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Abstract. Blind signatures are at the core of e-cash systems and have
numerous other applications. In this work we construct efficient blind and
partially blind signature schemes over bilinear groups in the standard
model. Our schemes yield short signatures consisting of only a couple of
elements from the shorter source group and have very short communica-
tion overhead consisting of 1 group element on the user side and 3 group
elements on the signer side. At 80-bit security, our schemes yield signa-
tures consisting of only 40 bytes which is 67% shorter than the most effi-
cient existing scheme with the same security in the standard model. Ver-
ification in our schemes requires only a couple of pairings. Our schemes
compare favorably in every efficiency measure to all existing counterparts
offering the same security in the standard model. In fact, the efficiency
of our signing protocol as well as the signature size compare favorably
even to many existing schemes in the random oracle model. For instance,
our signatures are shorter than those of Brands’ scheme which is at the
heart of the U-Prove anonymous credential system used in practice. The
unforgeability of our schemes is based on new intractability assumptions
of a “one-more” type which we show are intractable in the generic group
model, whereas their blindness holds w.r.t. malicious signing keys in the
information-theoretic sense. We also give variants of our schemes for a
vector of messages.

Keywords: Blind signatures · Round-optimal · Partial blindness
E-Cash

1 Introduction

Blind signatures introduced by Chaum [23] are an interactive protocol that allows
a user to obtain signatures on messages of her choice without revealing the
messages to the signer. Blindness in these schemes ensures that it is infeasible
for a malicious signer to link the final signatures to their corresponding sign-
ing requests. Blindness can be either proven in the honest-key model where the
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key pair is produced by the challenger and then revealed to the adversary or in
the stronger malicious-key model [1,49] where the key pair is chosen by the adver-
sary herself and she is not required to reveal the signing key to the challenger. On
the other hand, unforgeability ensures that it is infeasible for a malicious user to
obtain more valid signatures on distinct messages than the number of completed
interactions with the honest signer. Such a primitive is at the core of e-cash sys-
tems [23] where the bank acts as the signer; the privacy requirement comes from
the non-traceability requirement of cash. It also finds applications in e-voting [34],
anonymous credentials [8] and direct anonymous attestation [12,20]. The primi-
tive is very relevant to practice, besides its prominent role in realizing e-cash sys-
tems, blind signatures are the backbone of some anonymous credential systems
deployed in practice, which include the U-Prove system [19].

Measures of importance when designing such schemes include their round
complexity, i.e. the number of moves between the parties before the user can
derive a signature. Round-optimal schemes [27] consisting of only two moves are
known to imply security under concurrent executions.

Related Work. After their introduction by Chaum [23], a long line of research
on blind signatures has evolved. Constructions of blind signatures relying on
random oracles [26] include [2,8,11,15,18,23,52–54]. Most of the early construc-
tions relying on random oracles are essentially Full-Domain-Hash (FDH) style
signatures. The user sends a blinded message digest of the message to the signer
who in turn returns a signature on such a digest. Upon receiving the signa-
ture, thanks to the homomorphic property of the underlying signature scheme,
the user is able to transform such a signature to one on the message. This is
the underlying idea behind the original (RSA based) scheme in [23] which was
proven secure in [52]. The same applies to the (DLog based) scheme in [15].

Constructions dispensing with relying on random oracles but at the expense
of assuming a trusted common reference string (CRS) include [6,21,40,46].
Fischlin [27] gave a generic construction of two-move schemes in the CRS model
satisfying blindness in the malicious-key model. His construction requires the
user to send a commitment to her message which in turn gets signed by the
signer. The final signature is then merely a zero-knowledge proof of knowledge
of a signature on the (hidden) commitment to the message. Most subsequent
constructions in the CRS model are either direct instantiations of Fischlin’s con-
struction, e.g. [3,5], or variations thereof, e.g. [3,30]. The scheme in [3,30] adopts
a similar approach as Fischlin’s but instead of hiding the signed commitment, it
exploits a feature of the underlying signature scheme to transform a signature
on the commitment to a signature on the message itself. Other round-optimal
constructions in the CRS model include [13,14,48,56].

