
Unilaterally-Authenticated Key Exchange

Yevgeniy Dodis1 and Dario Fiore2(B)

1 Department of Computer Science, New York University, New York, USA
dodis@cs.nyu.edu

2 IMDEA Software Institute, Madrid, Spain
dario.fiore@imdea.org

Abstract. Key Exchange (KE), which enables two parties (e.g., a client
and a server) to securely establish a common private key while com-
municating over an insecure channel, is one of the most fundamen-
tal cryptographic primitives. In this work, we address the setting of
unilaterally-authenticated key exchange (UAKE), where an unauthenti-
cated (unkeyed) client establishes a key with an authenticated (keyed)
server. This setting is highly motivated by many practical uses of KE on
the Internet, but received relatively little attention so far.

Unlike the prior work, defining UAKE by downgrading a relatively
complex definition of mutually authenticated key exchange (MAKE), our
definition follows the opposite approach of upgrading existing definitions
of public key encryption (PKE) and signatures towards UAKE. As a
result, our new definition is short and easy to understand. Nevertheless,
we show that it is equivalent to the UAKE definition of Bellare-Rogaway
(when downgraded from MAKE), and thus captures a very strong and
widely adopted security notion, while looking very similar to the sim-
ple “one-oracle” definition of traditional PKE/signature schemes. As a
benefit of our intuitive framework, we show two exactly-as-you-expect
(i.e., having no caveats so abundant in the KE literature!) UAKE pro-
tocols from (possibly interactive) signature and encryption. By plugging
various one- or two-round signature and encryption schemes, we derive
provably-secure variants of various well-known UAKE protocols (such as
a unilateral variant of SKEME with and without perfect forward secrecy,
and Shoup’s A-DHKE-1), as well as new protocols, such as the first
2-round UAKE protocol which is both (passively) forward deniable and
forward-secure.

To further clarify the intuitive connections between PKE/Signatures
and UAKE, we define and construct stronger forms of (necessarily inter-
active) PKE/Signature schemes, called confirmed encryption and con-
fidential authentication, which, respectively, allow the sender to obtain
confirmation that the (keyed) receiver output the correct message, or to
hide the content of the message being authenticated from anybody but
the participating (unkeyed) receiver. Using confirmed PKE/confidential
authentication, we obtain two concise UAKE protocols of the form: “send
confirmed encryption/confidential authentication of a random key K.”
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1 Introduction

Key exchange (KE) is one of the most fundamental cryptographic primitives.
Using a KE protocol, two parties can securely establish a common, private,
cryptographic key while communicating over an insecure channel. Although the
basic idea of KE dates back to the seminal work of Diffie and Hellman [7], a
proper formalization of this notion was proposed only much later by Bellare
and Rogaway [2]. In particular, Bellare and Rogaway considered the problem
of mutually authenticated key exchange where two parties (e.g., a client and a
server), each holding a valid long-term key pair, want to agree on a fresh common
cryptographic key, while being assured about the identity of their protocol’s part-
ner. In [2], Bellare and Rogaway proposed a model for mutually-authenticated
KE which allows to formally define security in this context, and in particular
formalizes the adversary’s capabilities in a proper way.

Building on this remarkable work, many other papers addressed KE in mul-
tiple directions, such as efficient and provably-secure realizations [15], or alter-
native security models [1,5,6]. Notably, the vast majority of papers in this area
considered only the mutually authenticated setting where both the server and the
client have long-term keys. However, it is striking to observe that many practi-
cal uses of KE protocols on the Internet work in a restricted setting where only
the server has a long-term (certified) public key. A notable example of this set-
ting is perhaps the simple access to web servers using the well known SSL/TLS
protocol. This notion of KE has been often called unilaterally-authenticated (or,
sometimes, anonymous, one-way or server-only) KE. To emphasize the distinc-
tion, in our work we will denote unilaterally-authenticated KE as UAKE, and
mutually-authenticated KE as MAKE.

In spite of the practical relevance of unilaterally-authenticated key-exchange,
we notice that most prior KE definitions targeted MAKE, and those works that
focused on UAKE (e.g., [10,11,17,21]) used definitions that were obtained by
slightly “downgrading” definitions of MAKE to the unilateral setting. The prob-
lem here is that existing definitions of MAKE are rigorous, but also pretty com-
plex and hard to digest. Therefore, when analyzing the simple notion of UAKE
by downgrading existing definitions of MAKE, one ends up with other complex
definitions.

One goal of this work is thus to address this state of affairs by taking a
different approach. Instead of considering UAKE as a downgraded version of
MAKE, we propose a new definition of UAKE obtained by slightly “upgrading”
the short and simple definitions of public key encryption and digital signatures.
Precisely, we build on the recent work of Dodis and Fiore [8] that proposes a
definitional framework for interactive message transmission protocols, and gives
new notions of interactive public key encryption (PKE) and interactive public
key message authentication (PKMA). These two notions naturally extend the
classical notions of IND-CCA encryption(resp. strongly unforgeable signatures)
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to the interactive setting. By building on this framework, we obtain a UAKE
definition which is (in our opinion) more intuitive and easier to digest.1 Never-
theless, we show that our differently-looking UAKE definition is equivalent to
the one of Bellare-Rogaway (BR) restricted to the single authenticated setting.
This shows that we are not providing a new KE notion, but simply suggesting
a different, simpler, way to explain the same notion when restricted to the uni-
lateral setting. In fact, the BR UAKE definition “downgraded-from-MAKE” is
actually noticeably simpler than the MAKE definition, but still (in our opinion)
not as intuitive as our new definition. Hence, by establishing our equivalence, we
offer a new path of teaching/understanding MAKE: (1) present our definition
of UAKE, and use it to design and prove simple UAKE protocols (see below);
(2) point out new subtleties of MAKE, making it hard (impossible?) to have a
simple “one-oracle” definition of MAKE; (3) introduce the “downgraded” BR-
framework (which has more finer-grain oracles available to the attacker) which
is equivalent to our UAKE framework; (4) extend the ”downgraded” BR frame-
work to the full setting of MAKE. We view this philosophy as a major
educational contribution of this work.

