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Abstract. In PETS 2015, Kiayias, Leonardos, Lipmaa, Pavlyk, and
Tang proposed the first (n, 1)-CPIR protocol with rate 1 − o(1). They
use advanced techniques from multivariable calculus (like the Newton-
Puiseux algorithm) to establish optimal rate among a large family of dif-
ferent CPIR protocols. It is only natural to ask whether one can achieve
similar rate but with a much simpler analysis. We propose parameters
to the earlier (n, 1)-CPIR protocol of Lipmaa (ISC 2005), obtaining a
CPIR protocol that is asymptotically almost as communication-efficient
as the protocol of Kiayias et al. However, for many relevant parameter
choices, it is slightly more communication-efficient, due to the cumula-
tive rounding errors present in the protocol of Kiayias et al. Moreover,
the new CPIR protocol is simpler to understand, implement, and ana-
lyze. The new CPIR protocol can be used to implement (computationally
inefficient) FHE with rate 1 − o(1).
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1 Introduction

A computationally private information retrieval ((n, 1)-CPIR, [11]) protocol
enables the receiver to obtain an �-bit element from sender’s database of n ele-
ments, without the sender getting to know which element was obtained. An effi-
cient CPIR protocol has to be implemented by virtually any two-party privacy-
preserving database application, and hence CPIR protocols have received signif-
icant attention in the literature.

Since there exists a trivial CPIR protocol with linear communication �n where
the sender just forwards the whole database to the receiver, a major requirement
in the design of new CPIR protocols is their communication efficiency. The first
CPIR protocol with sublinear communication was proposed by Kushilevitz and
Ostrovsky [11], and slightly optimized by Stern [16]. The first CPIR protocol with
polylogarithmic-in-n communication was proposed by Cachin et al. [3]. The first
CPIR protocols with asymptotically truly efficient communication complexity
were proposed by Lipmaa [12,13] and Gentry and Ramzan [6].

All mentioned papers were concerned in the communication complexity as
a function of n. However, optimizing the communication complexity of a CPIR
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protocol as a function of � is also important, especially in applications where the
database elements are very long, e.g., movies. Optimizing the rate—defined as
the size of useful information (log n + � in the case of an (n, 1)-CPIR protocol)
divided by the actual communication complexity of the protocol—is also an
interesting theoretical question. Indeed, achieving optimal rate (while still having
acceptable computational complexity) is a central question in many areas of
computer science and engineering.

The first constant-rate CPIR protocol was proposed by Gentry and Ramzan [6]
(ICALP 2005, rate 1/4) and Lipmaa [12] (ISC 2005, rate 1/2). Lipmaa devised
another variant of his protocol with optimized results; the resulting CPIR protocol
from [13] had rate 1 − 1/a + o(1) for some positive constant a > 1. However, the
drawback of the latter variant (see Sect. 3.3 for its full description) is an additive
term aκ log22 n in the communication complexity (here, κ is the security parame-
ter), which means that the optimal value of a is actually quite small unless � is very
huge. Moreover, a cannot depend on � (i.e., it has to be constant), and thus this
CPIR protocol does not achieve rate 1 − o(1).

In a recent paper, Kiayias et al. [10] proposed a general parameterized
family of so called leveled LBP-homomorphic encryption schemes with rate
1 − o(1). Here, LBP denotes the complexity class of functions implementable
by polynomial-size (leveled) large-output branching programs, [17]. They then
used the fact [8,13] that such an encryption scheme can be used to efficiently
implement CPIR.

However, achieving optimal rate required the authors of [10] to perform exten-
sive technical analysis. More precisely, following earlier papers like [11–13], the
(n, 1)-CPIR protocol of Kiayias et al. is recursive. First, [10] constructs a (lev-
eled) homomorphic encryption scheme that allows to compute an arbitrary func-
tion f by constructing a w-ary branching program (for some small w � n, e.g.,
w = 2) that computes f . Following [8], this homomorphic encryption scheme
privately implements the (w, 1) multiplexer function, needed in every internal
node of a branching program, by using a simple (w, 1)-CPIR protocol that has
minimal (i.e., rate 1 − o(1)) sender-side communication. However, it has linear
client-side (and hence, total) communication.

In addition, at every internal node, the (n, 1)-CPIR protocol of [10] applies a
precisely defined operation of splitting and concatenating, that guarantees that
at the level d of the branching program, the (w, 1)-CPIR protocol operates with
database elements of length sdκ, where sd is a parameter to be optimized. More
precisely, the outputs of the CPIR protocol from level d− 1 are cut into some td
pieces of length sdκ. By using this recursive construction, a suitable (w, 1)-CPIR
protocol can be used to securely implement any function from LBP.

