
Fantastic Timers and Where to Find Them:
High-Resolution Microarchitectural

Attacks in JavaScript

Michael Schwarz(B), Clémentine Maurice, Daniel Gruss, and Stefan Mangard

Graz University of Technology, Graz, Austria
michael.schwarz@iaik.tugraz.at

Abstract. Research showed that microarchitectural attacks like cache
attacks can be performed through websites using JavaScript. These tim-
ing attacks allow an adversary to spy on users secrets such as their key-
strokes, leveraging fine-grained timers. However, the W3C and browser
vendors responded to this significant threat by eliminating fine-grained
timers from JavaScript. This renders previous high-resolution microar-
chitectural attacks non-applicable.

We demonstrate the inefficacy of this mitigation by finding and evalu-
ating a wide range of new sources of timing information. We develop mea-
surement methods that exceed the resolution of official timing sources
by 3 to 4 orders of magnitude on all major browsers, and even more on
Tor browser. Our timing measurements do not only re-enable previous
attacks to their full extent but also allow implementing new attacks.
We demonstrate a new DRAM-based covert channel between a website
and an unprivileged app in a virtual machine without network hard-
ware. Our results emphasize that quick-fix mitigations can establish a
dangerous false sense of security.

1 Introduction

Microarchitectural attacks comprise side-channel attacks and covert channels,
entirely implemented in software. Side-channel attacks exploit timing differences
to derive secret values used in computations. They have been studied extensively
in the past 20 years with a focus on cryptographic algorithms [2,10,16,29–31,48].
Covert channels are special side channels where a sender and a receiver use the
side channel actively to transmit data covertly. These attacks require highly
accurate timing and thus are typically implemented in native binaries written
in C or assembly language to use the best available timing source.

Side channels exist on virtually all systems and software not hardened against
side channels. Thus, browsers are an especially easy target for an attacker,
because browsers process highly sensitive data and attackers can easily trick
a victim to open a malicious website in the browser. Consequently, timing side-
channel attacks have been demonstrated and observed in the wild, to recover a
user’s browser history [8,13,41], but also a user’s geolocation [14], whether a user
c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 247–267, 2017.
https://doi.org/10.1007/978-3-319-70972-7_13



248 M. Schwarz et al.

is logged in to another website [4] and even CSRF tokens [11]. Van Goethem et al.
[37] exploited more accurate in-browser timing to obtain information even from
within other websites, such as contact lists or previous inputs.

Oren et al. [28] recently demonstrated that cache side-channel attacks can
also be performed in browsers. Their attack uses the performance.now method
to obtain a timestamp whose resolution is in the range of nanoseconds. It allows
spying on user activities but also building a covert channel with a process running
on the system. Gruss et al. [9] and Bosman et al. [5] demonstrated Rowhammer
attacks in JavaScript, leveraging the same timing interface. In response, the
W3C [40] and browser vendors [1,3,6] have changed the performance.now
method to a resolution of 5µs. The timestamps in the Tor browser are even
more coarse-grained, at 100 ms [25]. In both cases, this successfully stops side-
channel attacks by withholding necessary information from an adversary.

In this paper, we demonstrate that reducing the resolution of timing infor-
mation or even removing these interfaces is completely insufficient as an attack
mitigation. We propose several new mechanisms to obtain absolute and relative
timestamps. We evaluated 10 different mechanisms on the most recent versions
of 4 different browsers: Chrome, Firefox, Edge, as well as the Tor browser, which
took even more drastic measures. We show that all browsers leak highly accurate
timing information that exceeds the resolution of official timing sources by 3 to
4 orders of magnitude on all browsers, and by 8 on the Tor browser. In all cases,
the resolution is sufficient to revive the attacks that were thought mitigated [28].

Based on our novel timing mechanisms, we are the first to exploit DRAM-
based timing leaks from JavaScript. There were doubts whether DRAM-based
timing leaks can be exploited from JavaScript, as it is not possible to directly
reach DRAM [32]. We demonstrate that a DRAM-based covert channel can be
used to exfiltrate data from highly restricted, isolated execution environments
that are not connected to the network. More specifically, we transmit data from
an unprivileged process in a Virtual Machine (VM) without any network hard-
ware to a website, by tunneling the data through the DRAM-based covert chan-
nel to the JavaScript running in a web browser on the same host machine.

Our key contributions are:

– We performed a comprehensive evaluation of known and new mechanisms to
obtain timestamps. We compared 10 methods on the 3 major browsers on
Windows, Linux and Mac OS X, as well as on Tor browser.

– Our new timing methods increase the resolution of official methods by 3 to
4 orders of magnitude on all browsers, and by 8 orders of magnitude on Tor
browser. Our evaluation therefore shows that reducing the resolution of timer
interfaces does not mitigate any attack.

– We demonstrate the first DRAM-based side channel in JavaScript to exfiltrate
data from a highly restricted execution environment inside a VM with no
network interfaces.

– Our results underline that quick-fix mitigations are dangerous, as they can
establish a false sense of security.



Fantastic Timers and Where to Find Them 249

The remainder of this paper is organized as follows. In Sect. 2, we provide
background information. In Sect. 3, we comprehensively evaluate new timing
measurement methods on all major browsers. In Sect. 4, we demonstrate the
revival of cache attacks with our new timing primitives as well as a new DRAM-
based covert channel between JavaScript in a website and a process that is
strictly isolated inside a VM with no network hardware. Finally, we discuss
effective mitigation techniques in Sect. 5 and conclude in Sect. 6.