In the following, we describe our definitional framework and the remaining
results (including simple and intuitive UAKE protocols) in more detail.

1.1 Our Results

Definitional Framework. The definitional framework proposed by Dodis
and Fiore [8] consists of two parts. The first part is independent of the particular
primitive, and simply introduces the bare minimum of notions/notation to deal
with interaction. For example, they define (a) what it means to have concurrent
oracle access to an interactive party under attack; and (b) what it means to
‘act as a wire’ between two honest parties (this trivial, but unavoidable, attack
is called a ‘ping-pong’ attack). Once the notation is developed, the actual def-
initions become as short and simple as in the non-interactive setting (e.g., see
Definitions 5 and 6). So, by building on this framework, we propose a simple
notion of UAKE (cf. Definition 8) which we briefly discuss now. The attacker
A has concurrent oracle access to the honest secret key owner (the “server”),
and simultaneously tries to establish a (wlog single) session key with an honest
unauthenticated client (the “challenger”). If the challenger rejects, A ‘lost’.2 If
it accepts and the session is not a ping-pong of one of its conversations with the
server, then A ‘won’, since it ‘fooled’ the challenger without trivially forwarding
messages from the honest server. Otherwise, if A established a valid key with the

1 We stress, we are not suggesting that we can similarly simplify the more complicated
definitions of MAKE. In fact, we believe that UAKE is inherently easier than MAKE,
which is precisely why we managed to obtain our simpler definition only for UAKE.

2 Notice, since anybody can establish a key with the server, to succeed A must establish
the key with an honest client.
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challenger by a ping-pong attack, A ‘wins’ if it can distinguish a (well-defined)
‘real’ session key from a completely random key.3

Key Exchange Protocols. As we mentioned, our unilaterally-authenticated
key-exchange (UAKE) definition can be seen as a natural extension of the inter-
active PKE/PKMA definitions in [8]. As a result, we show two simple and
very natural constructions of UAKE protocols: from any possibly interactive
PKE scheme and a PRF, depicted in Fig. 2, and from any possibly interactive
PKMA scheme and CPA-secure key encapsulation mechanism (KEM), depicted
in Fig. 3. By plugging various non-interactive or 2-round PKE/PKMA schemes
(and KEMs, such as the classical Diffie-Hellman KE), we get a variety of simple
and natural UAKE protocols. For example, we re-derive the A-DHKE-1 protocol
from [21], the unilateral version of the SKEME protocol [14], and we get (to the
best of our knowledge) the first 2-round UAKE, depicted in Fig. 4, which is both
forward-deniable and forward-secure.

Hence, the main contribution of our work is not to design new UAKE proto-
cols (which we still do due to the generality of our results!), but rather to have
a simple and intuitive UAKE framework where everything works as expected,
without any caveats (so abundant in the traditional KE literature). Namely,
the fact that immediate corollaries of our work easily establish well known and
widely used UAKE protocols is a big feature of our approach. Unlike prior work,
however, our protocols: (1) work with interactive PKE/PKMA; (2) are directly
analyzed in the unilateral setting using our simple definition, instead of being
“downgraded” from more complex MAKE protocols.

Confirmed PKE and Confidential PKMA. To provide a further smoother
transition from basic notions of PKE/PKMA towards KE, another contribution
of our work is to define two strengthenings of PKE/PKMA which inherently
require interaction. We call these notions confirmed encryption and confidential
authentication, but for lack of space we present them in the full version of this
work. In brief, confirmed encryption is an extension of the interactive encryption
notion of Dodis and Fiore [8] in which the (unkeyed) sender gets a confirma-
tion that the (keyed) receiver obtained the correct encrypted message, and thus
accepts/rejects accordingly. Confidential authentication, instead, adds a privacy
property to PKMA protocols [8] in such a way that no information about the
message is leaked to adversaries controlling the communication channel (and,
yet, the unkeyed honest receiver gets the message). Clearly, both notions require
interaction, and we show both can be realized quite naturally with (optimal)
two rounds of interaction. Moreover, these two notions provide two modular and
“dual” ways to build secure UAKE protocols. Namely, we further abstract our
UAKE constructions in Figs. 2 and 3 by using the notions of confirmed PKE and
confidential PKMA, by showing that “confirmed encryption of random K” and
“confidential authentication of random K” both yield secure UAKE protocols.

3 Notice, for elegance sake our basic definition does not demand advanced properties,
such as forward security or deniability, but (as we show) can be easily extended to
do so. Indeed, our goal was not to get the most ‘advanced’ KE definition, but rather
to get a strong and useful definition which is short, intuitive, and easy to digest.
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Summary. Although we do not claim a special novelty in showing a connection
between PKE/signatures and KE, we believe that the novelty of our contribution
is to formally state such connection in a general and intuitive way. In particular,
our work shows a path from traditional non-interactive PKE/PKMA schemes, to
interactive PKE/PKMA, to (interactive) confirmed PKE/confidential PKMA,
to UAKE, to MAKE (where the latter two steps use the equivalence of our sim-
ple “one-oracle” definition with the downgraded Bellare-Rogaway definition).
Given that unilaterally-authenticated key-exchange, aside from independent
interest, already introduces many of the subtleties of mutually-authenticated
key-exchange (MAKE), we hope our work can therefore simplify the introduc-
tion of MAKE to students. Indeed, we believe all our results can be easily taught
in an undergraduate cryptography course.