Kiayias et al. [10] showed, by using an intricate analysis, that the optimal
communication is achieved when s1 = . . . = sm =: s, where m is the length of
the branching program. In a nutshell, they used multivariable calculus to show
that the communication complexity of their CPIR protocol is optimized when s
is equal to a root of a certain degree-(m + 1) polynomial fm. Then, they used
Galois theory to show that fm cannot be solved in radicals. Finally, they used
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the theory of Newton-Puiseux series to numerically compute an approximation
of the optimal s. As the end result, they obtained a CPIR protocol of rate
1 − 1.72

√
κ/� log2 n + O(�−1).

Hence, the analysis used in [10] is (very) complicated, resulting in (a) a CPIR
protocol with a complex description, and (b) an optimal parameter choice that,
while it can be done efficiently, seems to be difficult to analyze. For example, the
optimal value of s in [10] is given by a series. After that, [10] proves that given the
so computed s, the communication complexity will be given by another explicit
series. However, in practice one needs to compute an integer approximation
of s efficiently. While [10] proposed an efficient algorithm for computing such
an approximation, it is unclear how this will influence the precise value of the
communication complexity in the general case.

Moreover, one problem of their scheme is due to “rounding errors”. First,
the claimed rate corresponds to the case when s is a real root while in practice
s must be an integer. To deal with this requirement, Kiayias et al. presented an
O(log log n)-time algorithm to compute an integer approximation of s. Second,
recall that each (w, 1)-CPIR protocol at every layer in [10] requires plaintexts
of the same length sκ. However, in the optimal construction of [10], there is no
guarantee that the total output length of the previous layer divides by s and
hence at every layer one has to round up the length of each plaintext. This means
that at every layer, there will be some undue increase in the number of applied
(w, 1)-CPIR protocols, which increases the actual communication complexity of
the resulting (n, 1)-CPIR protocol.

The authors of [10] did not compute precise upper bounds on the communi-
cation of their CPIR protocol after s is rounded to an integer and one adds up
the rounding errors. Instead, [10] provided empirical data (see Sect. 7.1.1 in [10],
or Fig. 1 in the current paper) that the increase in communication is insignificant
when � is large, at least for some practically relevant values of � and n.

Our Contribution. We show how to achieve almost the same communica-
tion complexity and rate as in the protocol of Kiayias et al. [10]. We provide
precise analysis and comparison in Sect. 5, where we show that the difference
between the communication of the “ideal” CPIR protocol of [10] (that does not
take into account rounding errors) and the new CPIR protocol is O(�1/2). After
taking into account the rounding errors, the new protocol will be slightly more
communication-efficient for all values of � and n analysed in [10]. (See Fig. 1.) The
new CPIR protocol can be used to implement rate 1 − o(1) oblivious transfer,
strong conditional oblivious transfer, asymmetric fingerprinting protocol, and
(computationally inefficient) fully-homomorphic encryption.

We use the CPIR protocol proposed by Lipmaa in ISC 2005 [12] and ICISC
2009 [13] but with parameters that we optimize in the current paper. In par-
ticular, we consider general w-ary decision trees instead of just binary contrary
to [12,13]. Alternatively, the proposed protocol is an instantiation of the CPIR
protocol family of Kiayias et al. [10] but with different parameter set, namely,
with the values td being constant, t1 = · · · = tm =: t, and the values sd being
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�/κ Communication

No privacy Kiayas et al. [10] This work

Theoretical With rounding Theoretical With rounding

103 2 048 017 4 079 561 4 220 928 4 090 880 4 090 880

104 20 480 017 26 439 497 26 759 168 26 443 776 26 443 776

105 204 800 017 223 161 724 223 942 656 223 163 148 223 163 343

106 2 048 000 017 2 105 572 921 2 107 731 968 2 105 573 376 2 105 573 376

107 20 480 000 017 20 661 566 883 20 664 602 624 20 661 567 027 20 661 569 161

108 204 800 000 017 205 373 669 331 205 394 259 968 205 373 669 376 205 373 669 376

Fig. 1. Comparison with [10], for κ = 2048, w = 5, n = 57. The protocol from [10]
offers better communication if rounding is not taken into account. However, in all cases,
the current work offers better communication in practice (i.e., when parameters have
been rounded correctly)

slightly increasing. This means that the new CPIR protocol can be seen as
a t-times parallel implementation—each for ��/t�-bit databases—of the CPIR
protocol from [12], for an optimized value of t. The new analysis is significantly
simpler than the multi-page analysis of [10] but surprisingly enough delivers
almost the same results. (Intuitively, this happens since in [10], in different layers
one uses parameters (s, s, s, . . . ) while in the new protocol, one uses parameters
(s, s + 1, s + 2, . . . ). Since � and s both are considered to be large, s + 1 ≈ s.)

To show that our analysis is really simple, we will very briefly outline it next.
The communication function of the w-ary generalization of the CPIR from [12]
depends on n (the size of the database), � (the length of database elements),
κ (the security parameter), t (the parallelism factor) and w (the arity of the
decision tree). Here, t and w are the values to be optimized. First, we use simple
univariate analysis to derive the optimal value topt =

√
(w − 1)�/κ of t for any

w. Given the value of topt, we then “near optimize” (see Sect. 4) the value of
w. Here, near optimizing means that we write the communication function as a
series in �, and then choose the integer value of w (namely, w = 5) that minimizes
the most significant coefficients of this series. Since topt is a function of �, the
layout of the series crucially depends on the fact that we first fix topt.