Round-optimal constructions not relying on either of the aforementioned
assumptions, i.e. in the standard model, are preferable. However, it is well-known
that such schemes are harder to design. Lindell [47] showed that it is impossible to
design round-optimal schemes in the standard model conforming to simulation-
based (rather than game-based) security definitions. However, Hazay et al. [44]
showed that (non-round-optimal) realizations are possible under game-based
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definitions. Abe and Ohkubo [6] showed that universally composable blind signa-
tures, even non-committing ones, are impossible in the standard model. Okamoto
[49] gave a non-round-optimal construction in the standard model which satisfies
blindness in the malicious-key model. Fischlin and Schröder [29] proved that it
is impossible to reduce the security of a standard-model blind signature scheme
in a blackbox manner to the intractability of a non-interactive assumption if the
scheme has any of the following properties: (i) the signing protocol has less than
4 moves. (ii) Its blindness holds statistically (iii) the signing transcript allows one
to check if a valid signature can be derived from it.

Existing constructions in the standard model [36,37] circumvent the impossi-
bility result by making use of a non-blackbox reduction to the underlying prim-
itive. Garg et al. [37] gave the first round-optimal construction in the stan-
dard model solving a long-standing open problem. Their scheme combines fully
homomorphic encryption with two-move witness-indistinguishable proofs known
otherwise as ZAPs [25]. Their scheme is inefficient and is only considered as a
feasibility result. Recently, Garg and Gupta [36] gave a more efficient round-
optimal construction which combines structure-preserving signature schemes [3]
and Groth-Sahai NIZK proofs [41]. To eliminate the need for a trusted party,
they use two CRSs which are part of the signer’s public key. The signer is forced
to choose those honestly as otherwise she needs to solve an exponential-time
problem in order to cheat. The security of their scheme holds w.r.t. non-uniform
adversaries and relies on complexity leveraging. Consequently, it suffers from a
large communication overhead and a rather large computational cost.

Recently, Fuchsbauer et al. [33] gave a semi-generic construction of round-
optimal schemes in the standard model which combines the Pedersen commit-
ment scheme [50] with structure-preserving signatures on equivalence classes [42].
Their construction satisfies blindness againstmalicious keys. They gave an efficient
instantiation whose security relies on a couple of interactive assumptions where
they used the optimal construction of signature on equivalence classes from [32].
More recently, Fuchsbauer et al. [31] weakened the assumptions on which the
instantiation in [33] is based by eliminating one of the interactive assumptions on
which the blindness in [33] was relying. However, the unforgeability of the new
variant still relies on an interactive intractability assumption. Hanzlik and Klucz-
niak [43] gave a construction in the standard model in the honest-key model. The
downside of their construction is that it uses an encryption scheme over composite-
order groups which requires groups of a large order as well as a strong non-standard
“knowledge” assumption [9]. Very recently, Döttling et al. [24] showed that blind
signatures in the standard model can be constructed from maliciously circuit-
private homomorphic encryption for logarithmic depth circuits.

Baldimtsi and Lysyanskaya [7] showed that existing techniques fall short for
proving the security of some existing blind signatures lacking a security proof
in the random oracle model. Concerned constructions include Schnorr’s [54] and
Brands’ [18] schemes. The latter is at the core of the U-Prove system.

Abe and Fujisaki [4] put forward the notion of partially blind signatures which
extends blind signatures to allow some part of the message to be public. This



458 E. Ghadafi

makes it possible to attach some public attributes, e.g. an expiration date, to
the signatures. Recently, Fuchsbauer et al. [31,33] gave the first efficient round-
optimal partially blind schemes in the standard model.