1.2 Related Work

Following the work of Bellare and Rogaway [2], several works proposed different
security definitions for (mutually-authenticated) KE, e.g., [1,3–5,18]. Notably,
some of these works focused on achieving secure composition properties [6,21].
Unilaterally-Authenticated Key-Exchange has been previously considered by
Shoup [21] (who used the term “anonymous key-exchange”), Goldberg et al. [11]
(in the context of Tor), Fiore et al. [10] (in the identity-based setting), and by
Jager et al. [12] and Krawczyk et al. [17] (in the context of TLS). All these
works arrived at unilaterally-authenticated key-exchange by following essen-
tially the same approach: they started from (some standard definitions of)
mutually-authenticated KE, and then they relaxed this notion by introducing
one “dummy” user which can run the protocol without any secret (so, the unau-
thenticated party will run the protocol on behalf of such user), and by slightly
changing the party-corruption condition.

Our authentication- (but not encryption-) based UAKE protocols also have
conceptual similarities with the authenticator-based design of KE protocols by
Bellare et al. [1]. Namely, although [1] concentrate on the mutually-authenticated
setting, our UAKE of Fig. 3 is similar to what can be obtained by applying a
(unilateral) authenticator to an unauthenticated protocol, such as a one-time
KEM. As explained in Sect. 4, however, the derived protocols are not exactly the
same. This is because there are noticeable differences between authenticators and
interactive PKMA schemes. For example, authenticators already require secu-
rity against replay attack (and, thus, standard signature schemes by themselves
are not good authenticators), and also use a very different real/ideal definition
than our simple game-based definition of PKMA. In summary, while the con-
crete protocols obtained are similar (but not identical), the two works use very
different definitions and construction paths to arrive at these similar protocols.

In a concurrent and independent work, Maurer, Tackmann and Coretti [20]
considers the problem of providing new definitions of unilateral KE, and they
do so by building on the constructive cryptography paradigm of Maurer and
Renner [19]. Using this approach, they proposed a protocol which is based only
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on a CPA-secure KEM and an unforgeable digital signature, and is very similar
to one of our UAKE protocols.

Finally, we note that a recent paper by Krawczyk [16] considers unilaterally
authenticated key exchange and studies the question of building compilers for
transforming UAKE protocols into MAKE ones.

2 Background and Definitions

In our paper we use relatively standard notation. Before giving the definitions
of message transmission protocols and unilateral key exchange, we discuss two
aspects of our definitions.

Session IDs. Throughout this paper, we consider various protocols (e.g., mes-
sage transmission or key exchange) that may be run concurrently many times
between the same two parties. In order to distinguish one execution of a pro-
tocol from another, one typically uses session identifiers, denoted sid, of which
we can find two main uses in the literature. The first one is to consider purely
“administrative” session identifiers, that are used by a user running multiple
session to differentiate between them, i.e., to associate what session a message is
going to or coming from. This means that the honest parties need some concrete
mechanism to ensure the uniqueness of sid’s, when honestly running multiple
concurrent sessions. E.g., administrative sid can be a simple counter or any
other nonce (perhaps together with any information necessary for communica-
tion, such as IP addresses or some mutually agreed upon timing information), or
could be jointly selected by the parties, by each party providing some part of the
sid. However, rather than force some particular choice which will complicate the
notation, while simultaneously getting the strongest possible security definition,
in our definitions we let the adversary completely control all the administrative
sid’s (as the adversary anyway controls all the protocol scheduling). In order not
to clutter the notation with this trivial lower level detail, in our work we will
ignore such administrative sid’s from our notation, but instead implicitly model
them as stated above.

The second use of session identifiers in the literature is more technical as
sid’s are used in security definitions in order to define “benign” adversaries that
simply act as a wire in the network. With respect to the use of sid’s in security
definitions we see three main approaches in the literature. The modern KE app-
roach lets parties define sid’s as part of the protocol. While this is more relaxed
and allows for more protocols to be proven secure, it also somewhat clutters the
notation as the choice of the sid is now part of the protocol specification. The
second approach is to let sid be the transcript of a protocol execution, which
simplifies the notation and implies the previous approach. In both the first and
second approach, benign adversaries are those that cause two sessions have equal
sid’s. The third approach instead does not use explicit sid’s, and considers benign
adversaries those that cause two sessions have same transcript (seen as a “timed
object”). All the approaches have pros and cons. For example, both the second
and the third approach rule out some good protocols, but save on syntax and
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notation. Moreover, the third approach is the strongest one for security: it leaves
to protocol implementers the freedom of picking the most convenient “adminis-
trative” sid selection mechanism, without worrying about security, since in this
model adversaries can arbitrarily control the administrative sid’s. For these rea-
sons, in this work we follow the third approach, which also gives us the possibility
of making our definitions more in line with those of PKE/signatures, where there
are no explicit session identifiers.

