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Abstract. New emerging devices open up immense opportunities for
everyday users. At the same time, they may raise significant security
and privacy threats. One such device, forming the central focus of this
work, is an EEG headset, which allows a user to control her computer
only using her thoughts.

In this paper, we show how such a malicious EEG device or a mali-
cious application having access to EEG signals recorded by the device
can be turned into a new form of a keylogger, called PEEP, that passively
eavesdrops over user’s sensitive typed input, specifically numeric PINs
and textual passwords, by analyzing the corresponding neural signals.
PEEP works because user’s input is correlated with user’s innate visual
processing as well as hand, eye, and head muscle movements, all of which
are explicitly or implicitly captured by the EEG device.

Our contributions are two-fold. First, we design and develop PEEP
against a commodity EEG headset and a higher-end medical-scale EEG
device based on machine learning techniques. Second, we conduct the
comprehensive evaluation with multiple users to demonstrate the fea-
sibility of PEEP for inferring PINs and passwords as they are typed
on a physical keyboard, a virtual keyboard, and an ATM-style numeric
keypad. Our results show that PEEP can extract sensitive input with
an accuracy significantly higher than a random guessing classifier. Com-
pared to prior work on this subject, PEEP is highly surreptitious as
it only requires passive monitoring of brain signals, not deliberate, and
active strategies that may trigger suspicion and be detected by the user.
Also, PEEP achieves orders of magnitude higher accuracies compared to
prior active PIN inferring attacks. Our work serves to raise awareness
to a potentially hard-to-address threat arising from EEG devices which
may remain attached to the users almost invariably soon.

1 Introduction

Brain-computer interfaces (BCI), which extract physiological signals originated
in the human brain to communicate with external devices, were once highly
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expensive and used only in medical domains. They were mainly used to develop
neuroprosthetic applications which helped disabled patients to control prosthetic
limbs with their thoughts alone [35]. However, these devices are now commer-
cially available at low-cost and are becoming popular especially in gaming and
entertainment industries.

Electroencephalography (EEG) is the most commonly used physiological sig-
nal in the BCI devices due to its ease of use, high temporal resolution, and
non-invasive setup. EEG measures the task related to electrical activity of the
brain, referred to as event-related potentials. In the commercial domain, these
EEG-based BCI devices have been used to improve the quality of user expe-
rience mainly in gaming and entertainment industries. Currently, EEG-based
BCI devices from different vendors are available in the market (e.g., Emotiv [3],
Neurosky [7], Neurofocus [5]). These devices also provide software developments
kits to build applications, and have application markets (e.g. [2,6]) in which
the vendors host the applications developed by their own developers as well as
provide a platform for third-party developers to share the applications devel-
oped by them. Recently, the BCI devices have been studied for building user
authentication models based on user’s potentially unique brainwave signals [17].

Given their interesting use cases in a wide variety of settings, the popularity
and applicability of these devices is expected to further rise in the future. These
devices may become an inevitable part of a users’ daily life cycles, including
while they use other traditional devices like mobile phones and laptop/desktop
computers. In this light, it is important to analyze the potential security and
privacy risks associated with these devices, and raise users’ awareness to these
risks (and possibly come up with viable mitigation strategies).

Our specific goal in this work is to examine how malicious access to EEG
signals captured by such devices can be used for potentially offensive proposes.
As the use of these devices becomes mainstream, a user may enter passwords or
private credentials to their computers or mobile phones, while the BCI device
is being worn by the user. To this end, we study the potential of a malicious
app to capture the EEG signals when users are typing passwords or PINs in
virtual or physical keyboards, and aim to process these signals to infer the sen-
sitive keystrokes. The device to which the sensitive keystrokes are being entered
could be the same device with which the BCI headset is “paired” or any other
computing terminal. Several previous studies have used EEG signals to infer the
types of mental tasks users are performing [36], to infer the objects users are
thinking about [21], or to infer the limb movements users are imagining [33].
In line with these works, the premise of our presented vulnerability is that the
user’s keystroke input to a computer would be correlated with the user’s innate
visual processing as well as user’s hand, eye and head muscle movements, as the
user provides the input all of which are explicitly or implicitly captured by the
BCI devices.

Based on this premise, we demonstrate the feasibility of inferring user’s sen-
sitive keystrokes (PINs and passwords) based on their neural signals captured
by the BCI device with accuracies significantly greater than random guessing.
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These BCI brain signals may relatively easily get leaked to a malicious app on
the mobile device that is paired with the BCI headset since no extra permissions
to access such signals is required in current mobile or desktop OSs. An addi-
tional avenue of leakage lies with a server, charged with the processing of brain
signals in the outsourced computation model, which may get compromised or be
malicious on its own.

Our Contributions and Novelty Claims: In this paper, we introduce a new
attack vector called PEEP that secretly extracts private information, in particular
users’ private input such as PINs and passwords, from event-related potentials
measured by brain computer interfaces. Our contributions are two-folds:

– We design and develop PEEP, a new type of attack against keystroke infer-
ence exploiting BCI devices based on machine learning techniques. We study
PEEP against a commodity EEG headset and a higher-end medical-scale
EEG device

– We experimentally validate the feasibility of PEEP to infer user’s PINs and
passwords as they are being typed on a physical or virtual keyboard. We also
validate the consistency of results across different BCI headsets.