2 Background

2.1 Microarchitectural Attacks

A large body of recent work has focused on cross-VM covert channels. A first class
of work uses the CPU cache for covert communications. Ristenpart et al. [33]
are the first to demonstrate a cache-based covert channel between two Amazon
EC2 instances, yielding 0.2 bps. Xu et al. [47] optimized this covert channel
and assessed the difference in performance between theoretical and practical
results. They obtain 215.11 bps with an error rate of 5.12%. Maurice et al. [23]
built a cross-VM covert channel, using the last-level cache and a Prime+Probe
approach, that achieves a bit rate of 751 bps with an error rate of 5.7%. Liu et al.
[21] demonstrated a high-speed cache-based covert channel between two VMs
that achieves transmission speeds of up to 600 Kbps and an error rate of less than
1%. In addition to the cache, covert channels have also been demonstrated using
memory. Xiao et al. [46] demonstrated a memory-based covert channel using
page deduplication. Wu et al. [45] built a covert channel of 746 bps with error
correction, using the memory bus. Pessl et al. [32] reverse engineered the DRAM
addressing functions that map physical addresses to their physical location inside
the DRAM. The mapping allowed them to build a covert channel that relies solely
on the DRAM as shared resource. Their cross-core cross-VM covert channel
achieves a bandwidth of 309 Kbps. Maurice et al. [24] demonstrated an error-
free covert channel between two Amazon EC2 instances of more than 360 Kbps,
which allows building an SSH connection through the cache.

2.2 JavaScript and Timing Measurements

JavaScript is a scripting language supported by all modern browsers, which
implement just-in-time compilation for performance. Contrary to low-level lan-
guages like C, JavaScript is strictly sandboxed and hides the notion of addresses
and pointers. The concurrency model of JavaScript is based on a single-threaded
event loop [26], which consists of a message queue and a call stack. Events are
handled in the message queue, moved to the call stack when the stack is empty
and processed to completion. As a drawback, if a message takes too long to
process, it blocks other messages to be processed, and the browser becomes
unresponsive. Browsers received the support for multithreading with the intro-
duction of web workers. Each web worker runs in parallel and has its own event
loop [26].



250 M. Schwarz et al.

For timing measurement, the timestamp counter of Intel CPUs provides the
number of CPU cycles since startup and thus a high-resolution timestamp.
In native code, the timestamp counter is accessible through the unprivileged
rdtsc instruction. In JavaScript, we cannot execute arbitrary instructions such
as the rdtsc instruction. One of the timing primitives provided by JavaScript
is the High Resolution Time API [40]. This API provides the performance.now
method that gives a sub-millisecond timestamp. The W3C standard recommends
that the timestamp should be monotonically increasing and accurate to 5µs. The
resolution may be lower if the hardware has no support for such a high resolution.

Remarkably, until Firefox 36 the High Resolution Time API returned
timestamps accurate to one nanosecond. This is comparable to the native rdtsc
instruction which has a resolution of 0.5 ns on a 2 GHz CPU. As a response to
the results of Oren et al. [28], the timer resolution was decreased for security
reasons [3]. In recent versions of Chrome and WebKit, the timing resolution was
also decreased to the suggested 5µs [1,6]. The Tor project even reduced the
resolution to 100 ms [25]. The decreased resolution of the high-resolution timer
is supposed to prevent time-based side-channel attacks. In a concurrent work,
Kohlbrenner et al. [18] showed that it is possible to recover a high resolution
by observing clock edges, as well as to create new implicit clocks using browser
features. Additionally, they implemented fuzzy time that aims to degrade the
native clock as well as all implicit clocks.

2.3 Timing Attacks in JavaScript

Van Goethem et al. [37] showed different timing attacks in browsers based on
the processing time of resources. They aimed to extract private data from users
by estimating the size of cross-origin resources. Stone [35] showed that the opti-
mization in SVG filters introduced timing side channels. He showed that this
side channel can be used to extract pixel information from iframes.

Microarchitectural side channels have only recently been exploited in
JavaScript. Oren et al. [28] showed that it is possible to mount cache attacks in
JavaScript. They demonstrated how to generate an eviction set for the last-level
cache that can be used to mount a Prime+Probe attack. Based on this attack,
they built a covert channel using the last-level cache that is able to transmit
data between two browser instances. Furthermore, they showed that the timer
resolution is high enough to create a spy application that tracks the user’s mouse
movements and network activity. As described in Sect. 2.2, this attack caused all
major browsers to decrease the resolution of the performance.now method.

Gruss et al. [9] demonstrated hardware faults triggered from JavaScript,
exploiting the so-called Rowhammer bug. The Rowhammer bug occurs when
repeatedly accessing the same DRAM cells with a high frequency [15]. This
“hammering” leads to bit flips in neighboring DRAM rows. As memory accesses
are usually cached, they also implemented cache eviction in JavaScript.

All these attacks require a different timestamp resolution. The attacks from
Goethem et al. [37] and Stone [35] require a timestamp resolution that is on
the order of a microsecond, while the attack of Oren et al. [28] relies on the



Fantastic Timers and Where to Find Them 251

fine-grained timestamps on the order of nanoseconds. More generally, as microar-
chitectural side channel attacks aim at exploiting timing differences of a few
CPU cycles, they depend on the availability of fine-grained timestamps. We
note that decreasing the resolution therefore only mitigates microarchitectural
attacks on the major browsers that have a resolution of 5µs, but mitigates more
side-channel attacks on the Tor browser which has a resolution of 100 ms.

3 Timing Measurements in the JavaScript Sandbox

This section describes techniques to get accurate measurements with a high-
resolution timestamp in the browser. In the first part, we describe methods
to recover a high resolution for the provided High Resolution Time API. The
second part describes different techniques that allow deriving highly accurate
timestamps, with implicit timers. These methods are summarized in Table 1.

3.1 Recovering a High Resolution

In both Chrome and Webkit, the timer resolution is decreased by rounding the
timestamp down to the nearest multiple of 5µs. As our measurements fall below
this resolution, they are all rounded down to 0. We refer to the underlying clock’s
resolution as internal resolution and to the decreased resolution of the provided
timer as provided resolution. It has already been observed that it is possible to
recover a high resolution by observing the clock edges [18,22,34,38]. The clock
edge aligns the timestamp perfectly to its resolution, i.e., we know that the
timestamp is an exact multiple of its provided resolution at this time.

