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Abstract. Cryptographic authentication protects messages against
forgeries. In real life, messages carry information of different value and
the gain of the adversary in a successful forgery and the correspond-
ing cost of the system designers, depend on the “meaning” of the mes-
sage. This is easy o see by comparing the successful forgery of a $1,000
transaction with the forgery of a $1 one. Cryptographic protocols require
computation and increase communication cost of the system, and an eco-
nomically optimal system must optimize these costs such that message
protection be commensurate to their values. This is especially important
for resource limited devices that rely on battery power. A MAC (Message
Authentication Code) provides protection by appending a cryptographic
tag to the message. For secure MACs, the tag length is the main deter-
minant of the security level: longer tags provide higher protection and
at the same time increase the communication cost of the system. Our
goal is to find the economically optimal tag lengths when messages carry
information of different values.

We propose a novel approach to model the cost and benefit of infor-
mation authentication as a two-party extensive-form game, show how to
find a Nash equilibrium for the game, and determine the optimal tag
lengths for messages. We prove that computing an optimal solution for
the game is NP-complete, and then show how to find an optimal solution
using single Mixed Integer Linear Program (MILP). We apply the app-
roach to the protection of messages in an industrial control system using
realistic messages, and give our analysis with numerical results obtained
using off-the-shelf IBM CPLEX solver.
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1 Introduction

Information authentication is an indispensable part of today’s computer and
communication systems. Gilbert et al. [14] considered codes that detect “decep-
tion” to provide protection against message tampering. A Message Authentica-
tion Code (MAC) is a symmetric key cryptographic primitive that consists of
a pair of algorithms: a tag generation algorithm TAG that generates a short
string called tag that is appended to the message, and a verification algorithm
V ER that takes a message and an appended tag, and accepts or rejects the
message. Message Authentication Codes (MAC) when the adversary has unlim-
ited computational power, were first modelled and analyzed by Simmons [27]
as a two-party zero-sum game. Security of MAC when the adversary is compu-
tationally bounded has also been formalized using a two-party zero-sum game
that allows the adversary to have a learning phase (by querying authentication
and verification oracles), before constructing the forgery. Efficient constructions
of MAC with provable security have been proposed using block ciphers [6] and
hash functions [5]. In all these works, messages are assumed to have equal val-
ues for the adversary and the communicants, and the adversary is considered
successful with any forgery that passes the verification test.

In practice however, messages have different values for the adversary and
the communicants, and the impact of a successful forgery will depend on the
information that they carry: forging a $1,000 transaction will be much more
desirable for the adversary than forging a $1 one! Similarly, in an industrial
control system that uses information communication in the daily operation of
the system, a control message that causes the system to shut down is far more
valuable, than a simple regular status update message.

An authentication system that provides the same protection for all messages,
must either choose security parameters of the system for the protection of the
most high-valued messages in the system, or accept higher risks for the more
important messages.

Cryptographic authentication has two types of cost: the computation cost of
generation and verification of MAC, and the extra communication cost of trans-
mitting and receiving the appended tag. These costs could become significant
for small devices that must minimize their energy and power consumption, and
carefully plan their resources [31]. In the fast growing Internet of Things (IoT),
the bulk of messages that are sent between devices are short status update and
control messages that must be authenticated, and optimizing the cost becomes
highly desirable [26]. In [22], in the context of securing IoT and in particular
machine-type communication, the author noted that:

“They generally have low data rate requirements, periodic data traffic
arrivals, limited hardware and signal processing capabilities, limited storage mem-
ory, compact form factors, and significant energy constraints [20] As an example,
a battery life of ten years at a quarter of the cost of wideband LTE-A devices is
one of the objectives of the Release 13 LTE-A MTC standardization effort [21].”

Our objective is to optimize the cost of message authentication to be com-
mensurate with the value of information that the message carries.
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Our work. We depart from the traditional two-party zero-sum game model of
security of MAC, and consider the problem of using an ideal MAC for protecting
messages that have different values. To adjust the protection level of messages,
we will use variable tag lengths for the ideal MAC: the MAC guarantees that
when the tag length is τ , the adversary’s success chance of a forgery is 2−τ . This
implicitly assumes that the key length is at least the size of the tag length. Ideal
MACs can be closely approximated with existing MAC algorithms in information
theoretic and computational security.

We model the problem as a game between two rational players, a system
designer that includes the sender and the receiver, and an adversary. The game
is an infinite general-sum extensive form game with perfect information. We
consider the following setting: there is a message source with � messages and a
publicly known probability distribution; time is divided into intervals; in each
interval the source generates a message according to the known distribution. We
also allow intervals without any message (empty message). This is similar to
the model considered by Simmons [27] and a natural model for many message
sources including messages that are generated in an industrial control system.

The cost of a successful forgery for the system designer includes the opera-
tional cost of the cryptographic protection that they use, and the loss incurred
because of the particular forgery. The adversary’s gain will also depend on the
particular forgery and the information that the forged message carry.The game
proceeds as follows.

There is a publicly known ideal MAC. First, the system designer chooses a
vector T = (τi) ∈ N

�+1 of authentication tag lengths, one for each message,
and makes the vector public. We assume the empty message will also receive a
tag. Next, a message mi appears in the system (e.g. a message appearing in an
industrial plant). The designer computes a tag of length τi, appends it to the
message, and sends it. Finally, the adversary sees the message and decides how
to replace it with another message, including the empty message. The latter is
equivalent to removing the message from the channel and had not been consid-
ered in traditional MAC systems.We derive expressions that capture the cost
and the gain of the designer and the adversary, and by analyzing the strategies
of the two, show how to find a Nash equilibrium of the game and determine the
optimal tag lengths for messages. Our work makes the following contributions.

(1) It introduces a novel approach to security analysis of cryptographic mes-
sage authentication that takes into account the value of information that
messages carry as well as the cost of using cryptographic protection,and
provides an optimal fine-grained protection mechanism using a secure MAC
algorithm that supports different tag lengths. The model can realistically
capture a variety of costs and rewards for players. The integrity attacks
include traditional message forgeries (i.e. message injection and substitu-
tion) as well as message deletion (jamming) attack.

(2) We present a sound method of finding optimal (Nash equilibrium) strategies
using backward induction argument.The method, however, requires solving
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an exponential (in the number of messages) number of non-linear integer
optimization problems.