We show that under these values of t and w, the asymptotic communication
of the resulting CPIR protocol is practically the same as in the optimal case
in [10]. On the other hand, for interesting1 values of �, the proposed variant will
have slightly better communication. More precisely, in the new CPIR protocol,
the communication complexity function, written down as a series in � coincides
with the one of the CPIR from [10] in the first three terms. The communication
complexity of the optimal CPIR of [10] has a tailing element O�(1/�) that makes

1 Here, by interesting we mean values of � that correspond to the length of an audio
or video file; this was also the motivating example given in [10]. If � is much shorter,
then optimizing the communication complexity as a function of � is not relevant.
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their construction asymptotically slightly more efficient. However, the difference
is not big: for example, in a concrete case where the database elements are 106κ
bits long and the database has n = 57 elements (here, κ = 2048 is the currently
recommended security parameter), the CPIR of [10] is—when ignoring rounding
errors—more efficient than the new CPIR by 683 bytes out of more than 3 billion.
See Fig. 1 for more examples.

However, this comparison is purely theoretical since it operates with the
“ideal” communication function and does not take into account rounding errors.
Compared to [10], we do not run into rounding errors at every layer of the
construction. Intuitively, this is the case since in our construction, each ciphertext
of the previous layer is considered to be the plaintext of the next layer and hence
the length of the plaintexts increases by κ bits at each layer. On the other hand,
in [10], at each layer, the concatenation of t ciphertexts (of total length (s+1)tdκ)
is divided into new plaintexts, each of length sκ. The rounding error (at every
layer) is caused by the fact that for an s that is chosen optimally by the analysis
of [10], (s + 1)tdκ is essentially never divisible by s.

In fact, in the new construction, it is only important that s | � (or else we
get a one-time rounding error at the very bottom of the protocol construction).
This means, as we show numerically, that in practice, the new CPIR protocol
achieves slightly better communication complexity than the CPIR of [10], while
being much simpler. See Fig. 1 for a communication efficiency comparison. To
demonstrate the (relative) simplicity of the new construction, we will give a full
description of the new CPIR protocol on Fig. 3; the only important distinction
from the well-known CPIR protocol of [12], as modified by [13], is in the first
line (the choice of the paramrters). A comparable full description of the CPIR
protocol of [10] is significantly longer, albeit mostly due to the more complicated
procedure for selecting optimal parameters. In fact, [10] does not give a self-
contained description of their CPIR protocol. Figure 3 in [10] describes their
new LHE scheme (that then has to be modified to become a CPIR protocol),
but the choice of all parameters is described later in that paper, together with
the issues rising from rounding the parameters.

Extensions and Applications. Based on the ideas of [8,10] and of the current
paper, one can construct a rate 1 − o(1) homomorphic encryption scheme that
can homomorphically evaluate any function that has a polynomial-size large-
output branching program. All known fully homomorphic encryption schemes
have a very low rate. (See [7] for insights on why achieving good rate fully
homomorphic encryption scheme might be difficult.) Since the generalization
from binary decision trees, that are used to construct the new CPIR protocol,
to arbitrary branching programs is straightforward yet necessitates introducing
a lot of branching program-related terminology, we will omit further discussion
and refer to [10].

Similarly, one can build a rate 1 − o(1) oblivious transfer, given the new
CPIR protocol and known transformations, see [10] for discussion. Finally, based
on their CPIR protocol, [10] proposed a new rate 1 − o(1) strong conditional
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oblivious transfer protocol [1], and based on the later, [9] constructed the first
optimal rate asymmetric fingerprinting protocol. One can plug in the CPIR pro-
tocol of the current paper to those constructions obtaining simpler yet slightly
more communication-efficient protocols for (strong conditional) oblivious trans-
fer and asymmetric fingerprinting.

2 Preliminaries

Notation. For a predicate, let [P (x)] ∈ {0, 1} denote the truth value of P (x),
e.g., [x = y] is equal to 1 iff x = y and to 0 otherwise. The Lambert’s W function
is defined by the equation z = W (z)eW (z). Asymptotically, W (z) ≈ ln z− ln ln z.
Let κ be the security parameter; in our case it corresponds to the key length in
bits, so κ ≥ 2048.

Public-Key Cryptosystem. A length-flexible cryptosystem (Gen,Enc,Dec)
[4,5] consists of three efficient algorithms, Gen for key generation, Enc for encryp-
tion, and Dec for decryption. The public key pk fixes the plaintext space, the
randomizer space Rpk, and the ciphertext space. For a public key pk, plaintext
m (of bitlength � = |m|), a positive integer length parameter s := ��/κ�, and
a randomizer r ∈ Rpk we have c = Encs

pk(m; r) and m = Decs
sk(c), and it is

required that Decs
sk(Enc

s
pk(m; r)) = m.

