domain D to values in range R. For our second and stronger
construction we assume the hash function to behave like a random oracle.

In our first construction we use a keyed hash function, i.e., H gets a key
hk

r← H.KeyGen(λ) as additional input. We require the keyed hash function to
be pseudorandom and weakly collision-resistant for any adversary not knowing
the key hk. We also need H to be one-way when the adversary is privy of the
key, i.e., H should remain hard to invert on random inputs.

Pseudorandomness: A hash function is called pseudorandom if no efficient
adversary A can distinguish H from a uniformly random function f : D → R
with non-negligible advantage. That is,

∣
∣Pr[AH(hk,·)(λ)] − Pr[Af(·)(λ)]

∣
∣ is neg-

ligible in λ, where the probability in the first case is over A’s coin tosses and
the choice of hk

r← H.KeyGen(λ), and in the second case over A’s coin tosses
and the choice of the random function f .

Weak collision resistance: A hash function H is called weakly collision-
resistant if for any efficient algorithm A the probability that for hk

r←
H.KeyGen(λ) and (m,m′) r← AH(hk,·)(λ) the adversary returns m �= m′, where
H(hk,m) = H(hk,m′), is negligible (as a function of λ).

One-wayness: A hash function H is one-way if for any efficient algorithm A the
probability that for hk

r← H.KeyGen(λ), m
r← D and m′ r← A(hk,H(hk,m))

returns m′, where H(hk,m) = H(hk,m′), is negligible (as a function of λ).

Decisional Diffie-Hellman Assumption. Our second construction requires a
group (G, g, p) as input where G denotes a cyclic group G = 〈g〉 of order p
in which the Decisional Diffie-Hellman (DDH) problem is hard w.r.t. λ, i.e., p
is a λ-bit prime. More precisely, a group (G, g, p) satisfies the DDH assump-
tion if for any efficient adversary A the probability |Pr[A(G, p, g, ga, gb, gab)]−
Pr[A(G, p, g, ga, gb, gc)]| is negligible in λ, where the probability is over the ran-
dom choice of p, g, the random choices of a, b, c ∈ Zp, and A’s coin tosses.

3 Formalizing Updatable Tokenization

An updatable tokenization scheme contains algorithms for a data owner and a
host. The owner de-sensitizes data through tokenization operations and dynami-
cally outsources the tokenized data to the host. For this purpose, the data owner
first runs an algorithm setup to create a tokenization key. The tokenization key
evolves with epochs, and the data is tokenized with respect to a specific epoch e,
starting with e = 0. For a given epoch, algorithm token takes a data value and
tokenizes it with the current key ke. When moving from epoch e to epoch e + 1,
the owner invokes an algorithm next to generate the key material ke+1 for the
new epoch and an update tweak Δe+1. The owner then sends Δe+1 to the host,
deletes ke and Δe+1 immediately, and uses ke+1 for tokenization from now on.
After receiving Δe+1, the host first deletes Δe and then uses an algorithm upd to
update all previously received tokenized values from epoch e to e+1, using Δe+1.
Hence, during some epoch e the update tweak from e − 1 to e is available at the
host, but update tweaks from earlier epochs have been deleted.

Updatable Tokenization 65

Definition 2. An updatable tokenization scheme UTO consists of a data space X ,
a token space Y, and a set of polynomial-time algorithms UTO.setup, UTO.next,
UTO.token, and UTO.upd satisfying the following conditions:

UTO.setup: The algorithm UTO.setup is a probabilistic algorithm run by the
owner. On input a security parameter λ, this algorithm returns the tokeniza-
tion key for the first epoch k0

r← UTO.setup(λ).
UTO.next: This probabilistic algorithm is also run by the owner. On input a

tokenization key ke for some epoch e, it outputs a tokenization key ke+1 and
an update tweak Δe+1 for epoch e+1. That is, (ke+1,Δe+1)

r← UTO.next(ke).
UTO.token: This is a deterministic injective algorithm run by the owner. Given

the secret key ke and some input data x ∈ X , the algorithm outputs a tok-
enized value ye ∈ Y. That is, ye ← UTO.token(ke, x).