Our Contribution. We construct two efficient blind signature schemes in the
standard model satisfying blindness in the malicious-key model. Our schemes
yield very short signatures consisting of only a pair of elements from the shorter
source group. At 80-bit security, our signatures are only 40 bytes long which
means they are 67% shorter than the best existing scheme offering the same
security [33]. Verifying signatures in our schemes involves evaluating a couple of
pairings. The latter matches the verification overhead of the most efficient exist-
ing (non-blind) signature schemes over bilinear groups [16,17]. Such desirable
efficiency means that our schemes can even be deployed on devices with limited
computational power if the evaluation of pairings required for verification is out-
sourced to a third party, e.g. using techniques from [22]. Our schemes have a very
low communication overhead on both sides. The blindness of our schemes holds
in the information-theoretic sense whereas their unforgeability relies on new
intractability assumptions which we show hold in the generic group model [57].
Note that it is well-known that blind signature schemes in the standard model
based solely on non-interactive assumptions, e.g. [36,37], are much less efficient.
Furthermore, all existing efficient round-optimal schemes in the standard model
offering the same security as ours [31,33] also rely on interactive intractability
assumptions.

We also construct efficient partially blind signature schemes and efficient
blind signature schemes for a vector of messages. The techniques underlying
our constructions are akin to the blind-unblind paradigm which usually form
the basis of the efficient constructions in the random oracle model. However,
to obtain the desired efficiency in the standard model, we apply various tech-
niques. Similarly to [31,33,40], our constructions do not require expensive zero-
knowledge proofs.

Paper Organization. The rest of the paper is organized as follows. In Sect. 2, we
give some preliminary definitions. In Sect. 3, we introduce and prove intractability
of our new assumptions. In Sect. 4, we recall the syntax and security of blind signa-
tures. In Sect. 5, we give our blind signature constructions. We show in Sect. 6 how
to extend our schemes to sign a vector of messages. In Sect. 7, we give our partially
blind signature constructions.

Notation. We write b = Alg(a; r) when algorithm Alg on input a and randomness
r outputs b. We write b ← Alg(a) for the process of setting b = Alg(a; r) where
r is sampled at random. For an algorithm Alg and an oracle O, AlgOk(·) denotes
that Alg can access O at most k times on inputs of Alg’s choice. We write a ← S
for sampling a uniformly at random from the set S. A function ν(.) : N → R

+

is negligible (in λ) if for every polynomial ρ(·) and all sufficiently large values of
λ, it holds that ν(λ) < 1

ρ(λ) . PPT stands for running in probabilistic polynomial
time in the relevant security parameter. For � ∈ N \ {0}, by [�] we denote the set
{1, . . . , �}.
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2 Preliminaries

In this section we provide some preliminary definitions.

Bilinear Groups. A bilinear group is a tuple P := (G, Ĝ,T, p,G, Ĝ, e) where
G, Ĝ and T are groups of a prime order p, and G and Ĝ generate G and Ĝ,
respectively. The function e is a non-degenerate bilinear map e : G × Ĝ −→ T.
To distinguish between elements of G and Ĝ, the latter will be accented with .̂
We use multiplicative notation for all the groups. We let G

× := G \ {1G} and
Ĝ

× := Ĝ \ {1
Ĝ
}. In this paper, we work in the efficient Type-III setting [35],

where G �= Ĝ and there is no efficiently computable isomorphism between the
groups in either direction. We assume there is an algorithm BG that on input
a security parameter λ, outputs a description of bilinear groups. Without loss
in generality and similarly to e.g. [31,33] in this work we will assume BG is
deterministic, which as argued by [31,33] is the case for instance in the most
widely used groups based on BN curves [10].

Pedersen Commitment Scheme. We use a generalized variant of the Peder-
sen commitment scheme [50] which allows committing to a vector of messages at
once. The scheme is information-theoretically hiding and computationally bind-
ing under the discrete logarithm assumption. The generalized variant is defined
by the following algorithms:

Setup(1λ, n) On input the security parameter λ and the size of the vector n, this
algorithm chooses a cyclic group G of prime order p where log p ∈ Θ(λ). It
also samples the elements G1, . . . , Gn,H ← G. It returns the commitment
key ck := (G1, . . . , Gn,H) which we assume is an implicit input to the rest of
the algorithms.

Commit(m, r) On input a message vector m = (m1, . . . ,mn) ∈ Z
n
p and a ran-

domness r ∈ Zp, this algorithm returns the commitment Co := Hr
∏n

i=1 Gmi
i

and the opening information d := (m, r).
Open(Co, d = (m, r)) On input a commitment Co and its associated opening

information d, this algorithm verifies whether such opening information is a
valid one by checking that Co = Hr

∏n
i=1 Gmi

i returning 1 or 0 accordingly.