(3) Using a transformation from the vertex cover problem, we show that com-
puting optimal vector of tag lengths, is NP-hard.

(4) We present an equivalent formulation of the problem in the form of a mixed
integer linear program (MILP) that proves that the decision version of our
problem is NP-complete. The MILP formulation provides an attractive app-
roach which allows us to use an off-the-shelf solver to find a solution to
a concrete instance of the problem. We apply our formulation and MILP
approach to the analysis of message authentication in an industrial control
system for oil pipes.

Paper organization. In Sect. 2 we provide preliminary background and describe
the proposed game of message authentication. Section 3 is the analysis of the
game and finding a Nash equilibrium using backward induction. Sections 3.2
and 4 give computational complexity of the game and the formulation of finding
the Nash equilibrium as a solution to an MILP. In Sect. 5 we discuss related
works. Section 6 concludes the paper and suggests directions for future work.

2 An Economic Model for Information Authentication

In the following we recall the security definition of MAC that is relevant to
our work, and then describe our game model. Game theoretic definitions and
concepts follow [23].

A Message authentication code MAC is a symmetric key cryptographic prim-
itive for providing message integrity. A MAC consists of a pair of algorithms
(TAG, V ER). The TAG algorithm takes two inputs, a shared secret key k, and
a message m, and generates a tag t = TAGk(m) that is appended to the mes-
sage, resulting in a tagged message. The V ER algorithm takes a pair of inputs,
a key k and a tagged pair (m′, t′), and outputs V ERk(m′, t′) = T to indi-
cate that the tagged pair is valid and message is accepted as authentic, and
V ERk(m′, t′) = F to denote detection of a forgery. Correctness of the MAC
requires that V ERk(m, TAGk(m)) = T .

A MAC is (ε, u)-secure if an adversary who has a learning phase during
which they can query u tagged messages from an authentication oracle cannot
successfully forge a message with probability better than ε. (One can also allow
access to verification oracle.) An u-time ideal MAC is a (2−τ , u)-secure MAC,
where τ is the length of the tag in bits. A vlMAC family in this paper is a
family of (2−τ , u)-secure MAC for τ ∈ N, where N = {0} ∪ Z

+ denotes the set
of non-negative integers. We use u = 1. This means that the MAC can detect
with a high probability, forged messages that are injected into the system, or
the substitution of a message with a forged one. Our game theoretic model also
considers the cost of dropping a message. To prevent message replay, one needs
to consider additional mechanisms such as counters, or ensure that each message
includes extra redundancy to make each message unique. This will not affect our
analysis.
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Game setting. Let Iε = {ε, 1, · · · �} denote the set of indexes of possible mes-
sages, including the empty message, and let I = {1, · · · �}, denote the set of
indexes of non-empty messages.

– A sender S wants to send messages to a receiver R over a channel that is con-
trolled by an adversary, Eve.Eve can either inject a message into the channel,
delete (jam), or modify the message that is sent by S. S and R together form
a system designer player.

– Time is divided into intervals. A message source M = {m1, · · ·m�} generates
messages independent of the sender and the receiver. In each time interval a
message mi, i ∈ Iε, may appear at the sender terminal that must be sent to
the receiver.Let Mε = {mi, i ∈ Iε} denote the set of messages in the system
(e.g. an industrial control system), and mε be a special message denoting
“no-message” appearing in the interval. We assume messages from Mε appear
with a publicly known probability distribution (pε, p1, · · · p�), and pi = Pr(mi)
is the probability of mi appearing in the system, and pε = Pr(mε) is the
probability that no message appears in a time interval. Messages have different
lengths. We will also use mi to denote the length of the message mi.

– Messages have different “values” for the system designer and the adversary.
If Eve succeeds in changing mi to mj , where i, j ∈ Iε, their gain will be
gi,j . The impact of a successful forgery on the system designer’s operation is
measured by a cost function c′

i,j
1 that reflects the economic cost of successful

message substitution for the system designer. Note that i = ε corresponds to
message injection and j = ε is message deletion (jamming, dropping) by the
adversary. We also consider the cost di of a detected forgery attempt on mi.
This captures the cost of, for example, request for retransmission or using
alternative channels for retransmission.
We assume gi,j and c′

i,j , i, j ∈ Iε, are non-negative and public.
– The total cost of the system designer when a forgery occurs, includes the eco-

nomic impact of an undetected forgery, the cost associated with detected forg-
eries, and the investment to provide the required computation for MAC gen-
eration and verification, and the communication cost of sending and receiving
messages with the appended tag. We assume that the operational cost of the
MAC system is proportional to the length of the authenticated message (i.e.
message appended with the tag). This is reasonable for small devices in an
IoT setting and can be replaced by other functions to reflect other settings.
We use αt and αr to denote the (per bit) operational cost of the cryptographic
MAC for the sender and the receiver, respectively.

– The system designer uses a vlMAC to provide authentication for messages.
Security of MAC guarantees that a tagged message (m, t) can be forged with
probability 2−τ , where τ is the length of the tag t. We use T = (τε, τ1, · · · τ�) ∈
N

�+1 to denote the vector of tag lengths for messages mε,m1 · · ·m�.

1 For our analysis we define ci,j that includes c′
i,j .
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2.1 Game Structure

We model the interaction between the two players (the system designer and the
adversary) in the above scenario when messages are generated by an external
source, using a perfect information extensive form game with chance moves. We
assume a secure key has been shared between the sender and the receiver.

1

c

2

u1(T1,mε ,mε )
u2(T1,mε ,mε )

mε m1 . . .

u1(T1,mε ,m�)
u2(T1,mε ,m�)
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pε ,mε

2
. . .

p1,m1
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mε m1 . . .

u1(T1,m�,m�)
u2(T1,m�,m�)
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. . . p�,m�

T1
c

T2
c

Ti = (τi1,τi2, . . . ,τi�)
c

. . .

. . .

. . . . . .

Fig. 1. A sketch of the game tree Θ that represents the message authentication game.
The circles labeled by 1, 2 and c, represent the points in the game that the players 1,
2, or the chance player, must take action. The labels on the edges denote the actions
taken by the player associated with the circle that is at the higher end of the edge. The
leaves of the tree are labelled by the payoffs of the two players.

The game Γauth = 〈N,H,P, fc, (ui)〉 is defined by the set of players N , the
set of histories H, a player function P , a fixed distribution for chance moves fc,
and the utility functions (ui), i = 1, 2. A tree representation of the game is given
in Fig. 1.

