
Aggelos Kiayias (Ed.)

 123

LN
CS

 1
03

22

21st International Conference, FC 2017
Sliema, Malta, April 3–7, 2017
Revised Selected Papers

Financial Cryptography
and Data Security

Lecture Notes in Computer Science 10322
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Aggelos Kiayias (Ed.)

Financial Cryptography
and Data Security
21st International Conference, FC 2017
Sliema, Malta, April 3–7, 2017
Revised Selected Papers

123

Editor
Aggelos Kiayias
University of Edinburgh
Edinburgh
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-70971-0 ISBN 978-3-319-70972-7 (eBook)
https://doi.org/10.1007/978-3-319-70972-7

Library of Congress Control Number: 2017959723

LNCS Sublibrary: SL4 – Security and Cryptology

© International Financial Cryptography Association 2017, corrected publication 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 21st International Conference on Financial Cryptography and Data Security, FC
2017, was held during April 3–7, 2017, at the Palace Hotel in Malta.

We received 132 papers by the submission deadline for the conference which was
November 14, 2016. Of these, seven were withdrawn and 35 were accepted – five as
short papers and 30 as full papers – resulting in an acceptance rate of 26.5%. The
present proceedings volume contains revised versions of all the papers presented at the
conference.

The conference started with an invited talk by Silvio Micali, titled “ALGORAND: A
New Public Ledger” and concluded with a panel titled “When Cash and Crypto Col-
lide” with panelists Adam Back, Tiago Teles, and Tarah Wheeler, moderated by
William Scannell.

The Program Committee consisted of 46 members spanning both industry and
academia and covering all facets of financial cryptography. The review process took
place over a period of two months and was double-blind. Each paper received at least
three reviews; certain papers, including submissions by Program Committee members,
received additional reviews. The Program Committee used the EasyChair system to
organize the paper reviewing. The merits of each paper were discussed thoroughly and
intensely in the online platform as we converged to the final decisions. In the end, a
number of worthy papers still had to be rejected owing to the limited number of slots in
the conference program. The Program Committee made a substantial effort in
improving the quality of accepted papers in the post-notification stage: 11 of the papers
were conditionally accepted; each one was assigned a shepherd from the Program
Committee who guided the authors in the preparation of the conference version.

A number of grateful acknowledgments are due. First and foremost, I would like to
thank the authors of all submissions for contributing their work for peer review by the
Program Committee. Their support of FC 2017 was the most important factor for the
success of the conference. Second, I would like to thank the members of the Program
Committee for investing a significant amount of their time in the review and discussion
of the submitted papers. In addition to the Program Committee, 89 external reviewers
were invited to contribute to the review process and I also thank them for their efforts.
In total, 416 reviews were submitted, 3.328 on average per submission, with 76%
of the reviews prepared by the Program Committee and the remainder by the external
reviewers.

The conference also featured a poster session. I am grateful to the presenters of the
posters for submitting their work and presenting it at the conference. The abstracts
of the posters are included in this proceedings volume.

The general chairs of the conference were Adam Back and Rafael Hirschfeld.
I would like to especially thank Rafael for his continued and tireless efforts to make FC
a success over the years. A special thanks also goes to the board of directors of the
International Financial Cryptography Association for their support and guidance.

Finally, I would like to thank Joe Bonneau for handling a submission with which I had
a conflict of interest (it was authored by two PhD students of mine) completely outside
to the reviewing system. I also thank the board of directors for allowing this submission
to be considered.

Finally, I would like to thank all our sponsors this year, whose generous support was
crucial in making the conference a success. In particular our platinum sponsors
Blockstream, IOHK, and Thales, our gold sponsor Rohde and Schwarz, our silver
sponsor Journal of Cybersecurity and our sponsor in kind WorldPay. For student
support, I specifically thank the Office of Naval Research.

August 2017 Aggelos Kiayias

VI Preface

Organization

Program Committee

Masa Abe NTT Laboratories
Ross Anderson Cambridge University, UK
Diego Aranha Institute of Computing, University of Campinas, Brazil
Frederik Armknecht Universität Mannheim, Germany
Giuseppe Ateniese Stevens Institute of Technology, USA
Foteini Baldimtsi George Mason University, USA
Alex Biryukov University of Luxembourg, Luxembourg
Jeremiah Blocki Purdue University, USA
Joe Bonneau Stanford University, USA
Rainer Böhme University of Innsbruck, Austria
Christian Cachin IBM Research – Zurich, Switzerland
Jean Camp Indiana University, USA
Srdjan Capkun ETH Zurich, Switzerland
Jung Hee Cheon Seoul National University, South Korea
Nicolas Christin Carnegie Mellon University, USA
Jeremy Clark Concordia University, Canada
Jean Paul Degabriele RHUL
Dario Fiore IMDEA Software Institute
Matt Green Johns Hopkins, USA
Thomas Gross University of Newcastle upon Tyne, UK
Jaap-Henk Hoepman Radboud University Nijmegen, The Netherlands
Nicholas Hopper University of Minnesota, USA
Kevin Huguenin UNIL-HEC Lausanne, Switzerland
Stas Jarecki University of California, Irvine, USA
Marc Joye NXP Semiconductors
Stefan Katzenbeisser TU Darmstadt, Germany
Aggelos Kiayias University of Edinburgh, UK
Gäetan Leurent Inria, France
Andrew Miller University of Maryland, USA
Payman Mohassel University of Calgary, Canada
Arvind Narayanan Princeton, USA
Charalampos Papamanthou University of Maryland, College Park, USA
Rafael Pass Cornell University, USA
Bart Preneel KU Leuven COSIC and iMinds, Belgium
Liz Quaglia Royal Holloway, University of London, UK
Kazue Sako NEC, Japan

Dominique Schröder Friedrich-Alexander-Universität Erlangen-Nürnberg,
Germany

Douglas Stebila McMaster University, Canada
Qiang Tang Cornell University, USA
Kami Vaniea The University of Edinburgh, UK
Serge Vaudenay EPFL, Switzerland
Eric Wustrow University of Colorado Boulder, USA
Bingsheng Zhang Lancaster University, UK
Zhenfeng Zhang Chinese Academy of Sciences, China
Hong-Sheng Zhou Virginia Commonwealth University, USA
Vasilis Zikas ETH Zurich, Switzerland
Aviv Zohar The Hebrew University of Jerusalem, Israel

Additional Reviewers

Abramova, Svetlana
Agrawal, Shashank
Alpar, Gergely
Balli, Fatih
Blazy, Olivier
Bogos, Sonia
Bos, Joppe
Bünz, Benedikt
Carter, Henry
Chaidos, Pyrros
Chepurnoy, Alex
Cherubin, Giovanni
Choi, Gwangbae
Costello, Craig
Davidson, Alex
Duong, Tuyet
Durak, F. Betül
Eom, Jieun
Fan, Lei
Fan, Xiong
Feher, Daniel
Frankel, Yair
Gervais, Arthur
Gordon, Dov
Großschädl, Johann
Han, Kyoohyung
Hansen, Torben
Heilman, Ethan
Hhan, Minki

Hils, Maximilian
Hiromasa, Ryo
Humbert, Mathias
Isshiki, Toshiyuki
Jeong, Jinhyuck
Karvelas, Nikolaos
Khovratovich, Dmitry
Kilinc, Handan
Kim, Duhyeong
Kim, Miran
Koide, Toshio
Kosba, Ahmed
Kostiainen, Kari
Köhler, Olaf Markus
Lacharité, Marie-Sarah
Laube, Stefan
Leontiadis, Iraklis
Li, Shuai
Li, Xinyu
Li, Zengpeng
Liu, Jian
Lu, Rongxing
Lu, Yun
Luhn, Sebastian
Malavolta, Giulio
Meyer, Maxime
Mori, Kengo
Naehrig, Michael
Ohkubo, Miyako

VIII Organization

Olteanu, Alexandra-Mihaela
Pankova, Alisa
Peeters, Roel
Plût, Jérôme
Poettering, Bertram
Reinert, Manuel
Reuter, Christian A.
Riek, Markus
Ringers, Sietse
Ruffing, Tim
Schoettle, Pascal
Singelee, Dave
Son, Yongha
Teranishi, Isamu
Thyagarajan, Sri Aravinda Krishnan
Tikhomirov, Sergei

Tomida, Junichi
Udovenko, Aleksei
Vizár, Damian
Wang, Minqian
Wang, Qingju
Watson, Gaven
Weinstock, Avi
Woodage, Joanne
Yang, Kang
Young, Adam
Yu, Der-Yeuan
Zenner, Erik
Zhang, Lin
Zhang, Yupeng
Zindros, Dionysis

Organization IX

Contents

Privacy and Identity Management

An Efficient Self-blindable Attribute-Based Credential Scheme 3
Sietse Ringers, Eric Verheul, and Jaap-Henk Hoepman

Real Hidden Identity-Based Signatures . 21
Sherman S. M. Chow, Haibin Zhang, and Tao Zhang

BehavioCog: An Observation Resistant Authentication Scheme. 39
Jagmohan Chauhan, Benjamin Zi Hao Zhao, Hassan Jameel Asghar,
Jonathan Chan, and Mohamed Ali Kaafar

Updatable Tokenization: Formal Definitions and Provably
Secure Constructions . 59

Christian Cachin, Jan Camenisch, Eduarda Freire-Stögbuchner,
and Anja Lehmann

Privacy and Data Processing

SecGDB: Graph Encryption for Exact Shortest Distance Queries
with Efficient Updates . 79

Qian Wang, Kui Ren, Minxin Du, Qi Li, and Aziz Mohaisen

Outsourcing Medical Dataset Analysis: A Possible Solution 98
Gabriel Kaptchuk, Matthew Green, and Aviel Rubin

Homomorphic Proxy Re-Authenticators and Applications to Verifiable
Multi-User Data Aggregation . 124

David Derler, Sebastian Ramacher, and Daniel Slamanig

Cryptographic Primitives and API’s

A Provably Secure PKCS#11 Configuration Without
Authenticated Attributes. 145

Ryan Stanley-Oakes

A Post-quantum Digital Signature Scheme Based on Supersingular
Isogenies . 163

Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao,
and Vladimir Soukharev

http://dx.doi.org/10.1007/978-3-319-70972-7_1
http://dx.doi.org/10.1007/978-3-319-70972-7_2
http://dx.doi.org/10.1007/978-3-319-70972-7_3
http://dx.doi.org/10.1007/978-3-319-70972-7_4
http://dx.doi.org/10.1007/978-3-319-70972-7_4
http://dx.doi.org/10.1007/978-3-319-70972-7_5
http://dx.doi.org/10.1007/978-3-319-70972-7_5
http://dx.doi.org/10.1007/978-3-319-70972-7_6
http://dx.doi.org/10.1007/978-3-319-70972-7_7
http://dx.doi.org/10.1007/978-3-319-70972-7_7
http://dx.doi.org/10.1007/978-3-319-70972-7_8
http://dx.doi.org/10.1007/978-3-319-70972-7_8
http://dx.doi.org/10.1007/978-3-319-70972-7_9
http://dx.doi.org/10.1007/978-3-319-70972-7_9

Optimally Sound Sigma Protocols Under DCRA. 182
Helger Lipmaa

Economically Optimal Variable Tag Length Message Authentication 204
Reihaneh Safavi-Naini, Viliam Lisý, and Yvo Desmedt

Vulnerabilities and Exploits

PEEP: Passively Eavesdropping Private Input via Brainwave Signals. 227
Ajaya Neupane, Md. Lutfor Rahman, and Nitesh Saxena

Fantastic Timers and Where to Find Them: High-Resolution
Microarchitectural Attacks in JavaScript. 247

Michael Schwarz, Clémentine Maurice, Daniel Gruss,
and Stefan Mangard

Attacks on Secure Logging Schemes . 268
Gunnar Hartung

Economy Class Crypto: Exploring Weak Cipher Usage in Avionic
Communications via ACARS . 285

Matthew Smith, Daniel Moser, Martin Strohmeier, Vincent Lenders,
and Ivan Martinovic

Short Paper: A Longitudinal Study of Financial Apps in the Google
Play Store . 302

Vincent F. Taylor and Ivan Martinovic

Short Paper: Addressing Sophisticated Email Attacks 310
Markus Jakobsson

Blockchain Technology

Escrow Protocols for Cryptocurrencies: How to Buy Physical Goods
Using Bitcoin . 321

Steven Goldfeder, Joseph Bonneau, Rosario Gennaro,
and Arvind Narayanan

Trust Is Risk: A Decentralized Financial Trust Platform. 340
Orfeas Stefanos Thyfronitis Litos and Dionysis Zindros

A Smart Contract for Boardroom Voting with Maximum Voter Privacy. 357
Patrick McCorry, Siamak F. Shahandashti, and Feng Hao

XII Contents

http://dx.doi.org/10.1007/978-3-319-70972-7_10
http://dx.doi.org/10.1007/978-3-319-70972-7_11
http://dx.doi.org/10.1007/978-3-319-70972-7_12
http://dx.doi.org/10.1007/978-3-319-70972-7_13
http://dx.doi.org/10.1007/978-3-319-70972-7_13
http://dx.doi.org/10.1007/978-3-319-70972-7_14
http://dx.doi.org/10.1007/978-3-319-70972-7_15
http://dx.doi.org/10.1007/978-3-319-70972-7_15
http://dx.doi.org/10.1007/978-3-319-70972-7_16
http://dx.doi.org/10.1007/978-3-319-70972-7_16
http://dx.doi.org/10.1007/978-3-319-70972-7_17
http://dx.doi.org/10.1007/978-3-319-70972-7_18
http://dx.doi.org/10.1007/978-3-319-70972-7_18
http://dx.doi.org/10.1007/978-3-319-70972-7_19
http://dx.doi.org/10.1007/978-3-319-70972-7_20

Improving Authenticated Dynamic Dictionaries, with Applications
to Cryptocurrencies . 376

Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy,
and Sasha Ivanov

Short Paper: Service-Oriented Sharding for Blockchains. 393
Adem Efe Gencer, Robbert van Renesse, and Emin Gün Sirer

Security of Internet Protocols

The Security of NTP’s Datagram Protocol . 405
Aanchal Malhotra, Matthew Van Gundy, Mayank Varia,
Haydn Kennedy, Jonathan Gardner, and Sharon Goldberg

Short Paper: On Deployment of DNS-Based Security Enhancements 424
Pawel Szalachowski and Adrian Perrig

Blind Signatures

A Practical Multivariate Blind Signature Scheme . 437
Albrecht Petzoldt, Alan Szepieniec,
and Mohamed Saied Emam Mohamed

Efficient Round-Optimal Blind Signatures in the Standard Model 455
Essam Ghadafi

Searching and Processing Private Data

Secure Multiparty Computation from SGX . 477
Raad Bahmani, Manuel Barbosa, Ferdinand Brasser,
Bernardo Portela, Ahmad-Reza Sadeghi, Guillaume Scerri,
and Bogdan Warinschi

Efficient No-dictionary Verifiable Searchable Symmetric Encryption 498
Wakaha Ogata and Kaoru Kurosawa

Faster Homomorphic Evaluation of Discrete Fourier Transforms 517
Anamaria Costache, Nigel P. Smart, and Srinivas Vivek

Secure Channel Protocols

Short Paper: TLS Ecosystems in Networked Devices vs. Web Servers 533
Nayanamana Samarasinghe and Mohammad Mannan

Unilaterally-Authenticated Key Exchange. 542
Yevgeniy Dodis and Dario Fiore

Contents XIII

http://dx.doi.org/10.1007/978-3-319-70972-7_21
http://dx.doi.org/10.1007/978-3-319-70972-7_21
http://dx.doi.org/10.1007/978-3-319-70972-7_22
http://dx.doi.org/10.1007/978-3-319-70972-7_23
http://dx.doi.org/10.1007/978-3-319-70972-7_24
http://dx.doi.org/10.1007/978-3-319-70972-7_25
http://dx.doi.org/10.1007/978-3-319-70972-7_26
http://dx.doi.org/10.1007/978-3-319-70972-7_27
http://dx.doi.org/10.1007/978-3-319-70972-7_28
http://dx.doi.org/10.1007/978-3-319-70972-7_29
http://dx.doi.org/10.1007/978-3-319-70972-7_30
http://dx.doi.org/10.1007/978-3-319-70972-7_31

Formal Modeling and Verification for Domain Validation and ACME 561
Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Nadim Kobeissi

Why Banker Bob (Still) Can’t Get TLS Right: A Security Analysis
of TLS in Leading UK Banking Apps . 579

Tom Chothia, Flavio D. Garcia, Chris Heppell,
and Chris McMahon Stone

Privacy in Data Storage and Retrieval

Lavinia: An Audit-Payment Protocol for Censorship-Resistant Storage. 601
Cecylia Bocovich, John A. Doucette, and Ian Goldberg

A Simpler Rate-Optimal CPIR Protocol . 621
Helger Lipmaa and Kateryna Pavlyk

Correction to: Why Banker Bob (Still) Can’t Get TLS Right: A Security
Analysis of TLS in Leading UK Banking Apps . C1

Tom Chothia, Flavio D. Garcia, Chris Heppell,
and Chris McMahon Stone

Poster Papers

Accountability and Integrity for Data Management Using Blockchains. 641
Anirban Basu, Joshua Jeeson Daniel, Sushmita Ruj,
Mohammad Shahriar Rahman, Theo Dimitrakos,
and Shinsaku Kiyomoto

The Amount as a Predictor of Transaction Fraud. 643
Niek J. Bouman and Martha E. Nikolaou

R-State Authentication Language, an Alternative to Bitcoin Script. 644
Alexander Chepurnoy

Broker-Mediated Trade Finance with Blockchains . 646
Mohammad Shahriar Rahman, Anirban Basu, and Shinsaku Kiyomoto

OpenTimestamps: Securing Software Updates
Using the Bitcoin Blockchain . 647

Peter Todd and Harry Halpin

Author Index . 649

XIV Contents

http://dx.doi.org/10.1007/978-3-319-70972-7_32
http://dx.doi.org/10.1007/978-3-319-70972-7_33
http://dx.doi.org/10.1007/978-3-319-70972-7_33
http://dx.doi.org/10.1007/978-3-319-70972-7_34
http://dx.doi.org/10.1007/978-3-319-70972-7_35

Privacy and Identity Management

An Efficient Self-blindable Attribute-Based
Credential Scheme

Sietse Ringers(B), Eric Verheul, and Jaap-Henk Hoepman

Radboud University, Nijmegen, The Netherlands
{sringers,e.verheul,jhh}@cs.ru.nl

Abstract. An attribute-based credential scheme allows a user, given
a set of attributes, to prove ownership of these attributes to a veri-
fier, voluntarily disclosing some of them while keeping the others secret.
A number of such schemes exist, of which some additionally provide
unlinkability: that is, when the same attributes were disclosed in two
transactions, it is not possible to tell if one and the same or two different
credentials were involved. Recently full-fledged implementations of such
schemes on smart cards have emerged; however, these need to compro-
mise the security level to achieve reasonable transaction speeds. In this
paper we present a new unlinkable attribute-based credential scheme
with a full security proof, using a known hardness assumption in the
standard model. Defined on elliptic curves, the scheme involves bilinear
pairings but only on the verifier’s side, making it very efficient both in
terms of speed and size on the user’s side.

Keywords: Attribute-based credentials · Unlinkable · Self-blindable
Elliptic curves · Bilinear pairings

1 Introduction

An attribute-based credential (ABC) scheme allows a user, given a set of
attributes k1, . . . , kn, to prove ownership of these attributes to a verifier, vol-
untarily disclosing some of them while keeping the others secret. A number of
such credential schemes exist, of which some additionally provide unlinkability :
that is, when reusing a credential the verifier cannot tell whether two transac-
tions did or did not originate from the same user (assuming the same attributes
with the same values were disclosed in both transactions). This allows for very
flexible identity management schemes, that are simultaneously very secure and
privacy-friendly.

Two well-known ABC schemes are Idemix [12,24] and U-Prove [10,29]. How-
ever, to date there is no provably secure scheme that is sufficiently efficient to allow
truly secure implementations on smart cards, while also providing unlinkability of
transactions. For example, since Idemix is based on the strong RSA-problem, one
would want the keysize to be at least 2048 bits and preferably even 4096 bits; the
IRMA project1 has implemented Idemix on smart cards using 1024 bits. On the
1 https://privacybydesign.foundation.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 3–20, 2017.
https://doi.org/10.1007/978-3-319-70972-7_1

https://privacybydesign.foundation

4 S. Ringers et al.

other hand, U-Prove is more efficient but does not provide unlinkability; in addi-
tion, its security is not fully proven.

In this paper, we provide a new provably secure, efficient and unlinkable
attribute-based credential scheme, that is based on the concept of self-blindability
[33]: before showing the credential, it is randomly modified into a new one (con-
taining the same attributes) that is still valid. This results in a showing proto-
col in which the verifier learns nothing at all about the credential besides the
attributes that are disclosed (and the fact that the credential is valid). In fact,
the showing protocol is a zero-knowledge proof of knowledge. The scheme does
not rely on the random oracle model (although usage of this model can lead
to a performance increase through the Fiat-Shamir heuristic [18]), and it uses
elliptic curves and bilinear pairings, allowing the same security level as RSA-
type groups at much smaller key sizes. Although computing a pairing is a much
more expensive operation than performing exponentiations on an elliptic curve,
all pairings occur on the verifier’s side. In addition, the kinds of pairing that we
use (Type 3) involves two distinct groups of which one is more expensive to do
computations on. However, the user only needs to perform computations on the
cheaper of the two. These two facts ensure that the amount of work that the
user has to perform is minimal.

The unforgeability of our credential scheme will be implied by the LRSW
assumption [13,26,27] introduced by Lysyanskaya et al., and used in many sub-
sequent works (for example, [1,11,13,35,36]). Actually, for our purposes a weaker
(in particular, non-interactive and thus falsifiable [28]) version of this assumption
called the whLRSW assumption [36] will suffice. After having defined attribute-
based credential schemes as well as unforgeability and unlinkability in the next
section, we will discuss these assumptions in Sect. 3. In the same section we will
introduce a signature scheme on the space of attributes, that will serve as the basis
for our credential scheme. In Sect. 4 we turn to our credential scheme, defining
issuing and showing protocols, and proving that these provide unlinkability and
unforgeability for our scheme. This in turn implies the unforgeability of the signa-
ture scheme. In Sect. 5 we will discuss the performance of our scheme, by counting
the amount of exponentiations that the user has to perform and by showing aver-
age runtimes of an implementation of our scheme. First, we briefly review and com-
pare a number of other attribute-based credential schemes, in terms of features,
efficiency and speed, and security.

1.1 Related Work

The Idemix credential scheme [12,24] by Camenisch and Lysyanskaya is prob-
ably the most well-known unlinkable attribute-based credential scheme, relying
on the difficulty of the strong RSA problem in the group of integers modulo an
RSA modulus n = pq, of recommended size at least 2048 bits. Although this
credential scheme has a lot of desirable properties (it is provably unlinkable and
unforgeable, and the length of the signatures does not depend on the amount of
attributes), the large size of the modulus means that, when implementing the

An Efficient Self-blindable Attribute-Based Credential Scheme 5

user on smart cards, it is difficult to get acceptable running times for the pro-
tocols. For example, in [34] the Idemix showing protocol has been implemented
with 4 attributes and n around 1024 bits (while n should really be at least 2048
bits); there the running time for the ShowCredential protocol ranged from 1 to
1.3 s, depending on the amount of disclosed attributes.

Another well-known credential scheme is U-Prove [10,29] by Brands. Based
on the difficulty of the discrete logarithm problem in a cyclic group, it can
be implemented using elliptic curves, and additionally the showing protocol is
much less complicated than that of Idemix, also resulting in more efficiency.
However, in U-Prove two transactions executed with the same credential are
always linkable, and the showing protocol is only honest-verifier zero-knowledge
(i.e., there is no proof that dishonest verifiers cannot extract or learn information
about the undisclosed attributes). Moreover, there is no unforgeability proof for
U-Prove credentials, and it even seems that no such proof exists under standard
intractability assumptions [4].

We also mention the “Anonymous Credentials Light” construction from [3],
which can also be implemented on elliptic curves, but the credentials are not
unlinkable; and [21], which runs in RSA groups like Idemix.

The credential scheme from [13], also by Camenisch and Lysyanskaya, is much
closer to the scheme presented here: it is unlinkable, uses the (interactive) LRSW
assumption, as well as elliptic curves and bilinear pairings (of the less efficient
Type 1). In addition, how the signature scheme is used to obtain a credential
scheme with a zero-knowledge disclosure protocol is similar to this work. The
signature scheme that is used in [13] is, however, rather more complicated than
ours: for example, when showing a credential the user has to compute an amount
of pairings that is linear in the amount of disclosed attributes.

In [2] the BBS signature scheme [9] is modified into an unlinkable attribute-
based credential scheme that, like the scheme from [13], requires the user to
compute a number of (Type 2) pairings. However, the signatures in this scheme
are short, and (like in Idemix but unlike our own scheme) its length does not
depend on the amount of attributes.

More recently Fuchsbauer et al. [19] proposed a novel attribute-based cre-
dential scheme using structure-preserving signatures and a new commitment
scheme, in which the undisclosed attributes are not hidden by knowledge proofs
but rather by a partial opening to a commitment. As a result, like in Idemix
the signature length does not depend on the amount of attributes. The scheme
does, however, rely on a new variant of the strong Diffie-Hellman assumption
that was newly introduced in the same paper.

In [5] an unlinkable scheme based on proofs of knowledge of Boneh-Boyen-
like signature was proposed, achieving an efficient scheme with short signatures
like Idemix and Fuchsbauer et al., and involving pairings only on the verifier’s
side.

In [23] we have examined a number of broken self-blindable credential
schemes, and we posed a criterion which can indicate if a self-blindable creden-
tial scheme is linkable or forgeable. The scheme that we introduce in this paper

6 S. Ringers et al.

is however not susceptible to this criterion, as it only holds for deterministic
signature schemes while ours is non-deterministic.

Finally, a blindable version of U-Prove was recently proposed in [22].
Although an unlinkable credential scheme is aimed at, the paper contains no
unlinkability proof. Moreover, we have found that the scheme is forgeable: if
sufficiently many users collide then they can create new credentials containing
any set of attributes of their choice, without any involvement of the issuer [32].

2 Attribute-Based Credential Schemes

First we fix some notation. We denote algorithms with calligraphic letters such
as A and B. By y ← A(x) we denote that y was obtained by running A on input
x. If A is a deterministic algorithm then y is unique; if A is probabilistic then
y is a random variable. We write AO when algorithm A can make queries to
oracle O. That is, A has an additional tape (read/write-once) on which it writes
its queries; once it writes a special delimiter oracle O is invoked, and its answer
appears on the query tape adjacent to the delimiter.

If A and B are interactive algorithms, we write a ← A(·) ↔ B(·) → b when A
and B interact and afterwards output a and b, respectively. By A → B we denote
that algorithm A has black-box access to an interactive algorithm B – that is,
A has oracle access to the next-message function Bx,y,r(m) which, on input x
that is common to A and B, auxiliary input y and random tape r, specifies the
message that B would send after receiving messages m. Finally, |x| denotes the
length of x in bits. For example, if x is an integer then |x| = �log2 x�.

For zero-knowledge proofs we will use the Camenisch-Stadler notation [14].
For example, if K,P1, P2 are elements of some (multiplicatively written) group
then

PK
{
(k1, k2) : K = P k1

1 P k2
2

}

denotes a zero-knowledge proof of knowledge of the numbers k1, k2 that satisfy
the relation K = P k1

1 P k2
2 . (Unlike Camenisch and Stadler, we do not use Greek

letters for the unknowns; instead we will consistently write them on the right-
hand side of the equation.) Such proofs are based on standard techniques and
occur in many areas of cryptography. In our case the protocol from [15] could
for example be used.

For the full definitions of bilinear pairings, zero-knowledge proofs, and the
unforgeability game of signature schemes, we refer to the full version of this
paper [30].

Definition 1. An attribute-based credential scheme consists of the following
protocols. (We assume a single issuer, but this can easily be generalized to mul-
tiple issuers).

KeyGen(1�, n). This algorithm takes as input a security parameter � and the
number of attributes n that the credentials will contain, and outputs the
issuer’s private key s and public key σ, which must contain the number n,
and a description of the attribute space M .

An Efficient Self-blindable Attribute-Based Credential Scheme 7

Issue. An interactive protocol between an issuer I and user P that results in a
credential c:

I(σ, s, (k1, . . . , kn)) ↔ P(σ, k0, (k1, . . . , kn)) → c.

Here k0 is the user’s private key, that is to be chosen from the attribute space
M by the user; the Issue protocol should prevent the issuer from learning it.
We assume that before execution of this protocol, the issuer and user have
reached agreement on the values of the attributes k1, . . . , kn. The secret key
and attributes k0, k1, . . . , kn are contained in the credential c.

ShowCredential. An interactive protocol between a user P and verifier V which
is such that, if c is a credential2 issued using the Issue protocol over attributes
(k1, . . . , kn) using private signing key s corresponding to public key σ, then
for any disclosure set D ⊂ {1, . . . , n} the user can make the verifier accept:

P(σ, c,D) ↔ V(σ,D, (ki)i∈D) → 1.

Thus, the user will have to notify the verifier in advance of the disclosure set
D and disclosed attributes (ki)i∈D.

We expect our attribute-based credential scheme to satisfy the following
properties.

– Unforgeability (see Definition 14): no user can prove possession of attributes
that were not issued to it by the issuer.

– Multi-show unlinkability (see Definition 15): If a verifier V participates in the
ShowCredential protocol twice, in which the same credential was involved, it
should be impossible for it to tell whether both executions originated from
the same credential or from two different ones.

– Issuer unlinkability : If in a run of the ShowCredential protocol certain
attributes were disclosed, then of all credentials that the issuer issued with
those attributes, the issuer cannot tell which one was used.

– Offline issuer : The issuer is not involved in the verification of credentials.
– Selective disclosure: Any subset of attributes contained in a credential can be

disclosed.

The unforgeability and both kinds of unlinkability of an attribute-based creden-
tial scheme are defined in terms of two games. We have included these games in
AppendixA.

The notion of unlinkability captures the idea that it is impossible for the ver-
ifier to distinguish two credentials from each other in two executions of the
ShowCredential protocol, as long as they disclosed the same attributes with
the same values. We will achieve this for our scheme by proving that our
ShowCredential protocol is black-box zero-knowledge, which essentially means
that the verifier learns nothing at all besides the statement that the user proves.
Since the verifier learns nothing that it can use to link transactions, unlinkability
follows from this (see Theorem 12).
2 As in Idemix and U-Prove, our ShowCredential protocol can easily be extended to

simultaneously show multiple credentials that have the same secret key, and to prov-
ing that the hidden attributes satisfy arbitrary linear combinations [10].

8 S. Ringers et al.

3 Preliminaries

If e : G1×G2 → GT is a bilinear pairing [20], we will always use uppercase letters
for elements of G1 or G2, while lowercase letters (including Greek letters) will be
numbers, i.e., elements of Zp. We will always use the index i for attributes, and
in the unforgeability proofs below we will use the index j for multiple users or
multiple credentials. For example, the number ki,j will refer to the i-th attribute
of the credential of user j. If a, b are two natural numbers with a < b, then we
will sometimes for brevity write [a, b] for the set {a, . . . , b}.

We write ν(�) < negl(�) when the function ν : N → R≥0 is negligible; that is,
for any polynomial p there exists an �′ such that ν(�) < 1/p(�) for all � > �′.

3.1 Intractability Assumptions

The unforgeability of the credential and signature schemes defined in the paper will
depend on thewhLRSWassumption [36], which aswewill showbelow, is implied by
theLRSWassumption [26,27] introducedbyLysyanskaya,Rivest, Sahai, andWolf.
The latter assumption has been proven to hold in the generic group model [31],
and has been used in a variety of schemes (for example, [1,11,13,35,36]). Although
this assumption suffices to prove unforgeability of our scheme, it is stronger than
we need. In particular, the LRSW assumption is an interactive assumption, in
the sense that the adversary is given access to an oracle which it can use as it
sees fit. We prefer to use the weaker whLRSW assumption, which is implied by
the LRSW assumption but does not use such oracles. Consequentially, unlike the
LRSW assumption itself, and like conventional hardness assumptions such as fac-
toring and DDH, this assumption is falsifiable [28]. We describe both assumptions
below; then we prove that the LRSW assumption implies the whLRSW assump-
tion. After this we will exclusively use the latter assumption.

Let e : G1 × G2 → GT be a Type 3 pairing, where the order p of the three
groups is � bits, and let a, z ∈R Z

∗
p. If (κ,K, S, T) ∈ Zp ×G3

1 is such that K 	= 1,
S = Ka and T = Kz+κaz, then we call (κ,K, S, T) an LRSW-instance.

Definition 2 (LRSW assumption). Let e be as above, and let Oa,z be an
oracle that, when it gets κj ∈ Zp as input on the j-th query, chooses a ran-
dom Kj ∈R G1 \ {1} and outputs the LRSW-instance (κj ,Kj ,K

a
j ,K

z+κjaz
j).

The LRSW problem is, when given (p, e,G1, G2, GT , Q,Qa, Qz) where Q ∈R

G2 \ {1}, along with oracle access to Oa,z, to output a new LRSW-instance
(κ,K,Ka,Kz+κaz) where κ has never been queried to Oa,z. The LRSW assump-
tion is that no probabilistic polynomial-time algorithm can solve the LRSW
problem with non-negligible probability in �. That is, for every probabilistic
polynomial-time algorithm A we have

Pr
[
a, z ∈R Z

∗
p; Q ∈R G2 \ {1};

σ ← (p, e,G1, G2, GT , Q,Qa, Qz); (κ,K, S, T) ← AOa,z (σ) :

K ∈ G1 \ {1} ∧ κ /∈ L ∧ S = Ka ∧ T = Kz+κaz
]

< negl(�),

An Efficient Self-blindable Attribute-Based Credential Scheme 9

where L is the list of oracle queries sent to Oa,z, and where the probability is
over the choice of a, z,Q, and the randomness used by A and the oracle Oa,z.

Definition 3 (q-whLRSW assumption[36]). Let e be as above, and let
{(κj ,Kj , Ka

j ,K
z+κjaz
j)}j=1,...,q be a list of q LRSW-instances, where the

κj and Kj are randomly distributed in Zp and G1 \ {1}, respectively. The
q-whLRSW problem (for q-wholesale LRSW [36]) is, when given this list
along with (p, e,G1, G2, GT , Q,Qa, Qz), to output a new LRSW-instance
(κ,K,Ka,Kz+κaz) where κ /∈ {κ1, . . . , κq}. The q-whLRSW assumption is that
no probabilistic polynomial-time algorithm can solve the q-whLRSW problem
with non-negligible probability in �. That is, for every probabilistic polynomial-
time algorithm A we have

Pr
[
a, z ∈R Z

∗
p; κ1, . . . , κq ∈R Zp; K1, . . . ,Kq ∈R G1 \ {1};

Q ∈R G2 \ {1}; σ ← (p, e,G1, G2, GT , Q,Qa, Qz);

(κ,K, S, T) ← A(σ, {κj ,Kj ,K
a
j ,K

z+κjaz
j }j∈[1,q]) :

K ∈ G1 \ {1} ∧ κ /∈ {κ1, . . . , κq}
∧ S = Ka ∧ T = Kz+κaz

]
< negl(�), (1)

where the probability is over the choice of a, z, κ1, . . . , κq, K1, . . . ,Kq, Q, and
the randomness used by A.

Finally we define an unparameterized version of the assumption above by allow-
ing q to be polynomial in �, in the following standard way (e.g., [8]). Intu-
itively, the reason that this unparameterized assumption is implied by the LRSW
assumption is simple: if there is no adversary that can create LRSW-instances
when it can (using the oracle) control the κ’s of the LRSW-instances that it gets
as input, then an adversary that can create them without having control over
the κ’s also cannot exist.

Definition 4. Let e, p and � = |p| be as above. The whLRSW assumption states
that for all polynomials q : N → N, the q(�)-whLRSW assumption holds.

Proposition 5. The LRSW assumption implies the whLRSW assumption.

We prove this in the full version of this paper [30]. Thus if we prove that our
scheme is safe under the whLRSW assumption, then it is also safe under the LRSW
assumption. Additionally, we have found that the whLRSW assumption can be
proven by taking an extension [7] of the Known Exponent Assumption [16], so
that unforgeability of our scheme can also be proven by using this assumption.
However, because of space restrictions this proof could not be included here.

3.2 A Signature Scheme on the Space of Attributes

In this section we introduce a signature scheme on the space of attributes. This
signature scheme will be the basis for our credential scheme, in the following

10 S. Ringers et al.

sense: the Issue protocol that we present in Sect. 4 will enable issuing such signa-
tures over a set of attributes to users, while the ShowCredential protocol allows
the user to prove that it has a signature over any subset of its signed attributes.

Definition 6 (Signature scheme on attribute space). The signature
scheme is as follows.

KeyGen(1�, n). The issuer generates a Type 3 pairing e : G1 × G2 → GT , such
that |p| = � where p is the prime order of the three groups. Next it takes
a generator Q ∈R G2, and numbers a, a0, . . . , an, z ∈R Z

∗
p and sets A =

Qa, A0 = Qa0 , . . . , An = Qan , and Z = Qz. The public key is the tuple σ =
(p, e,Q,A,A0, . . . , An, Z) and the private key is the tuple (a, a0, . . . , an, z).

Sign(k0, . . . , kn). The issuer chooses κ ∈R Z
∗
p and K ∈R G1, and sets S =

Ka, S0 = Ka0 , . . . , Sn = Kan , and T = (KSκ
∏n

i=0 Ski
i)z. The signature is

(κ,K, S, S0, . . . , Sn, T).
Verify((k0, . . . , kn), (κ,K, S, S0, . . . , Sn, T), σ). The signature is checked by set-

ting C = KSκ
∏n

i=0 Ski
i ; verifying that K,C 	= 1; generating random numbers

r, r0, . . . , rn ∈R Z
∗
p and verifying3

e(SrSr0
0 · · · Srn

n , Q) ?= e(K,ArAr0
0 · · · Arn

n), e(T,Q) ?= e(C,Z). (2)

The numbers kn ∈ Zp are the attributes. Although p may vary each time the
KeyGen(1�, n) algorithm is invoked on a fixed security parameter �, the attribute
space Zp will always contain {0, . . . , 2�−1}. In our credential scheme in Sect. 4,
the zeroth attribute k0 will serve as the user’s secret key, but at this point it
does not yet have a special role.

Notice that contrary to Idemix and the BBS+ scheme from [2], but like the
scheme from [13], the length of a signature is not constant in the amount n of
attributes, but O(n).

Although the element C = KSκ
∏n

i=0 Ski
i is, strictly speaking, not part of the

signature and therefore also not part of the credential (since it may be calculated
from κ, the attributes (k0, . . . , kn) and the elements (K,S, S0, . . . , Sn)), we will
often think of it as if it is. Finally, we call a message-signature pair, i.e., a tuple
of the form ((k0, . . . , kn), (κ,K, S, S0, . . . , Sn, T)) where (κ,K, S, S0, . . . , Sn, T)
is a valid signature over (k0, . . . , kn), a credential.

Notice that if (k0, . . . , kn), (κ,K, S, S0, . . . , Sn, T) is a valid credential, then
for any α ∈ Z

∗
p,

(k0, . . . , kn), (κ,Kα, Sα, Sα
0 , . . . , Sα

n , Tα) (3)

3 Combining the verification of the elements S, Si in this fashion achieves with over-

whelming probability the same as separately verifying e(S, Q)
?
= e(K, A) and

e(Si, Q)
?
= e(K, Ai) [17], reducing the amount of necessary pairings from n + 3 to 2.

In implementations it will probably suffice to choose these numers from {1, . . . , 2�r}
(with, say, �r = 80), resulting in a probability of 2�r that the S, Si are the correct
powers a, ai of K. We are very grateful to I. Goldberg for suggesting this improvement.

An Efficient Self-blindable Attribute-Based Credential Scheme 11

is another valid credential having the same attributes. That is, in the terminology
of Verheul [33] our credentials are self-blindable. This self-blindability is what
makes this signature scheme suitable for the purpose of creating an unlinkable
ShowCredential protocol.

The number κ will play a critical role in the unforgeability proof of our
signature and credential schemes (Theorem 10).4

Theorem 7. Our credentials are existentially unforgeable under adaptively cho-
sen message attacks, under the whLRSW assumption.

This is proven in the full version of this paper [30].

4 The Credential Scheme

In this section we present our credential scheme. The strategy is as follows: having
defined an unforgeable signature scheme on the set of attributes Zn

p (Definition 6),
we provide an issuing protocol, in which the issuer grants a credential to a user,
and a showing protocol, which allows a user to give a zero-knowledge proof to a
verifier that he possesses a credential, revealing some of the attributes contained in
the credential while keeping the others secret. The Issue protocol is shown in Fig. 1,

Common information: Attributes k1, . . . , kn, issuer’s public key σ = (p, e, Q,
A, A0, . . . , An, Z)

User Issuer
knows secret key k0 knows a, a0, . . . , an, z

choose K̄ ∈R G1

←− send S̄ = K̄a, S̄0 = K̄a0

choose α, κ′ ∈R Z
∗
p

set S = S̄α, S0 = S̄α
0

send S, S0, R = Sκ′
Sk0
0 −→

PK{(κ′, k0) : R = Sκ′
Sk0
0 } ←→

set K = S1/a

verify S �= S̄, K = S
1/a0
0

choose κ′′ ∈R Zp

set Si = Kai ∀i ∈ [1, n]

set T =
(
KSκ′′

R
∏n

i=1 Ski
i

)z

←− send κ′′, K, S1, . . . , Sn, T
set κ = κ′ + κ′′

return (k0, . . . , kn), (κ, K, S, S0, . . . , Sn, T)

Fig. 1. The Issue protocol.

4 We could have eased the notation somewhat by denoting the number κ as an extra
attribute kn+1, but because it plays a rather different role than the other attributes
(it is part of the signature), we believe this would create more confusion than ease.

12 S. Ringers et al.

Common information: Issuer’s public key σ = (p, e, Q, A, A0, . . . , An, Z); disclo-
sure set D, undisclosed set C = {1, . . . , n} \ D; disclosed attributes (ki)i∈D

User Verifier
knows K, S, S0, . . . , Sn, κ, (ki)i∈C , C, T

choose α, β ∈R Z
∗
p

set K̄ = Kα, S̄ = Sα, S̄i = Sα
i ∀i ∈ [0, n]

set C̃ = C−α/β , T̃ = T −α/β

send K̄, S̄, (S̄i)i=0,...,n, C̃, T̃ −→
set D = K̄−1 ∏

i∈D S̄−ki
i set D = K̄−1 ∏

i∈D S̄−ki
i

PK{(β, κ, k0, ki)i∈C : D = C̃βS̄κS̄k0
0

∏
i∈C S̄ki

i } ←→
choose r, r0, . . . , rn ∈R Z

∗
p

verify e(C̃, Z)
?
= e(T̃ , Q)

and e(S̄rS̄r0
0 · · · S̄rn

n , Q)
?
= e(K̄, ArAr0

0 · · · Arn
n)

Fig. 2. The ShowCredential protocol. We assume that the user has the element C =
KSκSk0

0 · · · Skn
n stored so that it does not need to compute it every time the protocol

is run (see Sect. 5 for more such optimizations).

and the ShowCredential protocol is shown in Fig. 2. Here and in the remainder of
the paper, we will write D ⊂ {1, . . . , n} for the index set of the disclosed attributes,
and

C = {1, . . . , n} \ D
for the index set of the undisclosed attributes. We do not consider the index 0
of the secret key k0 to be part of this set, as it is always kept secret.

The Issue protocol is such that both parties contribute to κ and K with
neither party being able to choose the outcome in advance (unlike the signing
algorithm of the signature scheme from the previous section, where the signer
chooses κ and K on its own). This ensures that these elements are randomly
distributed even if one of the parties is dishonest. Additionally, the issuer is
prevented from learning the values of κ and the secret key k0.

As noted earlier, we assume that the user and issuer have agreed on the
attributes k1, . . . , kn to be contained in the credential before executing this pro-
tocol. Similarly, we assume that the user sends the disclosure set D and disclosed
attributes (ki)i∈D to the verifier prior to executing the ShowCredential protocol.

If the user wants to be sure at the end of the Issue protocol that the new
credential is valid, he will need to compute the pairings from Eq. (2). Even if the
user is implemented on resource-constrained devices such as smart cards this is
not necessarily a problem; generally in ABC’s the issue protocol is performed
much less often than the disclosure protocol so that longer running times may
be more acceptable. Alternatively, the user could perform the ShowCredential
protocol in which it discloses none of its attributes with the issuer, or perhaps
another party; if the credential was invalid then this will fail.

An Efficient Self-blindable Attribute-Based Credential Scheme 13

The ShowCredential credential can be seen to consist of two separate phases:
first, the user blinds the elements K, S, Si, C and T with the number α as in
Eq. (3), resulting in a new signature over his attributes. Second, the user uses the
blinded elements to prove possession of this fresh signature over his attributes.
The elements S̄ and S̄i can be used for this proof of knowledge only if they have
all been correctly blinded using the same number α, which the verifier checks
using the pairings at the end of the protocol. Thus, since α is only used to
create a new blinded signature in advance of the proof of knowledge of this new
signature, the value of α need not be known to the verifier, which is why the user
does not need to prove knowledge of it. The same holds for the number α that
is used during issuance; as long as it is correctly applied (which the issuer here
checks by directly using his secret key instead of having to compute pairings),
the user can prove knowledge of κ′ and his secret key k0 without the issuer
needing to know α.

Mathematically, we can formalize what the ShowCredential protocol should
do as follows. The common knowledge of the user and verifier when running the
ShowCredential protocol consists of elements of the following formal language:

L =
{(

σ,D, (ki)i∈D
) | D ⊂ {1, . . . , n}, ki ∈ Zp ∀ i ∈ D}

(4)

where σ ranges over the set of public keys of the credential scheme, and where
n is the amount of attributes of σ. In addition, let the relation R be such that
R(x,w) = 1 only if x = (σ,D, (ki)i∈D) ∈ L, and w = ((k′

0, . . . , k
′
n), s) is a valid

credential with respect to σ, with k′
i = ki for i ∈ D (i.e., the disclosed attributes

(ki)i∈D are contained in the credential w.) Thus the equation R(x,w) = 1 holds
only if w is a valid credential having attributes (ki)i∈D.

Theorem 8. The showing protocol is complete with respect to the language L:
if a user has a valid credential then it can make the verifier accept.

Proof. If the user follows the ShowCredential protocol, then e(K̄, A) =
e(Kα, Qa) = e(Kαa, Q) = e(Sα, Q) = e(S̄, Q), so the first verification that the
verifier does will pass. An almost identical calculation shows that the second and
third verifications pass as well. As to the proof of knowledge, setting C̄ = Cα

we have

C̃βS̄κS̄k0
0

∏

i∈C
S̄ki

i = C̄−1S̄κS̄k0
0

∏

i∈C
S̄ki

i = K̄−1
∏

i∈D
S̄−ki

i = D, (5)

so the user can perform this proof without problem. �

4.1 Unforgeability and Unlinkability

The proofs of the following theorems may be found in the full version of this
paper [30].

Lemma 9. With respect to the language L defined in (4), the ShowCredential
protocol is black-box extractable.

14 S. Ringers et al.

In the proofs of the unforgeability and unlinkability theorems, we will need a
tuple (K̂, Ŝ, Ŝ0, . . . , Ŝn, Ĉ, T̂) ∈ Gn+5

1 such that Ŝ = K̂a and Ŝi = K̂ai for all i,
as well as T̂ = Ĉz. For that reason we will henceforth assume that such a tuple is
included in the issuer’s public key. Note that one can view these elements as an
extra credential of which the numbers (κ, k0, . . . , kn) are not known. Therefore
the credential scheme remains unforgeable (the adversary can in fact already
easily obtain such a tuple by performing an Issue query in the unforgeability
game).5

Theorem 10. Our credential scheme is unforgeable under the whLRSW
assumption.

Theorem 11. The ShowCredential protocol is a black-box zero-knowledge proof
of knowledge with respect to the language L.

Theorem 12. Let (KeyGen, Issue,ShowCredential) be an attribute-based creden-
tial scheme whose ShowCredential protocol is black-box zero-knowledge. Then the
scheme is unlinkable.

Theorem 13. Our credential scheme is unlinkable.

5 Performance

5.1 Exponentiation Count

Table 1 compares the amount of exponentiations in our scheme to those of [13],
U-Prove and Idemix. However, note that exponentiations in RSA-like groups,
on which Idemix depends, are significantly more expensive than exponentiations
in elliptic curves. The scheme from [19] is slightly cheaper than ours for the
prover, but relies on a newly introduced hardness assumption. Also, the U-Prove
showing protocol offers no unlinkability. As to the scheme from [13], Camenisch
and Lysyanskaya did not include a showing protocol that allows attributes to be
disclosed (that is, it is assumed that all attributes are kept secret), but it is not
very difficult to keep track of how much less the user has to do if he voluntarily
discloses some attributes. We see that the amount of exponentiations that the
user has to perform in the ShowCredential protocol of [13] is roughly 1.5 times
as large as in our scheme. Since, additionally, computing pairings is significantly
more expensive than exponentiating, we expect our credential scheme to be at
least twice as efficient.

5 Credential owners already have such a tuple; verifiers can obtain one simply by
executing the ShowCredential protocol; and issuers can of course create such tuples
by themselves. Therefore in practice, each party participating in the scheme will
probably already have such a tuple, so that including it in the public key may not
be necessary in implementations.

An Efficient Self-blindable Attribute-Based Credential Scheme 15

Table 1. Exponentiation and pairing count for the user of the ShowCredential protocol
of several attribute-based credential schemes. The columns GEC, GT and GRSA show
the amount of exponentiations in elliptic curves, the target group of a bilinear pairing,
and RSA groups respectively, while the column labeled e counts the amount of pairings
the user has to compute. The number n denotes the amount of attributes, excluding
the secret key, and the function pk(n) denotes the amount of exponentiations necessary
in order to perform a zero-knowledge proof of knowledge of n numbers (in the case of
the Fiat-Shamir heuristic applied to the Schnorr Σ-protocol, which Idemix also uses,
we have pk(n) = n).

GEC GT e GRSA Unlinkable

Our scheme n + pk(|C| + 3) + 6 0 0 0 Yes

[13] 2n + 3 pk(|C| + 2) n + 3 0 Yes

[19] |C| + pk(2) + 5 0 0 0 Yes

[5] pk(|C| + 7) + 5 0 0 0 Yes

Idemix 0 0 0 |C| + 3 Yes

U-Prove |C| + 1 0 0 0 No

5.2 Implementation

In order to further examine the efficiency of our credential scheme we have writ-
ten a preliminary implementation, using the high-speed 254-bit BN-curve and
pairing implementation from [6]. The latter is written in C++ and assembly but
also offers a Java API, and it uses the GMP library from the GNU project6 for
large integer arithmetic. Table 2 shows the running times of our implementation
along with those from the Idemix implementation from the IRMA project.7 We
have tried to make the comparison as honest as possible by writing our implemen-
tation in Java, like the IRMA Idemix implementation, which we have modified to
also use the GMP library for its large integer arithmetic. In addition, like IRMA
we have used the Fiat-Shamir heuristic. However, the comparison can still only
go so far, because the elliptic curve group that [6] offers is heavily optimized
for fast computations, from which our scheme profits because it allows multi-
ple issuers to use the same group. Such optimizations are not possible in Idemix
because each Idemix public key necessarily involves its own group. Moreover, the
IRMA Idemix implementation is 1024-bits, which according to [25] corresponds
to a 144 bit curve (see also www.keylength.com), so that the two implementa-
tions do not offer the same level of security.

For these reasons we will go no further than draw qualitative conclusions
from the data. Nevertheless, both remarks actually demonstrate the efficiency
of our scheme: the first means that our scheme can be optimized further than
Idemix could, and Table 2 shows that even though our implementation offers a
much higher level of security, it is still significantly faster than the IRMA Idemix

6 See gmplib.org.
7 See privacybydesign.foundation and github.com/credentials.

www.keylength.com
https://gmplib.org/
https://privacybydesign.foundation
https://github.com/credentials

16 S. Ringers et al.

Table 2. A comparison of the running times of various actions in the implementation
of our credential scheme and the IRMA Idemix implementation, both of them using the
Fiat-Shamir heuristic. The columns labeled “computing proof” and “verifying proof”
show how long it takes to compute and to verify a disclosure proof, respectively, while
the column labeled “verifying credential” shows how long it takes to verify the signature
of a credential. �r = 80 was used (see the Footnote 3). The left column shows the total
number of attributes and, if applicable, the amount of disclosed attributes (this does
not apply to the “verifying credential” column). The attributes were randomly chosen
253-bit integers, the same across all tests, and the computations were performed on
a dual-core 2.7 GHz Intel Core i5. All running times are in milliseconds, and were
obtained by computing the average running time of 1000 iterations.

attributes total (discl.) Computing proof Verifying proof Verifying credential

This work Idemix This work Idemix This work Idemix

6 (1) 2.6 11.7 4.0 11.2 3.2 6.5

7 (1) 2.6 12.6 4.4 12.2 3.3 6.9

8 (1) 2.9 13.4 4.4 13.2 3.3 7.4

9 (1) 3.1 14.3 4.6 14.0 3.3 7.7

10 (1) 3.4 15.2 4.7 14.9 3.4 8.3

11 (1) 3.6 16.5 4.9 15.8 3.6 8.7

12 (1) 3.9 17.1 5.1 16.9 3.7 8.9

6 (5) 2.1 7.6 3.4 9.2

7 (6) 2.1 7.5 3.6 9.7

8 (7) 2.2 7.5 3.6 10.1

9 (8) 2.2 7.4 3.7 10.7

10 (9) 2.3 7.4 4.1 10.9

11 (10) 2.5 7.5 4.2 11.4

12 (11) 2.6 7.5 4.5 12.0

implementation. We believe therefore that the conclusion that our scheme is or
can be more efficient than Idemix – at least for the user in the ShowCredential
protocol – is justified.

6 Conclusion

In this paper we have defined a new self-blindable attribute-based credential
scheme, and given a full security proof by showing that it is unforgeable and
unlinkable. Our scheme is based on a standard hardness assumption and does
not need the random oracle model. Based on the fact that it uses elliptic curves
and bilinear pairings (but the latter only on the verifier’s side), on a comparison
of exponentiation counts, and on a comparison of run times with the IRMA
Idemix implementation, we have shown it to be more efficient than comparable
schemes such as Idemix and the scheme from [13], achieving the same security
goals at less cost.

An Efficient Self-blindable Attribute-Based Credential Scheme 17

Acknowledgments. We are very grateful to the anonymous referees for their helpful
and constructive feedback, and to I. Goldberg for suggesting the method from [17] for
reducing the verification pairing count.

A Unforgeability and Unlinkability Games

Unforgeability of a credential scheme is defined using the following game (resem-
bling the signature scheme unforgeability game).

Definition 14 (unforgeability game). The unforgeability game of an
attribute-based credential scheme between a challenger and an adversary A is
defined as follows.

Setup. For a given security parameter �, the adversary decides on the number of
attributes n ≥ 1 that each credential will have, and sends n to the challenger.
The challenger then runs the KeyGen(1�, n) algorithm from the credential
scheme and sends the resulting public key to the adversary.

Queries. The adversary A can make the following queries to the challenger.
Issue(k1,j , . . . , kn,j). The challenger and adversary engage in the Issue proto-

col, with the adversary acting as the user and the challenger acting as the
issuer, over the attributes (k1,j , . . . , kn,j). It may choose these adaptively.

ShowCredential(D, k1, . . . , kn). The challenger creates a credential with the
specified attributes k1, . . . , kn, and engages in the ShowCredential protocol
with the adversary, acting as the user and taking D as disclosure set, while
the adversary acts as the verifier.

Challenge. The challenger, now acting as the verifier, and the adversary, acting
as the user, engage in the ShowCredential protocol. The adversary chooses a
disclosure set D, and if it manages to make the verifier accept then it wins if
one of the following holds:

– If the adversary made no Issue queries then it wins regardless of the disclosure
set (even if D = ∅);

– Otherwise D must be nonempty, and if (ki)i∈D are the disclosed attributes,
then there must be no j such that ki = ki,j for all i ∈ D (i.e., there is no single
credential issued in an Issue query containing all of the disclosed attributes
(ki)i∈D).

We say that the credential scheme is unforgeable if no probabilistic polynomial-
time algorithm can win this game with non-negligible probability in the security
parameter �.

Next we turn to the unlinkability game.

Definition 15 (unlinkability game). The unlinkability game of an attribute-
based credential scheme between a challenger and an adversary A is defined as
follows.

18 S. Ringers et al.

Setup. For a given security parameter �, the adversary decides on the number of
attributes n ≥ 1 that each credential will have, and sends n to the challenger.
The adversary then runs the KeyGen(1�, n) algorithm from the credential
scheme and sends the resulting public key to the challenger.

Queries. The adversary A can make the following queries to the challenger.
Issue(k1,j , . . . , kn,j). The adversary chooses a set of attributes (k1,j , . . . , kn,j),

and sends these to the challenger. Then, acting as the issuer, the adversary
engages in the Issue protocol with the challenger, issuing a credential j
to the challenger having attributes (k1,j , . . . , kn,j).

ShowCredential(j,D). The adversary and challenger engage in the showing
protocol on credential j, the challenger acting as the user and the adver-
sary as the verifier. Each time the adversary may choose the disclosure
set D.

Corrupt(j). The challenger sends the entire internal state, including the
secret key k0, of credential j to the adversary.

Challenge. The adversary chooses two uncorrupted credentials j0, j1 and a dis-
closure set D ⊂ {1, . . . , n}. These have to be such that the disclosed attributes
from credential j0 coincide with the ones from credential j1, i.e., ki,j0 = ki,j1

for each i ∈ D. It sends the indices j0, j1 and D to the challenger, who checks
that this holds; if it does not then the adversary loses.

Next, the challenger flips a bit b ∈R {0, 1}, and acting as the user, it engages in
the ShowCredential with the adversary on credential jb. All attributes whose
index is in D are disclosed.

Output. The adversary outputs a bit b′ and wins if b = b′.

We define the advantage of the adversary A as AdvA := |Pr[b = b′] − 1/2|.
When no probabilistic polynomial-time algorithm can win this game with non-
negligible advantage in the security parameter �, then we say that the credential
scheme is unlinkable.

References

1. Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable RFID tags via insub-
vertible encryption. In: Proceedings of the 12th ACM Conference on Computer
and Communications Security (CCS 2005), pp. 92–101. ACM, New York (2005)

2. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072 8

3. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security (CCS
2013), pp. 1087–1098. ACM, New York (2013)

4. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
82–99. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 5

5. Barki, A., Brunet, S., Desmoulins, N., Traoré, J.: Improved algebraic MACs and
practical keyed-verification anonymous credentials. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 360–380. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-69453-5 20

https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-319-69453-5_20

An Efficient Self-blindable Attribute-Based Credential Scheme 19

6. Beuchat, J.-L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal ate
pairing over Barreto–Naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17455-1 2

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference
(ITCS 2012), pp. 326–349. ACM, New York (2012)

8. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

9. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

10. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press, Cambridge (2000)

11. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4 14

12. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

13. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

14. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

15. Cramer, R., Damg̊ard, I., MacKenzie, P.: Efficient zero-knowledge proofs of knowl-
edge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000.
LNCS, vol. 1751, pp. 354–372. Springer, Heidelberg (2000). https://doi.org/10.
1007/978-3-540-46588-1 24

16. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

17. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical short
signature batch verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS,
vol. 5473, pp. 309–324. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00862-7 21

18. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

19. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. Cryptology ePrint
Archive, Report 2014/944 (2014). https://eprint.iacr.org/2014/944

20. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

21. Hajny, J., Malina, L.: Unlinkable attribute-based credentials with practical revo-
cation on smart-cards. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp.
62–76. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37288-9 5

https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-72540-4_14
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-540-46588-1_24
https://doi.org/10.1007/978-3-540-46588-1_24
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-642-00862-7_21
https://doi.org/10.1007/978-3-642-00862-7_21
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2014/944
https://doi.org/10.1007/978-3-642-37288-9_5

20 S. Ringers et al.

22. Hanzlik, L., Kluczniak, K.: A short paper on how to improve U-Prove using self-
blindable certificates. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 273–282. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45472-5 17

23. Hoepman, J.-H., Lueks, W., Ringers, S.: On linkability and malleability in
self-blindable credentials. In: Akram, R.N., Jajodia, S. (eds.) WISTP 2015.
LNCS, vol. 9311, pp. 203–218. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24018-3 13

24. IBM Research Zürich Security Team: Specification of the identity mixer crypto-
graphic library, version 2.3.0. Technical report, IBM Research, Zürich, February
2012. https://tinyurl.com/idemix-spec

25. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. J. Cryptol. 14(4),
255–293 (2001)

26. Lysyanskaya, A.: Pseudonym systems. Master’s thesis, Massachusetts Institute of
Technology (1999). https://groups.csail.mit.edu/cis/theses/anna-sm.pdf

27. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46513-8 14

28. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

29. Paquin, C., Zaverucha, G.: U-Prove cryptographic specification v1.1 (revi-
sion 3), December 2013. http://research.microsoft.com/apps/pubs/default.aspx?
id=166969. Released under the Open Specification Promise

30. Ringers, S., Verheul, E., Hoepman, J.H.: An efficient self-blindable attribute-based
credential scheme. Cryptology ePrint Archive, Report 2017/115 (2017). https://
eprint.iacr.org/2017/115

31. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

32. Verheul, E., Ringers, S., Hoepman, J.-H.: The self-blindable U-Prove scheme from
FC’14 is forgeable (short paper). In: Grossklags, J., Preneel, B. (eds.) FC 2016.
LNCS, vol. 9603, pp. 339–345. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54970-4 20

33. Verheul, E.R.: Self-blindable credential certificates from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–551. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 31

34. Vullers, P., Alpár, G.: Efficient selective disclosure on smart cards using
Idemix. In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013.
IAICT, vol. 396, pp. 53–67. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-37282-7 5

35. Wachsmann, C., Chen, L., Dietrich, K., Löhr, H., Sadeghi, A.-R., Winter, J.:
Lightweight anonymous authentication with TLS and DAA for embedded mobile
devices. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 84–98. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-18178-8 8

36. Wei, V.K., Yuen, T.H.: More short signatures without random oracles. IACR Cryp-
tology ePrint Archive 2005, 463 (2005). http://eprint.iacr.org/2005/463

https://doi.org/10.1007/978-3-662-45472-5_17
https://doi.org/10.1007/978-3-662-45472-5_17
https://doi.org/10.1007/978-3-319-24018-3_13
https://doi.org/10.1007/978-3-319-24018-3_13
https://tinyurl.com/idemix-spec
https://groups.csail.mit.edu/cis/theses/anna-sm.pdf
https://doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
http://research.microsoft.com/apps/pubs/default.aspx?id=166969
http://research.microsoft.com/apps/pubs/default.aspx?id=166969
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
https://eprint.iacr.org/2017/115
https://eprint.iacr.org/2017/115
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-662-54970-4_20
https://doi.org/10.1007/978-3-662-54970-4_20
https://doi.org/10.1007/3-540-45682-1_31
https://doi.org/10.1007/978-3-642-37282-7_5
https://doi.org/10.1007/978-3-642-37282-7_5
https://doi.org/10.1007/978-3-642-18178-8_8
https://doi.org/10.1007/978-3-642-18178-8_8
http://eprint.iacr.org/2005/463

Real Hidden Identity-Based Signatures

Sherman S. M. Chow1(B), Haibin Zhang2, and Tao Zhang1

1 Chinese University of Hong Kong, Shatin, NT, Hong Kong
{sherman,zt112}@ie.cuhk.edu.hk

2 University of Connecticut, Mansfield, CT 06269, USA
haibin.zhang@uconn.edu

Abstract. Group signature allows members to issue signatures on
behalf of the group anonymously in normal circumstances. When the
need arises, an opening authority (OA) can open a signature and reveal
its true signer. Yet, many constructions require not only the secret key
of the OA but also a member database (cf. a public-key repository) for
this opening. This “secret members list” put the anonymity of members
at risk as each of them is a potential signer.