A length-flexible cryptosystem has to satisfy the usual IND-CPA security
requirement [4]. That is, no efficient adversary should be able to distinguish
between ciphertexts corresponding to m0 and m1 encrypted by using the same
integer length parameter, even if m0 and m1 were chosen by her.

Let the rate of the cryptosystem be |m|/|c|, i.e., the ratio between the number
of useful bits and the actual transmission length. A length-flexible cryptosystem
is optimal rate if |m|/|c| = 1 − o(1) when |m| increases.

A cryptosystem is additively homomorphic if Decs
sk(Enc

s
pk(m1; r1) ·

Encs
pk(m2; r2)) = m1 + m2. In [4,5], Damg̊ard and Jurik constructed two IND-

CPA secure optimal-rate length-flexible additively homomorphic cryptosystems.
See also [2]. An additively homomorphic cryptosystem is also required to be
rerandomizable in the sense that Encs

pk(m; r) · Encs
pk(0; r′

1) is computationally
indistinguishable from Encs

pk(0; r′
2), for uniformly random r′

1, r
′
2 ←r Rpk.

More precisely, in the cryptosystem of [4], the public key is a well-chosen
RSA modulus N = pq, the secret key is (p, q), and for a positive integer s,
Encs

pk(m; r) = (1 + N)mrNs

mod Ns+1, for m ∈ ZNs and r ∈ Z
∗
N . Hence, if

the plaintext is of length sκ, the cryptosystem of [4] has ciphertext of length
(s + 1)κ. The rate of this cryptosystem is

�

� + κ
= 1 − κ

�
+

κ2

�2
+ O�(�−3) .

This is intuitively optimal (up to the choice of κ) since κ bits are needed to
randomize the ciphertext. The Damg̊ard-Jurik cryptosystem from [4] is IND-
CPA secure under the DCR assumption [15].
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If pk and r are understood in the context (or if their precise value is not
relevant), we will not write them down explicitly.

Computationally-Private Information Retrieval (CPIR). Assume n > 1
and � are positive integers, with n, � = poly(κ). An (n, 1)-CPIR protocol [11] for
�-bit strings allows the receiver on input x ∈ {0, . . . , n − 1} to obtain fx ∈ {0, 1}�

out of the sender’s database f = (f0, . . . , fn−1) without the sender getting any
information about x.

In a two-message CPIR protocol, the receiver first generates a public and
secret key pair (pk, sk), then sends a query Q ← Querypk(n, �;x) and pk to the
sender, who answers with a reply R ← Replypk(n, �;f , Q). After that, the receiver
uses a function Answersk(n, �;x,R) to recover fx.

The receiver’s communication is equal to |Q|, the sender’s communication
is equal to |R|, and the total communication is equal to com := |Q| + |R|. A
non-private CPIR protocol consists of two messages, Q = x (of log2 n bits) from
the receiver to the sender, and R = fx (of � bits) from the sender to the receiver.
We do not count pk as part of the communication, since (a) it is short, and (b)
it can—and will—be reused between many instances of the CPIR protocol. The
rate of a CPIR protocol is equal to (log2 n + �)/com.

A two-message CPIR protocol is IND-CPA secure if no efficient adversary A
can distinguish between queries corresponding to x0 and x1, even if x0 and x1

were chosen by her. That is,

Pr

[
(pk, sk) ← Gen(1κ), (x0, x1) ← Apk(1κ, n, �), b ←r {0, 1} ,

Q ← Querypk(n, �;xb) : Apk(n, �;Q) = b

]

is negligible in κ, for each probabilistic polynomial-time A and polynomially
large n and �.

3 Related Work

There are very few conceptually different approaches for constructing
communication-efficient (n, 1)-CPIR protocols. The (n, 1)-CPIR protocol by
Kiyaias et al. [10], following earlier protocols [8,11–13,16], homomorphically exe-
cutes a branching program, by using a (w, 1)-CPIR at every internal node of the
branching program. Here, w is a small constant. See [3,6] for a different app-
roach that however results in rate that cannot be better than 1/4; see [3,6] for
a discussion.

3.1 Linear-Communication (w, 1)-CPIR Protocol

Recall that s is a positive integer. The concrete underlying (w, 1)-CPIR protocol
used in [8,10,12,13] is a simple linear-communication CPIR protocol from [12]2.
2 As shown in [14], linear communication is the best one can hope when building a