Party Identities. Unlike the traditional setting of encryption and authenti-
cation, in the KE literature parties usually have external (party) identities in
addition to their public/secret keys. This allows the same party to (claim to)
have multiple keys, or, conversely, the same key for multiple identities. While
generality is quite useful in the mutually authenticated setting, and could be eas-
ily added to all our definitions and results in the unilateral setting, we decided
to avoid this extra layer of notation. Instead, we implicitly set the identity of
the party to be its public key (in case of the server), or null (in case of the
client). Aside from simpler notation, this allowed us to make our definitions
look very similar to traditional PKE/signatures, which was one of our goals.
We remark that this is a trivial and inessential choice which largely follows a
historic tradition for PKE/PKMA. Indeed, having party identities is equally
meaningful for traditional PKE/PKMA schemes, but is omitted from the syn-
tax, because it can always be trivially achieved by appending the identities of
the sender and/or recipient to the message. We stress, we do not assume any
key registration authority who checks knowledge of secret keys. In fact, in our
definition the attacker pretends to be the owner of the victim’s secret key (while
having oracle access to the victim), much like in PKE/PKMA the attacker tries
to “impersonate” the honest party (signer/decryptor) with only oracle access to
this party.

2.1 Message Transmission Protocols

In this section, we recall the definitional framework of message transmission pro-
tocols as defined in [8], along with suitable security definitions for confidentiality
(called iCCA security) and authenticity (called iCMA security).

A message transmission protocol involves two parties, a sender S and a
receiver R, such that the goal of S is to send a message m to R while preserving
certain security properties on m. Formally, a message transmission protocol Π
consists of algorithms (Setup,S,R) defined as follows:

Setup(1λ): on input the security parameter λ, the setup algorithm generates
a pair of keys (sendk, recvk). In particular, these keys contain an implicit
description of the message space M.

S(sendk,m): is a possibly interactive Turing machine that is run with the sender
key sendk and a message m ∈ M as private inputs.

R(recvk): is a possibly interactive Turing machine that takes as private input
the receiver key recvk, and whose output is a message m ∈ M or an error
symbol ⊥.
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We say that Π is an n-round protocol if the number of messages exchanged
between S and R during a run of the protocol is n. If Π is 1-round, then we
say that Π is non-interactive. Since the sender has no output, it is assumed
without loss of generality that the S always speaks last. This means that in an
n-round protocol, R (resp. S) speaks first if n is even (resp. odd). For compact
notation, 〈S(sendk,m),R(recvk)〉 = m′ denotes the process of running S and R
on inputs (sendk,m) and recvk respectively, and assigning R’s output to m′. In
our notation, we will use m ∈ M for messages (aka plaintexts), and capital M
for protocol messages.

Definition 1 (Correctness). A message transmission protocol Π = (Setup,

S,R) is correct if for all honestly generated keys (sendk, recvk) $← Setup(1λ), and
all messages m ∈ M, we have that 〈S(sendk,m),R(recvk)〉 = m holds with all
but negligible probability.

Defining Security: Man-in-the-Middle Adversaries. Here we recall the
formalism needed to define the security of message transmission protocols. The
basic idea is that an adversary with full control of the communication channel
has to violate a given security property (say confidentiality or authenticity) in
a run of the protocol that is called the challenge session. Formally, this session
is a protocol execution 〈S(sendk,m),AR(recvk)〉 or 〈AS(sendk,·),R(recvk)〉 where the
adversary runs with an honest party (S or R). AP denotes that the adversary
has oracle access to multiple honest copies of party P (where P = R or P = S),
i.e., A can start as many copies of P as it wishes, and it can run the message
transmission protocol with each of these copies. In order to differentiate between
several copies of P, formally A calls the oracle providing a session identifier
sid. However, as mentioned earlier, to keep notation simple we do not write sid
explicitly. The model assumes that whenever A sends a message to the oracle
P, then A always obtains P’s output. In particular, in the case of the receiver
oracle, when A sends the last protocol message to R, A obtains the (private)
output of the receiver, i.e., a message m or ⊥.

Due to its power, the adversary might entirely replay the challenge session by
using its oracle. Since this can constitute a trivial attack to the protocol, in what
follows we recall the formalism of [8] to capture replay attacks. The approach is
similar to the one introduced by Bellare and Rogaway [2] in the context of key
exchange, based on the idea of “matching conversations”.

Let t be a global counter which is progressively incremented every time a
party (including the adversary) sends a message. Every message sent by a party
(S, R or A) is timestamped with the current time t. Using this notion of time,4

the transcript of a protocol session is defined as follows:

Definition 2 (Protocol Transcript). The transcript of a protocol session
between two parties is the timestamped sequence of messages (including both
sent and received messages) viewed by a party during a run of the message

4 We stress that timestamps are only used in the security definition; in particular they
are not used by real-world parties.
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transmission protocol Π. If Π is n-round, then a transcript T is of the form
T = 〈(M1, t1), . . . , (Mn, tn)〉, where M1, . . . ,Mn are the exchanged messages,
and t1, . . . , tn are the respective timestamps.

In a protocol run 〈S(sendk,m),AR(recvk)〉 (resp. 〈AS(sendk,·),R(recvk)〉) we
denote by T ∗ the transcript of the challenge session between S and A (resp.
A and R), whereas T1, . . . , TQ are the Q transcripts of the sessions established
by A with R (resp. S) via the oracle.

Definition 3 (Matching Transcripts). Let T = 〈(M1, t1), . . . , (Mn, tn)〉 and
T ∗ = 〈(M∗

1 , t∗1), . . . , (M
∗
n, t∗n)〉 be two protocol transcripts. We say that T matches

T ∗ (T ⊆ T ∗, for short) if ∀i = 1, . . . , n, Mi = M∗
i and the two timestamp

sequences are “alternating”, i.e., t1 < t∗1 < t∗2 < t2 < t3 < · · · < tn − 1 < tn < t∗n
if R speaks first, or t∗1 < t1 < t2 < t∗2 < t∗3 < · · · < tn − 1 < tn < t∗n if S speaks
first. Note that the notion of match is not commutative.