Clock Interpolation. As the underlying clock source has a high resolution, the
difference between two clock edges varies only as much as the underlying clock.
This property gives us a very accurate time base to build upon. As the time
between two edges is always constant, we interpolate the time between them.
This method has also been used in JavaScript in a concurrent work [18].

Clock interpolation requires a calibration before being able to return accurate
timestamps. For this purpose, we repeatedly use a busy-wait loop to increment a
counter between two clock edges. This gives us the number of steps we can use for
the interpolation. We refer to the average number of increments as interpolation
steps. The time it takes to increment the counter once equals the resolution
we are able to recover. It can be approximated by dividing the time difference
of two clock edges by the number of interpolation steps. This makes the timer
independent from both the internal and the provided resolution.

The measurement with the improved resolution works as follows. We busy
wait until we observe a clock edge. At this point, we start with the operation
we want to time. After the timed operation has finished, we again busy wait for
the next clock edge while incrementing a counter. We assume that the increment
operation is a constant time operation, thus allowing us to linearly interpolate
the passed time. From the calibration, we know the time of one interpolation step



252 M. Schwarz et al.

which will be a fraction of the provided resolution. Multiplying this time by the
number of increments results in the interpolated time. Adding the interpolated
time to the measured time increases the timer’s resolution again.

Using this method, we recover a highly accurate timestamp. Listing A.1
shows the JavaScript implementation. Table 1 shows the recovered resolution
for various values of provided resolution. Even for a timer rounded down to a
multiple of 100 ms, we recover a resolution of 15µs.

Edge Thresholding. We do not require an exact timestamp in all cases. For
many side-channel attacks it is sufficient to distinguish two operations ffast and
fslow based on their execution time. We refer to the execution times of the
short-running function and long-running function as tfast and tslow respectively.

We devise a new method that we call edge thresholding. This method again
relies on the property that we can execute multiple constant-time operations
between two edges of the clock. Edge thresholding works as long as the difference
in the execution time is larger than the time it takes to execute one such constant-
time operation. Figure 1 illustrates the main idea of edge thresholding. Using
multiple constant-time operations, we generate a padding after the function we
want to measure. The execution time of the padding tpadding is included into the
measurement, increasing the total execution time by a constant value. The size
of the padding depends on the provided resolution and on the execution time of
the functions. We choose the padding in such a way that tslow + tpadding crosses
one more clock edge than tfast + tpadding, i.e., both functions take a different
amount of clock edges.

f slow

f fast P adding

P adding

Fig. 1. Edge thresholding: apply padding such that the slow function crosses one more
clock edge than the fast function.

To choose the correct padding, we start without padding and increase the
padding gradually. We align the function start at a clock edge and measure the
number of clock edges it takes to execute the short-running and the long-running
function. As soon as the long-running function crosses one more clock edge than
the short-running function, we have found a working padding. Subsequently,
this padding is used for all execution time measurements. Figure 2 shows the
results of classifying two functions with an execution time difference of 0.9µs
and a provided resolution of 10µs. A normal, unaligned measurement is able to
classify the two functions only in the case when one of the measurements crosses
a clock edge, whereas the edge thresholding method categorizes over 80% of the
function calls correctly by their relative execution time. Moreover, there are no
false classifications.



Fantastic Timers and Where to Find Them 253

unaligned aligned padded

0

50

100

13
0

8287
100

18
0 0 0p

er
ce
nt
ag
e

both correct f slow misclassified f fast misclassified

Fig. 2. Results of edge thresholding where the difference between the function’s exe-
cution time is less then the provided resolution.

3.2 Alternative Timing Primitives

In cases where the High Resolution Time API [40] is not available, e.g., on
Tor browser, we have to resort to different timing primitives, as highlighted by
Kohlbrenner et al. [18]. As there is no different high-resolution timer available in
JavaScript and we cannot access any native timers, we have to create our own
timing sources. In most cases, it is sufficient to have a fast-paced monotonically
increasing counter as a timing primitive that is not a real representation of time
but an approximation of a highly accurate monotonic timer. While this concept
was already presented by Wray in 1992 [44], Lipp et al. [20] recently demon-
strated a practical high-resolution timing primitive on ARM using a counting
thread. As JavaScript is inherently based on a single threaded event loop with
no true concurrency, the timing primitive has to be based either on recurring
events or non-JavaScript browser features.

We present several novel methods to construct timing primitives in
JavaScript. We refer to them as free-running timers and blocking timers. Free-
running timers do not depend on the JavaScript’s event loop and run indepen-
dently from the remaining code. Blocking timers are based on JavaScript events
and are either only usable to recover a high resolution or in combination with
web workers. If used in combination with web workers, the timers become free-
running timers.

At first, it seems that timing primitives blocking the JavaScript event loop
might not be useful at all. The higher the resolution of the timing primitive,
the more events are added to the event queue and the less time remains for
actual code. However, there are still two constructions that are able to use such
primitives. First, these primitives can be used for very accurate interpolation
steps when applying either clock interpolation or edge thresholding. Second, it
is possible to take advantage of the multithreading support with web workers to
run the timing primitive in parallel to the method to time.

Timeouts. The first asynchronous feature dating back to the introduction
of JavaScript is the WindowTimers API. Specifically the setTimeout and
setInterval functions allow scheduling a timer-based callback. The time is



254 M. Schwarz et al.

specified in a millisecond resolution. After specifying the timeout, the browser
keeps track of the timer and calls the callback as soon as the timer has expired.

A concurrent timer-based callback allows us to simulate a counting thread.
We create a callback function that increments a global counter and schedules
itself again using the setTimeout function. This method has also been used
in a concurrent work [18]. Although the minimal supported timeout is 0, the
real timeout is usually larger. The HTML5 specification defines a timeout of at
least 4 ms for nested timers, i.e., specifying the timeout from within the callback
function has a delay of at least 4 ms [42]. This limitation also applies to timeouts
specified by the setInterval function.