CPIR protocol on top of an additively homomorphic cryptosystem while not using
recursion.
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To transfer one � = sκ-bit database element, the receiver sends to the sender
w−1 ciphertexts, and the sender responds with one ciphertext, where the length
of each ciphertext is (s+1)κ bits. More precisely, the receiver sends to the sender
w − 1 ciphertexts Ci encrypting [x = i] for i ∈ {0, . . . , w − 2}, Ci = Encs([x =
i]; ri) for a random ri ←r Rpk. From {Ci}w−2

i=0 , by using additive homomorphism,
the sender obtains the ciphertext Cw−1 encrypting [x = w − 1] = 1−∑w−2

i=0 [x =
i]. Hence, (C0, . . . , Cw−1) encrypts the x-th unit vector, x ∈ {0, . . . , w − 1}.
Then, she uses {Ci}w−1

i=0 to homomorphically compute a randomized ciphertext
encrypting

∑n
i=1[x = i]fi = fx. That is, Q = Querypk(n, �;x) = (C0, . . . , Cw−2),

Cw−1 = Encs(1; 0)/
∏w−2

i=0 Ci, and R = Replypk(n, �;f , Q) =
∏w−1

i=0 Cfi

i ·Encs(0; r)
for a random r. The receiver just computes Answersk(n, �;x,R) = Decs

sk(R). This
CPIR protocol is IND-CPA secure given that the underlying Damg̊ard-Jurik
cryptosystem is IND-CPA secure, i.e., under the DCR assumption.

While this (w, 1)-CPIR has linear communication, importantly its sender-
side communication consists of only one ciphertext and thus has near-optimal
rate (log2 n + �)/(� + κ) = 1 − (κ − log2 n)/� + O(�−2) = 1 − o(1).

3.2 Lipmaa’s Recursive (n, 1)-CPIR Protocol from [12]

W.l.o.g., assume that n is a power of w, n = wm for some m, where w is a
small positive integer. (In the general case, one can add dummy elements to
the database.) The (n, 1)-CPIR protocols of [10–13] are built on top of a (w, 1)-
CPIR, w � n, in a recursive manner.

Let (Gen,Enc,Dec) be an optimal-rate length-flexible additively homomor-
phic cryptosystem like the one proposed by Damg̊ard and Jurik [4] and
(Query,Reply,Answer) be the (w, 1)-CPIR protocol of Sect. 3.1. In the (n, 1)-
CPIR protocol of Lipmaa from ISC 2005 [12], a w-ary decision tree of length
m := logw n is constructed on top of a database of n elements. Then, the inter-
nal nodes are assigned labels starting from bottom. Let x =

∑m−1
i=0 xiw

i, i.e.,
xi is the ith w-ary digit of x. For an internal node v that has distance i to the
leafs, the label of v is equal to the reply of the (w, 1)-CPIR protocol, given a
query Query(w, sκ;xi) and a database (f0, . . . , fw−1) consisting of the labels of
the children of v. (See Fig. 2.) Finally, the sender replies with the label of the
root of the binary decision tree, and the receiver applies to it m times the Answer
function to recover fx.

Since we use the (w, 1)-CPIR protocol of Sect. 3.1, if the labels of the children
of v are say (fv0, . . . , fv1), then the label of v is going to be Encs+i−1

pk (fvxi
) (as

in Fig. 2), and each application of Answer consists of a single decryption.
The receiver’s message in the (n, 1)-CPIR protocol corresponds to one (w, 1)-

CPIR receiver’s message for each length parameter s + i, i ∈ {1, . . . , logw n},
while the sender’s message corresponds to one (w, 1)-CPIR sender’s message for
the length parameter s + logw n. The resulting receiver’s communication is
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R2 = Encs+2(Encs+1(Encs(fx2x1x0)))

Encs+1(Encs(f0x1x0))

Encs(f00x0)

f000 f001

Encs(f01x0)

f010 f011

Encs+1(Encs(f1x1x0))

Encs(f10x0)

f100 f101

Encs(f11x0)

f110 f111

Fig. 2. Using Lipmaa’s (w, 1)-CPIR from [12] with w = 2 and n = 8. The receiver sends
Encs(x0), Enc

s+1(x1), Enc
s+2(x2) to the sender. The sender computes recursively the

values at intermediate nodes, and then replies with R2.

rec1(w, n, �, κ) :=
logw n∑

i=1

(w − 1)(�/κ + i)κ

=(w − 1)(�/κ + (logw n + 1)/2) logw n · κ

=(w − 1)(� + (logw n + 1)κ/2) logw n

and the sender’s communication is

sen1(w, n, �, κ) := (�/κ + logw n)κ = � + κ logw n .

(Recall that communication is always measured in bits.) Hence, the total commu-
nication com1(w, n, �, κ) = rec1(w, n, �, κ)+ sen1(w, n, �, κ) of the CPIR protocol
from [12] is equal to

com1(w, n, �, κ) = ((w − 1) logw n + 1)� +
κ logw n · ((w − 1) logw n + (w + 1))

2
.

Its rate is (log2 n + �)/com1(w, n, �, κ) ≈ 1/((w − 1) logw n + 1). For large �,
com1(·, n, �, κ) is clearly minimal when w = 2, with

com1(2, n, �, κ) = (log2 n + 1)� +
κ log2 n · (log2 n + 3)

2

and rate ≈ 1/(log2 n + 1).