Since the hiding property of the scheme holds in the information-theoretic sense,
such a property still holds even if we let the recipient runs the Setup algorithm
which is otherwise usually run by a trusted third party. The above argument
holds as long as H �= 1G which is easy to check.

3 New Intractability Assumptions

In this section we introduce some new assumptions of a “one-more” type where
the adversary interacts with an oracle k times and is tasked with outputting k+1
valid tuples. They are similar in nature to the E-LRSW assumption introduced
by Ghadafi and Smart [40].
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3.1 The BSOM Assumption

Our first new assumption which we refer to as the BSOM (short for Blind Signa-
ture One More) assumption will form the basis for the unforgeability of our first
blind signature construction. It is inspired in part by the assumption underlying
the recent signature scheme by Ghadafi [38].

Definition 1 (BSOM Assumption). Let P = (G, Ĝ,T, G, Ĝ, e, p) be the
description of Type-III bilinear groups output by BG(1λ), and let H := Gh,
Ĥ := Ĝh, X̂ := Ĝx, Ŷ := Ĝy for some h, x, y ← Zp. Let OBSOMH,Ĥ,X̂,Ŷ (·) be
an oracle that on input a message M = Gm (for some possibly unknown m ∈ Zp)
returns a triple

(
A := Ga, B := (GxM)

a
y , C := H

a
y
) ∈ G

3 for some a ← Zp. We
say the BSOM assumption holds (relative to BG) if for all PPT adversaries A,
the following advantage is negligible (in λ):

Pr

⎡

⎢
⎣

P ← BG(1λ); h, x, y ← Zp; (H, Ĥ, X̂, Ŷ ) := (Gh, Ĝh, Ĝx, Ĝy);
{(Ai, Bi,mi)}k+1

i=1 ← AOBSOMk
H,Ĥ,X̂,Ŷ

(·) (
P,H, Ĥ, X̂, Ŷ

)
:

∣
∣{mi}k+1

i=1

∣
∣ = k + 1 ∧ ∀i ∈ [k + 1] : Ai �= 1G ∧ e(Bi, Ŷ ) = e(Ai, X̂Ĝmi)

⎤

⎥
⎦

The proof for the following theorem can be found in the full version [39].

Theorem 1. For any generic adversary A against the BSOM assumption, if p is
the (prime) order of the bilinear group and A makes qG group operation queries,
qP pairing queries and qO queries to the BSOM oracle OBSOMH,Ĥ,X̂,Ŷ , then

the probability of A against the BSOM assumption is O( q2
GqO+q2

P qO+q3
O

p ).

3.2 The BSOMI Assumption

Our second new assumption which we refer to as the BSOMI assumption will
form the basis for the unforgeability of our second blind signature construction.
It is inspired in part by the assumption underlying the recent signature scheme
by Pointcheval and Sanders [51].

Definition 2 (BSOMI Assumption). Let P = (G, Ĝ,T, G, Ĝ, e, p) be the
description of Type-III bilinear groups output by BG(1λ), and let H := Gh,
Ĥ ′ := Ĝ

1
h , X̂ := Ĝx, Ŷ := Ĝy for some h, x, y ← Zp. Let OBSOMIH,Ĥ′,X̂,Ŷ (·)

be an oracle that on input a message M := Gm (for some possibly unknown
m ∈ Zp) returns a triple

(
A := Ga, B := AxMay, C := Hay

) ∈ G
3 for some

a ← Zp. We say the BSOMI assumption holds (relative to BG) if for all PPT
adversaries A, the following advantage is negligible (in λ):

Pr

⎡

⎢
⎣

P ← BG(1λ); h, x, y ← Zp; (H, Ĥ ′, X̂, Ŷ ) := (Gh, Ĝ
1
h , Ĝx, Ĝy);

{(Ai, Bi,mi)}k+1
i=1 ← AOBSOMIk

H,Ĥ′,X̂,Ŷ
(·) (

P,H, Ĥ ′, X̂, Ŷ
)

:
∣
∣{mi}k+1

i=1

∣
∣ = k + 1 ∧ ∀i ∈ [k + 1] : Ai �= 1G ∧ e(Bi, Ĝ) = e(Ai, X̂Ŷ mi)

⎤

⎥
⎦

The proof for the following theorem can be found in the full version [39].
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Theorem 2. For any generic adversary A against the BSOMI assumption,
if p is the (prime) order of the bilinear group and A makes qG group
operation queries, qP pairing queries and qO queries to the BSOMI oracle
OBSOMIH,Ĥ′,X̂,Ŷ , then the probability of A against the BSOMI assumption is

O( q2
GqO+q2

P qO+q3
O

p ).