A history is a list of actions by players corresponding to a path from the root
of the game tree to a node in the tree. The length of a history is the number of
elements in the list. The set of histories H is given by:

H = {∅, {T ∈ N
� +1}, {(T,mi) ∈ N

� +1 × Mε}, {(T,mi,mj) ∈ N
� +1 × Mε × Mε}}.

At a history T of length one, the system designer has chosen a tag length
vector T = (τi)i∈Iε

; at a history (T,mi) of length 2, the system designer has
chosen T and the chance move has selected mi; finally at a terminal history
(T,mi,mj) of length 3, a length 2 history (T,mi) has been followed by player
2’s choice of the forged message mj ∈ Mε. A player function P takes a non-
terminal history h ∈ H \ Z, and outputs a player in N . The set of actions
available to a player at history h is denoted by A(h) = {a : (h, a) ∈ H}. For all
chance nodes h = T ∈ N �+1, fc(mi|h) = p(mi) is an independent probability
distribution on possible moves A(h) = Mε, at h.
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Let Kronecker delta δi,j be defined as, δi,j = 0 if j �= i, and δi,j = 1,
otherwise. For a tag length vector T = (τε, τ1 · · · τ�), the chance move mi, and
Eve’s move mj , where i, j ∈ Iε = {ε, 1, · · · �}, the players’ utilities are,

u1(T,mi,mj) = αt(mi + τi) + αr(mj + τj) + c′
i,j2

−τj + di(1 − 2−τj )(1 − δi,j),

u2(T,mi,mj) = gi,j2−τj(1−δi,j).

The utility u1(T,mi,mj) consists of, (i) αt(mi +τi), the sender’s cost of sending
the tagged message (mi, ti), (ii) αr(mj + τj), the receiver’s cost of receiving a
tagged message (mj , tj), (iii) c′

i,j2
−τj , the economic cost of accepting a fraudu-

lent message mj in place of the original message mi, and (iv) di(1−2−τj )(1−δi,j),
the economic cost of detection of a forgery in the organization. The utility
u2(T,mi,mj) of player 2, is their expected gain that is realized by the successful
replacement of mi by mj . We use,

u1(T,mi,mj) = αt(mi + τi) + αr(mj + τj) + c′
i,j2

−τj + di(1 − 2−τj )(1 − δi,j) (1)
= αt(mi + τi) + αr(mj + τj) + ci,j2

−τj + di(1 − δi,j), (2)

where ci,j = c′
i,j − di(1 − δi,j), effectively combining the cost of an undetected

forgery and a detected forgery.

Assumptions: We assume the cost and gain parameters are known to the system
designers. Real world applications of game theory in physical security suggest
that these values can be reliably estimated [28]. Although exact values may be
hard (or impossible) to find, system designers can use risk analysis methods to
categorize messages into types, and attach a value to each type. Small errors in
estimates of system designer’s costs cannot lead to large errors in the proposed
solutions. This might happen due to errors in attacker’s gain estimates, however,
overestimating attacker’s gains for more harmful substitutions increases robust-
ness for the final solution. If the analysis reveals that there is a substantial
uncertainty about the motivations of the attackers, the model can be extended
to a Bayesian game [20], or a game with interval uncertainly [19]. These are
possible future extensions of this work. The case study in the full version of this
paper shows how these costs can be meaningfully estimated.

To simplify the analysis of the game, we assume gi,j and ci,j are non-negative.
In practice one may use negative values. For example including decoy messages
that serve to detect forgeries could result in communicants’ cost to be negative.
We also assume ci,i = 0 and c′

i,j ≥ di. The former implies that not changing
a message incurs zero cost to the designer, and the latter implies that cost of
undetected change of a message to the designer is higher than that of a detected
change, resulting in ci,j = c′

i,j −di(1− δi,j) ≥ 0. This is a reasonable assumption
for all sufficiently valuable messages in the system. We however allow gi,i to
be non-zero (we refer to this as no-change substitution), indicating it may be
beneficial for the adversary not to change the sent message. These assumptions
capture many scenarios in practice and are used in our analysis. Our approach
can be used with other assumptions that model specific application scenarios.
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2.2 Players’ Strategies

A player i’s strategy is a tuple that specifies their choices at all histories where
P (h) = i. Player 1 is associated with h = ∅ and their strategy s1 = T ∈ N

�+1

specifies the choice of the tag length vector T . The set of player 1 strategies is
an infinite set that is denoted by S1.

The choice nodes of player 2 are at histories of length 2 and are of the form
h = (T,mi). A player 2 strategy s2 will choose a substitution message for all such
histories. Let S2 denote the set of player 2’s strategies. Histories of length 2 start
with the choice node of player 1, and so player 2 at a history of length 2 knows
the tag lengths that will be used by player 1. A strategy in S2 determines the
substitution message that will be used for every possible player 1 strategy, and
every choice of the chance move. Thus S2 is also an infinite set. We however
introduce basic strategies that are from a finite set, and are used to partition
S1 and construct a finite (although very costly) algorithm for finding a Nash
equilibrium.

Basic strategies of player 2: A basic strategy of player 2, denoted by sb
2, is a

function sb
2 : Mε → Mε that specifies the choices (substitution message) of

player 2 at all histories h(T,mi), i ∈ Iε. For each message, player 2 has � +
1 possible actions, including replacing the message with mε, and keeping the
message unchanged. Thus the number of basic strategies is |S b

2 | = (� + 1)�+1.
A basic strategy is represented by a vector (mjε

,mj1 · · ·mj�
),mji

∈ Mε, or
equivalently, by (jε, j1 · · · j�), ji ∈ Iε. Note that a basic strategy can be used
with any of the player 1’s strategies, and does not depend on the tag lengths.
The set of player 2’s basic strategies is denoted by S b

2 .
A player 2’s strategy s2 is an infinite vector of player 2’s actions at all

histories of length 2, (s2(T,mi), T ∈ N
�+1, i ∈ Iε), where player 1’s action

(their strategy) and the chance player’s action have been specified. The set
of actions (s2(T,mi), i ∈ Iε) for a fixed T , corresponds to a basic strategy
of player 2, denoted by sb

2(T ). Thus s2 can be written as an infinite vector
((T, sb

2(T )), T ∈ N
�+1, sb

2(T ) ∈ S b
2 ). The set of basic strategies of player 2 is

finite. The above discussion is summarized in the following proposition.