3.3 Optimizing the Communication by Data-Parallelization

In [12], Lipmaa additionally noted that one can reduce the communication
(assuming �/κ 	 log2 n) by executing the protocol from Sect. 3.2 separately
and in parallel on every (�/t)-bit chunk of the database elements, where t ≥ 1,
t | �, is a positive integer. This results in optimized total communication since
in the (n, 1)-CPIR protocol of Sect. 3.2, the receiver’s communication is much
larger than the sender’s communication. If t > 1, then the same receiver’s mes-
sage can be used in all t parallel invocations of the protocol from Sect. 3.2, while
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the sender has to respond with t messages. Crucially, the bitlength of database
elements in each invocation is divided by t and thus every single message of the
receiver and the sender becomes shorter.

More precisely, assuming again t | �, the parallelized (n, 1)-CPIR protocol
of [12] has the receiver’s communication, the sender’s communication, and the
total communication

rec2(w, n, �, κ, t) :=rec1(w, n, �/t, κ) = (w − 1)(�/t + (logw n + 1)κ/2) logw n ,

sen2(w, n, �, κ, t) :=t · sen1(w, n, �/t, κ) = t(�/t + κ logw n) = � + tκ logw n ,

com2(w, n, �, κ, t) = (w − 1)(�/t + (logw n + 1)κ/2) logw n + � + tκ logw n . (1)

If t � �, then one has to round �/t upwards.
In ISC 2005 [12], Lipmaa considered parameter settings that resulted in rate

≈ 1/2. In ICISC 2009 [13], Lipmaa considered the following parameter settings:
w = 2 and t = a log2 n for large a. In this case,

com2(2, n, �, κ, a log2 n) =
(

1
a

+ 1
)

� +
(2a + 1)κ log22 n

2
+

κ log2 n

2
. (2)

Thus with such parameters the parallelized (n, 1)-CPIR protocol has rate

log2 n + �

com2(2, n, �, κ, a log2 n)
=

a

a + 1
+ O(�−2) ≤ 1 − 1

a
+ O(�−2) .

However, for this estimate to hold, it is needed that a = Θ�(1) does not depend on
�. Moreover, due to the additive term Θ(a)κ log22 n in Eq. (2), the communication
complexity will actually increase if a is too large. Hence, by using the parameters
proposed in [13], the parallelized (n, 1)-CPIR protocol from [12] cannot achieve
rate 1 − o(1).

3.4 The CPIR Protocol of Kiayias et al.

Kiayas et al. [10] proposed another twist on top of the CPIR protocol of
Lipmaa [12]. In a nutshell, during the recursive procedure, the parallelized CPIR
protocol of Sect. 3.3 stores at every childrens’ node the concatenation of t plain-
texts. The label of the parent node is defined to be equal to the concatenation of
t individual ciphertexts. In [10], each childrens’ node also stores the concatena-
tion of t plaintexts each being (say) L bits long. However, this concatenation is
then redivided into t′ equal-length new plaintexts (each of length �tL/t′�). The
new plaintexts are then encrypted individually and the resulting ciphertexts con-
catenated as the label of the parent node. The major contribution in [10] is the
computation of optimal values t and t′ (for each layer of the CPIR tree) and
establishing that one can choose those values so as to obtain a CPIR protocol
of rate 1 − o(1).
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4 Simple Optimal-Rate CPIR Protocol

We now propose a different setting of the parameters for the parallelized (n, 1)-
CPIR protocol from Sect. 3.3, motivated by the approach of [10]. We first con-
tinue the analysis of [12,13], and find optimal values of the parameters. After
that, for the sake of completeness, we will give a full description of the resulting
CPIR protocol together with a security proof.

4.1 Optimization of Parameters

Recall that the communication complexity of Lipmaa’s parallelized (n, 1)-CPIR
protocol is given by Eq. (1). It depends on three variables (κ, �, and n) that are
fixed, and two variables (w and t) that can be optimized. We were unable to
find the global optimum of com2, due to the complicated form of ∂com2/∂w,

∂com2

∂w
=

ln n · ln w · (w ln w(2� + kt) − 2�(w − 1) − kt(2t + w − 1))
2tw ln3 w

+
ln2 n · kt(−2w + w ln w + 2)

2tw ln3 w
.

Instead, we will first optimize com2 as a function of t, and then we will “near
optimize” the result as a function of w. By doing so, we obtain a CPIR protocol
that has a rate very close to the rate of [10], but with a much simpler analysis.

We will find the optimal value of t by requiring that

∂com2

∂t
=

(t2κ − (w − 1)�) logw n

t2
= 0 .

Since n �= 0, this holds if

t = topt :=
√

(w − 1)�/κ .

Clearly,

com2(w,n, �, κ, topt) =

� +
2
√

w − 1
log2 w

·
√

�κ · log2 n +
(w − 1)(logw n + 1) logw n

2
· κ .