UTO.upd: This deterministic algorithm is run by the host and uses the update
tweak. On input the update tweak Δe+1 and some tokenized value ye,
UTO.upd updates ye to ye+1, that is, ye+1 ← UTO.upd(Δe+1, ye).

The correctness condition of a UTO scheme ensures referential integrity
inside the tokenized data set. A newly tokenized value from the owner in a
particular epoch must be the same as the tokenized value produced by the
host using update operations. More precisely, we require that for any x ∈ X ,
for any k0

r← UTO.setup(λ), for any sequence of tokenization key/update
tweak pairs (k1,Δ1), . . . , (ke,Δe) generated as (kj+1,Δj+1)

r← UTO.next(kj) for
j = 0, . . . , e − 1 through repeated applications of the key-evolution algorithm,
and for any ye ← UTO.token(ke, x), it holds that

UTO.token(ke+1, x) = UTO.upd(Δe+1, ye).

3.1 Privacy of Updatable Tokenization Schemes

The main goal of UTO is to achieve privacy for data values, ensuring that
an adversary cannot gain information about the tokenized values and can-
not link them to input data tokenized in past epochs. We introduce three
indistinguishability-based notions for the privacy of tokenized values, and one
notion ruling out that an adversary may reverse the tokenization and recover
the input value from a tokenized one. All security notions are defined through
an experiment run between a challenger and an adversary A. Depending on the
notion, the adversary may issue queries to different oracles, defined in the next
section.

At a high level, the four security notions for UTO are distinguished by the
corruption capabilities of A.

IND-HOCH: Indistinguishability with Honest Owner and Corrupted Host:
This is the most basic security criterion, focusing on the updatable dynamic
aspect of UTO. It considers the owner to be honest and permits corruption
of the host during the interaction. The adversary gains access to the update
tweaks for all epochs following the compromise and yet, it should (roughly
speaking) not be able to distinguish values tokenized before the corruption.

66 C. Cachin et al.

IND-COHH: Indistinguishability with Corrupted Owner and Honest Host:
Modeling a corruption of the owner at some point in time, the adversary
learns the tokenization key of the compromised epoch and all secrets of the
owner. Subsequently A may take control of the owner, but should not learn
the correspondence between values tokenized before the corruption. The host
is assumed to remain (mostly) honest.

IND-COTH: Indistinguishability with Corrupted Owner and Transiently Cor-
rupte Host: As a refinement of the first two notions, A can transiently corrupt
the host during multiple epochs according to its choice, and it may also per-
manently corrupt the owner. The adversary learns the update tweaks of the
specific epochs where it corrupts the host, and learns the tokenization key
of the epoch where it corrupts the owner. Data values tokenized prior to
exposing the owner’s secrets should remain unlinkable.

One-Wayness: This notion models the scenario where the owner is corrupted
right at the first epoch and the adversary therefore learns all secrets. Yet,
the tokenization operation should be one-way in the sense that observing a
tokenized value does not give the adversary an advantage for guessing the
corresponding input from X .

3.2 Definition of Oracles

During the interaction with the challenger in the security definitions, the adversary
mayaccess oracles fordata tokenization, formoving to thenext epoch, for corrupting
the host, and for corrupting the owner. In the following description, the oracles may
access the state of the challenger during the experiment. The challenger initializes
a UTO scheme with global state (k0,Δ0, e), where k0 ← UTO.setup(λ), Δ0 ← ⊥,
and e ← 0. Two auxiliary variables e∗

h and e∗
o record the epochs where the host and

the owner were first corrupted, respectively. Initially e∗
h ← ⊥ and e∗

o ← ⊥.

Otoken(x): On input a value x ∈ X , return ye ← UTO.token(ke, x) to the adver-
sary, where ke is the tokenization key of the current epoch.

Onext: When triggered, compute the tokenization key and update tweak of the
next epoch as (ke+1,Δe+1) ← UTO.next(ke) and update the global state to
(ke+1,Δe+1, e + 1).

Ocorrupt-h: When invoked, return Δe to the adversary. If called for the first time
(e∗

h = ⊥), then set e∗
h ← e. This oracle models the corruption of the host and

may be called multiple times.
Ocorrupt-o: When invoked for the first time (e∗

o = ⊥), then set e∗
o ← e and return

ke to the adversary. This oracle models the corruption of the owner and can
only be called once. After this call, the adversary no longer has access to
Otoken and Onext.