Proposition 1. The sets S1 and S2 are infinite. The number of player 2’s
basic strategies is (� + 1)�+1.

System designer’s cost: The expected cost of player 1 for a strategy profile
(s1; s2) = (T = (τ1 · · · τ�); ((T, (jε, j1 · · · j�)), (T ′, sb

2(T
′)) : T ′ ∈ S1 \ {T})), is

given by:

Cs1,s2 =
∑

i∈Iε

pi[αt(mi + τi) + αr(mji
+ τji

) + ci,ji
2−τji + di(1 − δi,j)]. (3)

That is, the cost of player 1 for strategy s1 = T will only depend on the basic
strategy sb

2(T ) that follows s1 = T .
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3 Finding a Nash Equilibrium Using Backward Induction

The authentication game above is an infinite game: both players’ strategy sets
are infinite and a player 2 strategy is an infinite vector. This prohibits direct use
of backward induction and finding a subgame perfect equilibrium. We however
show how to use backward induction to partition the infinite strategy set S1

into finite number of partitions, and find a Nash equilibrium for the game by
solving a finite number of constrained non-linear integer optimization problems.

Backward induction: We decompose the tree representation of the game Θ into
subtrees, Θ(T ), one for each T ∈ N

�+1. The subtree Θ(T ) has the same root as
Θ, starts with player 1 strategy T and includes all subsequent actions of chance
node and player 2. We can use backward induction for Θ(T ) to determine the
expected cost of player 1 for a strategy sb(T ): start from terminal histories of the
tree; the first backward step will arrive at a history h = (T,mi) which is a choice
node for player 2. A tuple of all such choices for all messages mi, i ∈ Iε, is a basic
strategy sb

2(T ) . The second backward step reaches the choice node of a chance
move. Here the choice is external to the game and is given by a distribution on
Mε. The third backward step reaches player 1’s choice node. At this node, the
cost of player 1 for sb

2(T ) that was selected at step 1 of backward induction by
player 2, is given by (3). We would like to choose the optimal strategy T for
player 1 which minimizes their cost over all choices of player 2. However, there
are infinitely many T and the corresponding Θ(T ), and for each one needs to
consider (� + 1)�+1 basic strategies. We make the following crucial observation
that allows us to find a Nash equilibrium of the game in finite number of steps.

The set S1can be partitioned into (� + 1)�+1 parts, one for each player 2 basic
strategy, such that for all player 1 strategies in the partition associated with
sb
2, player 2’s best response (maximizing player 2’s expected gain), is sb

2.One
can then find the best choice of player 1 (T that minimizes their expected cost)
for each partition. The final step is finding the sb

2 that corresponds to the least
expected cost for player 1 over all sb

2 ∈ S1 More details follow.

Backward induction for Θ(T ): The backward induction steps for Θ(T ) are as
follows.

S1: At a terminal history h = (T,mi,mj), the utilities are,

(u1, u2) = ([αt(mi + τi) + αr(mj + τj) + ci,j2
−τj + di(1 − δi,j)], [gi,j2

−τj(1−δ(i,j))]).

In the first backward step in Θ(T ), the best utilities of player 2 at histories
h = (T,mi) ∈ H2, mi ∈ Mε, are found by choosing messages mji

that maximize
player 2 payoffs, where

s2(T,mi) = mji
if, gi,ji

2−τji
(1−δi,ji

) ≥ gi,u2−τu(1−δi,u),∀u ∈ Iε \ {ji}. (4)

The inequalities in (4) ensure that choosing mji
will have at least the same

gain as any other mu, different from mji
. The tuple of optimal choices of player

2 for all m ∈ Mε, determines the (optimal) basic strategy sb∗
2 (T ) of player 2.
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S2: At history h = (T ), we have P (h) = c and the optimal utility of player 1 is
Cs1,sb∗

2 (T ), given by the expression (3), when sb
2(T ) = sb∗

2 (T ), found in step S1.

S3: At history h = ∅, player 1 has to select the best s1 = T by minimizing the
expected cost mins1∈S1 Cs1,sb∗

2 (T ) over all choices of s1.
Let T (sb

2) ⊂ N
�+1 be the set of player 1 strategies for which sb

2 is player
2’s optimal strategy at the first step of backward induction, S1. The following
proposition follows from step S1.

Proposition 2. A basic strategy sb
2 = (jε, j1 · · · j�) is optimal for all subtrees

Θ(T ) where T = (τε, τ1, · · · τ�), that satisfy the following:

gi,ji
2−τji

(1−δi,ji
) ≥ gi,u2−τu(1−δi,u),∀u ∈ Iε \ {ji}, i ∈ Iε (5)

Moreover,
⋃

sb
2∈S b

2
T (sb

2) = S1 and for any two strategies sb
2, s

b′
2 ∈ S b

2 , T ∈
T (sb

2) ∩ T (sb′
2 ) ⇒ u2(T, sb

2) = u2(T, sb′
2 ). Thus, the sets T (sb

2) partition the set
S1 with overlaps only due to attacker’s indifference.

The proof is in the full version of the paper. Using this lemma we prove the
following theorem.

Theorem 1. A Nash equilibrium for Γauth, and the associated optimal strategies
(T ∗, sb∗

2 (T ∗)), can be found by solving the following optimization problem,

C∗ = min
sb
2∈S b

2

C∗
sb
2

= min
{sb

2∈S b
2 }

min
{s1∈T (sb

2)}
Cs1,sb

2
.

The tag length vector T ∗ gives the minimal cost C∗ over all strategies s1 ∈ S1.

The proof is in the full version of the paper.

3.1 Tie Breaking of Indifferent Attacker

In general, there may be multiple Nash equilibria in the game. The algorithm
above soundly finds the one that optimizes the expected payoff of the defender.
When there is equality in (5), that is player 2 has more than one best choice, a
player 1 strategy may belong to multiple partitions T (sb

2).Since the approach in
Theorem 1 select the partition achieving the mimimum cost, if the same strategy
is optimal in multiple partitions, it selects the partition which is most favourable
for player 1. As a result, it resolves the tie in favour of player 1.