To resolve this “anonymity catch-22” issue, Kiayias and Zhou pro-
posed hidden identity-based signatures (Financial Crypt. 2007 and IET
Information Security 2009), where the opening just takes in the secret
key of the OA and directly outputs the signer identity. The membership
list can be hidden from the OA since there is no membership list what-
soever. However, their constructions suffer from efficiency problem.

This paper aims to realize the vision of Kiayias and Zhou for real,
that is, an efficient construction which achieves the distinctive feature of
hidden identity-based signatures. Moreover, our construction is secure
against concurrent attack, and easily extensible with linkability such
that any double authentication can be publicly detected. Both features
are especially desirable in Internet-based services which allow anony-
mous authentication with revocation to block any misbehaving user. We
believe our work will improve the usability of group signature and its
variant.

Keywords: Anonymous authentication · Group signature
Hidden identity-based signature

1 Introduction

Group signature, introduced by Chaum and van Heyst [1], is a useful tool in
applications which expect anonymous authentication, where the signers typically
remain anonymous, yet some authorities can identify any misbehaving user in
case of abuse. To join a group, users first obtain their group signing keys from
a group manager (GM). The joining protocol is often interactive. Once this
registration is done, they can sign on behalf of the group with (conditional)
anonymity using the signing keys. The verifiers only know that someone in the
c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 21–38, 2017.
https://doi.org/10.1007/978-3-319-70972-7_2

22 S. S. M. Chow et al.

group signed the message, but cannot identify the specific signer. Whenever the
GM deems appropriate, it can use a system trapdoor to “open” a group signature
and reveal its true signer.

A later refinement by Camenisch and Michels [2] separates the power of
opening from the GM, by introducing an opening authority (or opener). GM in
this setting is in charge of user registration only, and the opening authority (OA)
is in charge of opening signatures. However, to enable anonymity revocation in
many realizations of group signature, the OA actually requires some help of the
GM, specifically, for the membership database the GM holds. This design comes
with some flaws—either the OA holds the member list, or the GM interacts
with the OA each time an opening is needed, which means the GM should
remains online for answering opening requests and it can possibly deny such
a request of the OA. Note that the reason why group signatures are used is
that the user wants to protect their anonymity. However, the existence of such
secret membership list conflicts with this purpose. The members cannot sign
in peace because the OA is too powerful with this membership list. This list
is a very valuable asset attracting any adversary who aims to compromise user
anonymity to attack the OA. However, since it is not a secret key by definition
and secure storage for such a large list is relatively expensive, it may not be as
well-protected as the opening trapdoor. We end up with a “no-win” no matters
which of the above options to adopt.

Kiayias and Zhou [3,4] observed this inconvenient situation and put forth the
notion of hidden identity-based signatures (HIBS). The hidden feature of HIBS
is that not only the signer identity can be hidden from a regular verifier (like
group signature), but the membership list is also hidden from the OA since there
is no membership list whatsoever. In particular, anonymity revocation will not
require such a list.

Realizing HIBS is not straightforward, even though many group signature
schemes exist. In their first concrete construction [3], one needs to solve discrete
logarithm problem to get the signer identity. Discrete logarithm problem cannot
be efficiently solved by any probabilistic polynomial-time algorithm. This makes
the hidden feature of their scheme rather artificial. Some existing group signa-
ture schemes before their work can (be extended easily to) support this “hidden-
identity” feature if the opening requires solving discrete logarithm problem. In
other words, one can consider this scheme not a “real” hidden identity-based signa-
ture scheme. Indeed, other scheme which opens to a group element embedding the
identity as an exponent also exists [5]. Their second scheme [4] does not suffer from
this problem, yet the efficiency is not that satisfactory. Specifically, it uses Paillier
encryption and thus a more involved zero-knowledge proof. Not only the signa-
ture contains more group elements, but also each of those becomes larger since the
composite order group should be large enough to withstand the best-known factor-
ization attack. In other words, the price for this hidden-identity feature is the cost
of the efficiency of all other algorithms of the signature scheme. Liu and Xu [6,7]
proposed pairing-based HIBS schemes in the random oracle model which claimed
to achieve concurrent security, CCA-anonymity, and exculpability, but their con-
structions still require solving the discrete logarithm problem for opening.

Real Hidden Identity-Based Signatures 23

1.1 Our Contributions

We propose a generic construction for HIBS based on standard primitives:
digital signature, encryption, and non-interactive zero-knowledge (NIZK) (or
non-interactive witness-indistinguishable (NIWI)) proof. Though conceptually
simple, it has impacts in multiple aspects.

– First, we show that the seemingly difficult goal of constructing HIBS can
be generally achieved from various cryptographic assumptions in a modular
manner, leading to efficient instantiations without random oracles.

– Beyond retaining the nice feature of supporting opening without requiring
any membership list, our generic construction is secure even under concur-
rent joining, such that the GM can interact with multiple joining users in
an arbitrarily interleaving manner. Concurrent joining is more practical than
sequential joining for applications over the Internet such as anonymous com-
munication (say, via Tor), which is the original scenario Kiayias and Zhou [3,4]
brought up to motivate the concept of HIBS.

– We extend our generic construction of HIBS with linkability [8], where HIBS
signatures generated by the same signer on the same message can be linked
without revealing the identity of the signer. We call this extension linkable
hidden identity-based signature (LHIBS). This extension disallows double-
posting of the same user with respect to the same “call for contributions”,
may it be two responses to the same thread of discussion or two votes cast in
the associated reputation systems. With our modular construction, advanced
features such as escrowed linkability can be easily equipped [9].

– Finally, our generic construction and its instantiations are highly compatible
with other privacy enhancing features such as (real) traceability [10,11] and
uniqueness [12]. This echoes the work of Galindo, Herranz, and Kiltz [13],
which obtains identity-based signature schemes with additional properties
from standard signature with the corresponding properties. The details are
shown in the full version.

1.2 Relation to Existing Notions

Note that a major difference of identity-based signature from the traditional sig-
natures based on public-key infrastructure, is simply the removal of a huge list of
public-key certificates. One can simply include a signature from the certificate
authority in every signature, to realize an identity-based signature. However,
every signature comes with this additional certificate, which also means an addi-
tional verification is needed in verifying any given signatures.

In hidden identity-based signatures, this certificate can be considered as hid-
den via an implicit encryption mechanism. As such, one may not agree that such
construction should be named as identity-based. Yet, our notion does not suffer
from the loss of efficiency as in the case for “certificate-based” identity-based
signatures. This is exactly the purpose of this work to show that such construc-
tion of HIBS can be constructed in an efficient (and modular) manner. On the

24 S. S. M. Chow et al.

other hand, we stick with the original naming of Kiayias and Zhou [3]. Indeed,
as acknowledged in their work, HIBS is essentially a group signature scheme,
but just with a special care on the input requirement of the opening mechanism.

Galindo et al. [13] studied what additional properties of identity-based sig-
natures (such as proxy, blind, undeniable, etc.) can be generically obtained from
standard signature schemes with the same properties. Their work is also based
on the above generic construction of identity-based signatures from standard sig-
natures. Our modular construction here is also compatible with many additional
properties in the world of group signatures [11,12,14].

2 Preliminaries

2.1 Notations

If S is a set, s
$← S denotes the operation of selecting an element s from S

uniformly at random. ∅ denotes an empty set. If A is a randomized algorithm,
we write z

$← A(x, y, · · ·) to indicate the operation that runs A on inputs x, y, · · ·
(and uniformly selected internal randomness from an appropriate domain) which
outputs z. A function ε(λ): N → R is negligible if, for any positive number d,
there exists some constant λ0 ∈ N such that ε(λ) < (1/λ)d for any λ > λ0.

2.2 Bilinear Map

Bilinear pairing is a powerful tool for cryptographers to construct a diversity
of primitives. In a bilinear group G = (G,H,GT , p, e, g, h), G,H, and GT are
groups of prime order p. g and h are random generators for the groups G and H

respectively. An efficient bilinear map e : G×H → GT maps two group elements
from G and H to one from the target group GT with the following property.

– Bilinearity. For all u ∈ G, v ∈ H, a, b ∈ Z, e(ua, vb) = e(u, v)ab.
– Non-degeneracy. e(g, h) �= 1.
– Efficiency. For all (u, v) ∈ G × H, e(u, v) is efficiently computable.

2.3 Assumptions

Assumption 1 (Decisional Diffie-Hellman (DDH)). For a group G with
a random generator g, given (ga, gb, gc) where a, b, c are randomly chosen from
Zp, it is hard for any probabilistic polynomial-time algorithm to decide whether
gc = gab or not.

Assumption 2 (SXDH). For a bilinear group G = (G, H, GT , p, e, g, h)
where e : G × H → GT , DDH assumption holds for both G and H.

Symmetric eXternal Diffie-Hellman (SXDH) assumption implies that there does
not exist any efficient transformation from G to H or from H to G.

Real Hidden Identity-Based Signatures 25

Assumption 3 (Decisional Linear (DLIN)). For a group G, given the tuple
(g1, g2, g3, ga

1 , gb
2, gc

3) ∈ G
6 where g1, g2, g3 ∈ G

∗ and a, b, c ∈ Zp, it is hard for
any probabilistic polynomial-time algorithm to decide whether gc

3 = ga+b
3 or not.

3 Hidden Identity-Based Signatures

We present the syntax and notions of security for HIBS. The contents of this
section are strengthening and extending those proposed by Kiayias and Zhou [3,4],
adding useful functionalities, and establishing stronger notions of security.

3.1 Syntax of HIBS

We consider HIBS with separated issuer (or group/identity manager) and opener
(or opening authority) [3,15]. An issuer is responsible for member enrollment,
while an opener is responsible for recovering the identities hidden in the signa-
tures given by the enrolled users, whenever need arises.

A hidden identity-based signature (HIBS) scheme HIBS is a set of nine algo-
rithms (KGen, UKGen, Reg, RegCheck, Sign, Verify, Open, Judge, Dispute):

– KGen(1λ) → (gpk, ik, ok): The group key generation1 algorithm takes as input
the security parameter λ and outputs the group public key gpk, the issuer
key ik (for the issuer) and the opening key ok (for the opener).

– UKGen(1λ, ID) → (upkID, uskID): The user private key generation algorithm
takes as input the security parameter λ and a user identity ID, and outputs
the user personal public and private key pair (upkID, uskID).

– Reg(gpk, ik, ID, upkID) → certID: The registration algorithm takes as input the
group public key gpk, the issuer key ik, a user identity ID, and a user personal
public key upkID to return a user membership certificate certID.

– RegCheck(gpk, ID, upkID, certID) → 0/1: The registration checking algorithm2

takes as input the group public key gpk, a user identity ID, a user personal
public key upkID, and a user membership certificate certID to return a single
bit b. We say certID is a valid user membership certificate with respect to ID
if RegCheck(gpk, ID, upkID, certID) = 1.

– Sign(gpk, ID, certID, uskID,m) → σ: The HIBS signing algorithm takes as input
the group public key gpk, a user identity ID, the corresponding user member-
ship certificate certID, the user private key uskID, and a message m to return
a signature σ.

– Verify(gpk,m, σ) → 0/1: The HIBS verification algorithm takes as input the
group public key gpk, a message m, a signature σ on m, and returns a single
bit b. We say that σ is a valid signature of m if Verify(gpk,m, σ) = 1.

1 We put issuing key generation and opening key generation together for brevity. It
is easy to separate them in our schemes such that the respective private keys of
the issuer and the opener are generated independently except according to the same
security parameter, and the corresponding public keys will be put together in gpk.

2 This algorithm may be optional for some application scenarios.

26 S. S. M. Chow et al.

– Open(gpk, ok,m, σ) → (ID, ω): The opener takes as input the group public
key gpk, its opening key ok, a message m, and a valid signature σ for m, and
outputs (ID, ω), where ω is a proof to support its claim that user ID indeed
signed the message. It is possible that (ID, ω) = ⊥ for a valid signature, in
which case the opening procedure is foiled.

– Judge(gpk, (ID, ω), (m,σ)) → 0/1: The judge algorithm takes as input the
group public key gpk, the opening (ID, ω), a message m, and a valid signa-
ture σ of m to verify that the opening of σ to ID is indeed correct. We say
that the opening is correct if Judge(gpk, (ID, ω), (m,σ)) = 1.

– Dispute(gpk, upkID, certID, (ID, ω)) → 0/1: The dispute algorithm is triggered if
a registered user ID refuses to admit guilt after an opening (ID, ω) is published.
It takes as input the group public key gpk, the user personal public key upkID,
the user membership certificate certID, which are both provided by the user,
and the opening result (ID, ω) published by the opener, and returns a single
bit b. The issuer is guilty with respect to ID if Dispute(gpk, upkID, certID, (ID,
ω)) = 1.

We note that the hidden-identity nature just applies on the opener. Obvi-
ously, the group manager is governing who can join the group, and hence it can
store such a list after every Reg invocation. However, it is natural to assume that
the group manager is not motivated to put its member at risk.

Following [15] and different from [3,4], we further equip our HIBS with a
judge algorithm Judge() to protect against a fully corrupt opener. Compared
to that of [15], the Join()/Issue() algorithm [15] is replaced with Reg() and
RegCheck() algorithms for the sake of simplicity.

We now briefly consider the correctness notions for HIBS. Correctness
includes registration correctness (with respect to Reg() and RegCheck() algo-
rithms), signing correctness (with respect to Sign() and Verify() algorithms),
opening correctness (with respect to Open() and Judge() algorithms), and dis-
pute correctness. The first three can be easily adapted from those of [3,15], while
the last one requires the Dispute() algorithm to function correctly when a sus-
pected user was indeed framed.

3.2 Syntax of Linkable HIBS

We extend hidden identity-based signatures to the notion of linkable HIBS
(LHIBS) which supports linking the signatures on the same message by the
same (hidden) signer. This feature is implemented by the algorithm below.

– Link(gpk,m, σ1, σ2) → 0/1: This algorithm takes in the group public key and
two signatures on the same message m. If σ1 and σ2 are two valid signatures
(resulting in 1 from Verify()) generated by the same signer, this algorithm
outputs 1; otherwise, it outputs 0.

This linking feature can identify double-posting without opening the identity of
any signer.

Real Hidden Identity-Based Signatures 27

3.3 Security Notions for HIBS

We strengthen the notions due to Kiayias and Zhou [3,4], and consider the
“strongest” achievable notions (following [15]): anonymity, traceability, and non-
frameability. The security notions in [3,4], namely, security against misidentifi-
cation forgery and exculpability attacks (formally given in [4]), have been shown
to be implied by traceability and non-frameability [16].

Similar to the study of Kiayias and Zhou [3,4], we do not have an explicit
security definition to model the hidden identity nature of the scheme. It is more
a functionality requirement that the opener does not need such a list for the
proper operation. In principle, such opener can collect all signatures in the sys-
tem, open each of them, with the goal of recovering the whole membership list.
Hence, by the correct functionality of the scheme, we cannot afford to have a
security definition which prevents an adversary with the opening secret key from
outputting the identity of any member.

Notation. We use HU and CU (both initially empty) to denote a set of honest and
corrupted users respectively, and use MSGID (initially empty) to denote the set
of messages queried by the adversary to SignO oracle for ID. An adversary may
have access of the following oracles in the security games to be described.

– RegO(ID): The adversary queries this oracle with a user identity ID. If ID ∈
CU∪HU, returns ⊥. Otherwise, this oracle runs (upkID, uskID) ← UKGen(1λ, ID)
and certID ← Reg(gpk, ik, ID, upkID), sets MSGID ← ∅, and sets HU ← HU ∪ {ID}
and stores (ID, upkID, uskID, certID) internally.

– SignO(ID, certID,m): This oracle takes in an identity ID and a message m
from the adversary, runs σ ← Sign(gpk, ID, certID, uskID, m) where certID
is the certificate on ID generated by RegO, sets MSGID ← MSGID ∪ {m}, and
returns σ.

– CorruptO(ID): This oracle takes in an identity ID, sets CU ← CU ∪ {ID} and
HU ← HU \ {ID}, and returns (upkID, uskID, certID).

– OpenO(m,σ): If Verify() outputs 1 on (m,σ), this oracle returns (ID, ω) ←
Open(gpk, ok,m, σ). Otherwise, outputs ⊥.

Definition 1 (CCA-Anonymity). An HIBS scheme HIBS is CCA-
anonymous, if in the following experiment, Advanon

HIBS(A) is negligible.

Experiment Expcca-anon
HIBS (A)

(gpk, ik, ok) $← KGen(1λ); CU ← ∅; HU ← ∅;

(ID0, ID1,m, s) $← ACorruptO(·),RegO(·),OpenO(·,·)(‘find’, gpk, ik)

b
$← {0, 1};σ $← Sign(gpk, IDb, certIDb

, uskIDb
,m)

b′ $← ACorruptO(·,·),RegO(·),OpenO(·,·)(‘guess’, σ, s)
if b′ �= b then return 0
return 1

28 S. S. M. Chow et al.

where the adversary A must not have queried OpenO(·, ·) with m and σ in guess
phase. We define the advantage of A in the above experiment by

Advanon
HIBS(A) = Pr[Expanon

HIBS(A) = 1] − 1/2.

The opening of a group signature corresponds to the chosen ciphertext
attack (CCA) which features a decryption oracle to the adversary of public-
key encryption. Naturally, one can also consider a variant anonymity notion,
chosen-plaintext attack (CPA) anonymity, where the adversary is never given
access to the opening oracle. It is known as CPA-anonymity.

Our anonymity notion strengthens that of Kiayias and Zhou [4] in the sense
the adversary is given access to two more oracles CorruptO(·, ·) and RegO(·).

We also consider a weak CCA-anonymity for our extension with linkability.
The definition is stated below.

Definition 2 (Weak CCA-Anonymity). An HIBS scheme HIBS is weak
CCA-anonymous, if in the following experiment, Advanon

HIBS(A) is negligible.

Experiment Expweak-anon
HIBS (A)

(gpk, ik, ok) $← KGen(1λ); CU ← ∅; HU ← ∅;

(ID0, ID1,m, s) $← ACorruptO(·),RegO(·),OpenO(·,·)(‘find’, gpk, ik)
if m ∈ MSGID0 or m ∈ MSGID1 then abort

b
$← {0, 1};σ $← Sign(gpk, IDb, certIDb

, uskIDb
,m)

b′ $← ACorruptO(·,·),RegO(·),OpenO(·,·)(‘guess’, σ, s)
if b′ �= b then return 0
return 1

where the adversary A must not have queried OpenO(·, ·) with m and σ in guess
phase. We define the advantage of A in the above experiment by

Advanon
HIBS(A) = Pr[Expanon

HIBS(A) = 1] − 1/2.

One can formulate a CPA counterpart for this definition. For the linkable HIBS,
the linking token is deterministic, and is decided by the combination of iden-
tity and message to be signed. Hence, in the weak CCA-anonymity game, the
adversary is not allowed to submit challenge identity-message pairs which have
appeared in the signing queries. Otherwise, the adversary will obtain a link-
ing token on the challenge identity-message pair, and break anonymity of HIBS
trivially.

Next, we present traceability and non-frameability, which together imply
(and in fact stronger than) the security against misidentification forgery and
exculpability attacks [4].

Definition 3 (Traceability). An HIBS scheme HIBS is traceable, if in the
following experiment, Advtrace

HIBS(A) is negligible.

Real Hidden Identity-Based Signatures 29

Experiment Exptrace
HIBS(A)

(gpk, ik, ok) $← KGen(1λ); CU ← ∅; HU ← ∅;

(m,σ) $← ACorruptO(·),RegO(·,·)(gpk, ok)
if Verify(gpk,m, σ) = 0

then return 0
(ID, ω) ← Open(gpk, ok,m, σ)
if (ID, ω) = ⊥ or Judge(gpk, ID, ω,m, σ) = 0

then return 1
return 0

The advantage of A in the above experiment is defined by

Advtrace
HIBS(A) = Pr[Exptrace

HIBS(A) = 1].

Definition 4 (Non-frameability). The definition of non-frameability consists
of two aspects: signer-non-frameability and issuer-non-frameability.

– An HIBS scheme HIBS is signer-non-frameable, if in the following experi-
ment, Advsigner-nf

HIBS (A) is negligible.

Experiment Expsigner-nf
HIBS (A)

(gpk, ik, ok) $← KGen(1λ); CU ← ∅; HU ← ∅;

(m,σ, ID, ω) $← ACorruptO(·),SignO(·,·),RegO(·)(gpk, ik, ok)
if Verify(gpk,m, σ) = 0

then return 0
if ID ∈ HU and m /∈ MSGID and

Judge(gpk, ID, ω,m, σ) = 1 and

Dispute(gpk, certID, upkID, ID, ω) = 0
then return 1

return 0

We define the advantage of A in the above experiment by

Advsigner-nf
HIBS (A) = Pr[Expsigner-nf

HIBS (A) = 1].

– An HIBS scheme HIBS is issuer-non-frameable, if in the following experi-
ment, Advissuer-nf

HIBS (A) is negligible.

30 S. S. M. Chow et al.

Experiment Expissuer-nf
HIBS (A)

(gpk, ik, ok) $← KGen(1λ); CU ← ∅; HU ← ∅;

(m,σ, ID, ω) $← ACorruptO(·),SignO(·,·),RegO(·)(gpk, ok)
if Verify(gpk,m, σ) = 0

then return 0
if Judge(gpk, ID, ω,m, σ) = 1 and

Dispute(gpk, certID, upkID, ID, ω) = 1
then return 1

return 0

We define the advantage of A in the above experiment by

Advissuer-nf
HIBS (A) = Pr[Expissuer-nf

HIBS (A) = 1].

In the signer-non-frameability game, the issuer is considered honest, and
any other parties, including the signers, are not guaranteed to be honest. This
security game models the scenario that an adversary creates an HIBS forgery on
an identity of an honest signer without the consent of the issuer.

On the other hand, the issuer-non-frameability game models the scenario
that the adversary chooses an honest signer and creates forgery on behalf of this
chosen signer without being caught.

The combination of signer-non-frameability and issuer-non-frameability
implies unforgeability. Suppose an adversary can win the game of unforgeabil-
ity against chosen message attack, it can trivially win both the signer-non-
frameability game and the issuer-non-frameability game.

LHIBS and HIBS share the security requirements above, and LHIBS has one
more security requirement called linkability.

Definition 5 (Linkability). An HIBS scheme LHIBS is linkable, if in the
following experiment, Advlink

HIBS(A) is negligible.

Experiment Explink
LHIBS(A)

(gpk, ik, ok) $← KGen(1λ); CU ← ∅; HU ← ∅;

(m, ID, σ0, σ1)
$← ACorruptO(·),SignO(·,·),RegO(·)(gpk, ik, ok)

IDi ← Open(gpk, ok,m, σi), i ∈ {0, 1}
if ∃i ∈ {0, 1}, s.t. Verify(gpk,m, σi) = 0

then return 0
if ID0 = ID1 and Link(gpk,m, σ0, σ1) = 0

then return 1
if ID0 �= ID1 and Link(gpk,m, σ0, σ1) = 1

then return 1
return 0

Real Hidden Identity-Based Signatures 31

We define the advantage of A in the above experiment by

Advlink
LHIBS(A) = Pr[Explink

LHIBS(A) = 1].

4 Generic Construction

This section presents a generic construction of HIBS built from standard signa-
ture schemes and an NIZK (or NIWI) proof system, then extends it to support
linkability.

4.1 Generic HIBS

To design a generic construction of HIBS, we start from a generic construction
of identity-based signature (IBS) from standard signature schemes—certificate-
based approach to IBS, originally brought up by Shamir [17] and formally proven
secure by Bellare, Neven, and Namprempre [18]. To construct our generic HIBS,
we “hide” the whole signing process with an encryption and prove so in an NIZK
(or NIWI) sense.3

When a signer joins the system, it generates a public-private key pair of a
signature scheme, and sends the public key along with its identity to the GM
for a certificate. The GM use its signing key to generate a signature on the
identity and public key of the signer, and returns this signature to the signer
as a certificate. To create an HIBS, the signer first uses its own signing key to
create a signature on the message, then encrypts the certificate, the signature
on the message, its identity, and its public key, and finally generates an NIZK
proof on the certificate, the signature on the message, and the ciphertext. The
ciphertext and the proof are output as the HIBS signature. The proof asserts
three statements. First, the certificate is a valid signature generated by the GM.
Second, the signature on the message is valid with respect to the public key from
the certificate. Third, the identity, the public key, and the certificate encrypted
in the ciphertext are the ones used to create the signature. The validity of the
first two statements indicates that the signer is authentic. The validity of the
third statement enforces the traceability of HIBS. The party with the decryption
key can open the signature and obtain the identity of the signer.

Let DS1 = (SKG, SIG, VFY) and DS2 = (skg, sig, vfy) be two signature
schemes. Let OT S = (OKGen,OSig,OVerify) be a one-time signature scheme.
Let E = (EKGen, Enc, Dec) be a public key encryption scheme. Let (P, V) be an
NIZK (or NIWI) proof system. We define an HIBS scheme HIBS in Fig. 1. In
particular, the underlying language for the proof system (P, V) is defined as

L :={(m, ovk,VK, ek, C, T)|∃(r, σ, ID, upkID, certID)
[VFY(VK, (ID, upkID), certID) = 1 ∧ vfy(vkID, (m, ovk), σ) = 1
∧ C = Enc(ek, r, (σ, ID, upkID, certID))]}

3 Or, we could directly use NIZK proof of knowledge (NIZKPoK), being notionally
equivalent to CCA encryption.

32 S. S. M. Chow et al.

where we write Enc(ek, r,M) for the encryption of a message M under the public
key ek using the randomness r.

In the proposed generic construction, when a user joins the system, the com-
munication between the user and the GM just consists of one round (two message
flows). Thus, even when multiple users are joining the system at the same time,
the issuing process can still be conducted securely. The follow theorem estab-
lishes the security of HIBS.

Theorem 1. The proposed generic construction HIBS in Fig. 1 is CCA-
anonymous (CPA-anonymous), traceable, signer-non-frameable, and issuer-non-
frameable, if DS1 and DS2 are unforgeable against chosen message attacks, OT S
is a one-time secure signature, E is IND-CCA-secure (IND-CPA-secure), and the
proof system (P, V) is adaptively sound, adaptively zero-knowledge, and one-time
simulation-sound.

Alg KGen(1λ)
R

$← {0, 1}p(λ)

(VK, SK) $← DS1.SKG(1λ)
(ek, dk) $← E .EKGen(1λ)
gpk ← (R, ek,VK)
ik ← SK
ok ← dk
return (gpk, ik, ok)

Alg UKGen(1λ, ID)
(upkID, uskID)

$← DS2.skg(1λ)
return (upkID, uskID)

Alg Reg(gpk, ik, ID, upkID)
certID

$← SIG(SK, (ID, upkID))
return certID

Alg RegCheck(gpk, ID, upkID, certID)
return VFY(VK, (ID, upkID), certID)

Alg Judge(gpk, (ID, ω), (m, σ))
parse ω as (σ′, upkID, certID)
return VFY(VK, (ID, upkID), certID)

∧vfy(upkID, m, σ′)

Alg Sign(gpk, ID, certID, uskID, m)
σ′ ← sig(uskID, m)
C ← Enc(ek, r, (σ′, ID, upkID, certID))
π

$← P (R, (m,VK, ek, C),
(r, σ′, ID, upkID, certID))

σ ← (C, π)
return (m, σ)

Alg Verify(gpk, m, σ)
return V (R, (m,VK, ek, C), π)

Alg Open(gpk, ok, m, σ)
if V (R, (m,VK, ek, τ, C, π)) = 0

return ⊥
(σ′, ID, upkID, certID) ← Dec(dk, C)
ω ← (σ′, upkID, certID)
return (ID, ω)

Alg Dispute(gpk, upkID, certID, (ID, ω))
parse ω as (σ′, upk′

ID, cert′ID)
if VFY(VK, (ID, upkID), certID) = 0

then return ⊥
if VFY(VK, (ID, upk′

ID), cert
′
ID) = 1 and

upk′
ID �= upkID

then return 1
return 0

Fig. 1. A generic construction for hidden identity-based signature HIBS = (KGen,
UKGen, Reg, RegCheck, Sign, Verify, Open, Judge, Dispute): R is the common reference
string for the underlying proof system (P, V).

4.2 Extension with Linkability

Figure 2 shows how we extend the generic construction HIBS = (KGen, UKGen,
Reg, RegCheck, Sign, Verify, Open, Judge, Dispute) to a linkable HIBS (LHIBS)
scheme.

Real Hidden Identity-Based Signatures 33

Alg KGen(1λ)
(gpk, ik, ok) ← HIBS.KGen(1λ)
return (gpk, ik, ok)

Alg UKGen(1λ, ID)
(vk, sk) $← HIBS.UKGen(1λ, ID)
(pkF , skF) ← FGen(1λ)
upkID ← (vk, pkF)
uskID ← (sk, skF)
return (upkID, uskID)

Alg Reg(gpk, ik, ID, upkID)
certID

$← HIBS.Reg(gpk, ik, ID, upkID)
return certID

Alg RegCheck(gpk, ID, upkID, certID)
return HIBS.RegCheck(gpk, ID,

upkID, certID)

Alg Open(gpk, ok, m, σ)
return HIBS.Open(gpk, ok, m, σ)

Alg Judge(gpk, (ID, ω), (m, σ))
return HIBS.Judge(gpk, (ID, ω), (m, σ))

Alg Sign(gpk, ID, certID, uskID, m)
parse uskID as (sk, skF)
(T, πF) ← FProve(skF , (ID, m))
σ′ ← sig(sk, m)
C ← Enc(ek, r, (σ′, ID, upkID, certID))
π

$← P (R, (m,VK, ek, C, T),
(r, σ′, ID, upkID, certID, πF))

σ ← (C, π, T)
return (m, σ)

Alg Verify(gpk, m, σ)
return V (R, (m,VK, ek, C, T), π)

Alg Dispute(gpk, upkID, certID, (ID, ω))
return HIBS.Dispute(gpk, upkID,

certID, (ID, ω))

Alg Link(gpk, m, σ1, σ2)
if Verify(gpk, m, σ1) = 0

or Verify(gpk, m, σ2) = 0
then return ⊥

parse σi as (Ci, πi, Ti)
if T1 = T2 then return 1;
else return 0

Fig. 2. A generic construction for linkable hidden identity-based signature LHIBS =
(KGen, UKGen, Reg, RegCheck, Sign, Verify, Open, Judge, Dispute, Link)

In this extension, F = (FGen,FProve,FVerify) is a pseudorandom function.
The verification of computation correctness of FVerify() is compatible with
Groth-Sahai proof. The underlying language for the proof system (P, V) is
defined as

L :={(m,VK, ek, C, T)|∃(r, σ, ID, upkID, certID, πF)
[VFY(VK, (ID, upkID), certID) = 1 ∧ vfy(vkID,m, σ) = 1
∧ C = Enc(ek, r, (σ, ID, upkID, certID))
∧ FProve(pkF , (ID,m), T, πF) = 1]}.

Theorem 2. LHIBS in Fig. 2 is traceable, linkable, weak CCA-anonymous
(weak CPA-anonymous), signer-non-frameable, and issuer-non-frameable, if
DS1 and DS2 are unforgeable against chosen message attacks, OT S is a
one-time secure signature, E is IND-CCA-secure (IND-CPA-secure), the proof
system (P, V) is adaptively sound, adaptively zero-knowledge, and one-time
simulation-sound, and F is a PRF.

5 Efficient Instantiations

To instantiate our general paradigm without resorting to random oracles, we use
Groth-Sahai proof [19]. To this end, we use the group elements representation

34 S. S. M. Chow et al.

for user identities such that they are compatible with Groth-Sahai proof system.
In particular, we select a structure-preserving signature [20] as the first-level
signature (DS1) to sign the second-level signature (DS2) public key and user
identity, both of which are group elements. Moreover, the identities, being group
elements, can be fully extracted from the Groth-Sahai commitments. This makes
the Open algorithm to be purely based on identity, in particular, does not require
any archived membership information obtained when the user joins the systems
and gets the credential.

We present three instantiations here. All the proposed instantiations use
Groth-Sahai proof system as the underlying proof system. The first two instantia-
tions use the full Boneh and Boyen (BB) signature [21] as the second-level scheme
(for DS2), while the third instantiation uses a signature scheme by Yuen et
al. [22] which is based on a static assumption. The public-key of BB signa-
ture consists of 2 group elements upkID = (y1, y2) ∈ G

2. A signature for message
m ∈ Zq is of the form (s, t) ∈ G×Z

∗
q which is verifiable by e(s, y1gmyt

2) = e(g, g).
We do not mention the above common designs and only describe the different
part in the following instantiations.

Table 1 summarizes the previous HIBS construction (with exculpability) due
to Kiayias and Zhou [4], our two instantiations of HIBS in our stronger model,
Inst1 and Inst2, and the most efficient group signature scheme (as a baseline) that
provides concurrent security, CCA-anonymity, and non-frameability [23]. The
size in kilobytes (KB) of the group elements are measured on “MNT159” [24]
curve.

Table 1. Summary of the properties among the Kiayias-Zhou HIBS construction (with
exculpability), the most efficient group signatures that provides CCA-anonymity and
non-frameability (as a baseline), and our two instantiations of HIBS in our stronger
model: [N], [n], and [q] respectively denote the size of an element in Z

∗
N , Z∗

n, and Zq

(assuming that the group elements and scalars can be represented in a similar bit-size)

Scheme RO Hidden-ID Non-frame. Anon. Concur. Assumption Sig. size Length

KZ [4] Yes Yes Yes CCA No DCR; S-RSA ≈3[N] + 16[n] 7.33KB

AHO [23] No No Yes CCA Yes q-SFP 55 + 1[q] 1.09KB

Inst1 No Yes Yes CCA Yes q-SFP; q-SDH 60 + 1[q] 1.15KB

Inst2 No Yes Yes CCA Yes DLIN; q-SDH 176 + 1[q] 3.41KB

Inst3 No Yes Yes CCA Yes DLIN 494 + 1[q] 9.58KB

5.1 Instantiation 1

In our first instantiation Inst1, we select Groth-Sahai proof system instantiated
basing on SXDH assumption as the underlying proof system (P, V). As we have
discussed previously, this setting is suitable for ElGamal encryption. Further-
more, SXDH setting is the most efficient instantiation of Groth-Sahai proof sys-
tem, and Type III bilinear group operates with higher efficiency than the other
two types do.

Real Hidden Identity-Based Signatures 35

This instantiation uses the signature scheme proposed by Abe et al. [23]
to implement the first-level structure-preserving signature DS1. It consists of 7
group elements, 4 of which can be perfectly randomized. The message signed by
the first-level signature consists of 3 group elements, including the user identity
which is one group element. A proof for the first-level signature consists of 4
elements (since the corresponding two pairing product equations are linear) and
a proof for the second-level signature takes 4 group elements. For the underlying
encryption scheme E , we selected DDH-based ElGamal [25], which fits with the
SXDH setting. OT S can be instantiated with a weak BB signature [21] which
is not one-time. Its public key consists of 1 group element, and its signature
consists of 1 group element.

The resulting CPA-anonymous HIBS Inst1 consists of 45 group elements
and 1 scalar value (in Zq). Following the existing approach [26], the proposed
instantiation Inst1 can achieve CCA-anonymity with extra 15 group elements.
Thus, the resulting CCA-anonymous HIBS Inst1 consists of 60 group elements
and 1 scalar value (in Zq).

5.2 Instantiation 2

Our second HIBS instantiation Inst2 is proven secure basing on simple assump-
tions in the standard model. The first level signature DS1 can be proven secure
basing on static assumptions in the standard model. If we replace the second
level signature, BB signature, with another scheme basing on a static assump-
tion, then the HIBS scheme is basing on static assumption which is more desir-
able than basing on a q-type assumption as Inst1. This instantiation raises the
security level in the cost of losing efficiency.

The DLIN-based Groth-Sahai proof is chosen as the proof system. This DLIN
setting is compatible with Camenisch et al.’s encryption scheme [27].

We select the signature scheme from [27] to instantiate DS1. It consists of
17 group elements, only 2 of which can be perfectly randomized. The proof (for
two signatures) includes 10 pairing product equations (none of them are linear)
and thus consists of 90 group elements.

Since we select a CCA-secure structure-preserving encryption scheme [28],
there is no extra overhead (e.g., addition of the extra 15 group elements in Inst1)
to achieve CCA-anonymity. However, it is instantiated with a Type I bilinear
group which is not as efficient as a Type III bilinear group. OT S is instantiated
with weaker BB signature. The CCA-anonymous HIBS Inst2 obtained therefore
consists of 176 group elements and 1 scalar value.

5.3 Instantiation 3

Our third HIBS instantiation Inst3 replaces the second level signature, and the
one-time signature with a dual form exponent inversion signature scheme pro-
posed by Yuen et al. [22]. This signature is based on static assumptions, making
the whole scheme constructed upon static assumptions.

The DLIN-based Groth-Sahai proof is chosen as the proof system.

36 S. S. M. Chow et al.

Again, we use the signature scheme from [27] as DS1. It consists of 17 group
elements, only 2 of which can be perfectly randomized. The proof for the first-
level signature includes 9 pairing product equations (none of them are linear)
and thus consists of 81 group elements. Although the proof for the second-level
signature only include 1 pairing product equation, this scheme requires more
elements in the prime order group since it is converted from a dual form signature
constructed originally in composite order group. Suppose an n-dimensional space
is used to simulate the composite order group in prime order setting. We need
n elements in the prime order group to represent one composite order group
element, and need n2 target group elements to represent a target group element
in the composite order setting. In this signature scheme, n = 6, hence, there are
totally 405 elements in this proof. The CCA-anonymous HIBS Inst3, instantiated
with a Type I bilinear group, consists of 489 group elements and 1 scalar value.

6 Concluding Remarks

The motivation of group signature is to protect the member’s anonymity in issu-
ing signatures on behalf of the group, with an opening mechanism to indirectly
ensure well-behavior of signers (or supports anonymity revocation especially when
the signing key is compromised by an adversary). Yet, many existing realizations
require the existence of a member list for opening to work. The existence of such
list simply put the anonymity of the members in danger. A refinement of the group
signature without such a list is called hidden identity-based signatures (HIBS) in
the literature, such that the identity of a real signer is hidden in normal circum-
stance (just like group signature), yet can be revealed directly via the opening
procedure (which does not require any input such as membership database apart
from the opening secret key). Moreover, until recent advance in Groth-Sahai proof
and structure-preserving signatures (SPS), group signature does not support con-
current member joining efficiently, which makes it impractical for settings with
many users joining everyday such as Internet-based applications. In this paper,
we propose efficient realization of HIBS which supports concurrent join.

Group signature is a fundamental primitive in supporting anonymous online
communication, and we have already witnessed many extensions of group sig-
natures. With our generic design of HIBS based on SPS, we show how various
extended notion of group signatures can be realized.

A future direction is to remove the opening authority altogether, as in black-
listable anonymous credential without trusted third party (TTP). However, the
newer schemes (e.g. [29] and its follow-up works) often require the verifier to be
the issuer itself, and the user credential is updated after each authentication for
the efficiency of the whole system. In other words, the concurrency issue in grant-
ing the credential becomes even more prominent. Proposing such a system with
concurrent security and acceptable efficiency is another interesting question.

Real Hidden Identity-Based Signatures 37

Acknowledgment. Sherman Chow is supported in part by the Early Career Scheme
and the Early Career Award (CUHK 439713), and General Research Funds (CUHK
14201914) of the Research Grants Council, University Grant Committee of Hong Kong.
Haibin acknowledges NSF grant CNS 1330599 and CNS 1413996, as well as the Office
of Naval Research grant N00014-13-1-0048.

References

1. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

2. Camenisch, J., Michels, M.: Separability and efficiency for generic group signa-
ture schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 27

3. Kiayias, A., Zhou, H.-S.: Hidden identity-based signatures. In: Dietrich, S.,
Dhamija, R. (eds.) FC 2007. LNCS, vol. 4886, pp. 134–147. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77366-5 14

4. Kiayias, A., Zhou, H.: Hidden identity-based signatures. IET Inf. Secur. 3(3), 119–
127 (2009)

5. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8 1.

6. Liu, X., Xu, Q.-L.: Improved hidden identity-based signature scheme. In: Interna-
tional Conference on Intelligent Computing and Intelligent Systems (ICIS) (2010)

7. Liu, X., Xu, Q.-L.: Practical hidden identity-based signature scheme from bilinear
pairings. In: 3rd International Conference on Computer Science and Information
Technology (ICCSIT) (2010)

8. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

9. Chow, S.S.M., Susilo, W., Yuen, T.H.: Escrowed linkability of ring signatures and
its applications. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp.
175–192. Springer, Heidelberg (2006). https://doi.org/10.1007/11958239 12

10. Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 12

11. Chow, S.S.M.: Real traceable signatures. In: Jacobson, M.J., Rijmen, V.,
Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 92–107. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7 6

12. Franklin, M., Zhang, H.: Unique group signatures. In: Foresti, S., Yung, M.,
Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 643–660. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-1 37

13. Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based
signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006). https://doi.org/
10.1007/11935230 12

14. Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-trapdoor anony-
mous tags for traceable signatures. Int. J. Inf. Secur. 12(1), 19–31 (2013)

https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-48405-1_27
https://doi.org/10.1007/978-3-540-77366-5_14
https://doi.org/10.1007/978-3-540-71677-8_1
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/11958239_12
https://doi.org/10.1007/11426639_12
https://doi.org/10.1007/978-3-642-05445-7_6
https://doi.org/10.1007/978-3-642-33167-1_37
https://doi.org/10.1007/11935230_12
https://doi.org/10.1007/11935230_12

38 S. S. M. Chow et al.

15. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

16. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5 7

17. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

18. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identifi-
cation and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24676-3 17

19. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

20. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

21. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

22. Yuen, T.H., Chow, S.S.M., Zhang, C., Yiu, S.: Exponent-inversion signatures and
IBE under static assumptions. IACR Cryptology ePrint Archive, Report 2014/311
(2014)

23. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups
for modular protocol design. IACR Cryptology ePrint Archive, Report 2010/133
(2010). http://eprint.iacr.org/2010/133

24. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Trans. Fund. 84(5), 1234–1243 (2001)

25. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

26. Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 10

27. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 3

28. Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure
preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25385-0 5

29. Au, M.H., Tsang, P.P., Kapadia, A.: PEREA: practical TTP-free revocation of
repeatedly misbehaving anonymous users. ACM Trans. Inf. Syst. Secur. 14(4), 29
(2011)

https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-540-24676-3_17
https://doi.org/10.1007/978-3-540-24676-3_17
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-540-24676-3_4
http://eprint.iacr.org/2010/133
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-25385-0_5

BehavioCog: An Observation Resistant
Authentication Scheme

Jagmohan Chauhan1,2(B), Benjamin Zi Hao Zhao1, Hassan Jameel Asghar2,
Jonathan Chan2, and Mohamed Ali Kaafar2

1 UNSW, Sydney, Australia
{jagmohan.chauhan,ben.zhao}@data61.csiro.au

2 Data61, CSIRO, Sydney, Australia
{hassan.asghar,jonathan.chan,dali.kaafar}@data61.csiro.au

Abstract. We propose that by integrating behavioural biometric
gestures—such as drawing figures on a touch screen—with challenge-
response based cognitive authentication schemes, we can benefit from
the properties of both. On the one hand, we can improve the usabil-
ity of existing cognitive schemes by significantly reducing the number of
challenge-response rounds by (partially) relying on the hardness of mim-
icking carefully designed behavioural biometric gestures. On the other
hand, the observation resistant property of cognitive schemes provides
an extra layer of protection for behavioural biometrics; an attacker is
unsure if a failed impersonation is due to a biometric failure or a wrong
response to the challenge. We design and develop a prototype of such
a “hybrid” scheme, named BehavioCog. To provide security close to a
4-digit PIN—one in 10,000 chance to impersonate—we only need two
challenge-response rounds, which can be completed in less than 38 s on
average (as estimated in our user study), with the advantage that unlike
PINs or passwords, the scheme is secure under observation.

1 Introduction

In Eurocrypt 1991 [30], Matsumoto and Imai raised an intriguing question: Is it
possible to authenticate a user when someone is observing? Clearly, passwords,
PINs or graphical patterns are insecure under this threat model. Unfortunately, a
secure observation resistant authentication scheme is still an open problem. Most
proposed solutions are a form of shared-secret challenge-response authentication
protocols relying on human cognitive abilities, henceforth referred to as cogni-
tive schemes. To minimize cognitive load on humans, the size |R| of the response
space R needs to be small, typically ranging between 2 and 10 [5,20,26,39].
Since anyone can randomly guess the response to a challenge with probability
|R|−1, the number of challenges (or rounds) per authentication session needs to
be increased, thereby increasing authentication time. For example, to achieve a
security equivalent to (guessing) a six digit PIN, i.e., 10−6, the cognitive authen-
tication scheme (CAS) [39] requires 11 rounds resulting in 120 s to authenticate,

The full (more detailed) version is available as the conference version of this paper.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 39–58, 2017.
https://doi.org/10.1007/978-3-319-70972-7_3

40 J. Chauhan et al.

while the Hopper and Blum (HB) scheme [20] requires 20 rounds and 660 s [41].
An authentication time between 10 to 30 s per round is perhaps acceptable if
we could reduce the number of rounds, since cognitive schemes provide strong
security under observation.

Our idea is to leverage gesture-based behavioural biometrics by mapping |R|
different gesture-based symbols (words or figures) to the |R| different responses.
Both the mapping and the symbols are public. The user renders symbols on
the touch screen of a device, e.g., a smartphone. A classifier decides whether
the rendering matches that of the target user. We could tune the classifier
to achieve a true positive rate (TPR) close to 1, while giving it some leverage
in the false positive rate (FPR), say 0.10. The attacker has to correctly guess
the cognitive response and correctly mimic the target user’s gesture. We now
see how we can reduce the number of rounds of the cognitive scheme. Suppose
|R| = 4 in the cognitive scheme. If the average FPR of rendering four symbols,
(i.e., success rate of mimicking a target user’s rendering of the four symbols),
is 0.10, then the probability of randomly guessing the response to a challenge
can be derived as FPR × |R|−1 = 0.10 × 0.25 = 0.025. Thus, only 4 rounds
instead of 11 will make the guess probability lower than the security of a 6-
digit PIN. Reducing the number of rounds minimizes the authentication time
and reduces the cognitive load on the user. The idea also prevents a possible
attack on standalone behavioural biometric based authentication. Standalone
here mean schemes which only rely on behavioural based biometrics. Minus the
cognitive scheme, an imposter can use the behavioural biometric system as an
“oracle” by iteratively adapting its mimicking of the target user’s gestures until
it succeeds. Integrated with a cognitive scheme, the imposter is unsure whether
a failed attempt is due to a biometric error or a cognitive error, or both.

Combining the two authentication approaches into a “hybrid” scheme is
not easy, because: (a) to prevent observation attacks, the behavioural biometric
gestures should be hard to mimic. Simple gestures (swipes) are susceptible to
mimicry attacks [23], while more complex gestures [31,33] (free-hand drawings)
only tackle shoulder-surfing attacks, and (b) the cognitive schemes proposed in
the literature are either not secure [39] against known attacks or not usable due
to high cognitive load (see Sect. 7). This leads to our other main contributions:

– We propose a new gesture based behavioural biometric scheme that employs
a set of words constructed from certain letters of English alphabets (e.g.,
b, f, g, x, m). Since such letters are harder to write [22], we postulate that
they might show more inter-user variation while being harder to mimic. Our
results indicate plausibility of this claim; we achieve an average FPR of 0.05
under video based observation attacks.

– We propose a new cognitive authentication scheme inspired from the HB
protocol [20] and the Foxtail protocol [1,26]. The scheme can be thought
of as a contrived version of learning with noisy samples, where the noise
is partially a function of the challenge. The generalized form of the resulting
scheme is conjectured to resist around |R|×n challenge-response pairs against
computationally efficient attacks; n being the size of the problem.

BehavioCog: An Observation Resistant Authentication Scheme 41

– We combine the above two into a hybrid authentication scheme called
BehavioCog and implement it as an app on Android smartphones. The app
is configurable; parameter sizes of both the cognitive (challenge size, secret
size, etc.) and behavioural biometric (symbols, amount of training, etc.) com-
ponents can be tuned at set up.

– We extensively analyze the usability, security and repeatability of our scheme
with 41 users. The average authentication time for each round is as low as
19 s, and we achieve security comparable to a 4-digit and 6-digit PIN in
just 2 and 3 rounds, respectively, even under observation attacks. Our user
study assesses security against video-based observation by recording success-
ful authentication sessions and then asking users to impersonate the target
users. None of the video based observation attacks were successful (with two
rounds in one authentication session). We show that by carefully designing
the training module, the error rate in authentication can be as low as 14%
even after a gap of one week, which can be further reduced by decreasing the
secret size.

We do not claim that our idea completely solves the problem raised by Mat-
sumoto and Imai, but believe it to be a step forward towards that goal, which
could potentially revive interest in research on cognitive authentication schemes
and their application as a separate factor in multi-factor authentication schemes.

2 Overview of BehavioCog

2.1 Preliminaries

Authentication Schemes: A shared-secret challenge-response authentication
scheme consists of two protocols: registration and authentication, between the a
user (prover) U , and an authentication service (verifier) S, who share a secret x
from a secret space X during registration. The authentication phase is as follows:
for γ rounds, S sends a challenge c ∈ C to U , who sends the response r = f(x, c)
back to S. If all γ responses are correct S accepts U . Here, C is the challenge space,
and r belongs to a response space R. We refer to the function f : X × C → R as
the cognitive function. It has to be computed mentally by the user. The server
also computes the response (as the user and the server share the same secret).
Apart from the selected secret x ∈ X, everything else is public. A challenge and
a response from the same round shall be referred to as a challenge-response pair.
An authentication session, consists of γ challenge-response pairs. In practice, we
assume U and S interact via the U ’s device, e.g., a smartphone.

Adversarial Model: We assume a passive adversary A who can observe one or
more authentication sessions between U and S. The goal of A is to impersonate
U by initiating a new session with S, either via its own device or via U ’s device,
and making it accept A as U . In practice, we assume that A can observe the
screen of the device used by U . This can be done either via shoulder-surfing
(simply by looking over U ’s shoulder) or via a video recording using a spy camera.

42 J. Chauhan et al.

The attacker is a human who is given an indefinite access to the video recordings
of the user touch gestures and tries to mimic the user. Unlike the original threat
model from Matsumoto and Imai, our threat model assumes that the device as
well as the communication channel between the device and S are secure.

2.2 The BehavioCog Scheme

The main idea of BehavioCog hybrid authentication scheme is as follows. Instead
of sending the response r to a challenge c from S, U renders a symbol correspond-
ing to r (on the touch screen of the device), and this rendered symbol is then
sent to S. More specifically, we assume a set of symbols denoted Ω, e.g., a set of
words in English, where the number of symbols equals the number of responses
|R|. Each response r ∈ R is mapped to a symbol in Ω. The symbol corresponding
to r shall be represented by sym(r). Upon receiving the rendering of sym(r), S
first checks if the rendered symbol “matches” a previously stored rendering from
U (called template) by using a classifier D and then checks if the response r is
correct by computing f . If the answer to both is yes in each challenge-response
round, S accepts U .

The scheme consists of setup, registration and authentication protocols. We
begin by detailing the cognitive scheme first. Assume a global pool of n objects
(object is a generic term and can be instantiated by emojis, images or alphanu-
merics). We used pass-emojis in the paper. A secret x ∈ X is a k-element subset
of the global pool of objects. Thus, |X| =

(
n
k

)
. Each object of x is called a pass-

object, and the remaining n−k objects are called decoys. The challenge space C
consists of pairs c = (a,w), where a is an l-element sequence of objects from the
global pool, and w is an l-element sequence of integers from Zd, where d ≥ 2.
Members of w shall be called weights. The ith weight in w is denoted wi and cor-
responds to the ith element of a, i.e., ai. The notation c ∈U C means sampling
a random l-element sequence of objects a and a random l-element sequence of
weights w. The cognitive function f is defined as

f(x, c) =

{(∑
i|ai∈x wi

)
mod d, if x ∩ a �= ∅

r ∈U Zd, if x ∩ a = ∅.
(1)

That is, sum all the weights of the pass-objects in c and return the answer
modulo d. If no pass-object is present then a random element from Zd. is
returned. The notation ∈U means sampling uniformly at random. It follows that
the response space R = Zd and |R| = d. Now, let Ω be a set of d symbols, e.g.,
the words zero, one, two, and so on. The mapping sym : Zd → Ω is the straight-
forward lexicographic mapping and is public. We assume a (d + 1)-classifier D
(see Sect. 4) which when given as input the templates of all symbols in Ω, and
a rendering purported to be of some symbol from Ω, outputs the corresponding
symbol in Ω if the rendering matches any of the symbol templates. If no match
is found, D outputs “none.” D needs a certain number of renderings of each
symbol to build its templates, which we denote by t (e.g., t = 3, 5 or 10).

BehavioCog: An Observation Resistant Authentication Scheme 43

The setup phase consists of S publishing the parameters n, k, l and d (e.g.,
n = 180, k = 14, l = 30, d = 5), a pool of n objects (e.g., emojis), a set of d
symbols Ω (e.g., words), the map sym from Zd to Ω, the (untrained) classifier
D, and t Fig. 1 describes the registration and authentication protocols. Since the
registration protocol is straightforward, we only briefly describe the authentica-
tion protocol here. S initializes an error flag to 0 (Step 1). Then, for each of
the γ rounds, S sends c = (a,w) ∈U C to U (Step 3). U computes f according
to Eq. 1, and obtains the response r (Step 4). U gets the symbol to be rendered
through sym(r), and sends a rendering of the symbol to S (Step 5). Now, S
runs the trained classifier D on the rendered symbol (Step 6). If the classifier
outputs “none,” S sets the error flag to 1 (Step 8). Otherwise, D outputs the
symbol corresponding to the rendering. Through the inverse map, S gets the
response r corresponding to the symbol (Step 10). Now, if x ∩ a = ∅, i.e., none
of the pass-objects are in the challenge, then any response r ∈ Zd is valid, and
therefore S moves to the next round. Otherwise, if x ∩ a �= ∅, S further checks
if r is indeed the correct response by computing f (Step 11). If it is incorrect, S
sets the error flag to 1 (Step 12). Otherwise, if the response is correct, S moves
to the next round. If after the end of γ rounds, the error flag is 0, then S accepts
U , otherwise it rejects U (Step 13).

1: Registration.

1 U and S share a
secret x ∈ X.

2 For each symbol in
Ω, U sends t
renderings to S.

3 For each symbol in
Ω, S trains D on
the t renderings to
obtain U ’s
template.

4 The secret consists
of x and the d
templates.

2: Authentication.

1 S sets err = 0.
2 for γ rounds do
3 S samples c = (a, w) ∈U C and sends it to U .
4 U computes r = f(x, c).
5 U renders the symbol sym(r), and sends it to S.
6 S runs D on the rendering.
7 if D outputs “none” then
8 S sets err = 1.
9 else

10 S obtains r corresponding to the symbol
output by D.

11 if x ∩ a �= ∅ and r �= f(x, c) then
12 S sets err = 1.
13 If err = 1, S rejects U ; otherwise it accepts U .

Fig. 1. The registration and authentication protocols of BehavioCog.

3 The Cognitive Scheme

Our proposed cognitive scheme can be thought of as an amalgamation of the
HB scheme based on the learning parity with noise (LPN) problem [20], and the
Foxtail scheme (with window) [1,26]. Briefly, a round of the HB protocol consists
of an n-element (random) challenge from Z

n
2 . The user computes the dot product

44 J. Chauhan et al.

modulo 2 of the challenge with a binary secret vector from Z
n
2 . With a predefined

probability η, say 0.25, the user flips the response, thus adding noise. When the
series of challenge-response pairs are written as a system of linear congruences,
solving it is known as the LPN problem. The HB protocol can be generalized to
a higher modulus d [20]. The Foxtail scheme consists of dot products modulo 4 of
the secret vector with challenge vectors from Z

n
4 . If the result of the dot product

is in {0, 1} the user sends 0 as the response, and 1 otherwise. The “window-
based” version of Foxtail, consists of challenges that are of length l < n. More
specifically, we use the idea of using an l-element challenge from the Foxtail with
window scheme. However instead of using the Foxtail function, which maps the
sum of integers modulo d = 4, to 0 if the sum is in {0, 1}, and 1 otherwise, we
output the sum itself as the answer. The reason for that is to reduce the number
of rounds, i.e., γ, for a required security level (the success probability of random
guess is 1

2 in one round of the Foxtail scheme). Now if we allow the user to only
output 0 in case none of its pass-objects are present in a challenge, the output of
f is skewed towards 0, which makes the scheme susceptible to a statistical attack
proposed by Yan et al. [41] outlined in Sect. 3.1. To prevent such attacks, we ask
the user to output a random response from Zd (not only zero) in such a case.
Due to the random response, we can say that the resulting scheme adds noise to
the samples (challenge-response pairs) collected by A, somewhat similar in spirit
to HB. The difference is that in our case, the noise is (partially) a function of
the challenge, whereas in HB the noise is independently generated with a fixed
probability and added to the sum. We remark that if we were to use the HB
protocol with a restricted window (i.e., parameter l) and restricted Hamming
weight (i.e., parameter k), the resulting scheme is not based on the standard
LPN problem. We next discuss the security of our cognitive scheme.

3.1 Security Analysis

Due to space limitation we only discuss the general results here and leave their
derivation and detailed explanation to Appendix A in our full paper. This anal-
ysis is based on well-known attacks on cognitive authentication schemes. We do
not claim this analysis to be comprehensive, as new efficient attacks may be
found in the future. Nevertheless, the analysis shown here sheds light on why
the scheme was designed the way it is.

Random Guess Attack: The success probability pRG of a random guess is condi-
tioned on the event a ∩ x being empty or not. Since this event shall be frequently
referred to in the text, we give it a special name: the empty case. The probability
of the empty case is P [|a ∩ x| = 0] .= p0 =

(
n−k

l

)
/
(
n
l

)
. We shall use the notation .=

when defining a variable. Thus, pRG = p0 + (1 − p0) 1d .

Brute Force Attack (BF) and Information Theoretic Bound. This attack outputs
a unique candidate for the secret after m

.= mit = −log2
(
n
k

)
/log2(p0 + (1 − p0) 1d)

challenge-response pairs have been observed.We callmit, the information theoretic
bound on m. The complexity of the brute force attack is

(
n
k

)
.

BehavioCog: An Observation Resistant Authentication Scheme 45

Meet-in-the-Middle Attack (MitM). This attack [20] works by dividing the
search space in half by computing k

2 -sized subsets of X, storing “intermedi-
ate” responses in a hash table, and then finding collisions. The time and space
complexity of this attack is

(
n

k/2

)
. There could be variants of the meet-in-the-

middle attack that could trade less space with time. For this analysis, we focus
on the version that is most commonly quoted.

Frequency Analysis. Frequency analysis, proposed by Yan et al. [41],3 could
be done either independently or dependent on the response. In response-
independent frequency analysis, a frequency table of δ-tuples of objects is cre-
ated, where 1 ≤ δ ≤ k. If a δ-tuple is present in a challenge, its frequency is
incremented by 1. After gathering enough challenge-response pairs, the tuples
with the highest or lowest frequencies may contain the k secret objects if the
challenges are constructed with a skewed distribution. In the response-dependent
frequency analysis, the frequency table contains frequencies for each possible
response in Zd, and the frequency of a δ-tuple is incremented by 1 in the col-
umn corresponding to the response (if present in the challenge). Our scheme is
immune to both forms of frequency analysis (see Appendix A of the full paper).

Coskun and Herley Attack. Since only l objects are present in each challenge,
the number of pass-objects present is also less than k with high probability. Let
u denote the average number of bits of x used in responding to a challenge. The
Coskun and Herley (CH) attack [14] states that if u is small, then candidates
y ∈ X, y �= x, that are close to x in terms of some distance metric, will output
similar responses to x. If we sample a large enough subset from X, then with high
probability there is a candidate for x that is a distance ξ from x. We can remove
all those candidates whose responses are far away from the observed responses,
and then iteratively move closer to x. The running time of the CH attack is at
least |X|/(

log2 |X|
ξ

)
[14] where |X| =

(
n
k

)
, with the trade off that m ≈ 1

ε2 samples
are needed for the attack to output x with high probability [2,7]. The parameter
ε is the difference in probabilities that distance ξ + 1 and ξ − 1 candidates have
the same response as x.

Linearization. Linearization works by translating the observed challenge-
response pairs into a system of linear equations (or congruences). If this can be
done, then Gaussian elimination can be used to uniquely obtain the secret. In
Appendix A of our full paper, we show two different ways our proposed cognitive
schemes can be translated into a system of linear equations with dn unknowns.
This means that the adversary needs to observe dn challenge-response pairs to
obtain a unique solution through Gaussian elimination. Note that if U were
to respond with 0 in the empty case, then we could obtain a linear system of
equations after n challenge-response pairs. The introduction of noise expands
the number of required challenge-response pairs by a factor of d. Gaussian elim-
ination is by far the most efficient attack on our scheme, and therefore this

3 We borrow the term frequency analysis from [4].

46 J. Chauhan et al.

constitutes a significant gain. We believe the problem of finding a polynomial
time algorithm in (k, l, n) which uses m < dn number of samples (say (d − 1)n
samples) from the function described in Eq. 1 is an interesting open question.

3.2 Example Parameter Sizes

Table 1 (left) shows example list of parameter sizes for the cognitive scheme.
These are obtained by fixing d = 5 and changing k, l and n such that pRG is
approximately 0.25. We suggest d = 5 as a balance between reducing the number
of rounds required, i.e., γ, and ease of computing f . The column labelled mit is
the information theoretic bound to uniquely obtain the secret. Thus, the first two
suggestions are only secure with ≤ mit observed samples. The complexity shown
for both the meet-in-the-middle attack (MitM) and Coskun and Herley (CH)
attack represents time as well as space complexity. The last column is Gaus-
sian elimination (GE), for which the required number of samples is calculated
as dn. For other attacks, we show the minimum number of required samples m,
such that m ≥ mit and the complexity is as reported. We can think of the last
two suggested sizes as secure against an adversary with time/memory resources
≈270/240 (medium strength) and ≈280/250 (high strength), respectively. The
medium and high strength adversaries are defined in terms of the computational
resources they possess. In general, there can be many levels of strength (by
assigning limits of time/space resources an adversary can have). The strength
levels are chosen to illustrate how parameter sizes can be chosen against adver-
sarial resources. The parameter sizes are chosen such that the attack complexity
vs the number of samples required are as given in Table 1.