(3)

Finding a value of w that optimizes this function seems to be also compli-
cated. Hence, as in [10], we now choose w that just minimizes the most significant
term in com2 that depends on w, i.e., the second term, hoping that the result w
will be close to the optimal. The second additive term in the right hand side of
Eq. (3) is minimized when

d

dw

√
w − 1

log2 w
=

(w ln w − 2w + 2) ln 2
2
√

w − 1 · w ln2 w
= 0 ,
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that is, when

w = − 2
W (−2/e2)

≈ 4.92 . (4)

Since w has to be an integer, we take w = 5, exactly as in [10]. Then, topt =
2
√

�/κ. Thus, recalling that � = t · sκ, we get that

s =
�

toptκ
=

�

2
√

�/κ · κ
=

1
2

·
√

�/κ .

4.2 Full Protocol

Before giving a full efficiency analysis (it will be done in Sect. 5), we now take a
step back and give a detailed description of the resulting (n, 1)-CPIR protocol.
In the description below we do not assume that (say) n is a power of w, hence we
will use the �·� function to compute intermediate parameters. See Fig. 3 for a full
description. We emphasize that—except the different choice of parameters—this
is the same protocol as described in Sect. 3.3 and hence we omit repeating the
intuition.

4.3 Security Proof

Lemma 1. Assume that the underlying public-key cryptosystem is IND-CPA
secure. Then, the new CPIR protocol is IND-CPA secure.

Proof (Sketch). The sender, not having access to the secret key, only sees a vector
of ciphertexts (Q00, . . . , Qm−1,w−2). Hence, the security of the CPIR protocol is
guaranteed by the IND-CPA security of the cryptosystem via a standard hybrid
argument. �

5 Communication Efficiency Analysis

5.1 Asymptotic Analysis

The given parameter choice results in the following theorem.

Theorem 1. Assume that s =
√

�/κ/2 and log5 n are integers. There exists an
(n, 1)-CPIR protocol for �-bit strings with communication complexity

com2(5, n, �, κ, 2
√

�/κ) = � +
4

log2 5
·
√

�κ · log2 n + 2
(
log25 n + log5 n

)
κ .

Proof. The result follows from preceding discussion. �
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Parameters: κ, n, �, t = �2√
�/κ�, s = ��/(tκ)�, w = 5, m = �logw n�.

Receiver’s Querynew(n, �; x):
Generate a new public and secret key pair (pk, sk) for the Damg̊ard-Jurik cryp-
tosystem.
Write x =

∑m−1
d=0 xdw

d for xd ∈ {0, . . . , w − 1}.
For d = 0 to m − 1:
1. For j = 0 to w − 2:

(a) Generate a new randomizer rdj ← Rpk

(b) Let Qdj ← Encs+d−1
pk ([xd = j]; rdj)

2. Compute Qd,w−1 ← Encs+d−1
pk (1; 1)/

∏w−2
j=0 Qdj

Send pk and Querypk(n, �, x) := Q = (Qdj)d∈[0,m−1],j∈[0,w−2] to the sender
Sender’s Replynew

pk (n, �;f ,Q) :
For i − 0 to n − 1:
1. Denote L0,i = fi
2. Write L0,i = (L0,i,0, . . . , L0,i,t−1), with |L0,i,z| = sκ

For d = 0 to m − 1:
1. Compute Qd,w−1 ← Encs+d−1

pk (1; 1)/
∏w−2

j=0 Qdj

2. For i = 0 to n/wd+1 − 1:
(a) For z = 0 to t − 1:

i. Ld+1,i,z = Encs+d−1
pk (0; r′

diz) · ∏w−1
j=0 Q

Ld,iw+j,z

dj for random r′
diz ← Rpk

Let R = (R0, . . . , Rt−1) := (Lm,0,0, . . . , Lm,0,t−1).
Return Replypk(n, �;f ,Q) = R.

Receiver’s Answernew
sk (n, �;R) :

For d = m − 1 downto 0:
1. For z = 0 to t − 1: Rz ← Decs+d

sk (Rz)
Return fx = (R0, . . . , Rt−1)

Fig. 3. Full description of the new (n, 1)-CPIR protocol

Note that 4/ log2 5 ≈ 1.72. Note also that

rec2(5, n, �, κ, 2
√

�/κ) =
2

log2 5
·
√

�κ · log2 n + 2
(
log25 n + log5 n

)
κ ,

sen2(5, n, �, κ, 2
√

�/κ) = � +
2

log2 5
·
√

�κ · log2 n ,

and hence rec2 is sublinear in �.
To compare, the (n, 1)-CPIR protocol of [10] (see Cor. 1 therein) achieves

communication complexity

� +
4

log2 5
·
√

�κ · log2 n + 2
(
log25 n + log5 n

)
κ + O(�−1/2) .