Most browsers comply to the HTML5 specification and treat all timeouts
below 4 ms as 4 ms. In Firefox, the minimum timeout is determined by the value
of the flag dom.min timeout value which defaults to 4 ms as well. Note that the
timeout only has such a high frequency if it is run in an active tab. Background
tasks do not allow such high frequencies.

Microsoft implemented another timeout function in their browsers which
is not standardized. The setImmediate function behaves similarly to the
setTimeout function with a timeout of 0. The function is not limited to 4 ms and
allows to build a high-resolution counting thread. A counting thread using this
function results in a resolution of up to 50µs which is three orders of magnitude
higher than the setTimeout method.

Message Passing. By default, the browser enforces a same-origin policy, i.e.,
scripts are not allowed to access web page data from a page that is served from
a different domain. JavaScript provides a secure mechanism to circumvent the
same-origin policy and to allow cross-origin communication. Scripts can install
message listeners to receive message events from cross-origin scripts. A script
from a different origin is allowed to post messages to a listener.

Despite the intended use for cross-origin communication, we can use this
mechanism within one script as well. The message listener is not limited to
messages sent from cross-origin scripts. Neither is there any limitation for the
target of a posted message. Adding checks whether a message should be handled
is left to the JavaScript developer. According to the HTML standard, posted
messages are added to the event queue, i.e., the message will be handled after any
pending event is handled. This behavior leads to a nearly immediate execution
of the installed message handler. A counting thread using the postMessage
functions achieves a resolution of up to 35µs. An implementation is shown in
Listing A.2.

To obtain a free-running timing primitive, we have to move the message
posting into separate web workers. This appears to be a straightforward task.
However, there are certain limitations for web workers. Web workers cannot post
messages to other web workers (including themselves). They can only post mes-
sages to the main thread and web workers they spawn, so called sub workers.
Posting messages to the main thread again blocks the main thread’s event loop,
leaving sub web workers as the only viable option. Listing A.3 shows a sample



Fantastic Timers and Where to Find Them 255

implementation using one worker and one sub worker. The worker can communi-
cate with the main thread and the sub worker. If the worker receives a message
from the main thread, it sends back its current counter value. Otherwise, the
worker continuously “requests” the current counter value from the sub worker.
The sub worker increments the counter on each request and sends the current
value back to the worker. The resulting resolution is even higher than with the
blocking version of the method. On Tor browser, the achieved resolution is up to
15µs, which is 4 orders of magnitude higher than the resolution of the native
timer.

An alternative to sub workers are broadcast channels. Broadcast channels
allow the communication between different sources from the same origin. A
broadcast channel is identified by its name. In order to subscribe to a chan-
nel, a worker can create a BroadcastChannel object with the same name as an
existing channel. A message that is posted to the broadcast channel is received
by all other clients subscribed to this broadcast channel. We can build a con-
struct that is similar to the sub worker scenario using two web workers. The
web workers broadcast a message in their broadcast receiver to send the counter
value back and forth. One of the web workers also responds to messages from
the main thread to return the current counter value. With a resolution of up to
55µs, this method is still almost as fast as the worker thread variant.

Message Channel. The Channel Messaging API provides bi-directional pipes
to connect two clients. The endpoints of the pipe are called ports, and every port
can both send and receive data. A message channel can be used in a similar way
as cross-origin message passing. Listing A.4 shows a simple blocking counting
thread using a message channel.

As with the cross-origin message passing method, we can also adapt this code
to work inside a web worker yielding a free-running timing primitive. Listing A.5
shows the implementation for web workers. The resolution for the free-running
message channel method is up to 30µs, which is lower compared to the cross-
origin communication method. However, it is currently the only method that
works across browsers and has a resolution in the order of microseconds.

CSS Animations. With CSS version 3, the support for animations [39] was
added. These animations are independent of JavaScript and are rendered by the
browser. Users can specify keyframes and attributes that will then be animated
without any further user interaction.

We demonstrate a new method that uses CSS animations to build a tim-
ing primitive. A different method using CSS animations has been used in a
concurrent work [18]. We define an animation that changes the width of an ele-
ment from 0 px to 1 000 000 px within 1 s. Theoretically, if all animation steps
are calculated, the current width is incremented every microsecond. However,
browsers limit the CSS animations to 60 fps, i.e., the resolution of our timing
primitive is 16 ms in the best case. Indeed, most monitors have a maximum
refresh rate of 60 Hz, i.e., they cannot display more than 60 fps. Thus, a higher



256 M. Schwarz et al.

frame rate would only waste resources without any benefit. To get the current
timestamp, we retrieve the current width of the element. In JavaScript, we can
get the current width of the element using window.getComputedStyle(elem,
null).getPropertyValue("width").

SharedArrayBuffer. Web workers do not have access to any shared resource.
The communication is only possible via messages. If data is passed using a
message, either the data is copied, or the ownership of the data is transferred.
This design prevents race conditions and locking problems without having to
depend on a correct use of locks. Due to the overhead of message passing for
high-bandwidth applications, approaches for sharing data between workers are
discussed by the ECMAScript committee [27]. An experimental extension for
web workers is the SharedArrayBuffer. The ownership of such a buffer can be
shared among multiple workers, which can access the buffer simultaneously.

A shared resource provides a way to build a real counting thread with a
negligible overhead compared to a message passing approach. This already raised
concerns with respect to the creation of a high-resolution clock [19]. In this
method, one worker continuously increments the value of the buffer without
checking for any events on the event queue. The main thread simply reads the
current value from the shared buffer and uses it as a high-resolution timestamp.

We implemented a clock with a parallel counting thread using the
SharedArrayBuffer. An implementation is shown in Listing A.6. The result-
ing resolution is close to the resolution of the native timestamp counter. On our
Intel Core i5 test machine, we achieve a resolution of up to 2 ns using the shared
array buffer. This is equivalent to a resolution of only 4 CPU cycles, which is 3
orders of magnitude better than the timestamp provided by performance.now.