Note that although corruption of the host at epoch e exposes the update
tweak Δe, the adversary should not be able to compute update tweaks of future
epochs from this value. To obtain those, A should call Ocorrupt-h again in the cor-
responding epochs; this is used for IND-HOCH security and IND-COTH secu-
rity, with different side-conditions. A different case arises when the owner is

Updatable Tokenization 67

corrupted, since this exposes all relevant secrets of the challenger. From that
point the adversary can generate tokenization keys and update tweaks for all
subsequent epochs on its own. This justifies why the oracle Ocorrupt-o can only be
called once. For the same reason, it makes no sense for an adversary to query the
Otoken and Onext oracles after the corruption of the owner. Furthermore, observe
that Ocorrupt-o does not return Δe according to the assumption that the owner
deletes this atomically with executing the next algorithm.

We are now ready to formally define the security notions for UTO in the
remainder of this section.

3.3 IND-HOCH: Honest Owner and Corrupted Host

The IND-HOCH notion ensures that tokenized data does not reveal information
about the corresponding original data when A compromises the host and obtains
the update tweaks of the current and all future epochs. Tokenized values are also
unlinkable across epochs, as long as the adversary does not know at least one
update tweak in that timeline.

Definition 3 (IND-HOCH). An updatable tokenization scheme UTO is said
to be IND-HOCH secure if for all polynomial-time adversaries A it holds that
|Pr[ExpIND-HOCH

A,UTO (λ) = 1] − 1/2| ≤ ε(λ) for some negligible function ε.

Experiment ExpIND-HOCH
A,UTO (λ):

k0
r← UTO.setup(λ)

e ← 0; e∗
h ← ⊥ // these variables are updated by the oracles

(x̃0, x̃1, state) r← AOtoken,Onext,Ocorrupt-h(λ)
ẽ ← e; d

r← {0, 1}
ỹd,ẽ ← UTO.token(kẽ, x̃d)

d′ r← AOtoken,Onext,Ocorrupt-h(ỹd,ẽ, state)
return 1 if d′ = d and at least one of following conditions holds

a)
(

e∗
h ≤ ẽ + 1

) ∧ A has not queried Otoken(x̃0) or Otoken(x̃1) in epoch
e∗
h − 1 or later

b)
(

e∗
h > ẽ + 1 ∨ e∗

h = ⊥) ∧ A has not queried Otoken(x̃0) or Otoken(x̃1) in
epoch ẽ

This experiment has two phases. In the first phase, A may query Otoken,
Onext and Ocorrupt-h; it ends at an epoch ẽ when A outputs two challenge inputs
x̃0 and x̃1. The challenger picks one at random (denoted by x̃d), tokenizes it,
obtains the challenge ỹd,ẽ and starts the second phase by invoking A with ỹd,ẽ.
The adversary may then further query Otoken, Onext, and Ocorrupt-h and eventually
outputs its guess d′ for which data value was tokenized. Note that only the first
host corruption mattersfor our security notion, since we are assuming that once

68 C. Cachin et al.

corrupted, the host is always corrupted. For simplicity, we therefore assume that
A calls Ocorrupt-h once in every epoch after e∗

h.
The adversary wins the experiment if it correctly guesses d while respecting

two conditions that differ depending on whether the adversary corrupted the
host (roughly) before or after the challenge epoch:

(a) If e∗
h ≤ ẽ + 1, then A first corrupts the host before, during, or immediately

after the challenge epoch and may learn the update tweaks to epoch e∗
h and

later ones. In this case, it must not query the tokenization oracle on the
challenge inputs in epoch e∗

h − 1 or later.
In particular, if this restriction was not satisfied, when e∗

h ≤ ẽ, the adversary
could tokenize data of its choice, including x̃0 and x̃1, during any epoch
from e∗

h − 1 to ẽ, subsequently update the tokenized value to epoch ẽ, and
compare it to the challenge ỹd,ẽ. This would allow A to trivially win the
security experiment.
For the case e∗

h = ẽ + 1, recall that according to the experiment, the update
tweak Δe remains accessible until epoch e+1 starts. Therefore, A learns the
update tweak from ẽ to ẽ + 1 and may update ỹd,ẽ into epoch ẽ + 1. Hence,
from this time on it must not query Otoken with the challenge inputs either.