Related to PEEP, Martinovic et al. [29]) studied the possibility of side-
channel attacks using commercial EEG-based BCI to reveal the users’ private
information like user’s familiar banks, ATMs or PIN digits. Their general idea
is similar to a guilty knowledge test where items familiar to a user is assumed
to evoke the different response as compared to the items unfamiliar to the user.
Thus, when a person is shown images of many banks, the brain response to the
image of the bank with which user has had more interaction or has opened an
account will evoke higher event-related potential. However, their attack setup is
intrusive and can be easily detectable as the users may notice the abnormality
in the application when it shows the images of banks or ATMs related to her. In
contrast, PEEP is highly surreptitious as it only requires passive monitoring of
brain signals as users’ type their PINs and passwords in regular use, not deliber-
ate, and active strategies that may trigger suspicion and be detected by the user.
In addition, PEEP achieves orders of magnitude higher accuracies compared to
the active PIN inferring attack of [29].

2 Background and Prior Work

2.1 EEG and BCI Devices Overview

Electroencephalography (EEG) is a non-invasive method of recording electri-
cal activity in the brain, referred to as event-related potentials (ERPs), using
electrodes on the surface of the scalp. EEG has higher temporal resolution
and can depict changes within milliseconds. The electrical activity can be syn-
chronized with the performed task to study changes in brain activation over
time. ERPs are used as a tool in studying human information processing [20].



230 A. Neupane et al.

P300, a positive change in ERPs which appears around 300 ms post-stimuli if
the stimuli is a known target, is popularly used ERPs in studies involving EEG.
Many devices, both consumer-based and clinical-based devices to measure the
ERPs are currently available in market and are used in security studies (see
Sect. 2.2).

In this study, we used two different EEG headsets for data collection, namely
Emotiv Headset [3] and B-Alert Headset [1]. We use Emotiv as a representa-
tive instance of current commercial consumer-grade BCI devices, and B-Alert
(a clinical-level Headset) as a representative instance of future devices.

Emotiv Epoch Headset: Emotiv Epoc headset is a wireless and lightweight
EEG sensor to acquire and analyze 14 channels of high-quality EEG data. The
sensors of this EEG headset follow the 10–20 international system of placement.
It uses the AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF42 sites
to collect EEG data at 128 Hz.

B-Alert Headset: The B-Alert headset is a clinical grade X10-standard wireless
and lightweight system, developed by Advanced Brain Monitoring (ABM) [1], to
acquire nine channels of high-quality EEG data. The headset also followed the
10–20 international system of electrode placement and used Fz, F3, F4, C3, Cz,
C4, P3, POz, P4 sites to collect EEG data at 256 Hz with fixed gain referenced to
linked mastoids. The tenth channel was used for measuring electrocardiogram
signals. A portable unit is worn on the back of the head which amplifies and
sends signals to the computer connected over Bluetooth.

2.2 Related Work

Information Retrieval using Brain Activations: EEG has been explored by
researchers to develop user authentication model (for example, [10,17,25,30,37]).
Ashby et al. [10] proposed an EEG based authentication system using a consumer
grade 14-sensor Emotiv Epoc headset. Thorpe et al. [37] suggested pass-thoughts
to authenticate users. Chuang et al. [17] used single-sensor Neurosky headset to
develop a user authentication model based on ERPs collected during different
mental tasks including pass-thoughts. Bojinov et al. [14] proposed a coercion-
resistant authentication based on neuroscience based approach. Most relevant to
our work, Martinovic et al. [29] used ERPs as a vector of side-channel attack to
snoop into users private information. The authors showed images of numbers,
banks, ATMs to the participants when their brain signals were measured. They
used the brain signal to decrease entropy of information related to PIN, banks,
ATMs by 23–40%. However, our attack is less intrusive and difficult to detect
and our malicious app can run in background capturing EEG signals.

The BCI devices are also used to understand users’ underlying neural
processes when they are performing security tasks. Neupane et al. used fMRI [31]
to study brain activations when users were subjected to phishing detection and
heeding malware warnings. In another study, Neupane et al. [9] used EEG-based
B-Alert Headset to measure mental states and mental workload when users were
subject to similar security tasks.
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Campbell et al. [16] used P300 ERP, originated when someone shows atten-
tion to specific stimuli, for developing neurophone, a brain controlled app for
dialing phone number in mobile address book. The authors flashed a number of
photos of contact persons in participants’ address book, and when P300 poten-
tial amplitude for a photo matched the person the user thought of dialing, the
app dialed the phone number.

Birbaumer et al. [13] proposed spelling device for paralyzed based on the
P300 spikes. The alphanumeric characters were organized in a grid and were
flashed to the patient. Whenever the patient focused on the target character,
P300 was evoked. Tan et al. [36] asked users to perform different gaming tasks
and used ERPs to classify what mental tasks users were performing. Esfahani
et al. [21] used 14-channel Emotiv headset to collect neural data from 10 users
when they were imagining cube, sphere, cylinder, pyramid or a cone. They were
able to discriminate between these five basic primitive objects with an average
accuracy of 44.6% using best features in Linear Discriminant Classifier (random
guessing would have been 100/5 = 20%).