Based on parameter sizes for the cognitive scheme and results from the
user study, we recommend the parameters for BehavioCog shown in Table 1
(right). The columns labelled “Sessions” indicate whether the target is a medium-
strength or high-strength adversary A. Based on our experiments, CW (complex
words) gave the best average FPR of 0.05 (see next section). The “Security” col-
umn shows A’s probability in impersonating the user by random guess and mim-
icking the corresponding behavioural biometric symbol. By setting pRG = 0.25
and multiplying it with FPR, we estimate the total impersonation probability
of A. For reference, the same probability for a 4-digit PIN is 1 × 10−4, and for
a 6-digit PIN is 1 × 10−6 (but with no security under observation).

4 The Behavioural Biometric Scheme

Our behavioural biometric authentication scheme is based on touch gestures.
We first describe the set of symbols followed by the classifier D and finally the
identified features. For each symbol in Ω, TPR of D is the rate when it correctly
matches U ’s renderings of the symbol to U ’s template. FPR of D is the rate
when it wrongly decides A’s rendering of the symbol matches U ’s template.

BehavioCog: An Observation Resistant Authentication Scheme 47

Table 1. Example parameter sizes for cognitive scheme (left) and BehavioCog (right),
where mit: information theoretic bound, pRG: random guess probability, BF: Brute
Force, MitM: Meet in the Middle, CH: Coksun and Harley, GE: Gaussian Elimination.

(d, k, l, n) mit pRG BF MitM CH GE

(5, 5, 24, 60) 11 0.255 222 212 211 poly(n)
Samples required - 0 11 11 23 300
(5, 10, 30, 130) 24 0.252 248 228 233 poly(n)

Samples required - 0 24 24 24 650
(5, 14, 30, 180) 34 0.256 268 240 240 poly(n)

Samples required - 0 34 34 94 900
(5, 18, 30, 225) 44 0.254 287 251 251 poly(n)

Samples required - 0 44 44 168 1125

(d, k, l, n) γ
Sessions Sessions

Ω Security(med. A) (high A)

(5, 5, 24, 60) 1 10 10 CW 1.3 × 10−2

(5, 5, 24, 60) 2 5 5 CW 1.5 × 10−4

(5, 5, 24, 60) 3 3 3 CW 2 × 10−6

(5, 10, 30, 130) 1 24 24 CW 1.3 × 10−2

(5, 10, 30, 130) 2 12 12 CW 1.5 × 10−4

(5, 10, 30, 130) 3 8 8 CW 2 × 10−6

(5, 14, 30, 180) 1 94 34 CW 1.3 × 10−2

(5, 14, 30, 180) 2 47 17 CW 1.5 × 10−4

(5, 14, 30, 180) 3 31 11 CW 2 × 10−6

(5, 18, 30, 225) 1 511 168 CW 1.3 × 10−2

(5, 18, 30, 225) 2 255 84 CW 1.5 × 10−4

(5, 18, 30, 225) 3 170 56 CW 2 × 10−6

4.1 Choice of Symbols

We require that symbols be: (a) rich enough to simulate multiple swipes,
(b) hard for A to mimic even after observation, (c) easily repeatable by U
between successive authentications, and (d) easily distinguishable from each
other by D. Accordingly, we chose four different sets of symbols (see Table 2).
We tried testing all the four sets of symbols in our first phase of the user study
to see which one satisfies all the four aforementioned criteria. We used complex
words in the implementation of our scheme as it was the best symbol set. The
words or figures are used for behavioural biometrics while emojis are used for
cognitive scheme.

Easy words: These are English words for the numbers, and serve as the base
case.

Complex words: Since the letters b, f, g, h, k, m, n, q, t, u, w, x, y, z are more dif-
ficult to write cursively than others as they contain more turns [22], we hypothe-
size that words constructed from them might also show more inter-user variation
and be difficult to mimic. Our user study shows positive evidence, as complex
words were the most resilient against observation attacks. We constructed five
words of length 4 from these 14 letters since users find it hard to render higher
length words on touchscreen. As it is difficult to construct meaningful words
without vowels, we allowed one vowel in each word.

Easy figures: This set contains numbers written in blackboard bold shape. A user
can render them by starting at the top left most point and traversing in a down
and right manner without lifting the finger. This removes the high variability
within user’s drawings present in the next set of symbols.

Complex figures: These figures were constructed by following some principles
(to make them harder to mimic): no dots or taps [13,24], contain sharp turns

48 J. Chauhan et al.

and angles [33], the users finger must move in all directions while drawing the
symbol. To help the user associate responses in Z5 to complex words, mnemonic
associations were used (Appendix D in the full paper).

Table 2. Mapping of responses (d = 5) to symbols.

resp onse 0 1 2 3 4

easy words zero one two three four

complex words xman bmwz quak hurt fogy

easy figures

complex figures

4.2 Choice of Classifier

We picked dynamic time warping (DTW) [32] because: (a) all chosen symbols
exhibit features that are a function of time, (b) it shows high accuracy with a
small number of training samples (5–10) [17,31] (to minimize registration time).
Given two time series, DTW finds the optimal warped path between the two
time series to measure the similarity between them [32]. Assume there is a set Q
of features, each of which is a time series. Let Q̂ represent the set of templates
of the features in Q, which are also time series. Given a test sample of these
features (for authentication), also represented Q, the multi-dimensional DTW
distance between Q̂ and Q is defined as [34]: DTW(Q̂,Q) =

∑|Q|
i=1 DTW(q̂i, qi),

where q̂i ∈ Q̂ and qi ∈ Q, are time series corresponding to feature i.

4.3 Template Creation

For each user-symbol pair (each user drawing a particular symbol) we obtain t
sample renderings, resulting in t time series for each feature. Fix each feature, we
take one of the t time series at a time, compute its DTW distance with the t− 1
remaining time series, and sum the distances. The time series with the minimum
sum is chosen as the optimal feature template. The process is repeated for all
features to create the template Q̂. We created two sets of optimal templates:
(1) Q̂sym to check if U produced a valid rendering of a symbol from Ω (only using
x, y coordinates) and (2) Q̂user to check if the rendering comes from the target
user U or an attacker. Basically, the first template set is used to check if the user
rendered a symbol from the set of allowed symbols Ω or some random symbol not
in Ω. After this has been ascertained, it is checked whether the symbol is close to
the user’s template from the other template set (check behavioural biometrics).

BehavioCog: An Observation Resistant Authentication Scheme 49

4.4 Classification Decision

Given a set of feature values Q from a sample, the decision is made based on
whether DTW(Q̂,Q) lies below the threshold calculated as �

.= μ + zσ. Here μ
is the mean DTW distance between the user’s optimal template Q̂ and all of the
user’s t samples in the registration phase [27]. σ is the standard deviation, and
z ≥ 0 is a global parameter that is set according to data collected from all users
and remains the same for all users. The thresholds �sym and �user correspond to
Q̂sym and Q̂user, respectively. The classification works as follows:

Step 1: If for a given challenge c = (a,w), x∩a �= ∅ (non-empty case), S first gets
the target symbol by computing f . Target symbol is the symbol corresponding
to the correct response. Then, S rejects U if the DTW distance between Q̂sym

and the sample is > �sym. Otherwise, S moves to Step 2. In the empty case, S
computes the DTW distance between the sample and Q̂sym for each symbol and
picks the symbol which gives the least distance. Next, the distance is compared
with �sym for that symbol, and S accordingly rejects or goes to Step 2.

Step 2: S computes the DTW distance between the sample and Q̂user of the
symbol. If the distance is > �user, the user is rejected, otherwise it is accepted.

4.5 Feature Identification and Selection

We identify 19 types of features from the literature [11,13,35,40] and obtain 40
features (Table 3), most of which are self explanatory. Explanation of curvature,
slope angle and path angle is described in [35]. Device-interaction features were
obtained using the inertial motion sensors: accelerometer and gyroscope of the
smartphone. Our scheme can be used for any device equipped with a touch
screen and inertial motion sensors. We perform a standard z-score normalization
on each feature. As an example, Appendix B in the full paper illustrates the
discriminatory power of a single feature (x). To select the most distinguishing
features from the 40 features for each symbol, we created our own variation of
sequential forward feature selection (SFS) [15]. See Algorithm 1 in Appendix C
of our full paper. The algorithm takes as an input a list of features Qtot and a
symbol, and outputs a selected list of features Q for that symbol. The algorithm
starts with an empty list and iteratively adds one feature at a time by keeping
TPR = 1.0 and minimizing the FPR values (calculated based on user-adversary
pairs, see Sect. 5) until all features in Qtot are exhausted. At the end, we are left
with multiple candidate subsets for Q from which we pick the one with TPR =
1.0 and the least FPR as the final set of features. The algorithm calls the Get
z-List algorithm (Algorithm 2 in Appendix C of our full paper) as a subroutine
(based on a similar procedure from [27]). This algorithm computes the z values
that give TPR of 1 and the least FPR for each possible feature subset. The z
values give the amount of deviation from the standard deviation.

50 J. Chauhan et al.

Table 3. List of features.

Touch feature Symbol Stylometric feature Symbol Device-interaction

feature

Symbol

Coordinates and

change in coordinates

x, y, δx, δy Top, bottom, left,

right most point

TMP, BMP, LMP, RMP Rotational position of

device in space

Rx, Ry, Rz

Velocity along

coordinates

ẋ, ẏ Width: RMP − LMP,

Height: TMP − BMP

width, height Rate of rotation of

device in space

Gx, Gy, Gz

Acceleration along

coordinates

ẍ, ÿ Rectangular area:

width × height

area 3D acceleration force

due to device’s

motion and gravity

Ax, Ay, Az

Pressure and change

in pressure

p, δp Width to height ratio WHR 3D acceleration force

solely due to gravity

gx, gy, gz

Size and change in

size

s, δs Slope angle θslope 3D acceleration force

solely due to device’s

motion

ax, ay, az

Force: p × s F Path angle θpath

Action type: finger

lifted up, down or on

touchscreen

AT Curvature curve

4.6 Implementation

We implemented BehavioCog for Android smartphones using a set of twemo-
jis [37]. We used the parameters (k, l, n) = (14, 30, 180) (corresponding to the
medium strength adversary, see Sect. 3.2). FastDTW was used to implement
DTW [32] with radius 20. More details are available in our full paper.

5 User Study

We did a three phase controlled experimental evaluation of our proposed scheme
with 41 participants on a Nexus 5x smartphone after getting the ethics approval.

Phase 1: We collected touch biometric samples from 22 participants: 8 females
and 14 males for different symbol sets in two sessions (a week apart) to select
the best symbol set (in terms of repeatability and mimicking hardness). As some
users contributed samples for multiple symbol sets, we had 40 logical users which
were equally divided into four groups, one for each symbol set. Each user did
13 and 3 renderings of each symbol in the first and second session, respectively.
The first session was video recorded. Each user acted as an attacker (to mimic
a target user’s symbol based on video recordings with unrestricted access) for a
particular target user and vice versa from the same group.

Phase 2: This phase had a total of 30 participants (11 from Phase
1) and consisted of two sessions (a week apart) to assess the usabil-
ity and security of BehavioCog. The first session involved cognitive and
biometric registration and authentication (video recorded). Second session
involved authentication, performing attacks against a target user, and filling
a questionnaire. The 30 users were equally divided into three groups: Group 1,
2 and 3 according to the time they spent on registration. All the users chose

BehavioCog: An Observation Resistant Authentication Scheme 51

14 pass-emojis. 3, 8 and 10 biometric samples for each of the 5 complex words
were collected from users in Group 1, Group 2 and Group 3, respectively. The
registration for Group 2 and Group 3 users included an extended training game
to help them recognize their pass-emojis for better authentication accuracy. The
training game was divided into multiple steps in increasing order of difficulty
(see Appendix D of our full paper). Users from Group 3 had to perform double
the steps of Group 2 users. Additionally, during Session 2, we asked each user
to (a) pick their 14 pass-emojis from the whole pool of emojis, and (b) pick 14
pass-emojis, which they believed belonged to their target (attacked) user.

Phase 3: To find the cause of high number of cognitive errors in Session 2 of
Phase 2, we carried out Phase 3 across two sessions (a week apart) with users
from Group 3, since they were most familiar with the authentication scheme.
First session involved an extended cognitive training: each user was shown 14
pass-emojis one by one for 10 s followed by a 3 s cool off period (inspired by
cognitive psychology literature [29,36]), followed by authentication attempts.
Session 2 only involved authentication attempts. There are three possible reasons
for high cognitive errors: (1) user confuses some of the decoys as pass-emojis
since only a subset of pass-emojis are present in a challenge (l = 30), (2) user
makes errors in computing f , and/or (3) number of pass-emojis is too high
(14). To find the exact reason, we asked the user to do the following in order:
(a) authenticate six times simply by selecting pass-emojis present in the challenge
with no weights (to address reason 1); (b) authenticate a further six times, but
this time the emojis had weights and the user had to compute f (to address
reason 2), (c) select the 14 pass-emojis from the total pool of 180 (to address
reason 3). Phase 3 did not involve any biometrics.

6 Results

Phase 1. We find the best symbol set in terms of repeatability and security by
selecting features (Algorithm 1, Appendix C of the full paper) for two scenar-
ios: best case scenario (secure against random attacks) and worst case scenario
(secure against video based observation attacks, and repeatability). In both sce-
narios, first 10 biometric samples from a user (Session 1) are used for training.
For the best case, three samples from the same user (Session 1) and three sam-
ples from an assigned attacker (Session 1) are used for testing. For the worst
case, three samples from the same user (Session 2) and three attacker samples
(video based observation attack) are used for testing. Table 4 shows the FPR
and top features for each symbol set (TPR is one in all cases). Complex words
yield the least FPR which was: 0.0, 0.06, 0.0, 0.2, and 0.0 for xman, bmwz, quak,
hurt and fogy, respectively, in the worst case scenario. All symbol categories
have an almost 0% FPR against random attacks. The majority of features pro-
viding repeatability and mimicking hardness across all symbol sets are touch
and stylometric based. More analysis is in Appendix E.1 of our full paper.

52 J. Chauhan et al.

Table 4. Results for best and worst case scenarios for different symbol sets.

Symbol set Average FPR Top features

Best case Worst case Best case Worst case

Easy words 0.01 0.24 x, y, δx, δy, TMP, θslope, θpath, Rx TMP, height, WHR, θslope, θpath

Complex words 0.00 0.05 y, δy, p, height, area, θslope, Ry δx, height, θpath

Easy figures 0.01 0.38 y, δx, δy, p, F, height, area, θslope, θpath y, δy, p, height

Complex figures 0.01 0.39 δx x, TMP, BMP

Phase 2. The goal of Phase 2 was to test the full BehavioCog scheme. We only
present selected results related to training and authentication time, errors and
attacks. More results are in Appendix E of our full paper.

Registration Time: The average time to select 14 pass-emojis was around 2 min
for all groups. The maximum training time was 12 min for Group 3, since it
had the most amount of training, and the minimum was 4 min for Group 1.
High training time is not a major hurdle, because it is a one time process and
most of the users reported enjoying the process as it had a “game-like” feel to
it (Appendix E.8 of our full paper). Detailed results regarding registration are
shown in Appendix E.2 of our full paper.

Authentication Time: Table 5 shows the average authentication time (per round)
taken by different user groups in the two sessions. Generally, the user spends
15–20 s in computing f and 6–8 s in entering the biometric response, which does
not change drastically between the two sessions. Group 3 has the least login time
(more training results in quicker recognition).

Table 5. Authentication statistics for different user groups.

Group & Session Av. Cognitive Av. Biometric Av. Processing Av. Total Success Cognitive Biometric

Time (sec) Time (sec) Time (sec) Time (sec) Rate (%) Errors (%) Errors (%)

Group 1 - Session 1

(Phase 2)

18.3 7.9 0.7 27.0 38.3 31.6 31.0

Group 2 - Session 1

(Phase 2)

19.8 6.4 0.7 27.0 50.0 18.3 36.0

Group 3 - Session 1

(Phase 2)

12.2 5.6 0.8 18.7 85.0 15.0 0.0

Group 1 - Session 2

(Phase 2)

18.5 7.5 0.7 26.8 26.6 55.0 18.3

Group 2 - Session 2

(Phase 2)

18.4 6.4 0.7 25.6 23.3 55.0 26.6

Group 3 - Session 2

(Phase 2)

15.8 5.4 0.9 22.0 50.0 41.6 8.3

Group 3 - Session 1

(Phase 3)

- - - - 94.0 6.0 -

Group 3 - Session 2

(Phase 3)

- - - - 86.0 14.0 -

BehavioCog: An Observation Resistant Authentication Scheme 53

Authentication Errors: Table 5 shows the percentage of successful authentication
attempts along with the cognitive and biometric errors. There were a total of
v = 60 authentication attempts (six per user) for each user group in each ses-
sion. If users were randomly submitting a cognitive response, the probability that
i out of v cognitive attempts would succeed is: p

.=
(
v
i

)
pi
RG(1 − pRG)v−i. We

consider i ≥ 20 out of 60 attempts (<66% error rate) as statistically significant
(p < 0.05). Since all groups had cognitive error rate less than 66%, it implies that
users were not passing a cognitive challenge by mere chance. Cognitive training
aids the user’s short term memory, since Group 3 users authenticated successfully
85% of the time, whereas Group 1 users (without cognitive training) were only
successful 36% of the time. Group 2 users (with some cognitive training), accrue
18% cognitive errors, similar to Group 3. For Group 2 users most failures origi-
nate from biometric errors (they had lesser number of biometric training samples
than Group 3). By collecting more biometric data, performance of Group 2 can be
made similar to Group 3 with less cognitive training. We see a drastic decrease in
the successful authentication attempts in Session 2 from Session 1 especially for
Group 3 (from 85% to 50%) and Group 2 (from 50% to 24%). Cognitive errors are
predominantly responsible for the drastic decrease as they caused more than half
of the authentication attempts to fail for Group 2 and 3, and 40% for Group 1.
Phase 3 was done to find out the cause for a high number of cognitive errors.

Attack Statistics: We picked those 12 users (9 from Group 3, 2 from Group 2,
1 from Group 1) to be attacked who successfully authenticated 5 out of 6 times
in Session 1. Each of the 30 users in the three groups attacked only one of the
12 target users by performing three random and three video based observation
attacks totalling 90 attempts. The probability of a random attack can be approx-
imated as ptot = pRG×FPR ≈ 0.256×0.05 ≈ 0.013. Thus i out of v = 90 correct
guesses would be binomially distributed as p

.=
(
v
i

)
pi
tot(1− ptot)v−i. We consider

i ≥ 4 as statistically significant (p < 0.05). Only 3 attempts (3.33%) for both
attacks were successful, and none of them were consecutive. In all six cases, the
target user wrote the words using block letters (easier to mimic [8]).

Phase 3. This phase was carried out to find the main cause of cognitive errors
and to improve our training to alleviate the issue. The users did 12 authentication
attempts each in Sessions 1 and 2. The first 6 involved merely selecting the pass-
emojis present whereas the second involved computing f as well. The results
are shown in the last two rows of Table 5. The results show that our improved
training module (more exposure to each individual pass-emojis followed by blank
screens) drastically decreases the error rate. Even after a week’s gap the success
rate is 86%. We rule out the possibility that the errors in Phase 2 were due to
the size of the secret, as the average number of pass-emojis recognized by the
users in Sessions 1 and 2 were 13.6 and 13.5, respectively. We also counted the
total number of errors made by the users in the first 6 authentication attempts,
which turned up 13, and the last 6 authentication attempts, which turned up
11, adding results from both sessions. This shows no evidence that computing

54 J. Chauhan et al.

f was causing errors. We, therefore, believe that the main cause of errors is due
to the user confusing decoy emojis as its pass-emojis since only a subset of the
k emojis are present in the challenge (due to l).

7 Related Work

We proposed a new cognitive scheme in our work because existing schemes did
not possess all the attributes we desired. During actual login in CAS [39], the
user has to compute a path on a panel of images from top-left corner to the
bottom-edge corner or right side of the panel based on whether the image on
the panel at any point belongs to the user portfolio. The row or column at the
bottom or right side of the panel has labels. When the user finishes the path,
they have to input the label in response. The CAS scheme [39] is susceptible
to SAT solver based attacks [19]. CAS also uses parameter sizes of n = 80 and
k = 30, and all n images need to be shown on the screen at once, which is hard
to display on touch screens of smartphones. requires all n = 80 images to be
shown at once similar to the APW scheme [5], which is impractical on small
screens. The cognitive load of the scheme from Li and Teng [28] is very high as
it requires the user to remember three different secrets and perform lexical-first
matching on the challenge to obtain hidden sub-sequences. HB protocol [20] can
be modified to use window based challenges, but it requires the user to add
random responses with a skewed probability η < 1

2 , which can be hard for users.
Foxtail protocol [26] reduces the response space to {0, 1} at the expense of a
high number of rounds for secure authentication. PAS [6] only resist a very small
number of authentication sessions (<10) [25]. The CHC scheme asks the user
to locate at least three pass-images in the challenge and click randomly within
the imaginary convex hull of the pass-images. With the default parameter sizes
k = 5 and l = 82 (on average), CHC is vulnerable to statistical attacks [3,41]
and usability is impacted with larger parameter sizes. Blum et al. [10] propose
simple cognitive schemes which are easily human computable but are information
theoretically secure for only 6 to 10 observed sessions. The scheme from Blocki
et al. [9] is provably secure against statistical adversaries and can resist a sizeable
number of observed sessions. However, their scheme’s require extensive training.

Various touch-based behavioural biometric schemes have been proposed for
user authentication [18,24,40], which rely on simple gestures such as swipes.
Simple gestures require a large number of samples to be collected to get good
accuracy and are prone to observation attacks [23]. Sherman et al. [33] designed
more complex (free-form) gestures, but which are only shown to resist human
shoulder-surfing attacks. The closest work similar to ours is by Toan et al. [31].
Their scheme authenticates users on the basis of how they write their PINs on
the smartphone touch screen using x, y coordinates. In comparison, we do a more
detailed feature selection process to identify features, which are repeatable and
resilient against observation attacks. Furthermore, they report an equal error
rate (EER) of 6.7% and 9.9% against random and shoulder-surfing attacks,
respectively. Since these are EER values, the TPR is much lower than 1.0.

BehavioCog: An Observation Resistant Authentication Scheme 55

To obtain a TPR close to 1.0, the FPR will need to be considerably increased.
Thus, after observing one session, the observer has a non-negligible chance of
getting in (since the PIN is no longer a secret). To achieve a low probability of
random guess, the number of rounds in their scheme would need to be higher.
Furthermore, after obtaining the PIN, the attacker may adaptively learn target
user’s writing by querying the authentication service. The use of a cognitive
scheme removes this drawback. KinWrite [35], which asks the user to write their
passwords in 3D space, and then authenticates them based on their writing pat-
terns suffers from the same drawbacks. Pure graphical password schemes such
as DéJà Vu [16] where the user has to click directly on pass-images or reproduce
the same drawing on the screen, have the same vulnerability.

8 Discussion and Limitations

We show that a carefully designed training inspired by cognitive psychology
helped users recognize their pass-emojis better. The potential of this needs to be
further explored to see how large a set of images could be successfully recognized
by users after longer gaps. A smaller number of pass-emojis is also possible in
our scheme at the expense of withstanding less observations; it may still be
impractical for an attacker to follow a mobile user to record enough observations
over a sustained period. We also show that users make themes to pick their pass-
emojis (Appendix E.5 in our full paper). Issues arising due to picking similar
theme based images is left as a future research.

Behavioural biometrics tend to evolve over time and hence we see a slight
increase in biometric errors after a week. A remedy is to frequently update the
biometric template by replacing older samples [13]. On the flip side, we prefer
behaviour biometrics over physiological biometrics due to this exact reason, since
if stolen the consequences are less dire (user behaviour might evolve, words
could be replaced, etc.). Additionally, the exact difficulty in mimicking cursively
written words derived from certain English letters needs to be further explored
(either experimentally or in theory). Also, the security of our proposed scheme
is to be tested against a professional handwriting forger or a sophisticated robot
who can be programmed to mimic gestures. Our cognitive scheme might be
susceptible to timing attacks [38] (c.f. Table 5). One way to circumvent this is to
not allow the user to proceed unless a fixed amount of time has elapsed based on
the highest average-time taken Finally, to protect the user’s secret (pass-emojis
and biometric templates), the authentication service could keep it encrypted and
decrypt it only during authentication. A better solution can use techniques such
as fuzzy vaults [21] and functional encryption [12], and is left as a future work.

9 Conclusion

The promise offered by cognitive authentication schemes that they are resistant
to observation has failed to crystallize in the form of a workable protocol. Many
researchers speculate that such schemes may never be practical. We do not deny

56 J. Chauhan et al.

this, but instead argue that combining cognitive schemes with other behavioural
biometric based authentication schemes may make the hybrid scheme practical
and still resistant to observation. Our scheme is not the only possibility. In fact,
in addition to touch based biometrics other behavioural biometric modalities
can be explored. This way, several different constructions are conceivable.

References

1. Asghar, H.J., Steinfeld, R., Li, S., Kaafar, M.A., Pieprzyk, J.: On the linearization
of human identification protocols: attacks based on linear algebra, coding theory,
and lattices. IEEE TIFS 10(8), 1643–1655 (2015)

2. Asghar, H.J., Kaafar, M.A.: When are identification protocols with sparse chal-
lenges safe? the case of the Coskun and Herley attack. IACR’s Cryptology ePrint
Archive: Report 2015/1231 (2015)

3. Asghar, H.J., Li, S., Pieprzyk, J., Wang, H.: Cryptanalysis of the convex hull click
human identification protocol. Int. J. Inf. Secur. 12(2), 83–96 (2013)

4. Asghar, H.J., Li, S., Steinfeld, R., Pieprzyk, J.: Does counting still count? revisiting
the security of counting based user authentication protocols against statistical
attacks. In: NDSS (2013)

5. Asghar, H.J., Pieprzyk, J., Wang, H.: A new human identification protocol and
coppersmith’s baby-step giant-step algorithm. In: Zhou, J., Yung, M. (eds.) ACNS
2010. LNCS, vol. 6123, pp. 349–366. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13708-2 21

6. Bai, X., Gu, W., Chellappan, S., Wang, X., Xuan, D., Ma, B.: PAS: Predicate-based
authentication services against powerful passive adversaries. In: ACSAC 2008, pp.
433–442 (2008)

7. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 31

8. Ballard, L., Lopresti, D., Monrose, F.: Forgery quality and its implications for
behavioral biometric security. IEEE Trans. Syst. Man Cybern. 37(5), 1107–1118
(2007)

9. Blocki, J., Blum, M., Datta, A., Vempala, S.: Towards human computable pass-
words. In: ITCS (2017)

10. Blum, M., Vempala, S.S.: Publishable humanly usable secure password creation
schemas. In: Third AAAI Conference on Human Computation and Crowdsourcing
(2015)

11. Bo, C., Zhang, L., Li, X.Y., Huang, Q., Wang, Y.: SilentSense: silent user identifi-
cation via touch and movement behavioral biometrics. In: MobiCom, pp. 187–190
(2013)

12. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

13. Chauhan, J., Asghar, H.J., Mahanti, A., Kaafar, M.A.: Gesture-based continuous
authentication for wearable devices: the smart glasses use case. In: Manulis, M.,
Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 648–665.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 35

14. Coskun, B., Herley, C.: Can “something you know” be saved? In: Wu, T.-C., Lei,
C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 421–440.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85886-7 29

https://doi.org/10.1007/978-3-642-13708-2_21
https://doi.org/10.1007/978-3-642-13708-2_21
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-319-39555-5_35
https://doi.org/10.1007/978-3-540-85886-7_29

BehavioCog: An Observation Resistant Authentication Scheme 57

15. Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-
Hall, Englewood Cliffs (1982)

16. Dhamija, R., Perrig, A.: DéJà Vu: a user study using images for authentication.
In: USENIX Security, pp. 45–58 (2000)

17. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)

18. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: on the
applicability of touchscreen input as a behavioral biometric for continuous authen-
tication. IEEE TIFS 8(1), 136–148 (2013)

19. Golle, P., Wagner, D.: Cryptanalysis of a cognitive authentication scheme
(extended abstract). In: SP, pp. 66–70 (2007)

20. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 4

21. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypt. 38(2), 237–257
(2006)

22. Kao, H.S., Shek, D.T., Lee, E.S.: Control modes and task complexity in tracing
and handwriting performance. Acta Psychol. 54(1), 69–77 (1983)

23. Khan, H., Hengartner, U., Vogel, D.: Targeted mimicry attacks on touch input
based implicit authentication schemes. In: MobiSys 2016, pp. 387–398 (2016)

24. Li, L., Zhao, X., Xue, G.: Unobservable re-authentication for Smartphones. In:
NDSS (2013)

25. Li, S., Asghar, H.J., Pieprzyk, J., Sadeghi, A.R., Schmitz, R., Wang, H.: On the
security of PAS (Predicate-Based Authentication Service). In: ACSAC, pp. 209–
218 (2009)

26. Li, S., Shum, H.Y.: Secure Human-Computer Identification (Interface) Systems
against Peeping Attacks: SecHCI. Cryptology ePrint Archive, Report 2005/268

27. Li, S., Ashok, A., Zhang, Y., Xu, C., Lindqvist, J., Gruteser, M.: Whose move is
it anyway? authenticating smart wearable devices using unique head movement
patterns. In: PerCom, pp. 1–9 (2016)

28. Li, X.Y., Teng, S.H.: Practical human-machine identification over insecure chan-
nels. J. Comb. Optim. 3(4), 347–361 (1999)

29. Mandler, J.M., Johnson, N.S.: Some of the thousand words a picture is worth. J.
Exp. Psychol. Hum. Learn. Mem. 2(5), 529–540 (1976)

30. Matsumoto, T., Imai, H.: Human identification through insecure channel. In:
Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 409–421. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 35

31. Nguyen, T.V., Sae-Bae, N., Memon, N.: Finger-drawn PIN authentication on touch
devices. In: ICIP, pp. 5002–5006 (2014)

32. Sakoe, H., Chiba, S.: A dynamic programming approach to continuous speech
recognition. In: Seventh International Congress on Acoustics, vol. 3, pp. 65–69
(1971)

33. Sherman, M., Clark, G., Yang, Y., Sugrim, S., Modig, A., Lindqvist, J., Oulasvirta,
A., Roos, T.: User-generated free-form gestures for authentication: security and
memorability. In: MobiSys, pp. 176–189 (2014)

34. Shokoohi-Yekta, M., Hu, B., Jin, H., Wang, J., Keogh, E.: Generalizing DTW
to the multi-dimensional case requires an adaptive approach. Data Min. Knowl.
Discov. 31, 1–31 (2016)

35. Tian, J., Qu, C., Xu, W., Wang, S.: KinWrite: handwriting-based authentication
using kinect. In: NDSS (2013)

https://doi.org/10.1007/3-540-45682-1_4
https://doi.org/10.1007/3-540-46416-6_35

58 J. Chauhan et al.

36. Tversky, B., Sherman, T.: Picture memory improves with longer on time and off
time. J. Exp. Psychol. Hum. Learn. Mem. 1(2), 114–118 (1975)

37. Twitter, I., et al.: https://github.com/twitter/twemoji
38. Čagalj, M., Perković, T.: Timing attacks on cognitive authentication schemes.

IEEE TIFS 10(3), 584–596 (2014)
39. Weinshall, D.: Cognitive authentication schemes safe against spyware (Short

Paper). In: SP, pp. 295–300 (2006)
40. Xu, H., Zhou, Y., Lyu, M.R.: Towards continuous and passive authentication via

touch biometrics: an experimental study on Smartphones. In: SOUPS, pp. 187–198
(2014)

41. Yan, Q., Han, J., Li, Y., Deng, R.H.: On limitations of designing leakage-resilient
password systems: attacks, principles and usability. In: NDSS (2012)

https://github.com/twitter/twemoji

Updatable Tokenization: Formal Definitions
and Provably Secure Constructions

Christian Cachin(B), Jan Camenisch, Eduarda Freire-Stögbuchner,
and Anja Lehmann

IBM Research, Zurich, Switzerland
{cca,jca,efr,anj}@zurich.ibm.com

Abstract. Tokenization is the process of consistently replacing sensitive
elements, such as credit cards numbers, with non-sensitive surrogate val-
ues. As tokenization is mandated for any organization storing credit card
data, many practical solutions have been introduced and are in commer-
cial operation today. However, all existing solutions are static yet, i.e.,
they do not allow for efficient updates of the cryptographic keys while
maintaining the consistency of the tokens. This lack of updatability is
a burden for most practical deployments, as cryptographic keys must
also be re-keyed periodically for ensuring continued security. This paper
introduces a model for updatable tokenization with key evolution, in
which a key exposure does not disclose relations among tokenized data
in the past, and where the updates to the tokenized data set can be made
by an untrusted entity and preserve the consistency of the data. We for-
mally define the desired security properties guaranteeing unlinkability of
tokens among different time epochs and one-wayness of the tokenization
process. Moreover, we construct two highly efficient updatable tokeniza-
tion schemes and prove them to achieve our security notions.

1 Introduction

Increasingly, organizations outsource copies of their databases to third parties,
such as cloud providers. Legal constraints or security concerns thereby often
dictate the de-sensitization or anonymization of the data before moving it across
borders or into untrusted environments. The most common approach is so-called
tokenization which replaces any identifying, sensitive element, such as a social
security or credit card number, by a surrogate random value.

Government bodies and advisory groups in Europe [6] and in the United
States [9] have explicitly recommended such methods. Many domain-specific
industry regulations require this as well, e.g., HIPAA [13] for protecting patient

This work has been supported in part by the European Commission through the
Horizon 2020 Framework Programme (H2020-ICT-2014-1) under grant agreement
number 644371 WITDOM and through the Seventh Framework Programme under
grant agreement number 321310 PERCY, and in part by the Swiss State Secretariat
for Education, Research and Innovation (SERI) under contract number 15.0098.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 59–75, 2017.
https://doi.org/10.1007/978-3-319-70972-7_4

60 C. Cachin et al.

information or the Payment Card Industry Data Security Standard (PCI
DSS) [10] for credit card data. PCI DSS is an industry-wide set of guidelines that
must be met by any organization that handles credit card data and mandates
that instead of the real credit card numbers only the non-sensitive tokens are
stored.

For security, the tokenization process should be one-way in the sense that the
token does not reveal information about the original data, even when the secret
keys used for tokenization are disclosed. On the other hand, usability requires
that a tokenized data set preserves referential integrity. That is, when the same
value occurs multiple times in the input, it should be mapped consistently to
the same token.

Many industrial white papers discuss solutions for tokenization [11,12,14],
which rely on (keyed) hash functions, encryption schemes, and often also non-
cryptographic methods such as random substitution tables. However, none of
these methods guarantee the above requirements in a provably secure way, backed
by a precise security model. Only recently an initial step towards formal security
notions for tokenization has been made [5].

However, all tokenization schemes and models have been static so far, in the
sense that the relation between a value and its tokenized form never changes and
that the keys used for tokenization cannot be changed. Thus, key updates are a
critical issue that has not yet been handled. In most practical deployments, all
cryptographic keys must be re-keyed periodically for ensuring continued security.
In fact, the aforementioned PCI DSS standard even mandates that keys (used
for encryption) must be rotated at least annually. Similar to proactively secure
cryptosystems [8], periodic updates reduce the risk of exposure when data leaks
gradually over time. For tokenization, these key updates must be done in a
consistent way so that already tokenized data maintains its referential integrity
with fresh tokens that are generated under the updated key. None of the existing
solutions allows for efficient key updates yet, as they would require to start from
scratch and tokenize the complete data set with a fresh key. Given that the
tokenized data sets are usually large, this is clearly not desirable for real-world
applications. Instead the untrusted entity holding the tokenized data should be
able to re-key an already tokenized representation of the data.

Our Contributions. As a solution for these problems, this paper introduces a
model for updatable tokenization (UTO) with key evolution, distinguishes mul-
tiple security properties, and provides efficient cryptographic implementations.
An updatable tokenization scheme considers a data owner producing data and
tokenizing it, and an untrusted host storing tokenized data only. The scheme
operates in epochs, where the owner generates a fresh tokenization key for every
epoch and uses it to tokenize new values added to the data set. The owner also
sends an update tweak to the host, which allows to “roll forward” the values
tokenized for the previous epoch to the current epoch.

We present several formal security notions that refine the above security
goals, by modeling the evolution of keys and taking into consideration adap-
tive corruptions of the owner, the host, or both, at different times. Due to the

Updatable Tokenization 61

temporal dimension of UTO and the adaptive corruptions, the precise formal
notions require careful modeling. We define the desired security properties in the
form of indistinguishability games which require that the tokenized representa-
tions of two data values are indistinguishable to the adversary unless it trivially
obtained them. An important property for achieving the desired strong indis-
tinguishability notions is unlinkability and we clearly specify when (and when
not) an untrusted entity may link two values tokenized in different epochs. A
further notion, orthogonal to the indistinguishability-based ones, formalizes the
desired one-wayness property in the case where the owner discloses its current
key material. Here the adversary may guess an input by trying all possible val-
ues; the one-wayness notion ensures that this is also its best strategy to reverse
the tokenization.

Finally, we present two efficient UTO constructions: the first solution
(UTOSE) is based on symmetric encryption and achieves one-wayness, and indis-
tinguishability in the presence of a corrupt owner or a corrupt host. The sec-
ond construction (UTODL) relies on a discrete-log assumption, and additionally
satisfies our strongest indistinguishability notion that allows the adversary to
(transiently) corrupt the owner and the host. Both constructions share the same
core idea: First, the input value is hashed, and then the hash is encrypted under
a key that changes every epoch.

We do not claim the cryptographic constructions are particularly novel. The
focus of our work is to provide formal foundations for key-evolving and updat-
able tokenization, which is an important problem in real-world applications.
Providing clear and sound security models for practitioners is imperative for
the relevance of our field. Given the public demands for data privacy and the
corresponding interest in tokenization methods by the industry, especially in
regulated and sensitive environments such as the financial industry, this work
helps to understand the guarantees and limitations of efficient tokenization.

Related Work. A number of cryptographic schemes are related to our notion
of updatable tokenization: key-homomorphic pseudorandom functions (PRF),
oblivious PRFs, updatable encryption, and proxy re-encryption, for which we
give a detailed comparison below.

A key-homomorphic PRF [3] enjoys the property that given PRFa(m) and
PRFb(m) one can compute PRFa+b(m). This homomorphism does not immedi-
ately allow convenient data updates though: the data host would store values
PRFa(m), and when the data owner wants to update his key from a to b, he must
compute Δm = PRFb−a(m) for each previously tokenized value m. Further, to
allow the host to compute PRFb(m) = PRFa(m) + Δm, the owner must provide
some reference to which PRFa(m) each Δm belongs. This approach has several
drawbacks: (1) the owner must store all previously outsourced values m and
(2) computing the update tweak(s) and its length would depend on the amount
of tokenized data. Our solution aims to overcome exactly these limitations. In
fact, tolerating (1) + (2), the owner could simply use any standard PRF, re-
compute all tokens and let the data host replace all data. This is clearly not
efficient and undesirable in practice.

62 C. Cachin et al.

Boneh et al. [3] also briefly discuss how to use such a key-homomorphic
PRF for updatable encryption or proxy re-encryption. Updatable encryption
can be seen as an application of symmetric-key proxy re-encryption, where the
proxy re-encrypts ciphertexts from the previous into the current key epoch.
Roughly, a ciphertext in [3] is computed as C = m + PRFa(N) for a nonce
N , which is stored along with the ciphertext C. To rotate the key from a to
b, the data owner pushes Δ = b − a to the data host which can use Δ to
update all ciphertexts. For each ciphertext, the host then uses the stored nonce
N to compute PRFΔ(N) and updates the ciphertext to C ′ = C + PRFΔ(N) =
m+PRFb(N). However, the presence of the static nonce prevents the solution to
be secure in our tokenization context. The tokenized data should be unlinkable
across epochs for any adversary not knowing the update tweaks, and we even
guarantee unlinkability in a forward-secure manner, i.e., a security breach at
epoch e does not affect any data exposed before that time.

In the full version of their paper [4], Boneh et al. present a different solution
for updatable encryption that achieves such unlinkability, but which suffers from
similar efficiency issues as mentioned above: the data owner must retrieve and
partially decrypt all of his ciphertexts, and then produce a dedicated update
tweak for each ciphertext, which renders the solution unpractical for our purpose.
Further, no formal security definition that models adaptive key corruptions for
such updatable encryption is given in the paper.

The Pythia service proposed by Everspaugh et al. [7] mentions PRFs with
key rotation which is closer to our goal, as it allows efficient updates of the
outsourced PRF values whenever the key gets refreshed. The core idea of the
Pythia scheme is very similar to our second, discrete-logarithm based construc-
tion. Unfortunately, the paper does not give any formal security definition that
covers the possibility to update PRF values nor describes the exact properties
of such a key-rotating PRF. As the main goal of Pythia is an oblivious and ver-
ifiable PRF service for password hashing, the overall construction is also more
complex and aims at properties that are not needed here, and vice-versa, our
unlinkability property does not seem necessary for the goal of Pythia.

While the aforementioned works share some relation with updatable tok-
enization, they have conceptually quite different security requirements. Starting
with such an existing concept and extending its security notions and construc-
tions to additionally satisfy the requirements of updatable tokenization, would
reduce efficiency and practicality, for no clear advantage. Thus, we consider the
approach of directly targeting the concrete real-world problem more suitable.

An initial study of security notions for tokenization was recently presented by
Diaz-Santiago et al. [5]; they formally define tokenization systems and give sev-
eral security notions and provably secure constructions. In a nutshell, their defi-
nitions closely resemble the conventional definitions for deterministic encryption
and one-way functions adopted to the tokenization notation. However, they do
not consider adaptive corruptions and neither address updatable tokens, which
are the crucial aspects of this work.

Updatable Tokenization 63

2 Preliminaries

In this section, we recall the definitions of the building blocks and security notions
needed in our constructions.

Deterministic Symmetric Encryption. A deterministic symmetric encryption
scheme SE consists of a key space K and three polynomial-time algorithms
SE.KeyGen,SE.Enc,SE.Dec satisfying the following conditions:

SE.KeyGen: The probabilistic key generation algorithm SE.KeyGen takes as
input a security parameter λ and produces an encryption key s

r←
SE.KeyGen(λ).

SE.Enc: The deterministic encryption algorithm takes a key s ∈ K and a message
m ∈ M and returns a ciphertext C ← SE.Enc(s,m).

SE.Dec: The deterministic decryption algorithm SE.Dec takes a key s ∈ K and
a ciphertext C to return a message m ← SE.Dec(s, C).

For correctness we require that for any key s ∈ K, any message m ∈ M and
any ciphertext C ← SE.Enc(s,m), we have m ← SE.Dec(s, C).

We now define a security notion of deterministic symmetric encryption
schemes in the sense of indistinguishability against chosen-plaintext attacks, or
IND-CPA security. This notion was informally presented by Bellare et al. in [1],
and captures the scenario where an adversary that is given access to a left-or-
right (LoR) encryption oracle is not able to distinguish between the encryption
of two distinct messages of its choice with probability non-negligibly better than
one half. Since the encryption scheme in question is deterministic, the adversary
can only query the LoR oracle with distinct messages on the same side (left
or right) to avoid trivial wins. That is, queries of the type (mi

0,m
i
1), (m

j
0,m

j
1)

where mi
0 = mj

0 or mi
1 = mj

1 are forbidden. We do not grant the adversary an
explicit encryption oracle, as it can obtain encryptions of messages of its choice
by querying the oracle with a pair of identical messages.

Definition 1. A deterministic symmetric encryption scheme SE = (SE.KeyGen,
SE.Enc,SE.Dec) is called IND-CPA secure if for all polynomial-time adversaries
A, it holds that |Pr[Expind-cpaA,SE (λ) = 1]−1/2| ≤ ε(λ) for some negligible function ε.

Experiment Expind-cpaA,SE (λ):
s

r← SE.KeyGen(λ)
d

r← {0, 1}
d′ r← AOenc(s,d,·,·)(λ)

where Oenc on input two messages m0,m1 returns C ← SE.Enc(s,md).
return 1 if d′ = d and all values m1

0, . . . ,m
q
0 and all values m1

1, . . . ,m
q
1 are

distinct, respectively, where q denotes the number of queries to Oenc.

64 C. Cachin et al.

Hash Functions. A hash function H : D → R is a deterministic function that
maps inputs from domain D to values in range R. For our second and stronger
construction we assume the hash function to behave like a random oracle.

In our first construction we use a keyed hash function, i.e., H gets a key
hk

r← H.KeyGen(λ) as additional input. We require the keyed hash function to
be pseudorandom and weakly collision-resistant for any adversary not knowing
the key hk. We also need H to be one-way when the adversary is privy of the
key, i.e., H should remain hard to invert on random inputs.

Pseudorandomness: A hash function is called pseudorandom if no efficient
adversary A can distinguish H from a uniformly random function f : D → R
with non-negligible advantage. That is,

∣
∣Pr[AH(hk,·)(λ)] − Pr[Af(·)(λ)]

∣
∣ is neg-

ligible in λ, where the probability in the first case is over A’s coin tosses and
the choice of hk

r← H.KeyGen(λ), and in the second case over A’s coin tosses
and the choice of the random function f .

Weak collision resistance: A hash function H is called weakly collision-
resistant if for any efficient algorithm A the probability that for hk

r←
H.KeyGen(λ) and (m,m′) r← AH(hk,·)(λ) the adversary returns m �= m′, where
H(hk,m) = H(hk,m′), is negligible (as a function of λ).

One-wayness: A hash function H is one-way if for any efficient algorithm A the
probability that for hk

r← H.KeyGen(λ), m
r← D and m′ r← A(hk,H(hk,m))

returns m′, where H(hk,m) = H(hk,m′), is negligible (as a function of λ).

Decisional Diffie-Hellman Assumption. Our second construction requires a
group (G, g, p) as input where G denotes a cyclic group G = 〈g〉 of order p
in which the Decisional Diffie-Hellman (DDH) problem is hard w.r.t. λ, i.e., p
is a λ-bit prime. More precisely, a group (G, g, p) satisfies the DDH assump-
tion if for any efficient adversary A the probability |Pr[A(G, p, g, ga, gb, gab)]−
Pr[A(G, p, g, ga, gb, gc)]| is negligible in λ, where the probability is over the ran-
dom choice of p, g, the random choices of a, b, c ∈ Zp, and A’s coin tosses.

3 Formalizing Updatable Tokenization

An updatable tokenization scheme contains algorithms for a data owner and a
host. The owner de-sensitizes data through tokenization operations and dynami-
cally outsources the tokenized data to the host. For this purpose, the data owner
first runs an algorithm setup to create a tokenization key. The tokenization key
evolves with epochs, and the data is tokenized with respect to a specific epoch e,
starting with e = 0. For a given epoch, algorithm token takes a data value and
tokenizes it with the current key ke. When moving from epoch e to epoch e + 1,
the owner invokes an algorithm next to generate the key material ke+1 for the
new epoch and an update tweak Δe+1. The owner then sends Δe+1 to the host,
deletes ke and Δe+1 immediately, and uses ke+1 for tokenization from now on.
After receiving Δe+1, the host first deletes Δe and then uses an algorithm upd to
update all previously received tokenized values from epoch e to e+1, using Δe+1.
Hence, during some epoch e the update tweak from e − 1 to e is available at the
host, but update tweaks from earlier epochs have been deleted.

Updatable Tokenization 65

Definition 2. An updatable tokenization scheme UTO consists of a data space X ,
a token space Y, and a set of polynomial-time algorithms UTO.setup, UTO.next,
UTO.token, and UTO.upd satisfying the following conditions:

UTO.setup: The algorithm UTO.setup is a probabilistic algorithm run by the
owner. On input a security parameter λ, this algorithm returns the tokeniza-
tion key for the first epoch k0

r← UTO.setup(λ).
UTO.next: This probabilistic algorithm is also run by the owner. On input a

tokenization key ke for some epoch e, it outputs a tokenization key ke+1 and
an update tweak Δe+1 for epoch e+1. That is, (ke+1,Δe+1)

r← UTO.next(ke).
UTO.token: This is a deterministic injective algorithm run by the owner. Given

the secret key ke and some input data x ∈ X , the algorithm outputs a tok-
enized value ye ∈ Y. That is, ye ← UTO.token(ke, x).

UTO.upd: This deterministic algorithm is run by the host and uses the update
tweak. On input the update tweak Δe+1 and some tokenized value ye,
UTO.upd updates ye to ye+1, that is, ye+1 ← UTO.upd(Δe+1, ye).

The correctness condition of a UTO scheme ensures referential integrity
inside the tokenized data set. A newly tokenized value from the owner in a
particular epoch must be the same as the tokenized value produced by the
host using update operations. More precisely, we require that for any x ∈ X ,
for any k0

r← UTO.setup(λ), for any sequence of tokenization key/update
tweak pairs (k1,Δ1), . . . , (ke,Δe) generated as (kj+1,Δj+1)

r← UTO.next(kj) for
j = 0, . . . , e − 1 through repeated applications of the key-evolution algorithm,
and for any ye ← UTO.token(ke, x), it holds that

UTO.token(ke+1, x) = UTO.upd(Δe+1, ye).

3.1 Privacy of Updatable Tokenization Schemes

The main goal of UTO is to achieve privacy for data values, ensuring that
an adversary cannot gain information about the tokenized values and can-
not link them to input data tokenized in past epochs. We introduce three
indistinguishability-based notions for the privacy of tokenized values, and one
notion ruling out that an adversary may reverse the tokenization and recover
the input value from a tokenized one. All security notions are defined through
an experiment run between a challenger and an adversary A. Depending on the
notion, the adversary may issue queries to different oracles, defined in the next
section.

At a high level, the four security notions for UTO are distinguished by the
corruption capabilities of A.

IND-HOCH: Indistinguishability with Honest Owner and Corrupted Host:
This is the most basic security criterion, focusing on the updatable dynamic
aspect of UTO. It considers the owner to be honest and permits corruption
of the host during the interaction. The adversary gains access to the update
tweaks for all epochs following the compromise and yet, it should (roughly
speaking) not be able to distinguish values tokenized before the corruption.

66 C. Cachin et al.

IND-COHH: Indistinguishability with Corrupted Owner and Honest Host:
Modeling a corruption of the owner at some point in time, the adversary
learns the tokenization key of the compromised epoch and all secrets of the
owner. Subsequently A may take control of the owner, but should not learn
the correspondence between values tokenized before the corruption. The host
is assumed to remain (mostly) honest.

IND-COTH: Indistinguishability with Corrupted Owner and Transiently Cor-
rupte Host: As a refinement of the first two notions, A can transiently corrupt
the host during multiple epochs according to its choice, and it may also per-
manently corrupt the owner. The adversary learns the update tweaks of the
specific epochs where it corrupts the host, and learns the tokenization key
of the epoch where it corrupts the owner. Data values tokenized prior to
exposing the owner’s secrets should remain unlinkable.

One-Wayness: This notion models the scenario where the owner is corrupted
right at the first epoch and the adversary therefore learns all secrets. Yet,
the tokenization operation should be one-way in the sense that observing a
tokenized value does not give the adversary an advantage for guessing the
corresponding input from X .

3.2 Definition of Oracles

During the interaction with the challenger in the security definitions, the adversary
mayaccess oracles fordata tokenization, formoving to thenext epoch, for corrupting
the host, and for corrupting the owner. In the following description, the oracles may
access the state of the challenger during the experiment. The challenger initializes
a UTO scheme with global state (k0,Δ0, e), where k0 ← UTO.setup(λ), Δ0 ← ⊥,
and e ← 0. Two auxiliary variables e∗

h and e∗
o record the epochs where the host and

the owner were first corrupted, respectively. Initially e∗
h ← ⊥ and e∗

o ← ⊥.

Otoken(x): On input a value x ∈ X , return ye ← UTO.token(ke, x) to the adver-
sary, where ke is the tokenization key of the current epoch.

Onext: When triggered, compute the tokenization key and update tweak of the
next epoch as (ke+1,Δe+1) ← UTO.next(ke) and update the global state to
(ke+1,Δe+1, e + 1).

Ocorrupt-h: When invoked, return Δe to the adversary. If called for the first time
(e∗

h = ⊥), then set e∗
h ← e. This oracle models the corruption of the host and

may be called multiple times.
Ocorrupt-o: When invoked for the first time (e∗

o = ⊥), then set e∗
o ← e and return

ke to the adversary. This oracle models the corruption of the owner and can
only be called once. After this call, the adversary no longer has access to
Otoken and Onext.

Note that although corruption of the host at epoch e exposes the update
tweak Δe, the adversary should not be able to compute update tweaks of future
epochs from this value. To obtain those, A should call Ocorrupt-h again in the cor-
responding epochs; this is used for IND-HOCH security and IND-COTH secu-
rity, with different side-conditions. A different case arises when the owner is

Updatable Tokenization 67

corrupted, since this exposes all relevant secrets of the challenger. From that
point the adversary can generate tokenization keys and update tweaks for all
subsequent epochs on its own. This justifies why the oracle Ocorrupt-o can only be
called once. For the same reason, it makes no sense for an adversary to query the
Otoken and Onext oracles after the corruption of the owner. Furthermore, observe
that Ocorrupt-o does not return Δe according to the assumption that the owner
deletes this atomically with executing the next algorithm.

We are now ready to formally define the security notions for UTO in the
remainder of this section.

3.3 IND-HOCH: Honest Owner and Corrupted Host

The IND-HOCH notion ensures that tokenized data does not reveal information
about the corresponding original data when A compromises the host and obtains
the update tweaks of the current and all future epochs. Tokenized values are also
unlinkable across epochs, as long as the adversary does not know at least one
update tweak in that timeline.

Definition 3 (IND-HOCH). An updatable tokenization scheme UTO is said
to be IND-HOCH secure if for all polynomial-time adversaries A it holds that
|Pr[ExpIND-HOCH

A,UTO (λ) = 1] − 1/2| ≤ ε(λ) for some negligible function ε.

Experiment ExpIND-HOCH
A,UTO (λ):

k0
r← UTO.setup(λ)

e ← 0; e∗
h ← ⊥ // these variables are updated by the oracles

(x̃0, x̃1, state) r← AOtoken,Onext,Ocorrupt-h(λ)
ẽ ← e; d

r← {0, 1}
ỹd,ẽ ← UTO.token(kẽ, x̃d)

d′ r← AOtoken,Onext,Ocorrupt-h(ỹd,ẽ, state)
return 1 if d′ = d and at least one of following conditions holds

a)
(

e∗
h ≤ ẽ + 1

) ∧ A has not queried Otoken(x̃0) or Otoken(x̃1) in epoch
e∗
h − 1 or later

b)
(

e∗
h > ẽ + 1 ∨ e∗

h = ⊥) ∧ A has not queried Otoken(x̃0) or Otoken(x̃1) in
epoch ẽ

This experiment has two phases. In the first phase, A may query Otoken,
Onext and Ocorrupt-h; it ends at an epoch ẽ when A outputs two challenge inputs
x̃0 and x̃1. The challenger picks one at random (denoted by x̃d), tokenizes it,
obtains the challenge ỹd,ẽ and starts the second phase by invoking A with ỹd,ẽ.
The adversary may then further query Otoken, Onext, and Ocorrupt-h and eventually
outputs its guess d′ for which data value was tokenized. Note that only the first
host corruption mattersfor our security notion, since we are assuming that once

68 C. Cachin et al.

corrupted, the host is always corrupted. For simplicity, we therefore assume that
A calls Ocorrupt-h once in every epoch after e∗

h.
The adversary wins the experiment if it correctly guesses d while respecting

two conditions that differ depending on whether the adversary corrupted the
host (roughly) before or after the challenge epoch:

(a) If e∗
h ≤ ẽ + 1, then A first corrupts the host before, during, or immediately

after the challenge epoch and may learn the update tweaks to epoch e∗
h and

later ones. In this case, it must not query the tokenization oracle on the
challenge inputs in epoch e∗

h − 1 or later.
In particular, if this restriction was not satisfied, when e∗

h ≤ ẽ, the adversary
could tokenize data of its choice, including x̃0 and x̃1, during any epoch
from e∗

h − 1 to ẽ, subsequently update the tokenized value to epoch ẽ, and
compare it to the challenge ỹd,ẽ. This would allow A to trivially win the
security experiment.
For the case e∗

h = ẽ + 1, recall that according to the experiment, the update
tweak Δe remains accessible until epoch e+1 starts. Therefore, A learns the
update tweak from ẽ to ẽ + 1 and may update ỹd,ẽ into epoch ẽ + 1. Hence,
from this time on it must not query Otoken with the challenge inputs either.

(b) If e∗
h > ẽ + 1 ∨ e∗

h = ⊥, i.e., the host was first corrupted after epoch ẽ + 1 or
not at all, then the only restriction is that A must not query the tokenization
oracle on the challenge inputs during epoch ẽ. This is an obvious restriction
to exclude trivial wins, as tokenization is deterministic.
This condition is less restrictive than case (a), but it suffices since the adver-
sary cannot update tokenized values from earlier epochs to ẽ, nor from ẽ to
a later epoch. The reason is that A only gets the update tweaks from epoch
ẽ + 2 onwards.

3.4 IND-COHH: Corrupted Owner and Honest Host

The IND-COHH notion models a compromise of the owner in a certain epoch,
such that the adversary learns the tokenization key and may generate tokeniza-
tion keys and update tweaks of all subsequent epochs by itself. Given that the
tokenization key allows to derive the update tweak of the host, this implicitly
models some form of host corruption as well. The property ensures that data
tokenized before the corruption remains hidden, that is, the adversary does not
learn any information about the original data, nor can it link such data with
data tokenized in other epochs.

Definition 4 (IND-COHH). An updatable tokenization scheme UTO is said
to be IND-COHH secure if for all polynomial-time adversaries A it holds that
|Pr[ExpIND-COHH

A,UTO (λ) = 1] − 1/2| ≤ ε(λ) for some negligible function ε.

Updatable Tokenization 69

Experiment ExpIND-COHH
A,UTO (λ):

k0
r← UTO.setup(λ)

e ← 0; e∗
o ← ⊥ // these variables are updated by the oracles

(x̃0, x̃1, state) r← AOtoken,Onext(λ)
ẽ ← e; d

r← {0, 1}
ỹd,ẽ ← UTO.token(kẽ, x̃d)

d′ r← AOtoken,Onext,Ocorrupt-o(ỹd,ẽ, state)
return 1 if d′ = d and all following conditions hold

a) e∗
o > ẽ ∨ e∗

o = ⊥
b) A never queried Otoken(x̃0) or Otoken(x̃1) in epoch ẽ

During the first phase of the IND-COHH experiment the adversary may query
Otoken and Onext, but it may not corrupt the owner. At epoch ẽ, the adversary pro-
duces two challenge inputs x̃0 and x̃1. Again, the challenger selects one at random
and tokenizes it, resulting in the challenge ỹd,ẽ. Subsequently, A may further query
Otoken and Onext, and now may also invoke Ocorrupt-o. Once the owner is corrupted
(during epoch e∗

o), A knows all key material of the owner and may generate tok-
enization keys and update tweaks of all subsequent epochs by itself. Thus, from
this time on, we remove access to the Otoken or Onext oracles for simplicity.

The adversary ends the experiment by guessing which input challenge was
tokenized. It wins when the guess is correct and the following conditions are met:

(a) A must have corrupted the owner only after the challenge epoch (e∗
o > ẽ) or

not at all (e∗
o = ⊥). This is necessary since corruption during epoch ẽ would

leak the tokenization key kẽ to the adversary. (Note that corruption before
ẽ is ruled out syntactically.)

(b) A must neither query the tokenization oracle with any challenge input (x̃0

or x̃1) during the challenge epoch ẽ. This condition eliminates that A can
trivially reveal the challenge input since the tokenization operation is deter-
ministic.

On the (Im)possibility of Additional Host Corruption. As can be noted, the
IND-COHH experiment does not consider the corruption of the host at all. The
reason is that allowing host corruption in addition to owner corruption would
either result in a non-achievable notion, or it would give the adversary no extra
advantage. To see this, we first argue why additional host corruption capabilities
at any epoch e∗

h ≤ ẽ + 1 is not allowed. Recall that such a corruption is possible
in the IND-HOCH experiment if the adversary does not make any tokenization
queries on the challenge values x̃0 or x̃1 at any epoch e ≥ e∗

h−1. This restriction is
necessary in the IND-HOCH experiment to prevent the adversary from trivially
linking the tokenized values of x̃0 or x̃1 to the challenge ỹd,ẽ. However, when the
owner can also be corrupted, at epoch e∗

o > ẽ, that restriction is useless. Note
that upon calling Ocorrupt-o the adversary learns the owner’s tokenization key and
can simply tokenize x̃0 and x̃1 at epoch e∗

o. The results can be compared with
an updated version of ỹd,ẽ to trivially win the security experiment.

70 C. Cachin et al.

Now we discuss the additional corruption of the host at any epoch e∗
h > ẽ+1.

We note that corruption of the owner at epoch e∗
o > ẽ allows the adversary to

obtain the tokenization key of epoch e∗
o and compute the tokenization keys and

update tweaks of all epochs e > e∗
o +1. Thus, the adversary then trivially knows

all tokenization keys from e∗
o+1 onward and modeling corruption of the host after

the owner is not necessary. The only case left is to consider host corruption before
owner corruption, at an epoch e∗

h with ẽ+1 < e∗
h < e∗

o. However, corrupting the
host first would not have any impact on the winning condition. Hence, without
loss of generality, we assume that the adversary always corrupts the owner first,
which allows us to fully omit the Ocorrupt-h oracle in our IND-COHH experiment.

We stress that the impossibility of host corruption at any epoch e∗
h ≤ ẽ +

1 only holds if we consider permanent corruptions, i.e., the adversary, upon
invocation of Ocorrupt-h is assumed to fully control the host and to learn all future
update tweaks. In the following security notion, IND-COTH, we bypass this
impossibility by modeling transient corruption of the host.

3.5 IND-COTH: Corrupted Owner and Transiently Corrupted Host

Extending both of the above security properties, the IND-COTH notion consid-
ers corruption of the owner and repeated but transient corruptions of the host.
It addresses situations where some of the update tweaks received by the host
leak to A and the keys of the owner are also exposed at a later stage.

Definition 5 (IND-COTH). An updatable tokenization scheme UTO is said
to be IND-COTH secure if for all polynomial-time adversaries A it holds that
|Pr[ExpIND-COTH

A,UTO (λ) = 1] − 1/2| ≤ ε(λ) for some negligible function ε.