3.3 Evaluation

We evaluated all methods on an Intel Core i5-6200U machine using the most
popular browsers, up to date at the time of writing: Firefox 51, Chrome 53, Edge
38.14393.0.0, and Tor 6.0.4. All tests were run on Ubuntu 16.10, Windows 10,
and Mac OS X 10.11.4. Table 1 shows the timing resolution of every method for
every browser and operating system combination. We also evaluated our methods
using Fuzzyfox [17], the fork of Firefox hardened against timing attacks [18].

The introduction of multithreading in JavaScript opened several possibilities
to build a timing primitive that does not rely on any provided timer. By building
a counting thread, we are able to get a timer resolution of several microseconds.
This is especially alarming for the Tor browser, where the provided timer only has
a resolution of 100 ms. Using the demonstrated methods, we can build a reliable
timer with a resolution of up to 15µs. The lower resolution was implemented as
a side channel mitigation and is rendered useless when considering the results of
the alternative timing primitives.

The best direct timing source we tested is the experimental
SharedArrayBuffer. The best measurement method we tested is edge threshold-
ing. Both increase the resolution by at least 3 orders of magnitude compared to



Fantastic Timers and Where to Find Them 257

Table 1. Timing primitive resolutions on various browsers and operating systems.

Free-running Firefox 51 Chrome 53 Edge 38 Tor 6.0.4 Fuzzyfox

performance.now ✓ 5µs 5µs 1µs 100 ms 100 ms

CSS animations ✓ 16 ms 16 ms 16 ms 16 ms 125 ms

setTimeout 4 ms 4 ms 2 ms 4 ms 100 ms

setImmediate – – 50µs – –

postMessage 45µs 35µs 40µs 40µs 47 ms

Sub worker ✓ 20µs –b 50µs 15µs –

Broadcast Channel ✓ 145µs – – 55µs 760µs

MessageChannel 12µs 55µs 20µs 20µs 45 ms

MessageChannel (W) ✓ 75µs 100µs 20µs 30µs 1120µs

SharedArrayBuffer ✓ 2 nsc 15 nsd – – 2 ns

Interpolationa 500 ns 500 ns 350 ns 15µs –

Edge thresholdinga 2 ns 15 ns 10 ns 2 ns –
aUses performance.now for coarse-grained timing information.
bSub workers do not work in Chrome, this is a known issue since 2010 [7].
cCurrently only available in the nightly version.
dIt has to be enabled by starting Chrome with --js-flags=--harmony-sharedarraybuffer--

enable-blink-feature=SharedArrayBuffer.

performance.now in all browsers. Countermeasures against timing side-channels
using fuzzy time have been proposed by Hu et al. [12] and Vattikonda et al. [38].
They suggested to reduce the provided resolution and to randomize the clock
edges. However, we can fall back to the constructed timing primitives if this
countermeasure is not applied on all implicit clocks.

In a concurrent work, Kohlbrenner et al. [18] proposed Fuzzyfox, a fork of
Firefox that uses fuzzy time on both explicit and implicit clocks, and aims to
cap all clocks to a resolution of 100 ms. Our evaluation shows that the explicit
timer performance.now is reduced to 100 ms, and is fuzzed enough that the
interpolation and edge thresholding methods do not work to recover a high reso-
lution. Similarly, some of the implicit timers, such as setTimeout, postMessage,
and Message Channel, are also mitigated, with a resolution between 45 ms and
100 ms. However, the Broadcast Channel, Message Channel with web workers,
and SharedArrayBuffer still have a fine grained resolution, between 2 ns and 1 ms.
It is to be noted that, while these methods stay accurate, the resulting clock is
too fuzzy to derive a finer clock with either interpolation or edge thresholding.

4 Reviving and Extending Microarchitectural Attacks

In this section, we demonstrate that with our timing primitives, we are able to
revive attacks that were thought mitigated, and build new DRAM-based attacks.



258 M. Schwarz et al.

4.1 Reviving Cache Attacks

Oren et al. [28] presented the first microarchitectural side-channel attack running
in JavaScript. Their attack was mitigated by decreasing the timer resolution. We
verified that the attack indeed does not work anymore on current browser ver-
sions. However, we are able to revive cache attacks by using our newly discovered
timing sources. Figure 3 shows the timing difference between cache hits and cache
misses, measured with the SharedArrayBuffer method. The ability to measure
this timing difference is the building block of all cache attacks.

300 350 400 450 500 550 600 650 700 750

100

200

300

Access time [SharedArrayBuffer increments]

N
um

be
r
of

ca
se
s cache hit cache miss

Fig. 3. Histogram for cache hits and cache misses.

4.2 A New DRAM-Based Covert Channel

Pessl et al. [32] established that timing differences in memory accesses can be
exploited to build a cross-CPU covert channel. We demonstrate that this attack
is also possible using JavaScript. In our scenario, the sender is an unprivileged
binary inside a VM without a network connection. The receiver is implemented
in sandboxed JavaScript running in a browser outside the VM, on the same host.

Overview. To communicate, the sender and the receiver agree on a certain
bank and row of physical memory. This agreement can be done in advance and
is not part of the transmission. The receiver continuously measures the access
time to a value located inside the agreed row. For continuous accesses, the value
will be cached in the row buffer and the access will be fast, resulting in a low
access time. The receiver considers this as a 0. If the sender wants to transmit
a 1, it accesses a different row inside the same bank. This access triggers a row
conflict, resulting in a replacement of the row buffer content. On the receiver’s
next access, the request cannot be served from the row buffer but has to be
fetched from the DRAM, resulting in a high access time.

Challenges. For the sender, we assume that we can run arbitrary unprivileged
binary programs inside the VM. We implement the sender in C, which allows us
to use the computer’s high-resolution timestamp counter. Furthermore, we can



Fantastic Timers and Where to Find Them 259

flush addresses from the cache using the unprivileged clflush instruction. The
only limitation on the sender is the absence of physical addresses.