4 Syntax and Security of Blind Signatures

In this section, we define the syntax and security of blind signatures. Since we
are interested in round-optimal schemes, we will specialize our definitions to this
case. A blind signature scheme BS (with a two-move signature request) consists
of the following polynomial-time algorithms:

KeyGenBS(1λ) On input a security parameter 1λ, this probabilistic algorithm
outputs a pair (vkBS, skBS) of public/secret keys for the signer. Without loss
of generality we assume the security parameter is an implicit input to the rest
of the algorithms.

Request0BS(vkBS,m): This algorithm run by the user takes as input a message m
in the message space M and the public key vkBS, and produces a signature
request ρ, plus some state st (which is assumed to contain m).

IssueBS(skBS, ρ): This probabilistic algorithm run by the signer takes as input the
secret key skBS and the signature request ρ, and produces a pre-signature β.

Request1BS(vkBS, β, st): On input the public key vkBS, the pre-signature β, and
the state st, this algorithm produces a blind signature σ on m, or it outputs
⊥ if it does not accept the transcript.

VerifyBS(vkBS,m, σ): This deterministic algorithm outputs 1 if σ is a valid signa-
ture on the message m, or 0 otherwise.

(Perfect) correctness of blind signatures requires that for all λ ∈ N and all
m ∈ M, we have

Pr

[
(vkBS, skBS) ← KeyGenBS(1

λ); (ρ, st) ← Request0BS(vkBS, m);
β ← IssueBS(skBS, ρ); σ ← Request1BS(vkBS, β, st) : VerifyBS(vkBS, m, σ) = 1

]
= 1.

Security of blind signatures [45,52] which was strengthened by [28,55] requires
blindness and unforgeability.

Unforgeability. Unforgeability requires that it is infeasible for an adversarial
user who interacts with an honest signer on k occasions to output k + 1 valid
signatures on k + 1 distinct messages.

Definition 3 (Unforgeability). A blind scheme BS satisfies unforgeability if
for all λ ∈ N, for all PPT adversaries A, the advantage AdvUnforge

BS,A (λ) against
the game ExpUnforge

BS,A defined in Fig. 1. is negligible (in λ) where

AdvUnforge
BS,A (λ) = Pr[ExpUnforge

BS,A (λ) = 1].
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Fig. 1. The security experiments for unforgeability (left) and blindness w.r.t. malicious
keys (right)

Blindness. Blindness (w.r.t. malicious keys [1,49]) requires that an adversarial
signer who freely chooses two messages m0 and m1 as well as the keys and then
takes part in interactions with an honest user to generate signatures on those
messages cannot tell the order in which the messages were signed.

Definition 4 (Blindness w.r.t. malicious keys). A blind scheme BS satisfies
blindness w.r.t. malicious keys if for all λ ∈ N, for all PPT adversaries A, the
advantage AdvBlind

BS,A (λ) defined as

AdvBlind
BS,A (λ) =

∣
∣
∣
∣Pr[ExpBlind

BS,A (λ) = 1] − 1
2

∣
∣
∣
∣

is negligible (in λ) where ExpBlind
BS,A is defined in Fig. 1.

5 Blind Signature Constructions

Here we present our two constructions of blind signatures satisfying blindness in
the malicious-key model.