(b) If e∗
h > ẽ + 1 ∨ e∗

h = ⊥, i.e., the host was first corrupted after epoch ẽ + 1 or
not at all, then the only restriction is that A must not query the tokenization
oracle on the challenge inputs during epoch ẽ. This is an obvious restriction
to exclude trivial wins, as tokenization is deterministic.
This condition is less restrictive than case (a), but it suffices since the adver-
sary cannot update tokenized values from earlier epochs to ẽ, nor from ẽ to
a later epoch. The reason is that A only gets the update tweaks from epoch
ẽ + 2 onwards.

3.4 IND-COHH: Corrupted Owner and Honest Host

The IND-COHH notion models a compromise of the owner in a certain epoch,
such that the adversary learns the tokenization key and may generate tokeniza-
tion keys and update tweaks of all subsequent epochs by itself. Given that the
tokenization key allows to derive the update tweak of the host, this implicitly
models some form of host corruption as well. The property ensures that data
tokenized before the corruption remains hidden, that is, the adversary does not
learn any information about the original data, nor can it link such data with
data tokenized in other epochs.

Definition 4 (IND-COHH). An updatable tokenization scheme UTO is said
to be IND-COHH secure if for all polynomial-time adversaries A it holds that
|Pr[ExpIND-COHH

A,UTO (λ) = 1] − 1/2| ≤ ε(λ) for some negligible function ε.

Updatable Tokenization 69

Experiment ExpIND-COHH
A,UTO (λ):

k0
r← UTO.setup(λ)

e ← 0; e∗
o ← ⊥ // these variables are updated by the oracles

(x̃0, x̃1, state) r← AOtoken,Onext(λ)
ẽ ← e; d

r← {0, 1}
ỹd,ẽ ← UTO.token(kẽ, x̃d)

d′ r← AOtoken,Onext,Ocorrupt-o(ỹd,ẽ, state)
return 1 if d′ = d and all following conditions hold

a) e∗
o > ẽ ∨ e∗

o = ⊥
b) A never queried Otoken(x̃0) or Otoken(x̃1) in epoch ẽ

During the first phase of the IND-COHH experiment the adversary may query
Otoken and Onext, but it may not corrupt the owner. At epoch ẽ, the adversary pro-
duces two challenge inputs x̃0 and x̃1. Again, the challenger selects one at random
and tokenizes it, resulting in the challenge ỹd,ẽ. Subsequently, A may further query
Otoken and Onext, and now may also invoke Ocorrupt-o. Once the owner is corrupted
(during epoch e∗

o), A knows all key material of the owner and may generate tok-
enization keys and update tweaks of all subsequent epochs by itself. Thus, from
this time on, we remove access to the Otoken or Onext oracles for simplicity.

The adversary ends the experiment by guessing which input challenge was
tokenized. It wins when the guess is correct and the following conditions are met:

(a) A must have corrupted the owner only after the challenge epoch (e∗
o > ẽ) or

not at all (e∗
o = ⊥). This is necessary since corruption during epoch ẽ would

leak the tokenization key kẽ to the adversary. (Note that corruption before
ẽ is ruled out syntactically.)

(b) A must neither query the tokenization oracle with any challenge input (x̃0

or x̃1) during the challenge epoch ẽ. This condition eliminates that A can
trivially reveal the challenge input since the tokenization operation is deter-
ministic.

On the (Im)possibility of Additional Host Corruption. As can be noted, the
IND-COHH experiment does not consider the corruption of the host at all. The
reason is that allowing host corruption in addition to owner corruption would
either result in a non-achievable notion, or it would give the adversary no extra
advantage. To see this, we first argue why additional host corruption capabilities
at any epoch e∗

h ≤ ẽ + 1 is not allowed. Recall that such a corruption is possible
in the IND-HOCH experiment if the adversary does not make any tokenization
queries on the challenge values x̃0 or x̃1 at any epoch e ≥ e∗

h−1. This restriction is
necessary in the IND-HOCH experiment to prevent the adversary from trivially
linking the tokenized values of x̃0 or x̃1 to the challenge ỹd,ẽ. However, when the
owner can also be corrupted, at epoch e∗

o > ẽ, that restriction is useless. Note
that upon calling Ocorrupt-o the adversary learns the owner’s tokenization key and
can simply tokenize x̃0 and x̃1 at epoch e∗

o. The results can be compared with
an updated version of ỹd,ẽ to trivially win the security experiment.