On the receiver side, as the covert channel relies on timing differences that are
in the order of tens of nanoseconds, we require a high-resolution timing primitive.
We presented in Sect. 3 different methods to build timing primitives if the pro-
vided High Resolution Time API is not accurate enough. However, implement-
ing this side channel in JavaScript poses some problems besides high-resolution
timers. First, the DRAM mapping function requires the physical address to
compute the physical location, i.e., the row and the bank, inside the DRAM.
However, JavaScript does not know the concept of pointers. Therefore, we nei-
ther have access to virtual nor physical addresses. Second, we have to ensure
that memory accesses will always be served from memory and not the cache,
i.e., we have to circumvent the cache. Finally, the noise present on the system
might lead to corrupt transfers. We have to be able to detect such bit inversions
for reliable communication.

Address Selection. The DRAM mapping function reverse engineered by Pessl
et al. [32] takes a physical address and calculates the corresponding physical
memory location. Due to the absence of addresses in JavaScript, we cannot
simply use these functions. We have to rely on another side channel to be able
to infer address bits in JavaScript.

We exploit the fact that heap memory in JavaScript is allocated on demand,
i.e., the browser acquires additional heap memory from the operating system if
this is required. These heap pages are internally backed by 2 MB pages, called
Transparent Huge Pages (THP). Due to the way virtual memory works, for
THPs, the 21 least-significant bits of a virtual and physical address are the
same. On many systems, this is already sufficient as input to the DRAM mapping
function. This applies to the sender as well, with the advantage that we know
the virtual address which we can use immediately without any further actions.

To get the beginning of a THP in JavaScript, we iterate through an array
of multiple megabytes while measuring the time it takes to access the array
element, similarly to Gruss et al. [9]. As the physical pages for these THPs are
also mapped on-demand, a page fault occurs as soon as an allocated THP is
accessed for the first time. Such an access takes significantly longer than an
access to an already mapped page. Thus, higher timings for memory accesses
with a distance of 2 MB indicate the beginning of a THP. At this array index,
the 21 least-significant bits of both the virtual and the physical address are 0.

Cache Circumvention. To measure DRAM access times we have to ensure
that all our accesses go to the DRAM and not to the cache. In native code,
we can rely on the clflush instruction. This unprivileged instruction flushes
a virtual address from all cache levels, i.e., the next access to the address is
ensured to go to the DRAM.

However, in JavaScript we neither have access to the clflush instruction nor
does JavaScript provide a function to flush the cache. Thus, we have to resort to



260 M. Schwarz et al.

cache eviction. Cache eviction is the process of filling the cache with new data
until the data we want to flush is evicted from the cache. The straightforward
way is to fill a buffer with the size of the last-level cache with data. However,
this is not feasible in JavaScript as writing multiple megabytes of data is too
slow. Moreover, on modern CPUs, it might not suffice to iteratively write to the
buffer as the cache replacement policy is not pseudo-LRU since Ivy Bridge [43].

Gruss et al. [9] demonstrated fast cache eviction strategies for numerous
CPUs. They showed that their functions have a success rate of more than 99.75%
when implemented in JavaScript. We also rely on these functions to evict the
address which we use for measuring the access time.

Transmission. To transmit data from inside the VM to the JavaScript, they
have to agree on a common bank. It is not necessary to agree on a bank dynam-
ically, it is sufficient to have the bank hardcoded in both programs. The sender
and the receiver both choose a different row from this bank. Again, this can be
hardcoded, and there is no requirement for an agreement protocol.

On the sender side, the application inside the VM continuously accesses a
memory address in its row if it wants to transmit a binary 1. These accesses cause
row conflicts with the receiver’s row. To send a binary 0, the sender does nothing
to not cause any row conflict. On the receiver side, the JavaScript constantly
measures the access time to a memory address from its row and evicts the address
afterwards. If the sender has accessed its row, the access to the receiver’s row
results in a row conflict. As a row conflict takes significantly longer than a row
hit, the receiver can determine if the sender has accessed its row.

To synchronize sender and receiver, the receiver measures the access time in a
higher frequency than the sender is sending. The receiver maintains a constant-
size sliding window that moves over all taken measurements. As soon as the
majority of the measurements inside the sliding window is the same, one bit
is received. The higher the receiver’s sampling frequency is, compared to the
sender’s sending frequency, the lower the probability of wrongly measured bits.
However, a higher sampling frequency also leads to a slower transmission speed
due to the increased amount of redundant data.

Due to different noise sources on the system, we encounter transmission
errors. Such noise sources are failed evictions, high DRAM activity of other
programs or not being scheduled at all. To have a reliable transmission despite
those interferences, we encapsulate the data into packets with sequence num-
bers and protect each packet with an error detection code as shown in Fig. 4.
The receiver is then able to detect any transmission error and to discard the
packet. The sequence number ensures to keep the data stream synchronized.
Thus, transmission errors only result in missing data, but the data stream is
still synchronized after transmission errors. To deal with missing data, we can
apply high-level error correction as shown by Maurice et al. [24].

Using the SharedArrayBuffer, we achieve a transmission rate of 11 bps for
a 3 kB file with an error rate of 0% on our Intel Core i5 test machine. The
system workload did not influence the transmission, as long as there is at least



Fantastic Timers and Where to Find Them 261

Data EDC
S
E
Q

Fig. 4. One packet of the covert channel. It has a 2-bit preamble ‘‘10’’, 5 data bits,
3 bits of error detection code and a 1 bit sequence number.

one core fully available to the covert channel. We optimized the covert channel
for reliability and not speed. We expect that it is possible to further increase the
transmission rate by using multiple banks to transmit data in parallel. However,
the current speed is two orders of magnitude higher than the US government’s
minimum standard for covert channels [36].

5 Countermeasures

Lowering the Timer Resolution. As a reaction to the JavaScript cache
attacks published by Oren et al. [28], browsers reduced the resolution of the
high-resolution timer. Nevertheless, we are able to recover a higher resolution
from the provided timer, as well as to build our own high-resolution timers.