Other Side Channel Attacks: Keystroke inference has received attention
due to its potential consequences. Asonov et al. [11], Zhuang et al. [41] and
Halevi et al. [22] used sound recorded from physical keyboards when users were
typing passwords to infer keystrokes. Vuagnoux et al. [38] used electromagnetic
waves emanated on users typing such keyboard. Song et al. [34] used inter-
keystroke timing observations to infer keystrokes. Marquardt et al. [28] used
accelerometer on a smartphone to record and interpret surface vibrations due
to keystrokes to identify the user inputs on a nearby keyboard. All these side
channel attacks exploited the physical characteristics of the keyboard, which
became infeasible after the advent of smart phone with touch screen. However,
new types of attacks to detect users’ PINs, passwords and unlock patterns using
motion sensors emerged on these smartphones [12,15,32,40].

Unlike these attacks, we propose a new form of keylogger. We show how a
malicious EEG device or a malicious application having access to EEG signals
recorded by BCI device, can be used to elicit users’ private information. We show
the feasibility of our attack in both the physical keyboard and virtual keyboards.

3 Threat Model

The attackers’ motive in this study is to passively eavesdrop on victim’s neural
signals, recorded by BCI devices, looking for sensitive information (e.g., PINs or
passwords) entered on a virtual or a physical keyboard. The BCI devices pro-
vide APIs which allow easy access of raw signals recorded by the BCI devices
to app developers. So a third-party developer can develop a malicious app with
unfettered access to the ERPs measured by such BCI device. The app developed
by attackers first captures the neural patterns of keystrokes to build a classifica-
tion model (Training Phase) and later utilizes the model to infer the keystrokes
only using the neural data (Testing Phase). Such malicious app developers are
considered adversary of our system.
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Training Phase: We assume the adversary has developed a malicious applica-
tion to record neural signals and has fooled the victim to install the app on her
device. The malicious application can be a gaming application which asks users
to press different keys for calibration or enter particular numeric/alphabetical
code before playing different levels of the game or resuming the game after a
break. The developer can claim such codes will secure the game from being
played by other users who has access to the computer. The attacker can then
process the numeric/alphabetical code and neural signals corresponding to them
to extract features and build a training model. The threat model is similar to
the attack model studied in previous work [29]. However, our threat model is
less intrusive and weaker as compared to their study as they propose explicitly
showing images of ATMs or PINs to users, which users may eventually notice.

It is also possible for attacker to obtain keystroke-neural template may be
leaked through servers. For example, a benign application may outsource these
signals to some server for computations which may be malicious or can get
compromised and can infer sensitive info.

We also assume a different threat model in which attacker does not have
access to victims’ keystrokes and corresponding brain signals. In this case, we
assume the attacker builds a training model using her brain data and keystrokes.
The training model is then employed in PEEP.

Testing phase: We assume the attacker has now developed a training model to
classify neural signals for each of the numbers and the alphabetic keys using one
of the methods described in the previous section. The malicious app with train-
ing model is successfully installed in victims device and runs in the background
stealthily recording the neural signals whenever victim enters sensitive informa-
tion in the physical or virtual keyboard. We assume the attacker knows when
the victim is entering private credentials in the device (e.g., in mobile devices,
the keyboard shows up whenever the user starts to type). These neural signals
recorded during the entry of these credentials will then be used by the app to
infer the keystrokes which can then be exploited by attackers.

Apart from mobile and desktop apps, these devices also provide web APIs [4]
which can be exploited to launch remote attacks. In this case, browser add-ons
can be the malicious apps. In our threat model, we assume the victim only uses
random numbers or random uppercase character-based passwords. We keep the
length of the PIN to 4 and password to 6.

Practicality of Attacks: BCI devices are used by gamers to play games con-
trolled by their mind. The game they are playing is malicious in nature. It asks
users to enter predefined set of numbers (like captcha) to restart the game from
the last position when they take a break. Doing this, the malicious app can
record the ERPs related to each of the entered digits. The app can then be
trained with these recorded datasets to predict keystrokes correctly. Now, when
the gamers next take a break from the game and enter their login credentials in
banking or social media websites, with the headset on, the app can listen to the
brain signals and then run the classification model to predict keystrokes.
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4 Experimental Design and Data Collection

4.1 Design of the Task

We followed the similar design for all of our experiments, while we varied different
parameters, such as users, EEG devices (Emotiv vs. high-end), keypads (virtual
vs. real), and data types (4-digit pin vs. 6-character password). Even though the
experiments were conducted in controlled lab environment, we tried to simulate
real-world PIN/Password entry methodologies. The design of the experiments
remained same for both Emotiv and B-Alert headsets.