5.1 Construction I

Here we present our first construction whose unforgeability is based on the
BSOM assumption. The high-level idea is that when requesting a blind signature
on the message m ∈ Zp, the user uses the Pedersen commitment scheme to com-
mit to m as Co := GmHr and sends the commitment Co to the signer. Unlike
many existing constructions, neither the user nor the signer in our construction
are required to produce expensive zero-knowledge proofs to prove correctness of
their computation. Note that since the Pedersen commitment is perfectly hiding,
the commitment Co reveals no information about the committed message. We
can think of such a commitment as the message M on which the oracle in the
BSOM assumption is queried. Now the signer, playing the role of the oracle in



Efficient Round-Optimal Blind Signatures in the Standard Model 463

the definition of the BSOM assumption, returns the tuple (A′, B′, C ′). The user
can check whether such a tuple corresponds to a valid pre-signature by first ver-
ifying that the last element (which is independent of the message) is constructed
correctly. This is achieved by verifying that e(C ′, Ŷ ) = e(A′, Ĥ). If such a check
does not pass, the user returns ⊥. Otherwise, since the user already knows the
randomness r she used in constructing the commitment Co, she can now adapt
the pre-signature (A′, B′) on the commitment Co to one on the message m by
letting B′ := B′C ′−r and then randomizing the signature (A′, B′) into a new
one (A,B) so that the two pairs are unlinkable. Similarly to e.g. [31,33], by
assuming that the bilinear group generator BG is deterministic combined with
the fact that the Pedersen commitment remains hiding even if the commitment
key is generated maliciously, we achieve blindness w.r.t. malicious keys. The
construction is detailed in Fig. 2.

Fig. 2. Our 1st blind signature construction

Note that the checks performed in the Request0BS algorithm to verify well-
formedness of the signer’s verification key need only be performed once when
requesting the first signature and not each time a signature is requested.

Theorem 3. The construction is a secure blind signature scheme in the
malicious-key model.

Proof. We first show that the scheme is correct. We have that Co = GmHr, B′ =
(GxCo)

a′
y = G

a′x
y Co

a′
y = G

a′x
y (GmHr)

a′
y and C ′ = H

a′
y . We have that B′ =

B′C ′−r = G
a′x
y (GmHr)

a′
y H

−a′r
y = G

a′x
y G

ma′
y . Thus, (A′, B′) satisfy e(B′, Ŷ ) =

e(A′, X̂Ĝm).
The following 2 lemmata complete the proof.

Lemma 1 (Unforgeability). The construction is unforgeable if the BSOM
assumption is intractable.
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Proof. Let A be an adversary against the unforgeability of the scheme. We show
how to use A to construct an adversary B against the BSOM assumption. Adver-
sary B gets the tuple (P,H, Ĥ, X̂, Ŷ ) from her game and she has access to
the oracle OBSOM

H,Ĥ,X̂,Ŷ
(·) which she can query polynomially many times. B

starts A on vkBS := (H, Ĥ, X̂, Ŷ ). When queried on Coi, B forwards such query
to her oracle and returns the answer to A. Eventually, when A outputs her k+1
message-signatures tuples {(mi, Ai, Bi)}k+1

i=1 , B returns that as the answer in her
game. It is clear that B wins her game with the same advantage as that of A in
her game. Thus, we have AdvUnforge

BS,A = AdvBSOM,B.

Lemma 2. The construction is perfectly blind in the malicious-key model.

Proof. Since the Pedersen commitment is perfectly hiding, it is clear that Co sent
by the user reveals no information about the committed message. Now the check
we perform on the pre-signatures ensures that each pre-signature is valid on its
respective commitment. If any of those pre-signatures is invalid, we return (⊥,⊥).
It is obvious in the latter case the adversary gains no information about the order
in which the messages were signed. If the checks on the pre-signatures pass, it
means the first pre-signature is a valid signature on the message mb committed
in Cob whereas the second signature is valid on the message m1−b committed
in Co1−b. From the adversary’s point of view each signature could be on either
message since the commitment could have been on either message. What remains
now is to show that (A′, B′, C ′) are unlinkable to (A,B). By definition we have
that A′

0 �= 1G and A′
1 �= 1G. Now each final signature is computed by raising

the corresponding pre-signature to a random exponent from Z
×
p . Thus, each final

signature is uniformly distributed over the space of possible signatures and it
follows that the final signature is independent of the pre-signature. 	