Using the above definitions, we recall the notion of ping-pong adversary:

Definition 4 (Ping-pong Adversary). Consider a run of the protocol Π
involving A and an honest party (it can be either 〈S(sendk,m),AR(recvk)〉 or
〈AS(sendk,·),R(recvk)〉), and let T ∗ be the transcript of the challenge session, and
T1, . . . , TQ be the transcripts of all the oracle sessions established by A. Then we
say that A is a ping-pong adversary if there is a transcript T ∈ {T1, . . . , TQ}
such that T matches T ∗, i.e., T ⊆ T ∗.

Now that we have introduced all the necessary definitions, we recall the
two notions of interactive chosen-ciphertext PKE (iCCA) and interactive chosen-
message secure PKMA (iCMA) that capture, respectively, confidentiality and
authenticity of the messages sent by S to R. Let Π = (Setup,S,R) be a message
transmission protocol, and A be an adversary. The two notions are defined as
follows by considering the experiments in Fig. 1.

Experiment ExpiCCA
Π,A (λ)

b
$← {0, 1} ; (sendk, recvk)

$← Setup(1λ)

(m0, m1)←AR(recvk)(sendk)

b′←〈S(sendk, mb), AR(recvk)(sendk)〉
If A is “ping-pong”,

then output b̃
$← {0, 1}

Else if b′ = b and A is not “ping-pong”,
then output 1

Else output 0.

Experiment ExpiCMA
Π,A (λ)

(sendk, recvk)
$← Setup(1λ)

m∗←〈AS(sendk,·)(recvk), R(recvk)〉
If m∗ �= ⊥ and A is not “ping-pong”,
then output 1

Else output 0.

Fig. 1. Security experiments of iCCAand iCMAsecurity.

Definition 5 (iCCA security). For any λ ∈ N, we define the advantage of an
adversary A in breaking iCCA security of a message transmission protocol Π as
AdviCCA

Π,A (λ) = Pr[ExpiCCA
Π,A (λ) = 1] − 1

2 , and we say that Π is iCCA-secure if for
any PPT A, AdviCCA

Π,A (λ) is negligible.
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Note that for 1-round protocols, the above notion is the same as the classical
IND-CCA security.

Definition 6 (iCMA security). For any λ ∈ N, the advantage of A in break-
ing the iCMA security of a message transmission protocol Π is AdviCMA

Π,A (λ) =
Pr[ExpiCMA

Π,A (λ) = 1], and we say that Π is iCMA-secure if for any PPT A,
AdviCMA

Π,A (λ) is negligible.

Note that for 1-round protocols, the above notion is the same as the notion of
strong unforgeability for digital signatures.

3 Unilaterally-Authenticated Key-Exchange

In this section we build on the notions of iCCA/iCMA secure message transmis-
sion protocols recalled in the previous section in order to obtain a smoother and
clean transition from encryption/authentication towards key exchange. In par-
ticular, in this work we focus on unilaterally-authenticated key-exchange (UAKE,
for short). UAKE is a weaker form of mutually-authenticated key-exchange in
which only one of the two protocol parties is authenticated.

Following the definitional framework of message transmission protocols [8],
we define UAKE as a protocol between two parties—in this case, an un-keyed
user U and a keyed (aka authenticated) user T—so that, at the end of a successful
protocol run, both parties (privately) output a common session key.

Formally, a UAKE protocol Π consists of algorithms (KESetup,U,T) working
as follows:

KESetup(1λ): on input the security parameter λ, the setup algorithm generates
a pair of keys (uk, tk). Implicitly, it also defines a session key space K.

U(uk): is a possibly interactive algorithm that takes as input the public key uk
of the authenticated user, and outputs a session key or a symbol ⊥.

T(tk): is a possibly interactive algorithm that takes as input the private key tk,
and outputs a session key K or an error symbol ⊥.

In our security definitions we explicitly include the property that U terminates
correctly (i.e., no ⊥ output) only if U gets confirmation that T can terminate
correctly. For this reason, we assume without loss of generality that T always
speaks last. For compact notation, we denote with 〈U(uk),T(tk)〉 = (KU,KT) a
run of the protocol in which U and T output session keys KU and KT respectively.

Definition 7 (Correctness). An unilaterally-authenticated key-exchange pro-
tocol Π = (KESetup,U,T) is correct if for all honestly generated key pairs (uk, tk)
$← KESetup(1λ), and all session keys 〈U(uk),T(tk)〉 = (KU,KT), we have that,
when KU,KT 	= ⊥, KU = KT holds with all but negligible probability.

Security. For UAKE protocols we aim at formalizing two main security proper-
ties: authenticity and confidentiality. Intuitively, authenticity says that the only
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way for an adversary to make the un-keyed party terminate correctly (no ⊥ out-
put) is to be ping-pong. Confidentiality aims to capture that, once the un-keyed
party U accepted, then the adversary cannot learn any information about the
session key (unless it is ping-pong up to learning the key). We formalize these
two properties in a single experiment in which A runs a challenge session with
the un-keyed party U while having access to the keyed party T. As for the case
for message transmission protocols, the adversary formally refers to the keyed
party T oracle by specifying a session id sid. For simplicity of notation, however
we do not write explicitly these session identifiers.

Since in UAKE T speaks last, we allow the adversary to make one additional
query to T after T generated the last message: in this case T reveals its private
output KT. If A makes such an additional query in a ping-pong session then we
say that A is “full-ping-pong”.