Virtual Keyboard PIN Entry (VKPE): The goal of this experiment was to
assess whether the event-related potentials recorded using consumer-based EEG
BCI device or B-Alert headset could be used to infer the numbers entered by the
participant. We assume, visual and mental processing of digits, along with the
head, hand, and eye movements while entering PIN may tell what key is being
processed. For this task, we developed a virtual keyboard similar to the ones
employed in login pages of websites (this layout is also similar to the numeric
keyboards in smart phones in landscape view) (see Appendix A Fig. 3(a)). We
had a text box at the top of this virtual keyboard. The participants were asked to
enter 4-digit PIN codes using the mouse in the text box. When the user clicked
a key on the virtual keyboard, the key was flashed in its frame for 500 ms or
till the next key was clicked, similar to the key press events in touch pads of
smart phones. This was done to ensure the user that he had clicked on the right
digit. When the user pressed a key, we put a trigger in the recorded event-related
potentials to synchronize the neural data with key presses.

Virtual ATM PIN Entry (VAPE): Similar to the design of the virtual
numeric keyboard, for this task, we implemented a virtual ATM keyboard with
a text box at the top (see Appendix A Fig. 3(b)). The participants were asked
to enter 4-digit PIN codes in the text box using the mouse. Like the previous
designs, we assumed visual and mental processing of digits might tell what key
is being processed. However, this design had the fewer number of keys in the
keyboard compared to the virtual keyboard, so we expected the distraction while
entering PINs to be lower and results of the prediction model to be higher for
this task. This layout is also similar to the numeric keypad in smart phones in
portrait view.

Physical Numeric Keypad PIN Entry (PNKPE): For this task, we devel-
oped a frame with a text box for entering PIN. Similar to the previous tasks, the
participants were provided with random 4-digit numeric PINs and were asked
to enter them in the text box. However, the mode of the key input, in this case,
was a physical numeric keyboard, unlike virtual keyboard in previous tasks (see
Appendix A Fig. 4). In this task we assumed, the mental processing of digits,
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and the movements of facial muscles, eyes, head, hands, and fingers may cre-
ate a digit-specific pattern in event-related potentials. These features may be
eventually used to develop PEEP.

Physical Keyboard Password Entry (PKPE): In this task, we used a frame
with the text box to enter the password. The participants were provided with
random upper-case 6-character based passwords and were asked to enter the
password in the text box using physical keyboard (e.g., laptop keyboard) (see
Appendix A Fig. 5). Like the previous task, in this task, we assumed the fin-
ger/hand movement to create a digit-specific pattern in event-related potentials,
which may eventually be used to develop PEEP.

4.2 Experimental Set-Up

For all the above mentioned tasks, we collected data in the lab environment
using two different headsets, namely Emotiv and B-Alert Headsets. The basic
set-up for both the experiments were similar, apart from the computer used
for data collection. For Emotiv headset our experimental set-up comprised of a
single laptop in which the Emotiv control panel, the virtual keyboards, and the
text-input frames were installed. The Emotiv control panel was used to calibrate
the headset for better signal-to-noise ratio. An in-house program, developed to
record the neural data and the key press logs, was also installed in the stimuli
computer (see Fig. 1 left).

Fig. 1. (a) Experimental set up with Emotiv headset (b) Experimental set up with
B-Alert headset (face masked for anonymity)

For the B-Alert headset, we used stimuli computer to present experimental
tasks and a different data collection computer to record the neural data. The
proprietary B-Alert data acquisition software installed in this data collection
computer was used to calibrate and record brain data during the task. A signal
was sent from stimuli computer to data collection computer using TCP/IP con-
nection to mark the neural data on each key-press to synchronize the brain data
and corresponding keystrokes. We could not install the B-Alert data acquisition
software in stimuli computer as it was a proprietary software with the license
for lab computer only (see Fig. 1 right).
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4.3 Study Protocol

Ethical and Safety Considerations: The study was approved by the Insti-
tutional Review Board of our university. The participants were recruited using
flyers around the campus and on the social media (e.g. Facebook). The participa-
tion in our experiment was strictly voluntary, and the participants were provided
with an option to withdraw from the research at any point in time. The best
standard procedures were applied to ensure the privacy of the participants’ data
(survey responses, and neural data) acquired during the experiment.

Participant Recruitment and Pre-Experiment Phase: Twelve healthy
members of our university (including students, housewives, and workers) were
recruited for our study. Informed consent was obtained from these participants
and were asked to provide their demographic information (such as age, gender
and education level). Our pool was comprised of 66.6% male and 33.3% female,
55% were above the age of 24 and belonged to fairly diverse educational lev-
els (e.g., computer science, civil engineering, business administration, etc.). Ten
of these participants performed VKPE task. Rest of the three tasks were per-
formed by two participants each. Some of these participants were among the ten
participants who had performed VKPE task.

Task Execution Phase: We used the consumer-based 14-sensors Emotiv head-
set and 10-sensor B-Alert headset for the experiment. We prepared Emotiv head-
set and B-Alert headset for proper measurement of the electrical activity in the
brain. We then placed the headset on the head of the participant. We calibrated
the headset using Emotiv control panel and B-Alert software respectively, where
we can validate the signal strength of each electrode, for obtaining better signal-
to-noise ratio. Once the headset was properly calibrated and the participants
were seated comfortably to perform the task, we provided them with a sheet of
paper with randomly generated thirty 4-digit random PINs or randomly gener-
ated thirty-six upper-case 6-character random passwords depending on the tasks
they were performing.