70 C. Cachin et al.

Now we discuss the additional corruption of the host at any epoch e∗
h > ẽ+1.

We note that corruption of the owner at epoch e∗
o > ẽ allows the adversary to

obtain the tokenization key of epoch e∗
o and compute the tokenization keys and

update tweaks of all epochs e > e∗
o +1. Thus, the adversary then trivially knows

all tokenization keys from e∗
o+1 onward and modeling corruption of the host after

the owner is not necessary. The only case left is to consider host corruption before
owner corruption, at an epoch e∗

h with ẽ+1 < e∗
h < e∗

o. However, corrupting the
host first would not have any impact on the winning condition. Hence, without
loss of generality, we assume that the adversary always corrupts the owner first,
which allows us to fully omit the Ocorrupt-h oracle in our IND-COHH experiment.

We stress that the impossibility of host corruption at any epoch e∗
h ≤ ẽ +

1 only holds if we consider permanent corruptions, i.e., the adversary, upon
invocation of Ocorrupt-h is assumed to fully control the host and to learn all future
update tweaks. In the following security notion, IND-COTH, we bypass this
impossibility by modeling transient corruption of the host.

3.5 IND-COTH: Corrupted Owner and Transiently Corrupted Host

Extending both of the above security properties, the IND-COTH notion consid-
ers corruption of the owner and repeated but transient corruptions of the host.
It addresses situations where some of the update tweaks received by the host
leak to A and the keys of the owner are also exposed at a later stage.

Definition 5 (IND-COTH). An updatable tokenization scheme UTO is said
to be IND-COTH secure if for all polynomial-time adversaries A it holds that
|Pr[ExpIND-COTH

A,UTO (λ) = 1] − 1/2| ≤ ε(λ) for some negligible function ε.

Experiment ExpIND-COTH
A,UTO (λ):

k0
r← UTO.setup(λ)

e ← 0; e∗
o ← ⊥ // these variables are updated by the oracles

elast ← ⊥; efirst ← ⊥
(x̃0, x̃1, state) r← AOtoken,Onext,Ocorrupt-h(λ)
ẽ ← e; d

r← {0, 1}
ỹd,ẽ ← UTO.token(kẽ, x̃d)

d′ r← AOtoken,Onext,Ocorrupt-h,Ocorrupt-o(ỹd,ẽ, state)
elast ← last epoch before ẽ in which A queried Otoken(x̃0) or Otoken(x̃1)
efirst ← first epoch after ẽ in which A queried Otoken(x̃0) or Otoken(x̃1)
return 1 if d′ = d and all following conditions hold
a) e∗

o > ẽ ∨ e∗
o = ⊥

b) A never queried Otoken(x̃0) or Otoken(x̃1) in epoch ẽ

c) either e∗
h = ⊥ or all following conditions hold

i)
(

elast = ⊥) ∨ ∃ e′ with elast < e′ ≤ ẽ where A has not queried Ocorrupt-h

ii)
(

efirst = ⊥) ∨ ∃ e′′ with ẽ < e′′ ≤ efirst where A has not queried Ocorrupt-h

iii)
(

e∗
o = ⊥) ∨ ∃ e′′′ with ẽ < e′′′ ≤ e∗

o where A has not queried Ocorrupt-h

Updatable Tokenization 71

Observe that the owner can only be corrupted after the challenge epoch, just
as in the IND-COHH experiment. As before, A then obtains all key material and,
for simplicity, we remove access to the Otoken or Onext oracles from this time on.
The transient nature of the host corruption allows to grant A additional access
to Ocorrupt-h before the challenge, which would be impossible in the IND-COHH
experiment if permanent host corruption was considered.