To avoid this unrealistic assumption, we further restrict the sets T (sb
2) so

that they include only the player 1 strategies for which sb
2 is the worst possible

best response of the attacker. In order to do this, we add additional constraints
to the definition of T (sb

2) in Proposition 2. The constraints request that the
system designer’s cost be maximized by the substitution of mi by mji

if there
are other alternative messages mu that ensure the same gain to the attacker:

ifgi,ji
2−τji

(1−δi,ji
) = gi,u2−τu(1−δi,u)then

αr(mji
+ τji

) + ci,ji
2−τji

(1−δi,ji
) + di(1 − δi,ji

) ≥
αr(mu + τu) + ci,u2−τu(1−δi,u) + di(1 − δi,u), ∀u ∈ Iε \ {ji}. (6)
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Denote these further restricted sets by T ′(sb
2). They still cover the whole

strategy space of player 1. Moreover, the overlaps of the sets are formed only
by the strategies that make both players indifferent. Computing solution as sug-
gested in Theorem 1 with sets T ′(sb

2) produces the robust solution that assumes
that the attacker breaks ties against the system designer if he is indifferent among
multiple substitutions.

3.2 Computational Complexity

The solution to the above game requires solving exponentially many optimization
problems. It is not likely that there is a substantially simpler method to solve
the game, since we further show that solving the Message Authentication Game
is NP-hard.

Theorem 2. Computing the optimal strategy for the system designer in the
Message Authentication Game is NP-hard. This can be shown even if all mes-
sages have unit length (mi = 1), occur with uniform probability without empty
interval (pi = 1

|M |), detection cost is zero, (di = 0), and regardless of the tie
breaking rule.

The proof is by reducing the NP-complete Vertex (or Node) Cover problem [17]
to the problem of finding an optimal solution to the authentication game Γauth.
Messages correspond to vertices and edges of the graph. Utilities ensure that the
optimal solution for Γauth attaches tags only to messages that correspond to ver-
tices, and a non-zero tag for a message means that the vertex is in subset S. The
basic building block of the reduction is an “edge gadget”,which ensures high cost
if none of its incident vertices is selected (receive a non-zero tag), and lower cost if
one or both of its incident vertices are selected (receive a non-zero tag).The com-
plete proof is in the full version of the paper.

4 MILP Formulation of the Game

The solution provided by Theorem 1 is extremely costly. In this section we
reformulate the optimization problem in Theorem 1 to improve efficiency of
computation and be able to use standard highly optimized solvers. We show a
transformation of this optimization problem to a single Mixed Integer Linear
Program (MILP) that is polynomial in the size of the problem definition, which
in turn is polynomial in the number of messages.

Theorem 1 states that the solution to the game of authentication, is the
solution to the following optimization problem:

min
(jε...jl)∈Sb

2

min
(τε...τl)∈Nl+1

∑

i∈Iε

pi

[
αt(mi + τi) + αr(mji + τji) + ci,ji2

−τji + di(1 − δi,j)
]
,

subject to gi,ji2
−τji

(1−δi,ji
) ≥ gi,u2−τu(1−δi,u) ∀i ∈ Iε, u ∈ Iε \ {ji}.
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The problem is structurally similar to finding strong Stackelberg equilib-
rium in Bayesian games2, which is also an NP-hard problem [8]. The proposed
game model is a Stackelberg game because first the system designer selects and
commits to a vector of tag lengths, and then the attacker observes this com-
mitment and plays their best response. The similarity to the Bayesian games is
that there is a set of messages (corresponding to player types) generated with a
fixed probability distribution. For each of these messages, the defender performs
their actions with a distinct set of payoffs. Using these observations, we derive
a MILP for the Authentication Game that is similar to DOBSS [24], the MILP
formulation for computing mixed Stackelberg equilibria in Bayesian games. The
main differences from the Stackelberg games studied in literature is the discrete
combinatorial structure of the commitment and the exponential form of the util-
ity functions. Since our problem is NP-hard, transformation of the problem to a
well studied NP-complete problem (such as MILP) and using an existing solver
is generally the most efficient solution technique.

MILP is an optimization problem that can be described as the optimization
of a linear function, subject to a set of linear constraints, where the variables
can have real or integer domains. There are two kinds of issues that need to
be resolved to transform the above optimization problem to MILP: (1) The
objective function and the constraints are not linear and, (2) the set of basic
strategies of player 2, S b

2 , is exponentially large and in the formulation above,
a set of constraints for each of these strategies is considered. We start with
linearization of the non-linear terms.

4.1 Objective Linearization

The objective function is the minimization of a number of positive terms, some of
which are exponential. Since ciji

is non-negative, we can replace the exponential
terms 2−τji , with new variables eji

, and lower bound the new variables by linear
constraints so that the approximation is exact for all meaningful integer values
of τji

. Increasing the length of τj increases the protection of the system for that
message. Increasing the length by one bit from k to k + 1, reduces the cost of
replacing mi by mj by cij(2−k − 2−(k+1)). It also has a cost αt for transmitting,
and αr for receiving. It does not change the cost related to di. If the saving in
damage incurred by successful forgery is less than the extra cost of sending and
receiving, extending the tag length is not meaningful. Denote τmax

j the maximal
meaningful value of τj . The additional bit in a tag is not worth its cost, if

αt + αr ≥ max
i∈Iε

cij

(
2−τmax

j − 2−(τmax
j +1)

)
⇒ τmax

j ≥ max
i∈Iε

log(
cij

αt + αr
) − 1. (7)

A second reason why the defender may want to increase the tag length, is to
prevent dropping of some other message that the attacker wants to substitute

2 Players in Bayeasian games receive a randomly selected private type which deter-
mines their payoff structure, before they play.
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with mj . This is not worthwhile if the cost of sending and receiving the tags is
more than the cost of the dropped message:

τmax
j (αt + αr) ≥ max

i∈Iε

di ⇒ τmax
j ≥ maxi∈Iε

di

(αt + αr)
.

If we set τmax
j to the maximum of the two values above, the linearized objective

will be:

min
(jε...jl)∈Sb

2

min
(τε...τl)∈Nl

∑

i∈Iε

pi

[
αt(mi + τi) + αr(mji

+ τji
) + ci,ji

eji
+ di(1 − δi,j)

]
(8)

with the additional constraints:

ej ≥ −2−(k+1)(τj − k) + 2−k ∀j ∈ I; k ∈ 0, 1, . . . , (τmax
j + 1).

Note that this linearization does not introduce any error.Variables τj can have
only integer values, and the approximation by the linear functions is exact for
all meaningful integer values for these variables.