We instructed participant to enter the PINs or passwords in the text box as if
she was logging into her accounts. In case, she realizes to have entered the wrong
digit; she was instructed to press the right digit again. The data was collected
in four different sessions on the same day for each of the tasks. In every session,
users were provided with a new set of randomly generated PINs or passwords.
A break of 10-min was given to participant between each session of 4-min length.

5 Data Preprocessing and Feature Extraction

The APIs provided by the Emotiv headset and the B-Alert headset were used
to collect the raw ERPs during the experiment. We then used EEGLAB [19] to
process the raw data collected from both of these headsets. Before processing
the brain data, we first segregated the samples related to each digit from the
raw data and created a new file for each one of them. For each keystroke, we
considered 235 ms of brain data (30 samples of data) before the key stroke and
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468 ms of brain data during the key press (60 samples of data). The reason
behind using 235 ms before keypress is to include the ERPs generated when
user thinks of the digit before pressing it (Fig. 2).

Fig. 2. Data processing flow chart

We processed the raw data using band pass filter in EEGLAB to keep the sig-
nals with frequency above 5 Hz and below 25 Hz. The EEG signals measured by
the electrodes from the scalp do not represent the electrical potential generated
in the sources inside the brain [27]. Rather, they are the aggregation of several
neurons’ electrical activity in brain. So the filtered data was then processed using
independent component analysis (ICA), a technique to separate subcomponents
of a linearly mixed signal [24], to segregate the ERPs generated by statistically
independent sources inside the brain.

A sample of recorded EEG data can be represented as x(t) = (x1(t),
x2(t), ..xm(t)), where m is the number of electrodes in the headset, and t is
the time at which the neuron potential is measured. The ERPs recorded by each
electrode at a time is the sum of the ERPs generated from n independent sources
inside brain and can be represented as (xj(t) = aj1s1 +aj2s2 + ...+ajnsn), where
n is the number of source components and a is the weight (like distance from the
source) applied to the signal from a source. So we used ICA for identifying and
localizing the statistically independent electrical sources s from potential pat-
terns recorded on the scalp surface by electrodes in the headset [27]. This process
was repeated for the data collected for each of the digits for each session.

The data acquired after ICA was then processed using Autoregressive (AR)
model for feature extraction. AR is commonly used algorithm for feature extrac-
tion from EEG data (e.g., [23]). An EEG signal recorded at any discrete time
point t is given by s(t) =

∑p
k=1 akx(t−k)+e(t), where p is the model order, s(t)

is the signal at the timestamps t, ak are the real-valued AR coefficients and e(t)
represents the error term independent of past samples [23]. We computed fea-
tures from all 14-electrodes using sixth order Auto Regressive (AR) coefficients.
Therefore, we had 6 coefficients for each channel giving a total of 84 features
(6 * 14 channels) for each data segment for a digit. The feature extraction process
was repeated for the brain data collected across different sessions for each of the
digit (0–9).

Next, we used these features to build four classification models for predicting
key-strokes based on the neural data. Two of the classification models were
built using simple Instance Based Learning (IB1) [8] and KStar [18] algorithms.
The other two were built using majority voting of two algorithms, first, IB1
with Naive Bayes (NB) [26] algorithm, and second, KStar and NB algorithm.
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We then used 10-fold cross validation for estimation and validation of these
classification models on three different sets of data labeled with 10 different
classes (0–9 digits).

First, we used instances for each digit from single session for each individ-
ual (called as Individual Model – Single Session). Second, we vertically merged
instances of each digit from all sessions of an individual (called as Individual
Model – Merging Sessions). Third, we vertically merged features for each digit
from all users for each session (called as Global Model). Global Model is a stronger
model compared to individual model, where the attacker will train the classi-
fication model on the features extracted from her own neural and keystrokes
data and use it to infer victims’ keystrokes. Even though the brain signals are
assumed to be unique among users, we presumed, there might be similarities in
ERPs when numbers/alphabets are observed.

We report the average true positive rate (TPR) and the average false positive
rate (FPR) for each digit. True positive rate is the ratio of total number of
correctly identified instances to the total number of instances present in the
classification model TPR = TP/(TP + FN), where TP is True Positive and
FN is false negative. False positive rate is the ratio of total number of negative
instances incorrectly classified as positive to the total number of actual negative
instances FPR = FP/(FP + TN), where FP is false positive and TN is true
negative. An ideal classification model has true positive rate of 100% and false
positive rate of 0%.

6 Data Analysis and Results

In this section, we describe the results of the classification models built on the
features extracted from the event-related potentials to infer the keystrokes.