Compared to the IND-HOCH definition, here A may corrupt the host and
ask for a challenge input to be tokenized after the corruption. Multiple host
corruptions may occur before, during, and after the challenge epoch. But in
order to win the experiment, A must leave out at least one epoch and miss an
update tweak. Otherwise it could trivially guess the challenge by updating the
challenge output or a challenge input tokenized in another epoch to the same
stage. In the experiment this is captured through the conditions under (c). In
particular:

(c-i) If A calls Otoken with one of the challenge inputs x̃0 or x̃1 before triggering
the challenge, it must not corrupt the host and miss the update tweak in at
least one epoch from this point up to the challenge epoch. Thus, the latest
epoch before the challenge epoch where A queries Otoken(x̃0) or Otoken(x̃1),
denoted elast, must be smaller than the last epoch before ẽ where the host is
not corrupted.

(c-ii) Likewise if A queries Otoken with a challenge input x̃0 or x̃1 after the
challenge epoch, then it must not corrupt the host and miss the update tweak
in at least one epoch after ẽ. Otherwise, it could update the challenge ỹd,ẽ

to the epoch where it calls Otoken. The first epoch after the challenge epoch
where A queries Otoken(x̃0) or Otoken(x̃1), denoted efirst, must be larger than
or equal to the first epoch after ẽ where the host is not corrupted.

(c-iii) If A calls Ocorrupt-o, it must not obtain at least one update tweak after
the challenge epoch and before, or during, the epoch of owner corruption e∗

o.
Otherwise, A could tokenize x̃0 and x̃1 with the tokenization key of epoch e∗

o,
exploit the exposed update tweaks to evolve the challenge value ỹd,ẽ to that
epoch, and compare the results.

PRF-style vs. IND-CPA-style Definitions. We have opted for definitions based
on indistinguishability in our model. Given that the goal of tokenization is to
output random looking tokens, a security notion in the spirit of pseudorandom-
ness might seem like a more natural choice at first glance. However, a definition
in the PRF-style does not cope well with adaptive attacks: in our security exper-
iments the adversary is allowed to adaptively corrupt the data host and corrupt
the data owner, upon which it gets the update tweaks or the secret tokenization
key. Modeling this in a PRF vs. random function experiment would require the
random function to contain a key and to be compatible with an update function
that can be run by the adversary. Extending the random function with these
“features” would lead to a PRF vs. PRF definition. The IND-CPA inspired app-
roach used in this paper allows to cover the adaptive attacks and consistency
features in a more natural way.

72 C. Cachin et al.

Relation Among the Security Notions. Our notion of IND-COTH security is
the strongest of the three indistinguishability notions above, as it implies both
IND-COHH and IND-HOCH security, but not vice-versa. That is, IND-COTH
security is not implied by IND-COHH and IND-HOCH security. A distinguishing
example is our UTOSE scheme. As we will see in Sect. 4.1, UTOSE is both IND-
COHH and IND-HOCH secure, but not IND-COTH secure.

The proof of Theorem1 below can be found in the full version of this paper.

Theorem 1 (IND-COTH ⇒ IND-COHH + IND-HOCH). If an updata-
ble tokenization scheme UTO is IND-COTH secure, then it is also IND-COHH
secure and IND-HOCH secure.

3.6 One-Wayness

The one-wayness notion models the fact that a tokenization scheme should not be
reversible even if an adversary is given the tokenization keys. In other words, an
adversary who sees tokenized values and gets hold of the tokenization keys cannot
obtain the original data. Because the keys allow one to reproduce the tokeniza-
tion operation and to test whether the output matches a tokenized value, the
resulting security level depends on the size of the input space and the adversary’s
uncertainty about the input. Thus, in practice, the level of security depends on
the prior knowledge of the adversary about X .

Our definition is similar to the standard notion of one-wayness, with the
difference that we ask the adversary to output the exact preimage of a tokenized
challenge value, as our tokenization algorithm is an injective function.

Definition 6 (One-Wayness). An updatable tokenization scheme UTO is said
to be one-way if for all polynomial-time adversaries A it holds that

Pr[x = x̃ : x ← A(λ, k0, ỹ),

ỹ ← UTO.token(k0, x̃), x̃ r← X , k0
r← UTO.setup(λ)] ≤ 1/|X |.