4.2 Best Response Constraints Linearization

The constraints in the original problem also contain exponentials, but they can
be linearized by taking the logarithm of both sides. They are equivalent to:

log(gi,ji
) − τji

(1 − δi,ji
) ≥ log(gi,u) − τu(1 − δi,u)∀i ∈ Iε, u ∈ Iε \ {ji}. (9)

The only problem with these constraints can occur if gi,ji
or gi,u, is zero.

In that case, the logarithm is minus infinity. If gi,u is zero and gi,ji
is non-zero,

we can omit the constraint since it would always be satisfied. If gi,u is non-zero
and gi,ji

is zero, the constraint would never be satisfied. Therefore ji can be
prevented from reaching the value that would cause this situation. Finally, if
both values are zero, looking back at the constraint before taking the logarithm
reveals the constraint is trivially satisfied and can be omitted.

If an application requires gij to be negative, it does not change the solution
substantially. If for some i, there are both positive and negative gij , the attacker
will never attempt to make the exchange with the negative gain and we can set
their gains to 0. If for some message all substitutions cause negative gain, we
can reverse the constraint and perform the same linearization.

4.3 Compact Representation of the Attacker’s Strategy

After the linearization steps above, we have to find the minimum of exponentially
many linear optimization problems, i.e., one for each attacker’s basic strategy. We
further combine all the optimization problems to a single minimization to allow
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a solver, such as IBM CPLEX3, to automatically formulate problem relaxations
and prune the space of possible attacker’s strategies.

For clarity of exposition, we first describe a more intuitive formulation of the
problem with quadratic terms and then further linearize it. In order to represent
the attacker’s strategies, we define a set of new binary variables aij ∈ {0, 1}. The
semantics of aij = 1 is that the attacker replaces message mi with message mj . To
ensure that each message can be replaced by only one other message, we require:

∑

j∈Iε

aij = 1 ∀i ∈ Iε.

We combine all the optimization problems by activating only the best response
constraints relevant to specific selection of the attacker’s strategy using the stan-
dard “big M” notation. The big M method is used to activate or deactivate spe-
cific constraints in integer programs, dependent on the value of a binary variable.
The quadratic formulation of the original problem is:

min
∑

i∈Iε

pi

⎡

⎣αt(mi + τi) +
∑

j∈Iε

aij(αr(mj + τj) + ci,jej + di(1 − δi,j))

⎤

⎦(10)

ej ≥ −2−(k+1)(τj − k)+2−k, ∀j ∈ I; k∈0, . . . , (τmax
j + 1) (11)

(1 − aij)M + log(
gi,j

gi,u
) − τj(1 − δi,j) ≥ −τu(1 − δi,u),

∀i, j ∈ Iε, u ∈ Iε \ {j} : gi,u > 0 (12)
∑

j∈Iε

aij = 1 ∀i ∈ Iε (13)

aij ∈ {0, 1}; τj ∈ N; ei ≥ 0 (14)

The objective function of this optimization problem is the Eq. (8), rewritten
using the binary variables aij . Instead of adding directly the contribution of
switching a message i to ji, it adds the contribution of switching to all alterna-
tive messages multiplied by the indicator aij , which is zero with the exception of
aiji

. Constraints (11) are from the linearization of the exponentials in the objec-
tive. Constraints (12) are the linearization of the best response with an additional
term (1−aij)M . Here M is a sufficiently large (possibly always different) number,
so that with aij = 0 the constraint does not restrict any meaningful assignment
of variables in the constraint. As a result, the constraint is effective only in case
of aij = 1. Each feasible assignment of variables aij encodes one of the expo-
nential number of minimization problems that we started with. The indicators
in the objective (10) set up the right objective function from Theorem1 and the
indicators in constraints (12) choose the right subset of constraints that is valid
for that subproblem.

In order to be able to use any standard MILP solver, we further linearize the
quadratic objective function. Since aij are binary, the quadratic terms can be
rewritten using the “big M” notation with the same meaning as above. Instead
3 http://www.ibm.com/software/commerce/optimization/cplex-optimizer/.

http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
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of multiplication, they are interpreted more like “if aij = 1 then aij · τj = τj else
aij ·τj = 0”. For each possible term aij ·τj we define a new variable aτij , for each
possible term aij · ej , we define a new variable aeij and we constrain these new
variables to be larger or equal to the original variables only in case of aij = 1.
This way the minimization of the objective, in which these variables are present
in positive terms, ensures that the new variables will reach their lower bounds.

min
∑

i∈Iε

pi

[
αt(mi + τi) +

∑

j∈Iε

(αr(mj + aτij) + ci,jaeij + di(1 − δi,j)aij))

]

constraints(11) − (14) (15)
aτij + (1 − aij)M ≥ τj ∀i, j ∈ Iε (16)
aeij + (1 − aij)M ≥ ej ∀i, j ∈ Iε (17)

aeij ≥ 0; aτij ≥ 0 ∀i, j ∈ Iε (18)
aij = 0 ∀i, j ∈ Iε : gij = 0 & ∃u ∈ Iε gi,u > 0 (19)

The problem formulation in (15–19) is an MILP, which can be solved by
any standard solver. If we require the empty message not to have a tag, we
can add the constraint τε = 0. The algorithm above computes the optimistic
Nash equilibrium assuming that the attacker will break ties in favour of the
defender. However, the discrete nature of the defender’s commitment allows for
a MILP formulation of the pessimistic variant as well. We need to incorporate
the constraints (6) in to the program.

4.4 Examples

We apply the above solution method to two cases. First we consider an example
of a small message space to show how using differentiated tag lengths reduces
the designers’ cost, and then model a real life message space to show that the
problem can be solved for realistic cases using off-the-shelf software.