Experiment ExpIND-COTH
A,UTO (λ):

k0
r← UTO.setup(λ)

e ← 0; e∗
o ← ⊥ // these variables are updated by the oracles

elast ← ⊥; efirst ← ⊥
(x̃0, x̃1, state) r← AOtoken,Onext,Ocorrupt-h(λ)
ẽ ← e; d

r← {0, 1}
ỹd,ẽ ← UTO.token(kẽ, x̃d)

d′ r← AOtoken,Onext,Ocorrupt-h,Ocorrupt-o(ỹd,ẽ, state)
elast ← last epoch before ẽ in which A queried Otoken(x̃0) or Otoken(x̃1)
efirst ← first epoch after ẽ in which A queried Otoken(x̃0) or Otoken(x̃1)
return 1 if d′ = d and all following conditions hold
a) e∗

o > ẽ ∨ e∗
o = ⊥

b) A never queried Otoken(x̃0) or Otoken(x̃1) in epoch ẽ

c) either e∗
h = ⊥ or all following conditions hold

i)
(

elast = ⊥) ∨ ∃ e′ with elast < e′ ≤ ẽ where A has not queried Ocorrupt-h

ii)
(

efirst = ⊥) ∨ ∃ e′′ with ẽ < e′′ ≤ efirst where A has not queried Ocorrupt-h

iii)
(

e∗
o = ⊥) ∨ ∃ e′′′ with ẽ < e′′′ ≤ e∗

o where A has not queried Ocorrupt-h

Updatable Tokenization 71

Observe that the owner can only be corrupted after the challenge epoch, just
as in the IND-COHH experiment. As before, A then obtains all key material and,
for simplicity, we remove access to the Otoken or Onext oracles from this time on.
The transient nature of the host corruption allows to grant A additional access
to Ocorrupt-h before the challenge, which would be impossible in the IND-COHH
experiment if permanent host corruption was considered.

Compared to the IND-HOCH definition, here A may corrupt the host and
ask for a challenge input to be tokenized after the corruption. Multiple host
corruptions may occur before, during, and after the challenge epoch. But in
order to win the experiment, A must leave out at least one epoch and miss an
update tweak. Otherwise it could trivially guess the challenge by updating the
challenge output or a challenge input tokenized in another epoch to the same
stage. In the experiment this is captured through the conditions under (c). In
particular:

(c-i) If A calls Otoken with one of the challenge inputs x̃0 or x̃1 before triggering
the challenge, it must not corrupt the host and miss the update tweak in at
least one epoch from this point up to the challenge epoch. Thus, the latest
epoch before the challenge epoch where A queries Otoken(x̃0) or Otoken(x̃1),
denoted elast, must be smaller than the last epoch before ẽ where the host is
not corrupted.

(c-ii) Likewise if A queries Otoken with a challenge input x̃0 or x̃1 after the
challenge epoch, then it must not corrupt the host and miss the update tweak
in at least one epoch after ẽ. Otherwise, it could update the challenge ỹd,ẽ

to the epoch where it calls Otoken. The first epoch after the challenge epoch
where A queries Otoken(x̃0) or Otoken(x̃1), denoted efirst, must be larger than
or equal to the first epoch after ẽ where the host is not corrupted.

(c-iii) If A calls Ocorrupt-o, it must not obtain at least one update tweak after
the challenge epoch and before, or during, the epoch of owner corruption e∗

o.
Otherwise, A could tokenize x̃0 and x̃1 with the tokenization key of epoch e∗

o,
exploit the exposed update tweaks to evolve the challenge value ỹd,ẽ to that
epoch, and compare the results.

PRF-style vs. IND-CPA-style Definitions. We have opted for definitions based
on indistinguishability in our model. Given that the goal of tokenization is to
output random looking tokens, a security notion in the spirit of pseudorandom-
ness might seem like a more natural choice at first glance. However, a definition
in the PRF-style does not cope well with adaptive attacks: in our security exper-
iments the adversary is allowed to adaptively corrupt the data host and corrupt
the data owner, upon which it gets the update tweaks or the secret tokenization
key. Modeling this in a PRF vs. random function experiment would require the
random function to contain a key and to be compatible with an update function
that can be run by the adversary. Extending the random function with these
“features” would lead to a PRF vs. PRF definition. The IND-CPA inspired app-
roach used in this paper allows to cover the adaptive attacks and consistency
features in a more natural way.

72 C. Cachin et al.

Relation Among the Security Notions. Our notion of IND-COTH security is
the strongest of the three indistinguishability notions above, as it implies both
IND-COHH and IND-HOCH security, but not vice-versa. That is, IND-COTH
security is not implied by IND-COHH and IND-HOCH security. A distinguishing
example is our UTOSE scheme. As we will see in Sect. 4.1, UTOSE is both IND-
COHH and IND-HOCH secure, but not IND-COTH secure.

The proof of Theorem1 below can be found in the full version of this paper.

Theorem 1 (IND-COTH ⇒ IND-COHH + IND-HOCH). If an updata-
ble tokenization scheme UTO is IND-COTH secure, then it is also IND-COHH
secure and IND-HOCH secure.

3.6 One-Wayness

The one-wayness notion models the fact that a tokenization scheme should not be
reversible even if an adversary is given the tokenization keys. In other words, an
adversary who sees tokenized values and gets hold of the tokenization keys cannot
obtain the original data. Because the keys allow one to reproduce the tokeniza-
tion operation and to test whether the output matches a tokenized value, the
resulting security level depends on the size of the input space and the adversary’s
uncertainty about the input. Thus, in practice, the level of security depends on
the prior knowledge of the adversary about X .

Our definition is similar to the standard notion of one-wayness, with the
difference that we ask the adversary to output the exact preimage of a tokenized
challenge value, as our tokenization algorithm is an injective function.

Definition 6 (One-Wayness). An updatable tokenization scheme UTO is said
to be one-way if for all polynomial-time adversaries A it holds that

Pr[x = x̃ : x ← A(λ, k0, ỹ),

ỹ ← UTO.token(k0, x̃), x̃ r← X , k0
r← UTO.setup(λ)] ≤ 1/|X |.

4 UTO Constructions

In this section we present two efficient constructions of updatable tokeniza-
tion schemes. The first solution (UTOSE) is based on symmetric encryption and
achieves one-wayness, IND-HOCH and IND-COHH security; the second con-
struction (UTODL) relies on a discrete-log assumption, and additionally satisfies
IND-COTH security. Both constructions share the same core idea: First, the
input value is hashed, and then the hash is encrypted under a key that changes
every epoch.

Updatable Tokenization 73

4.1 An UTO Scheme Based on Symmetric Encryption

We build a first updatable tokenization scheme UTOSE, that is based on a sym-
metric deterministic encryption scheme SE = (SE.KeyGen,SE.Enc,SE.Dec) with
message space M and a keyed hash function H : K × X → M. In order to tok-
enize an input x ∈ X , our scheme simply encrypts the hashed value of x. At each
epoch e, a distinct random symmetric key se is used for encryption, while a fixed
random hash key hk is used to hash x. Both keys are chosen by the data owner.
To update the tokens, the host receives the encryption keys of the previous and
current epoch and re-encrypts all hashed values to update them into the current
epoch. More precisely, our UTOSE scheme is defined as follows:

UTO.setup(λ): Generate keys s0
r← SE.KeyGen(λ), hk

r← H.KeyGen(λ) and out-
put k0 ← (s0, hk).

UTO.next(ke): Parse ke as (se, hk). Choose a new key se+1
r← SE.KeyGen(λ)

and set ke+1 ← (se+1, hk) and Δe+1 ← (se, se+1). Output (ke+1,Δe+1).
UTO.token(ke, x): Parse ke as (se, hk) and output ye ← SE.Enc(se,H(hk, x)).
UTO.upd(Δe+1, ye): Parse Δe+1 as (se, se+1) and output the updated value

ye+1 ← SE.Enc(se+1,SE.Dec(se, ye)).

This construction achieves IND-HOCH, IND-COHH, and one-wayness but
not the stronger IND-COTH notion. The issue is that a transiently corrupted
host can recover the static hash during the update procedure and thus can link
tokenized values from different epochs, even without knowing all the update
tweaks between them.

Theorem 2. The UTOSE as defined above satisfies the IND-HOCH, IND-
COHH and one-wayness properties based on the following assumptions on the
underlying encryption scheme SE and hash function H:

UTOSE SE H

IND-COHH IND-CPA Weak collision resistance

IND-HOCH IND-CPA Pseudorandomness

One-wayness – One-wayness

The proof of Theorem2 can be found in the full version of this paper.

4.2 An UTO Scheme Based on Discrete Logarithms

Our second construction UTODL overcomes the limitation of the first scheme by
performing the update in a proxy re-encryption manner using the re-encryption
idea first proposed by Blaze et al. [2]. That is, the hashed value is raised to
an exponent that the owner randomly chooses at every new epoch. To update
tokens, the host is not given the keys itself but only the quotient of the current

74 C. Cachin et al.

and previous exponent. While this allows the host to consistently update his
data, it does not reveal the inner hash anymore and guarantees unlinkability
across epochs, thus satisfying also our strongest notion of IND-COTH security.

More precisely, the scheme makes use of a cyclic group (G, g, p) and a hash
function H : X → G. We assume the hash function and the group description
to be publicly available. The algorithms of our UTODL scheme are defined as
follows:

UTO.setup(λ): Choose k0
r← Zp and output k0.

UTO.next(ke): Choose ke+1
r← Zp, set Δe+1 ← ke+1/ke, and output (ke+1,

Δe+1).
UTO.token(ke, x): Compute ye ← H(x)ke , and output ye.
UTO.upd(Δe+1, ye): Compute ye+1 ← y

Δe+1
e , and output ye+1.

Our UTODL scheme is one-way and satisfies our strongest notion of IND-
COTH security, from which IND-HOCH and IND-COHH security follows (see
Theorem 1). The proof of Theorem 3 below can be found in the full version of
this paper.

Theorem 3. The UTODL scheme as defined above is IND-COTH secure under
the DDH assumption in the random oracle model, and one-way if H is one-way.

Acknowledgements. We would like to thank our colleagues Michael Osborne, Tamas
Visegrady and Axel Tanner for helpful discussions on tokenization.

References

1. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

2. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

3. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 23

4. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. IACR Cryptology ePrint Archive 2015, 220 (2015).
http://eprint.iacr.org/2015/220

5. Diaz-Santiago, S., Rodŕıguez-Henŕıquez, L.M., Chakraborty, D.: A cryptographic
study of tokenization systems. In: Obaidat, M.S., Holzinger, A., Samarati, P. (eds.)
Proceedings of the 11th International Conference on Security and Cryptography
(SECRYPT 2014), Vienna, 28–30 August 2014, pp. 393–398. SciTePress (2014).
https://doi.org/10.5220/0005062803930398

6. European Commission, Article 29 Data Protection Working Party: Opin-
ion 05/2014 on anonymisation techniques (2014). http://ec.europa.eu/justice/
data-protection/article-29/documentation/opinion-recommendation/

https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
http://eprint.iacr.org/2015/220
https://doi.org/10.5220/0005062803930398
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/

Updatable Tokenization 75

7. Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., Ristenpart, T.: The
Pythia PRF service. In: Jung, J., Holz, T. (eds.) 24th USENIX Security
Symposium, USENIX Security 2015, Washington, D.C., 12–14 August 2015,
pp. 547–562. USENIX Association (2015). https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/everspaugh

8. Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive pub-
lic key and signature systems. In: Proceedings of the 4th ACM Conference on
Computer and Communications Security (CCS 1997), Zurich, 1–4 April 1997, pp.
100–110 (1997). https://doi.org/10.1145/266420.266442

9. McCallister, E., Grance, T., Scarfone, K.: Guide to protecting the confidential-
ity of personally identifiable information (PII). NIST special publication 800-122,
National Institute of Standards and Technology (NIST) (2010). http://csrc.nist.
gov/publications/PubsSPs.html

10. PCI Security Standards Council: PCI Data Security Standard (PCI DSS) (2015).
https://www.pcisecuritystandards.org/document library?document=pci dss

11. Securosis: Tokenization guidance: How to reduce PCI compliance costs. https://
securosis.com/assets/library/reports/TokenGuidance-Securosis-Final.pdf

12. Smart Card Alliance: Technologies for payment fraud prevention: EMV,
encryption and tokenization. http://www.smartcardalliance.org/downloads/
EMV-Tokenization-Encryption-WP-FINAL.pdf

13. United States Department of Health and Human Services: Summary of the HIPAA
Privacy Rule. http://www.hhs.gov/sites/default/files/privacysummary.pdf

14. Voltage Security: Voltage secure stateless tokenization. https://www.voltage.com/
wp-content/uploads/Voltage White Paper SecureData SST Data Protection
and PCI Scope Reduction for Todays Businesses.pdf

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://doi.org/10.1145/266420.266442
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html
https://www.pcisecuritystandards.org/document_library?document=pci_dss
https://securosis.com/assets/library/reports/TokenGuidance-Securosis-Final.pdf
https://securosis.com/assets/library/reports/TokenGuidance-Securosis-Final.pdf
http://www.smartcardalliance.org/downloads/EMV-Tokenization-Encryption-WP-FINAL.pdf
http://www.smartcardalliance.org/downloads/EMV-Tokenization-Encryption-WP-FINAL.pdf
http://www.hhs.gov/sites/default/files/privacysummary.pdf
https://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf
https://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf
https://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf

Privacy and Data Processing

SecGDB: Graph Encryption for Exact Shortest
Distance Queries with Efficient Updates

Qian Wang1,2(B), Kui Ren3, Minxin Du1, Qi Li4, and Aziz Mohaisen3

1 School of CS, Wuhan University, Wuhan, China
{qianwang,duminxin}@whu.edu.cn

2 Collaborative Innovation Center of Geospatial Technology, Wuhan University,
Wuhan, China

3 Department of CSE, University at Buffalo, SUNY, Buffalo, USA
{kuiren,mohaisen}@buffalo.edu

4 Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
qi.li@sz.tsinghua.edu.cn

Abstract. In the era of big data, graph databases have become increas-
ingly important for NoSQL technologies, and many systems can be mod-
eled as graphs for semantic queries. Meanwhile, with the advent of cloud
computing, data owners are highly motivated to outsource and store their
massive potentially-sensitive graph data on remote untrusted servers in
an encrypted form, expecting to retain the ability to query over the
encrypted graphs.

To allow effective and private queries over encrypted data, the most
well-studied class of structured encryption schemes are searchable sym-
metric encryption (SSE) designs, which encrypt search structures (e.g.,
inverted indexes) for retrieving data files. In this paper, we tackle the
challenge of designing a Secure Graph DataBase encryption scheme
(SecGDB) to encrypt graph structures and enforce private graph queries
over the encrypted graph database. Specifically, our construction strate-
gically makes use of efficient additively homomorphic encryption and gar-
bled circuits to support the shortest distance queries with optimal time
and storage complexities. To achieve better amortized time complex-
ity over multiple queries, we further propose an auxiliary data structure
called query history and store it on the remote server to act as a “caching”
resource. We prove that our construction is adaptively semantically-
secure in the random oracle model and finally implement and evaluate it
on various representative real-world datasets, showing that our approach
is practically efficient in terms of both storage and computation.

Keywords: Graph encryption · Shortest distance query
Homomorphic encryption · Garbled circuit

1 Introduction

Graphs are used in a wide range of application domains, including social networks,
online knowledge discovery, computer networks, and the world-wide web, among
c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 79–97, 2017.
https://doi.org/10.1007/978-3-319-70972-7_5

80 Q. Wang et al.

others. For example, online social networks (OSN) such as Facebook and LinkedIn
employ large social graphs with millions or even billions of vertices and edges in
their operation. As a result, various systems have been recently proposed to handle
massive graphs efficiently, where examples include GraphLab [22], Horton [29] and
TurboGraph [9]. These database applications allow for querying, managing and
analyzing large-scale graphs in an intuitive and expressive way.

With the increased popularity of cloud computing, data users, including both
individuals and enterprises, are highly motivated to outsource their (potentially
huge amount of sensitive) data that may be abstracted and modeled as large
graphs to remote cloud servers to reduce the local storage and management
costs [6,15,19–21,30,31]. However, database outsourcing also raises data confi-
dentiality and privacy concerns due to data owners’ loss of physical data control.
Privacy-sensitive data therefore should be encrypted locally before outsourcing
it to the untrusted cloud. Data encryption, however, hinders data utilization and
computation, making it difficult to efficiently retrieve or query data of interest
as opposed to the case with plaintext.

To address this challenge, the notion of structured encryption was first intro-
duced by Chase and Kamara [3]. Roughly speaking, a structured encryption
scheme encrypts structured data in such a way that it can be privately queried
through the use of a specific token generated with knowledge of the secret key.
Specifically, they presented approaches for encrypting (structured) graph data
while allowing for efficient neighbor queries, adjacency queries and focused sub-
graph queries on labeled graphs.

Despite all of these important types of queries, finding the shortest distance
between two vertices was not supported. The shortest distance queries are not
only building blocks for various more complex algorithms, but also have appli-
cations of their own. Such applications include finding the shortest path for
one person to meet another in an encrypted social network graph, seeking the
shortest path with the minimum delay in an encrypted networking or telecom-
munications abstracted graph, or performing a privacy-preserving GPS guidance
in which one party holds the encrypted map while the other knows his origin
and destination.

Recently, Meng et al. [24] addressed the graph encryption problem by pre-
computing a data structure called the distance oracle from an original graph. They
leveraged somewhat homomorphic encryption and standard private key encryp-
tion for their construction, thus answering shortest distance queries approximately
over the encrypted distance oracle. Although their experimental results show that
their schemes are practically efficient, the accuracy is sacrificed for using the dis-
tance oracle (i.e., only the approximate distance or even the negative result is
returned). On the one hand, the distance oracle based methods only provide an
estimate on the length of the shortest path. On the other hand, the exact path
itself could also be necessary and important in many of the aforementioned appli-
cation scenarios. Furthermore, both of the previous solutions only deal with static
graphs [3,24]: the outsourced encrypted graph structure cannot explicitly support

SecGDB 81

efficient graph updates, since it requires to either re-encrypt the entire graph, or
make use of generic and expensive dynamization techniques similar to [4].

To tackle the practical limitations of the state-of-the-art, we propose a new
Secure Graph DataBase encryption scheme (SecGDB) that supports both exact
shortest distance queries and efficient dynamic operations. Specifically, our con-
struction addresses four major challenges. First, to seek the best tradeoff between
accuracy and efficiency, we process the graph itself instantiated by adjacency
lists instead of encrypting either the distance oracle pre-computed from the
original graph or the adjacency matrix instantiation. Second, to compute the
exact shortest path over the encrypted graph, we propose a hybrid approach
that combines additively homomorphic encryption and garbled circuits to imple-
ment Dijkstra’s algorithm [5] with the priority queue. Third, to enable dynamic
updates of encrypted graphs, we carefully design an extra encrypted data struc-
ture to store the relevant information (e.g., neighbor information of nodes in
adjacency lists) which will be used to perform modifications homomorphically
over the graph ciphertexts. Fourth, to further optimize the performance of the
query phase, we introduce an auxiliary data structure called the query history by
leveraging the previous queried results stored on the remote server as a “caching”
resource; namely, the results for subsequent queries can be returned immediately
without incurring further cost.

Our main contributions are summarized as follows.

– Functionality and efficiency. We propose SecGDB to support exact shortest
distance queries with optimal time and storage complexity. We further obtain
an improved amortized running time over multiple queries with the auxiliary
data structure called “query history”.

– Dynamics. We design an additional encrypted data structure to facilitate effi-
cient graph updates. Compared with the state-of-the-art [3,24], which con-
sider only static data, SecGDB performs dynamic (i.e., addition or removal
of specified edges over the encrypted graph) operations with O(1) time com-
plexity.

– Security, implementation and evaluation. We formalize our security model
using a simulation-based definition and prove the adaptive semantic secu-
rity of SecGDB under the random oracle model with reasonable leakage. We
implement and evaluate the performance of SecGDB on various representative
real-world datasets to demonstrate its efficiency and practicality.

2 Preliminaries and Notations

We begin by outlining some notations. Given a graph G = (V,E) which consists
of a set of vertices V and edges E, we denote its total number of vertices as
n = |V | and its number of edges as m = |E|. G is either undirected or directed.
If G is undirected, then each edge in E is an unordered pair of vertices, and we
use len(u, v) to denote the length of edge (u, v), otherwise, each edge in E is an
ordered pair of vertices. In an undirected graph, deg(v) is used to denote the
number of vertices adjacent to the vertex v (i.e., degree). For a directed graph,

82 Q. Wang et al.

we use deg−(v) and deg+(v) to denote the number of edges directed to vertex v
(indegree) and out of vertex v (outdegree), respectively. A shortest distance query
q = (s, t) asks for the length (along with the route) of the shortest path between
s and t, which we denote by dist(s, t) or distq. [n] denotes the set of positive

integers less than or equal to n, i.e., [n] = {1, 2, . . . , n}. We write x
$←− X to

represent an element x being uniformly sampled at random from a set X. The
output x of a probabilistic algorithm A is denoted by x ← A and that of a
deterministic algorithm B by x := B. Given a sequence of elements v, we refer
to the ith element as v[i] or vi and to the total number of elements in v by |v|. If
A is a set then |A| refers to its cardinality, and if s is a string then |s| refers to its
bit length. We denote the concatenation of n strings s1, . . . , sn by 〈s1, . . . , sn〉,
and also denote the high-order |s2|-bit of the string s1 by s

|s2|
1 .

We also use various basic data structures including linked lists, arrays and
dictionaries. Specifically, a dictionary T (also known as a map or associative
array) is a data structure that stores key-value pairs (k, v). If the pair (k, v) is
in T, then T[k] is the value v associated with k. An insertion operation of a
new key-value pair (k, v) to the dictionary T is denoted by T[k] := v. Similarly,
a lookup operation takes a dictionary T and a specified key k as input, then
returns the associated value v denoted by v := T[k].

2.1 Cryptographic Tools

Homomorphic encryption. Homomorphic encryption allows certain com-
putations to be carried out on ciphertexts to generate an encrypted result
which matches the result of operations performed on the plaintext after being
decrypted. In this work, we only require the evaluation to efficiently support
any number of additions, and there are many cryptosystems satisfying with this
property. In particular, we use the Paillier cryptosystem [27] in our construction.

In the Paillier cryptosystem, the public (encryption) key is pkp = (n =
pq, g), where g ∈ Z

∗
n2 , and p and q are two large prime numbers (of equivalent

length) chosen randomly and independently. The private (decryption) key is
skp = (ϕ(n), ϕ(n)−1 mod n). Given a message a, we write the encryption of a
as [[a]]pk, or simply [[a]], where pk is the public key. The encryption of a message
x ∈ Zn is [[x]] = gx · rn mod n2, for some random r ∈ Z

∗
n. The decryption of

the ciphertext is x = L([[x]]ϕ(n) mod n2) · ϕ−1(n) mod n, where L(u) = u−1
n .

The homomorphic property of the Paillier cryptosystem is given by [[x1]] ·[[x2]] =
(gx1 · rn

1) · (gx2 · rn
2) = gx1+x2(r1r2)n mod n2 =[[x1 + x2]].

Pseudo-random functions (PRFs) and permutations (PRPs). Let F :
{0, 1}λ × {0, 1}∗ → {0, 1}∗ be a PRF, which is a polynomial-time computable
function that cannot be distinguished from random functions by any probabilistic
polynomial-time adversary. A PRF is said to be a PRP when it is bijective.
Readers can refer to [16] for the formal definition and security proof.

Oblivious transfer. Parallel 1-out-of-2 Oblivious Transfer (OT) of m l-bit
strings [13,25], denoted as OTm

l , is a two-party protocol run between a chooser

SecGDB 83

C and a sender S. For i = 1, . . . , m, the sender S inputs a pair of l-bit strings
s0i , s

1
i ∈ {0, 1}l and the chooser C inputs m choice bits bi ∈ {0, 1}. At the end

of the protocol, C learns the chosen strings sbi
i but nothing about the unchosen

strings s1−bi
i , whereas S learns nothing about the choice bi.

Garbled circuits. Garbled circuits were first proposed by Yao [32] for secure
two-party computation and later proven practical by Malkhi et al. [23]. At a high
level, garbled circuits allow two parties holding inputs x and y, respectively, to
jointly evaluate an arbitrary function f(x, y) represented as a boolean circuit
without leaking any information about their inputs beyond what is implied by
the function output.

Several optimization techniques have been proposed in the literature to con-
struct the standard garbled circuits. Kolensikov et al. [18] introduced an efficient
method for creating garbled circuits which allows “free” evaluation of XOR gates.
Pinkas et al. [28] proposed an approach to reduce the size of garbled gates from
four to three entries, thus saving 25% of the communication overhead.

2.2 Fibonacci Heap

Fibonacci heap [7] is a data structure for implementing priority queues, which
consists of a collection of trees satisfying the minimum-heap property; that is, the
key of a child is always greater than or equal to the key of the parent. This implies
that the minimum key is always at the root of one of the trees. Generally, a heap
data structure supports the following six operations: Make-Heap(), Insert(H, x),
Minimum(H), Extract-MIN(H), Decrease-Key(H, x) and Delete(H, x).

Compared with many other priority queue data structures including the
Binary heap and Binomial heap, the Fibonacci heap achieves a better amor-
tized running time [7].

3 System Model and Definitions

In this work, we consider the problem of designing a structured encryption
scheme that supports the shortest distance queries and dynamic operations over
an encrypted graph stored on remote servers efficiently.

At a high level, as shown in Fig. 1, our construction contains three entities,
namely the client C, the server S and the proxy P. In the initialization stage, the
client C processes the original graph G to obtain its encrypted form ΩG, outsources
ΩG to the server S and distributes partial secret key sk to the proxy P. The privacy
holds as long as the server S and the proxy P do not collude, and this architec-
ture of two non-colluding entities has been commonly used in the related literature
[1,6,26]. Subsequently, to enable the shortest distance query over the encrypted
graph ΩG, the client generates a query token τq based on the query q and submits
it to the cloud server S. Finally, the encrypted shortest distance along with the
path are returned to the client C. In addition, the graph storage service in consid-
eration is dynamic, such that the client C may add or remove edges to or from the

84 Q. Wang et al.

Fig. 1. System model Fig. 2. The secure comparison circuit.

encrypted graph ΩG as well as modify the length of the specified edge. To do so,
the client generates an update token τu corresponding to the dynamic operations.
Given τu, the server S can securely update the encrypted graph ΩG.

Formally, the core functionalities of our system are listed as below.

Definition 1. An encrypted graph database system supporting the shortest dis-
tance query and dynamic updates consists of the following five (possibly proba-
bilistic) polynomial-time algorithms/protocols:

sk ← Gen(1λ): is a probabilistic key generation algorithm run by the client. It
takes as input a security parameter λ and outputs the secret key sk.

ΩG ← Enc(sk,G): is a probabilistic algorithm run by the client. It takes as input
a secret key sk and a graph G, and outputs an encrypted graph ΩG.

distq ← Dec(sk, cq): is a deterministic algorithm run by the client. It takes as
input a secret key sk and an encrypted result cq, and outputs distq including the
shortest distance as well as its corresponding path.

(cq;σ′) ← DistanceQuery(sk, q;ΩG, σ): is a (possibly interactive and probabilis-
tic) protocol run between the client and the server1. The client takes as input a
secret key sk and a shortest distance query q, while the server takes as input the
encrypted graph ΩG and the query history σ (which is empty in the beginning).
During the protocol execution, a query token τq is generated by the client based
on the query q and then sent to the server. Upon completion of the protocol, the
client obtains an encrypted result cq while the server gets a (possibly new) query
history σ′.

(⊥;Ω′
G, σ) ← UpdateQuery(sk, u;ΩG): is a (possibly interactive and probabilistic)

protocol run between the client and the server. The client takes as input a secret key
sk and an update object u (e.g., the edges to be updated), while the server takes as

1 A protocol P run between the client and the server is denoted by (u; v) ← P (x; y),
where x and y are the client’s and the server’s inputs, respectively, and u and v are
the client’s and the server’s outputs, respectively.

SecGDB 85

input the encrypted graph ΩG. During the protocol execution, an update token τu is
generated by the client based on the object u and then sent to the server. Upon com-
pletion of the protocol, the client gets nothing while the server obtains an updated
encrypted graph Ω′

G and a new empty query history σ.

3.1 Security Definitions

As in previous SSE systems [2,4,8,14,15] we also relax the security requirements
appropriately by allowing some reasonable information leakage to the adversary
in order to obtain higher efficiency. To capture this relaxation, we follow [3,4,8,15]
to parameterize the information by using a tuple of well-defined leakage functions
(see Sect. 5). Besides, we assume that the server and the proxy are both semi-
honest entities in our setting.

In the following definition, we adapt the notion of adaptive semantic security
from [3,4,15] to our encrypted graph database system.

Definition 2. (Adaptive semantic security) Let (Gen,Enc,Dec,DistanceQuery,
UpdateQuery) be a dynamic encrypted graph database system and consider the
following experiments with a stateful adversary A, a stateful simulator S and
three stateful leakage functions L1, L2 and L3:

RealA(λ) : The challenger runs Gen(1λ) to generate the key sk. A outputs G
and receives ΩG ← Enc(sk,G) from the challenger. A then makes a polynomial
number of adaptive shortest distance queries q or update queries u. For each q,
the challenger acts as a client and runs DistanceQuery with A acting as a server.
For each update query u, the challenger acts as a client and runs UpdateQuery
with A acting as a server. Finally, A returns a bit b as the output of the exper-
iment.

IdealA,S(λ) : A outputs G. Given L1(G), S generates and sends ΩG to A. A
makes a polynomial number of adaptive shortest distance queries q or update
queries u. For each q, S is given L2(G, q), and simulates a client who runs
DistanceQuery with A acting as a server. For each update query u, S is given
L3(G, u), and simulates a client who runs UpdateQuery with A acting as a server.
Finally, A returns a bit b as the output of the experiment.

We say such a queryable encrypted graphs database system is adaptively
(L1,L2,L3)-semantically secure if for all probabilistic polynomial-time (PPT)
adversaries A, there exists a probabilistic polynomial-time simulator S such that

|Pr[RealA(λ) = 1] − Pr[IdealA,S(λ) = 1]| ≤ negl(λ),

where negl(·) is a negligible function.

86 Q. Wang et al.

4 Our Construction: SecGDB

In this section, we present our encrypted graph database system–SecGDB, which
efficiently supports the shortest distance query and the update query (i.e., to
add, remove and modify a specified edge).

4.1 Overview

We assume that an original graph is instantiated by adjacency lists, and every
node in each adjacency list contains a pair of the neighboring vertex and the
length of the corresponding edge (i.e., vertex and length pair).

Our construction is inspired by [15], and the key idea is as follows. During
the initialization phase, we place every node of each adjacency list at a random
location in the array while updating the pointers so that the “logical” integrity
of the lists are preserved. We then use the Paillier cryptosystem to encrypt the
length of the edge in each node, and use a “standard” private-key encryption
scheme [16] to blind the entire node. In the shortest distance query phase, if
the query has been submitted before or was a subpath of the query history, the
result can be immediately returned to the client; otherwise, we implement the
Dijkstra’s algorithm with the aid of Fibonacci heap in a secure manner, and
then query history is updated based on the results. To support efficient dynamic
operations on the encrypted graph, we generate the relevant update token, which
allows the server to add or remove the specified entry to and from the array. After
finishing the updates, the query history is rebuilt for future use.

4.2 Initialization Phase

Intuitively, the initialization phase consists of Gen and Enc as presented in
Definition 1. The scheme uses the Paillier cryptosystem, and three pseudo-
random functions P , F and G, where P is defined as {0, 1}λ ×{0, 1}∗ → {0, 1}λ,
F is defined as {0, 1}λ ×{0, 1}∗ → {0, 1}∗ and G is defined as {0, 1}λ ×{0, 1}∗ →
{0, 1}λ. We also use a random oracle H which is defined as {0, 1}∗ → {0, 1}∗.

Gen(1λ): Given a security parameter λ, generate the following keys uniformly at

random from their respective domains: three PRF keys k1, k2, k3
$←− {0, 1}λ for

Pk1(·), Fk2(·) and Gk3(·), respectively, and (skp, pkp) for the Paillier cryptosys-
tem. The output is sk = (k1, k2, k3, skp, pkp), where skp is sent to the proxy
through a secure channel.

As shown in Algorithm 1, the setup procedures are done in the first five
steps. From line 6 to 29, the length of the edge is encrypted under the Paillier
cryptosystem and the entire node Ni is encrypted by XORing an output of the
random oracle H. Meanwhile, the neighboring information of each node Ni (i.e.,
the nodes following and previous to Ni in the original adjacency lists, and the
corresponding positions in AG) constitutes the dual node Di, and the encrypted
dual node will be stored in the dictionary TD. Generally speaking, TD stores
the pointer to each edge, and it is used to support efficient delete updates on the

SecGDB 87

Algorithm 1. Graph Enc algorithm

Input: G = (V, E), sk
Output: ΩG

1: Set n = |V |, m = |E|;
2: Initialize an array AG of size m + z;
3: Initialize two dictionaries TG,TD of size n+1

and m;
4: Initialize a random permutation π over [m+

z];
5: Initialize a counter ctr = 1;
6: for each vertex u ∈ V do
7: Generate Ku := Gk3 (u);

8: for i = 1 to deg+(u) do
9: Encrypt the length of the edge (u, vi)

under the Paillier cryptosystem ci ←
[[len(u, vi)]]pkp

10: if i = 1 and i �= deg+(u) then
11: Set Ni := 〈Pk1 (vi), Fk2 (vi), ci, π(ctr

+1)〉;
12: Set Di := 〈0,0, π(ctr), π(ctr +

1), Pk1 (〈u, vi+1〉)〉;
13: else if i �= 1 and i = deg+(u) then
14: Set Ni := 〈Pk1 (vi), Fk2 (vi), ci, NULL〉;
15: Set Di := 〈Pk1 (〈u, vi−1〉), π(ctr −

1), π(ctr),0, 0〉;
16: else if i = 1 and i = deg+(u) then
17: Set Ni := 〈Pk1 (vi), Fk2 (vi), ci, NULL〉;
18: Set Di := 〈0, 0, π(ctr), 0,0〉;
19: else
20: Set Ni := 〈Pk1 (vi), Fk2 (vi), ci, π(ctr

+1)〉;
21: Set Di := 〈Pk1 (〈u, vi−1〉), π(ctr −

1), π(ctr),π(ctr + 1), Pk1 (〈u, vi+1〉)〉;
22: end if

23: Sample ri
$←− {0, 1}λ;

24: Store the encrypted Ni in the array
AG[π(ctr)] := 〈Ni ⊕ H(Ku, ri), ri〉;

25: Store the encrypted Di in the dictionary
TD[Pk1 (〈u, vi〉)] := Di ⊕ Fk2 (〈u, vi〉);

26: Increase ctr = ctr + 1;
27: end for
28: Store a pointer to the head

node of the adjacency list for u
in the dictionary TG[Pk1 (u)] :=
〈addr(N1), Pk1 (〈u, v1〉), Ku〉 ⊕ Fk2 (u);

29: end for
30: for i = 1 to z do
31: Set Fi := 〈0, π(ctr+1)〉 ;
32: if i = z then
33: Set Fi := 〈0, NULL〉;
34: end if
35: Store the unencrypted Fi in the array

AG[π(ctr)] := Fi;
36: Increase ctr = ctr + 1;
37: end for
38: Store a pointer to the head node of the

free list in the dictionary TG[free] :=
〈addr(F1), 0〉;

39: Output the encrypted graph ΩG =
(AG,TG,TD);

encrypted graph. After the aforementioned operations are done, the address of
each head node will be encrypted and stored in the dictionary TG, namely, TG

stores the pointer to the head of each adjacency list. The remaining z cells in
the array construct an unencrypted free list, which is used in the add updates.
To ensure the size of all the entries in AG, TG and TD is identical, we should
pad by a string of 0’s (i.e., 0). Finally, we output the encrypted graph ΩG.

Figure 3 gives an illustrative example to construct the encrypted graph from
a directed graph with four vertices v1, v2, v3 and v4 as well as five edges. All the
nodes contained in the original (three) adjacency lists are now stored at random
locations in AG, and the dictionaries TG and TD are also shown in Fig. 3. Note
that in a real encrypted graph, there would be padding to hide partial structural
information of the original graph (as will be discussed in Sect. 5); we omit this
padding for simplicity in this example.

4.3 Shortest Distance Query Phase

In this section, we describe the process of performing the exact shortest distance
query over the encrypted graph, as summarized in Algorithm2.

First, the client generates the query token τq based on a query q = (s, t), and
then sends it to the server. If the token has been queried before or acts as a sub-
path of the query history σ, the server returns the result cq (cq ⊂ σ) to the client

88 Q. Wang et al.

1 1
()

k
P v

1 2
()

k
P v

1 3
()

k
P v

1 4
()

k
P v

2 2 242
1,(,), ()

v k
v v K F v

3 2 313
6,(,), ()

v k
v v K F v

4 2 4
0,0, ()

v k
K F v

1 2 121
3,(,), ()

v k
v v K F v

G

G

D

1 1 2
,

k
P v v

2 1 2
0,0, 3, 0, 0 ,

k
F v v

1 2 4
,

k
P v v

22 3 2 4
0,0,1,2,(,) ,

k
v v F v v

1 2 3
,

k
P v v

2 3242
(,),1,2,0, 0 ,

k
v v F v v

1 3 1
,

k
P v v

23 4 3 1
0,0,6, 4,(,) ,

k
v v F v v

1 3 4
,

k
P v v

2 4313
(,),6, 4, 0, 0 ,

k
v v F v v

G

2 4
(,)v v

3 1
(,)v v

1
v

2
v

3
v

4
v

1
v 2

v

2
v

4
v

3
v

3
v

1
v

4
v

2 3
(,)v v

1 2
(,)v v

3 4
(,)v v

Fig. 3. An example of the encrypted graph construction.

immediately; otherwise, the server executes the Dijkstra’s algorithm with the aid
of a Fibonacci heap H in a private way. Concretely, the server first reads off the
vertices that are adjacent to the source s and inserts to the heap H (line 14 to 22).
Subsequently, each iteration of the loop from line 23 to 49 starts by extracting the
vertex α with the minimum key. If the vertex α is the requested destination τ2, the
server updates the query history σ based on the newly-obtained path, computes
the encrypted result cq via reverse iteration and returns it to the client. Else, the
server recovers the pointer to the head of the adjacency list for the vertex α, and
then retrieves nodes in the adjacency list. Specifically, for the node Ni, once an
update of ξ[αi] occurs it indicates that a shorter path to αi via α has been discov-
ered, the server then updates the path. Next, the server either runs Insert(H, αi) (if
αi is not inH) orDecrease-Key(H, αi, key(αi)). It is worth noting that both the con-
ditional statement ξ[α] · ci < ξ[αi] and some specific operations on the Fibonacci
heap (e.g., Extract-MIN) require performing a comparison on the encrypted data.
Hence we build a secure comparison protocol (see Sect. 4.3) based on the garbled
circuits and invoke it as a subroutine.

Finally, the client runs Dec(cq, sk) to obtain the distq as follows. Given cq,
the client parses it as a sequence of 〈c1, c2〉 pairs, and for each pair, the client
decrypts c1 (the path) and c2 (the distance) by using k1 and skp, respectively.

Remarks. Conceptually, the history σ consists of all previous de-duplicated
queried results. For a new query, the server traverses σ and checks whether
the new query belongs to a record in σ. For example, let history σ consist of
a shortest path from s to t (i.e., {s, . . . , u, . . . , v, . . . , t}), then for a new query
q = (u, v), the corresponding encrypted result cq = {u, . . . , v} where cq ⊂ σ can
be returned immediately. Note that only lookup operations (of dictionary) are
required, thus making the whole process highly efficient.

Secure Comparison Protocol. We now present the secure comparison pro-
tocol which is based on the garbled circuits [12,32] for selecting the minimum
of two encrypted values. This subroutine is implemented by the circuit shown
in Fig. 2, and we use a CMP circuit and two SUB circuits constructed in [17] to
realize the desired functionality.

SecGDB 89

Algorithm 2. DistanceQuery protocol

Input:

The client C’s input is sk, q = (s, t);

The server S’s input is ΩG, σ;

Output:

The client C’s output is cq ;

The server S’s output is σ′;
1: C : compute τq := (Pk1 (s), Pk1 (t), Fk2 (s));

2: C ⇒ S : output τq to the server;

3: S : parse τq as (τ1, τ2, τ3);

4: if TG[τ1] =⊥ or TG[τ2] =⊥ then

5: S ⇒ C: return ⊥ to the client;

6: else if {τ1, τ2} ⊂ σ then

7: S ⇒ C: return cq to the client;

8: else

9: S : initialize a Fibonacci heap H ←
Make-Heap();

10: S : initialize two dictionaries ξ and path;

11: S : compute 〈addr1, str, Ks〉 := TG[τ1] ⊕ τ3;

12: S : parse AG[addr1] as 〈N′
1, r1〉;

13: S : compute N1 := N′
1 ⊕ H(Ks, r1);

14: while addri+1 	= NULL do

15: S : parse Ni as 〈αi, βi, ci, addri+1〉;
16: S : store path[αi] := 〈τ1, ci〉
17: S : set ξ[αi] := ci and key(αi) := ξ[αi];

18: S : run Insert(H, αi) with the key(αi);

19: S : parse AG[addri+1] as 〈N′
i+1, ri+1〉;

20: S : compute Ni+1 := N′
i+1 ⊕ H(Ks, ri+1);

21: S : increase i = i + 1;

22: end while

23: repeat

24: S : parse Extract-MIN(H) as 〈α, key(α)〉;
25: if α = τ2 then

26: S : update σ′ based on path;

27: S ⇒ C : return cq to the client;

28: S : break;

29: end if

30: S : compute 〈addr1, str, Ku〉 := TG[α] ⊕ β;

31: S : parse AG[addr1] as 〈N′
1, r1〉;

32: S : compute N1 := N′
1 ⊕ H(Ku, r1);

33: while addri+1 	= NULL do

34: S : parse Ni as 〈αi, βi, ci, addri+1〉;
35: if ξ[α] · ci < ξ[αi] then

36: S : update ξ[αi] := ξ[α] · ci;

37: S : set key(αi) := ξ[αi];

38: S : store path[αi] := 〈α, ci〉;
39: end if

40: if αi 	∈ H then

41: S : run Insert(H, αi) with the key(αi);

42: else

43: S : run Decrease-Key(H, αi, key(αi));

44: end if

45: S : parse AG[addri+1] as 〈N′
i+1, ri+1〉;

46: S : compute Ni+1 := N′
i+1 ⊕

H(Ku, ri+1);

47: S : increase i = i + 1;

48: end while

49: until H is empty

50: end if

At the beginning, the server has two encrypted values [[a1]] and [[a2]] and the
proxy has the secret key skp. W.l.o.g., we assume that the longest shortest distance
between any pair of vertices (i.e., diameter [10]) lies in [2l], namely, a1 and a2 are
two l-bit integers. Instead of sending [[a1]] and [[a2]] to the proxy, the server first
masks them with two k-bit random numbers r1 and r2 (e.g.,[[a1 + r1]] =[[a1]] ·[[r1]])
respectively, where k is a security parameter (k > l). Then the server’s inputs
are r1 and r2, and the proxy’s inputs are a1 + r1 and a2 + r2. Finally, the output
single bit x implies the comparison result: if x = 1, then a1 > a2; 0 otherwise.
Note that masking here is done by performing addition over the integers which is
a form of statistical hiding. More precisely, for a l-bit integer ai and a k-bit integer
ri, releasing ai +ri gives statistical security of roughly 2l−k for the potential value
ai. Therefore, by choosing the security parameter k properly, we can make this
statistical difference arbitrarily low [12].

Packing Optimization. It is worth noting that the message space of the Paillier
cryptosystem is much greater than the space of the blinded values. We can
therefore provide a great improvement in both computation time and bandwidth
by leveraging the packing technique. The key idea lies in that the server can send
one aggregated ciphertext in the form[[〈(ai+1 + ri+1), . . . , (ai+p + ri+p)〉]] instead
of p ciphertexts of the form [[ai + ri]], where p = 1024

k (1024-bit modulus used in
Paillier cryptosystem).

90 Q. Wang et al.

Algorithm 3. UpdateQuery protocol

Input:
The client C’s input is sk, u;
The server S’s input is ΩG;

Output:
The client C’s output is ⊥;
The server S’s output is Ω′

G, σ;

a) Adding new edges
At the client C:
1) u contains information about newly-added
edge (v1, v2) with the length len(v1, v2);
2) compute the update token τu := (Pk1 (v1),

Fk2 (v1)
|〈addr,str〉|, Pk1 (〈v1, v2〉), Fk2 (〈v1,

v2〉), N), where N = 〈〈Pk1 (v2), Fk2 (v2),[[len]],0〉
⊕H(Kv1 , r), r〉;
C ⇒ S : output τu to the server;
At the server S:
1) parse τu as (τ1, τ2, τ3, τ4, τ5) and return ⊥
if τ1 is not in TG;
2) compute 〈addr1, 0〉 := TG[free];
3) parse AG[addr1] as 〈0, addr2〉;
4) update the pointer to the next free node
TG[free] := 〈addr2, 0〉;
5) compute 〈addr3, str〉 := TG[τ1]

|〈addr,str〉| ⊕
τ2;
6) parse τ5 as 〈N′, r〉 and set AG[addr1] :=
〈N′ ⊕ 〈0, addr3〉, r〉;
7) update the pointer to the newly-added node

TG[τ1] := TG[τ1]
|〈addr,str〉| ⊕ 〈addr3, str〉 ⊕

〈addr1, τ3〉;

8) store TD[τ3] := 〈0, 0, addr1, addr3, str〉⊕τ4;

9) update TD[str] := TD [str]|〈addr,str〉| ⊕
〈τ3, addr1〉;
10) obtain an updated graph Ω′

G and rebuild
σ;

b) Deleting existing edges
At the client C:
1) u contains information about the existing
edge (v1, v2) to be deleted;
2) compute τu := (Pk1 (〈v1, v2〉),
Fk2 (〈v1, v2〉)) ;
C ⇒ S : outputs τu to the server;
At the server S:
1) parse τu as (τ1, τ2) and return ⊥ if τ1 is not
in TD;
2) look up in TD and computes
〈str1, addr1, addr2, addr3, str3〉 := TD [τ1]⊕τ2;
3) compute 〈addr4, 0〉 := TG[free];
4) free the node and set AG[addr2] :=
〈0, addr4〉;
5) update the pointer TG[free] := 〈addr2, 0〉;
6) parse AG[addr1] as 〈N′

1, r1〉;
7) update node AG[addr1] := 〈N′

1 ⊕ addr2 ⊕
addr3, r1〉;
8) update the corresponding entry TD[str1] :=
TD[str1] ⊕ 〈addr2, τ1〉 ⊕ 〈addr3, str3〉;
9) update the corresponding entry TD[str3] :=
TD[str3] ⊕ 〈addr2, τ1〉 ⊕ 〈addr1, str1〉;
10) obtain an updated graph Ω′

G and rebuild
σ;

4.4 Supporting Encrypted Graph Dynamics

We next discuss the support of update operations over the encrypted graph, and
the details are given in Algorithm3. Here, we do not particularly consider the
addition and removal of vertices, because the update of the vertex can be viewed
as the update of a collection of related edges.

To add new edges, the client generates the corresponding token τu for an
update object u and sends it to the server. After receiving τu, the server locates
the first free node addr1 in the array AG, and modifies the pointer in TG to point
to the second one. Later, the server retrieves the high-order useful information
(without the key Kv1) of the head node N1, stores N that represents the newly
edge at location addr1 and modifies its pointer to point to the original head
node N1 without decryption. Then, the server updates the pointer in TG to
point to the newly-added node, and finally updates the corresponding entries in
the dictionary TD. To remove the existing edges, the client generates the update
token τu and submits it to the server. Subsequently, the server looks up in the
TD and recovers the adjacency information of the specified edge. In the following
steps, the server frees the node, inserts it into the head of the free list and then
homomorphically modifies the pointer of the previous node to point to the next
node in AG. Eventually, the server updates the related entries in the dictionary
TD. Note that modifying a specified edge can be easily achieved by removing

SecGDB 91

the “old” edge first, and adding a “new” edge with the modified length later.
After the encrypted graph has been updated, the old query history is deleted
and a new empty history will be rebuilt simultaneously.

4.5 Performance Analysis

The time cost of initialization phase is dominated by encrypting all the edges
using Paillier cryptosystem and processing all the vertices, thus the time com-
plexity of this part is O(m + n). The generated encrypted graph, which consists
of an array and two dictionaries, has the storage complexity O(m + n). In the
query phase, we use the Fibonacci heap to speed up the Dijkstra’s algorithm,
and thus we obtain an O(n log n + m) time complexity which is optimal among
other priority queue optimization techniques (e.g., binary or binomial heap) [7].
During the execution of the secure comparison protocol, the overheads between
the server and the proxy are directly related to the number of gates in the com-
parison circuit. Since many expensive operations of the garbled circuits can be
pushed into a pre-computation phase, most of the costs will be relieved from the
query phase. By maintaining an auxiliary structure history σ at the server, we
can obtain an even better amortization time complexity over multiple queries,
i.e., the query time for subsequent queries that can be looked up in the history
are (almost) constant. Besides, it is obvious that the time complexity for both
addition and removal operations on the encrypted graph are only O(1).

5 Security

We allow reasonable leakage to the server to trade it for efficiency. Now, we pro-
vide a formal description of the three leakage functions L1, L2 and L3 considered
in our scheme as follows.

– (Leakage function L1). Given a graph G, L1(G) = {n,m,#AG}, where n is
the total number of vertices, m is the total number of edges in the graph G
and #AG denotes the number of entries (i.e., m + z) in the array AG.

– (Leakage functionL2). Given a graph G, a query q, L2(G, q) = {QP(G, q),AP
(G, q)}, where QP(G, q) denotes the query pattern and AP(G, q) denotes the
access pattern, both of which are given in the following definitions.

– (Leakage function L3). Given a graph G, an update object u, L3(G, u) =
{idv, idnew, next} is for add updates, and L3(G, u) = {iddel, next, prev} is for
delete updates, where idv denotes the identifier of the start vertex in the
newly edge, idnew and iddel denote the identifiers of the edges to be added
and deleted, respectively. prev and next contain the neighboring information
(i.e., the identifiers of the neighboring edges) of the edge to be updated. If
there are no nodes in AG before and after the edge to be updated then prev
and next are set to ⊥.

Definition 3 (Query Pattern). For two shortest distance queries q = (s, t), q′ =
(s′, t′), define sim(q, q′) = (s = s′, s = t′, t = s′, t = t′), i.e., whether each of the

92 Q. Wang et al.

vertices in q matches each of the vertices in q′. Let q = (q1, . . . , qδ) be a sequence
of δ queries, the query pattern QP(G, q) induced by q is a δ × δ symmetric
matrix such that for 1 ≤ i, j ≤ δ, the element in the ith row and jth column
equals sim(qi, qj). Namely, the query pattern reveals whether the vertices in the
query have appeared before.

Definition 4 (Access Pattern). Given a shortest distance query q for the graph
G, the access pattern is defined as AP(G, q) = {id(cq), id(cq)′, id∗(cq)}, where
id(cq) denotes the identifiers of vertices in the encrypted result cq, id(cq)′ denotes
the identifiers of vertices contained in the dictionary path and it reveals the
subgraph consisting of vertices reachable from the source (id(cq) ⊂ id(cq)′), and
id∗(cq) denotes the identifiers of the edges with one of its endpoints is the head
node of retrieved adjacency lists.

Discussion. The query pattern implies whether a new query has been issued
before, and the access pattern discloses the structural information such as graph
connectivity associated with the query. The leakage is not revealed unless its cor-
responding query has been issued. This is similar to keyword-based SSE schemes,
where the leakage (i.e., patterns associated with a keyword query) is revealed
only if the corresponding keyword is searched. Fortunately, we can guarantee
some level of privacy to the structural information with slightly lower efficiency
in our setting, namely, we can add some form of noise (i.e., padding carefully
designed fake entries [3,4,15] to each original adjacency list) when generates the
encrypted graph. Moreover, in various application scenarios where the data may
be abstracted and modeled as sparse graphs (see Table 1), the leakage would
not be a big problem. Fully protecting the above two patterns (also forward
privacy defined in [30]) without using expensive ORAM techniques remains an
open challenging problem, which is our future research focus.

Theorem 1. If Paillier cryptosystem is CPA-secure and P , F and G are
pseudo-random, then the encrypted graph query database system is adaptively
(L1,L2,L3)-semantically secure in the random oracle model.

Due to the space limitation, please refer to our technical report for the proof
details.

6 Experimental Evaluation

In this section, we present experimental evaluations of our construction on dif-
ferent large-scale graphs. The experiments are performed on separate machines
with different configurations: the client runs on a machine with an Intel Core
CPU with 4-core operating at 2.90 GHz and equipped with 12 GB RAM, both
the server and the proxy run on machines with an Intel Xeon CPU with
24-core operating at 2.10 GHz and equipped with 128 GB RAM. We imple-
mented algorithms described in Sect. 4 in Java, used HMAC for PRF/PRPs and
instantiated the random oracle with HMAC-SHA-256. Our secure comparison
protocol is built on top of FastGC [11], a Java-based open-source framework.

SecGDB 93

Table 1. The characteristics of datasets.

Dataset Type Vertices Edges Storage

Talk directed 2,394,385 5,021,410 63.3 MB

Youtube undirected 1,134,890 2,987,624 36.9 MB

EuAll directed 265,214 420,045 4.76 MB

Gowalla undirected 196,591 1,900,654 21.1 MB

Vote directed 7,115 103,689 1.04 MB

Enron undirected 36,692 367,662 3.86 MB

Table 2. The cost of initialization phase.

Dataset Time (min.) Storage (MB)

TG TD AG Total

Talk 1042.1 3.6 172.3 1460.5 1636.4

Youtube 460.6 8.93 102 874 984.93

EuAll 76.8 5.37 14.4 122 141.77

Gowalla 307.77 4.69 65.24 556.42 626.35

Vote 17.8 0.14 3.55 30.3 33.99

Enron 69.4 0.88 12.6 107 120.48

Our implementation used the following parameters: we use Paillier cryptosys-
tem with a 1024-bit modulus, the bit length allocated for the diameter l is 16
and the bit length of each random mask is 32. Besides, the FastGC framework
provides a 80-bit security level; namely, it uses 80-bit wire labels for garbled
circuits and security parameter c = 80 for the OT extension.

6.1 Datasets

We used real-world graph datasets publicly available from the Stanford SNAP
website (available at https://snap.stanford.edu/data/), and selected the follow-
ing six representative datasets: wiki-Talk, a large network extracted from all user
talk pages; com-Youtube, a large social network based on the Youtube web site;
email-EuAll, an email network generated from a European research institution;
loc-Gowalla, a location-based social network; wiki-Vote, a network that contains
all the Wikipedia voting data; and email-Enron, an email communication net-
work. Table 1 summarizes the main characteristics of these datasets.

6.2 Experimental Results

Table 2 shows the performance of the initialization phase (one-time cost). As can
be seen, the time to encrypt a graph ranges from a few minutes to several hours
which is practical. For example, it takes only 17.4 h to obtain an encryption of
the wiki-Talk graph including 2.4 million vertices and 5.1 million edges. Besides,
we note that this phase is highly-parallelizable; namely, we bring the setup time
down to just over 30 min by utilizing a modest cluster of 32 nodes. Furthermore,
the storage cost of an encrypted graph is dominated by AG with the total size
ranging from 33.99 MB for wiki-Vote to 1.60 GB for wiki-Talk. We also note that
our construction has less storage space requirements compared to Meng et al. [24]
(e.g., 2.07 GB for com-Youtube in [24], whereas our scheme takes 984.93 MB).

We first measured the time to query an encrypted graph without
query history. To simulate realistic queries that work in a similar manner with [8],
we choose the query vertices in a random fashion weighted according to their
outdegrees. The average time at the server (taken over 1,000 random queries)
is given in Fig. 4(a) for all encrypted graphs. In general, the results show that
the query time ranges from 20.4 s for wiki-Vote to 46.4 min for wiki-Talk. Addi-
tionally, we can obtain an order-of-magnitude improvement in both computation

https://snap.stanford.edu/data/

94 Q. Wang et al.

time and bandwidth by using the packing optimization presented in Sect. 4.3.
The actual time for the client to generate the token and decrypt the encrypted
result per each query is always less than 0.1 s which is very fast. In addition,
about 1.5 KB communication overhead is required to transfer the token and the
encrypted result for each query.

Next, the performance of the query phase with the help of history stored
on the server is illustrated in Fig. 4(b) and (c), and a block of 1,000 random
executions results in one measurement point in both figures. In Fig. 4(b), the
y-axis represents the ratio of the average query time using history to that with-
out using history. Generally, it reflects that the average query time decreases
with the increase of the number of queries, because subsequent queries can first
be answered by leveraging the history. Furthermore, as can be seen, after 10,000
queries, it obtains about 86% reduction of the query time for wiki-Vote com-
pared to that without using history, i.e., it only needs roughly 2.9 s to answer a
subsequent query. Figure 4(c) demonstrates the increasing size of history (instan-
tiated by HashMap in our implementation) with the increasing amount of total
shortest distance queries.

(a) Query without histo-
ry

(b) Query with history (c) Query with history(a) Query without histo-
ry

(b) Query with history (c) Query with history

Fig. 4. The cost of distance query phase.

(a) Add updates (b) Delete updates(a) Add updates (b) Delete updates

Fig. 5. The time cost of dynamic updates.

Figure 5 shows the
execution time (aver-
aged over 1,000 runs)
for adding and delet-
ing an edge over all the
encrypted graphs. Obvi-
ously, both addition and
deletion operations are
practically efficient and
independent of the scale
of the graphs. As shown
in Fig. 5(a), the time
cost at the client side is dominated by generating an encryption of the length of
the edge to be updated (roughly 10 ms), while the server side has a negligible
running time. Similar results can be obtained in Fig. 5(b) for the delete updates.
It only needs about 0.25 ms to delete a specified edge, and the time to generate
the delete token at the client side dominates the time cost of the entire process.

SecGDB 95

In addition, about 0.3 KB and tens of bytes are consumed when performing
adding and deleting operations, respectively.

7 Conclusion

In this paper, we designed a new graph encryption scheme–SecGDB to encrypt
graph structures and enforce private graph queries. In our construction, we used
additively homomorphic encryption and garbled circuits to support shortest dis-
tance queries with optimal time and storage complexities. On top of this, we
further proposed an auxiliary data structure called query history stored on the
remote server to achieve better amortized time complexity over multiple queries.
Compared to the state-of-the-art, SecGDB returns the exact distance results
and allows efficient graph updates over large-scale encrypted graph database.
SecGDB is proven to be adaptively semantically-secure in the random oracle
model. We finally evaluated SecGDB on representative real-world datasets, show-
ing its efficiency and practicality for use in real-world applications.

Acknowledgment. Qian and Qi’s researches are supported in part by National Nat-
ural Science Foundation of China (Grant No. 61373167, U1636219, 61572278), National
Basic Research Program of China (973 Program) under Grant No. 2014CB340600, and
National High Technology Research and Development Program of China (Grant No.
2015AA016004). Kui’s research is supported in part by US National Science Foundation
under grant CNS-1262277. Aziz’s research is supported in part by the NSF under grant
CNS-1643207 and the Global Research Lab (GRL) Program of the National Research
Foundation (NRF) funded by Ministry of Science, ICT (Information and Communi-
cation Technologies) and Future Planning (NRF-2016K1A1A2912757). Qian Wang is
the corresponding author.

References

1. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database
queries using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M.,
Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1 7

2. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

3. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

4. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: Proceedings of CCS 2006,
pp. 79–88. ACM (2006)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

https://doi.org/10.1007/978-3-642-38980-1_7
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-642-17373-8_33

96 Q. Wang et al.

6. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over
encrypted data in outsourced environments. In: Proceedings of ICDE 2014, pp.
664–675. IEEE (2014)

7. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. JACM 34(3), 596–615 (1987)

8. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: Proceedings of CCS 2014, pp. 310–320. ACM (2014)

9. Han, W.-S., Lee, S., Park, K., Lee, J.-H., Kim, M.-S., Kim, J., Yu, H.: Turbo-
Graph: a fast parallel graph engine handling billion-scale graphs in a single PC.
In: Proceedings of SIGKDD 2013, pp. 77–85. ACM (2013)

10. Harary, F.: Graph Theory. Westview Press, Boulder (1969)
11. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation

using garbled circuits. In: Proceedings of USENIX Security 2011. USENIX (2011)
12. Huang, Y., Malka, L., Evans, D., Katz, J.: Efficient privacy-preserving biometric

identification. In: Proceedings of NDSS 2011, pp. 250–267 (2011)
13. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-

ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

14. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

15. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of CCS 2012, pp. 965–976. ACM (2012)

16. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press,
Boca Raton (2014)

17. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10433-6 1

18. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

19. Lai, R.W.F., Chow, S.S.M.: Structured encryption with non-interactive updates
and parallel traversal. In: Proceedings of ICDCS 2015, pp. 776–777. IEEE (2015)

20. Lai, R.W.F., Chow, S.S.M.: Parallel and dynamic structured encryption. In: Pro-
ceedings of SECURECOMM 2016 (2016, to appear)

21. Lai, R.W.F., Chow, S.S.M.: Forward-secure searchable encryption on labeled
bipartite graphs. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017.
LNCS, vol. 10355, pp. 478–497. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61204-1 24

22. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed graphlab: a framework for machine learning and data mining in the
cloud. PVLDB 5(8), 716–727 (2012)

23. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y., et al.: Fairplay-secure two-party com-
putation system. In: Proceedings of USENIX Security 2004, pp. 287–302. USENIX
(2004)

24. Meng, X., Kamara, S., Nissim, K., Kollios, G.: GRECS: graph encryption for
approximate shortest distance queries. In: Proceedings of CCS 2015, pp. 504–517.
ACM (2015)

https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1007/978-3-642-10433-6_1
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-319-61204-1_24
https://doi.org/10.1007/978-3-319-61204-1_24

SecGDB 97

25. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of
SODA 2001, SIAM, pp. 448–457 (2001)

26. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: Proceedings of
S&P 2013, pp. 334–348. IEEE (2013)

27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

28. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computa-
tion is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–
267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 15

29. Sarwat, M., Elnikety, S., He, Y., Kliot, G.: Horton: Online query execution engine
for large distributed graphs. In: Proceedings of ICDE 2012, pp. 1289–1292. IEEE
(2012)

30. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: Proceedings of NDSS 2014 (2014)

31. Wang, Q., He, M., Du, M., Chow, S.S., Lai, R.W., Zou, Q.: Searchable encryption
over feature-rich data. IEEE Trans. Dependable Secure Comput. PP(99), 1 (2016)

32. Yao, A.: Protocols for secure computations. In: Proceedings of FOCS 1982, pp.
160–164. IEEE (1982)

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-642-10366-7_15

Outsourcing Medical Dataset Analysis:
A Possible Solution

Gabriel Kaptchuk(B), Matthew Green, and Aviel Rubin

John Hopkins University, Baltimore, USA
{gkaptchuk,mgreen,rubin}@cs.jhu.edu

Abstract. We explore the possible ways modern cryptographic meth-
ods can be applied to the field of medical data analysis. Current systems
require large computational facilities owned by the data owners or exces-
sive trust given to the researchers. We implement one possible solution in
which researchers operate directly on homomorphically encrypted data
and the data owner decrypts the results. We test our implementation on
large datasets and show that it is sufficiently practical that it could be a
helpful tool for modern researchers. We also perform a heuristic analysis
of the security of our system.