6.1 Task 1: Virtual Keyboard PIN Entry (VKPE)

To recall, in this task, we had asked participants to enter thirty randomly gener-
ated 4-digit PIN in the virtual keyboard using mouse. Table 1(a) lists the results
of different classification models on using datasets from individual sessions. We
can observe that the best average true positive rate of predicting digits in this
model is 43.4% (false positive 6.2%). Likewise, the best average true positive rate
of predicting digits is 31.9% (false positive rate is 7.55) when data from all ses-
sions are merged (see Table 1(b)). We can see that the results are relatively lower
than the models trained on individual session because the amplitude of ERPs
during the first session might have been different than the amplitudes towards
the last session. Similarly, The results of global model are listed in Table 1(c).
We can observe that the best average true positive rate of predicting digits is
31.3% (false positive rate is 7.6%). Since, in this model, the samples from all
individuals are used, the overall prediction rate is lower than the previous mod-
els. The results from both models are significantly better than a random guessing
classification model (10% for each digit) which verifies the feasibility of PEEP.
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Table 1. VKPE Task: Average true positive rate and average false positive rate
(a) Individual Model – Single Session (b) Individual Model – Merging Sessions
(c) Global Model

Classifiers Session 1 Session 2 Session 3 Session 4
TPR FPR TPR FPR TPR FPR TPR FPR

IB1 41.1 6.5 39.9 6.6 38.9 6.7 42.2 6.4
KStar 42.4 6.4 40.1 6.6 38.9 6.7 42.8 9.7
IB1+NB 41.5 6.5 39.4 6.6 38.6 6.8 42.1 6.4
KStar+NB 43.4 6.2 42.4 6.4 39.0 6.7 42.4 6.4

Classifier All Sessions
TPR FPR

IB1 30.1 7.7
KStar 31.7 7.6
IB1+NB 30.0 7.8
KStar+NB 31.9 7.5

Classifier All Sessions
TPR FPR

IB1 28.4 7.9
KStar 31.3 7.6
IB1+NB 28.4 7.9
KStar+NB 30.7 7.7

6.2 Task 2: Virtual ATM PIN Entry (VAPE)

The participants in this task were asked to enter thirty randomly generated 4-
digit PIN in virtual keyboard similar to the ones employed in ATM touch screens.
Table 2(a) and (b) have the results of the classification models for individual
single session and merged sessions datasets respectively. We can observe that
on average the digits can be best predicted at true positive rate of 47.5% (false
positive 5.8%) for single session and 32.6% true positive rate (false positive 7.5%)
for merged session. Table 2(c) shows the results for these classification models for
grouped data and we can notice that on average the digits can be best predicted
at 39.1% true positive rate (false positive rate is 6.7%). The results depict that
these models are better than the random guessing model (10%) in predicting
the keys entered by users.

Table 2. VAPE Task: Average true positive rate and average false positive rate
(a) Individual Model – Single Session (b) Individual Model – Merging Sessions
(c) Global Model

Classifiers Session 1 Session 2 Session 3 Session 4
TPR FPR TPR FPR TPR FPR TPR FPR

IB1 47.0 5.9 47.0 5.9 47.5 5.8 44.5 6.1
KStar 42.5 6.4 40.0 6.6 42.5 6.4 39 6.7
IB1+NB 43.5 6.3 41.5 6.5 44.0 6.2 40.5 6.6
KStar+NB 39.5 6.7 42.5 6.4 39.5 6.7 43 6.3

Classifier All Sessions
TPR FPR

IB1 31.1 7.6
KStar 31.6 7.6
IB1+NB 31.1 7.6
KStar+NB 32.6 7.5

Classifier All Sessions
TPR FPR

IB1 39.1 6.7
KStar 39.3 6.7
IB1+NB 39.0 6.8
KStar+NB 37.3 6.9

In this task, we see that the overall true positive rate of the digit prediction
is higher than the true positive rate in VKPE task (see Sect. 6.1). The virtual
keyboard in VKPE task had many keys compared to the virtual keyboard in
VAPE task. The higher number of keys might have caused higher distraction
in processing of digits, reducing the strength of features representing the keys,
resulting in lower prediction rate.

6.3 Task 3: Physical Numeric Keypad PIN Entry (PNKPE)

In this task, the participants had to enter thirty randomly generated 4-digit PIN
using physical numeric keyboard. The movement of the fingers measured using
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Table 3. PNKPE Task: Average true positive rate and average false positive rate
(a) Individual Model – Merging Sessions (b) Global Model

Classifiers Session 1 Session 2 Session 3 Session 4
TPR FPR TPR FPR TPR FPR TPR FPR

IB1 46.0 6.0 37.5 6.9 45.0 6.1 36.5 7.0
KStar 40.5 6.6 31.5 7.6 45.0 6.1 38.5 6.8
IB1+NB 46.0 6.0 3 6.9 44.5 6.2 37.0 7.0
KStar+NB 39.0 6.7 34.0 7.3 46.5 5.9 39.0 6.8

Classifier All Sessions
TPR FPR

IB1 28.4 7.9
KStar 27.5 8.0
IB1+NB 28.4 7.9
KStar+NB 27.6 8.0

Classifier All Sessions
TPR FPR

IB1 33.1 7.4
KStar 34.0 7.3
IB1+NB 32.7 7.4
KStar+NB 33.6 7.4

smart watch worn on victims’ hand while typing password has been previously
used to reveal victims’ PIN [39]. Researchers have also translated thoughts about
moving fingers into action in prosthetic hands [35]. So we assumed that, there
might be unique neural signatures of typing the numbers you are thinking about,
which might be used to predict the victims’ PIN numbers. Table 3(a) and (b)
displays the results on individual model – single session, and individual model
– merged session respectively. We can observe that on average the digits can
be best predicted in individual model – single session at 46.5% true positive
rate (false positive rate is 6.0%), and at 28.4% true positive rate (false positive
rate is 7.9%) in individual model – merged session datasets. Similarly, Table 3(c)
reports that the digits can be best predicted at 33.6% true positive rate (false
positive rate is 6.7%) in global model. All these models again have performance
better than a random model (10%).