4 UTO Constructions

In this section we present two efficient constructions of updatable tokeniza-
tion schemes. The first solution (UTOSE) is based on symmetric encryption and
achieves one-wayness, IND-HOCH and IND-COHH security; the second con-
struction (UTODL) relies on a discrete-log assumption, and additionally satisfies
IND-COTH security. Both constructions share the same core idea: First, the
input value is hashed, and then the hash is encrypted under a key that changes
every epoch.

Updatable Tokenization 73

4.1 An UTO Scheme Based on Symmetric Encryption

We build a first updatable tokenization scheme UTOSE, that is based on a sym-
metric deterministic encryption scheme SE = (SE.KeyGen,SE.Enc,SE.Dec) with
message space M and a keyed hash function H : K × X → M. In order to tok-
enize an input x ∈ X , our scheme simply encrypts the hashed value of x. At each
epoch e, a distinct random symmetric key se is used for encryption, while a fixed
random hash key hk is used to hash x. Both keys are chosen by the data owner.
To update the tokens, the host receives the encryption keys of the previous and
current epoch and re-encrypts all hashed values to update them into the current
epoch. More precisely, our UTOSE scheme is defined as follows:

UTO.setup(λ): Generate keys s0
r← SE.KeyGen(λ), hk

r← H.KeyGen(λ) and out-
put k0 ← (s0, hk).

UTO.next(ke): Parse ke as (se, hk). Choose a new key se+1
r← SE.KeyGen(λ)

and set ke+1 ← (se+1, hk) and Δe+1 ← (se, se+1). Output (ke+1,Δe+1).
UTO.token(ke, x): Parse ke as (se, hk) and output ye ← SE.Enc(se,H(hk, x)).
UTO.upd(Δe+1, ye): Parse Δe+1 as (se, se+1) and output the updated value

ye+1 ← SE.Enc(se+1,SE.Dec(se, ye)).

This construction achieves IND-HOCH, IND-COHH, and one-wayness but
not the stronger IND-COTH notion. The issue is that a transiently corrupted
host can recover the static hash during the update procedure and thus can link
tokenized values from different epochs, even without knowing all the update
tweaks between them.

Theorem 2. The UTOSE as defined above satisfies the IND-HOCH, IND-
COHH and one-wayness properties based on the following assumptions on the
underlying encryption scheme SE and hash function H:

UTOSE SE H

IND-COHH IND-CPA Weak collision resistance

IND-HOCH IND-CPA Pseudorandomness

One-wayness – One-wayness

The proof of Theorem2 can be found in the full version of this paper.

4.2 An UTO Scheme Based on Discrete Logarithms

Our second construction UTODL overcomes the limitation of the first scheme by
performing the update in a proxy re-encryption manner using the re-encryption
idea first proposed by Blaze et al. [2]. That is, the hashed value is raised to
an exponent that the owner randomly chooses at every new epoch. To update
tokens, the host is not given the keys itself but only the quotient of the current

74 C. Cachin et al.

and previous exponent. While this allows the host to consistently update his
data, it does not reveal the inner hash anymore and guarantees unlinkability
across epochs, thus satisfying also our strongest notion of IND-COTH security.

More precisely, the scheme makes use of a cyclic group (G, g, p) and a hash
function H : X → G. We assume the hash function and the group description
to be publicly available. The algorithms of our UTODL scheme are defined as
follows:

UTO.setup(λ): Choose k0
r← Zp and output k0.

UTO.next(ke): Choose ke+1
r← Zp, set Δe+1 ← ke+1/ke, and output (ke+1,

Δe+1).
UTO.token(ke, x): Compute ye ← H(x)ke , and output ye.
UTO.upd(Δe+1, ye): Compute ye+1 ← y

Δe+1
e , and output ye+1.

Our UTODL scheme is one-way and satisfies our strongest notion of IND-
COTH security, from which IND-HOCH and IND-COHH security follows (see
Theorem 1). The proof of Theorem 3 below can be found in the full version of
this paper.

Theorem 3. The UTODL scheme as defined above is IND-COTH secure under
the DDH assumption in the random oracle model, and one-way if H is one-way.