1 Introduction

Modern medical dataset analysis methods take large sets of medical records and
attempt to extract truths about the underlying population. Because of the sensi-
tive nature of the data being analysed and regulations requiring strict limitations
on the sharing of that data, it is difficult for researchers to share datasets. Today,
it can take up to a year before a researcher can actually begin the computational
process of analyzing a dataset that they did not collect on their own. Data is
often shared in sanitized form, with much of the data removed; this sanitization
process requires time, labor and statistical expertise. Some data owners have
chosen to allow researchers to send their queries to the data owners, who per-
form the analysis on the researcher’s behalf. The process of analyzing medical
datasets requires large amounts of computation on the part of the data owner
for each question posed by a researcher. To best serve the medical research com-
munity, data owners must acquire technical expertise to properly anonymize and
maintain datasets or contract a trusted third party to do it for them.

In this work we consider an institutional medical researcher, such as a mem-
ber of a university or the research division of a company, interested in answering
some query but who is without access to the required data. While it may be
infeasible to independently gather data, it is likely that there exists a dataset con-
taining sufficient information to answer the researcher’s query. The data owner
may want to share with the researcher but because the information is related to
the medical history of patients, and therefore considered sensitive, sharing that
dataset may be a complicated process.

We explore existing cryptographic methods in an effort to tackle the two
main problems with the current way of sharing medical data. First, we wish to
c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 98–123, 2017.
https://doi.org/10.1007/978-3-319-70972-7_6

Outsourcing Medical Dataset Analysis: A Possible Solution 99

move the burden of cost from data owners to the researchers who want access
to the data. All modern solutions that properly secure patient data require data
owners to make large investments in hardware and technical expertise. While it is
possible for a data owner to recoup those costs over time, requiring large startup
costs deters the sharing of data and charging for access to the dataset limits the
kinds of researchers able to use it. Second, it takes far too long for a researcher
to acquire and analyze a dataset that has been properly anonymized and cer-
tified. Even after proper permission has been acquired, it may be extremely
inconvenient to actually run analysis or to tweak the nature of the researcher’s
query.

2 Objectives

In order to build something useful to the medical research community, we
attempt evaluate the usefulness of Fully Homomorphic Encryption while still
ensuring the following six properties. These objectives were derived from con-
versations with professionals working in the medical research industry. Addi-
tionally, the analysis we ran to confirm that our system was practical enough to
be used by members of the medical research community were also informed by
these conversations.

Authenticity of results - the results obtained by the researcher should be
as authentic and accurate as possible without compromising the privacy of
individuals.
A rich range of possible analyses - virtually any analytical technique
should be possible to the researcher. More formally, the limits on the possible
set of operations should depend only on the parameters chosen for the FHE
scheme.
Minimal computation on the part of the data owner - the computa-
tional responsibility of the data owner should be almost entirely limited to
preprocessing the dataset a single time. We propose that a data owner should
only have to provide a single server to allow for large numbers of researchers
to perform analysis.
Privacy for individuals in the dataset - it should be impossible for a
researcher with auxiliary information to learn anything about an individual
in the population using legitimate analysis techniques. Specifically, we invoke
differential privacy to protect information about individuals.
Security against adversarial researchers - an adversarial researcher
attempting to extract information about individuals from the dataset should
be caught with very high probability.
Practicality - our system should shorten the time it takes for a researcher
to conceive of a researcher question to when their computational analysis has
finished. The actual time it takes for a single run of the analysis process may
take longer than current methods, providing this overall time shrinks.

100 G. Kaptchuk et al.

While many existing solutions address some subset of these objectives,
none accomplish all of them. In particular, existing systems lack practicality,
proper cost distribution or a large space of possible computation. Anonymiza-
tion presents security concerns and lacks practicality due to the long wait times
for dataset acquisition. Analysis as a service requires a misappropriation of costs
between the researcher and the data owner. Attempts like [19] have managed
to be both practical and to outsource computation, but failed to allow for rich
space of analytical techniques required by the medical industry. Our construction
satisfies all the requirements of researchers in the medical industry.

3 Background

To understand our motivation, it is important to consider the ways in which
modern medical dataset analysis is done. The reality of current analysis systems
is that they are both extremely expensive for the data owner and take a long
time for the query of a researcher to be fully answered. Researchers interested in
fields as diverse as drug side effects, public health and genetics all utilize the large
amounts of data regularly collected by medical professionals, insurance compa-
nies, or governments to make new discoveries or confirm theories. Under ideal
circumstances, analysis is done with large sample sizes - discussions with pro-
fessionals in the field lead us to believe that most studies utilize around 100,000
data points. The analytical models used by researchers vary from simplistic count
and average to complex regressions or machine learning. While complex methods
are gaining in popularity, measurements like regression, covariance and averages
remain the primary tools employed by researchers.

There are various practical constructions employed to allow external
researchers access to private data. The obvious, simple, and clearly insecure solu-
tion is to naively share the data without any security. While efficient, this makes
the assumption that the researcher is a trusted party, which is often invalid.

3.1 Anonymization

Anonymization is a technique in which large amounts of information, hopefully
all irrelevant, is purged before a dataset is shared with a researcher. The goal
of anonymization is to allow an untrusted third party to confirm results or per-
form original analysis without revealing any personally identifiable information.
The process is computationally expensive because it requires a data owner to
reprocess the dataset each time a researcher posits a new query. For example, a
researcher may start the process interested in a certain subset of the information
about each patient only to later decided that other qualities of each patient are
also required to confirm their hypothesis. This method also makes it extremely
expensive for a researcher to explore a dataset without a specific hypothesis
in mind. Additionally, there have been recent results showing that anonymiza-
tion is not as secure as previously thought [28]. While a single instance of an

Outsourcing Medical Dataset Analysis: A Possible Solution 101

anonymized dataset leaks minimal information under most circumstances, com-
bining it with a version of the same dataset anonymized for a different query can
certainly allow a malicious researcher to compromise the privacy of individuals.

3.2 Analysis as a Service

This model has becoming increasingly popular recently as the medical commu-
nity has adopted cloud technologies. Data owners or trusted third parties provide
a service through which researchers are able to submit requests for work. The
data owners or their surrogates then perform the computation over the dataset
stored as plaintext. This requires data owners to acquire the technical expertise
to maintain the system. More importantly, this forces data owners to shoulder
the cost of providing their data to the medical research community or possibly
charge researchers for the use of their data which would discourage collaboration.

3.3 Cost Consideration

While both anonymization and analysis as a service are common models for
sharing statistical datasets, cutting-edge systems combine both techniques. The
largest data owners maintain massive datasets on expensive computational
infrastructure. When a researcher wants to answer some new query, they access
the infrastructure itself, either physically or over a secure channel. Then, based
on the requirements of their query, they select a certain anonymization of the
dataset to use. A certain anonymization of the data may leave more information
about income, but may contain little geographical information. Each time a new
anonymization of the data is required by a researcher, the data owners must
prepare a new subset of the data and get statisticians to certify it.

Once an appropriate version of the dataset has been prepared, the analy-
sis is run on the data owner’s systems. Because of inference attacks, allowing
researchers to remove even anonymized datasets can be dangerous, especially
when the researcher is likely to return to the same data owner to perform a dif-
ferent analysis soon afterwards. The two main concerns addressed in this work
are time and cost. It is not uncommon for the time between the conception of a
question and the moment when computational analysis begins to be months or
even a year.

It is nearly inevitable that research will involve high costs for at least some of
the parties involved. While typically one might assume that the burden of cost
should be on the researchers themselves, given that they are the ones directly
benefiting from computation, it is often the data owners who are forced to acquire
expertise and infrastructure to service the researcher community. One company
with which we spoke had $1 million in hardware costs to support the needs of
researchers. While costs might eventually be recouped by charging researchers
for use of the dataset, the costs from purchasing hardware alone may make it
infeasible for a data owner to securely share their data. Especially if their dataset
becomes desirable to many researchers, the costs of scaling up their operations
quickly make it impossible to support widespread interest.

102 G. Kaptchuk et al.

3.4 Existing Cryptographic Options

In order to construct a system that addresses the problems above, we call upon
existing cryptographic primitives and systems. Some, like differential privacy,
have been widely used in the field and their limitations are well understood. The
practicality of others, like FHE and homomorphic signatures, has yet to be fully
tested. Because we are attempting to build a practical system that minimizes
the amount of time between the medical researcher’s initial query and receiving
the final answer, we choose our cryptographic primitives carefully. Additionally,
various primitives may be helpful in achieving some of the objectives in Sect. 2
but may prohibit the achievement of others. We give a broad summary of the
cryptographic methods chose to use in our case study below and include methods
we chose not to utilize in Appendix D.

3.5 Fully Homomorphic Encryption

FHE allows for addition and multiplication on encrypted data without the need
for decryption. The first construction of FHE was published in [21] but was
too inefficient for practical computation. Subsequent efforts, most notably the
BGV construction in [9], have attempted to increase the efficiency and modern
constructions are teetering on the edge of practicality. To make the schemes
more usable, there has been a push towards “leveled” homomorphic encryption
schemes which can compute a certain depth of circuit before inherent noise
renders the ciphertext useless. For a full background on the intricacies of FHE
and a more complete list of citations, refer to [33].

Smart and Vercauteren proposed an addition to the BGV FHE in [31], in
which many plaintext values could be encoded into a single ciphertext. To do
this, the plaintext values are put into a vector and all additions and multi-
plications are computed entrywise. This allows for single instruction multiple
data operations and significantly increasing the efficiency of the scheme. Our
implementation requires that the FHE scheme used supports Smart-Vercauteren
plaintext packing and for the rest of this work all homomorphic operations can
be considered to be done within this framework.

3.6 HELib

The best available implementation of a modern leveled FHE is the C++ library
HELib. While most of the code currently written using HELib implements rel-
atively simple computations, our testing shows that is both robust and reason-
ably efficient for more complex computations. The FHE scheme it implements
encodes integers into BGV ciphertext, supporting addition and multiplication
operations. The underlying plaintext values are added and multiplied modulo
some prime. The choice of primes, the maximum level of the circuit, and secu-
rity parameter all influence the size of the ciphertext and the efficiency of the
operations. Details about the use of HELib and the FHE scheme it implements
can be found at [23].

Outsourcing Medical Dataset Analysis: A Possible Solution 103

3.7 Differential Privacy

Differential privacy prevents an attacker from learning anything about individ-
uals while still gleaning meaningful information from aggregated statistics. This
is not the only notion of privacy that can be applied to statistical datasets, but
it has recently become the most popular. With the rise of laws requiring the
protection medical data, ensuring it is impossible to recover the information of
any given individual effectively shields data owners from legal action. We give a
more detailed background of differential privacy in Appendix C.

4 Construction

We assume a data owner D with a medical dataset Dinitial of vectors d ∈ R
n.

D transforms the dataset into the proper format, encrypts it using fully homo-
morphic encryption as D∗ = Encrypt(Dformatted) and publishes it on the internet.
A researcher R then prepares a program to be run on the dataset, described in
the form of a transcript T and performs the computation T (D∗). The result of
this computation is a ciphertext c with an embedded integrity check and trans-
mits c to D. Finally D verifies that T and c match, computes the decryption,
adds noise to guarantee differential privacy and sends this final result to R. A
protocol diagram can be found in Appendix B.

4.1 Dataset Formatting

We assume that the data owner D has some set of D = {d1,d2, . . . ,d|D|} s.t. di ∈
R

n where each dimension of di represents part of the medical record for patient i.
Each vector d is made up of data entries α and binary entries β. The data entries
are real valued and represent information about the patient like age, blood pressure
or income. The binary entries represent the qualities of a patient, like the presence
of a medication or medical condition.

Dinitial =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1

...
αm

β1
...

βn−m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. . .

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1

...
αm

β1
...

βn−m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

If D has a dataset that is formatted differently, it is clear how to transform
any dataset into this format. The only intricacy of this transformation is that
all values in the vector must be integer valued, while real medical datasets also
contain both text and real-number values. For the most part, this problem can
be easily solved while only losing a little granularity in the data. Real-number
values can be scaled and rounded such that the information is still rich enough
to convey meaning. Text data can either be automatically binned, adding a β
value for each possible value of that text field, or can be manually translated
into a integer scale as appropriate.

104 G. Kaptchuk et al.

4.2 Data Binning

Data binning beings with D dividing the range of each data entry αi into con-
tinuous disjoint bins {βαi

1 , βαi
2 , . . . , βαi

bi
}, where the number of bins bi is chosen

separately for each αi. D then inserts a new row into the data set for each βαi
j

and sets the βαi
j = 1 containing the value for αi for each αi. For example, if αi

represents age, D might create βαi
j as 5 year bins from 0 to 100. A patient of

age 37 would have βαi
8 = 1 and βαi

j = 0 ∀j �= 8.
The increased number of bins for each α give researchers greater granularity

of possible computations but also increases the size of the dataset. Because
this dataset will be prepared only once, the data owner chooses the maximum
possible granularity for all researchers at once. Many fields, like age or income,
have natural bin sizes while other fields will be completely at the discretion of
the data owner.

4.3 Integrity Check Embedding and Encryption

The FHE scheme used in encrypting the dataset should include Smart-
Vercauteren plaintext packing. This property allows a vector of plaintext val-
ues to be encrypted into a single ciphertext and all operations are computed
entry-wise. The length l of the plaintext vectors is determined by the various
parameters to the FHE scheme, but in general we will consider vectors of about
1000 values.

Each plaintext vector contains values from a single row of the database (i.e.
a specific α or β from multiple patients). Each vector begins l

2 values from the
dataset, in the order listed in the dataset. Thus, the first ciphertext will be an
encryption of the α1 entry from the first l

2 patient record; the second will be
the α1 entries from the next l

2 patient records, and so on. For each such vector,
D embeds the tools to allow for rapid verification. D selects a random value π
and a random permutation Φ, both to be used for all vectors in the D. For each
entry e in the vector v, D computes e′ = πe mod p, where p is a prime and a
parameter to the FHE scheme, and appends that value to v. Next, D appends a
different random value k to the end of each vector and records k for each vector.
Finally, D applies Φ it to all vectors in D.

Φ
(

α1
1 πα1

1 α2
1 πα2

1 α2
1 πα2

1 . . . α
l
2
1 πα

l
2
1 k

)

To encrypt the dataset, D runs FHEKeyGen() to generate a public key pk and
a secret key sk. Each permuted vector is then encrypted under sk and the entire
encrypted data set is released to researchers, along with pk. In the scheme we
use, the evaluation key is the same as the public key, but if another scheme with
a separate evaluation key were to be substituted, the evaluation key would be
released to the researcher instead.

Outsourcing Medical Dataset Analysis: A Possible Solution 105

4.4 Researcher Computation

Once the new data set D∗ has been published, a researcher R prepares a tran-
script T of the steps of some operation they want to perform over D∗. Imagine
R wants to compute the average age of death of patients with a certain disease
who are also taking a certain medication. To compute this value, R uses the β
associated with the disease and the β associated with the medication to include
only patients with both characteristics when summing age of death.

∑

d∈D∗
(β1

i × β2
i × αj)

∑

d∈D

β1
i × β2

i

While machine learning style analysis has been growing more popular among
the research community, computing more simple metrics like counts, correlations,
and linear regressions are still the main methods of conducting computational
analysis. All of these techniques can clearly be implemented using the same
filter and sum method above. For example, a simple linear regression between
the variables x1 and x2 can be computed as

x2 = ax1 + b

Such that a and b can be calculated as

a =
∑

x2−b
∑

x1
n b = n

∑
x1x2−∑ x1

∑
x2

n
∑

x2
1−(
∑

x2)2

where n is the number of samples in the dataset. Clearly all of these summations
are easy to compute. Because of the data binning process, a researcher can also
restrict their analysis to certain cohorts, focusing their attention on, for instance,
subsets of the socioeconomic ladder or only more urgent hospital admittances.

4.5 Verification

When D receives the result of R’s computation, he runs the verification algorithm
Verify(T,m∗). It is important that the multiplicative depth of the transcript can
be easily extracted; we denote the multiplicative depth d.

Verify(T,m∗) takes a transcript T and some encrypted vector c as input. The
goal of the verification algorithm is to quickly decide if the steps taken in T
would result in the vector c, returning 1 if it is the result vector and 0 if it is
not. The verification algorithm is as follows:

1. m = Decrypt(c)
2. Compute φ−1(m)
3. For each plaintext value a in φ−1(m) make sure the corresponding verification

value is πd−1a, where d can be learned from T
4. Perform the computation described in T over the random tags in each vector

and make sure it matches the tag of φ−1(v)
5. Return 1 if steps 3 and 4 both pass, otherwise return 0

106 G. Kaptchuk et al.

While running the verification algorithm is constant in the computation time
because the random tags must be computed, it is still much quicker and less
memory intensive than running the computation itself. There is a single value
for k in each vector, so the runtime will be at least 1

l , where l is length of each
plaintext vector.

If the verification algorithm returns 1, D strips out all values associated with
the verification process before the data is put through the differential privacy
process. In this way, the permutation, the random tag, and π all stay secret and
the adversarial researcher gains no advantage once they perform a single valid
computation. If the algorithm returns a 0, D must assume R is attempting to
circumvent the encryption on the data. A cheating researcher is banned from
further use of the system and their results immediately discarded.

4.6 Additive Noise

One of the goals of our construction is to make it difficult for a malicious
researcher to extract information about an individual while performing a legit-
imate analysis. Because of the verification algorithm, we can show that it is
difficult to gain information by cheating on computation. To ensure that it is
difficult to gain information from legitimate analysis, we introduce differential
privacy as the final step in the process. To this end, D adds noise sampled from a
laplacian distribution with variance equal to the sensitivity of the function com-
puted, where sensitivity is defined in Appendix C. This method has been shown
to ensure differential privacy for single queries in previous works [17]. There have
been no constructions for imposing differential privacy when an adversary can
make any number of queries.

5 Security Analysis

It is clear that an adversarial researcher cannot directly access the plaintext data
because the encryption scheme is semantically secure. We must give a heuristic
argument that it is impossible for the system to leak unintended information
when decrypting queries. This model is odd because it allows for limited decryp-
tion queries even though the underlying encryption scheme is not CCA2. The
goal of our security analysis is to determine if it is possible for an adversarial
researcher to gain information about the contents of the dataset besides the
answer to the exact query specified in the transcript. Because it is difficult to
characterize every kind of attack that a researcher might mount to learn about
an individual in the population, we must ensure that there has been no deviation
whatsoever from the supplied transcript.

In order to formalize our argument about the security of our scheme against
information leakage, we begin by creating a security game. Unlike traditional
games in the cryptographic setting, we do not allow an adversarial researcher to
continue accessing the system once they have been caught attempting to cheat
the system. In modern systems, it is common for the researcher to sign documents

Outsourcing Medical Dataset Analysis: A Possible Solution 107

making them liable for large sums of money if they are noticed attempting to
recover the private information of a patient. Currently, these agreements are
enforced by human log auditors. We borrow this notion and include it in our
security game. The goal of the adversary is to cheat undetected; if their cheating
is detected they are banned from use of the system and heavily fined (Fig. 1).

1 : (x, F) ← Client()

2 : (π, r) ← Server(x, F)

3 : y ← Verify(π, r)

4 : if y = 1 :

5 : return Decrypt(r)

6 : else :

7 : return ⊥

1 : T ← Select(T)

2 : D∗ ← Encrypt(D)

3 : c ← A(T, D∗)

4 : y ← Verify(T, c)

5 : if y = 1 :

6 : return Decrypt(r)

7 : else :

8 : return ⊥

Fig. 1. Left: Traditional verifiable computation game. Right: Our updated version of
this game

The traditional game for verifiable information is between a client, correspond-
ing to the data owner, and a server, corresponding to the researcher. The client
chooses some function F , usually represented in circuit form, and an input x.
The server is then charged with computing F (x) and proving that the computa-
tion was done honestly. We modify this game slightly to allow an adversary to select
their own function, represented as a transcript, from a family of acceptable tran-
scripts T. We put some minimal limitations on T, but additional limitation can be
imposed by each individual data owner as needed. Valid transcripts must have the
following properties:

1. The first level of computation must be performed within a single patient
vector and the same computation must be performed on each patient vector.

2. The results of each such computation must be combined in a way such that
the result of T when computed over the dataset is a single value (or a constant
number of values with respect to the size of the dataset).

3. Results of the computation, including the processing of the results vector,
must be independent of the order of vectors in the dataset.

The first property should ensure that a researcher doesn’t combine β’s from
one patient with α’s from another patient. If a researcher somehow learns about
the contents of the record for a single patient and learns its location in the
dataset, it should be impossible for them to leverage that information to com-
promise the privacy of another patient. Similarly, we require that all of the
results of the computations on individual are combined into a single result. This
prevents an adversarial researcher submitting a transcript that simply decrypts

108 G. Kaptchuk et al.

patient vectors directly. Finally, the order of the vectors in the dataset should
not impact the final results. Because the result of a computation over the cipher-
text will yield a result vector instead of a single value, shuffling the order of the
patient vectors will likely affect the individual values in the results vector but
will have no impact on the sum (or product, as appropriate).

It is known to be hard to impose security policies on queries. In order to
impose this specific set of security policies, the researcher is required to state
their transcript in two pieces, (1) the computation to be done on each patient
vector and (2) the method used to combine the results of each patient vector.
Because there are no limitations on the valid kinds of computations that can be
done within a single patient vector and we require that the method for combining
vector results must be written in a vector independant way, any transcript that
can be written in this form is valid.

We show that with our construction, the probability of creating a transcript
T and ciphertext m∗ that verify but were not generated honestly is bounded by
the probability of guessing the random permutation Φ, specifically the location of
the random tag k in the permuted vector. We assume the adversary has submit-
ted a transcript-message pair which passes the verification algorithm, specifically
recomputation of T over the random tags only. One of two things must be true:
(1) the computation was done honestly or (2) some of the vectors used in the
computation were altered. In the first case, clearly there is no unintended infor-
mation leakage; only the answer to the adversaries exact, legitimate query has
been decrypted. If some of the vectors were altered, there are two possibilities.

1. In a given vector j < |v| values of the vector were altered. Given that Φ is
unknown to the adversary

Pr[Successful Edit of j elements] = Pr[Editing k]
+ Pr[Not editing k] × Pr[Edit results in format]

=
j

|v| +
|v| − j

|v|

⎛

⎜
⎝1 −

(|v|
j

)

(|v|
2
j
2

)

⎞

⎟
⎠ < Pr[guessing location of k]

2. All values in some vector were edited without editing the tag k. In the worst
case, an adversary has all elements of the vector besides k properly formatted
(i.e. the contents of another vector in the dataset). The probability of switch-
ing out the contents of vector with the contents of another without editing
the k is 1

|v| .

Therefore, in all cases, the probability of an adversarial researcher computing
some m without following T properly is bounded by the probability of finding
k in the randomly permuted vector. We assume that the length of the vector
is roughly around 1000, so 1

|v| ≈ 1
1000 . If this probability of being caught is too

low in the eyes of the data owner, additional k’s can be added to the vector.
Each additional k must also be avoided when editing an existing vector, so the

Outsourcing Medical Dataset Analysis: A Possible Solution 109

chance of correcting identifying all k’s in the vector goes down by approximately
a multiplicative factor of 1

1000 for each additional k.

6 Implementation

We implemented the above construction to measure its practical feasibility. To
ensure that a medical dataset could be meaningfully transformed into the proper
format, we processed NY State’s public hospital discharge dataset from 2012 [32].
The dataset comprises 2.5 million patient encounters, recording data including
facility information, patient demographics, patient complaint, and medical code
information. While our system can scale to be used with datasets of this size,
discussions with members working in the medical dataset analysis indicated that
most researcher do analysis on smaller datasets of around 100,000 patient vec-
tors. In order to test the practicality of our system, we chose to test on this
normal cohort size.

The NY State dataset contained data in the form of text, integers and
real-valued numbers. We transformed the dataset into the format described in
Sect. 4.2. Some fields, like length of stay and total charges, mapped cleanly into
the construction; while there were minor choices to be made regarding the gran-
ularity of the bins and how we wanted to round the decimal values to integers,
the process was very intuitive. Other fields, like admit day of week and APR
risk of mortality were less obvious. We chose to map each day of the week to
a separate β value. In the original dataset, APR risk of mortality was assigned
values like “Minor” and “Major”. We chose to create a scale such that the lowest
rating was a 0 and then each increasing level of risk was one above the previous
level. Additionally we mapped each possible value of this field to its own β value.
Through this process, the initial dataset, which was 100,000 vectors of length
39, was transformed into a dataset in which each vector was 912 elements long.

We encrypted large portions of the dataset for testing purposes. We chose not
to encrypt the entire dataset because of space concerns, but we did encrypt 50
rows of the dataset for trial purposes. When stored naively, these 50 encrypted
rows take a total of 752 GB, consuming approximately 7 MB per ciphertext.
The key information and encryption context was stored in a separate file which
was 16 GB. We can easily cut the size of the stored data by a factor of 2 using
naive compression and there are other possible optimizations to make the storage
scheme more efficient (see Appendix E.1).

Encryption was done on consumer grade electronics, specifically a MacBook
Pro with a 2.5 GHz Intel i7 Core processor and 16 GB of RAM. The ciphertext
was written out to an external storage device over USB 3, so the efficiency of
the system was impacted severely by disk IO. We chose to set the maximum
circuit depth to 100, which would accommodate most computations. We chose a
security parameter of 80 and a prime modulo of 17389. Generating the context
and secret key for the scheme took 22.8 min. Once the context was set up, we
wrote it out to a file. To encrypt vectors, we read in the context and secret key,
which took 19 min and then each plaintext vector took 10.4 s to encrypt. We split

110 G. Kaptchuk et al.

the encryption onto two separate threads, the first thread encrypting α values
and the second encrypting β values. In total, the encryption time of 50 vectors
was 30.04 h and encrypting the entire dataset would have taken 584 h. Note that
all the times recorded were when operations are performed linearly and without
any optimizations (Fig. 2).

Task Key Setup Key Reading Encryption Sum per Ciphertext Sum Total
Time . m . m . s each . s each . hr

Fig. 2. Timing results

We performed a linear regression to test the runtime that a researcher might
encounter. A linear regression is a simplistic metric to compute but is a method
still often used by researchers today. Regressions and averages are basically the
same operations; averages are computed with two sums and linear regressions are
computed with four. Reading in the context and key information takes 15.2 min.
Processing a single set of ciphertexts take 33.08 s, which includes multiplying
an α ciphertext by a β ciphertext and summing it with a ciphertext that is a
running sum of all previous vectors. We performed our computation without any
parallelization, so a single sum of the linear regression took 1.98 h to compute
when done naively. To compute the full linear regression, it took approximately
9.5 h when each sum was computed consecutively.

7 Discussion

In order for this system to be useful, there must be a clear economic incentive for
the data owner. Specifically, it must be beneficial to use homomorphic encryption
rather than simply performing analysis on local plaintext and returning results
to the researcher. We can denote the time it take for the data owner to perform
a some computation on behalf of the user as tcomputation.

We consider the various costs associated with doing computation. In addition
to the time to perform the computation itself, there is tencryption, the total
computation time required to encrypt a single ciphertext, and tdecryption, the
time required to decrypt a single ciphertext. Additionally, the time to verify
that a researcher has performed their computation honestly is denoted tverify.
We can express the cost of using this system for q queries as

Costsystem =
|D|

�
2

tencryption + qtdecryption +
q∑

i=0

tiverify

Outsourcing Medical Dataset Analysis: A Possible Solution 111

whereas the cost of the data owner performing each query on the plaintext is
given as

Costnaive =
q∑

i=0

ticomputation

The computational time required to impose differential privacy on the result
of the analysis is consistent no matter the manner in which the result is computed
so it can be ignored when comparing the costs of the two alternatives. Thus the
marginal cost of system over simply performing the plaintext in the clear is given
by

Marginal Cost = Costsystem − Costnaive

=
2|D|

�
tencryption + qtdecryption +

q∑

i=0

tiverify −
q∑

i=0

ticomputation

=
2|D|

�
tencryption + qtdecryption +

q∑

i=0

ticomputation(
2
�

− 1)

Notice that the encryption time is a one-time cost incurred by the data owner;
no additional encryption processing time is required for each new query posed by
researchers. While the cost is very high, it can be amortized over many queries.
In order for the data owner to be incentivized to use this system, the marginal
cost of the system must be negative, that is

2|D|
�

tencryption + qtdecryption +
q∑

i=0

ticomputation(
2
�

− 1) < 0

Intuitively, the computational savings from just doing verification instead of
the full computation must outweigh the cost of decrypting the result vector. To
give concrete examples for the variables above, we use the same parameters from
Sect. 6. tdecryption is a constant value no matter the query; as computation gets
more complex the advantage of this system increases. With these parameters,
decrypting a ciphertext will take approximately 18 min. We note that we mea-
sured decryption time using simple consumer grade electronics and a CPU. It
may be possible to speed this process up using hardware accelerators [12,13].
In Fig. 3 we graph the marginal cost per query as a function of the decryption
time and computation time, ignoring the initial encryption time. Red areas of
the surface represent values for which the system is more efficient than the naive
strategy. We note that the efficiency of Fully Homomorphic Encryption Schemes
is likely to increase in the future, whereas the statistical tests researchers want
to perform will only grow in complexity.

Remember that tcomputation denotes the total time that it would take the data
owner to perform analysis, including system overhead like accessing data, which
can become logistically complicated. Using this system for simple operations on
small numbers of records is actually more computationally intensive for the data
owner; the computation required to decrypt the results vector would be more

112 G. Kaptchuk et al.

Fig. 3. Marginal cost as a function of computation time and decryption time. Negative
values, red, show where this system has advantages over the naive approach (Color
figure online)

than the computation itself. More complex regression methods and statistical
tests are the best candidate operations for which a data owner would gain an
advantage by using this system. Specifically, functionalities that would take more
than the approximately 18 min decryption time. One concrete example that fits
into this category is computing maximum likelihood estimators (MLE) for large
numbers of parameters over a fairly large datasets. While computing simple
estimators can be faster than decryption time, computing complicated estimators
or estimators when data independence cannot be assumed is far more expensive.
Without data independence, computing even a single iteration of MLE can be
computationally infeasible on consumer hardware. Extreme examples of these
costly functions can be seen in the field of economics, like [10]. While simple
functions like linear regression might be the most common tools for medical
researchers today, the field is growing increasingly computationally complex and
being able to outsource the computation of these costly functions to researchers
is a powerful tool.

In Sect. 1, we proposed six properties that would ensure that our system is
useful, efficient, and secure. Our system was constructed to specifically address
these properties, and we show that each one is satisfied.

Authenticity of Results. Fully homomorphic encryption guarantees addition
and multiplication operate as though there were not encryption layer present.
Because the researcher is doing the computation on internal systems, they do
not have to be worried about some mistake in computation. We assume that the
data owner is a trusted entity so there is no worry that the decrypted results do
not correspond to the ciphertext delivered by the researcher. Therefore, we can
conclude that all results from this system are authentic.

Outsourcing Medical Dataset Analysis: A Possible Solution 113

A Rich Range of Possible Analyses. We want to ensure that a researcher
can perform any operations required for their analysis. Other solutions that
manage to be both practical and cost efficient are lacking this property. The only
limitations imposed on computation in our system are the limitations on valid
transcripts. With access to addition and multiplication, most analysis techniques
can be realized including basic machine learning algorithms.

Minimal Computation on the Part of the Data Owner. In order to
maintain a secure system that can be helpful to the medical community, it is
impossible not to incur high costs. The construction presented in this work shares
that cost burden with researchers. For the purposes of this work, we restrict
our interest to researchers with access to large computational infrastructure,
like those with affiliations at universities or members of industrial researcher
teams. This infrastructure currently cannot be leveraged because of difficulties
obtaining data. In our discussions with individuals who work in the industry,
they consider it a reasonable assumption that researchers will have access to
large computational infrastructure. Most of the work we have done in our system
can utilize many cores to speed up computation. No matter the computational
requirements, most of the costs associated with computation are placed on the
researcher. The verification time is 1

1000 of the computation itself, so the system
offloads 999

1000 of the computation to the researcher, minus the time required to
decrypt the result vector.

Privacy for Individuals in the Dataset. Fully homomorphic encryption
allows for exporting the dataset does not compromise the security of any individ-
ual in the dataset. Fully homomorphic encryption guarantees semantic security,
so no information can leak from ciphertext without access to a decryption ora-
cle. Our limited decryption oracle only decrypts the results of computation that
operates over the entire dataset, meaning that it can only disclose meaningful
information about individuals if the legitimate query only operates over a very
small subset of the dataset population. When this is the case, the noise added by
the differential privacy mechanism makes it impossible to glean any information.

The main concern when sharing data is that an individual’s privacy is com-
promised and differential privacy make that impossible for a single query. While
differential privacy makes it impossible for a single query to reveal any informa-
tion about a single individual in the population, it is still theoretically possible
for a determined researcher to learn about an individual because we allow for
multiple queries. Unfortunately, there are no constructions that we are aware of
that allow for both a rich, repeated query space and multiple query differential
privacy. The notion of a privacy budget, in which a researcher has a maximum
number of queries or an upper bound on the allowable complexity of queries,
might be used to protect about this kind of attack. We choose to leave it to each
data owner if and how they would like to implement a privacy budget.

114 G. Kaptchuk et al.

Security Against Adversarial Researchers. Because we give researchers
access to a decryption oracle, it must be impossible for an adversarial researcher
to simply decrypt arbitrary ciphertext. Clearly, an insecure decryption oracle
would allow an adversary to trivially learn private information about individuals.
The verifiable computation scheme embedded into the system guarantees that
only decryption queries that operate over the entire dataset are processed. We
have argued in Sect. 5 that it is very unlikely for an adversarial researcher to
go unnoticed. Indeed, the data owner can tweak the probability of catching a
researcher until they are comfortable with the odds.

In a traditional security model, the probability of catching a cheating adver-
sary in our system is insufficient. Importantly, in our system a cheating adver-
sary is banned from ever using the system again and is heavily fined. Banning
an adversary prevents them from searching Φ for the location of k. Charging
them for attempting to cheat means it is impractical to run multiple analyses
under different identities. If there are two k’s in each vector, the probability of
a cheating researcher of not being caught is 1

106 , which may be insufficient for a
theoretical system but is sufficient for a practical one.

Practicality. Current systems suffer from two major time related weaknesses.
The first is that it takes a long time to actually begin computation. Second, if a
data owner instead chooses to leverage an analysis as a service style solution, it
becomes more difficult and time consuming for a researcher to access the data.

While fully homomorphic encryption does make running a single analysis
significantly slower, it is important to remember that the vast majority of a
researcher’s time is not spent running their program. Most of the life of a research
project is spent waiting to acquire a dataset or waiting to access a dataset. Our
system requires a one-time cost of formatting and encryption and every future
researcher will be able to use the same version of the dataset without waiting.
Because we construct a system that reduces the wait time required to access a
dataset, increasing the time it would take to actually perform the computation is
acceptable. Recall that our goal was to make the entire process of doing research
quicker, not the computation itself.

Our system also allows a researcher to perform their analysis on their own
schedule. While working on this project, we found a researcher who waited
months to get permission to use a specific dataset and was only able to run
analysis from 2 am until 8 am while the servers storing the data were not in use;
these kinds of limitations make research impossible. In our system, computation
can begin without ever interacting with the data owner.

8 Conclusion

In this work we have presented a practical system for securely outsourcing med-
ical dataset analysis. The system ensures that the researcher has the freedom to
compute a rich range of metrics over the database and get results perturbed by

Outsourcing Medical Dataset Analysis: A Possible Solution 115

the minimum amount of noise to guarantee differential privacy. Our construction
moves the burden of cost onto the beneficiaries of the analysis and also shortens
the amount of time it takes for them to acquire and analyze a dataset. Together,
these properties provide the alternative the medical research industry needs to
properly incentivize data owners to share their datasets.

A Architecture Diagram

See (Fig. 4).

Fig. 4. System overview

B Protocol Diagram

See (Fig. 5).

116 G. Kaptchuk et al.

Protocol for Medical Database Analysis

DR
D∗ = Enc(Dformatted)

D∗←−−−−−−−−−−−−
T ∈ T

c = T (D∗)
T,c−−−−−−−−−−−−→

m = Dec(c)

Vf(T, m)

r = m + L(0, σ2)
r←−−−−−−−−−−−−

Fig. 5. Protocol diagram

C Differential Privacy

There are a number of different formal definitions for differential privacy, we
choose to use the most common definition from [15–18].

Definition 1. A randomized function K gives ε-differential privacy if for all
data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K)

Pr[K(D1) ∈ S] ≤ eε × Pr[K(D2) ∈ S]

Intuitively this means that an adversary with access to arbitrary auxiliary
information can not use the function K to distinguish if the dataset in question
is D1 or D2. Because D1 or D2 differ in at most one element, an adversary learns
the same information about an individual no matter if they are in the dataset or
not. Obviously a dataset without the individual contains no information about
that individual, so an adversary can also learn nothing from a dataset with all
information about that individual.

The most practical methods for imposing differential privacy on functions
without completely destroying the usefulness of their results is introducing noise.
A number of attempts have been made to create noiseless differential privacy in
[6,14], but neither solution proves robust enough for our purposes. Additionally,
a summary of alternative differential privacy methods can be found in [25];
we chose our solution for its elegance and computational simplicity. The most
effective way to introduce noise is to add it in once the entire computation

Outsourcing Medical Dataset Analysis: A Possible Solution 117

has finished; if noise is added to the underlying data before computation, the
effects of the noise are harder to predict and control [1]. Because the noise
used is additive, this means that any noise-based differential privacy is secure
against only single queries. If many queries are allowed, the additive noise can be
cancelled out by taking an average over the multiple results. Because it is hard
to decide if two queries are equivalent, protecting against these attacks is usually
implemented with a privacy budget, in which only a certain number of queries
are allowed for each researcher. In our construction, we do not address the issue
of a privacy budget and if cancelling out the additive noise is concerning to a
data owner, they should implement a privacy budget as appropriate.

C.1 Sensitivity

The method we choose for adding differential privacy to our system is adding
noise sampled from a laplacian with variance equal to the sensitivity of the
function computed, where sensitivity is defined as

Definition 2. For g : S → Rk, the sensitivity of g is

Δg = max
S1,S2

||g(S1) − g(S2)||1

for all datasets S1, S2 differing in at most one element.

Because the noise is related directly to the maximum change that changing a
single vector could have on the function g, it is intuitive that this method would
introduce differential privacy. Computing the sensitivity of a function, at least
for the class of functions relevant to this work, can be done in constant time
with respect to the function itself.

Because the space of computation is limited by the transcript T , it is easy
to compute the sensitivity of any valid function. The limitations on transcripts
are formalized in Sect. 5. The data owner stores a patient vector with maximum
values in each α entry and a patient vector with minimum values in each α
entry. Both of these vectors have all β values set to 1. The main limitation on
transcripts is that the same computation is done to each vector. If we denote this
computation g(·), the sensitivity can be computed as |g(vmaximal)− g(vminimal)|.

D Related Solutions

D.1 Data Simulation

One current alternative solution to anonymization and analysis as a service is data
simulation. While real datasets contain information about real individuals, it is
possible to construct synthetic datasets that contain no actual people but contain
the same trends as a real data set. These synthetic datasets can then be released to
the public without fear of compromising the privacy of any of the original patients.
This is a common practice particularly in genetics research [36].

118 G. Kaptchuk et al.

Data simulation provides an interesting solution to the same problem we are
attempting to address but ultimately limits the creative abilities of researcher.
Because the data is generated using statistical methods and machine learning,
it is inherently limited by the foresight of its creators. The data is generated by
trends observed by the data owner, but if some trend is missed, the resulting
dataset will clearly not contain that trend. For this reason, synthetic data offers
a wonderful opportunity to confirm previous findings but is not the best way to
allow researchers to find some new information.

D.2 Verifiable Delegation of Computation

Verifiable computation or delegation of computation is a rich field of research
in computer science in which a client wants to outsource some computation
to an untrusted server. Because the server is an untrusted entity, the client
must be able to verify that the server has done the computation honestly. In
general, the problem assumes that the client has insufficient computational power
to perform the original computation so the verification algorithm must be less
computationally intensive than the original computation.

While there are many verifiable computation and delegation of computation
constructions that we could use in our system, including [3,5,11,20,24,27], there
are many requirements that are different for our problem than the traditional
verifiable computation problem. Firstly, in the traditional problem there are
no bounds on the computational abilities of the server; constructions prioritize
lowering the asymptotical complexity of the verification algorithm at the cost
of the running time of the server. Modern methods have found polylogarithmic
verification algorithms, but in general the runtime of the server is completely
impractical. Because we aim to construct a system that is feasible to use for
both researchers and data owners, we attempt to balance the runtime on the
two system such that neither is unreasonable.

Traditional Solution. The classic strategy for constructing a solution to the
verifiable computation problem involves generating many function inputs, all of
which look like they were selected from the same distribution [22]. One of these
inputs is the true input and the others are random inputs for which the output
is known to the client. The server computes the function over all the inputs and
returns them all to client. If all the known outputs match the previously known
outputs, the client accepts the unknown output. Otherwise, the client rejects the
output and knows that the server is untrustworthy.

The obvious problem with this solution is that it requires the client to know
many input - output pairs. Moreover, each time the client wants the server to
perform a new computation, a new set of dummy inputs is required. Clearly this
is not sustainable for a system that needs to be operational long term. Moreover,
we want the server to be able to select their own circuits to compute, as a
researcher in this work does. This model does not easily extend to accommodate
this stipulation.

Outsourcing Medical Dataset Analysis: A Possible Solution 119

PCP and SNARKs. Modern solutions to the verifiable computation problem
leverage the PCP theorem to create proofs of computation that can be checked
in polylogarithmic time. Probabilistically Checkable Proofs and Probabilistically
Checkable Arguments [26] are powerful cryptographic tools that allow a verifier
to probabilistically sample small parts of a proof and still be convinced of its
reliability. Recently, projects like [29,30,34] make the first steps towards usable
PCP constructions but still fall short of being practical tools. While verification
of a proof can be done quickly, the process of constructing the proof is pro-
hibitively slow. Because one of our goals was to create a system that could be
practically usable, we chose to not use any kind of PCP. As the constructions of
these proofs get more efficient, it may become practical to use them instead of
the proof embedding and verification methods we use in our construction.

Succinct non-interactive arguments of knowledge, or SNARKs, are an exten-
sion of zero-knowledge proofs that do not require interaction [4,7]. SNARKs
allow a verifier to be convinced that a challenger possesses a witness to some
NP statement without revealing the witness itself. Critically, they allow it to be
done without interaction. While the zero-knowledgeness property of a SNARK
would not be easily utilized, SNARKS provide another possible way to prove
work. Unfortunately, SNARKs suffer from similar weaknesses as PCPs and are
not practical enough for use or rely upon non-standard assumptions.

It is worth noting that the computation done by the researcher is assumed
to be polynomial in the size of the dataset. If we allow the researcher to be able
to compute circuits that are exponential in the size of the dataset, PCPs and
SNARKS may be the only viable solutions as our verification algorithm is propor-
tional to the computation time. Additionally, giving the researcher exponential
computational power would be problematic given that the security parameter
of the FHE scheme is almost certainly going to be smaller than the size of the
dataset.

D.3 Systems with Limited Analytics

The work that does the best job addressing the issues with medical research is by
Fiore et al. [19]. Their work creates a set of protocols to do verifiable computation
on a limited set of functions computed over BGV encrypted data. They use the
classic verifiable computation model in which a trusted client supplies both the
encrypted data and the function F to be computed. They introduce the notion of
a homomorphic, collision resistant, one-way hash function that allows the client
to quickly verify if the untrusted party correctly computed F . They are able
to guarantee amortized verification time that is either linear or constant in the
time of computation. They are able to create protocols for performing a number
of helpful functions, including linear combinations and multivariate polynomials
of degree two.

While this work provides solutions to the issues of privacy, practicality and
allows for the outsourcing of cost, it does not provide the flexibility required by
medical researchers. While their scheme is more efficient for linear combinations,
the limitations of only being able to compute multivariate polynomials of degree

120 G. Kaptchuk et al.

two or univariate polynomials of higher degree renders their construction unsuit-
able for the needs of researchers. The examples cited in our implementation were
already using higher order multiplication than would be supported in their work
and our examples are still reasonably simple.

Another similar work is [35], in which the authors investigate the practicality
of calculating statistical metrics over encrypted data. Their results of overall
positive and similar to our findings. Additionally, the space of operations in their
experiments are similar to our experiments. While this work provides a good
start towards outsourcing medical analysis, they lack verifiable computation, a
critical component given an untrusted researcher.

D.4 Personalized Medicine

Some work has been done utilizing the analysis as a service model for person-
alized medicine, in which a patient uploads their data to a service provider to
learn some metric about their health. In [8] a system for using homomorphi-
cally encrypted data to allow the owner of a proprietary algorithm to compute
a patient’s risk of heart disease without learning about the patient. A similar
system is [2], in which medical units can access genomic, clinical, and environ-
mental data to compute risk metrics for a patient. The computational require-
ments from the FHE scheme for this problem setting are far lower than in our
problem setting. The circuits computed are of lower complexity and the number
of datapoints are fewer. Most importantly, computation in these system are done
only over a single patient’s information making the threat vectors different.

E Optimization and Future Work

E.1 Ciphertext Compression

We utilize the ciphertext I/O in the HELib to write our ciphertexts to file.
While HELib provides efficient ciphertext operations, it stores its ciphertexts
extremely inefficiently. The coefficients on the polynomials are all written as
ascii numbers separated by spaces. To store ciphertext more efficiently, these
coefficients can be stored in some binary form and then compressed. We chose
to store all ciphertext in a single file for simplicity, but to minimize the size of the
file a researcher would have to download, all ciphertexts containing values from
a given row of the dataset should be stored in a compressed file. This storage
scheme allows a researcher to pick and choose exactly what subset of the data
is important to their query.

E.2 Multithreading

Much of the computation done by the researcher can be completely parallelized.
Because the same operation must be done on each patient vector before the
results of those computations can be combined, each of the vector operations

Outsourcing Medical Dataset Analysis: A Possible Solution 121

must be completely independent. When illustrating the viability of our system,
we did no parallelization whatsoever, so all timing results are worst case. To
optimize efficiency, each set of ciphertext can be processed in parallel and then
combined pairwise in a tree structure. Additionally, the one-time cost of encrypt-
ing the dataset can also benefit from parallelization. Each row in the dataset can
be formatted and encrypted independently.

E.3 Future Improvements to FHE

The efficiency of this system is directly tied to the efficiency of the underlying
FHE scheme. We have seen tremendous strides in the efficiency of FHE since its
initial construction in 2009. While we cannot anticipate the rate at which FHE
will improve, it is reasonable to assume that we will see better constructions of
FHE in the near future. Although we leverage the Smart-Vercauteren vectors
in our construction, if future implementations do not support SIMD ciphertext
operations, similar strategies can be used to bind many plaintext values together
so verification can be done quickly.

References

1. Adam, N.R., Worthmann, J.C.: Security-control methods for statistical databases:
a comparative study. ACM Comput. Surv. 21(4), 515–556 (1989)

2. Ayday, E., Raisaro, J.L., McLaren, P.J., Fellay, J., Hubaux, J.-P.: Privacy-
preserving computation of disease risk by using genomic, clinical, and environmen-
tal data. Presented as part of the 2013 USENIX workshop on health information
technologies, USENIX, Berkeley, CA (2013)

3. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on out-
sourced data. Cryptology ePrint Archive, Report 2013/469 (2013). http://eprint.
iacr.org/

4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Snarks for C: ver-
ifying program executions succinctly and in zero knowledge. Cryptology ePrint
Archive, Report 2013/507 (2013). http://eprint.iacr.org/

5. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. Cryptology ePrint Archive, Report 2011/132 (2011). http://eprint.
iacr.org/

6. Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless data-
base privacy. Cryptology ePrint Archive, Report 2011/487 (2011). http://eprint.
iacr.org/2011/487

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. Cryp-
tology ePrint Archive, Report 2011/443 (2011). http://eprint.iacr.org/

8. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted med-
ical data. Technical report MSR-TR-2013-81, September 2013

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) 3rd Innovations in
Theoretical Computer Science, ITCS 2012, Cambridge, Massachusetts, USA,
8–10 January 2012, pp. 309–325. Association for Computing Machinery (2012)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2011/487
http://eprint.iacr.org/2011/487
http://eprint.iacr.org/

122 G. Kaptchuk et al.

10. Christakis, N.A., Fowler, J.H., Imbens, G.W., Kalyanaraman, K.: An empirical
model for strategic network formation. Working Paper 16039, National Bureau of
Economic Research, May 2010

11. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. Cryptology ePrint Archive, Report 2010/241
(2010). http://eprint.iacr.org/

12. Cousins, D., Rohloff, K., Sumorok, D.: Designing an FPGA-accelerated homomor-
phic encryption co-processor. IEEE Trans. Emerg. Top. Comput. (2016)

13. Dai, W., Sunar, B.: cuHE: a homomorphic encryption accelerator library. In:
Pasalic, E., Knudsen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 169–
186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29172-7 11

14. Duan, Y.: Privacy without noise. In: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM 2009, New York, NY, USA, pp.
1517–1520. ACM (2009)

15. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4 1

16. Dwork, C., Lei, J.: Differential privacy and robust statistics. In: Mitzenmacher, M.
(ed.) 41st Annual ACM Symposium on Theory of Computing, Bethesda, Maryland,
USA, May 31–June 2, 2009, pp. 371–380. ACM Press (2009)

17. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

18. Dwork, C., Smith, A.: Differential privacy for statistics: what we know and what
we want to learn. J. Priv. Confidentiality 1, 135–154 (2009)

19. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2014, New York, NY, USA, pp. 844–855. ACM
(2014)

20. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: out-
sourcing computation to untrusted workers. Cryptology ePrint Archive, Report
2009/547 (2009). http://eprint.iacr.org/

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st Annual ACM Symposium on Theory of Computing, Bethesda,
Maryland, USA, May 31–June 2, 2009, pp. 169–178. ACM Press (2009)

22. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 425–440. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45353-9 31

23. Halevi, S., Shoup, V.: Helib. http://shaih.github.io/HElib/
24. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-

putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 15

25. Ji, Z., Lipton, Z.C., Elkan, C.: Differential privacy and machine learning: a survey
and review. CoRR, abs/1412.7584 (2014)

26. Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 9

27. Narayan, A., Feldman, A., Papadimitriou, A., Haeberlen, A.: Verifiable differential
privacy. In: Proceedings of the Tenth European Conference on Computer Systems,
EuroSys 2015, New York, NY, USA, pp. 28:1–28:14. ACM (2015)

http://eprint.iacr.org/
https://doi.org/10.1007/978-3-319-29172-7_11
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/11681878_14
http://eprint.iacr.org/
https://doi.org/10.1007/3-540-45353-9_31
http://shaih.github.io/HElib/
https://doi.org/10.1007/978-3-540-30576-7_15
https://doi.org/10.1007/978-3-642-03356-8_9

Outsourcing Medical Dataset Analysis: A Possible Solution 123

28. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: IEEE Symposium on Security and Privacy, SP 2008, pp. 111–125. IEEE (2008)

29. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical veri-
fiable computation. Cryptology ePrint Archive, Report 2013/279 (2013). http://
eprint.iacr.org/

30. Setty, S.T.V., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument sys-
tems for outsourced computation practical (sometimes). In: ISOC Network and
Distributed System Security Symposium - NDSS 2012, San Diego, California, USA,
5–8 February 2012. The Internet Society (2012)

31. Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Cryptology
ePrint Archive, Report 2011/133 (2011). http://eprint.iacr.org/2011/133

32. SPARCS: Hospital inpatient discharges (sparcs de-identified) (2012). https://
health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/
u4ud-w55t

33. Vaikuntanathan, V.: Computing blindfolded: new developments in fully homomor-
phic encryption (tutorial). In: Ostrovsky, R. (ed.) 52nd Annual Symposium on
Foundations of Computer Science, Palm Springs, California, USA, 22–25 October
2011, pp. 5–16. IEEE Computer Society Press (2011)

34. Wahby, R.S., Setty, S., Howald, M., Ren, Z., Blumberg, A.J., Walfish, M.: Effi-
cient ram and control flow in verifiable outsourced computation. Cryptology ePrint
Archive, Report 2014/674 (2014). http://eprint.iacr.org/

35. Wu, D., Haven, J.: Using homomorphic encryption for large scale statistical analy-
sis (2012)

36. Yuan, X., Miller, D., Zhang, J., Herrington, D., Wang, Y.: An overview of popu-
lation genetic data simulation. J. Comput. Biol. 19(1), 42–54 (2012)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2011/133
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t
http://eprint.iacr.org/

Homomorphic Proxy Re-Authenticators
and Applications to Verifiable Multi-User Data

Aggregation

David Derler1(B), Sebastian Ramacher1, and Daniel Slamanig2

1 IAIK, Graz University of Technology, Graz, Austria
{dderler,sramacher}@iaik.tugraz.at

2 AIT Austrian Institute of Technology, Vienna, Austria
daniel.slamanig@ait.ac.at

Abstract. We introduce the notion of homomorphic proxy re-
authenticators, a tool that adds security and verifiability guarantees
to multi-user data aggregation scenarios. It allows distinct sources to
authenticate their data under their own keys, and a proxy can trans-
form these single signatures or message authentication codes (MACs) to
a MAC under a receiver’s key without having access to it. In addition,
the proxy can evaluate arithmetic circuits (functions) on the inputs so
that the resulting MAC corresponds to the evaluation of the respective
function. As the messages authenticated by the sources may represent
sensitive information, we also consider hiding them from the proxy and
other parties in the system, except from the receiver.

We provide a general model and two modular constructions of our
novel primitive, supporting the class of linear functions. On our way, we
establish various novel building blocks. Most interestingly, we formally
define the notion and present a construction of homomorphic proxy re-
encryption, which may be of independent interest. The latter allows users
to encrypt messages under their own public keys, and a proxy can re-
encrypt them to a receiver’s public key (without knowing any secret key),
while also being able to evaluate functions on the ciphertexts. The result-
ing re-encrypted ciphertext then holds an evaluation of the function on
the input messages.

1 Introduction

Proxy re-cryptography [11] is a powerful concept which allows proxies to trans-
form cryptographic objects under one key to cryptographic objects under another

The full version of this paper is available as IACR Cryptology ePrint Archive Report
2017/086. All authors have been supported by EU H2020 project Prismacloud,
grant agreement no. 644962. S. Ramacher has additionally been supported by EU
H2020 project Credential, grant agreement no. 653454.
Work done while Daniel Slamanig was still at IAIK, Graz University of Technology,
Graz, Austria.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 124–142, 2017.
https://doi.org/10.1007/978-3-319-70972-7_7

Homomorphic Proxy Re-Authenticators and Applications 125

key using a transformation key (a so called re-key). In particular, proxy re-
encryption has shown to be of great practical interest in cloud scenarios such as
data storage [12,16], data sharing [49], publish-subscribe [15] as well as cloud-
based identity management [41,42,47,50]. In contrast, other proxy re-primitives,
and in particular proxy re-signatures (or MACs), seem to unleash their full
potential not before considering them in combination with homomorphic prop-
erties on the message space. Interestingly, however, this direction has received
no attention so far. To this end, we introduce the notion of homomorphic proxy
re-authenticators (HPRAs), which allows distinct senders to authenticate data
under their own keys, and an evaluator (aggregator) can transform these single
signatures or message authentication codes (MACs) to a MAC under a receiver’s
key without knowing it. Most importantly, the aggregator can evaluate arith-
metic circuits (functions) on the inputs so that the resulting MAC corresponds
to the evaluation of the respective function. Furthermore, we investigate whether
we can hide the input messages from the aggregator. On the way to solve this, we
formally define the notion of homomorphic proxy re-encryption (HPRE). Data
aggregation is the central application of our framework, but it is not limited to
this application.

Motivation. Data aggregation is an important task in the Internet of Things
(IoT) and cloud computing. We observe a gap in existing work as the important
issue of end-to-end authenticity and verifiability of computations on the data
(aggregation results) is mostly ignored. We address this issue and propose a
versatile non-interactive solution which is tailored to a multi-user setting. The
additional authenticity features of our solution add robustness to errors occurring
during transmission or aggregation even in the face of a non-trusted aggregator.

Multi-User Data Aggregation. Assume a setting where n senders, e.g., sensor
nodes, regularly report data to some entity denoted the aggregator. The aggre-
gator collects the data and then reports computations (evaluations of functions)
on these data to a receiver. For example, consider environmental monitoring of
hydroelectric plants being located in a mountainous region, where small sen-
sors are used for monitoring purposes. Due to the lack of infrastructure (e.g.,
very limited cell coverage) sensors are not directly connected to the Internet and
collected data is first sent to a gateway running at the premise of some telecom-
munication provider. This gateway aggregates the data and forwards it to some
cloud service operated by the receiver.

Obviously, when the involved parties communicate via public networks, secu-
rity related issues arise. Apart from achieving security against outsiders, there
are also security and privacy related issues with respect to the involved parties.

In general, we identify three main goals. (1) End-to-end authenticity, i.e., pro-
tecting data items from unauthorized manipulation and preserving the source
authenticity. (2) Concealing the original data from the aggregator and the
receiver, and, even further, concealing the result of the computation from the
aggregator. Clearly, in (2) we also want to conceal data from any outsider.
(3) Establishing independent secret keys for the involved parties so that they
do not share a single secret. Latter facilitates a dynamic setting.

126 D. Derler et al.

Below, we present such an aggregation scenario, discuss why straightforward
solutions fall short, and sketch our solution. Then, we discuss the problems
popping up when we require stronger privacy guarantees and show how our
primitives help to overcome these issues.

Authenticity and Input Privacy. In our first scenario, the n senders each hold
their own signing key and within every period sender i reports a signed data
item di to the aggregator. The aggregator must be able to evaluate functions
f ∈ F (where F is some suitable class of functions, e.g., linear functions) on
d1, . . . , dn so that a receiver will be convinced of the authenticity of the data
and the correctness of the computation without fully trusting the aggregator
(recall the end-to-end authenticity requirement). Moreover, although the inputs
to the aggregator are not private, we still want them to be hidden relative to
the function f , i.e., so that a receiver only learns what is revealed by f and
d̂ = f(d1, . . . , dn), as a receiver might not need to learn the single input values.

A central goal is that the single data sources have individual keys. Thus, we
can not directly employ homomorphic signatures (or MACs). Also the recent con-
cept of multikey-homomorphic signatures [25,26,33] does not help: even though
they allow homomorphic operations on the key space, they do not consider trans-
formations to some specific target key.1 With HPRAs we can realize this, as the
aggregator (who holds re-keys from the senders to some receiver) can transform
all the single signatures or MACs to a MAC under the receiver’s key (with-
out having access to it). Moreover, due to the homomorphic property, a MAC
which corresponds to the evaluation of a function f on the inputs can be com-
puted. The receiver can then verify the correctness of the computation, i.e., that
d̂ = f(d1, . . . , dn), and the authenticity of the used inputs (without explicitly
learning them) using its independent MAC key.

Adding Output Privacy. In our second scenario, we additionally want data pri-
vacy guarantees with respect to the aggregator. This can be crucial if the aggre-
gator is running in some untrusted environment, e.g., the cloud. We achieve this
by constructing an output private HPRA. In doing so, one has to answer the
question as how to confidentially provide the result of the computation to the
receiver and how to guarantee the authenticity (verifiability) of the computation.
We tackle this issue by introducing a HPRE where the homomorphism is com-
patible to the one of the HPRA. The sources then additionally encrypt the data
under their own keys and the aggregator re-encrypts the individual ciphertexts
to a ciphertext under a receiver’s key and evaluates the same function f as on the
MACs on the ciphertexts. This enables the receiver to decrypt the result d̂ using
its own decryption key and to verify the MAC on d̂ together with a description
of the function f . In addition, we use a trick to prevent public verifiability of the
signatures from the single data sources, as public verifiability potentially leaks
the signed data items which trivially would destroy output privacy.

1 While the homomorphic properties might allow one to define a function mapping to
a target key, it is unclear whether handing over the description of such a function to
a proxy would maintain the security requirements posed by our application.

Homomorphic Proxy Re-Authenticators and Applications 127

Contribution. Our contributions in this paper can be summarized as follows.

– We introduce the notion of homomorphic proxy re-authenticators (HPRA).
Our framework tackles multi-user data aggregation in a dynamic setting. For
the first time, we thereby consider independent keys of the single parties, the
verifiability of the evaluation of general functions on the authenticated inputs
by the sources, as well as privacy with respect to the aggregator.

– As a means to achieve the strong privacy requirements imposed by our secu-
rity model, we formally define the notion of homomorphic proxy re-encryption
(HPRE), which may be of independent interest.

– We present two modular constructions of HPRA schemes for the class Flin of
linear functions, which differ regarding the strength of the provided privacy
guarantees. On our way, we establish various novel building blocks. Firstly,
we present a linearly homomorphic MAC which is suitable to be used in
our construction. Secondly, to achieve the stronger privacy guarantees, we
construct a HPRE scheme for linear functions. All our proofs are modular in
the sense that we separately prove the security of our building blocks; our
overall proofs then build upon the results obtained for the building blocks.
Thus, our building blocks may as well easily be used in other constructions.

Related Work. Subsequently, we review related work. As our focus is on non-
interactive approaches, we omit interactive approaches where clients download
all the data, decrypt them locally, compute a function, and send the results back
along with a zero-knowledge proof of correctness (as, e.g., in [24]).

Proxy Re-Cryptography. Proxy re-encryption (PRE) [11] allows a semi-trusted
proxy to transform a message encrypted under the key of some party into a
ciphertext to the same message under a key of another party, where the proxy
performing the re-encryption learns nothing about the message. This primitive
has been introduced in [11], further studied in [30] and the first strongly secure
constructions have been proposed by Ateniese et al. in [5]. Boneh et al. construct
PRE in the symmetric setting [14]. Follow-up work focuses on even stronger (IND-
CCA2 secure) schemes (cf. [17,39,43,44]). Since we, however, require certain
homomorphic properties, we focus on IND-CPA secure schemes (as IND-CCA2
security does not allow any kind of malleability). In previous work by Ayday
et al. [7], a variant of the linearly homomorphic Paillier encryption scheme and
proxy encryption in the sense of [30] were combined. Here, the holder of a key
splits the key and gives one part to the proxy and one to the sender; with the
drawback that the secret key is exposed when both collude. We are looking for
proxy re-encryption that is homomorphic, works in a multi-user setting but is
collusion-safe and non-interactive, i.e., re-encryption keys can be computed by
the sender using only the public key of the receiver without any interaction
and a collusion of sender and proxy does not reveal the receiver’s key. Also
note that, as our focus is on practically efficient constructions, we do not build
upon fully homomorphic encryption [27], which allows to build HPRE using
the rather expensive bootstrapping technique. In concurrent work Ma et al.
[40] follow this approach and propose a construction of a PRE scheme with

128 D. Derler et al.

homomorphic properties which additionally achieves key privacy. They build
upon [28] using the bootstrapping techniques in [4] and apply some modifications
for key privacy. While their construction can be seen as a HPRE in our sense,
they do not formally define a corresponding security model and we are not aware
of a suitable formalization for our purposes.

Proxy re-signatures, i.e., the signature analogue to proxy re-encryption, have
been introduced in [11] and formally studied in [30]. Later, [6] introduced
stronger security definitions, constructions and briefly discussed some applica-
tions. However, the schemes in [6] and follow up schemes [38] do not provide
a homomorphic property and it is unclear how they could be extended. The
concept of homomorphic proxy re-authenticators, which we propose, or a related
concept, has to the best of our knowledge not been studied before.