Although the resulting experiment looks a bit more complex compared to
the ones of iCCA and iCMA security, we stress that it can be seen as a natural
combination of these two security notions. At a high level, the experiment con-
sists in first running (K0, ·)←〈U(uk),AT(tk)(uk)〉 and then analyzing U’s output
K0 (· means that we do not care about A’s output at this stage). If K0 	= ⊥
and A is not ping-pong, then A wins (it broke authenticity). Otherwise, we give
to A a real-or-random key Kb and A wins if it can tell these two cases apart
without, of course, pushing the ping-pong attack up to getting K0 revealed from
the oracle T. Notice that when K0 = ⊥ (i.e., the honest sender did not accept
in the challenge session), we also set K1 = ⊥. This is meant to capture that
if U does not accept, then there is no common session key established by the
two parties (essentially, no secure channel will be established). In this case the
adversary will have no better chances of winning the game than guessing b.

Experiment ExpUAKE−Sec
Π,A (λ)

(uk, tk) $← KESetup(1λ); b
$← {0, 1}

(K0, ·)←〈U(uk),AT(tk)(uk)〉
If K0 = ⊥, then K1 = ⊥
Else if K0 	= ⊥ and A is not “ping-pong”, then output 1
Else K1

$← K
b′←AT(tk)(Kb)
If A is “full-ping-pong”, then output b̃

$← {0, 1}
Else if b′ = b and A is not “full-ping-pong”, then output 1
Else output 0.

Definition 8 (Security of UAKE). Wedefine the advantage of an adversary A
in breaking the security of Π asAdvUAKE−Sec

Π,A (λ) =
∣
∣
∣Pr[ExpUAKE−Sec

Π,A (λ) = 1] − 1
2

∣
∣
∣,

and we say that a UAKE protocol Π is secure if for any PPT A, AdvUAKE−Sec
Π,A (λ)

is negligible.

Multi-user Extension of Our Notion. While we defined unilaterally-
authenticated key-exchange in the single-user setting, we stress that the defi-
nition easily extends to the multi-user setting. The reason is that in our notion
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there is only one keyed user, T. So, when considering the multi-user setting
with keyed users T1, . . . ,Tn, we can assume that an adversary attacking a given
Tj could simulate the keys of all remaining users Ti 	= Tj . In contrast, such
an extension is not equally straightforward in MAKE, where, for example, the
adversary could choose arbitrary keys for one of the two parties in the chal-
lenge session. We also refer the interested reader to [17] for a discussion on the
multi-user extension of UAKE.

Single-Challenge vs. Multiple Challenges. Similarly to CCA-secure
encryption and other privacy primitives, our attacker has only a single challenge
session. Using a standard hybrid argument, this is asymptotically equivalent to
the multi-challenge extension of our notion (with all challenge sessions sharing
the same challenge bit b). We stress, however, that single-challenge does not
mean single oracle access to T. Indeed, the attacker AT can start arbitrarily
many interleaved sessions with the keyed user T, both before and after receiv-
ing the (single) challenge Kb. In particular, any UAKE protocol where one can
recover the secret key tk given (multiple) oracle access to T will never be secure
according to our definition, as then the attacker will trivially win the (single)
challenge session by simulating honest T.

Relation with Existing Definitions. As we mentioned earlier in this
section, the notion of UAKE has been considered in prior work with different
definitions. Notably, two recent works [12,13,17] use a definition (Server only
Authenticated and Confidential Channel Establishment – SACCE) which for-
mally captures whether a party accepts or not in a protocol session, and requires
that the adversary A should not let the party accept if A does not correctly relay
messages. If we compare our security definition of UAKE given above and the
SACCE notion, we then observe the following main facts. (i) Our notion of ping-
pong is stronger than the notion of matching conversations used in SACCE in
that ping-pong takes into account the timing of the messages included in the
transcripts. (ii) While UAKE and SACCE are very similar w.r.t. capturing the
authenticity property, they instead differ w.r.t. confidentiality. In particular, our
notion aims to capture indistinguishability of the keys, whereas SACCE aims to
capture the security of the channel built by using the established session key.
As observed in [12], the latter security notion is weaker than mere session key
indistinguishability, and might thus be realized from weaker assumptions.

Finally, we formally consider the relation between our security notion of
UAKE and the security notion obtained by downgrading the Bellare-Rogaway
[2] definition for mutually-authenticated key exchange to the case of a single
authenticated party. Although the two definitions use a slightly different formal-
ism, below we show that the notions are essentially the same. The interested
reader can see the full version of this work for the Bellare-Rogaway security
definition.

The motivation of proving the equivalence to the BR model is to show that
our notion does not weaken existing, well studied notions, and can in fact be
used in place of them. Indeed, we believe our notion is shorter and more intu-
itive to work with, as we illustrate in this work. It is worth noting that this
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is not surprising. Overall, the one-way authenticated setting is simpler than
the mutually-authenticated one as there are fewer attacks to be modeled. For
example, in UAKE the security definition can involve only one long-term key,
and some advanced security properties such as key-compromise impersonation
no longer apply to the unilateral setting. In other words, this equivalence gives
the opportunity of modeling UAKE using our definition, and perhaps using the
equivalence to BR as a transition towards the more complex MAKE definition.

Theorem 1. Π is a secure UAKE protocol if and only if Π is secure in the
(unilateral version of) Bellare-Rogaway model.

For lack of space the proof appears in the full version.