Fuzzy Time. Vattikonda et al. [38] suggested the concept of fuzzy time to get
rid of high-resolution timers in hypervisors. Instead of rounding the timestamp
to achieve a lower resolution, they move the clock edge randomly within one
clock cycle. This method prevents the detection of the underlying clock edge
and thus makes it impossible to recover the internal resolution. In a concurrent
work, Kohlbrenner et al. [18] implemented the fuzzy time concept in Firefox
to show that this method is also applicable in JavaScript. The implementation
targets explicit clocks as well as implicit clocks. Nonetheless, we found different
implicit clocks exceeding the intended resolution of 100 ms.

Shared Memory and Message Passing. A proposed mitigation is to intro-
duce thread affinity to the same CPU core for threads with shared memory [19].
This prevents true parallelism and should therefore prevent a real asynchronous
timing primitive. However, we showed that even without shared memory we
can achieve a resolution of up to 15µs by using message passing. Enforcing the
affinity to one core for all communicating threads would lead to a massive perfor-
mance degradation and would effectively render the use of web workers useless.
A compromise is to increase the latency of message passing which should not
affect low- to moderate-bandwidth applications. Compared to Fuzzyfox’s delay
on the main event queue, this has two advantages. First, the overall usability
impact is not as severe as only messages are delayed and not every event. Sec-
ond, it also prevents the high accuracy of the Message Channel and Broadcast
Channel method as the delay is not limited to the main event queue.



262 M. Schwarz et al.

6 Conclusion and Outlook

High-resolution timers are a key requirement for side-channel attacks in browsers.
As more side-channel attacks in JavaScript have been demonstrated against
users’ privacy, browser vendors decided to reduce the timer resolution.

In this article, we showed that this attempt to close these vulnerabilities was
merely a quick-fix and did not address the underlying issue. We investigated dif-
ferent timing sources in JavaScript and found a number of timing sources with
a resolution comparable to performance.now. This shows that even removing
the interface entirely, would not have any effect. Even worse, an adversary can
recover a resolution of the former performance.now implementation through
measurement methods we proposed. We evaluated our new measurement meth-
ods on all major browsers as well as the Tor browser that has applied the highest
penalty to the timer resolution. Our results are alarming for all browsers, includ-
ing the privacy-conscious Tor browser, as we are able to recover a resolution in
the order of nanoseconds in all cases. In addition to reviving attacks that were
now deemed infeasible, we demonstrated the first DRAM-based side channel in
JavaScript. In this side-channel attack, we implemented a covert channel between
an unprivileged binary in a VM with no network interface and a JavaScript pro-
gram in a browser outside the VM, on the same host.

While fuzzy timers can lower the resolution of the provided timer interfaces,
we show that applying the same mitigation on all implicit clocks, including the
one that are not discovered yet, is a complex task. Thus, we conclude that it is
likely that an adversary can obtain sufficiently accurate timestamps when run-
ning arbitrary JavaScript code. As microarchitectural attacks are not restricted
to JavaScript, we recommend to mitigate them at the system- or hardware-level.

Acknowledgments We would like to thank our shepherd Jean Paul Degabriele,
Georg Koppen from the Tor Browser project as well as all our anonymous reviewers.

We would also like to thank the major browser vendors
for their quick responses when reporting our findings.
This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No. 681402).



Fantastic Timers and Where to Find Them 263

A JavaScript Code



264 M. Schwarz et al.



Fantastic Timers and Where to Find Them 265

References

1. Christensen, A.: Reduce resolution of performance.now (2015). https://bugs.
webkit.org/show bug.cgi?id=146531

2. Bernstein, D.J.: Cache-Timing Attacks on AES (2004). http://cr.yp.to/
antiforgery/cachetiming-20050414.pdf

3. Zbarsky, B.: Reduce resolution of performance.now. https://hg.mozilla.org/
integration/mozilla-inbound/rev/48ae8b5e62ab

4. Bortz, A., Boneh, D.: Exposing private information by timing web applications.
In: WWW 2007 (2007)

5. Bosman, E., Razavi, K., Bos, H., Giuffrida, C.: Dedup Est Machina: Memory Dedu-
plication as an Advanced Exploitation Vector. In: S&P 2016 (2016)

https://bugs.webkit.org/show_bug.cgi?id=146531
https://bugs.webkit.org/show_bug.cgi?id=146531
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab


266 M. Schwarz et al.

6. Chromium: window.performance.now does not support sub-millisecond preci-
sion on Windows (2015). https://bugs.chromium.org/p/chromium/issues/detail?
id=158234#c110

7. Chromium Bug Tracker: HTML5 nested workers are not supported in chromium
(2010). https://bugs.chromium.org/p/chromium/issues/detail?id=31666.
Accessed 18 Oct 2016

8. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: CCS 2000 (2000)
9. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced

fault attack in JavaScript. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300–321. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40667-1 15

10. Gullasch, D., Bangerter, E., Krenn, S.: Cache games – bringing access-based cache
attacks on AES to practice. In: S&P 2011 (2011)

11. Heiderich, M., Niemietz, M., Schuster, F., Holz, T., Schwenk, J.: Scriptless attacks:
stealing the pie without touching the sill. In: Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security, pp. 760–771. ACM (2012)

12. Hu, W.M.: Lattice scheduling and covert channels. In: S&P 1992, pp. 52–61 (1992)
13. Jang, D., Jhala, R., Lerner, S., Shacham, H.: An empirical study of privacy-

violating information flows in javascript web applications. In: CCS 2010 (2010)
14. Jia, Y., Dong, X., Liang, Z., Saxena, P.: I know where you’ve been: geo-inference

attacks via the browser cache. IEEE Internet Comput. 19(1), 44–53 (2015)
15. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai, K.,

Mutlu, O.: Flipping bits in memory without accessing them: an experimental study
of DRAM disturbance errors. In: ISCA 2014 (2014)