Thus, the (n, 1)-CPIR protocol from the current paper has essentially the
same communication as in [10] (the first three terms of the series expansion
of the communication function com are the same as in [10]), but with a much
simpler analysis (and construction).
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5.2 Optimization w.r.t. n

Consider now the task of optimization com2 (as in Eq. (1)) as a function of n.
First, finding of the optimal topt does not depend on whether we optimize as

a function of � or n. Hence, we will assume that topt =
√

(w − 1)�/κ, as before.
Writing down the expression for com2 as a—finite—series in log2 n, we get

com2(w, n, �, κ, topt) =� +
(w − 1)κ
2 log22 w

· log22 n

+
4
√

w − 1
√

�κ + (w − 1)κ
2 log2 w

· log2 n .

Interestingly enough, the second additive term of this expression is minimized
when w = − 2

W (−2/e2) ≈ 4.92 ≈ 5, which seems to hint that this value of w may
be close to the global minimum.

5.3 Rate

Assume again that s and log5 n are integers. By dividing the length of useful
information, log2 n + �, with the communication (3), we get that the new CPIR
has rate

R =
log2 n + �

com2(w, n, �, κ, topt)

=1 − 2
√

(w − 1)κ/� logw n +
2 log2 n + (w − 1)κ logw n(7 logw n − 1)

2�

+ O(�−3/2) .

(5)

Indeed, the communication function

com2(w, n, �, κ, topt) =
∞∑

i=0

ai�
1−i/2

is given by Eq. (3), where a0 = 1, a1 = 2
√

(w − 1)κ logw n, a2 = ((w − 1)
κ(logw n + 1) logw n)/2, ai = 0, where i ≥ 3. Let

R =
∞∑

i=0

bi�
1−i/2 .
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We find bi from the condition com2(w, n, �, κ, topt) · R = log2 n + � comparing
coefficients of different powers:

�2 : a0b0 = 0 ⇒ b0 = 0 ,

�3/2 : a0b1 + a1b0 = 0 ⇒ b1 = 0 ,

� : a0b2 + a1b1 + a2b0 = 1 ⇒ b2 = 1 ,

�1/2 : a0b3 + a1b2 + a2b1 = 0 ⇒ b3 = −a1 ,

�0 : a0b4 + a1b3 + a2b2 = log2 n ⇒ b4 = log2 n + a2
1 − a2 ,

�i , i < 0 :
n∑

i=0

aibn−i = 0 ⇒ bi .

Thus we arrive to Eq. (5).
One can verify that the second term of Eq. (5) is minimized when w is as in

Eq. (4). Assuming w = 5, the rate is

1− 4
log2 5

·
√

κ/� · log2 n + ((14κ log5 n − 2κ + log2 5) log5 n) · 1
�

+ O(�−3/2) .

See Sect. 5.4 for a figure showing how the rate grows as a function of �/κ for a
concrete value of n.

5.4 Concrete Analysis

If the prerequisites of the theorem are not fulfilled (e.g., n is not a power of w), we
need to use ceiling function in the computation of the communication function,
that is, we are interested in the function �com2(. . . )� := �rec2(. . . )�+�sen2(. . . )�.

Kiayias et al. [10] gave a few numerical examples of the efficiency of their
CPIR protocol. In Fig. 1, we will give a comparison with the current work; the
columns “theoretical” give the value of the function com2, while the columns
“With rounding” give the value of the function �com2�. In all cases, κ = 2048
and n = wm = 57. As we can see, due to the rounding errors present in the
protocol of [10], the current work achieves always slightly better efficiency.

On Fig. 4, we depict the rate of the �com2� of the new CPIR protocol as a
function of log2(�/κ). In particular, the rate of the protocol from the current
paper (when rounding included) is 0.917714 for � = 105κ and 0.997207κ for
� = 108κ. Computing a similar graphic for the CPIR protocol of [10] would be
quite time consuming.

If n is arbitrary (not a power of w), then a standard approach is to add
to the database a number of dummy elements so as to increase the database
size to the next power of w. This will incur similar—very small!—penalties for
the protocols of [10] and of the current paper. For example, consider the cases
κ = 2048, � = 105κ, and w = 5. If n = 57 is increased to n = 57 + 1 (the worst
case, since one has to add 57 − 1 dummy elements), the rate will decrease from
0.917714 to 0.906919.
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Fig. 4. The rate of the new CPIR protocol as a function of log2(�/κ), i.e., on logarithmic
scale, for w = 5, n = 57 and κ = 2048. The smooth (blue) line corresponds to the case
without rounding errors. The jumpy (purple) line corresponds to the case with rounding
errors; note that it also rounds up the non-private case, i.e., it uses � + �log2 n� as the
amount of useful information. This explains why the case with rounding errors usually
has a better rate than the case without (Color figure online)

Finally, the problem of optimizing the protocol for small values of � is clearly
out of scope for the current work since we try to decrease rate for large values
of �. See, e.g., Sect. 3 of [12] for a discussion of the case of small �.

6 Open Problems

A major open problem left by the current work is to construct a CPIR protocol
where the rate function grows faster than Eq. (5), or to show that this is not
possible. An impossibility proof might be possible in some restricted model.

The second open problem is to construct a rate-optimal CPIR protocol with
the better computational complexity. (See [10] for a detailed discussion about
the computational complexity.)
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