Uniqueness of Matching Transcript. It is interesting to note that our
security definition implies that for any secure protocol there can be at most one
matching transcript. This for instance means that it is hard for an adversary to
force two distinct protocol sessions (in which one of the two parties is honest) to
have the same session key.5 Bellare and Rogaway prove in [2] that such property
is achieved by any protocol secure according to their (mutually-authenticated)
definition. By the equivalence of our UAKE notion to BR security one might
be tempted to conclude that this uniqueness property holds for UAKE-secure
protocols as well. This is only partially true as the proof in [2] is done for the
mutually-authenticated case, and in particular one case of the proof uses the fact
mutually-authenticated (BR-secure) protocols require at least 3 rounds. Below
we give a separate proof of this statement for UAKE protocols (the proof appears
in the full version)

Proposition 1. Let MultipleMatch be the event that in a run of ExpUAKE−Sec
Π,A (λ)

A is ping-pong and there are at least two sessions i and j, with transcripts Ti

and Tj, such that both Ti ⊆ T ∗ and Tj ⊆ T ∗. Then if Π is a secure UAKE
protocol, Pr[MultipleMatch] is negligible.

4 Constructions of UAKE Protocols Based on iCCA
and iCMA Security

In this section we show two realizations of unilaterally-authenticated key-
exchange based on message transmission protocols. The constructions are sim-
ple and they essentially show how to obtain a clean and smooth transition
from encryption/authentication towards key exchange. The first construction
(described in Fig. 2) uses an iCCA-secure protocol Π′ and a pseudorandom func-
tion. Our second construction of UAKE (described in Fig. 3) uses an IND-CPA-
secure key encapsulation mechanism and an iCMA-secure protocol Π′.

The security of these protocols is proven via the following theorems (whose
proofs appear in the full version):

5 We stress that here we mean to force two distinct oracle sessions to have the same
session key.
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Theorem 2. If Π′ is iCCA-secure, and F is a pseudo-random function, then the
protocol Π in Fig. 2 is a secure UAKE.

Theorem 3. If Π′ is iCMA-secure, and E is an IND-CPA-secure KEM, then the
protocol Π in Fig. 3 is a secure UAKE.

On the connection to authenticators [1]. We note that, due to the simi-
larity between iCMA-secure message transmission and the notion of authentica-
tors from [1], our design approach of Fig. 3 is similar to what can be obtained
by applying a (unilateral) authenticator to an unauthenticated protocol, such as
a one-time KEM. However, the derived protocols are not exactly the same. For
example, to obtain our same protocols when using the signature-based authen-
ticator one should slightly deviate from the approach of [1] and consider ek′ as
the nonce of the authenticator.

More conceptually, while the concrete protocols obtained are similar (but not
identical), the two works use very different definitions and construction paths
to arrive at these similar protocols. Our interactive PKMA notion is game-
based and essentially extends the simple notion of signature schemes, whereas
authenticators follow the real/ideal paradigm and also require built-in protection
against replay attacks. For instance, a regular signature scheme is a 1-round
iCMA secure message transmission, whereas it can be considered an authenticator
only with certain restrictions, (as per Remark 1 in [1]).

Instantiations of our protocols. In Sect. 5.1, we discuss four efficient
UAKE protocols resulting from instantiating the generic protocols in Figs. 2
and 3 with specific 1- or 2-round iCCA- and iCMA-secure schemes.

About freshness of session keys. It is worth noting that both above pro-
tocols have the property that the keyed party T generates the session key in a
“fresh” way (by sampling a fresh random s in the protocol of Fig. 2, or by run-
ning Encap with fresh coins in the protocol of Fig. 3), even if the first part of the
protocol is replayed. Such a freshness property is necessary for the security of
the protocols in our model. For instance, one might consider a simpler version of

Setting: a key pair (sendk′, recvk′) for an iCCA-secure protocol Π′ is gener-
ated. F : {0, 1}λ × {0, 1}λ → {0, 1}2λ is a PRF.

U(sendk′) T(recvk′)

r
$← {0, 1}λ U sends r to T using Π′

Get r′

If r′ �= ⊥ : s
$← {0, 1}λ

KU|c ←Fr(s) c′, s KT|c′←Fr′(s)
If c′ = c return KU

Else return ⊥ return KT

Fig. 2. UAKE from iCCA-secure encryption.
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Setting: a key pair (sendk′, recvk′) for an iCMA-secure protocol Π′ is
generated. E = (KG, Encap, Decap) is a public-key KEM.

U(recvk′) T(sendk′)

(ek′, dk′) $← KG(1λ) ek′
(c, K)

$← Encap(ek′)

Get (ek′′|c′) T sends (ek′|c) to U using Π′

If ((ek′′|c′) �= ⊥ and return K
ek′′ = ek′)

return Decap(dk′, c′)

Fig. 3. UAKE from iCMA-secure PKMA and IND-CPA-secure KEM.

the protocol of Fig. 2 in which T generates KT|c′←G(r) using a PRG G. Such a
protocol however would not be secure because of the following attack. Consider
an instantiation of Π′ with a non-interactive CCA encryption scheme. First the
adversary plays a ping-pong attack between the challenge session and an oracle
session with T: it obtains a real-or-random key Kb. In the second part of the
experiment, the adversary starts a new oracle session with T by sending to it
the first message of the challenge session. Finally, the adversary makes a last
query to T in this second session in order to obtain the corresponding session
key. Now, observe that the session key will be the same key as the real key K0 of
the challenge session, and thus the adversary can trivially use it to test whether
Kb = K0. To see the legitimacy of the attack note that the second oracle ses-
sion began after the challenge session ended, and thus it does not constitute a
full ping-pong. In contrast this attack does not apply to our protocol of Fig. 2:
there, even if one replays the first messages, every new session will sample a fresh
session key with overwhelming probability.