Acknowledgements. We would like to thank our colleagues Michael Osborne, Tamas
Visegrady and Axel Tanner for helpful discussions on tokenization.

References

1. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

2. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

3. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 23

4. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. IACR Cryptology ePrint Archive 2015, 220 (2015).
http://eprint.iacr.org/2015/220

5. Diaz-Santiago, S., Rodŕıguez-Henŕıquez, L.M., Chakraborty, D.: A cryptographic
study of tokenization systems. In: Obaidat, M.S., Holzinger, A., Samarati, P. (eds.)
Proceedings of the 11th International Conference on Security and Cryptography
(SECRYPT 2014), Vienna, 28–30 August 2014, pp. 393–398. SciTePress (2014).
https://doi.org/10.5220/0005062803930398

6. European Commission, Article 29 Data Protection Working Party: Opin-
ion 05/2014 on anonymisation techniques (2014). http://ec.europa.eu/justice/
data-protection/article-29/documentation/opinion-recommendation/

https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
http://eprint.iacr.org/2015/220
https://doi.org/10.5220/0005062803930398
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/

Updatable Tokenization 75

7. Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., Ristenpart, T.: The
Pythia PRF service. In: Jung, J., Holz, T. (eds.) 24th USENIX Security
Symposium, USENIX Security 2015, Washington, D.C., 12–14 August 2015,
pp. 547–562. USENIX Association (2015). https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/everspaugh

8. Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive pub-
lic key and signature systems. In: Proceedings of the 4th ACM Conference on
Computer and Communications Security (CCS 1997), Zurich, 1–4 April 1997, pp.
100–110 (1997). https://doi.org/10.1145/266420.266442

9. McCallister, E., Grance, T., Scarfone, K.: Guide to protecting the confidential-
ity of personally identifiable information (PII). NIST special publication 800-122,
National Institute of Standards and Technology (NIST) (2010). http://csrc.nist.
gov/publications/PubsSPs.html

10. PCI Security Standards Council: PCI Data Security Standard (PCI DSS) (2015).
https://www.pcisecuritystandards.org/document library?document=pci dss

11. Securosis: Tokenization guidance: How to reduce PCI compliance costs. https://
securosis.com/assets/library/reports/TokenGuidance-Securosis-Final.pdf

12. Smart Card Alliance: Technologies for payment fraud prevention: EMV,
encryption and tokenization. http://www.smartcardalliance.org/downloads/
EMV-Tokenization-Encryption-WP-FINAL.pdf

13. United States Department of Health and Human Services: Summary of the HIPAA
Privacy Rule. http://www.hhs.gov/sites/default/files/privacysummary.pdf

14. Voltage Security: Voltage secure stateless tokenization. https://www.voltage.com/
wp-content/uploads/Voltage White Paper SecureData SST Data Protection
and PCI Scope Reduction for Todays Businesses.pdf

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://doi.org/10.1145/266420.266442
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html
https://www.pcisecuritystandards.org/document_library?document=pci_dss
https://securosis.com/assets/library/reports/TokenGuidance-Securosis-Final.pdf
https://securosis.com/assets/library/reports/TokenGuidance-Securosis-Final.pdf
http://www.smartcardalliance.org/downloads/EMV-Tokenization-Encryption-WP-FINAL.pdf
http://www.smartcardalliance.org/downloads/EMV-Tokenization-Encryption-WP-FINAL.pdf
http://www.hhs.gov/sites/default/files/privacysummary.pdf
https://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf
https://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf
https://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf

	Updatable Tokenization: Formal Definitions and Provably Secure Constructions
	1 Introduction
	2 Preliminaries
	3 Formalizing Updatable Tokenization
	3.1 Privacy of Updatable Tokenization Schemes
	3.2 Definition of Oracles
	3.3 IND-HOCH: Honest Owner and Corrupted Host
	3.4 IND-COHH: Corrupted Owner and Honest Host
	3.5 IND-COTH: Corrupted Owner and Transiently Corrupted Host
	3.6 One-Wayness

	4 UTO Constructions
	4.1 An UTO Scheme Based on Symmetric Encryption
	4.2 An UTO Scheme Based on Discrete Logarithms

	References