We observe that the results of PNKPE task are lower than the results of
VAPE task (see Sect. 6.2). In VAPE task the keys flashing while typing the
numbers, which might have triggered neural signals resulting better features in
building classification model. However, from the results of this task, we find that
the finger movement while typing a number leave a unique trace in the brain
which can be used to infer the keystrokes.

6.4 Task 4: Physical Keyboard Password Entry (PKPE)

To recall, in this task we had asked users to enter thirty-six randomly generated
uppercase 6-character password in laptop keyboard. Using the brain and key-
strokes data recorded during the task, we built classification models to predict the
users’ keystrokes. Table 4(a) shows the results for the individual model - single ses-
sion data. We can see that on average the digits can be best predicted at 34.7%
true positive rate (false positive rate is 4.7%). Similarly, in this task, the classifi-
cation models on merged sessions data can best predict the digits at 23.7% true
positive rate (false positive rate is 5.4%) (Table 4(b)). Table 4(c) reports that on
average the digits can be best predicted at 30.1% true positive rate (false posi-
tive rate is 4.8%) in the group model. Like the previous tasks, we observe that the
results are better than random model for keystroke detection (random prediction
rate of a character is 3.8%). In this task, we see that the overall results for this
classification model is lower than the results in previous tasks (see Sects. 6.1, 6.2
and 6.3). This task involved a physical keyboard with many keys on the keyboard.
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Table 4. PKPE Task: Average true positive rate and average false positive rate
(a) Individual Model – Single Session (b) Individual Model – Merging Sessions
(c) Global Model

Classifiers Session 1 Session 2 Session 3 Session 4
TPR FPR TPR FPR TPR FPR TPR FPR

IB1 27.1 5.2 28.7 5.1 34.7 4.7 37.3 4.5
KStar 30.7 5.0 31.3 4.9 28.7 5.1 37.3 4.5
NB+IBk 17.3 5.9 10.7 6.4 23.3 5.5 28.7 5.1
NB+kStar 28.7 5.1 28.9 5.1 34.7 4.7 36.7 4.5

Classifier All Sessions
TPR FPR

IB1 21.15 5.6
KStar 23.7 5.4
IB1+NB 17.75 5.7
KStar+NB 23.5 5.3

Classifier All Sessions
TPR FPR

IB1 27.8 5.1
KStar 30.1 4.8
IB1+NB 19.8 5.7
KStar+NB 29.0 5.1

The numbers were not flashed on entering them and multiple fingers were used
while typing passwords. Because of all these things, the features representing the
digits might not have been strong enough for better detection of the keystrokes.

6.5 High-End B-Alert Headset - VKPE Task

We used high-end B-Alert headset to collect data in VKPE task for one par-
ticipant, to test the feasibility of our attacks on different categories of headsets
used for recording the neural signals.

Table 5. B-Alert Headset VKPE Task: Average true positive rate and average false
positive rate (a) Individual Model –Single Session (b) Individual Model – Merging
Sessions

Classifiers Session 1 Session 2 Session 3 Session 4
TPR FPR TPR FPR TPR FPR TPR FPR

IB1 39.0 6.8 31.0 7.7 31.0 7.7 37.3 4.5
KStar 34.0 7.3 23.0 8.6 36.0 7.1 37.3 4.5
IB1 + NB 37.0 7.0 31.0 7.7 24.0 8.4 28.7 5.1
KStar +NB 25.0 8.3 25.0 8.3 38.0 6.9 36.7 4.5

Classifier All Sessions
TPR FPR

20.5 8.8
KStar 19.8 8.9
IB1+NB 17.5 9.2
KStar+NB 19.5 8.9

IB1

Table 5(a) shows the results of these classification models on single session
data. We can see that on average the digits can be predicted at a true positive
rate of 39.0% (false positive 6.8). The performance of the classification models on
merged sessions data are presented in Table 5(b). We can see that on average the
digits can be best predicted at 20.5% true positive rate (false positive is 8.8%).
These results are significantly better than a random guessing classification model
(10% for each digit) which shows the feasibility of side-channel attacks using BCI
devices.

7 Discussion and Future Work

In this section, we summarize and further discuss the main findings from our
study. We also outline the strengths and limitations of our study.
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7.1 Vulnerability of the Brainwave Signals

In this study, we focused on studying the vulnerability of BCI devices towards
revealing the private information to malicious attackers. We designed PEEP to
study the feasibility of brainwave side-channel attacks using such devices. PEEP
stealthily monitors and records event-related potentials (ERPs) measured by
BCI devices when users are typing their PINs or passwords on to physical or
virtual keyboards. PEEP can then analyze the ERPs for extracting features
representing each of the digit or character. These features are then used to build
a training model which is later used to predict the keystrokes made by the users.
We experimentally verified the feasibility of PEEP for both individual and global
training models.