5.2 Construction II

Here we present our second construction whose unforgeability is based on the
BSOMI assumption. The high-level idea is similar to that of the first construc-
tion. When requesting a blind signature on the message m ∈ Zp, the user uses
the Pedersen commitment scheme to commit to m as Co := GmHr and sends
the commitment Co to the signer. Here we view the commitment as the message
M on which the oracle in the BSOMI assumption is queried. Now the signer,
playing the role of the oracle in the definition of the BSOMI assumption, returns
the tuple (A′, B′, C ′). The user can check whether such a tuple corresponds to
a valid pre-signature by first verifying that the last element (which is indepen-
dent of the message) is constructed correctly. This is achieved by verifying that
e(C ′, Ĥ ′) = e(A′, Ŷ ). If such a check does not pass, the user returns ⊥. Other-
wise, since the user already knows the randomness r she used in constructing the
commitment Co, she can now adapt the pre-signature (A′, B′) on the commit-
ment Co to one on the message m by letting B′ := B′C ′−r and then randomizing
the signature (A′, B′) into a new one (A,B) so that the two pairs are unlinkable.
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Again as in our first construction, by assuming that the bilinear group genera-
tor BG is deterministic combined with the fact that the Pedersen commitment
remains hiding even if the commitment key is generated maliciously, we achieve
blindness w.r.t. malicious keys. The construction is detailed in Fig. 3.

Note that the checks performed in the Request0BS algorithm to verify well-
formedness of the signer’s verification key need only be performed once when
requesting the first signature and not each time a signature is requested.

Fig. 3. Our 2nd blind signature construction

The proof for the following theorem can be found in the full version [39].

Theorem 4. The construction is a secure blind signature scheme in the
malicious-key model in the standard model.

Efficiency Comparison. We compare in Table 1 the efficiency of our blind
signature constructions with the most efficient existing schemes offering the
same security in the standard model [31,33]. As can be seen from the table,
our schemes outperform existing schemes in every efficiency metric. At 80-bit
security, the size of our signatures is 40 bytes, i.e. 67% shorter than those of [33].
Also, blindness in our schemes holds in the information-theoretic sense which is
another advantage. The security of all schemes in the table including ours rely
on interactive intractability assumptions. Note that the most efficient scheme
based on non-interactive assumptions in the standard model [36] is much less
efficient than the schemes in the table, e.g. the signature size in [36] is 183 group
elements in symmetric bilinear groups. In the table, P stands for pairing, A for
point addition, and MK Model for the malicious-key model.
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Table 1. Efficiency comparison

Scheme σ vk Communication Verification MK Model Blindness

G Ĝ G Ĝ User Signer

G Ĝ G Ĝ

[33] 4 1 1 4 2 - 2 1 7P Yes Computational

[31] 7 3 - 4 4 - 2 1 15P Yes Computational

Ours I 2 - 1 3 1 - 3 - 2P + 1A Yes Perfect

Ours II 2 - 1 3 1 - 3 - 2P + 1A Yes Perfect

6 Blind Schemes for a Vector of Messages

In this section we give constructions of blind signatures for a vector of messages.
These constructions are extensions of their single-message counterparts in which
we replace the single-message Pedersen commitment scheme by its generalized
variant which allows committing to a vector of messages at once, and make the
necessary changes.

6.1 Construction I

We show in Fig. 4 that we can without affecting the signature size or the number
of pairings involved in the verification extend our scheme from Sect. 5.1 to blindly
sign a vector of messages. This variant is unforgeable under the same assumption
as the single-message scheme.

Fig. 4. A blind signature scheme I for a vector of messages ∈ Z
n
p
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All the checks performed in the Request0BS algorithm to verify well-formedness
of the signer’s verification key need only be performed once when requesting the
first signature and not each time a signature is requested.

Theorem 5. The scheme in Fig. 4 is a secure blind signature.

Proof. Correctness is straightforward to verify. Perfect blindness in the
malicious-key model holds similarly to the perfect blindness of the single-message
scheme. The following lemma proves unforgeability of the scheme.

Lemma 3 (Unforgeability). The scheme is unforgeable if the BSOM assump-
tion is intractable.