A 3-message authentication system. The goal of this example is to show
the effectiveness of the proposed variable length tags compared to fixed-length
tags. We consider a three message space and use Table 1 to specify the complete
set of parameters, mi (message length), cij , gij (cost and gain of substitution
of message i with message j), αt = αr = 0.1 ( transmission and reception
costs per bit), pi = 1

4 (message distribution including empty message), and
di = 0 (detection cost). The system parameters are such that the adversary
must break a tie between a number of choices (when mε appears, injecting any
of the messages mi, i = 1, 2, 3 has the same gain 2). We consider two cases: the
adversary breaks the tie against the defender, and the case that the adversary is
only concerned about their own gain and breaks ties in favour of the defender.
The resulting two sets of tags are shown by τ−

i and τ+
i , respectively. We also

consider the heuristic maximum tag lengths τmax
i defined by expression (6) for

each message, that effectively show the highest protection that is “worth” offering
to a message. The designers’ cost for these cases is given by u1(x, y) values where
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Table 1. (left table) Example with 3 messages, assuming αt = αr = 0.1, di = 0
and pi = 1

4
. Breaking ties in favour of the defender is indicated by + and against

the defender by −. (right table) Defender’s objective values with different tag length
vectors. τ without indices indicates constant length tags.

i mi ciε ci1 ci2 ci3 giε gi1 gi2 gi3 τ+
i τ−

i τmaxi ji
ε 0 0 0 2 1 0 2 2 2 0 0 3 3
1 10 0 0 2 1 1 0 2 2 1 2 4 ε
2 5 0 1 0 2 1 2 0 2 1 3 4 ε
3 1 1 3 2 0 1 2 2 0 1 2 4 ε

u1(τ+, j) = 0.9
u1(τ−, j) = 0.96
u1(τmax,br+) = 1.17
u1(τmax,br−) = 2.14

τ + -
0 2.05 3.18
1 1.55 2.35
2 1.38 2.05
3 1.39 2.06

x is the designers’ strategy given by the set of tags, and y is the best response
strategy for the attacker. The small table on the righthand side of Table 1 gives
player 1 utility u1(x, y), when the tag length is the same (it can be 0,1,2 or 3) for
all messages, and tie breaking is in favour or against the designer, as described
above. It can be seen that: if the attacker breaks ties against the defender, tags
(τ−

i ), they will have expected cost 0.96; if the attacker breaks ties in favour of
the defender (indifferent attacker), the optimal tag of all non-empty messages
is one bit (τ+

i ), and the expected cost of the defender is 0.9. In both cases the
attacker prefers to replace the empty message with message 3 and drop the
other messages (ji). The defender’s cost in these cases are substantially lower
than using the best fixed length (leading to costs 1.38 and 2.05), or using the
heuristic tag lengths τmax

i .

A case study. In the full version of the paper we also present the case of protect-
ing messages in an industrial control system used for oil pipeline management,
using our proposed approach. We consider a system with 23 message types and
the empty message, and show how to estimate meaningful values for players’ cost,
gain and utilities for the forgeries. We compare the proposed game-theoretic solu-
tion with a simple heuristic that protects each message with the heuristic tag
lengths (τmax

j ), as defined in Sect. 4. A single fixed tag length for all messages
would lead to higher cost than this heuristic. The analysis shows that when the
tags on empty messages are not allowed, the proposed method allows reducing the
combined expected cost of the system designer for sending the tagged messages,
successful, and unsuccessful attacks by 26% compared to the heuristic. When tags
are added to the empty message, the cost is reduced by 33%.

Scalability. Figure 2 presents the runtime of solving games assuming that mes-
sages are uniformly distributed, with random game parameters mi ∈ 1 . . . 20,
cij ∈ [0, 100], gij ∈ [0, 100], di ∈ [0, 100], αr ∈ [0, 1], αt ∈ [0, 1], using CPLEX
12.6 on a standard laptop with dual core 2.8 GHz Intel i7 CPU. The solid lines
are for the algorithm assuming breaking ties in favour of player 1 and the dashed
lines are for the algorithm assuming breaking ties against player 1. Black lines
shows the results when the empty message is not tagged, and the gray line shows
the results when empty message is tagged. The points represent means of 20 dif-
ferent instances of the given size, the error bars represent the maximum and



220 R. Safavi-Naini et al.

Fig. 2. Computation time required to solve random instances of the games with and
without tags on the empty message using for the optimistic and pessimistic equilibrium.

minimum computation time out of the 20 instances for the case with no tag
on the empty message and breaking ties against the first player. All problems
with 10 messages can be solved in a fraction of second and the most complex
problems with 35 messages take on average 100 s.

5 Related Works

In the game-theoretic definition of security [18] for cryptographic protocols, secu-
rity is defined as a two-party zero-sum game between a challenger and an adver-
sary who can corrupt a subset of parties, and/or (partially) control communica-
tion among them.

Rational cryptography is a more recent line of research [1,3,11,15,16,21,25],
that assumes protocol participants are “rational” and have well defined prefer-
ences, acting in the system in accordance with these preferences.Rational cryp-
tography has resulted in overcoming some impossibility results [3,15] and pro-
viding better efficiency [4]. Garay et al. [13] modelled security of a cryptographic
protocol as a two-party zero-sum extensive game with perfect information and
observable actions between the protocol designer and the attacker. We also use
the same two types of participants in our game definition but use a completely
different game. The notion of “cost” in all previous works is in terms of the
amount of computation and/or communication. We however consider also the
economic cost (and benefit) of using cryptosystems in practice. Game theoretic
modelling ofauthentication codes is due to Simmons [27] who used two-party
zero-sum games with adversary’s action being message injection and substitu-
tion. The idea of variable length authentication was first proposed in [10]. Using
economics to decide the length of the MAC was proposed in [9].

Using games to model economics of information security and privacy scenar-
ios has been an active area of research [7,12,30].The game FLIPIT is motivated
by the Advanced Persistent Threats in computer systems, and models the behav-
iour of an attacker and a defender who both want to control a resource such as a
cryptographic key [29]. Here the “benefit” of a player is defined as “the fraction
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of time the player controls the resource minus the average move cost”, and the
goal of each player is to maximize their benefit. A comprehensive resource list
is maintained at [2].

6 Concluding Remarks and Future Directions

Game theory provides a powerful framework to model economic cost and bene-
fit of cryptographic systems in real life settings. Our work shows the usefulness
of such analysis and insight that can be gained in the case of cryptographic
authentication. The example of a three message space in Sect. 4.4 shows how
using differentiated tag lengths can reduce the total cost of the designer, com-
paring the optimal cost to cases that the tag length is constant.

In economic models, one needs estimates of the system parameters and play-
ers’ gain and cost values. In our model this can be achieved using risk analysis
that takes into account probability of attack in a time interval and the impact of
the attack. The cost function of the designer combines the cost of the successful
forgery, which is the risk of the forgery to the operation of the organization, with
the communication cost of one bit. This latter cost must be estimated by taking
onto account factors such as frequency of messages, life time of the battery and
the operational requirements of the system.