Closely related to our study is the work done by Martinovic et al. [29]. They
also studied the feasibility of side-channel attack with brain-computer interfaces.
They showed the images of banks, ATMs, digits, months, etc., to participants
to elucidate their private information related to banks, ATMs, PINs, and month
of birth. They used the amplitude of P300 ERP, which appears in neuronal
electrical activity for known artifacts, to infer such details. The participants in
their study were asked to memorize 4-digit PINs and were shown the images of
randomly permuted numbers between 0 and 9, one by one. Each number was
shown 16 times, and the experiment lasted around 90 seconds. They were able to
correctly predict the first digit of the PIN at 20% accuracy. In contrast, PEEP,
on average, was able to predict digits at the true positive rate of 46.5% (FPR
6.0%) for PIN entered in the VAPE task (this is the task closely related to PIN
study of Martinovic et al.). Also, their attack set-up is intrusive and can be
easily detectable as the users may notice the abnormality in the app when it
shows the images of banks or ATMs related to the user. In comparison, PEEP
is highly surreptitious as it only requires passive monitoring of brain signals as
users’ type their PINs and passwords in regular use of computing devices, not
fraudulent strategies that may trigger suspicion and be detected by the user. By
the passive nature of our attack, it can be used to learn private input from any
(secondary) computing device, not necessarily the (primary) one to which the
BCI device is connected like in [29].

7.2 Password Entropy

PEEP reduces the entropy of the PIN or textual passwords, making it easier
to launch dictionary or brute force attacks. In our study, we assumed the pass-
words and PINs to be random. We used 0–9 digits to create 4-digit PIN and
A-Z characters to create six character-based passwords. If brute-force attack is
launched, it will take 104 guesses to correctly identify the PIN and 266 guesses
to correctly identify the password. The success of randomly guessing a digit of
the PIN is 100/10 (10%) and the success of randomly guessing a character is
100/26 (3.84%). PEEP increases this accuracy of correctly identifying the digits
of PIN to 47.5% and passwords to 34.7%. In case of non-random passwords,
PEEP can be used in conjunction with dictionary-based password attacks, and
further reduce the number of guesses in the brute-force attacks.
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7.3 Possible Defensive Mechanisms

One of the possible strategies to mitigate the threat invoked by PEEP is to
automatically insert noise in the neural signals when the user starts typing pass-
words or PINs (or other sensitive input). However, this might affect other benign
applications dependent on brain signals during that time frame. Currently, the
third-party developers are offered unfettered access to the neural signals cap-
tured by such devices. This access can be managed by operating systems to stop
apps other than intended apps to listen on to brain signals while entering the
private information in desktops or mobiles. The more sophisticated attacks are
imminent with the technological advancements in these BCI devices. So it is
important to study probable mitigations of such attacks in the future, especially
given their potential hideous and powerful nature.

7.4 Study Strengths and Limitations

We believe that our study has several strengths. The study used randomly gen-
erated passwords which users knew at the time of the experiment. Despite the
lack of pre- familiarity with the passwords/PINs, we were still able to predict
them with true positive rate significantly better than random guessing. In real
life, the password might remain in the memory for longer time, and the users
might only be using certain fixed digits or characters in their PINs or passwords,
which might provide better feature space and better prediction true positive rate.
Further, we launched our side channel attacks using different categories of head-
sets (both consumer and clinical EEG headsets) and verified the feasibility of
our attacks in a variety of contexts. Similar to any study involving human sub-
jects, our study also had certain limitations. Our study was conducted in a lab
environment. Although we tried to simulate the real-world scenarios of enter-
ing PINs or passwords, the layouts of the experimental tasks were simplistic.
Also, the performance of the users might have been affected by the fact that
their brain signal was recorded during the task. The EEG headsets we used in
our experiment were quite light-weight, and the duration of the experiment was
short (maximum four minutes for each task), however, the participants might
have felt some discomfort that may have impacted their brain responses. Future
work may be needed to assess the feasibility of our attacks in real-world or field
settings. We believe that our work lays the necessary foundation that serves to
highlight the vulnerability.

8 Concluding Remarks

The popularity of BCI devices is ever increasing. In not so distant future, these
devices are going to be less costly and more sophisticated and will be integrated
into many spheres of daily lives of users. In this light, it is important to study
the possible security vulnerabilities of such devices and make people aware of
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such vulnerabilities. In this paper, we examined the possibility of one such side-
channel attack for the purpose of inferring users’ private information, in partic-
ular, their sensitive keystrokes in the form of PINs and passwords. We designed
and developed PEEP, which successfully predicts the sensitive keystrokes made
by the users just from the event-related potentials passively recorded during
those keystrokes. PEEP predicts numbers entered in 4-digit PINs in virtual
keyboard with an average TPR of 43.4%, virtual ATM keyboard with an aver-
age TPR of 47.5%, physical numeric keyboard with an average TPR of 46.5%
and alphabets entered in 6-character passwords with an average TPR of 37.3%,
demonstrating the feasibility of such attacks.

A Design of Experiments

Fig. 3. (a) VKPE task: virtual keyboard (b) VAPE task: virtual ATM keyboard

Fig. 4. PNKPE task: (a) Layout to enter the PIN (b) Physical numeric keyboard used
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Fig. 5. PKPE task: (a) Layout to enter 6-digit character based password (b) Physical
keyboard used
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