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

17. Kohlbrenner, D., Shacham, H.: Fuzzyfox (2016). https://github.com/dkohlbre/
gecko-dev/tree/fuzzyfox. Accessed 23 January 2017

18. Kohlbrenner, D., Shacham, H.: Trusted browsers for uncertain times. In: USENIX
Security Symposium (2016)

19. Hansen, L.T.: Shared memory: Side-channel information leaks (2016). https://
github.com/tc39/ecmascript sharedmem/blob/master/issues/TimingAttack.md

20. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: cache
attacks on mobile devices. In: USENIX Security Symposium (2016)

21. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: S&P 2015 (2015)

22. Martin, R., Demme, J., Sethumadhavan, S.: TimeWarp: rethinking timekeeping
and performance monitoring mechanisms to mitigate side-channel attacks. In: Pro-
ceedings of the 39th International Symposium on Computer Architecture (ISCA
2012) (2012)

23. Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: cross-cores cache
covert channel. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015.
LNCS, vol. 9148, pp. 46–64. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-20550-2 3

24. Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Alberto Boano, C.,
Mangard, S., Römer, K.: Hello from the other side: SSH over robust cache covert
channels in the cloud. In: NDSS 2017 (2017, to appear)

25. Perry, M.: Bug 1517: Reduce precision of time for Javascript (2015). https://gitweb.
torproject.org/user/mikeperry/tor-browser.git/commit/?h=bug1517

https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=31666
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/3-540-68697-5_9
https://github.com/dkohlbre/gecko-dev/tree/fuzzyfox
https://github.com/dkohlbre/gecko-dev/tree/fuzzyfox
https://github.com/tc39/ecmascript_sharedmem/blob/master/issues/TimingAttack.md
https://github.com/tc39/ecmascript_sharedmem/blob/master/issues/TimingAttack.md
https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-20550-2_3
https://gitweb.torproject.org/user/mikeperry/tor-browser.git/commit/?h=bug1517
https://gitweb.torproject.org/user/mikeperry/tor-browser.git/commit/?h=bug1517


Fantastic Timers and Where to Find Them 267

26. Mozilla Developer Network: Concurrency model and Event Loop (2016). https://
developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop

27. Mozilla Inc.: Ecmascript shared memory and atomics (2016). http://tc39.github.
io/ecmascript sharedmem/shmem.html

28. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The Spy in the
sandbox: practical cache attacks in JavaScript and their implications. In: CCS
2015 (2015)

29. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

30. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Cryp-
tology ePrint Archive, Report 2002/169 (2002)

31. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan (2005)
32. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: exploiting

DRAM addressing for cross-CPU attacks. In: USENIX Security Symposium (2016)
33. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My

cloud: exploring information leakage in third-party compute clouds. In: CCS 2009
(2009)

34. Seaborn, M.: Comment on ecmascript shared memory and atomics (2015). https://
github.com/tc39/ecmascript sharedmem/issues/1#issuecomment-144171031

35. Stone, P.: Pixel perfect timing attacks with HTML5. Context Information Security
(White Paper) (2013)

36. U.S. Department of Defense: Trusted computing system evaluation “the orange
book”. Technical report 5200.28-STD (1985)

37. Van Goethem, T., Joosen, W., Nikiforakis, N.: The clock is still ticking: timing
attacks in the modern web. In: CCS 2015 (2015)

38. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained timers in xen.
In: CCSW 2011 (2011)

39. W3C: CSS Animations (2016). https://www.w3.org/TR/css3-animations/
40. W3C: High Resolution Time Level 2 (2016). https://www.w3.org/TR/hr-time/
41. Weinberg, Z., Chen, E.Y., Jayaraman, P.R., Jackson, C.: I still know what you

visited last summer: leaking browsing history via user interaction and side channel
attacks. In: S&P 2011 (2011)

42. WHATWG: HTML Living Standard – Timers (2016). https://html.spec.whatwg.
org/multipage/webappapis.html#timers. Accessed 18 Oct 2016

43. Wong, H.: Intel Ivy Bridge Cache Replacement Policy. http://blog.stuffedcow.net/
2013/01/ivb-cache-replacement/. Accessed 18 Oct 2016

44. Wray, J.C.: An analysis of covert timing channels. J. Comput. Secur. 1(3–4), 219–
232 (1992)

45. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: high-bandwidth and reli-
able covert channel attacks inside the cloud. IEEE/ACM Trans. Netw. PP(99), 1
(2014)

46. Xiao, J., Xu, Z., Huang, H., Wang, H.: A covert channel construction in a virtual-
ized environment. In: CCS 2012 (2012)

47. Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.: An
exploration of L2 cache covert channels in virtualized environments. In: CCSW
2011 (2011)

48. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache side-
channel attack. In: USENIX Security Symposium (2014)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
http://tc39.github.io/ecmascript_sharedmem/shmem.html
http://tc39.github.io/ecmascript_sharedmem/shmem.html
https://doi.org/10.1007/11605805_1
https://github.com/tc39/ecmascript_sharedmem/issues/1#issuecomment-144171031
https://github.com/tc39/ecmascript_sharedmem/issues/1#issuecomment-144171031
https://www.w3.org/TR/css3-animations/
https://www.w3.org/TR/hr-time/
https://html.spec.whatwg.org/multipage/webappapis.html#timers
https://html.spec.whatwg.org/multipage/webappapis.html#timers
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

	Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript
	1 Introduction
	2 Background
	2.1 Microarchitectural Attacks
	2.2 JavaScript and Timing Measurements
	2.3 Timing Attacks in JavaScript

	3 Timing Measurements in the JavaScript Sandbox
	3.1 Recovering a High Resolution
	3.2 Alternative Timing Primitives
	3.3 Evaluation

	4 Reviving and Extending Microarchitectural Attacks
	4.1 Reviving Cache Attacks
	4.2 A New DRAM-Based Covert Channel

	5 Countermeasures
	6 Conclusion and Outlook
	A JavaScript Code
	References