The estimation of system parameters is feasible when the message set is small
(e.g. control messages in an IoT setting), or messages are highly structured and
can be grouped into well defined classes.

Our work provides a starting point for this line of investigations. We focussed
on the basic authentication problem and showed finding Nash equilibrium is NP
hard. More complex version of the problem, for example considering forgery after
observation of t tagged messages or using other cost functions for communica-
tion, could be modelled and analyzed in a similar way. One can also consider
confidentiality where different messages, or different parts of messages, require
different levels of security, and optimize the cryptographic budget of the system
to ensure the best possible protection.

Acknowledgement. First author’s work is in part supported by Natural Sciences
Research Council of Canada, and Alberta Innovates Technology Futures of the province
of Alberta. Third author’s work is supported by EPSRC EP/C538285/1 and by BT,
as BT Chair of Information Security, and by the State of Texas.

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computation.
In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Distributed Computing, pp. 53–62. ACM (2006)

2. Anderson, R.: Economics and security resource page. http://www.cl.cam.ac.uk/
∼rja14/econsec.html. Accessed 19 Feb 2016

http://www.cl.cam.ac.uk/~rja14/econsec.html
http://www.cl.cam.ac.uk/~rja14/econsec.html


222 R. Safavi-Naini et al.

3. Asharov, G., Canetti, R., Hazay, C.: Towards a game theoretic view of secure com-
putation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–
445. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 24

4. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for
realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–
156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 8

5. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 1

6. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

7. Bohme, R., Moore, T.: The iterated weakest link - a model of adaptive security
investment. In: 8th Workshop on the Economics of Information Security (WEIS)
(2009)

8. Conitzer, V., Sandholm, T.: Computing the optimal strategy to commit to. In:
Proceedings of the 7th ACM Conference on Electronic Commerce, pp. 82–90. ACM
(2006)

9. Desmedt, Y.: Analysis of the Security and New Algorithms for Modern Industrial
Cryptography. Ph.D. thesis, K.U. Leuven, Leuven, October 1984

10. Desmedt, Y., Vandewalle, J., Govaerts, R.: The mathematical relation between
the economic cryptographic and information theoretical aspects of authentication.
In: Proceedings of the 4th Symposium on Information Theory in the Benelux, pp.
63–66. Werkgemeenschap voor Informatie- en Communicatietheorie (1983)

11. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in
standard communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 419–436. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-11799-2 25

12. Fultz, N., Grossklags, J.: Blue versus red: towards a model of distributed security
attacks. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 167–183.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4 10

13. Garay, J., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol design:
cryptography against incentive-driven adversaries. In: 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 648–657. IEEE
(2013)

14. Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.: Codes which detect deception. Bell
Syst. Tech. J. 53(3), 405–424 (1974)

15. Groce, A., Katz, J.: Fair computation with rational players. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 7

16. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In:
Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Comput-
ing, pp. 623–632. ACM (2004)

17. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
IRSS, pp. 85–103. Springer, Boston (1972)

18. Katz, J., Lindell, Y.: Introduction to Modern Cryptography: Principles and Pro-
tocols. CRC Press, Boca Raton (2007)

19. Kiekintveld, C., Islam, T., Kreinovich, V.: Security games with interval uncer-
tainty. In: Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-agent Systems, pp. 231–238. International Foundation for Autonomous
Agents and Multiagent Systems (2013)

https://doi.org/10.1007/978-3-642-20465-4_24
https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/978-3-642-03549-4_10
https://doi.org/10.1007/978-3-642-29011-4_7


Economically Optimal Variable Tag Length Message Authentication 223

20. Kiekintveld, C., Marecki, J., Tambe, M.: Approximation methods for infinite
bayesian stackelberg games: modeling distributional payoff uncertainty. In: The
10th International Conference on Autonomous Agents and Multiagent Systems-
Volume 3, pp. 1005–1012. International Foundation for Autonomous Agents and
Multiagent Systems (2011)

21. Kol, G., Naor, M.: Cryptography and game theory: designing protocols for exchang-
ing information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 18

22. Mukherjee, A.: Physical-layer security in the internet of things: sensing and commu-
nication confidentiality under resource constraints. Proc. IEEE 103(10), 1747–1761
(2015)

23. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

24. Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Playing
games for security: an efficient exact algorithm for solving Bayesian stackelberg
games. In: Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pp. 895–902. International Foundation
for Autonomous Agents and Multiagent Systems (2008)

25. Pass, R., Halpern, J.: Game theory with costly computation: formulation and appli-
cation to protocol security. In: Proceedings of the Behavioral and Quantitative
Game Theory: Conference on Future Directions, p. 89. ACM (2010)

26. Rose, K., Eldridge, S., Chapin, L.: The internet of things (IoT): An overview-
understanding the issues and challenges of a more connected world. Internet Society
(2015)

27. Simmons, G.J.: Authentication theory/coding theory. In: Blakley, G.R., Chaum, D.
(eds.) CRYPTO 1984. LNCS, vol. 196, pp. 411–431. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-39568-7 32

28. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press, Cambridge (2011)

29. Van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: FLIPIT: the game of stealthy
takeover. J. Cryptol. 26(4), 655–713 (2013)

30. Varian, H.: System reliability and free riding. In: Camp, L.J., Lewis, S. (eds.) Eco-
nomics of Information Security. ADIS, vol. 12, pp. 1–15. Springer, Boston (2004).
https://doi.org/10.1007/1-4020-8090-5 1

31. Verbauwhede, I.: VLSI design methods for low power embedded encryption. In:
Proceedings of the 26th Edition on Great Lakes Symposium on VLSI, p. 7. ACM
(2016)

https://doi.org/10.1007/978-3-540-78524-8_18
https://doi.org/10.1007/3-540-39568-7_32
https://doi.org/10.1007/1-4020-8090-5_1

	Economically Optimal Variable Tag Length Message Authentication
	1 Introduction
	2 An Economic Model for Information Authentication
	2.1 Game Structure
	2.2 Players' Strategies

	3 Finding a Nash Equilibrium Using Backward Induction
	3.1 Tie Breaking of Indifferent Attacker
	3.2 Computational Complexity

	4 MILP Formulation of the Game
	4.1 Objective Linearization
	4.2 Best Response Constraints Linearization
	4.3 Compact Representation of the Attacker's Strategy
	4.4 Examples

	5 Related Works
	6 Concluding Remarks and Future Directions
	References