Proof. Let A be an adversary against the unforgeability of the scheme. We
show how to use A to construct an adversary B against the BSOM assump-
tion. Adversary B gets the tuple (P,H, Ĥ, X̂, Ŷ ) from her game and she has
access to the oracle OBSOM

H,Ĥ,X̂,Ŷ
(·) which she can query polynomially many

times. B chooses z1, . . . , zn−1 ← Z
×
p and computes (Zi, Ẑi) := (Gzi , Ĝzi)

for all i ∈ [n − 1]. She then starts A on vkBS := (H, Ĥ, X̂, Ŷ , {Zi, Ẑi}n−1
i=1 ).

When queried on Coi, B forwards such query to her oracle and returns the
answer to A. Eventually, when A outputs her k + 1 message-signature tuples
{(mi = (mi,1, . . . ,mi,n), Ai, Bi)}k+1

i=1 where the vectors mi are distinct, B com-
putes m′

i = mi,1 +
∑n

j=2 zj−1mi,j for all i ∈ [k + 1] and returns the k + 1
tuples {(m′

i, Ai, Bi)}k+1
i=1 as the answer in her game. It is clear that B wins

her game with the same advantage as that of A in her game. Thus, we have
AdvUnforge

BS,A = AdvBSOM,B. 	


6.2 Construction II

We extend our scheme from Sect. 5.2 to blindly sign a vector of messages as
shown in Fig. 5. This scheme is unforgeable under the same assumption as the
single-message scheme.

All the checks performed in the Request0BS algorithm to verify well-formedness
of the signer’s verification key need only be performed once when requesting the
first signature and not each time a signature is requested.

The proof for the following theorem can be found in the full version [39].

Theorem 6. The scheme in Fig. 5 is a secure blind signature.
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Fig. 5. A blind signature scheme II for a vector of messages ∈ Z
n
p

7 Partially Blind Signature Schemes

Here we show how to modify our schemes in Sects. 6.1 and 6.2 to obtain par-
tially blind signature schemes. For more generality, we give schemes where the
public information is also a vector τ = (τ1, . . . , τn′) ∈ Z

n′
p . This allows to attach

multiple attributes to the signature.

7.1 Construction I

To realize our first construction, we modify the blind scheme on vector messages
from Sect. 6.1 to attach a vector τ = (τ1, . . . , τn′) ∈ Z

n′
p of public information to

the signature. To do so, we add to the public key of the scheme in Fig. 4 the ele-
ments Ŵi := Ĝwi for some randomly chosen elements wi ← Zp for i = 1, . . . , n′.
When asked to sign a commitment Co along with the public information τ , the
signer signs the modified commitment Co′ := CoG

∑n′
i=1 τiwi . Upon receiving the

pre-signature, the user checks that it is valid on the tuple (m, τ ). The details
of the construction are in Fig. 6. The unforgeability of the scheme relies on a
slight extension of the BSOM assumption which we refer to as the E-BSOM
assumption. See full version [39] for details.

All the checks performed in the Request0BS algorithm to verify well-formedness
of the signer’s verification key need only be performed once when requesting the
first signature and not each time a signature is requested.

The proof for the following theorem can be found in the full version [39].

Theorem 7. The scheme in Fig. 6 is a secure partially blind signature.
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Fig. 6. A partially blind signature scheme I for a vector of messages ∈ Z
n
p

7.2 Construction II

Our second partially blind signature construction shown in Fig. 7 is an exten-
sion of our blind construction from Fig. 5 in a similar manner to the first con-
struction. The unforgeability of the scheme relies on a slight extension of the
BSOMI assumption which we refer to as the E-BSOMI assumption. See full
version [39] for details.

The proof for the following theorem can be found in the full version [39].

Theorem 8. The scheme in Fig. 7 is a secure partially blind signature.

Fig. 7. A partially blind signature scheme II for a vector of messages ∈ Z
n
p

Acknowledgments. We thank Ian Goldberg for pointing out an issue in the descrip-
tion of the partially blind scheme in an earlier version.
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ous evaluation of cryptographic functionalities. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9816, pp. 619–648. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 22

25. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS 2000, pp. 283–293.
IEEE (2000)

26. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

27. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 4
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