5 Advanced Security Properties and Concrete Protocols

In this section, we discuss advanced properties of forward security and deniability
for unilaterally-authenticated key-exchange, and then we discuss four possible
concrete instantiations of our protocols given in Sect. 4. Informally, forward secu-
rity guarantees that once a session is completed, the session key remains secure
even if the adversary learns the long-term secret keys (in the case of UAKE, only
the authenticated party T has a long-term secret key). Deniability is considered
with respect to the keyed party T. Informally, deniability says that the unkeyed
party U cannot use the transcript of its conversation with T to convince third
parties that T took part in that session. For lack of space, more formal definitions
appear in the full version.

5.1 Concrete Protocol Instantiations

Here we discuss four efficient UAKE protocols resulting from instantiating
the generic protocols in Figs. 2 and 3 with specific 1- or 2-round iCCA- and
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iCMA-secure schemes. Before proceeding to the analysis, let us briefly recall the
instantiations of the iCCA- and iCMA-secure schemes that we consider. First,
note that any IND-CCA encryption scheme is a 1-round iCCA protocol, and sim-
ilarly any strongly unforgeable signature scheme is a 1-round iCMA protocol.
Second, Dodis and Fiore [8] show a 2-round iCCA-secure protocol based solely
on IND-CPA security and a 2-round iCMA-secure protocol based on IND-CCA
encryption and a MAC. Briefly, the iCCA protocol works as follows: the receiver
chooses a “fresh” public key ek (of a 1-bounded IND-CCA encryption) and sends
this key, signed, to the sender; the sender encrypts the message using ek. The
iCMA protocol instead consists in the receiver sending a random MAC key r to
the sender using the IND-CCA encryption, while the sender sends the message
authenticated using r.

If we plug these concrete schemes in our UAKE protocols of Figs. 2 and 3,
we obtain the following four UAKE instantiations that we analyze with a special
focus on the properties of forward security vs. deniability:

1. Protocol of Fig. 2 where the iCCA protocol Π′ is a non-interactive IND-CCA
scheme: we obtain a 2-round UAKE based on IND-CCA that is (forward)
passive deniable (a perfectly indistinguishable transcript for an honest U is
easily simulatable), but it is not forwardœsecure (recovering the long-term
key recvk′ trivially allows to recover r). This protocol recover the unilateral
version of SKEME [14] (without PFS).

2. Protocol of Fig. 2 where the iCCA protocol Π′ is the 2-round protocol in [8]
based on IND-CPA security: we obtain a 3-round UAKE based on IND-CPA
security that is not deniable (as T signs the first message with a digital signa-
ture) but it is passive forward secure (since so is the 2-round iCCA protocol,
as shown in [8]).

3. Protocol of Fig. 3 where the iCMA protocol Π′ is a digital signature: we obtain
a 2-round UAKE based on IND-CPA security that is clearly not deniable (as
T signs c) but it can be shown passive forward-secure (as dk′ is a short-
term key which is deleted once the session is over). It is worth noting that
when implementing the KEM with standard DH key-exchange (ek′ = gx, c =
gy,K = gxy) we essentially recover protocol A-DHKE-1 in [21]. A very similar
protocol based on IND-CPA KEM is also recovered in the recent, independent,
work of Maurer et al. [20].

4. Protocol of Fig. 3 where the iCMA protocol Π′ is the 2-round PKMA pro-
posed in [8] (called Πmac) which is based on IND-CCA encryption and MACs:
we obtain a 2-round UAKE (as we can piggy-back the first round of Πmac

on the first round of the UAKE). Somewhat interestingly, this instantiation
achieves the best possible properties for a 2-round protocol: it enjoys both pas-
sive forward deniability (as Πmac is passive forward-deniable) and passive
forward security (since dk′ is short-term, as in the previous case). The result-
ing protocol is depicted in Fig. 4, and we note that it essentially recovers the
unilateral version of SKEME [14]. Moreover, by using the MAC of [9] and
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Setting: (ek, dk) is a key pair for an IND-CCA-secure PKE E = (KG, Enc,
Dec). E ′ = (KG′, Encap, Decap) is an IND-CPA-secure KEM, (Tag, Ver) a
strongly-unforgeable MAC.

U(sid, ek) T(sid, dk)

(ek′, dk′) $← KG′(1λ) ek′, c = Enc(ek, r) r′←Dec(dk, c)

r
$← {0, 1}λ

If Ver(r, ek′|c′, σ) = 1 c′, σ = Tag(r′, ek′|c′) (c′, K)
$← Encap(ek′)

return Decap(dk′, c′) return K

Fig. 4. A 2-round forward-deniable and forward-secure UAKE.

Setting: a key pair (ek, dk) for a labeled IND-CCA-secure PKE E = (KG,
Enc, Dec) is generated. E ′ = (KG′, Encap, Decap) is an IND-CPA-secure KEM.

U(ek) T(dk)

(ek′, dk′) $← KG′(1λ)

(ekM , dkM )
$← KG(1λ) ek′, ekM , c = EncekM (ek, r) r′←DecekM (dk, c)

r
$← {0, 1}λ

If Dec(ek
′|c′)(dkM , σ) = r c′, σ = Enc(ek

′|c′)(ekM , r′) (c′, K)
$← Encap(ek′)

return Decap(dk′, c′) return K

Fig. 5. A 2-round forward-deniable and forward-secure UAKE based on CCA
encryption.

by applying some optimizations6, we obtain a UAKE protocol based only
on CCA security. While for practical efficiency one may use faster MACs,
we show this protocol based only on CCA security mostly for elegance. The
resulting protocol is depicted in Fig. 5, where we use a “labeled” CCA-secure
PKE: EncL(ek,m) denotes a run of the encryption algorithm to encrypt a
message m w.r.t. label L; analogously DecL(dk, c) denotes decryption w.r.t.
label L. We recall that decryption of a ciphertext c w.r.t. L succeeds only if
c was created with the same label L.
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