Homomorphic Authenticators. General (non-interactive) verifiable computing
techniques (cf. [48] for a recent overview) are very expressive, but usually pro-
hibitive regarding proof computation (proof size and verification can, however,
be very small and cheap respectively). In addition, the function and/or the data
needs to be fixed at setup time and inputs are not authenticated. Using homo-
morphic authenticators allows evaluations of functions on authenticated inputs
under a single key (cf. [19] for a recent overview). They are dynamic with respect
to the authenticated data and the evaluated function, and also efficient for inter-
esting classes of functions. Evaluating results is typically not more efficient than
computing the function (unless using an amortized setting [8,21]). Yet, they
provide benefits when saving bandwidth is an issue and/or the inputs need to
be hidden from evaluators (cf. [22,32]). Computing on data authenticated under
different keys using so called multi-key homomorphic authenticators [25,26,33],
has only very recently been considered. Even though they are somewhat related,
they are no replacement for what we are proposing in this paper.

Aggregator-Oblivious Encryption (AOE). AOE [45,46] considers data provided
by multiple producers, which is aggregated by a semi-honest aggregator. The
aggregator does not learn the single inputs but only the final result. Follow-up
work [10,31,34] improved this approach in various directions. Furthermore, [23]
introduced a method to achieve fault tolerance, being applicable to all previous
schemes. There are also other lines of work on data aggregation, e.g., [18,36],
[29,37]. Very recently, [35] combined AOE with homomorphic tags to additionally
provide verifiability of the aggregated results. Here, every user has a tag key and
the aggregator additionally aggregates the tags. Verification can be done under a
pre-distributed combined fixed tag key. Their approach is limited to a single func-
tion (the sum) and requires a shared secret key-setting, which can be problematic.

In all previous approaches it is impossible to hide the outputs (i.e., the aggre-
gation results) from the aggregator. In contrast to only hiding the inputs, we
additionally want to hide the outputs. In addition, we do not want to assume
a trusted distribution of the keys, but every sender should authenticate and
encrypt under his own key and the aggregator can then perform re-operations
(without any secret key) to the receiver.

Homomorphic Proxy Re-Authenticators and Applications 129

2 Preliminaries

Unless stated otherwise, all algorithms run in polynomial time and return a
special symbol ⊥ on error. By y ← A(x), we denote that y is assigned the output
of the potentially probabilistic algorithm A on input x and fresh random coins
(we may also use sans serif font to denote algorithms). Similarly, y ←R

S means
that y is assigned a uniformly random value from a set S. If a and b are strings,
a‖b is the concatenated string and �a‖b means extending the vector �a with element
b. For a sequence of vectors (�vi)i∈[n] of length �, we use f((�vi)i∈[n]) to denote the
element-wise application of the function f , i.e., f((�vi)i∈[n]) := (f(vi1)i∈[n], . . . ,
f((vi�)i∈[n])). We let [n] := {1, . . . , n} and let Pr[Ω : E] denote the probability
of an event E over the probability space Ω. A function ε(·) : N → R≥0 is called
negligible, iff it vanishes faster than every inverse polynomial, i.e., ∀ k : ∃ nk :
∀ n > nk : ε(n) < n−k. A polynomial function is denoted by poly(·).

Let G1 = 〈g〉, G2 = 〈ĝ〉, and GT be cyclic groups of prime order q. A paring
e : G1 × G2 → GT is an efficiently computable, bilinear, non-degenerate map.
For simplicity we present our results in the (symmetric) Type-1 setting where
G1 = G2. We stress that there are tools [1,3] to automatically translate them to
the more efficient (asymmetric) Type-3 setting. Henceforth we use BG to denote
a description of a bilinear group and use boldface letters to denote elements in
GT . We formally define bilinear group generation and the required computational
hardness assumptions in the full version.

Linearly Homomorphic MACs. Our definition is inspired by [2] and cov-
ers homomorphic MACs for the family of linear function classes {F lin

pp}, further
referred to as HOM-MAC.

Definition 1 (HOM-MAC). A HOM-MAC is a tuple (P,G,S, C,V) of algorithms
defined as:

P(κ, �) : Takes a security parameter κ and an upper bound � on the vector length
as input and outputs public parameters pp, determining the message space
M�, function class F lin

pp containing functions f : (M�)n → M�, as well as a
tag space being exponentially large in κ, where �, n ≤ poly(κ).

G(pp) : Takes the public parameters pp as input and outputs a secret key sk.
S(sk, �v, id, τ) : Takes a MAC key sk, a vector �v, an identifier id, and a tag τ as

input, and outputs a MAC μ.
C(pp, f, (μi)i∈[n]) : Takes public parameters pp, a function f ∈ Flin and a sequence

of valid MACs (μi)i∈[n] on vectors (�vi)i∈[n] as input, and outputs a MAC μ
on �v = f((�vi)i∈[n]).

V(sk, �v, μ, τ, (idi)i∈[n], f) : Takes a MAC key sk, a vector �v, a MAC μ, a tag τ , a
sequence of identifiers (idi)i∈[n], and a function f ∈ Flin as input, and outputs
a bit.

A linearly homomorphic MAC is required to be correct and unforgeable.
Formal definitions are presented in the full version.

Proxy Re-Encryption. A proxy re-encryption (PRE) scheme is an encryption
scheme that allows a proxy to transform a message m encrypted under public

130 D. Derler et al.

key rpkA of party A into a ciphertext to m under rpkB for another party B, so
that the proxy learns nothing about m. A PRE scheme is called non-interactive if
party A can produce a re-encryption key from A to B locally by having access to
its private key and only B’s public key, collusion-safe if the proxy colluding with
either of the parties can not recover the other parties private key, unidirectional
if a re-encryption key only allows transformations in one direction (e.g., from A
to B), and single-use if one ciphertext can be transformed only once. For our
formal definitions, we largely follow [5].

Definition 2 (PRE). A PRE is a tuple (P,G, �E , �D,RG,RE) of algorithms,
where �E = (E i)i∈[2] and �D = (Di)i∈[2], which are defined as follows:

P(1κ) : Takes a security parameter κ and outputs parameters pp.
G(pp) : Takes parameters pp and outputs a key pair (rsk, rpk).
RG(rskA, rpkB) : Takes a secret key rskA and a public key rpkB and outputs a

re-encryption key rkA→B.
E i(rpk,m) : Takes a public key rpk and a message m and outputs a ciphertext c.

RE(rkA→B , cA) : Takes a re-encryption key rkA→B and a ciphertext cA under
rpkA, and outputs a re-encrypted ciphertext cB for rpkB.

Di(rsk, c) : Takes a secret key rsk and a ciphertext c, and outputs m.

A PRE scheme needs to be correct. This notion requires that for all security
parameters κ ∈ N, all honestly generated parameters pp ← P(1κ), all key pairs
(rskA, rpkA) ← G(pp), (rskB , rpkB) ← G(pp), all re-encryption keys rkA→B ←
RG(rskA, rpkB), all messages m it holds with probability one that

∀ i ∈ [2] ∃ j ∈ [2] : Dj(rskA, E i(rpkA,m)) = m, and

∃ i ∈ [2] ∃ j ∈ [2] : Dj(rskB ,RE(rkA→B , E i(pkA,m))) = m.

Thereby i and j determine the level of the ciphertexts. We will henceforth use
the following semantics: first-level ciphertexts (E1) cannot be re-encrypted by a
proxy, whereas second-level ciphertexts (E2) can be re-encrypted.

In addition, a PRE needs to be IND-CPA secure. We, henceforth, only require
a relaxed IND-CPA notion which we term IND-CPA−. It is clearly implied by the
original IND-CPA notion from [5] (some oracles are omitted and the adversary
only gets to see a second-level ciphertext).

Definition 3 (IND-CPA−). A PRE is IND-CPA− secure, if for all PPT adver-
saries A there is a negligible function ε(·) such that

Pr

⎡
⎢⎢⎣
pp ← P(1κ), b ←R {0, 1}, (skt, pkt) ← G(pp),
(skh, pkh) ← G(pp), rkt→h ← RG(skt, pkh),
(m0,m1, st) ← A(pp, pkt, pkh, rkt→h),
c ← E2(mb, pkt), b� ← A(st, c)

: b = b�

⎤
⎥⎥⎦ ≤ 1/2 + ε(κ).

We remark that RG as defined in [5] also takes the target secret key to cover
interactive schemes. As we only deal with non-interactive ones, we omit it.

Homomorphic Proxy Re-Authenticators and Applications 131

3 Homomorphic Proxy Re-Authenticators

We introduce homomorphic proxy re-authenticators (HPRAs) and rigorously for-
malize a suitable security model. Our goal is to obtain a flexible framework with
various possible instantiations. Accordingly, our definitions are rather generic.
We stress that both the source and receiver re-key generation, besides the secret
key of the executing party, only require public inputs, i.e., are non-interactive.

Definition 4 (HPRA). A homomorphic proxy re-authenticator (HPRA) for a
family of function classes {Fpp} is a tuple of PPT algorithms (Gen,SGen,VGen,
Sign,Verify,SRGen,VRGen,Agg,AVerify), where Verify is optional. They are
defined as follows:

Gen(1κ, �) : Takes security parameter κ and vector length � and outputs param-
eters pp, determining the message space M�, function class Fpp containing
functions f : (M�)n → M�, as well as a tag space being exponentially large
in κ, where �, n ≤ poly(κ).

SGen(pp) : Takes parameters pp as input, and outputs a signer key (id, sk, pk).
VGen(pp) : Takes parameters pp, and outputs a MAC key mk and auxiliary

information aux.
Sign(sk, �m, τ) : Takes a signer secret key sk, a message vector �m, and a tag τ as

input, and outputs a signature σ.
Verify(pk, �m, τ, σ) : Takes a signer public key pk, a message vector �m, a tag τ ,

and a signature σ as input, and outputs a bit b.
SRGen(ski, aux) : Takes a signer secret key ski, some auxiliary information aux,

and outputs a re-encryption key rki.
VRGen(pki,mk, rki) : Takes a signer public key pki and a MAC key mk, as well

as a re-encryption key rki as input, and outputs an aggregation key aki.
Agg((aki)i∈[n], (σi)i∈[n], τ, f) : Takes n aggregation keys (aki)i∈[n], n signatures

(σi)i∈[n], a tag τ , and a function f ∈ Fpp as input, and outputs an aggregate
authenticated message vector Λ.

AVerify(mk, Λ, ID, f) : Takes a MAC key mk, an aggregate authenticated message
vector Λ, n identifiers ID = (idi)i∈[n], and a function f ∈ Fpp. It outputs a
message vector and a tag (�m, τ) on success and (⊥,⊥) otherwise.

Security Properties. Below we define the oracles, where the public param-
eters and the keys generated in the security games are implicitly available to
the oracles. While most oracle definitions are fairly easy to comprehend and
therefore not explicitly explained, we note that the RoS oracle is used to model
the requirement that signatures do not leak the signed data in a real-or-random
style. The environment maintains the initially empty sets HU and CU of hon-
est and corrupted users (CU is only set in the output privacy game). Further,
it maintains the initially empty sets S, RK and AK of signer, re-encryption and
aggregation keys, and an initially empty set SIG of message-identity pairs.

SG(i) : If S[i] �= ⊥ return ⊥. Otherwise run (idi, ski, pki) ← SGen(pp), set S[i] ←
(idi, ski, pki), and, if i /∈ CU set HU ← HU ∪ {i}. Return (idi, pki).

132 D. Derler et al.

SKey(i) : If i /∈ HU return ⊥. Otherwise return S[i].
Sig((ji)i∈[n], (�mi)i∈[n]) : If S[ji] = ⊥ for any i ∈ [n], or there exists u, v ∈ [n], u �=

v so that ju = jv, return ⊥. Otherwise sample a random tag τ and compute
(σji

← Sign(S[ji][2], �mi, τ))i∈[n], set SIG[τ] ← SIG[τ] ∪ {(�mi, S[ji][1])} for
i ∈ [n], and return (σji

)i∈[n] and τ .
RoS((ji)i∈[n], (�mi)i∈[n], b) : If S[ji] = ⊥ or ji ∈ CU for any i ∈ [n] return ⊥.

Otherwise sample τ uniformly at random and if b = 0 compute (σji
← Sign(

S[ji][2], �mi, τ))i∈[n]. Else choose (�ri)i∈[n] ←R (M�)n where M is the message
space and compute (σji

← Sign(S[ji][2], �ri, τ))i∈[n]. Finally, return (σji
)i∈[n].

SR(i) : If S[i] = ⊥ ∨ RK[i] �= ⊥ return ⊥. Else, set RK[i] ← SRGen(S[i][2], aux)
and return RK[i].

VR(i) : If S[i] = ⊥ ∨ RK[i] = ⊥ ∨ AK[i] �= ⊥ return ⊥. Else, set AK[i] ← VRGen(
S[i][3],mk, RK[i]).

VRKey(i) : Return AK[i].
A((σji

)i∈[n], (ji)i∈[n], τ, f) : Check validity of all σji
, whether f ∈ Fpp, whether

SIG[τ] = ⊥, and return ⊥ if any check fails. Further, check whether there
exists u, v ∈ [n], u �= v so that ju = jv and return ⊥ if so. Obtain (akji

)i∈[n]

from AK and return ⊥ if AK[ji] = ⊥ for any i ∈ [n]. Set SIG[τ] ← ⋃
i∈[n]{(�mji

,

S[ji][1])} and return Λ ← Agg((akji
)i∈[n], (σji

)i∈[n], τ, f).

We require a HPRA to be correct, signer unforgeable, aggregator unforgeable,
and input private. We formally define those notions below. Intuitively, correct-
ness requires that everything works as intended if everyone behaves honestly.

Definition 5 (Correctness). A HPRA for a family of function classes {Fpp} is
correct, if for all κ, for all � ≤ poly(κ), for all pp ← Gen(1κ, �) determining Fpp,
for all n ≤ poly(κ), for all ((idi, ski, pki) ← SGen(pp))i∈[n], for all (mk, aux) ←
VGen(pp), for all (�mi)i∈[n], for all τ , for all (σi ← Sign(ski, �mi, τ))i∈[n], for
all (aki ← VRGen(pki,mk,SRGen(ski, aux)))i∈[n], for all f ∈ Fpp, for all Λ� ←
Agg((aki)i∈[n], (σi)i∈[n], τ, f) it holds that (Verify(pki, �mi, τ, σi) = 1)i∈[n] and that
AVerify(mk, Λ�, ID, f) = 1, where we sometimes omit to make the domains of the
values over which we quantify explicit for brevity.

Signer unforgeability requires that, as long as the aggregator remains honest,
no coalition of dishonest signers can produce a valid aggregate authenticated
message vector Λ with respect to function f ∈ Fpp so that Λ is outside of
the range of f evaluated on arbitrary combinations of actually signed vectors.
Aggregator unforgeability is the natural counterpart of signer unforgeability,
where the aggregator is dishonest while the signers are honest.2

2 It is impossible to consider both, signers and aggregators, to be dishonest at the
same time, as such a coalition could essentially authenticate everything. This is in
contrast to the setting of proxy re-encryption, where it makes sense to model security
in the face of receivers colluding with the proxy.

Homomorphic Proxy Re-Authenticators and Applications 133

Definition 6 (T-Unforgeability). Let T ∈ {Signer,Aggregator}. A HPRA for
family of function classes {Fpp} is T-unforgeable, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr

⎡
⎢⎢⎢⎢⎣

pp ← Gen(1κ, �),
(mk, aux) ← VGen(pp),
(Λ�, ID�, f�) ← AOT(pp, aux),
(�m, τ) ← AVerify(mk, Λ�, ID�, f�)

:

�m �= ⊥ ∧ f� ∈ Fpp ∧
0 < n, � ≤ poly(κ) ∧(

� (�mj)j∈[n] : (∀ j ∈ [n] :
(�mj , id

�

j) ∈ SIG[τ]) ∧
f�((�mj)j∈[n]) = �m

)

⎤
⎥⎥⎥⎥⎦

≤ ε(κ),

where OT := {SG(·),SKey(·),SR(·),VR(·),A(·, ·, ·)} for T = Signer and OT :=
{SG(·),Sig(·, ·),SR(·),VR(·),VRKey(·)} for T = Aggregator.

Input privacy captures the requirement that an aggregate authenticated mes-
sage vector does not leak more about the inputs to f as the evaluation result
and the description of f would leak on their own.

Definition 7 (Input Privacy). A HPRA for a family of function classes {Fpp}
is input private if for all κ ∈ N, for all � ≤ poly(κ), for all pp ← Gen(1κ, �)
determining Fpp, for all f ∈ Fpp implicitly defining n, for all tags τ , and for all
(�m11, . . . , �mn1) and (�m12, . . . , �mn2) where f(�m11, . . . , �mn1) = f(�m12, . . . , �mn2),
for all (mk, aux) ← VGen(pp), for all ((ski, pki) ← SGen(pp))i∈[n], (aki ← SRGen(
ski, aux,VRGen(pki,mk)))i∈[n], the following distributions are identical:

{Agg((aki)i∈[n], (Sign(ski, �mi1, τ))i∈[n], τ, f)},

{Agg((aki)i∈[n], (Sign(ski, �mi2, τ))i∈[n], τ, f)}.

Additionally, a HPRA may provide output privacy. It models that the aggre-
gator neither learns the inputs nor the result of the evaluation of f .

Definition 8 (Output Privacy). A HPRA for a family of function classes
{Fpp} is output private, if for all PPT adversaries A there is a negligible function
ε(·) such that:

Pr

⎡
⎢⎢⎣
pp ← Gen(1κ, �), (CU, st) ← A(pp), b ←R {0, 1},
(mk, aux) ← VGen(pp),O ← {SG(·),SKey(·),
RoS(·, ·, b),SR(·),VR(·),VRKey(·)},
b∗ ← AO(aux, st)

: b = b∗

⎤
⎥⎥⎦ ≤ 1/2 + ε(κ).

4 An Input Private Scheme for Linear Functions

Now we present our first HPRA for the family of linear function classes {F lin
pp}.

The main challenge we face is to construct a signature scheme with an associated
HOM-MAC scheme, where the translation of the signatures under one key to a
MAC under some other key works out. Since we believe that our HOM-MAC may
as well be useful in other settings we present it as a standalone building block
and then proceed with our full construction, where HOM-MAC is used as a

134 D. Derler et al.

P(κ, �) : Run BG ← BGGen(1κ), fix H : Zq → G, choose (gi)i∈[�] ←R (G∗)�, and return
pp ← (BG, H, (gi)i∈[�], �).

G(pp) : Choose α ←R Zp and return sk ← (pp, α).

S(sk, �v, id, τ) : Parse sk as (pp, α) and return μ ← e(H(τ ||id) · ∏
j∈[�] g

vj

j , gα).

C(pp, f, (μi)i∈[n]) : Parse f as (ωi)i∈[n] and return μ ← ∏
i∈[n] μ

ωi
i .

V(sk, �v, μ, τ, (idi)i∈[n], f) : Parse sk as (pp, α), f as (ωi)i∈[n], and output 1 if the fol-

lowing holds, and 0 otherwise: μ = e(
∏

i∈[n] H(τ ||idi)ωi
∏

j∈[�] g
vj

j , gα)

Scheme 1. Linearly homomorphic MAC based on [13].

submodule. Both build upon the ideas used in the signature scheme presented
in [13].

A Suitable Linearly Homomorphic MAC. We present our HOM-MAC in
Scheme 1. We can not recycle the security arguments from [13] as we require
the ability to submit arbitrary tags τ to the Sig oracle. Thus we directly prove
unforgeability.

Lemma 1 (Proven in the full version). If the bilinear DDH (BDDH)
assumption holds, then Scheme 1 is an unforgeable HOM-MAC in the ROM.

Our Input Private Construction. In Scheme 2 we present our HPRA con-
struction for the family of linear function classes {F lin

pp}. It allows to authenticate
vectors of length �, so that the same function can be evaluated per vector compo-
nent. In our application scenario we have � = 1. We allow one to parametrize our
construction with an algorithm Eval(·, ·), which defines how to compute f ∈ F lin

pp

on the message vector. When directly instantiating Scheme 2, Eval is defined as
Eval(f, (�mi)i∈[n]) := f((�mi)i∈[n]).

Theorem 1 (Proven in the full version). If HOM-MAC in Scheme 1 is
unforgeable and the eBCDH assumption holds, then Scheme 2 represents a signer
unforgeable, aggregator unforgeable and input private HPRA for the family of
linear function classes {F lin

pp} in the ROM.

5 Adding Output Privacy

An additional goal is that the aggregator neither learns the input nor the output
(output privacy). On our way to achieve this, we formally define the notion of
homomorphic proxy-re encryption (HPRE) and develop an instantiation for the
family of linear function classes {F lin

pp}. Based on this, we extend Scheme 2 to
additionally provide output privacy.

Homomorphic Proxy Re-Authenticators and Applications 135

Gen(1κ, �) : Run BG ← BGGen(1κ), fix H : Zq → G, choose (gi)i∈[�] ←R G
�, and return

pp ← (BG, H, (gi)i∈[�], �).

SGen(pp) : Choose β ←R Zq, set id ← gβ , pk ← (pp, gβ , g
1/β), sk ← (pk, β), and return

(id, sk, pk).

VGen(pp) : Choose α ←R Zq, set aux ← ∅, mk ← (pp, α) and return (mk, aux).

Sign(sk τ,m�,) : Parse sk as (((BG, H, (gi)i∈[�], �), gβ , ·), β), compute and return σ ←
(σ′ m�,), where

σ′ ←
(
H(τ ||gβ) · ∏�

i=1 g
mi
i

)β

.

Verify(pk σ,τ,m�,) : Parse pk as ((BG, H, (gi)i∈[�], �), gβ , ·), and σ as (σ′ m�, ′), and return
1 if the following holds and 0 otherwise:

e(H(τ ||gβ) · ∏�
i=1 g

mi
i , gβ) = e(σ, g) ∧

SRGen(ski, aux) : Return rki ← ∅.

VRGen(pki,mk, rki) : Parse pki as (·, ·, g1/βi), mk as (·, α), and return aki ← (g1/βi)α.

Agg((aki)i∈[n], (σi)i∈[n], τ, f) : Parse f as (ωi)i∈[n], and for i ∈ [n] parse σi as (σ′
i m�, i)

and return Λ ← (Eval(f, (� i)i∈[n]), μ, τ), where

μ ← ∏
i∈[n] e(σ

′ωi
i , aki).

AVerify(mk, Λ, ID, f) : Parse mk as (pp, α), Λ as (τ,μ,m�), ID as (gβi)i∈[n] and f as
(ωi)i∈[n] and return (τ,m�) if the following holds, and (⊥,⊥) otherwise:

μ′ =
∏n

i=1 e(g
ωi , H(τ ||gβi)) · e(∏�

i=1 g
mi
i , g)

)α

m

Scheme 2. HPRA scheme for the family of linear function families {F lin
pp} parametrized

by Eval.

5.1 Homomorphic Proxy Re-Encryption

A homomorphic proxy re-encryption scheme (HPRE) is a PRE which addition-
ally allows the homomorphic evaluation of functions on the ciphertexts. This
functionality firstly allows to aggregate messages encrypted under the same pub-
lic key, and, secondly, to transform the ciphertext holding the evaluation of a
function to a ciphertext for another entity, when given the respective proxy re-
encryption key. We stress that if the initial ciphertexts are with respect to differ-
ent public keys, then one can use the respective re-encryption keys to transform
them to a common public key before evaluating the function. More formally:

Definition 9 (HPRE). A HPRE for the family of function classes {Fpp} is a
PRE with an additional evaluation algorithm EV.

136 D. Derler et al.

EV(pp, f,�c) : This algorithm takes public parameters pp, a function f ∈ Fpp, and
a vector of ciphertexts �c = (ci)i∈[n] to messages (mi)i∈[n] all under public key
pk, and outputs a ciphertext c to message f((mi)i∈[n]) under pk.

Additionally, we require the following compactness notion (analogous to [20]).

Definition 10 (Compactness). A HPRE for the family of function classes
{Fpp} is called compact if for all pp ← P(1κ) and for all f ∈ Fpp the running time
of the algorithms �D is bounded by a fixed polynomial in the security parameter κ.

Besides the straightforward adoption of correctness, IND-CPA− remains iden-
tical (EV is a public algorithm). However, we require an IND-CPA− variant, where
the adversary may adaptively choose the targeted user. To the best of our knowl-
edge, such a notion does not exist for PRE. We introduce such a notion (termed
mt-IND-CPA−) and show that it is implied by the conventional IND-CPA notions.

Definition 11 (mt-IND-CPA−). A (H)PRE is mt-IND-CPA− secure, if for all
PPT adversaries A there is a negligible function ε(·) such that

Pr

⎡
⎢⎢⎣
pp ← P(1κ), b ←R {0, 1},
(skh, pkh) ← G(pp),O ← {G(·),RG(·)},
(m0,m1, i

�, st) ← AO(pp, pkh),
c ← E2(mb, pki�), b� ← A(st, c)

: b = b�

⎤
⎥⎥⎦ ≤ 1/2 + ε(κ),

where the environment holds an initially empty list HU. G and RG are defined as:

G(i) : If HU[i] �= ⊥ return ⊥. Otherwise, run (ski, pki) ← G(pp), set HU[i] ←
(ski, pki), and return pki.

RG(i) : If HU[i] = ⊥ return ⊥. Otherwise, set rki→h ← RG(HU[i][1], pkh) and
return rki→j.

Lemma 2 (proven in the full version). Every IND-CPA− (and thus every
IND-CPA) secure PRE also satisfies mt- IND-CPA− security.

HPREConstruction for the Family of Linear Function Classes. We state
our construction in Scheme 3. Essentially, we build upon the PRE scheme in
[5, third attempt] and turn it into a HPRE for the family of linear function
classes {F lin

pp}, henceforth referred to as HPRElin. For the desired homomorphism
we use a standard trick in the context of ElGamal-like encryption schemes: we
encode messages m ∈ Zq into the exponent and encrypt gm. Decryption then
yields m′ = gm and one additionally needs to compute m = logg m′ to obtain
m. Thus, for the schemes to remain efficient, the size of the message space
needs to be polynomial in the security parameter. While this might sound quite
restrictive, we stress that in practical settings one deals with numerical values
where messages in the order of millions to billions are by far sufficient. Thus,
this type of decryption is not a limitation and entirely practical.

As EV is a public algorithm it does not influence IND-CPA security. Thus,
our argumentation is identical to [5] and we can use the following theorem.

Homomorphic Proxy Re-Authenticators and Applications 137

P(1κ) : Run BG ← BGGen(1κ), and return pp ← BG.

G(pp) : Choose (a1, a2) ←R Z
2
q, and return (rskA, rpkA) ← ((a1, a2), (ga1 , ga2)).

RG(rskA, rpkB) : Parse rskA as (a1A, ·) and rpkB as (·, ga2B) and return rkA→B ←
(ga2B)a1A .

E1(rpk,m) : Parse rpk as (ga1 , ·), choose k ←R Zq, and return c ← (gk,gm · (ga1)k, 1)

E2(rpk,m) : Parse rpk as (ga1 , ·), choose k ←R Zq, and return c ← (gk,gm · (ga1)k, 2)

RE(rkA→B , cA) : Parse cA as (c1, c2, 2) and return c ← (e(c1, rkA→B), c2, R)

D1(rsk, c) : Parse c as (c1, c2, c3) and rsk as (a1, a2), and return gm ← c2 ·c−a1
1 if c3 = 1

and gm ← c2 · c−1/a2
1 if c3 = R.

D2(rsk, c) : Parse c as (c1, c2, 2) and rsk as (a1, a2), and return gm ← c2 · e(g, c−a1
1).

EV(pp, f,�c) : Parse f as (ω1, . . . , ωn) and �c as (ci)i∈[n], and return c ← ∏
i∈[n] c

ωi
i ,

where multiplication and exponentiation is component-wise.

Scheme 3. HPRElin based on [5, third attempt].

Theorem 2 (cf. [5]). If the eDBDH assumption holds in (G, GT) then Scheme 3
is an IND-CPA secure HPRElin.

We note that compactness of Scheme 3 (Definition 10) is easy to verify.

HPRElinfor Vectors. We extend HPRElin to vectors over Zq, while preserving the
support for re-encryption and the homomorphic properties. It turns out that we
can employ a communication efficient solution. That is, borrowing the idea of
randomness re-use from [9] and applying it to HPRElin, we can reduce the size of
the ciphertexts as long as no re-encryption is performed. Upon setup, we have
to fix a maximal length � of the message vectors. The secret and the public
keys are then of the form rsk ← (rski)i∈[�] = ((a1i, a2i))i∈[�], rpk ← (rpki)i∈[�] =
((ga1i , ga2i))i∈[�], where (a1i, a2i)i∈[�] ←R (Z2

q)
�. First and second level encryption

are defined as

E1
� (rpk, �m) := (gk, (gmi · rpki[1]k)i∈[�], 1), and

E2
� (rpk, �m) := (gk, (gmi · rpki[1]k)i∈[�], 2), respectively.

Decryption Dj
�(·, ·) of a ciphertext (c[1], (c[i + 1])i∈[�], j) is defined as D1

� (
rsk,�c) := (c[i+1] ·c[1]−rski[1])i∈[�], and D2

� (rsk,�c) := (c[i+1] ·e(c[1], g−rski[1]))i∈[�].
Re-encryption key generation is RG�(rskA, rpkB) := (((rpkB)i[2])(rskA)i[1])i∈[�].
From a second level ciphertext �cA for A and a re-encryption key rkA→B , one can
compute a ciphertext �cB for B as �cB ← RE(rkA→B ,�cA) := ((e(cA[1], rkA→B [i]),
cA[i + 1]))i∈[�]. Note that re-encrypted ciphertexts have a different form.

138 D. Derler et al.

Thus we do not need to add the level as suffix. Decryption D1
� (·, ·) for re-

encrypted ciphertexts is D1
� (rsk, (ci)i∈[�]) := (ci[2] · ci[1]−1/rski[2])i∈[�].

Theorem 3. If the eDBDH assumption holds, then the extension of HPRElin as
described above, yields an IND- CPA secure HPRElin for vectors.

Proof (sketch). IND-CPA security of the original scheme implies Theorem 3 under
a polynomial loss: using � hybrids, where in hybrid i (1 ≤ i ≤ �) the i-th
ciphertext component is exchanged by random under the original strategy in [5].

Combining the theorem above with Lemma 2 yields:

Corollary 1. The extension of HPRElin as described above yields an mt-IND-
CPA− secure HPRElin for vectors.

5.2 Putting the Pieces Together: Output Privacy

Our idea is to combine Scheme 2 with the HPRElin presented above. In doing so,
we face some obstacles. First, a näıve combination of those primitives does not
suit our needs: one can still verify guesses for signed messages using solely the
signatures, since signatures are publicly verifiable. Second, switching to a MAC
for the data sources is also no option, as this would require an interactive re-
key generation. This is excluded by our model as we explicitly want to avoid it.
Thus, we pursue a different direction and turn the signatures used in Scheme 2
into a MAC-like primitive by blinding a signature with a random element gr. An
aggregated MAC holding an evaluation of f is then blinded by gf(...,r,...), i.e.,
the receiver needs to evaluate the function f on the all blinding values from the
single sources. Now the question arises as how to transmit the blinding values to
the receiver. Using our HPRElin for vectors yields an arguably elegant solution:
by treating the randomness as an additional vector component, we can use the
re-encryption features of the HPRElin. More importantly, by executing the EV
algorithm the aggregator simultaneously evaluates the function f on the data
and on the randomness so that the receiver can directly obtain the blinding value
f(. . . , r, . . .) upon decryption.

Note on the Instantiation. Augmenting Scheme 2 to obtain Scheme 4 using
HPRElin requires an alternative decryption strategy for the vector component
containing r, as r is uniformly random in Zq and can thus not be efficiently recov-
ered. Fortunately, obtaining r ∈ Zq is not required, as gr (resp. gr) is sufficient
to unblind the signature (resp. MAC). Those values are efficiently recoverable.

Theorem 4 (proven in the full version). If Scheme 2 is signer and aggregator
unforgeable, and HPRElin for vectors is mt-IND-CPA− secure, then Scheme 4 is a
signer and aggregator unforgeable, input and output private HPRA for class Flin.

Homomorphic Proxy Re-Authenticators and Applications 139

Gen(1κ, �) : Fix a homomorphic PRE = (P,G, �E , �D,RG,RE , EV) for class Flin

and the HPRA(EV) = (Gen,SGen,VGen,Sign,Verify,SRGen,VRGen,Agg,
AVerify) from Scheme 2 such that MPRA ⊆ MPRE, run pps ← Gen(1κ, �),
ppe ← P(1κ, �+ 1), and return pp ← (pps, ppe).

SGen(pp) : Run (id, sk,pk) ← SGen(pps), (rsk, rpk) ← G(ppe), and return (id, sk,
pk) ← (id, (sk, rsk, rpk),pk).

VGen(pp) : Run (mk,aux) ← VGen(pps), (rsk, rpk) ← G(ppe), and return (mk,
aux) ← ((mk, rsk), (aux, rpk)).

Sign(sk τ,m�,) : Parse sk as (sk, ·, rpk), choose r ←R Zq, and return σ ← (σ′ ·gr,�c), where

(σ′, ·) ← Sign(sk τ,m�,) and �c ← E2
�+1(rpk m�, ||r).

SRGen(ski, aux) : Parse ski as (ski, rski, rpki) and aux as (aux, rpk). Obtain rki ←
SRGen(ski,aux) and prki ← RG(rski, rpk), and return rki ← (rki, prki).

VRGen(pki,mk, rki) : Parse pki as pki and mk as (mk, ·), obtain aki ← VRGen(pki,
mk) and return aki ← (aki, rki).

Agg((aki)i∈[n], (σi)i∈[n], τ, f) : For i ∈ [n] parse aki as (aki, (rki, prki)), σi as (σ′
i,�ci).

Output Λ ← (�c′, μ, τ), where

(�c′
i ← RE(prki,�ci))i∈[n], (�c′, μ, τ) ← Agg((aki)i∈[n], (σ′

i,�c
′
i)i∈[n], f).

AVerify(mk, Λ, ID, f) : Parse mk as (mk, rsk) and Λ as (�c, μ, τ), obtain � ′||r ←
D1

�+1(rsk,�c) and return (τ,m�) if the following holds, and (⊥,⊥) otherwise:

AVerify(mk, (μ,m� · (gr)−1, τ), ID, f) = 1

m

Scheme 4. Output private HPRA scheme for the family of linear function classes {F lin
pp}

with Flin with Eval(·, ·) := EV(pp, ·, ·)

6 Conclusion

In this paper we introduce the notion of homomorphic proxy re-authenticators.
This concept covers various important issues in the multi-user data aggregation
setting not considered by previous works. We present two provably secure and
practically efficient instantiations of our novel concept, which differ regarding
the strength of the privacy guarantees. Our schemes are modular in the sense
that they are constructed from building blocks which may as well be useful in
other settings. One important building block is the concept of homomorphic
proxy re-encryption, which we also introduce and construct in this paper.

Acknowledgements. We thank David Nuñez for his valuable comments on a draft
of this paper.

140 D. Derler et al.

References

1. Abe, M., Hoshino, F., Ohkubo, M.: Design in Type-I, run in Type-III: fast and
scalable bilinear-type conversion using integer programming. In: CRYPTO 2016
(2016)

2. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01957-9 18

3. Akinyele, J.A., Garman, C., Hohenberger, S.: Automating fast and secure transla-
tions from Type-I to Type-III pairing schemes. In: CCS 2015 (2015)

4. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

5. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

6. Ateniese, G., Hohenberger, S.: Proxy re-signatures: new definitions, algorithms,
and applications. In: CCS 2015 (2005)

7. Ayday, E., Raisaro, J.L., Hubaux, J., Rougemont, J.: Protecting and evaluating
genomic privacy in medical tests and personalized medicine. In: WPES 2013 (2013)

8. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: CCS 2013 (2013)

9. Bellare, M., Boldyreva, A., Kurosawa, K., Staddon, J.: Multirecipient encryption
schemes: How to save on bandwidth and computation without sacrificing security.
IEEE Trans. Inf. Theory 53(11), 3927–3943 (2007)

10. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving
aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 21 (2016)

11. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

12. Blazy, O., Bultel, X., Lafourcade, P.: Two secure anonymous proxy-based data
storages. In: SECRYPT, pp. 251–258 (2016)

13. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1 5

14. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

15. Borceaa, C., Guptaa, A.B.D., Polyakova, Y., Rohloffa, K., Ryana, G.: Picador:
End-to-end encrypted publish-subscribe information distribution with proxy re-
encryption. Future Gener. Comp. Syst. 62, 119–127 (2016)

16. Canard, S., Devigne, J.: Highly privacy-protecting data sharing in a tree structure.
Future Gener. Comp. Syst. 62, 119–127 (2016)

17. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
CCS, pp. 185–194 (2007)

18. Castelluccia, C., Chan, A.C.F., Mykletun, E., Tsudik, G.: Efficient and provably
secure aggregation of encrypted data in wireless sensor networks. ACM Trans. Sen.
Netw. 5(3) (2009)

https://doi.org/10.1007/978-3-642-01957-9_18
https://doi.org/10.1007/978-3-642-01957-9_18
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23

Homomorphic Proxy Re-Authenticators and Applications 141

19. Catalano, D.: Homomorphic signatures and message authentication codes. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 514–519.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 29

20. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: CCS 2015 (2015)

21. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44371-2 21

22. Catalano, D., Marcedone, A., Puglisi, O.: Authenticating computation on groups:
new homomorphic primitives and applications. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 193–212. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 11

23. Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with
fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 15

24. Danezis, G., Livshits, B.: Towards ensuring client-side computational integrity. In:
CCSW 2011 (2011)

25. Derler, D., Slamanig, D.: Key-homomorphic signatures and applications to multi-
party signatures. Cryptology ePrint Archive 2016, 792 (2016)

26. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic
authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 17

27. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009
(2009)

28. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

29. Günther, F., Manulis, M., Peter, A.: Privacy-enhanced participatory sensing
with collusion resistance and data aggregation. In: Gritzalis, D., Kiayias, A.,
Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 321–336. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12280-9 21

30. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: NDSS 2003 (2003)
31. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-

series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 10

32. Lai, J., Deng, R.H., Pang, H., Weng, J.: Verifiable computation on outsourced
encrypted data. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS,
vol. 8712, pp. 273–291. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11203-9 16

33. Lai, R.W.F., Tai, R.K.H., Wong, H.W.H., Chow, S.S.M.: A zoo of homomorphic
signatures: Multi-key and key-homomorphism. Cryptology ePrint Archive, Report
2016/834 (2016)

34. Leontiadis, I., Elkhiyaoui, K., Molva, R.: Private and dynamic time-series data
aggregation with trust relaxation. In: Gritzalis, D., Kiayias, A., Askoxylakis, I.
(eds.) CANS 2014. LNCS, vol. 8813, pp. 305–320. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12280-9 20

https://doi.org/10.1007/978-3-319-10879-7_29
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-45608-8_11
https://doi.org/10.1007/978-3-642-32946-3_15
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-319-12280-9_21
https://doi.org/10.1007/978-3-642-39884-1_10
https://doi.org/10.1007/978-3-319-11203-9_16
https://doi.org/10.1007/978-3-319-11203-9_16
https://doi.org/10.1007/978-3-319-12280-9_20
https://doi.org/10.1007/978-3-319-12280-9_20

142 D. Derler et al.

35. Leontiadis, I., Elkhiyaoui, K., Önen, M., Molva, R.: PUDA – privacy and unforge-
ability for data aggregation. In: Reiter, M., Naccache, D. (eds.) CANS 2015. LNCS,
vol. 9476, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26823-1 1

36. Li, Q., Cao, G.: Efficient privacy-preserving stream aggregation in mobile sensing
with low aggregation error. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013.
LNCS, vol. 7981, pp. 60–81. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39077-7 4

37. Li, Q., Cao, G., Porta, T.F.L.: Efficient and privacy-aware data aggregation in
mobile sensing. IEEE Trans. Dep. Sec. Comput. 11(2), 115–129 (2014)

38. Libert, B., Vergnaud, D.: Multi-use unidirectional proxy re-signatures. In: CCS
2008 (2008)

39. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Trans. Inf. Theory 57(3), 1786–1802 (2011)

40. Ma, C., Li, J., Ouyang, W.: A homomorphic proxy re-encryption from lattices. In:
Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp. 353–372. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47422-9 21

41. Nuñez, D., Agudo, I.: BlindIdM: a privacy-preserving approach for identity man-
agement as a service. Int. J. Inf. Sec. 13(2), 199–215 (2014)

42. Nuñez, D., Agudo, I., Lopez, J.: Integrating OpenID with proxy re-encryption
to enhance privacy in cloud-based identity services. In: CloudCom, pp. 241–248
(2012)

43. Nuñez, D., Agudo, I., Lopez, J.: A parametric family of attack models for proxy
re-encryption. In: CSF, pp. 290–301 (2015)

44. Nuñez, D., Agudo, I., Lopez, J.: On the application of generic CCA-secure transfor-
mations to proxy re-encryption. Secur. Commun. Netw. 9(12), 1769–1785 (2016)

45. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series
with transformation and encryption. In: SIGMOD 2010 (2010)

46. Shi, E., Chan, T.H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: NDSS 2011 (2011)

47. Slamanig, D., Stranacher, K., Zwattendorfer, B.: User-centric identity as a service-
architecture for eIDs with selective attribute disclosure. In: SACMAT, pp. 153–164
(2014)

48. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (2015)

49. Xu, P., Xu, J., Wang, W., Jin, H., Susilo, W., Zou, D.: Generally hybrid proxy
re-encryption: a secure data sharing among cryptographic clouds. In: AsiaCCS, pp.
913–918 (2016)

50. Zwattendorfer, B., Slamanig, D., Stranacher, K., Hörandner, F.: A federated
cloud identity broker-model for enhanced privacy via proxy re-encryption. In: De
Decker, B., Zúquete, A. (eds.) CMS 2014. LNCS, vol. 8735, pp. 92–103. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44885-4 8

https://doi.org/10.1007/978-3-319-26823-1_1
https://doi.org/10.1007/978-3-319-26823-1_1
https://doi.org/10.1007/978-3-642-39077-7_4
https://doi.org/10.1007/978-3-642-39077-7_4
https://doi.org/10.1007/978-3-319-47422-9_21
https://doi.org/10.1007/978-3-662-44885-4_8

Cryptographic Primitives and API’s

A Provably Secure PKCS#11 Configuration
Without Authenticated Attributes

Ryan Stanley-Oakes(B)

University of Bristol, Bristol, UK
ryan.stanley@bristol.ac.uk

Abstract. Cryptographic APIs like PKCS#11 are interfaces to trusted
hardware where keys are stored; the secret keys should never leave the
trusted hardware in plaintext. In PKCS#11 it is possible to give keys
conflicting roles, leading to a number of key-recovery attacks. To prevent
these attacks, one can authenticate the attributes of keys when wrapping,
but this is not standard in PKCS#11. Alternatively, one can configure
PKCS#11 to place additional restrictions on the commands permitted
by the API.

Bortolozzo et al. proposed a configuration of PKCS#11, called the
Secure Templates Patch (STP), supporting symmetric encryption and
key wrapping. However, the security guarantees for STP given by Bor-
tolozzo et al. are with respect to a weak attacker model. STP has been
implemented as a set of filtering rules in Caml Crush, a software filter
for PKCS#11 that rejects certain API calls. The filtering rules in Caml
Crush extend STP by allowing users to compute and verify MACs and
so the previous analysis of STP does not apply to this configuration.

We give a rigorous analysis of STP, including the extension used in
Caml Crush. Our contribution is as follows:
(i) We show that the extension of STP used in Caml Crush is insecure.
(ii) We propose a strong, computational security model for configura-

tions of PKCS#11 where the adversary can adaptively corrupt keys
and prove that STP is secure in this model.

(iii) We prove the security of an extension of STP that adds support for
public-key encryption and digital signatures.

1 Introduction

In high-risk environments, particularly where financial transactions take place,
secret and private keys are often stored inside trusted, tamper-proof hardware
such as HSMs and cryptographic tokens. Then ordinary host machines, which
could be compromised by malware or malicious users, can issue commands to the
trusted hardware via an interface called a cryptographic API. The operations
that can be carried out using the API often include key wrapping, which is the
encryption of one key under another to enable the secure exchange and storage of

R. Stanley-Oakes—The author is supported by an EPSRC Industrial CASE stu-
dentship.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 145–162, 2017.
https://doi.org/10.1007/978-3-319-70972-7_8

146 R. Stanley-Oakes

keys. The API can also be used to add new keys to the trusted hardware, either
by issuing a key generation command or unwrapping a wrapped key. The API
refers to each key by a handle, which has attributes used to specify the intended
use of the key. By wrapping and unwrapping, it is possible for different handles,
each with different attributes, to point to the same key. This could cause a key
to have conflicting roles within the API.

The study of cryptographic APIs was initiated by Bond and Anderson in
2001, when they described attacks against ATMs and prepayment utility meters,
exploiting weaknesses in the interfaces to the trusted hardware, rather than in
the cryptographic algorithms performed by the hardware: “The basic idea is that
by presenting valid commands to the security processor, but in an unexpected
sequence, it is possible to obtain results that break the security policy envisioned
by its designer” [3].

While Bond and Anderson identified vulnerabilities in particular devices
with bespoke APIs, Clulow then used their approach to find devastating key
recovery attacks against a widely-used, generic API [6]. This API, called
PKCS#111 is independent of the hardware with which it communicates and was
designed to enable interoperability between the trusted hardware from different
manufacturers [10].

In 2008, Delaune et al. presented a formal, Dolev–Yao style model of
PKCS#11 and used model-checking tools to find new attacks [7,8]. Bortolozzo
et al. then developed an automated tool called Tookan, built on the model by
Delaune et al., that found and executed attacks against real hardware devices
using PKCS#11 [4]. As a result of these attacks, an important research question
has been to find a configuration of PKCS#11, i.e. a set of restrictions on the
commands that can be issued to the API, such that the API is secure with these
restrictions.

Bortolozzo et al. suggested a configuration of PKCS#11, supporting just
symmetric encryption and symmetric key wrapping, called the Secure Tem-
plates Patch (STP) [4]. In STP, newly-generated keys are separated into encryp-
tion/decryption keys and wrapping/unwrapping keys, while keys imported by
unwrapping can be used for encryption and unwrapping, but not decryption or
wrapping. STP has been implemented as a set of filtering rules in Caml Crush,
a software filter that rejects certain PKCS#11 calls [1]. However, the filtering
rules in Caml Crush allow users to compute and verify MACs, which is not cap-
tured by the model from Delaune et al. [7,8]. Therefore the previous analysis of
STP does not apply to what is implemented in Caml Crush. Furthermore, while
STP is resistant to attack by Tookan, there has not yet been a formal proof of
security for this configuration, which is the problem we address here.

1 PKCS#11 is actually the name of the cryptographic standards document that
describes the API, which is called Cryptoki. However, it is conventional to refer
to the API itself as PKCS#11.

A Provably Secure PKCS#11 Configuration 147

1.1 Our Contribution

As a first result, we show that the filtering rules in Caml Crush are not sufficient
to secure PKCS#11. The attacker is assumed to have knowledge of how the filter
operates, but can only interact with the API via the filter. Two sets of filtering
rules are offered; the first set is trivially broken if the attacker can read the source
code of the filter. The second set of rules is designed to emulate STP, but offers
MAC functionality that was not modelled by Delaune et al. and hence is not
exploited by Tookan. We show that the filtering does not enforce a separation
between encryption and MAC keys. We also show that there exist encryption
and MAC schemes that are individually secure, but completely insecure when
the same keys are used for both primitives. Therefore STP, as implemented in
Caml Crush, is only safe to use if one is certain that the encryption and MAC
schemes are jointly secure.

Our second contribution is a computational security model for configurations
of PKCS#11, where certain API calls are rejected according to the policy in the
configuration. The policy may determine, for example, what attributes newly-
generated or newly-imported keys can have. Our model captures the use of both
symmetric and asymmetric variants of encryption and signing primitives within
the API. We say that an API is secure if, for any cryptographic primitives used
by the API, encrypting and signing data using the API is as secure as using the
primitives themselves in isolation. This is strictly stronger than the model from
Delaune et al., where an API is considered secure if the attacker cannot learn
the values of honestly-generated secret keys [7,8]. Moreover, the adversary in
our model is allowed to adaptively corrupt certain keys.

Our main result is a PKCS#11 configuration that is provably secure in our
model. We first show that STP as proposed by Bortolozzo et al. is not secure;
STP allows the same keys to be used for encryption and unwrapping, so an
attacker can encrypt (rather than wrap) their own key, import this key by
unwrapping and use this key to encrypt or sign data. Since keys used by the
API could have been generated by the adversary, there can be no guarantees
for data protected by the API, even if the cryptographic primitives are secure.
However, we prove that if the policy prevents the encryption (rather than wrap-
ping) of keys, then the configuration is secure. Moreover, our main result holds
for an extension of STP that supports public-key encryption and digital signa-
tures.

The proof of our main result is highly non-trivial since we allow the adversary
to adaptively corrupt keys. Adaptive corruption captures the realistic threat sce-
nario that certain keys are leaked through side-channel attacks, which, due to the
key wrapping operation, can have devastating consequences for the API. Never-
theless, most existing analyses of cryptographic APIs avoid this strong attacker
model because traditional proof techniques cannot be used; for a standard cryp-
tographic reduction, one has to know in advance which keys will be corrupted to
correctly simulate the environment of the adversary. Instead, our security proof
uses techniques from Panjwani’s proof that the IND-CPA security of encryption
implies its Generalised Selective Decryption (GSD) security [11]. This is a com-

148 R. Stanley-Oakes

plex hybrid argument where one first guesses a path, in the wrapping graph that
will be adaptively created by the adversary, from a source node (corresponding
to a key that does not appear in a wrap) to a challenge node (corresponding to
a key used for encryption of data, or signing, etc.). Then the way in which one
responds to wrap queries depends on the positions of the corresponding nodes
relative to the guessed path. To our knowledge, we are the first to adapt Pan-
jwani’s result to the API setting. A detailed discussion of related work is given
in the full version of the paper [14].

2 Preliminaries

We use the term token to refer to any trusted hardware carrying out crypto-
graphic operations. All keys are stored inside the token and the user has an API
used to issue commands to the token.

We assume the API used by the token is compliant with at least v2.20 of the
PKCS#11 standard.2 While the PKCS#11 specification distinguishes between
normal users and security officers, we conflate these roles and assume the adver-
sary can perform any operations permitted by the API. Security in this sense
automatically implies security against adversaries who can only interact with
the API as normal users or security officers.

We assume that tokens store no keys in their initial state. Then keys can
be added to the device using one of the following commands: C GenerateKey
or C GenerateKeyPair, which cause the token to generate a new key or key
pair using its own internal randomness; C UnwrapKey, which causes the token to
decrypt the supplied ciphertext and store the plaintext as a new key (without
revealing it); C CreateObject, which we used to model importing public keys
from other tokens; or C TransferKey, which we use to model an out-of-band
method for securely transferring long-term secret keys between tokens (this could
happen during the manufacturing process, for example).

The API refers to keys using handles; these are public identifiers. So, for
example, if the user issues the command C Encrypt(h,m), they expect to receive
the encryption of the message m under the key pointed to by the handle h. The
class of a key is whether it is public, private or secret. For each handle, the token
stores the corresponding key, the class of this key and its template, which is a set
of attributes that determine how the key can be used. Attributes are either set
or unset. For example, PKCS#11 mandates that the command C Encrypt(h,m)
must fail if the attribute CKA ENCRYPT is not set in the template associated to h.

In the language of PKCS#11, the value of a key is also an attribute of its
handle, and the API has to prevent the reading of this attribute if the attribute
CKA SENSITIVE is set, i.e. the API should not reveal the values of keys that are
supposed to be secret. For simplicity we say that templates do not contain the
value of keys. This way all attributes are binary and can be disclosed to the user.
2 Version 2.20 of the standard was published in 2004, and was the first to introduce

the attributes CKA TRUSTED and CKA WRAP WITH TRUSTED, which we use to prevent
key cycles.

A Provably Secure PKCS#11 Configuration 149

Accordingly we have no need for the attribute CKA SENSITIVE; all public keys
will be returned to the user at generation time and other keys can only be
revealed by corruption.

PKCS#11 allows an incomplete template to be supplied when a new handle
is created, forcing the API to choose whether to set or unset the unspecified
attributes; we simply assume that the operation fails if the template is incom-
plete. For convenience, we also assume that the template of a handle contains
the class of the corresponding key.

In PKCS#11, some attributes can be changed by the user (or by the API).
For example, perhaps the attribute CKA ENCRYPT is not initially set in the tem-
plate of some handle h pointing to the key k, but later the user wishes to use
k to encrypt data. We exclude this from our model, preferring to assume that
the intended use of all keys is known at generation time. In the language of
PKCS#11, all our attributes are sticky.

There are nine attributes relevant to our analysis, as follows:
CKA EXTRACTABLE, which we abbreviate by CKA EXTR, is used to identify those
keys that can be wrapped (in the case of private or secret keys), or given out
(in the case of public keys). CKA WRAP WITH TRUSTED, which we abbreviate by
CKA WWT, is used to identify those keys that can only be wrapped by keys with
CKA TRUSTED set. CKA TRUSTED is used to identify those keys that are consid-
ered trusted wrapping keys. CKA WRAP, CKA UNWRAP, CKA ENCRYPT, CKA DECRYPT,
CKA SIGN and CKA VERIFY are used to identify those keys that can wrap keys,
unwrap keys, encrypt data, decrypt data, sign (or MAC) data and verify signa-
tures (or MAC tags), respectively.

PKCS#11 specifies some rules, which we call the policy, about how attributes
must be used (like how the template of h must have CKA ENCRYPT set in order
for C Encrypt(h,m) to succeed). But the standard also allows manufacturers,
in their own configurations of PKCS#11, to impose additional restrictions on
how the API operates. For example, the PKCS#11 policy allows a symmetric
key to be generated with both CKA WRAP and CKA DECRYPT set, leading to the
famous wrap/decrypt attack [6]. Manufacturers should therefore disable this
command in their configuration. We assume that the policy in the manufacturer’s
configuration allows a subset of commands allowed by the PKCS#11 policy (so
that the configuration is actually compliant with the specification) and therefore
we use a single policy algorithm to capture both the standard PKCS#11 policy
and any additional restrictions, i.e. any command not rejected by our policy
algorithm is automatically allowed within PKCS#11.

3 Vulnerabilities in Caml Crush

In Caml Crush, the idea is that the interface to some trusted hardware is a
PKCS#11-compliant, but insecure, API [1]. The software is then used to filter
out API calls that could lead to attacks. This is rather like having a more restric-
tive policy within the API and so the authors adapt the PKCS#11 configurations
suggested by Bortolozzo et al. to filtering rules. Bortolozzo et al. suggested two

150 R. Stanley-Oakes

configurations of PKCS#11 that are resistant to attack by Tookan [4], both of
which are implemented in Caml Crush as sets of filtering rules [1]:

1. In the Wrapping Formats Patch (WFP), the attributes of a key are transmit-
ted as part of a wrap of the key and authenticated using a MAC.

2. In the Secure Templates Patch (STP), wrapping and encryption keys are
separated at generation time and imported symmetric keys can be used for
unwrapping and encryption, but not wrapping or decryption.

We remark that the first patch is actually a violation of the PKCS#11 stan-
dard: the standard mandates that a wrap of a key is solely the encryption of the
value of the key, i.e. the attributes of the key are not included in the output and
no MAC tag is added. Tokens whose APIs use WFP are not interoperable with
tokens using PKCS#11-compliant APIs.

Moreover, the way WFP is implemented in Caml Crush is trivially insecure.
Examining the source code, the MAC used to authenticate the attributes of the
wrapped key is computed using a key that is stored in plaintext in the con-
figuration file of the filter [2]. This is a clear violation of Kerckhoffs’ principle:
the attacker who knows how the filter is constructed (i.e. can read the source
code of the filter) can immediately circumvent the additional protection pro-
vided by the MAC and use the wrap/decrypt attack to learn the value of any
extractable secret key. The authors of Caml Crush acknowledge this vulnerabil-
ity in a comment: “We use the key configured in the filter configuration file ...
You might preferably want to use a key secured in a token”. We feel this is an
understatement of the insecurity of their solution.

We focus our attention on STP, as this is compliant with the PKCS#11
specification. Note that STP, as presented by Bortolozzo et al., only enables the
symmetric encryption, decryption, wrapping and unwrapping functions of the
API and not, for example, the MAC and verify functions [4]. The implementation
in Caml Crush adds MAC functionality to STP, but does so in a potentially
insecure way. Their filtering rules allow freshly generated symmetric keys to be
used for wrapping and unwrapping, encryption and decryption, or signing and
verifying (using a MAC scheme). Then keys imported via the unwrap command
can either unwrap and encrypt, or unwrap, sign and verify. At first glance, these
restrictions appear to maintain a separation between encryption and MAC keys,
but this is not the case. One can generate an encryption key, wrap it, and unwrap
it as a MAC key. This configuration is only secure if the encryption and MAC
schemes are jointly secure, i.e. it is safe to use the same key for both primitives.
In the full version of the paper, we show that this assumption does not always
hold [14].

4 Security Model and Assumptions

PKCS#11 supports both symmetric and asymmetric primitives for encrypt-
ing and signing data and for wrapping keys. For simplicity we will assume
that all keys and key pairs are generated using the same two algorithms KG

A Provably Secure PKCS#11 Configuration 151

and KPG. Moreover, we assume that the key wrap mechanisms use the same
encryption schemes as for encrypting data. Therefore our model of a con-
figuration of PKCS#11 is parameterised by four cryptographic primitives: a
probabilistic symmetric encryption scheme E = (KG,Enc,Dec), a probabilis-
tic public-key encryption scheme PKE = (KPG,AEnc,ADec), a MAC scheme
M = (KG,Mac,MVrfy) and a digital signature scheme S = (KPG,Sign,SVrfy).
The syntax of these primitives and the formal definitions of correctness and
security are all given in the full version of the paper [14].

The API also has an algorithm NewHandle for generating fresh handles. This
will be called when keys are imported via unwrapping or the C CreateObject
command or new keys are generated. This algorithm is assumed to be stateful so
that it never returns the same value. For each handle h returned by NewHandle,
the API stores a template h.temp and a pointer p to the token memory where the
value of the key is stored. By abuse of notation, the contents of the token memory
at p will be written h.key (even though this value is not directly accessible to
the API). The class of the key, i.e. secret, public or private, is stored in h.class.

The configuration of the API is defined by the policy. We model the policy
by the algorithm P that takes the name of the API command and the inputs to
that command as inputs, then returns 1 if this combination is permitted and 0
otherwise.

Before giving the formal security definition, we introduce a restriction which
is necessary for security and considerably simplifies the model:

Remark 1. Asymmetric key wrapping must be disabled.

Even before a formal security definition is given, it should be clear that
any mechanism for key wrapping must provide integrity as well as secrecy. If
it were not the case, then an adversary could generate their own keys, forge
wraps of these keys, unwrap them and use them to wrap honestly-generated
keys or encrypt and sign data. If this attack is possible, there can be no guar-
antees for data and keys protected by the API, since any keys used by the API
could be adversarially generated. Of course, the notion of integrity of cipher-
texts makes no sense in the public key encryption setting without the sender
needing a private key as well as a public key to encrypt. Therefore we make the
standard assumptions from the literature that all key wrapping is symmetric
and, for bootstrapping, there is an out-of-band method for securely exchanging
long-term secret keys [4,9,12,13].

4.1 Security Definition

Following [9,12,13], we give a computational, rather than symbolic, security def-
inition for a configuration of PKCS#11, where the adversary has access to a
number of oracles and plays a game. Winning the game means violating the
security of one of the cryptographic primitives used by the token. We say, infor-
mally, that a configuration of PKCS#11 is secure if using the API to encrypt

152 R. Stanley-Oakes

and sign data is as secure as encrypting and signing with the separate, individ-
ual primitives. This notion of security is similar to the one used by Cachin and
Chandran [5].

Formally, for each adversary A and each b ∈ {0, 1}, we define an experiment
APIb(A) := APIbE,M,PKE,S,P(A) where the adversary has access to a number of
oracles capturing the commands one can issue to the API, and some challenge
oracles whose responses depend on b. The oracles all first check, using the policy
P, that the command from the adversary is allowed. If this succeeds, then the
oracles perform the cryptographic operations that would be carried out by the
token. Note that our formal model conflates the roles of the API and the token,
which simplifies notation considerably, but is without loss of generality since we
know how PKCS#11-compliant APIs interact with tokens. The only thing we do
not know is how the token implements the cryptographic operations, and these
details are abstracted away in our model.

After interacting with the API oracles, the adversary returns a guess b′.
Provided that certain conditions are met whereby the adversary cannot trivially
learn b, the experiment returns b′. Otherwise, the experiment returns 0. The
advantage of A against the API is defined to be the following quantity:

AdvAPI(A) :=
∣
∣P[API1(A) = 1] − P[API0(A) = 1]

∣
∣ .

The experiment APIb is shown in Fig. 1, with the oracles available to A shown
in Figs. 2 and 3.

Experiment APIbE,M,PKE,S,P(A):
i ← 0
Chal ← ∅,Cor = {0}
W ← ∅, E ← ∅, V ← {0}
P ← ∅, K ← ∅
for all j ∈ [n],

C1[j], C∗
1 [j], C2[j], C∗

2 [j], T [j], T ∗[j], S[j], S∗[j] ← ∅
b′ ← AO

if Chal ∩ Comp �= ∅ then return 0
if ∃j ∈ [n] such that:

C1[j] ∩ C∗
1 [j] �= ∅

or C2[j] ∩ C∗
2 [j] �= ∅

or T [j] ∩ T ∗[j] �= ∅
or S[j] ∩ S∗[j] �= ∅:

then return 0
else return b′

Fig. 1. The Security Experiment APIb(A) for a cryptographic API supporting symmet-
ric and asymmetric encryption, a MAC scheme and a signature scheme. The oracles O
are defined in Figs. 2 and 3.

A Provably Secure PKCS#11 Configuration 153

Fig. 2. Oracles Representing PKCS#11 Key Management Commands and Key
Corruption

154 R. Stanley-Oakes

Oracle OC Encrypt(h, m):
if P(C Encrypt, h, m):

if h.class = secret:
return Enc(h.key, m)

if h.class = public:
return AEnc(h.key, m)

Oracle OC Decrypt(h, c):
if P(C Decrypt, h, c):

if h.class = secret:
c ← Dec(h.key, c)
C1[idx(h)] ← C1[idx(h)] ∪ {c}
return c

if h.class = private:
c ← ADec(h.key, c)
C2[idx(h)] ← C2[idx(h)] ∪ {c}
return c

Oracle OC Sign(h, m):
if P(C Sign, h, m):

if h.class = secret:
τ ← Mac(h.key, m)
T [idx(h)] ← T [idx(h)] ∪ {τ}
return τ

if h.class = private:
σ ← Sign(h.key, m)
S[idx(h)] ← S[idx(h)] ∪ {σ}
return σ

Oracle OC Verify(h, m, s):
if P(C Verify, h, m, s):

if h.class = secret:
return MVrfy(h.key, m, s)

if h.class = public:
return SVrfy(h.key, m, s)

Oracle OEnc-Challenge

b (h, m0, m1):
if P(C Encrypt, h, m0):

if P(C Encrypt, h, m1):
if |m0| = |m1|:

if h.class = secret:
Chal ← Chal ∪ {idx(h)}
c ← Enc(h.key, mb)
C∗

1 [idx(h)] ← C∗
1 [idx(h)] ∪ {c}

return c
if h.class = public:

Chal ← Chal ∪ {idx(h)}
c ← AEnc(h.key, mb)
C∗

2 [idx(h)] ← C∗
2 [idx(h)] ∪ {c}

return c

Oracle OSign-Challenge

b (h, m, s):
if P(C Verify, h, m, s):

if h.class = secret:
T ∗[idx(h)] ← T ∗[idx(h)] ∪ {s}
Chal ← Chal ∪ {idx(h)}
if b = 0 return MVrfy(h.key, m, s)
else return 0

if h.class = public:
S∗[idx(h)] ← S∗[idx(h)] ∪ {s}
Chal ← Chal ∪ {idx(h)}
if b = 0 return SVrfy(h.key, m, s)
else return 0

Fig. 3. Oracles Representing PKCS#11 Cryptographic Operations and the IND-CCA
and EUF-CMA Games

Now we explain some of the rationale behind the security game. We have
two challenge oracles OEnc-Challenge

b and OSign-Challenge
b , corresponding to confi-

dentiality (of public key and symmetric encryption) and authenticity (of signa-
tures and MACs), respectively. These oracles closely resemble the IND-CCA and
EUF-CMA games. For encryption, the bit b determines which of the messages
m0 and m1 is encrypted under the challenge key. As usual, to avoid trivial wins
we have to record the ciphertexts output by OEnc-Challenge

b and the queries made

A Provably Secure PKCS#11 Configuration 155

to the decryption oracle OC Decrypt, and check that the two sets corresponding to
the same key are disjoint. For signing and MACs, the bit b determines whether
the adversary sees the genuine result of the verification algorithm, or always sees
the bit 0 (indicating that the verification has failed). To avoid trivial wins here,
we record the signatures and tags output by OC Sign and the candidate signatures
and tags submitted to OSign-Challenge

b and check that the two sets corresponding
to the same key are disjoint.

In our model, we include an oracle OCorrupt that allows the adversary to
adaptively corrupt certain keys. This captures the situation where some keys
may be leaked, for example through side-channel attacks. Obviously, if such
keys are used by the challenge oracles, then A can trivially recover the bit b.
Moreover, if the adversary were to wrap a key under a corrupt key, then the
wrapped key must be assumed compromised, since it can be trivially recovered
by the adversary. Like corrupt keys, compromised keys are not safe for use by
the challenge oracles. Therefore we keep track of a set Comp of corrupt and
compromised keys and a set Chal of keys used by the challenge oracles, and the
experiment only returns the guess b′ from A if Comp and Chal are disjoint.

The situation is complicated by the fact that the adversary queries OCorrupt

with handles, not keys, and learns the value of the key pointed to by the handle.
But by wrapping and unwrapping a key, the adversary obtains a new handle
for the same key and clearly all handles pointing to the same key are compro-
mised by the corruption of just one of them. Therefore we keep track of which
handles point to the same key by giving them the same index idx(h) and store
which indices are compromised, rather than which handles. This is based on the
security model by Shrimpton et al. [13].

We assume that there is an authenticated channel for transmitting public
keys using the C CreateObject command. Therefore we check that any public
keys imported via OC CreateObject had at some point been honestly generated by
a token. If so, the new handle is given the same index as the handle that was
given out when the key was first generated. If not, the new handle is given index
0, which is used to represent automatically compromised keys (and therefore if
this new public key is used in the challenge oracles, the guess output by A will be
ignored). Note that we do not check that the template of the imported public key
matches the template of the key when it was first generated. This is because we
are not assuming that the attributes of keys are always authenticated. Therefore
the policy of our configuration will have to restrict the roles of imported public
keys.

Similarly, we assume there is a secure out-of-band method for transferring
long-term wrapping keys, modelled by the C TransferKey command, so we check
that keys imported via OC TransferKey were previously generated on the token. If
this check fails, the new handle is given index 0. Unlike with OC CreateObject, we
check that the template of the key matches the template it had when it was first
generated. This is because the transfer mechanism is designed for keys of the
highest privilege, so we must ensure that keys imported this way were always
intended to have this role. As a result, the transfer mechanism cannot really

156 R. Stanley-Oakes

benefit the adversary, since they can only import a key with the same value and
role as it had previously. We only include this oracle to model a system with
multiple tokens.

Finally, when a key is imported via OC UnwrapKey, we check if the wrap had been
previously generated by the token. To carry out this check, we maintain a list
W of triples (h, h′, w) such that the query OC WrapKey(h, h′) received the response
w.3 If the wrap submitted to OC UnwrapKey was indeed generated by the token, we
know the contents of the wrap, so the new handle is given the same index of
the originally wrapped handle.4 If the wrap submitted to OC UnwrapKey was not
generated by the token, then it was forged by the adversary. If the unwrapping
key is compromised, then the new handle is assumed compromised and given
index 0. This is because it is trivial to forge a wrap under a compromised key
and so we do not allow the adversary to win the security game this way. However,
if the unwrapping key is not already compromised, then the new handle is given
a fresh (non-zero) index, even though there can be no security guarantees for the
imported key. This allows the adversary to benefit from creating forged wraps
without compromising the wrapping key, which is a realistic attack. It will be
necessary for security to prove that this can never happen, using the integrity
of the wrapping mechanism.

Now we give the formal definition of the security of a PKCS#11 configura-
tion. Suppose AdvAPI(A) ≤ ε for all adversaries A running in time at most t,
making at most q oracle queries and such that the number of non-zero handle
indices used in APIb, i.e. the number of keys generated by the token or imported
into the token by forgeing a wrap under an uncompromised key, is at most n.
Then we say the API is (t, q, n, ε)-secure.

4.2 Security Assumptions

In order for an API to securely support both symmetric and asymmetric crypto-
graphic primitives, we have to assume that the encoding of keys is such that the
three key classes cannot be confused.5 More precisely, algorithms that are sup-
posed to use secret keys will automatically fail if one tries to use a public key or a
private key instead, and so on. This is necessary to avoid otherwise secure primi-
tives exhibiting insecure behaviour (such as returning the value of the key) when
used with a key of the wrong class. Moreover, when one imports a new key using
the C CreateObject command or the C UnwrapKey command, the class of the
new key will be automatically determined by the input to the command. We cap-
ture these assumptions in our formal syntax by having the keyspaces SecretKeys,
PublicKeys and PrivateKeys be disjoint sets. These assumptions mean that,

3 A real API does not need to maintain such a list; it is purely for preventing trivial
attacks in our model.

4 Actually it is given the minimal index of all wrapped handles satisfying these con-
ditions, but if the API is secure then all these indices will agree, or they will all be
in Comp.

5 In practice, the length of the bitstring could determine the class of the key.

A Provably Secure PKCS#11 Configuration 157

for example, a secure symmetric encryption scheme and a secure digital sig-
nature scheme are automatically jointly secure, but different primitives using
the same class of keys, e.g. a symmetric encryption scheme and a MAC scheme,
could still interfere with each other.

Furthermore, as explained above, the wrapping mechanism must provide
integrity (in addition to secrecy) to prevent the adversary from importing their
own keys. While we assume the wrapping mechanism authenticates the values of
keys, we do not assume that the attributes of keys are authenticated. We remark
that some wrapping mechanisms supported by early versions of PKCS#11, e.g.
LYNKS from v2.20, attempted to authenticate the values of keys by adding an
encrypted checksum to the ciphertext, which was then checked when unwrap-
ping. On the other hand, even the latest version of PKCS#11 does not explic-
itly support including and authenticating the attributes of keys when wrapping.
While we assume the use of a strong wrapping mechanism, we show how security
can be achieved without any changes to the PKCS#11 standard.

5 Secure Templates

Since we do not assume that the PKCS#11 wrapping mechanism authenticates
the attributes of keys, we have no way of knowing what the attributes of imported
keys were when the keys were first generated. This means the API must impose
attributes on imported keys regardless of user input.

Furthermore, it is very difficult to separate the roles of imported keys of
the same class without authenticated attributes. This is because forcing the
adversary to choose between templates of imported keys (such as unwrap and
encrypt or unwrap and sign/verify) does not limit the adversary at all, since
the adversary can just unwrap the same wrapped key twice with different roles.
Moreover, if one tries to prevent this attack by rejecting unwraps of a ciphertext
that has previously been unwrapped on the same token, the adversary can just
unwrap the same key on multiple tokens and use them together. The only way
to avoid this entirely is with a central log of all the operations performed on
any token, as suggested by Cachin and Chandran, which is impractical for more
than one token [5]. Since we do not assume that attributes are authenticated or
that there is a central log of all operations, our configuration must have exactly
one template for all imported keys of the same class. Under our assumption that
the three classes of keys cannot be confused, we can have a different template
for each class.

Recall that, in STP, imported secret keys can be used for encryption, but not
decryption [4]. This is because these keys may be stored under a different handle
with the ability to wrap other keys and so we must prevent the wrap/decrypt
attack. Similarly, such keys can be used for unwrapping, but not wrapping,
since they may be stored under a different handle with the ability to decrypt
ciphertexts. However, this does not prevent all the attacks that we consider: STP
is actually not secure in our model.

158 R. Stanley-Oakes

There are two reasons why we will not be able to reduce the security of
STP to the confidentiality and integrity of the underlying symmetric encryp-
tion scheme. The first is technical: STP allows the creation of key cycles, since
any key with CKA WRAP set can wrap any key with CKA EXTR set, and key cycles
cannot be modelled by standard, computational security notions for encryp-
tion. However, one can prevent key cycles using the attributes CKA TRUSTED and
CKA WWT: we allow the creation of trusted wrapping keys that are not extractable
and untrusted wrapping keys that are extractable but can only be wrapped
under trusted wrapping keys. Moreover, all imported secret keys must have
CKA WWT set, since they may be stored under a different handle as an untrusted
wrapping key.

The second security flaw is more serious. While Tookan found no attacks
against STP, this was with respect to a weak security notion that honestly-
generated keys cannot be recovered by the adversary. Our stronger security
notion requires that all keys on the token that are not trivially compromised
are safe to use for encryption and signing. This means the attacker should not
be able to import their own keys, which is why we need INT-CTXT security for
the wrapping mechanism. However, since STP allows the same keys to be used
for encryption and wrapping, the adversary could encrypt their own key and then
unwrap the ciphertext, without violating the integrity property of the wrapping
mechanism. The newly-imported key, known to the adversary, can then be used
by the encryption challenge oracle, trivially leaking the hidden bit b. To prevent
this attack, our policy must not allow the encryption (as opposed to wrapping)
of any element of SecretKeys.

Let STP+ be the PKCS#11 configuration obtained by restricting STP as
described above, thereby preventing the creation of key cycles and the encryp-
tion, rather than wrapping, of secret keys. We will extend STP+ by enabling
public-key encryption and signatures and our main result (Theorem 1) is a secu-
rity reduction for this configuration to the security of the underlying primitives.
As an immediate corollary, we see that the security of STP+ is implied by the
confidentiality and integrity of the underlying symmetric encryption scheme.

In describing STP, Bortolozzo et al. did not consider MAC functionality [4].
As mentioned in Sect. 3, the extension of STP used in Caml Crush is such that
secret keys can have both MAC and encrypt functionality. We also show in the
full version of the paper that a secure MAC scheme and a secure encryption
scheme are not always jointly secure [14]. Therefore, if we do not assume the
joint security of the encryption and MAC schemes, we cannot prove the security
of our configuration of PKCS#11 if it allows unwrapped secret keys to compute
or verify MACs. Thus there is no generically secure way to exchange MAC keys
between tokens and so we must only use (asymmetric) signatures to provide data
authenticity.

Then, since unwrapped private keys need to be used to create signatures,
such keys cannot be allowed to decrypt messages (without assuming the joint
security of public key encryption and signing). So private decryption keys must
be unextractable, meaning there is no way to safely transmit such keys between

A Provably Secure PKCS#11 Configuration 159

tokens. However we do not need to disable public-key encryption altogether, since
tokens can exchange public encryption keys over an authenticated channel and
decrypt ciphertexts using their unextractable, locally-generated private keys.

Since tokens are required to transmit public keys for encryption and verifying
signatures, it is quite possible for the adversary to use an encryption key to verify
signatures, by generating the key in one role and then re-importing it with a differ-
ent role. However, this does not affect the joint security of the encryption scheme
and the signature scheme. The verification algorithm has no way of knowing that
the key it uses was ‘intended’ as an encryption key and will function as normal.
Moreover, as the key is public there is no risk from leaking parts of the key not
needed for verification. Similarly there is no risk from encrypting data using keys
intended for signature verification. In summary, it is not necessary to authenticate
the attributes of public keys, only the values of these keys. As a result our config-
uration of PKCS#11 allows all imported public keys to have both encryption and
verification capabilities.

Bringing together this analysis, we obtain a set of attribute templates that,
without assuming the joint security of different primitives, is maximal among
those with which the API is secure:

1. Generated secret keys must have one of the following templates:
(a) TRUSTED: trusted wrapping keys that are unextractable and cannot be

used for encryption or decryption,
(b) UNTRUSTED: untrusted wrapping keys that can themselves be wrapped

under trusted wrapping keys, but cannot be used for encryption or decryp-
tion,

(c) ENC: keys that can be wrapped and used for encryption and decryption,
but cannot wrap other keys.

2. Imported secret keys have the template IMPORTSECRET: they can encrypt
data and unwrap keys, but cannot decrypt data or wrap keys. To prevent key
cycles, imported secret keys must only be wrapped under trusted wrapping
keys.

3. Only trusted wrapping keys, i.e. keys with template TRUSTED, can be trans-
ferred using the secure out-of-band mechanism C TransferKey (for bootstrap-
ping).

4. The templates of generated public and private key pairs must be one of the
following:
(a) AENC, ADEC: the public key can encrypt data and the private key can

decrypt data; neither can wrap or unwrap and the private key is not
extractable.

(b) VERIFY, SIGN: the public key can verify signatures and the private key can
create signatures; neither can wrap or unwrap and both are extractable.

5. Finally, imported public keys must have the template IMPORTPUBLIC: such keys
can encrypt data and verify signatures, but cannot wrap or unwrap keys.

In Tables 1 and 2, we define our set of secure templates with respect to the
PKCS#11 attributes CKA EXTR, CKA WWT, CKA TRUSTED, CKA WRAP, CKA UNWRAP,
CKA ENCRYPT, CKA DECRYPT, CKA SIGN, and CKA VERIFY. Any attributes from this

160 R. Stanley-Oakes

Table 1. Templates for Secret Keys (note that CKA SIGN and CKA VERIFY are always
unset). The attribute CKA TRUSTED, not shown here, is set in the template TRUSTED and
unset in all other templates.

Template Name CKA EXTR CKA WWT CKA WRAP CKA UNWRAP CKA ENCRYPT CKA DECRYPT

TRUSTED � �

UNTRUSTED � � � �

ENC � � �

IMPORTSECRET � � � �

Table 2. Templates for Public and Private Keys (note that CKA TRUSTED, CKA WRAP and
CKA UNWRAP are always unset).

Template Name CKA EXTR CKA WWT CKA ENCRYPT CKA DECRYPT CKA SIGN CKA VERIFY

AENC � �

ADEC �

SIGN � �

VERIFY � �

IMPORTPUBLIC � � �

set that are not shown in the tables, or not marked with�, are unset. The only
exception to this rule is CKA TRUSTED, which is not shown in any of the tables
due to limitations on space, but is set in the template TRUSTED and unset in all
other templates.

The policy P used in our configuration is given in Table 3. We remark that
P(C UnwrapKey, h, w, t) sometimes depends on the value of Dec(h.key, w). Since
h.key is not accessible to the API, what this means is that the API makes the
relevant decryption call to the token, receives a response, and then determines
whether or not to release the response to the user based on its value. Note that
this policy could not be achieved by simply using a filter (like Caml Crush). For
comparison, we also give the default PKCS#11 policy and the STP+ policy in
the full version of the paper [14]. One can see that our configuration is indeed
PKCS#11 compliant and STP+ is a special case of our configuration.

Let tmax be the maximum run time of any of the following operations: Enc,
AEnc, ADec, Sign, SVrfy, one call to NewHandle and one call to Dec; one call to
NewHandle and two calls to KG; and two calls to NewHandle and two calls to
KPG. Then, with the configuration presented here, we obtain our main result,
which is proved in the full version of the paper [14]:

Theorem 1. Suppose P is as defined in Table 3, E is (t, ε1)-IND-CCA-secure
and (t, ε2)-INT-CTXT secure, PKE is (t, ε3)-IND-CCA-secure and S is (t, ε4)-
EUF-CMA-secure. Then the API is (t′, q, n, ε′)-secure, where:

t′ = t − q · tmax, ε′ = n
[(

8n2 + 4n + 1
)

ε1 + 2ε2 + ε3 + ε4
]

.

A Provably Secure PKCS#11 Configuration 161

Table 3. The policy of our configuration (where a ∈ h.temp means that the attribute
a is set in h.temp)

Function Value

P(C CreateObject, pk, t)
1 if t = IMPORTPUBLIC,

0 otherwise

P(C TransferKey, k, t)
1 if t = TRUSTED,

0 otherwise

P(C GenerateKey, t)
1 if t ∈ {TRUSTED, UNTRUSTED, ENC},
0 otherwise

P(C GenerateKeyPair, t, t′)
1 if (t, t′) ∈ {(AENC, ADEC) , (VERIFY, SIGN)},
0 otherwise

P(C WrapKey, h, h′)
1 if CKA WRAP ∈ h.temp, CKA EXTR ∈ h′.temp

and if CKA WWT ∈ h′temp then CKA TRUSTED ∈ h.temp,

0 otherwise

P(C UnwrapKey, h, w, t)

1 if CKA UNWRAP ∈ h.temp and

Dec(h.key, w) ∈ SecretKeys and t = IMPORTSECRET

or Dec(h.key, w) ∈ PrivateKeys and t = SIGN,

0 otherwise

P(C Encrypt, h,m)
1 if CKA ENCRYPT ∈ h.temp and m /∈ SecretKeys,

0 otherwise

P(C Decrypt, h, c)
1 if CKA DECRYPT ∈ h.temp,

0 otherwise

P(C Sign, h,m)
1 if CKA SIGN ∈ h.temp,

0 otherwise

P(C Verify, h,m, s)
1 if CKA VERIFY ∈ h.temp,

0 otherwise

6 Conclusion and Acknowledgements

We have given a security definition for configurations of PKCS#11, where the
adversary can adaptively corrupt keys. We proved the security, in this strong
attacker model, of a configuration of PKCS#11 that extends the Secure Tem-
plates Patch from Bortolozzo et al. [4]. Unlike most existing analyses of APIs in
the literature, we do not assume the attributes of keys are authenticated when
wrapping.

Our result holds under the assumption that private, public and secret keys
cannot be confused. Moreover, since our configuration does not support asym-
metric key wrapping, we have to assume for bootstrapping that there is a secure
channel for transmitting long-term secret keys and also an authenticated channel
for transmitting public keys. We feel that these assumptions are likely to hold
in practice.

Our security proof is far from tight: the advantage of the adversary against
the API is potentially n3 times bigger than the advantage against the underlying

162 R. Stanley-Oakes

symmetric encryption scheme used for wrapping, where n is an upper-bound on
the number of distinct keys stored on the token. Whether such losses can ever
be avoided is the subject of ongoing research.

The author would like to thank Bogdan Warinschi, Martijn Stam and the
anonymous reviewers for their useful feedback on the paper.

References

1. Benadjila, R., Calderon, T., Daubignard, M.: Caml crush: a PKCS#11 filtering
proxy. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 173–
192. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16763-3 11

2. Benadjila, R., Calderon, T., Daubignard, M.: Source code for Caml Crush (2016).
https://github.com/ANSSI-FR/caml-crush. Accessed 19 Oct 2016

3. Bond, M., Anderson, R.J.: API-level attacks on embedded systems. IEEE Comput.
34(10), 67–75 (2001)

4. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing
PKCS#11 security tokens. In: Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, 4–8
October 2010, pp. 260–269 (2010)

5. Cachin, C., Chandran, N.: A secure cryptographic token interface. In: Proceedings
of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port
Jefferson, New York, USA, 8–10 July 2009, pp. 141–153 (2009)

6. Clulow, J.: On the security of PKCS #11. In: Walter, C.D., Koç, Ç.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 411–425. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6 32

7. Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11. In: Proceedings of
the 21st IEEE Computer Security Foundations Symposium, CSF 2008, Pittsburgh,
Pennsylvania, 23–25 June 2008, pp. 331–344 (2008)

8. Delaune, S., Kremer, S., Steel, G.: Formal security analysis of PKCS#11 and pro-
prietary extensions. J. Comput. Secur. 18(6), 1211–1245 (2010)

9. Kremer, S., Steel, G., Warinschi, B.: Security for key management interfaces. In:
Proceedings of the 24th IEEE Computer Security Foundations Symposium, CSF
2011, Cernay-la-Ville, France, 27–29 June 2011, pp. 266–280 (2011)

10. PKCS#11 cryptographic token interface base specification version 2.40, April 2015.
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html

11. Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21–40. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 2

12. Scerri, G., Stanley-Oakes, R.: Analysis of key wrapping APIs: generic policies,
computational security. In: IEEE 29th Computer Security Foundations Sympo-
sium, CSF 2016, Lisbon, Portugal, 27 June–1 July 2016, pp. 281–295. IEEE (2016)

13. Shrimpton, T., Stam, M., Warinschi, B.: A modular treatment of cryptographic
APIs: the symmetric-key case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 277–307. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53018-4 11

14. Stanley-Oakes, R.: A provably secure PKCS#11 configuration without authen-
ticated attributes. Cryptology ePrint Archive, Report 2017/158 (2017). http://
eprint.iacr.org/2017/134

https://doi.org/10.1007/978-3-319-16763-3_11
https://github.com/ANSSI-FR/caml-crush
https://doi.org/10.1007/978-3-540-45238-6_32
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
https://doi.org/10.1007/978-3-540-70936-7_2
https://doi.org/10.1007/978-3-662-53018-4_11
https://doi.org/10.1007/978-3-662-53018-4_11
http://eprint.iacr.org/2017/134
http://eprint.iacr.org/2017/134

A Post-quantum Digital Signature Scheme
Based on Supersingular Isogenies

Youngho Yoo1(B), Reza Azarderakhsh3(B), Amir Jalali3, David Jao1,2(B),
and Vladimir Soukharev4

1 University of Waterloo, Waterloo, Canada
{yh2yoo,djao}@uwaterloo.ca

2 evolutionQ, Inc., Waterloo, Canada
david.jao@evolutionq.com

3 Florida Atlantic University, Boca Raton, USA
{razarderakhsh,ajalali2016}@fau.edu

4 InfoSec Global, Inc., North York, Canada
Vladimir.Soukharev@infosecglobal.com

Abstract. We present the first general-purpose digital signature scheme
based on supersingular elliptic curve isogenies secure against quantum
adversaries in the quantum random oracle model with small key sizes.
This scheme is an application of Unruh’s construction of non-interactive
zero-knowledge proofs to an interactive zero-knowledge proof proposed
by De Feo, Jao, and Plût. We implement our proposed scheme on an x86-
64 PC platform as well as an ARM-powered device. We exploit the state-
of-the-art techniques to speed up the computations for general C and
assembly. Finally, we provide timing results for real world applications.

Keywords: Digital signatures · Isogenies
Post-quantum cryptography

1 Introduction

The security of most public-key cryptosystems in use today are based on the
intractability of certain mathematical problems, namely integer factorization
and discrete logarithms. However, large-scale quantum computers will be able to
efficiently solve both of these problems, posing a serious threat to modern cryp-
tography. Post-quantum cryptography is the study of classical cryptosystems
that remain secure against quantum adversaries. There are several candidate
approaches for building post-quantum cryptographic primitives: lattice-based,
code-based, hash-based, and multivariate cryptography. Recently, cryptosystems
based on supersingular elliptic curve isogenies were proposed by De Feo, Jao, and
Plût [12], who gave protocols for key exchange, zero-knowledge proof of identity,
and public key encryption. With small key sizes and efficient implementations
[8,17], isogenies provide a strong candidate for post-quantum key establishment.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 163–181, 2017.
https://doi.org/10.1007/978-3-319-70972-7_9

164 Y. Yoo et al.

Various isogeny-based authentication schemes have been proposed as well,
such as strong designated verifier signatures [20], undeniable signatures [16], and
undeniable blind signatures [19]. However, it was not known whether isogeny-
based cryptography could support general authentication. In this paper, we show
that this is indeed possible by constructing the first digital signature scheme
based on isogenies which is strongly unforgeable under chosen message attack in
the quantum random oracle model.

Our signature scheme is obtained by applying a generic transformation to the
zero-knowledge proof of identity proposed in [12]. Classically, obtaining a secure
digital signature from an interactive zero-knowledge proof can be achieved by
applying the Fiat-Shamir transform [13]. However, its classical security proof
requires certain techniques such as rewinding and reprogramming the random
oracle which do not necessarily apply in the quantum setting. Quantum rewind-
ing is possible in some restricted cases [23,25], but it has been shown to be inse-
cure in general [1]. Further, since random oracles model hash functions which,
in a real world implementation, could be evaluated in superposition by a quan-
tum adversary, we require quantum random oracles which can be queried in a
superposition of possibly exponentially many states. This makes it difficult to
observe an adversary’s queries as measuring the input disturbs the state.

Unruh [24] recently proposed a transformation which remedies these prob-
lems to produce a secure signature in the quantum random oracle model. Its
overhead is generally much larger than Fiat-Shamir – in some cases exponentially
large, making the scheme impractical. Fortunately, applying it to the isogeny-
based zero-knowledge proof incurs only twice as much computation as the Fiat-
Shamir transform, producing a workable quantum-safe digital signature scheme
with small key sizes.

Our Contributions

– We construct the first general-purpose digital signature scheme based on
supersingular elliptic curve isogenies, and prove its security in the quantum
random oracle model.

– We analyze implementation aspects of our scheme and compare parameter
sizes with various post-quantum signature schemes, showing that our scheme
achieves very small key sizes.

– We provide source code1 as well as performance results on x86-64 platforms
and on ARM devices with assembly-optimized arithmetic.

Related Work. Independently of us, Galbraith, Petit, and Silva recently pub-
lished a preprint containing two isogeny-based digital signature schemes [14].
Their second scheme, based on endomorphism rings, is completely unrelated to
our work. Their first scheme, based on the De Feo, Jao, and Plût identifica-
tion scheme, is conceptually identical to our scheme, but they present significant
space optimizations to reduce the signature size down to 12λ2 bits (or 6λ2 if
1 Source code is available at https://github.com/yhyoo93/isogenysignature.

https://github.com/yhyoo93/isogenysignature

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 165

non-repudiation is not required), compared to our signature size of 69λ2 bits.
However, we note that their signature size is for classical security level λ and as
of this writing their posted preprint contains no signature sizes for post-quantum
security, whereas our signature sizes are given in terms of post-quantum secu-
rity. Moreover, their scheme may be slower, since they use a time-space tradeoff
to achieve such small signature sizes. The performance of their scheme is not
immediately clear, since they provide no implementation results. In this work,
by contrast, we provide a complete implementation of our scheme, as well as
performance results on multiple platforms and source code for reference.

Outline. The rest of the paper is organized as follows. In Sect. 2, we give a
brief preliminary on isogeny-based cryptography and describe the interactive
zero-knowledge proof which will be used to construct our scheme. In Sect. 3, we
describe Unruh’s construction. We construct our isogeny-based digital signature
scheme and analyze its algorithmic aspects and parameter sizes in Sect. 4, and
give security proofs in Sect. 5. Performance results are provided in Sect. 6.

2 Isogeny-Based Cryptography

We consider elliptic curves over a finite field Fq. An isogeny φ : E1 → E2 is
a surjective rational map between elliptic curves which preserves the point at
infinity O. Isogenies are necessarily group homomorphisms E1(Fq) → E2(Fq)
and can be identified with their kernels. This gives a one-to-one correspondence
between isogenies and subgroups of the curve. Two curves E1 and E2 over Fq

are isogenous if and only if #E1(Fq) = #E2(Fq) [22]. The degree of an isogeny
is its degree as a rational map. For separable isogenies, as are all isogenies in
this paper, the degree is equal to the size of the kernel.

Every isogeny φ : E1 → E2 with degree d has a unique dual isogeny φ̂ : E2 →
E1 of the same degree such that φ̂ ◦ φ : E1 → E1 is the multiplication map
P �→ [d]P . The set of isogenies mapping a curve E to itself forms a ring under
pointwise addition and composition, called the endomorphism ring. A curve E is
supersingular if its endomorphism ring is isomorphic to an order in a quaternion
algebra, and ordinary otherwise. All supersingular elliptic curves over finite fields
of characteristic p are isomorphic to curves defined over Fp2 .

The �-torsion group of E is defined as E[�] = {P ∈ E(Fp2) : [�]P = O}. If �
is coprime to p, then E[�] ∼= (Z/�Z)2, thus an �-torsion group is generated by
two elements of order �.

2.1 Zero-Knowledge Proof of Identity

We use primes of the form p = �eA

A �eB

B f ± 1 where �A, �B are small primes
(typically 2 and 3) with roughly �eA

A ≈ �eB

B , and f is a small cofactor to ensure p is
prime. The public parameters consist of a prime p = �eA

A �eB

B f ±1, a supersingular
curve E(Fp2) of order (�eA

A �eB

B f)2, and generators PB, QB of the �eB

B -torsion
subgroup E[�eB

B].

166 Y. Yoo et al.

E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

Fig. 1. Each arrow is labelled by the isogeny and its kernel.

The zero-knowledge proof takes place over the diagram in Fig. 1. Peggy (the
prover) has a secret point S generating the kernel of the isogeny φ : E → E/〈S〉.
Her private key is S (or any generator of 〈S〉) and her public key is the curve
E/〈S〉 and the images of the public generators φ(PB), φ(QB).

In order to prove her knowledge of 〈S〉 to Vic (the verifier), Peggy chooses a
random point R of order �eB

B defining an isogeny ψ : E → E/〈R〉. Note that

(E/〈S〉)/〈φ(R)〉 = E/〈R,S〉 = (E/〈R〉)/〈ψ(S)〉
In other words, the diagram in Fig. 1 commutes.

Peggy computes the isogenies in the diagram and sends to Vic the two non-
public curves. Vic sends her a challenge bit b ∈ {0, 1}, and Peggy reveals some
of the isogenies depending on b, which Vic then verifies.

More precisely, Peggy and Vic run the following protocol:

1. – Peggy chooses a random point R of order �eB

B .
– She computes the isogeny ψ : E → E/〈R〉.
– She computes the isogeny φ′ : E/〈R〉 → E/〈R,S〉 with kernel 〈ψ(S)〉

(alternatively the isogeny ψ′ : E/〈S〉 → E/〈R,S〉 with kernel 〈φ(R)〉).
– She sends the commitment com = (E1, E2) to Vic, where E1 = E/〈R〉

and E2 = E/〈R,S〉.
2. Vic randomly chooses a challenge bit ch ∈ {0, 1} and sends it to Peggy.
3. Peggy sends the response resp where

– If ch = 0, then resp = (R,φ(R)).
– If ch = 1, then resp = ψ(S).

4. – If ch = 0, Vic verifies that R and φ(R) have order �eB

B and generate the
kernels for the isogenies E → E1 and E/〈S〉 → E2 respectively.

E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

b = 0

E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

b = 1

Fig. 2. Hidden isogenies are indicated by dashed lines. Bolded lines indicate the iso-
genies revealed by Peggy on challenge b. In either case, the revealed isogenies do not
leak information about the secret isogeny φ.

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 167

– If ch = 1, Vic verifies that ψ(S) has order �eA

A and generates the kernel
for the isogeny E1 → E2 (Fig. 2).

To achieve λ bits of security, the prime p should be roughly 6λ bits (see
Sect. 5) and this protocol should be run λ times. If Vic successfully verifies all
λ rounds of the protocol, then Peggy has proved her identity (knowledge of the
private key S) to Vic. Otherwise, Vic rejects.

3 Unruh’s Construction

Unruh’s construction [24] transforms an interactive zero-knowledge proof system
into a non-interactive one. The construction satisfies online extractability which
allows us to extract the witness (private key) from a successful adversary without
rewinding. It also avoids the problem of determining the query inputs of the
quantum random oracle by including its outputs in the proof (signature) and
“inverting” them in the security proof. See [24] for the full security proof.

We fix a binary relation R. A statement x holds if there exists w such that
(x,w) ∈ R. In this case, we call w a witness to x. In a proof system, a prover P
tries to prove a statement x to a verifier V (in other words, to convince V that
P knows a witness w to x). We assume that all parties have access to a quantum
random oracle H which can be queried in superposition.

3.1 Sigma Protocols

A sigma protocol Σ = ((P 1, P 2), V) is an interactive proof system consisting of
three messages in order: a commitment com = P 1(x,w) made by the prover,
a challenge ch chosen uniformly at random by the verifier, and the response
resp = P 2(x,w, com, ch) computed by the prover based on the challenge. Then
V outputs V (x, com, ch, resp), indicating whether they accept or reject the proof.

Let Σ = (P, V) be a sigma protocol where P = (P 1, P 2). We define the
following properties of sigma protocols (from [24, Sect. 2.2]):

Completeness: If P knows a witness w to the statement x, then V accepts.
Special soundness: There exists a polynomial time extractor EΣ such that,

given any pair of valid interactions (com, ch, resp) and (com, ch′, resp′) with
ch
= ch′ that V accepts, EΣ can compute a witness w such that (x,w) ∈ R.

Honest-verifier zero-knowledge (HVZK): There is a polynomial time sim-
ulator SΣ with outputs of the form (com, ch, resp) that are indistinguishable
from valid interactions between a prover and an honest verifier by any quan-
tum polynomial time algorithm.

Note that the isogeny-based zero-knowledge proof of identity from the previ-
ous section is a sigma protocol. We will show in Sect. 5 that it satisfies all three
properties listed above.

168 Y. Yoo et al.

3.2 Non-interactive Proof Systems

A non-interactive proof system consists of two algorithms: a prover P (x,w) out-
putting a proof π of the statement x (which has witness w), and a verifier V (x, π)
outputting whether it accepts or rejects the proof π of x.

For a non-interactive proof system (P, V), we define the following properties
(from [24, Sect. 2.1]):

Completeness: If (x,w) ∈ R, then V accepts the proof π = P (x,w).
Zero-knowledge (NIZK): There exists a polynomial time simulator S such

that, given the ability to program the random oracle, S can output proofs
indistinguishable from those produced by P by any quantum polynomial time
algorithm.
The simulator is modeled by two algorithms S = (Sinit, SP), where Sinit

outputs an initial circuit H simulating a quantum random oracle, and SP is
a stateful algorithm which may reprogram H and produce proofs using H.

Simulation-sound online-extractability: (with respect to a simulator S =
(Sinit, SP)) There exists a polynomial time extractor E such that, if a quan-
tum polynomial time algorithms A with quantum access to H ← Sinit and
classical access to the prover SP outputs a new valid proof of a statement x,
then E can compute (extract) a witness w of x.

Remark 1. Granting A classical access to the simulated prover SP is analogous
to granting the adversary access to a classical signing oracle in a chosen message
attack in the context of signatures. We could allow A to have quantum access to
SP , corresponding to a quantum chosen message attack as defined in [6]. We do
not know whether Unruh’s construction remains secure under this relaxation.

3.3 Unruh’s Construction

Unruh’s construction transforms a sigma protocol Σ into a non-interactive proof
system (POE , VOE) so that, if Σ satisfies completeness, special soundness, and
HVZK, then the result is a complete NIZK proof system with simulation-sound
online extractability.

Suppose we have a sigma protocol Σ = (PΣ , VΣ) with PΣ = (P 1
Σ , P 2

Σ), where
there are c possible challenges in the challenge domain Nch and the parties want
to run the protocol t times, where t depends on the security parameter λ (in our
signature scheme we will have Nch = {0, 1}, c = 2, and t = 2λ). Let G,H be
quantum random oracles, where G has the same domain and range. We define
a non-interactive proof system (POE , VOE) where POE and VOE are given by
Algorithms 1 and 2 respectively.

The idea is to simulate the interaction in Σ by setting the challenge
J = J1‖ . . . ‖Jt as the output of the random function H. However, instead of
evaluating H on the commitments (comi)i alone as in the Fiat-Shamir trans-
form, we also include the hashes hi,j = G(respi,j) of the responses respi,j to
each possible challenge chi,j , for each commitment comi. Then the produced
proof consists of the commitments, an ordering of all possible challenges, hashed

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 169

Algorithm 1. Prover: POE on input (x,w)
// Create t · c proofs and hash each response

for i = 1 to t do
comi ← P 1

Σ(x, w)
for j = 1 to c do

chi,j ←R Nch \ {chi,1, . . . , chi,j−1}
respi,j ← P 2

Σ(x, w, comi, chi,j)
hi,j ← G(respi,j)

// Get challenge by hashing

J1‖ . . . ‖Jt ← H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)

// Return proof

return π ← ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji
)i)

responses to the corresponding challenges, and the responses to the challenges
given by J1‖ . . . ‖Jt. The verifier can then take the data to reproduce J1‖ . . . ‖Jt,
check that the data was produced properly, and verify the responses (respi,Ji

)i

for each round of Σ.
The main theorem of [24] proves that this construction is secure in the quan-

tum oracle model. Its proof is based on the fact that the random oracle G is
indistinguishable from a random permutation, and replaces G with an efficiently
invertible function (a random polynomial of high degree) which is unnoticeable
by any quantum polynomial time adversary. This allows the hashes to be inverted
to obtain the hidden responses in the adversary’s forged proof.

Theorem 1. ([24, Corollary 19]). If Σ satisfies completeness, special sound-
ness, and HVZK, then (POE , VOE) is a complete non-interactive zero-knowledge
proof system with simulation-sound online extractability in the quantum random
oracle model.

Algorithm 2. Verifier: VOE on input (x, π), where
π = ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji

)i)
// Compute the challenge hash

J1‖ . . . ‖Jt ← H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)

for i = 1 to t do
check chi,1, . . . , chi,m pairwise distinct
check hi,Ji = G(respi)
check VΣ(x, comi, chi,Ji , respi) = 1

if all checks succeed then
return 1

3.4 Signatures from Non-interactive Zero-Knowledge Proofs

A digital signature scheme consists of three algorithms:

170 Y. Yoo et al.

– Keygen(λ): takes a security parameter λ and outputs a key pair (pk, sk).
– Sign(sk,m): signs the message m using sk, outputting a signature σ.
– Verify(pk,m, σ): takes the public key of the claimed signer and verifies the

signature σ on the message m.

A digital signature scheme is strongly unforgeable under chosen message
attack (SUF-CMA) if, for any quantum polynomial time adversary A with clas-
sical access to the signing oracle sig : m �→ Sign(sk,m), A cannot produce a new
valid message-signature pair with non-negligible probability.

Suppose we have a function Keygen generating a public-private key pair
(pk, sk) such that no quantum polynomial-time algorithm can recover a valid sk
from pk with non-negligible probability. A proof of identity can be viewed as
proving the statement x = pk with witness w = sk, where (x,w) ∈ R if and only
if (x,w) is a valid key pair that can be generated by Keygen.

In this sense, a digital signature is basically a non-interactive zero-knowledge
proof of identity, except that we need to incorporate a specific message into each
proof (signature). This is done by including the message as a part of the state-
ment x = (pk,m), and the relation R ignores the message m; i.e. ((pk,m), w) ∈ R
if and only if (pk, w) is a valid key pair. Thus, from a NIZK proof of identity
(P, V), we obtain a digital signature scheme DS = (Keygen,Sign,Verify) where
Sign(sk,m) = P ((pk,m), sk) and Verify(pk,m, σ) = V ((pk,m), σ).

Theorem 2. ([24, Theorem 23]). If (P, V) is a NIZK proof of identity satisfying
simulation-sound online-extractability, then the signature scheme DS above is
SUF-CMA in the quantum random oracle model.

Proof (sketch). Since (P, V) is zero-knowledge, there is a polynomial time simu-
lator that can indistinguishably simulate proofs (signatures) by reprogramming
the random oracle. If an adversary can forge a new valid message-signature pair
by querying the simulator, then by simulation-sound online-extractability, we
can efficiently extract a witness sk. �

4 Isogeny-Based Digital Signature

We propose our isogeny-based digital signature scheme based on the results from
previous sections. Let Σ denote the isogeny-based zero-knowledge proof of iden-
tity described in Sect. 2.1. Applying Unruh’s construction to Σ, we obtain a
non-interactive proof of identity (POE , VOE), from which we get a digital signa-
ture scheme:

Public Parameters. We have the same public parameters as in Σ: a prime
p = �eA

A �eB

B f ± 1, a supersingular curve E of cardinality (�eA

A �eB

B)2 over Fp2 ,
and generators (PB , QB) of the torsion group E[�eB

B].
Key Generation. To generate keys, select a random point S of order �eA

A ,
compute the isogeny φ : E → E/〈S〉, and output the key pair (pk, sk) where
pk = (E/〈S〉, φ(PB), φ(QB)) and sk = S.

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 171

Signing. To sign a message m, set Sign(sk,m) = POE((pk,m), sk).
Verification. To verify the signature σ of message m, set Verify(pk,m, σ) =

VOE((pk,m), σ).

Algorithms 3, 4, and 5 give explicit descriptions of (Keygen,Sign,Verify).

Algorithm 3. Keygen(λ)
Pick a random point S of order �eA

A

Compute the isogeny φ : E → E/〈S〉
pk ← (E/〈S〉, φ(PB), φ(QB))
sk ← S
return (pk, sk)

Algorithm 4. Sign(sk,m)
for i = 1 to 2λ do

Pick a random point R of order �eB
B

Compute the isogeny ψ : E → E/〈R〉
Compute either φ′ : E/〈R〉 → E/〈R, S〉 or ψ′ : E/〈S〉 → E/〈R, S〉
(E1, E2) ← (E/〈R〉, E/〈R, S〉
comi ← (E1, E2)
chi,0 ←R {0, 1}
(respi,0, respi,1) ← ((R, φ(R)), ψ(S))
if chi,0 = 1 then

swap(respi,0, respi,1)
hi,j ← G(respi,j)

J1‖ . . . ‖J2λ ← H(pk, m, (comi)i, (chi,j)i,j , (hi,j)i,j)

return σ ← ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji
)i)

4.1 Algorithmic Aspects

We describe some of the lower-level algorithmic aspects of our signature scheme.
Full details can be found in [8,12]. For efficiency in our implementation, we
mainly follow [8] for their algorithms and representations of parameters.

Sampling Torsion Points. Let P,Q be fixed generators for the torsion group
E[�e]. To sample a point R of order �e, we choose m,n ∈ Z/�e

Z, not both
divisible by �, and compute R = [m]P + [n]Q. Since R and [k]R generate the
same subgroup 〈R〉 = 〈[k]R〉 for any k not divisible by �, we can replace R by
P + [m−1n]Q or [mn−1]P + Q, depending on which coefficient is coprime to �.

For simplicity, we ignore the coefficient of P as in [8] where it is shown that,
for certain pairs of generators P,Q related by distortion maps, each value of
n ∈ {1, 2, . . . , �e−1 − 1} gives a point R = P + [�n]Q of full order �e generating
distinct subgroups. Note that this procedure samples from �e−1 − 1 possible
subgroups (Fig. 3).

172 Y. Yoo et al.

E E/〈S〉φ

R1 ←R E[�eBB] Rt ←R E[�eBB]. . .

. . .

. . .

E/〈R1〉 E/〈R1, S〉
φ′
1

ψ1 ψ′
1

com1 = (E/〈R1〉, E/〈R1, S〉)
ch1 ←R {0, 1}

resp1,0 = (R1, φ(R1))
resp1,1 = ψ1(S)

h1,j = G(resp1,j)

E/〈Rt〉 E/〈Rt, S〉
φ′
t

ψt ψ′
t

comt = (E/〈Rt〉, E/〈Rt, S〉)
cht ←R {0, 1}

respt,0 = (Rt, φ(Rt))
respt,1 = ψt(S)

ht,j = G(respt,j)

J1‖ . . . ‖Jt = H(pk,m, (comi)i, (chi)i, (hi,j)i,j)

σ = ((comi)i, (chi)i, (hi,j)i,j , (respi,Ji
)i)

Fig. 3. An illustration of the signing algorithm running t rounds of the isogeny-based
zero-knowledge proof. For each ZKP round, the signer chooses a random full-order
�eB
B -torsion point R and computes the relevant data in the ZKP and hashes of the

responses (note that these can run in parallel and be precomputed before the message
m is known). The collective data is then hashed together with the message to obtain the
challenge bits J1‖ . . . ‖Jt. The signature σ contains the data necessary for the verifier
to compute J1‖ . . . ‖Jt, and the responses to the challenges.

Computing Isogenies. Isogenies of degree �e can be computed by composing
e isogenies of degree �. Isogeny computation is by far the most expensive process
in isogeny-based systems. Detailed analysis on optimizing isogeny computation
can be found in [8,12].

Representing of Curves and Points. We use projective coordinates for both
points and curve coefficients as in [8] to reduce the number of field inversions.
The curves in our system are isomorphic to Montgomery curves which have
the form E(A,B) : By2 = x3 + Ax2 + x. The Kummer line on a Montgomery
curve, which identifies each point (X : Y : Z) with its inverse (X : −Y : Z),
has efficient point arithmetic and allows us to disregard the Y coordinate in
our computations. This allows us to represent points by just one field element
X/Z in Fp2 . However, to compute linear combinations we require an additional
x-coordinate of P − Q to perform differential addition. We thus include the

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 173

Algorithm 5. Verify(pk,m, σ)
J1‖ . . . ‖J2λ ← H(m, x, (comi)i, (chi,j)i,j , (hi,j)i,j)

for i = 1 to 2λ do
check hi,Ji = G(respi,Ji

)
if chi,Ji = 0 then

Parse (R, φ(R)) ← respi,Ji

check R, φ(R) have order �eB
B

check R generates the kernel of the isogeny E → E1

check φ(R) generates the kernel of the isogeny E/〈S〉 → E2

else
Parse ψ(S) ← respi,Ji

check ψ(S) has order �eA
A

check ψ(S) generates the kernel of the isogeny E1 → E2

if all checks succeed then
return 1

x-coordinate of φ(PB − QB) as part of the public key. Isogeny computations are
unaffected because a point R and its inverse −R generate the same subgroup.

In the Montgomery form, it turns out that there are only two isomorphism
classes of Montgomery curves for a given coefficient value A, and they have the
same Kummer line. So the B coefficient also does not affect our computations,
and curves can also be represented by one field element for their A-coordinate.

4.2 Parameter Sizes

Recall that our primes have the form p = �eA

A �eB

B f ± 1 with roughly �eA

A ≈ �eB

B .
Note that we require primes of bitlength 6λ in order to achieve λ bits of post-
quantum security (see Sect. 5), so we have �eA

A ≈ �eB

B ≈ 23λ.
Since all supersingular curves are defined over Fp2 , each field element requires

12λ bits. Our curves are represented in Montgomery form By2 = x3 + Ax2 + x
where the A-coefficient suffices for isogeny computations. Similarly, a point on
the Kummer line can be represented by their X-coordinate. In both cases, we
need one field element, requiring 12λ bits.

Compression. Azarderakhsh et al. [2] showed that torsion points can be com-
pressed by representing them by their coefficients with respect to a determinis-
tically generated basis (computing 2-dimensional discrete log is polynomial-time
for smooth curves). Their implementation was however very slow. Recent work
by Costello et al. [7] proposed new algorithms accelerating the previous work
by more than an order of magnitude and further reduce public key sizes. Their
improved compression algorithm runs roughly as fast as a round of the ZKP
protocol.

A torsion point used to generate a subgroup can be represented by one coeffi-
cient since we can always normalize the coefficient of one generator. Compressing
two generators of a torsion group requires three coefficients to keep track of their

174 Y. Yoo et al.

relation when computing linear combinations. Each coefficient requires roughly
3λ bits.

We can apply the compression to our signature scheme in two ways: first to
the public key and second to the responses ψ(S) for the rounds where ch = 1.
The private key and the other responses (R,φ(R)) are generated using a 3λ-bit
coefficient and as such do not require additional computation for compression.

Public Keys. The public key has the form pk = (a, x(PB), x(QB), x(PB−QB)),
where a denotes the A-coefficient of the public curve E/〈S〉. These four field
elements require 48λ bits of storage.

We can compress the public key significantly by compressing the torsion basis
(φ(PB), φ(QB)), requiring three 3λ-bit coefficients. Moreover, the X-coordinate
of φ(PB−QB) is no longer required since the full coordinates of φ(PB) and φ(QB)
can be recovered from their compressed coefficients. Thus the compressed public
key requires 12λ bits for the curve and 9λ bits for the generators, for a total of
21λ bits.

Private Keys. The private key S can be stored as a single coefficient n with
respect to a �eA

A -torsion basis PA, QA (i.e. S = PA + [n]QA), requiring 3λ bits.

Signatures. The signature contains (comi, chi,j , hi,j , respi,Ji
) for each round

i of the ZKP protocol. Each commitment contains two curves (E1, E2), each
requiring one field element. We need one bit to indicate the first challenge bit
chi,0. We do not need to send chi,1 since chi,1 = 1 − chi,0. The hash hi,j =
G(respi,j) should have bitlength 3λ (this will be justified in Sect. 5.2). Note that
we do not need to send hi,Ji

since it can be computed from respi,Ji
.

The response has a different length depending on the challenge bit Ji. If
Ji = 0, the response (R,φ(R)) can be represented by their coefficients with
respect to the public bases at no additional computational cost, requiring only
3λ bits. If Ji = 1, the response ψ(S) requires 12λ bits as a field element. With
compression, ψ(S) can be represented in 3λ bits.

In total, each round of the ZKP requires roughly 24λ + 1 + 3λ + 3λ+12λ
2 ≈

34.5λ bits on average without compression, and roughly 30λ bits on average
with compression. Although λ rounds of the ZKP sufficed for λ bits of post-
quantum security, the signature requires 2λ rounds of the ZKP protocol due to
the challenge hash being vulnerable to Grover’s algorithm [15] (see Sect 5.3). So
the entire signature has size roughly 69λ2 (60λ2 compressed) bits on average.

For instance, to achieve 128 bits of post-quantum security, our signature
scheme requires 48λ = 6144 bits (768 bytes) for the public key (336 bytes com-
pressed), 3λ = 384 bits (48 bytes) for the private key, and 69λ2 = 1, 130, 496
bits (141,312 bytes) for the signature (122,880 bytes compressed) on average.

Comparison. We compare our parameter sizes with various post-quantum sig-
nature schemes: the stateless hash-based signature SPHINCS-256 [4], a code-
based signature based on Niederreiter’s variant of the McEliece cryptosystem

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 175

Table 1. Comparison of parameter sizes (in bytes) with various post-quantum signa-
ture schemes at the quantum 128-bit security level.

Scheme Public-key size Private-key size Signature size

Hash-based 1,056 1,088 41,000

Code-based 192,192 1,400,288 370

Lattice-based 7,168 2,048 5,120

Ring-LWE-based 7,168 4,608 3,488

Multivariate-based 99,100 74,000 424

Isogeny-based 768 48 141,312

Compressed 336 48 122,880

[5,9], a lattice-based signature BLISS [11], a recent ring-LWE-based signature
TESLA# [3], and the multivariate polynomial-based Rainbow signature [10,18].

It is clear from Table 1 that our isogeny-based signature achieves very small
key sizes relative to the other post-quantum signature schemes. We note that
the variants of the Merkle signature scheme can achieve smaller (32 byte) key
sizes at the same security level, but require state management. We expect future
works in isogenies to improve upon signature sizes and performance to produce
more practical signatures with still compact keys.

5 Security

The security of isogeny-based cryptosystems are based on the following prob-
lems (from [12, Sect. 5]), which are believed to be intractable even for quantum
computers.

Computational Supersingular Isogeny (CSSI) problem: Let φA : E0 →
EA be an isogeny whose kernel is 〈RA〉 where RA is a random point with
order �eA

A . Given EA, φA(PB), φA(QB), find a generator of 〈RA〉.
Decisional Supersingular Product (DSSP) problem: Let φ : E0 → E3 be

an isogeny of degree �eA

A . Given (E1, E2, φ
′) sampled with probability 1/2 from

one or the other of the following distributions, determine which distribution
it is from.

– A random point R of order �eB

B is chosen and E1 = E0/〈R〉, E2 =
E3/〈φ(R)〉, and φ′ : E1 → E2 is an isogeny of degree �eA

A .
– E1 is chosen randomly among curves of the same cardinality as E0, and

φ′ : E1 → E2 is a random isogeny of degree �eA

A

The best known attack for the CSSI problem involves claw-finding algorithms
using quantum walks [21] and takes O(p1/6) time, which is optimal for a black-
box claw attack [26]. Therefore it is believed that a prime with bitlength 6λ
achieves λ bits of post-quantum security.

176 Y. Yoo et al.

5.1 Security of the Zero-Knowledge Proof

It is proven in [12, Sect. 6.2] that our isogeny-based zero-knowledge proof of
identity from Sect. 2.1 satisfies completeness, soundness, and honest-verifier zero-
knowledge under the assumption that the CSSI and DSSP problems are hard.
However, Unruh’s construction requires special soundness.

Theorem 3 ([12, Theorem 6.3]). The isogeny-based zero-knowledge proof of
identity satisfies completeness, special soundness, and HVZK.

Proof. We only prove special soundness. Suppose we are given two valid tran-
scripts (com, 0, resp0) and (com, 1, resp1), where com = (E1, E2). Then we
can use resp0 = (R,φ(R)) to compute the isogeny ψ : E → E/〈R〉. Since
resp1 = ψ(S) is a generator of the kernel of φ′, we can take the dual isogeny
ψ̂ : E/〈R〉 → E, and compute ψ̂(resp1), a generator for 〈S〉 (Fig. 4). �

E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

Fig. 4. If ψ and φ′ are both known, then we can recover the secret subgroup 〈S〉.

5.2 Security of the Signature

Theorem 2 implies that our isogeny-based signature scheme obtained in Sect. 4 is
SUF-CMA. However, one important detail in Unruh’s proof is that the quantum
random oracle G must have the same domain and range for both response types,
so that one can substitute G with a random polynomial and invert hashes in the
security proof. In Sect. 4.2, we described compression techniques giving us a few
variants of our signature scheme with a space-time tradeoff (we could compress
the public key, the responses, or both), and we also took G to be a random oracle
outputting hashes of bitlength k ≈ 3λ. While Unruh’s proof applies directly to
our compressed signatures, it is invalid in our uncompressed signature scheme
where the responses can have bitlength k or 4k. In this case, the only way to
apply Unruh’s construction directly is to pad the shorter responses to 4k bits.
G should then output hashes of bitlength 4k so that the domain and range of G
are both equal to {0, 1}4k, increasing signature sizes by roughly 18λ2 bits.

We show by an ad-hoc argument that compression is not necessary—the
uncompressed signature scheme remains secure when G outputs hashes of
bitlength k ≈ 3λ. Let DSu denote the uncompressed signature scheme and DSc

denote the scheme where the responses ψ(S) are compressed.

Theorem 4. DSc is SUF-CMA in the quantum random oracle model.

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 177

Proof. Since all responses are represented by bitstrings of length k, the security
of DSc follows from Theorem 2. �
Theorem 5. DSu is SUF-CMA in the quantum random oracle model.

Proof. Suppose there exists a quantum polynomial-time adversary A breaking
the SUF-CMA security of DSu. We show that, given a classical signing oracle
to an instance of DSc with quantum random oracle Gc : {0, 1}k → {0, 1}k, we
can forge a new valid message-signature pair for DSc using A.

Suppose we are given the public key pk and a signing oracle to an instance
of DSc with quantum random oracles Gc and H. Let C0, C1 denote the set of
possible responses to the challenge ch = 0, 1 respectively in DSc. Note that
both sets have cardinality roughly 2k and consist of k-bitstrings. We create an
instance of DSu with the same setup, except the quantum random oracle Gu is
to be defined as follows.

Let U0, U1 denote the set of possible responses to the challenge ch = 0, 1
respectively in DSu. Then we have C0 = U0 and |C1| = |U1|, but the elements
of U1 are 4k-bitstrings. Let C : U1 → C1 denote the compression map taking the
field representation of a point ψ(S) in U1 to its compressed coefficient represen-
tation in C1. Then C is a bijection that can be computed efficiently both ways
since the compression map is injective and its inverse just computes the linear
combination. Let G′

u : {0, 1}4k → {0, 1}k be a quantum random oracle such that
G′

u(z‖x) = Gc(x) for all x ∈ {0, 1}k, where z denotes the all-zeros string of
length 3k. Define Gu : {0, 1}4k → {0, 1}k where

Gu(x) =

⎧
⎪⎨

⎪⎩

G′
u(z‖C(x)) if x ∈ U1

G′
u(C−1(y)) if x = z‖y where y ∈ C1

G′
u(x) otherwise

Since Gu just permutes the inputs according to the bijection C (with MSB zero-
padding) before applying the quantum random oracle G′

u, it follows that Gu is
indistinguishable from G′

u. Hence A can break DSu when instantiated with Gu.
We give A the same public key pk with quantum random oracles Gu and H.

When A makes a signing query on a message m, we relay it to the DSc signing
oracle to get back a signature

σ = ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji
)i)

where J1‖ . . . ‖Jt = H(pk,m, (comi)i, (chi,j)i,j , (hi,j)i,j) and hi,j = Gc(respi,j).
We simply decompress all responses respi,Ji

in σ where chi,Ji
= 1, and give this

modified σ to A. Since Gu(C−1(y)) = G′
u(z‖y) = Gc(y) for all y ∈ C1, and

Gu(x) = Gc(x) for all x ∈ C0 (with MSB zero-padding of input), it follows that
the hi,j ’s are still valid hashes in DSu with Gu. Hence the modified σ is a valid
signature for m in DSu.

Therefore we can answer A’s signing oracle queries so that A can forge a
new valid message-signature pair (m,σ) in DSu. By similar reasoning, we can
then re-compress the new signature without recalculating the hashes to obtain
a valid message-signature pair for DSc, contradicting Theorem 4. �

178 Y. Yoo et al.

5.3 Number of Rounds

To achieve λ bits of security, the protocol must be run at least t = 2λ times, since
a quantum adversary can choose arbitrary bits J1‖ . . . ‖Jt, compute simulated
proofs using J1‖ . . . ‖Jt as challenge, then perform a pre-image search on H using
Grover’s algorithm [15] to find a message m that will give the required hash. A
faster collision attack does not seem to apply since an adversary must know the
challenge bits beforehand in order for their simulated proofs to be verifiable with
non-negligible probability. Thus to achieve λ bits of security against quantum
attacks, our signature scheme runs the zero-knowledge proof t = 2λ times.

We have seen that, in the underlying zero-knowledge proof, revealing
responses to both challenges b = 0, 1 will allow anyone to compute the secret
isogeny. Consequently, it is crucial that our signature scheme does not use the
same commitment twice. We show that this happens with negligible probability.

Recall that p = �eA

A �eB

B f ± 1 ≈ 26λ with �eA

A ≈ �eB

B ≈ 23λ. There are roughly
�eB−1
B −1 ≈ 23λ distinct cyclic subgroups of E[�eB

B] from which the commitments
are chosen randomly. The zero-knowledge protocol is run 2λ times for each sig-
nature, so if we sign 2s messages, we would select 2s+1λ cyclic subgroups of
E[�eB

B] at random. An upper bound on the probability that we will select the
same subgroup at least twice is given by the Birthday bound:

2s+1λ(2s+1λ − 1)
2 · 23λ

≤ 22s+2λ2

23λ+1
≤ λ2

2λ−1

for s ≤ λ, which is negligible in λ.

6 Implementations

For maximum performance, we implemented the uncompressed signature scheme
by modifying the Supersingular Isogeny Diffie-Hellman (SIDH) library published
by Costello, Longa, and Naehrig [8]. The SIDH implementation uses fixed public
parameters: the prime p = 2372 · 3239 − 1, the curve E0 : y2 = x3 + x, and
generators PB , QB related by a distortion map. The prime p has bitlength 751,
providing 186 bits of classical security and 124 bits of quantum security.

6.1 Performance

Performance tests of the uncompressed signature scheme were run on an Intel
Xeon E5-2637 v3 3.5 GHz Haswell processor running CentOS v6.8, compiled
with GCC v4.4.7. We also present timing results on the high-performance ARM
Cortex-A57 processor in both C and an optimized arithmetic library on ASM [17].
The Juno platform provides a combination of Cortex-A57 and Cortex-A53 cores
for ARMv8 big.LITTLE technology. However, our software is only benchmarked
on a single high-performance Cortex-A57 core to get the most performance-
oriented results. The software is compiled with Linaro GCC v4.9.4 on a single core
1.1 GHz ARM Cortex-A57 running OpenEmbedded Linux v4.5.0.

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 179

The signing and verifying algorithms are easily parallelizable with linear
speedup, since the computations required for each round of the ZKP proto-
col is independent. We have implemented parallelization for the PC platform.
The timing results are summarized in Table 2.

Table 2. Performance results (in 106 clock cycles) on Intel Xeon E5-2637 v3 3.5 GHz.

Platform Threads Keygen Signing Verifying

1 63 28,776 19,679

PC 2 - 14,474 10,042

4 - 7,449 5,536

ARM (C) - 1,656 767,928 493,797

ARM (ASM) - 123 57,092 36,757

As noted before, the computing costs in the signing algorithm are incurred
almost entirely in the ZKP rounds which can be precomputed offline. With
precomputation, the signing algorithm simply needs to evaluate a hash function
on the data and output the appropriate responses for the signature.

7 Conclusion

We present and implement a stateless quantum-resistant digital signature scheme
based on supersingular elliptic curve isogenies with very small key sizes, useful
for post-quantum applications with strict key size requirements. Combined with
previous works, these results show that isogenies can provide the full range of
public-key cryptographic primitives including key establishment, encryption, and
digital signatures. Though our results are promising, further improvements are
still needed to bring isogeny-based signatures truly into the realm of practicality.

Acknowledgments. We thank Steven Galbraith for helpful comments on an ear-
lier version of this paper, and the anonymous reviewers for their constructive feed-
back. This work was partially supported by NSF grant no. CNS-1464118, NIST award
60NANB16D246, the CryptoWorks21 NSERC CREATE Training Program in Build-
ing a Workforce for the Cryptographic Infrastructure of the 21st Century, and InfoSec
Global, Inc.

References

1. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: the hardness of quantum rewinding. In: 55th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, 18–21
October 2014, pp. 474–483 (2014)

2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography, AsiaPKC 2016, pp. 1–10. ACM,
New York (2016)

180 Y. Yoo et al.

3. Barreto, P.S.L.M., Longa, P., Naehrig, M., Ricardini, J.E., Zanon, G.: Sharper
ring-LWE signatures. Cryptology ePrint Archive, report 2016/1026 (2016)

4. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R.,
Papachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 15

5. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3 3

6. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 21

7. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
compression of SIDH public keys. Cryptology ePrint Archive, report 2016/963
(2016)

8. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular
isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4 21

9. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 10

10. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

11. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 3

12. Feo, L.D., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

14. Galbraith, S.D., Petit, C., Silva, J.: Signature schemes based on supersingular
isogeny problems. Cryptology ePrint Archive, report 2016/1154 (2016)

15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC 1996, pp. 212–219. ACM, New York (1996)

16. Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In:
Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160–179. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11659-4 10

17. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Kermani, M.M.: NEON-SIDH:
Efficient implementation of supersingular isogeny Diffe-Hellman key exchange pro-
tocol on ARM. In: Cryptology and Network Security - 15th International Confer-
ence, CANS 2016, Milan, Italy, 14–16 November 2016, Proceedings, pp. 88–103
(2016)

https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-540-88403-3_3
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-11659-4_10

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 181

18. Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting parameters for the rainbow
signature scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 218–
240. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2 16

19. Seshadri, S.M., Chandrasekaran, V.: Isogeny-based quantum-resistant undeniable
blind signature scheme. Cryptology ePrint Archive, Report 2016/148 (2016)

20. Sun, X., Tian, H., Wang, Y.: Toward quantum-resistant strong designated verifier
signature from isogenies. In: 2012 Fourth International Conference on Intelligent
Networking and Collaborative Systems (2012)

21. Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci.
410(50), 5285–5297 (2009)

22. Tate, J.: Endomorphisms of Abelian varieties over finite fields. Inventiones Math-
ematicae 2(2), 134–144 (1966)

23. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 10

24. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random Ora-
cle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46803-6 25

25. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009)

26. Zhang, S.: Promised and distributed quantum search. In: Wang, L. (ed.) COCOON
2005. LNCS, vol. 3595, pp. 430–439. Springer, Heidelberg (2005). https://doi.org/
10.1007/11533719 44

https://doi.org/10.1007/978-3-642-12929-2_16
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/11533719_44
https://doi.org/10.1007/11533719_44

Optimally Sound Sigma Protocols Under DCRA

Helger Lipmaa(B)

University of Tartu, Tartu, Estonia
helger.lipmaa@gmail.com

Abstract. Given a well-chosen additively homomorphic cryptosystem
and a Σ protocol with a linear answer, Damg̊ard, Fazio, and Nicolosi
proposed a non-interactive designated-verifier zero knowledge argument
in the registered public key model that is sound under non-standard
complexity-leveraging assumptions. In 2015, Chaidos and Groth showed
how to achieve the weaker yet reasonable culpable soundness notion
under standard assumptions but only if the plaintext space order is
prime. It makes use of Σ protocols that satisfy what we call the
optimal culpable soundness. Unfortunately, most of the known addi-
tively homomorphic cryptosystems (like the Paillier Elgamal cryptosys-
tem that is secure under the standard Decisional Composite Residu-
osity Assumption) have composite-order plaintext space. We construct
optimally culpable sound Σ protocols and thus culpably sound non-
interactive designated-verifier zero knowledge protocols for NP under
standard assumptions given that the least prime divisor of the plaintext
space order is large.

Keywords: Culpable soundness · Designated verifier
Homomorphic encryption · Non-interactive zero knowledge
Optimal soundness · Registered public key model

1 Introduction

Non-interactive zero knowledge (NIZK, [8]) proof system enable the prover to
convince the verifier in the truth of a statement without revealing any side infor-
mation. Unfortunately, it is well known that NIZK proof systems are not secure
in the standard model. Usually, this means that one uses the random oracle
model [6] or the common reference string (CRS, [8]) model. In particular, Σ
protocols [14] can be efficiently transformed into NIZK proof systems in the ran-
dom oracle model by using the Fiat-Shamir heuristic [21]. However, the random
oracle model (and this concrete transformation) is questionable, since there exist
protocols secure in the random oracle model that are not instantiable with any
function [11,24]. While newer transformations make less use of the random ora-
cle (for example, by relying on non-programmable random oracles [13,32]), it is
commonly felt that the random oracle model is at best a heuristic.

On the other hand, using the CRS model results often — though, not always,
one notable exception being zk-SNARKs [23,26,33] — in less efficient protocols;
c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 182–203, 2017.
https://doi.org/10.1007/978-3-319-70972-7_10

Optimally Sound Sigma Protocols Under DCRA 183

moreover, also the CRS model is quite strong and requires significant amount
of trust in the creator of the CRS. See [3] for some of the critique; although one
can partially decrease the required trust by using multi-party computation to
generate the CRS [7,9] and verify the correctness of the CRS (subversion zero-
knowledge, [1,5,22]). Still, it is desirable to construct NIZK proof systems based
on a less demanding trust model.

Moreover, NIZK proof systems in the CRS model are not always perfect
approximations of interactive zero knowledge proof systems [3,16,30].

First, interactive zero knowledge provides undeniability: since the verifier can
simulate the proof, she cannot convince third parties that she received a ZK proof
from the specific prover. Undeniability is important in many applications where
it provides a certain amount of protection against third parties (for example,
coercers, see [30] for more motivation).

To provide undeniability also in the case of NIZK, Jakobsson et al. [30] intro-
duced the notion of designated verifier proof systems. A designated verifier NIZK
(NIDVZK) proof system is of type “either the statement is true or I am the
intended verifier (i.e., I know some witness wV associated with the verifier)”.
Hence, the designated verifier is convinced that the claim is true, while for every-
body else it could look like this proof came from the verifier instead of the prover
and thus they will not be convinced in the veracity of the claim. While NIDVZK
proofs are verifiable only by (the prover and) the designated verifier, one can argue
that an NIDVZK proof system provides a good approximation of interactive zero
knowledge proof systems since neither is transferable [30].

Second, one can rewind interactive zero knowledge proofs of knowledge to
extract the prover’s witness. This guarantees that an accepted prover also knows
the witness. Such extraction is impossible, for example, in the case of some
Groth-Sahai proof systems [29]. To “emulate” extractability, Groth et al. [28]
introduced the notion of culpable soundness. In a nutshell, culpable soundness
means that it should be difficult to break the soundness of a zero knowledge proof
system while knowing a witness wguilt that the input does not belong to the input
language. Culpable soundness has been successfully used in applications like
shuffling [20,27]; see [28] for other applications. Moreover, culpable soundness is
also sometimes the most one can get since there exist no computationally (non-
culpably) sound statistical NIZK argument systems for non-trivial languages
under standard assumptions [2].

Closer to the current work, Damg̊ard, Fazio, and Nicolosi [16] constructed
what we will call the DFN transformation from an optimally sound [35]1 and
specially honest-verifier zero knowledge Σ-protocol [14] with a linear answer to
an NIDVZK argument system (i.e., a computationally sound NIDVZK proof
system) under a complexity leveraging assumption. Recall that a Σ protocol
for language L is optimally sound if the following holds: if the common input
x is not in L, then for every a there exists at most one good e for which there
exists a z, such that (x, a, e, z) is an accepting view of the Σ protocol. Optimal
soundness is a potentially weaker requirement than special soundness.

1 This property is also known under the name of relaxed special soundness [16].

184 H. Lipmaa

Importantly, the DFN transformation results in an NIDVZK argument
system that is secure in the registered-public key (RPK, [3]) model that is con-
sidered to be significantly weaker than the CRS model. Moreover, the resulting
NIDVZK argument systems are almost as efficient as the original Σ-protocols.
While the DFN transformation can be only applied to optimally sound
Σ-protocols with a linear answer, most of the known Σ-protocols in the discrete-
logarithm based setting have those properties. In particular, [16] constructed an
NIDVZK argument system in the RPK model for the NP-complete language
Circuit-SAT.

As argued before, the designated verifier property of the DFN transformation
is very useful in certain applications. Hence, the DFN transformation results in
efficient argument systems, secure in a weaker trust model (the RPK model)
that better approximate security properties of interactive zero knowledge proof
systems than say the Groth-Sahai proof system. However, it also has weaknesses.
In particular, the original DFN transform from [16] is only secure under non-
standard complexity leveraging assumptions.

Ventre and Visconti [39] modified the DFN transformation to work under
standard (non-leveraged) assumptions, but their NIDVZK argument system
only achieves weak culpable soundness (called weak co-soundness in [39]).2 As
we argued before, culpable soundness approximates interactive zero knowledge.
However, weak culpable soundness seems to be too restrictive, and results in
undesirable overhead. We omit discussion due to space limits and refer to [12].

Recently, Chaidos and Groth [12] further modified the DFN transformation
so that the resulting NIDVZK argument systems are culpably sound under stan-
dard assumptions. However, for this they assumed that the plaintext space of
the underlying strongly additively homomorphic cryptosystem (see [12] for the
definition of such cryptosystems), about which the Σ-protocols are, has a prime
order p. Under this assumption, they showed that several known efficient Σ
protocols have the optimal culpable soundness property.

However, the restriction that p is prime can be a problem in many applica-
tions, since only some cryptosystems with required properties (like the Okamoto-
Uchiyama cryptosystem [36]) are known. Moreover, in the Okamoto-Uchiyama
cryptosystem, p must stay secret; this complicates the design of many common
protocols where one needs to know the order of the plaintext space. Currently,
the fact that one would like to have efficient Σ-protocols excludes known lattice-
based cryptosystems with prime-order plaintext space.

Our Contributions. We construct a DFN-transform under standard assump-
tion for additively homomorphic cryptosystems where the plaintext space has
a composite order N , such that it is solely required that the least prime factor
of N is sufficiently large. While all our examples are about the DCRA-based

2 Briefly, weak culpable soundness means that it is intractable to cheat while knowing
a witness assessing the fact that you are cheating, and also know that your cheating
succeeds (i.e., know a witness that certifies that the verification equations hold). In
the case of culpable soundness [28], the latter is not needed. See [39] for more details.

Optimally Sound Sigma Protocols Under DCRA 185

Paillier Elgamal cryptosystem [10,18], it is clear that they can modified to work
with other suitable cryptosystems. The main novelty of our work is proving that
several known Σ protocols over composite order plaintext spaces are optimally
culpably sound. We postpone the construction of culpably sound NIDVZK argu-
ment systems to the appendix.

More precisely, an optimally sound Σ protocol is optimally culpable sound3

if the following property holds: a successful cheating prover A who knows that
she cheats (e.g., she knows the secret key of the public key cryptosystem Π) can
efficiently recover the good e. That is, there exists an efficient extractor S.EX
that extracts good e (if it exists), given the common input, the first message of
the Σ protocol (e.g., a tuple of ciphertexts) output by A, and the guilt witness
(e.g., the secret key of Π). We emphasize that the optimal culpable soundness
is a stronger notion of security compared to the optimal soundness.

The main technical contribution of the current paper is the construction of an
efficient S.EX for several (known) Σ protocols about the plaintexts of the Pail-
lier Elgamal cryptosystem. By using S.EX, we prove optimal culpable soundness
of corresponding Σ protocols without relying on the Strong RSA or any other
computational assumption. Importantly, the proofs of optimal culpable sound-
ness are simpler than the special soundness proofs — that we also reproduce for
the sake of completeness — for the same Σ protocols.

For the constructed extractors to be successful, it is only required that the
least prime factor of N is large enough. This means that one can use essentially
any known additively homomorphic public-key cryptosystem that has a large
plaintext space. On the other hand, Chaidos and Groth [12] constructed S.EX
only in the case of prime-order plaintext space (with the Okamoto-Uchiyama
cryptosystem being the sole mentioned candidate cryptosystem in [12]).

Before we give more details about the new Σ protocols, let us recall that the
Paillier Elgamal cryptosystem has several other interesting properties:

1. First, it is double trapdoor [10]: it has two statistically independent trapdoors,
the prime factorization skfact of an RSA modulus N , and an Elgamal-like
secret key skdl. Decryption is possible, given either of the two trapdoors.
Hence, given that N is securely generated, many different parties can operate
with plaintexts and ciphertexts modulo the same N ; this simplifies the design
of threshold encryption schemes, [18].

2. Second, many of the standard Σ protocols, see [31], working on top of the
Paillier Elgamal cryptosystem satisfy special soundness only under the Strong
RSA assumption [4].

In the case of the Paillier Elgamal cryptosystem, S.EX only needs to use the
second trapdoor skdl. Hence, if a cheating prover manages to make the verifier
to accept, the extractor who knows skdl can extract the good challenge, given
that it exists. On top of it, the extractor may also extract a non-trivial factor of
N , which means that he will break the factoring assumption. In practice, this
fact is relevant in the case of threshold encryption, where such a factor can be

3 Chaidos and Groth called it soundness with the unique identifiable challenge.

186 H. Lipmaa

recovered only when a majority of the key generating parties collaborate, while
extraction is possible by every single party who knows the key skdl.

However, the extractor does not need factoring to be hard to be successful,
i.e., extraction is unconditionally successful. Thus, while some Σ protocols about
the plaintexts of the Paillier Elgamal cryptosystem are specially sound only
under the Strong RSA assumption, their optimal culpable soundness (and hence,
also optimal soundness) is unconditional. Up to our knowledge, this separation
has not been noticed before. We leave it as in interesting question whether such
a phenomenon is widespread.

The modified DFN-transform achieves culpable soundness in the sense that
soundness is guaranteed against adversaries that return together with the accept-
ing view also the secret key of the prover (but no other secret value). If the
verifiers gives to the authority a zero knowledge proof of knowledge of her secret
key sk, we can construct an adversary that retrieves sk from the registration
process, and thus achieves the standard (not culpable) notion of soundness.

2 Preliminaries

For a predicate P , let [P (x)] be 1 iff P (x) is true, and 0 otherwise. We denote
uniform distribution on set S by U(S), and let a ←r S to denote choos-
ing a from U(S). The statistical distance between two sets S1, S2 ⊆ Ω is
SD(U(S1), U(S2)) = 1

2

∑
x∈Ω |Pr[x ∈ S2] − Pr[x ∈ S1]|. We will implicitly use

the following lemma.

Lemma 1. Let S1 and S2 be two finite sets. If S1 ⊆ S2, we have
SD(U(S1), U(S2)) = 1 − |S1|/|S2|. In particular, if |S2| = (1 + 1/t) · |S1| for
some positive integer t, then SD(U(S1), U(S2)) = 1/(t + 1).

Proof. SD(U(S1), U(S2)) = 1
2 (|S2 \ S1|/|S2| + |S1| · (1/|S1| − 1/|S2|)) = 1 −

|S1|/|S2|. ��
For a positive integer N , let lpf(N) be its least prime factor. Let ϕ(N) be

the Euler totient function. Given that gcd(a, b) = γ, the Extended Euclidean
Algorithm returns integers α and β, such that αa + βb = γ.

For any integer a and an odd prime p, the Legendre symbol
(

a
p

)
is defined

as
(

a
p

)
= 0, if a ≡ 0 (mod p),

(
a
p

)
= +1, if a �≡ 0 (mod p) and for some integer

x, a ≡ x2 (mod p), and
(

a
p

)
= −1, if there is no such x. For any integer a and

any positive odd integer N , the Jacobi symbol is defined as the product of the
Legendre symbols corresponding to the prime factors of N :

(
a
N

)
=

∏t
i=1

(
a
pi

)αi

,

where N =
∏t

i=1 pαi
i for different primes pi. Let JN = {a ∈ ZN :

(
a
N

)
= 1};

clearly JN � Z
∗
N (i.e., JN is a subgroup of Z

∗
N). Let QN � JN be the subgroup

of quadratic residues in ZN . The Jacobi symbol can be computed in polynomial
time, given only a and N .

Optimally Sound Sigma Protocols Under DCRA 187

2.1 Cryptographic Assumptions

Within this paper, κ is an exponential (e.g., κ ≈ 128) security parameter. We
denote f(κ) ≈κ f ′(κ), if |f(κ) − f ′(κ)| = κ−ω(1). A function f(κ) is negligible, if
f(κ) ≈κ 0. For any κ, we assume that factoring τ(κ)-bit integers is intractable.

Strong RSA. We say that the Strong RSA assumption [4] holds, if given a
product N = pq of two randomly chosen τ(κ)/2-bit safe primes p = 2p′ + 1 and
q = 2q′ + 1, and y ←r Z

∗
N , it is computationally difficult to output (x, e), such

that e > 1 and y ≡ xe mod N .

DCR [15,37]. Let N = pq be a product of two τ(κ)/2-bit random safe primes
p = 2p′ + 1 and q = 2q′ + 1. Let N ′ = p′q′. Let s ≥ 1. Write G := Z

∗
Ns+1

∼=
GNs ⊕GN ′ ⊕G2 ⊕T , where ∼= indicates group isomorphism, ⊕ is the direct sum
or Cartesian product, Gi are cyclic groups of order i, and T is the order-2 cyclic
group generated by −1 mod Ns+1. Let X := P := JNs+1 ∼= GNs ⊕ GN ′ ⊕ T ,
X

′ := P
′ := QNs+1 ∼= GNs ⊕ GN ′ , and L ∼= GN ′ be multiplicative groups.

Let g be a random generator of L; g can be thought of as a random 2Ns-th
residue. It can be computed by choosing a random μ ←r ZNs+1 and then setting
g ← μ2Ns

mod Ns+1.
A witness w ∈ W := Z for x ∈ L is such that x ≡ gw (mod Ns+1). Finally,

let g⊥ be an arbitrary generator of the cyclic group GNs (for example g⊥ =
1 + N ∈ ZNs+1). We set Λ = (N, s, g, g⊥).

The Decisional Composite Residuosity (DCR, [37]) assumption says that it
is difficult to distinguish random elements of L from random elements of X.

We remark that we cannot sample uniform witnesses as W = Z is infinite.
From a mathematical standpoint, we could have set W = ZN ′ , but we cannot do
that here, as computing N ′ from Λ requires to factorize N . Instead, we sample
witnesses uniformly from W

∗
N := Z�N/4�. This is statistically close to uniform

over ZN ′ as: SD(U(ZN ′), U(W∗
N)) = 1 − p′q′/(pq/4) = (2p′ + 2q′ + 1)/(pq) <

2(p + q)/(pq) < 4/ lpf(N). From this distribution over W, we can derive a
statistically uniform distribution over L.

2.2 Paillier Elgamal Cryptosystem

We use the following CPA-secure double-trapdoor cryptosystem Π =
(K,VK,E,D) that is based on a projective hash proof system from [15]. We make
it proof-friendly by using ideas from [18] and augment it with the VK procedure
needed to get optimal culpable soundness. Following say [34], we call this cryp-
tosystem Paillier Elgamal. See, e.g., [10,18] for variants of this cryptosystem.

Let Λ = (N = pq, s, g, g⊥) and (p = 2p′ + 1, q = 2q′ + 1) be chosen as in
Sect. 2.1, with N ′ = p′q′. Set skfact ← (p, q) and skdl ←r W

∗
N . Let h ← gskdl

mod Ns+1. Hence, g, h ∈ P = JNs+1 . The key generator Π.K(Λ) returns the
public key pk := (Λ, h) and the secret key sk := (skfact, skdl). The message space

188 H. Lipmaa

is equal to Mpk := ZNs , the ciphertext space is equal to Cpk := P
2, and the

randomizer space is equal to Rpk := W
∗
N × Z2 × Z2.

Define VK(skdl, pk) = 1 iff skdl is the secret key, corresponding to the public
key pk. In the case of the Paillier Elgamal, VK can be evaluated efficiently by
checking whether h ≡ gskdl (mod Ns+1). Define

Es
pk(m; r, t0, t1) := ((−1)t0gr, (N + 1)m(−1)t1hr) mod Ns+1.

Here, t0 and t1 are only needed for the sake of constructing zero knowledge
proofs, to obtain soundness also in the case when g �∈ QNs+1 or h �∈ QNs+1 . By
default, one just sets t0 = t1 = 0.

Given a ciphertext C = (C1, C2), the decryption algorithm Ds
skdl

(C) checks
that C1, C2 ∈ P = JNs+1 and rejects otherwise. Second, it computes (N +1)2m =
(C2/Cskdl

1)2 mod Ns+1, and then retrieves m from this by using the algorithm
described in [17]. Π is IND-CPA secure under the DCR assumption, [15].

The Paillier Elgamal cryptosystem is additively homomorphic, since
Es
pk(m1; r1, t01, t11)·Es

pk(m2; r2, t02, t12) = Es
pk(m1+m2; r1+r2, t01⊕t11, t02⊕t12).

Moreover, it is blindable, since for r′ ←r W
∗
N , tb0 ←r Z2 and tb1 ←r Z2,

Es
pk(m; r, t0, t1) ·Es

pk(0; r′; tb0, tb1) = Es
pk(m; r+r′, t0+tb0 mod 2, t1+tb1 mod 2)

is a (close to uniformly) random encryption of m.
This cryptosystem has two statistically independent trapdoors, skfact = (p, q)

and skdl. To decrypt (C1, C2), it suffices to have either. However, in some applica-
tions N can be generated in a highly secure environment so that its factorization
is not known to anybody. Alternatively, one can create a huge N randomly, so
that with a high probability it is guaranteed that N has large factors, [38]. Many
different parties can then have N as a part of their public key (without knowing
the factorization), and generate their own trapdoor skdl. A natural application is
threshold encryption, where the factorization of N is only known by a threshold
of the parties, while each party has their own skdl; see [18].

2.3 Σ Protocols

Let R = {(x,w)} be a polynomial-time verifiable relation, and let LR = {x :
(∃w)(x,w) ∈ R}, where w has polynomial length.

A Σ-protocol [14] S is a three-message protocol between the prover S.P and
the verifier S.V, where the first and the third messages are send by the prover,
and the second message is a uniformly random message e ←r Z2κ chosen by
the verifier. The prover S.P and the verifier S.V are two efficient algorithms
that have a common input x. Additionally, the prover knows a secret witness
w. At the end of the Σ protocol, the verifier either accepts (x ∈ LR) or rejects
(x �∈ LR). We will implicitly assume that the three messages of S belong to some
sets whose memberships can be efficiently tested.

In addition, we require the Σ protocol to have a linear answer [16].

Definition 1. A Σ protocol with a linear answer for an NP-relation R that
consists of three messages and of the verifier’s decision algorithm defined by a
pair (S.P,S.V) of efficient algorithms as follows:

Optimally Sound Sigma Protocols Under DCRA 189

1. (ca, z1, z2) ← S.P(x;w), where z1 and z2 are two m-dimensional vectors for
some m. Here, ca is the first message sent by the prover to the verifier.

2. The second message is e ←r Z2κ , chosen by the verifier randomly, and sent
to the prover.

3. The third message is z ← ez1 + z2, sent by the prover to the verifier.
4. Finally, the verifier outputs S.V(x; ca, e, z) ∈ {0, 1}, that is, the verifier either

accepts or rejects.

Here, (x, ca, e, z) is called the (real) view of the Σ protocol. Thus, the verifier
either rejects or accepts the view. In the latter case, the view is said to be
accepting (for S).

A Σ protocol S with a linear answer for relation R is perfectly complete, if
for every (x,w) ∈ R and every (ca, z 1, z 2) ∈ S.P(x;w) and e ∈ {0, 1}κ, it holds
that S.V(x; ca, e, ez 1 + z 2) = 1.

A Σ protocol S with a linear answer for relation R is perfectly (resp., sta-
tistically) special honest-verifier zero knowledge [14], if there exists an efficient
simulator S.sim that inputs x and e ∈ {0, 1}κ, and outputs (ca, z), such that
(x, ca, e, z) is accepting, and moreover, if e is a uniform random element of
{0, 1}κ, then (x, ca, e, z) has the same (resp., is negligibly different from the)
distribution as the real view of S.

A Σ protocol S with a linear answer is specially sound [14] for R if, given
two accepting views (x, ca, e, z) and (x, ca, e′, z ′) with the same (x, ca) but with
e �= e′, one can efficiently recover a witness w, such that (x,w) ∈ R. A Σ protocol
is computationally specially sound for R if it is specially sound for R under a
computational assumption.

Consider any input x (possibly x �∈ LR) and any ca. Then e ∈ {0, 1}κ is a
good challenge [16] for a Σ protocol S, if there exists a z such that (x, ca, e, z)
is an accepting view for S.

Definition 2 (Optimal Soundness). A Σ protocol S is optimally sound [35]
(also known as relaxed specially sound [16]) for R, if for any x �∈ LR and any
purported first message ca, there exists at most one good e ∈ {0, 1}κ for S.

We note that in some Σ protocols it will be important not to allow e to fall
outside of {0, 1}κ. For example, it can be the case that if e is good, then also
e + p is good, where p > 2κ is a non-trivial factor of N . There will be at most
one good e < 2κ under the assumption that lpf(N) > 2κ.

To make the definition of optimal soundness compatible with culpable sound-
ness, Chaidos and Groth [12] modified it as follows. (In [12], this property was
called soundness with uniquely identifiable challenge using relation Rguilt.) We
note that differently from [12], we only require the extractor to return e, if it
exists; as we will show, there are cases where such e is not available.

Definition 3 (Optimal culpable soundness). For a relation R, let Rguilt =
{(x,w)} be a polynomial-time verifiable relation, where it is required that x �∈ LR if
(x,w) ∈ Rguilt for some w. A Σ protocol S has optimal culpable soundness using
relation Rguilt for R, if (i) it is optimally sound for R, and (ii) there exists an

190 H. Lipmaa

efficient algorithm S.EX, such that if (x,wguilt) ∈ Rguilt then S.EXwguilt
(x, ca)

returns the unique good e where ca is a first message returned by S.P.

It is claimed in [16] that every specially sound Σ protocol is optimally sound.
As we will show in Sect. 2.3, an even stronger claim holds: there exist cases where
the Σ protocol is computationally specially sound (for example, one needs to
rely on the Strong RSA assumption [4]) and unconditionally optimally culpably
sound and thus also unconditionally optimally sound.

3 New Optimally Culpably Sound Σ-Protocols

Let Π = (K,VK,E,D) be the double-trapdoor additively homomorphic cryp-
tosystem from Sect. 2.2. We next describe two simple Σ protocols about the
plaintext of a Π ciphertext that both satisfy optimal culpable soundness using
a naturally defined relation Rguilt where the witness is just the secret key skdl

of Π. Close variants of these Σ-protocols also work with the DCR-based cryp-
tosystems from [10,17,18]; see, e.g., [31]. Basing the Σ protocols on Π (and not,
say, on the cryptosystem from [17]) makes it easier to pinpoint some differences
between the special soundness and the optimal culpable soundness.

3.1 Σ-Protocol for Zero

Consider the following Σ protocol, see Fig. 1, with a linear answer for the relation

RZero = {((pk,C), (r, b0, b1)) : C = Es
pk(0; r, b0, b1)}.

That is, a honest verifier accepts iff C encrypts to 0.

1. S.P(pk,C; (r ∈ Z�N/4�, b0 ∈ Z2, b1 ∈ Z2)) does the following:
(a) Set ra ←r Z22κ�N/4�, t0 ←r Z2, t1 ←r Z2,
(b) Set ca ← Es

pk(0; ra, t0, t1),
(c) Return (ca, z1 ← (r, b0, b1), z2 ← (ra, t0, t1)).
The prover’s first message is ca.

2. The verifier’s second message is e ←r Z2κ .
3. The prover sets rb ← er + ra, tb0 ← eb0 + t0 mod 2, tb1 ← eb1 + t1 mod 2, and

outputs z ← (rb, tb0, tb1) as the third message.
4. The verifier S.V(pk,C; ca, e, z) checks that

(a) C, ca ∈ P
2 = J2

Ns+1 ,
(b) z = (rb, tb0, tb1), where rb ∈ Z(22κ+2κ−1)�N/4�−2κ+1, tb0 ∈ Z2, tb1 ∈ Z2,
(c) the following holds:

(Ceca · Es
pk(0; rb, 0, 0)−1)2 ≡ 1 (mod Ns+1) . (1)

Fig. 1. Σ protocol for Zero

Optimally Sound Sigma Protocols Under DCRA 191

Theorem 1. Let Π be the Paillier Elgamal cryptosystem. The Σ protocol of
Fig. 1 has a linear answer, is perfectly complete, and statistically special HVZK.
Assume pk is a valid public key. Then this Σ protocol is computationally specially
sound for R under the Strong RSA assumption [4].

Proof. First, clearly, rb ≤ (22κ + 2κ − 1) �N/4� − 2κ.

Linear answer: straightforward.

Perfect completeness: straightforward. If the prover is honest, we have
(C eca · Es

pk(0; rb, 0, 0)−1)2 ≡ Es
pk(0; er + ra − (er + ra), eb0 + t0 mod 2, eb1 + t1

mod 2))2 ≡ Es
pk(0; 0, 0, 0) = 1 (mod Ns+1).

Statistical special HVZK: the simulator S.sim(x, e) first sets z ← Z22κ�N/4�,
t0 ←r Z2, t1 ←r Z2, and then ca ← Es

pk(0; z, t0, t1)/C e. Clearly, if e ←r Z2κ ,
then due to the choice of ra, z is statistically close to z in the real protocol.
Moreover, in both real and simulated protocols, ca is defined by ((pk,C), e, z)
and the verification equation.

Computational special soundness: From two accepting views (ca, e, z =
(rb, tb0, tb1)) and (ca, e′, z ′ = (r′

b, t
′
b0, t

′
b1)) with e �= e′ and Eq. (1), we get that

C 2(e−e′) ≡Es
pk(0; 2(rb − r′

b), 0, 0) ≡ (g2(rb−r′
b), h2(rb−r′

b)) (mod Ns+1). (2)

To recover from this the witness r = (rb − r′
b)/(e − e′) mod ϕ(N), we have to

compute (rb − r′
b)/(e − e′) modulo ϕ(N), without knowing ϕ(N). We show that

one can either recover r, or break the Strong RSA assumption.
First, if (e − e′) | (rb − r′

b) over Z, then we set r ← (rb − r′
b)/(e − e′), and

we are done: C 2 = Es
pk(0; 2r, 0, 0) and thus C = Es

pk(0; r, b0, b1) for efficiently
recoverable b0 and b1.

Second, assume (e − e′) � (rb − r′
b) over Z. In this case, let γ ← gcd(2(e −

e′), 2(rb − r′
b)), ye ←r 2(e − e′)/γ, and yb ← 2(rb − r′

b)/γ. According to Eq. (2),
C

2(e−e′)
1 ≡ g2(rb−r′

b) (mod Ns+1), and thus (−1)t0Cye

1 ≡ gyb (mod Ns+1) for
efficiently computable t0 ∈ Z2. Since gcd(yb, ye) = 1, we can use the extended
Euclidean algorithm to compute integers τb and τe, s.t. τbyb + τeye = 1. Thus,

g =gτbyb+τeye = gτbybgτeye ≡ (−1)τbt0Cτbye

1 gτeye

=(−1)τbt0(Cτb
1 gτe)ye (mod Ns+1).

Since ye > 1, then this means that we have found a non-trivial root (Cτb
1 gτe

mod Ns+1, ye) of (−1)τbt0g modulo Ns+1, and thus also modulo N , and thus
broken the Strong RSA assumption. ��

Next, we will show that the same Σ-protocol from Fig. 1 has optimal culpable
soundness using the relation

Rguilt
Zero =

{
((pk,C), skdl) : C ∈ P

2 ∧ Ds
skdl

(C) �= 0∧
VK(skdl, pk) = 1

}

(3)

without relying on any computational assumptions. Here, wguilt is equal to skdl;
hence, the extractor S.EX gets skdl as the secret input.

192 H. Lipmaa

Theorem 2. Let Π be the Paillier Elgamal cryptosystem. Assume that
lpf(N) > 2κ. Then the Σ protocol S from Fig. 1 has optimal culpable sound-
ness using Rguilt

Zero.

Proof. Consider the extractor in Fig. 2 that either returns “reject” (if C is not
a valid ciphertext or VK(skdl, pk) does not hold; in such cases S.V also rejects),
“accept” (the prover was honest), or the good challenge (if it exists) together
with a non-trivial factor of N .

S.EXs
skdl

((pk,C), ca) :
1. If C �∈ P

2 or ca �∈ P
2: return “reject”;

2. If VK(skdl, pk) = 0: return “reject”;
3. Let m ← Ds

skdl
(C); Let ma ← Ds

skdl
(ca);

4. If m ≡ 0 (mod Ns): return “accept”; /* prover was honest */
5. Let γ ← gcd(m, Ns);
6. Let m̄ ← m/γ; Let m̄a ← ma/γ; Let N̄s ← Ns/γ;
7. e ← −m̄a/m̄ mod N̄s;
8. If e < 2κ: return e;
9. else: return “no accepted challenges”;

Fig. 2. Extractor from Theorem 2 for the Σ protocol from Fig. 1 for Rguilt
Zero

We will now argue that this extractor functions as claimed. First, from the
Eq. (1) of the Σ protocol in Fig. 1 it follows that

2(em + ma) ≡ 0 (mod Ns), (4)

where m is the plaintext in C and ma is the plaintext in ca. Since the verification
accepts and N is odd, em ≡ −ma (mod Ns).

If m ≡ 0 (mod Ns), then the prover is honest. Otherwise, setting γ ←
gcd(m,Ns), we can retrieve an e that satisfiesEq. (4), given such an e exists. Really,
if a good e exists then 2(em + ma) ≡ 0 (mod Ns), and thus em + ma ≡ 0
(mod Ns). Hence, m̄e + m̄a ≡ 0 (mod N̄s), and thus e ≡ −m̄a/m̄ (mod N̄s).
Since a good challenge is smaller than 2κ, it is also smaller than N̄s, and thus
computing e modulo N̄s = Ns/γ does not throw away any information. Since
em̄γ + ma ≡ 0 (mod Ns) and γ | Ns, we get ma ≡ 0 (mod γ) and thus γ | ma. ��

3.2 Σ Protocol for Boolean

Consider the following Σ protocol, see Fig. 3, with a linear answer for the relation

RBoolean = {((pk,C), (m, r)) : C = Es
pk(m; r, b0, b1) ∧ m ∈ {0, 1}}.

I.e., a honest verifier accepts iff C encrypts to either 0 or 1. This Σ protocol is
derived from the Σ protocol from [12] where it was stated for prime modulus.

Optimally Sound Sigma Protocols Under DCRA 193

1. S.P(pk,C; m ∈ Z2, (r ∈ Z�N/4�, b0 ∈ Z2, b1 ∈ Z2)) does the following:
(a) Let ma ← 22κ+1 + U(Z22κ), ra ←r Z22κ�N/4�, rb ←r Z23κ�N/4�;
(b) Let ta0, ta1, tb0, tb1, tc0, tc1 ←r Z2;
(c) Let ca ← Es

pk(ma; ra, ta0, ta1), cb ← Es
pk(−mma; rb, tb0, tb1);

(d) Return ((ca, cb), z1 = (m, r, r(m−1), b0, b1), z2 = (ma, ra, rma+rb), tc0, tc1).
The prover’s first message is (ca, cb).

2. The verifier’s second message is e ←r Z2κ ,
3. The prover’s third message is z = (zm, za, zb, td0, td1), where zm ← em + ma,

za ← er + ra, zb ← er(m− 1)+ rma + rb, td0 ← eb0 + tc0 mod 2, td1 ← eb1 + tc1

mod 2.
4. The verifier checks that

(a) C, ca, cb ∈ P
2 = J2

Ns+1 ,
(b) zm ∈ Z3·22κ+2κ−1, za ∈ Z(22κ+2κ−1)�N/4�−2κ+1,
(c) zb ∈ Z(23κ+3·22κ−1)·�N/4�−3·22κ+1, td0 ∈ Z2, td1 ∈ Z2,

(d) the following holds:

(Ceca · Es
pk(zm; za, 0, 0)−1)2 ≡1 (mod Ns+1) ,

(Czm−ecb · Es
pk(0; zb, 0, 0)−1)2 ≡1 (mod Ns+1) . (5)

Fig. 3. Σ protocol for Boolean

Theorem 3. The Σ protocol (Boolean Proof) of Fig. 3 has a linear answer, and
it is perfectly complete and statistically special HVZK. Assume that the Strong
RSA assumption [4] holds, pk is a valid public key, and lpf(Ns) > 2κ. Then this
Σ protocol is computationally specially sound.

Proof. Clearly, in the honest case, zb = r(zm − e) + rb. The choice of ma guar-
antees that zb ≥ 0. Now,

zm = em + ma ≤ (2κ − 1) + (22κ+1 + 22κ − 1) = 3 · 22κ + 2κ − 2,

za = er + ra ≤ (2κ − 1)(�N/4� − 1) + (22κ �N/4� − 1)

= (22κ + 2κ − 1) �N/4� − 2κ,

and (here we need that ma > e)

zb = er(m − 1) + rma + rb

≤ (2κ − 1)(�N/4� − 1) · 0 + (�N/4� − 1)(22κ+1 + 22κ − 1) + (23κ �N/4� − 1)

=
(
23κ + 3 · 22κ − 1

) · �N/4� − 3 · 22κ.

Linear answer: straightforward. Completeness: let tei = bi(ma+e(m−1))+
tbi for i ∈ {0, 1}. Equation (5) holds since

C zm−ecb ≡ Es
pk((em + ma − e)m − mma; r(zm − e) + rb, te0, te1)

≡ Es
pk(e(m − 1)m; zb, te0, te1) ≡ Es

pk(0; zb, te0, te1),

if m ∈ {0, 1}. Thus, C 2(zm−e)c2
b ≡ Es

pk(0; 2zb, 0, 0) if m ∈ {0, 1}. Other verifica-
tions are straightforward.

194 H. Lipmaa

Statistical special HVZK: Given e ∈ Z2κ , the simulator gener-
ates zm ←r 22κ+1 + U(Z22κ), za ←r Z22κ�N/4�, zb ←r Z23κ�N/4�,
and ta0, ta1, tb0, tb1, td0, td1 ←r Z2. He sets z ← (zm, za, zb, td0, td1),
ca ← Es

pk(zm; za, ta0, ta1)/C e mod Ns+1 and cb ← Es
pk(0; zb, tb0, tb1)/C zm−e

mod Ns+1, and returns (pk,C ; (ca, cb), e, z) as the view. Clearly, both in the
real and simulated proof, ca and cb are fixed by (pk,C ; e, z) and the verification
equations. Moreover, given that e ←r Z2κ , the simulated zm, za, zb, td0, td1 are
statistically close to the values in the real proof.

Special Soundness: Assume that the verifier accepts two views (pk,C ; ca, cb,
e, z) and (pk,C ; ca, cb, e

′, z ′) for e �= e′. From the first equality in Eq. (5) we
get that

C 2(e−e′) ≡ Epk(2(zm − z′
m); 2(za − z′

a), 0, 0). (6)

Hence, C encrypts m := (zm − z′
m)/(e − e′) mod Ns. (Here, we use the fact

that e, e′ ∈ Z2κ < lpf(Ns), e �= e′, and thus e − e′ is invertible.) To recover the
randomizer used in encrypting C , we use the same technique as in the proof
of Theorem 1: we either obtain that (e − e′) | (za − z′

a) (in this case, we set
r ← (za − z′

a)/(e − e′)), or we break the Strong RSA assumption. Similarly, we
obtain the randomizers b0 and b1 that were used when computing C .

From the second equality in Eq. (5) holds, we get that

C 2(zm−z′
m)−2(e−e′) ≡Es

pk(0; 2(zb − z′
b), 0, 0) (mod Ns+1),

and thus, when combining it with Eq. (6),

Es
pk(2(zm − z′

m)m; 2(zm − z′
m)r, 0, 0)

≡Es
pk(2(zm − z′

m); 2(za − z′
a + zb − z′

b), 0, 0) (mod Ns+1),

Since zm − z′
m ≡ (e − e′)m (mod Ns), we get after decrypting that

2(e − e′)m2 ≡ 2(e − e′)m (mod Ns).

Since gcd(e − e′, Ns) = 1, m mod Ns ∈ {0, 1}. ��
Next, we show that this Σ protocol has optimal culpable soundness using

the guilt relation

Rguilt
Boolean =

{
((pk,C), skdl) : C ∈ P

2 ∧ Ds
skdl

(C) �∈ {0, 1}∧
VK(skdl, pk) = 1

}

. (7)

Theorem 4. Let Π be the Paillier Elgamal cryptosystem, and let lpf(N) > 2κ

(thus also 2 � N). Then the Σ protocol of Fig. 3 has optimal culpable soundness
using Rguilt

Boolean.

Optimally Sound Sigma Protocols Under DCRA 195

S.EXskdl(C, ca, cb):
1. If C �∈ P

2 or ca �∈ P
2 or cb �∈ P

2: return “reject”;
2. If VK(skdl, pk) = 0: return “reject”;
3. Let m ← Ds

skdl
(C);

4. Let ma ← Ds
skdl

(ca), mb ← Ds
skdl

(cb);
5. Let m∗ ← (m − 1)m mod Ns;
6. If m∗ ≡ 0 (mod Ns): return “accept”;
7. else if m∗ ∈ Z

∗
Ns : let e ← −(mma + mb)/m∗ mod Ns;

8. else if gcd(m, Ns) > 1:
(a) Let γ ← gcd(m, Ns);
(b) Let m̄ ← m/γ; m̄b ← mb/γ, m̄∗ ← m∗/γ; N̄s ← Ns/γ;
(c) Let e ←r −(mam̄ + m̄b)/m̄∗ mod N̄s;

9. else: /* gcd(m − 1, Ns) > 1 */
(a) Let γ ← gcd(m − 1, Ns);
(b) Let m̄1 ← (m − 1)/γ, m̄ab ← (ma + mb)/γ, m̄∗ ← m∗/γ, N̄s ← Ns/γ;
(c) Let e ←r −(mam̄1 + m̄ab)/m̄∗ mod N̄s;

10. If e < 2κ: return e;
11. else: return “no accepted challenges”;

Fig. 4. Extractor in Theorem 4 for Rguilt
Boolean

Proof. We prove the optimal culpable soundness as in Theorem2. The main new
complication is that there can now be two strategies of cheating: it can be that
either gcd(m,Ns) > 1 or gcd(m − 1, Ns) > 1, so the extractor has to test for
both. We thus construct the following extractor, see Fig. 4.

Let m∗ := (m − 1)m mod Ns. From the verification equalities in Eq. (5) we
get that zm ≡ em + ma (mod Ns) and (zm − e)m + mb ≡ 0 (mod Ns), thus
(em + ma − e)m + mb ≡ 0 (mod Ns), and thus

em∗ ≡ −(mam + mb) (mod Ns). (8)

Clearly, the constructed extractor works correctly. If m∗ ≡ 0 (mod Ns) or
m∗ ≡ 1 (mod Ns), then the prover was honest. Otherwise, if m∗ ∈ Z

∗
Ns , then

one can recover e from Eq. (8) efficiently. Otherwise, if gcd(m∗, Ns) > 1, we
have either gcd(m,Ns) > 1 or gcd(m − 1, Ns) > 1. Those two possibilities are
mutually exclusive, since gcd(m,m − 1) = 1.

In the case γ = gcd(m,Ns) > 1, we can divide the left hand side and right
hand side of Eq. (8) by γ, and obtain e mod (Ns/γ) as in Fig. 4, line 8c. This is
possible since in this case, from Eq. (8) we get that e(m−1)m̄γ ≡ −(mam̄γ +mb)
(mod Ns) and hence mb ≡ 0 (mod γ) and γ | mb. Since e < 2κ < lpf(N), we have
obtained e.

In the case γ = gcd(m−1, Ns) > 1, we can divide the left hand side and right
hand side of Eq. (8) by γ, and obtain e mod (Ns/γ) as in Fig. 4, line 9c. This
is possible since in this case, we can rewrite Eq. (8) as e(m − 1)m ≡ −(ma(m −
1) + ma + mb) (mod Ns). Thus, we get that em̄1γm ≡ −(mam̄1γ + ma + mb)
(mod Ns) and hence ma + mb ≡ 0 (mod γ) and γ | (ma + mb). Since e < 2κ <
lpf(N), we have obtained e.

This finishes the proof. ��

196 H. Lipmaa

3.3 Σ Protocol for Circuit-SAT

To construct a Σ protocol for the NP-complete language Circuit-SAT, it suf-
fices to construct a Σ protocol for Boolean [12]. Really, each circuit can be
represented only by using NAND gates, and a NAND b = c iff a + b + 2c − 2 ∈
{0, 1} [28].

One hence just has to prove that (i) each input and wire value is Boolean,
and (ii) each gate is correctly evaluated. According to [19], each test in step ii
can be reformulated as a Boolean test. Hence, it is sufficient to run m + n Σ
protocols for Boolean in parallel, where m is the summatory number of the
inputs and the wires, and n is the number of gates. See [12] for more information.

3.4 General Idea

In both covered cases (Zero and Boolean), we constructed Σ protocols that
were specially sound and HVZK, and then applied the following idea to obtain
optimal culpable soundness. We expect the same idea to work also in general.

Let L ⊂ Cn
pk be a language about the ciphertexts of Π that naturally defines

a language LM ⊂ Mn
pk about the plaintexts. For example, in the case L = Zero,

LM = {0}. Let R = {(x,w) : x ∈ L} and, for some n,

Rguilt =

{
(x = (pk,C , skdl) : C ∈ Cn

pk ∧ (C i)ni=1 �∈ LR∧
VK(skdl, pk) = 1

}

. (9)

The general idea is to construct a Σ-protocol with the following property. If the
prover is cheating, then for each first message ca there is at most one good e.
Moreover, this e can be computed as e = e1/e2, where either e2 is invertible
modulo Ns or e2/γ is invertible modulo Ns/γ, where γ is the greatest common
divisor of Ns and some function f(m) of m �∈ LM such that f(m) �= 0.

Acknowledgments. We would like to thank Jens Groth, Ivan Visconti and anony-
mous reviewers for insightful comments. The authors were supported by the European
Union’s Horizon 2020 research and innovation programme under grant agreement No.
653497 (project PANORAMIX), and by institutional research funding IUT2-1 of the
Estonian Ministry of Education and Research.

A Preliminaries: DFN

A.1 RPK Model

In the registered public key (RPK, [3]) model, we assume that everybody has
an access to a key registration functionality Fkr. A party (say, Alice) generates
her public and secret key pair, and then sends both (together with used random
coins) to Fkr, who verifies that the keys were created correctly (this means that
to register her public key, Alice must know the corresponding private key), and
then stores the public key together with Alice’s identity in a repository.

Optimally Sound Sigma Protocols Under DCRA 197

Later, Bob (for this, it is not necessary for Bob to register his public key) can
query Fkr and then retrieve the public key of Alice together with a corresponding
certificate. On the other hand, in security proofs, we may give an adversary
control over Fkr, enabling access not only to the public but also to the secret
key of Alice. While every party can use a different Fkr, all parties need to trust
Fkr of other parties in the following sense. Fkr guarantees that

(i) the public keys of uncorrupted parties are safe (the corresponding secret key
is chosen randomly, and kept secret from the adversary), and

(ii) the public keys of corrupted parties are well-formed (the functionality has
seen the corresponding secret key).

Hence, Alice must trust her Fkr to do key registration correctly, and Bob must
trust that Alice’s Fkr has verified that Alice knows the corresponding secret key.

As noted in [3,16], one can make this model more realistic by letting Alice
to send her public key to Fkr and then give an interactive zero knowledge proof
that she knows the corresponding private key. In the security proof, we can then
construct an adversary who rewinds Alice to extract her private key.

A.2 NIDVZK Argument Systems

In a non-interactive designated verifier zero knowledge (NIDVZK, [12]) argument
system in the RPK model, the verifier has a public key Z.pk and a corresponding
secret key Z.sk specific to this argument system, that she has set up by using
a trusted functionality Fkr. An NIDVZK argument system Z consists of the
following three efficient algorithms:

Z.G(1κ): generates, registers (by using Fkr), and then returns a key pair
(Z.sk,Z.pk).

Z.P(Z.pk, x, w): given a public key Z.pk obtained from Fkr, an input x and a
witness w, returns a proof π.

Z.V(Z.sk, x, π): given a secret key, an input x, and a proof π, returns either 1
(accept) or 0 (reject).

Next, Z = (Z.G,Z.P,Z.V) is an NIDVZK argument system4 for R with
culpable soundness for Rguilt, if it is perfectly complete, culpably sound [28]
for Rguilt, and statistically (or computationally) composable zero knowledge,
given that the parties have access to the certified public key of the verifier. More
precise definitions follow.

Let x(κ) be a polynomial, such that (common) inputs of length x(κ) cor-
respond to security parameter κ. Then let Rκ = {(x,w) : bitlength(x) = x(κ)}
and LR,κ = {x : (∃w)(x,w) ∈ Rκ}, where again w has polynomial length.

Z is perfectly complete, if for all κ ∈ N, all (x,w) ∈ Rκ, and all (Z.sk,Z.pk) ∈
Z.G(1κ), Z.V(Z.sk, x,Z.P(Z.pk, x, w)) = 1.

4 We recall that an argument system is a proof system where soundness only holds
against efficient adversaries.

198 H. Lipmaa

In our constructions we will get zero-knowledge even if the adversary knows
the secret verification key. This strong type of zero-knowledge is called com-
posable zero-knowledge in [25] due to it making composition of zero-knowledge
arguments easier. More precisely, it is required that even an adversary who knows
the secret key (or trapdoor, in the CRS model) cannot distinguish between the
real and the simulated argument, [25].

Definition 4. Z is computationally composable zero-knowledge if there exists
an efficient simulator Z.sim, such that for all probabilistic polynomial-time state-
ful adversaries A,

Pr

⎡

⎢
⎢
⎢
⎣

(Z.sk,Z.pk) ← Z.G(1κ),
(x,w) ← A(Z.sk,Z.pk),
π ← Z.P(Z.pk, x, w) :
(x,w) ∈ R ∧ A(π) = 1

⎤

⎥
⎥
⎥
⎦

≈κ Pr

⎡

⎢
⎢
⎢
⎣

(Z.sk,Z.pk) ← Z.G(1κ),
(x,w) ← A(Z.sk,Z.pk),
π ← Z.sim(Z.sk, x) :
(x,w) ∈ R ∧ A(π) = 1

⎤

⎥
⎥
⎥
⎦

.

Z is statistically composable zero-knowledge if this holds for all (not necessar-
ily efficient) adversaries A. A statistically composable zero-knowledge argument
system is perfectly composable, if ≈κ can be replaced with = (i.e., the above two
probabilities are in fact equal).

In the case of culpable soundness [28], we only consider false statements
from some language Lguilt ⊆ L characterized by a relation Rguilt. We require a
successfully cheating prover to output, together with an input x and a successful
argument π, also a guilt witness wguilt such that (x,wguilt) ∈ Rguilt. That is,
we require a successful cheater to be aware of the fact that she cheated.

Formally, Z is (non-adaptively) culpably sound for Rguilt, if for all proba-
bilistic polynomial-time adversaries A,

Pr

[
(Z.sk,Z.pk) ← Z.G(1κ), (x, π, wguilt) ← A(Z.pk) :

(x,wguilt) ∈ Rguilt ∧ Z.V(Z.sk, x, π) = 1

]

≈κ 0.

Note that culpable soundness is implicitly computational (defined only w.r.t. to
an efficient adversary), thus a culpably sound proof system is always an argument
system.

In our applications, wguilt will be the secret key of the cryptosystem, about
which the NIDVZK arguments are about. For example, in an NIDVZK argument
that the plaintext is 0 (or Boolean), wguilt is equal to the secret key that enables
to decrypt the ciphertext. Such culpable soundness is fine in many applications,
as we will discuss at the end of the current subsection.

Finally, for some � = �(κ), Z is �-adaptively culpably sound for Rguilt, if for
all probabilistic polynomial-time adversaries A,

Pr

[
(Z.sk,Z.pk) ← Z.G(1κ), (x, π, wguilt) ← AZ.V(Z.sk,·,·)(Z.pk) :

(x,wguilt) ∈ Rguilt ∧ Z.V(Z.sk, x, π) = 1

]

≈κ 0.

Here, the adversary is allowed to make up to � queries to the oracle Z.V.

Optimally Sound Sigma Protocols Under DCRA 199

As shown in [16], one can handle cases where the adversary has an access
to a logarithmic number of queries, simulating their answers by guessing their
answers; this still guarantees that her success probability is inverse polynomial.

On Culpable Soundness. We will prove culpable soundness [28] of argument sys-
tems about the plaintexts of a cryptosystem by showing that if an adversary
outputs an accepting argument and the secret key sk, then she has broken an
underlying assumption. This version of culpable soundness is acceptable since
in protocols that we are interested in, there always exists a party (namely, the
verifier) who knows sk. Hence, the cheating adversary together with the verifier
can break the (non-culpable) soundness of the argument system.

Thus, such culpable soundness is very natural the RPK model, especially if
we assume that the verifier has provided an interactive zero knowledge proof of
knowledge of sk while registering it with the authority. Then, in the soundness
proof, we can just construct an adversary who first retrieves sk from the latter
zero knowledge proof, and then uses the culpable soundness adversary whom we
already have.

A.3 DFN Transform for the Paillier Elgamal Cryptosystem

Consider the DFN [16] transformation, given the Paillier Elgamal cryptosystem
Π = (Π.K,VK,E,D) where the plaintext space is ZNs for some reasonably large
s. W.l.o.g., we assume that the same cryptosystem is used to encrypt the chal-
lenge e and the witness plaintexts and the same value of s, but by using the
different secret and public keys where one secret key ske is known by the verifier
and another secret key sk is (possibly) known by the prover. For the sake of
efficiency, one could use different cryptosystems or at least different values of s
but we will avoid the general case not to clutter the notation.

This transformation assumes that the original Σ-protocol S is has a linear
answer and optimal culpable soundness using some relation Rguilt, see Sect. 2.3.
More precisely, we assume that Rguilt is as defined by Eq. (9).

The description of the DFN transform is given in Fig. 5. The following theo-
rem and its proof follows [12,16] in its structure. The part of using the extractor
to achieve culpable soundness is from [12] while the idea of letting the con-
structed adversary Aπ answer randomly to oracle queries goes back to [12,16].
The latter means that we only get O(log κ)-adaptive soundness.

Theorem 5. Assume that S is a complete and computationally (resp., statis-
tically) special HVZK Σ protocol with a linear answer for R that is optimally
culpably sound for Rguilt. Let Π = (K,VK,E,D) be the Paillier Elgamal cryp-
tosystem. Then the NIDVZK argument system for R of Fig. 5 is �-adaptively
computationally culpably sound for Rguilt of Eq. (9) for � = O(log κ), and com-
putationally (resp., statistically) composable zero knowledge for R.

Proof. Adaptive culpable Soundness. We show that if a cheating prover
Azk returns a good challenge e′ for the NIDVZK argument system with some

200 H. Lipmaa

Z.G(1κ)

(ske, pke) ← Π.K(1κ)
re ←r U(W∗

N)
e ←r Z2κ

ce ←r Es
pke

(e; re)
Z.pk ← (pke, ce)
Z.sk ← (ske, e)
Return (Z.sk, Z.pk)

Z.P(Z.pk;C;m, r, b0, b1)

// Ci = Es
pk(mi; ri, b0i, b1i)

(ca, z1, z2) ←
S.P(pk,C;m, r, b0, b1)

For i = 1 to n:
ri ← W

∗
N

czi ← cz1i
e · Es

pke
(z2i; ri, b0i, b1i)

Return π ← (ca, cz)

Z.V(Z.sk;C, π)

Parse π = (ca, cz)
For i = 1 to n:

zi ← Ds
ske

(czi)
Return S.V(C; ca, e, z)

Fig. 5. The DFN transform for the Paillier Elgamal cryptosystem. Here we assume
s = maxi�logN (z2i + 1)� is fixed by the description of S.P and thus known to the
verifier

probability ε = δ, then we can break the message recovery security of Π with
probability επ = 1/(�2�)δ.

For this, we note that Azk gets information about e from two sources, from
ce and from the response of the verifier to different queries. We now construct an
adversary Aπ that, given access to Azk, breaks the message recovery security of
Π (where the public key Z.pk includes ce). It uses the extractor S.EX, who —
given that the prover is dishonest and such a challenge exists — returns the good
challenge e′.

First, the challenger uses Z.G(1κ) to generate a secret key Z.sk = (ske, e)
and a public key Z.pk = (pke, ce), and sends Z.pk to Aπ. Aπ then runs
AZ.V(Z.sk;·,·)

zk (Z.pk). Assume Azk replies with a tuple (xi, πi, wi). Since Azk is suc-
cessful, Aπ emulates the verifier by replying with a random bit b. Once Azk stops
(say after � = Θ(log κ) steps), Aπ chooses uniformly one tuple (xi0 , πi0 , wi0), and
then runs the extractor with the input (xi0 , wi0), and obtains either “accept”,
or a candidate challenge e′. Then, Aπ outputs what the extractor outputs.

With probability 2−� = 2−Θ(log κ) = κ−Θ(1), all bits that Aπ chose are equal
to the bits that the verifier would have sent. Since Azk is successful, then with a
non-negligible probability, one of the input/argument tuples, say (xi1 , πi1 , wi1),
is such that (xi1 , wi1) ∈ Rguilt but the verifier accepts. With probability 1/� =
Θ(1/ log κ), i0 = i1. Thus, with probability επ = δ

�2� = κ−Θ(1), Aπ has given
to the extractor an input (xi0 , wi0) ∈ Rguilt such that there exists πi0 such that
the verifier accepts (xi0 , πi0 , wi0). With such inputs, since the verifier accepts,
there exists a good challenge e′, and the extractor outputs it. In this case, Aπ

has returned a good e′.
Finally, if the verifier accepts then due to the optimal culpable soundness,

the value e′ returned by the extractor must be equal to the value e that has
been encrypted by ce. Since the only information that Aπ has about e is given
in ce (since Aπ’s random answers do not reveal anything), this means that Aπ

has returned the plaintext of ce with non-negligible probability, and thus break
the message recovery security of Π.

Optimally Sound Sigma Protocols Under DCRA 201

Composable Zero Knowledge. Assume that (Z.sk,Z.pk) ← Z.G(1κ), and
(x,w) ← A(Z.sk,Z.pk). The simulator Z.sim(Z.sk, x) can obtain e from ce by
decrypting it. Given e, he runs S.sim(x, e) to obtain an accepting view (ca, e, z).
He then computes cz ← Epke

(z) and returns π ← (ca, cz).
We now show that the transcript comes from a distribution that is indistin-

guishable from that of the real view. Consider the following hybrid simulator
Z.simw that gets the witness w as part of the input. Z.simw does the following:

1. Create (ca, z 1, z 2) ← S.P(x,w) and the Σ protocol transcript (ca, e, z), z ←
ez 1 + z 2, by following the Σ-protocol.

2. Encrypt z component-wise to get cz.
3. Return π ← (ca, cz)

Since the encryption scheme is blindable, such a hybrid argument is perfectly
indistinguishable from the real argument. Since the Σ-protocol is specially
HVZK, hybrid arguments and simulated arguments are computationally indis-
tinguishable. If the Σ-protocol is statistically specially HVZK, then hybrid argu-
ments and simulated arguments (and thus also real arguments and simulated
arguments) are statistically indistinguishable. ��

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A Subversion-Resistant
SNARK. TR 2017/599, IACR (2017). http://eprint.iacr.org/2017/599

2. Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 118–136. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-70936-7 7

3. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS 2004, pp. 186–195 (2004)

4. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signa-
ture schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-69053-0 33

5. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 26

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73 (1993)

7. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling
of public parameters for succinct zero knowledge proofs. In: IEEE SP 2015, pp.
287–304 (2015)

8. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC 1988, pp. 103–112 (1988)

9. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing
the public parameters of the Pinocchio zk-SNARK. TR 2017/602, IACR (2017).
http://eprint.iacr.org/2017/602

http://eprint.iacr.org/2017/599
https://doi.org/10.1007/978-3-540-70936-7_7
https://doi.org/10.1007/978-3-540-70936-7_7
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
http://eprint.iacr.org/2017/602

202 H. Lipmaa

10. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Laih, C.-S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40061-5 3

11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology. In: STOC
1998, pp. 209–218 (1998). Revisited

12. Chaidos, P., Groth, J.: Making sigma-protocols non-interactive without random
oracles. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 650–670. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 29

13. Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost
as efficient and general as the Fiat-Shamir transform without programmable ran-
dom oracles. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
83–111. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0 4

14. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

15. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

16. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 3

17. Damg̊ard, I., Jurik, M.: A generalisation, a simpli.cation and some applications of
Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44586-2 9

18. Damg̊ard, I., Jurik, M.: A length-flexible threshold cryptosystem with applications.
In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350–364.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45067-X 30

19. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 28

20. Fauzi, P., Lipmaa, H.: Efficient culpably sound NIZK shuffle argument without
random oracles. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 200–216.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 12

21. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

22. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. TR 2017/587, IACR (2017).
http://eprint.iacr.org/2017/587

23. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

24. Goldwasser, S., Kalai, Y.T.: On the (In)security of the Fiat-Shamir Paradigm. In:
FOCS 2003, pp. 102–113 (2003)

https://doi.org/10.1007/978-3-540-40061-5_3
https://doi.org/10.1007/978-3-662-46447-2_29
https://doi.org/10.1007/978-3-662-49099-0_4
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-45067-X_30
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-319-29485-8_12
https://doi.org/10.1007/3-540-47721-7_12
http://eprint.iacr.org/2017/587
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

Optimally Sound Sigma Protocols Under DCRA 203

25. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

26. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

27. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 4

28. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012)

29. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

30. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

31. Jurik, M.J.: Extensions to the Paillier cryptosystem with applications to crypto-
logical protocols. Ph.D. thesis, University of Aarhus, Denmark (2003)

32. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS
and non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46494-6 5

33. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

34. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key
encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 28

35. Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent
zero-knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
140–159. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 9

36. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054135

37. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

38. Sander, T.: Efficient accumulators without trapdoor extended abstract. In: Varad-
harajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 252–262. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-0 21

39. Ventre, C., Visconti, I.: Co-sound zero-knowledge with public keys. In: Preneel, B.
(ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 287–304. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02384-2 18

https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-20465-4_28
https://doi.org/10.1007/978-3-642-20465-4_28
https://doi.org/10.1007/3-540-39200-9_9
https://doi.org/10.1007/BFb0054135
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-540-47942-0_21
https://doi.org/10.1007/978-3-642-02384-2_18

Economically Optimal Variable Tag Length
Message Authentication

Reihaneh Safavi-Naini1(B), Viliam Lisý2,3, and Yvo Desmedt4,5

1 Department of Computer Science, University of Calgary, Calgary, Canada
rei@ucalgary.ca

2 Department of Computing Science, University of Alberta, Edmonton, Canada
3 Department of Computing Science, FEE, Czech Technical University in Prague,

Prague, Czech Republic
4 Department of Computer Science, University College London, London, UK

5 Department of Computer Science, University of Texas at Dallas, Richardson, USA

Abstract. Cryptographic authentication protects messages against
forgeries. In real life, messages carry information of different value and
the gain of the adversary in a successful forgery and the correspond-
ing cost of the system designers, depend on the “meaning” of the mes-
sage. This is easy o see by comparing the successful forgery of a $1,000
transaction with the forgery of a $1 one. Cryptographic protocols require
computation and increase communication cost of the system, and an eco-
nomically optimal system must optimize these costs such that message
protection be commensurate to their values. This is especially important
for resource limited devices that rely on battery power. A MAC (Message
Authentication Code) provides protection by appending a cryptographic
tag to the message. For secure MACs, the tag length is the main deter-
minant of the security level: longer tags provide higher protection and
at the same time increase the communication cost of the system. Our
goal is to find the economically optimal tag lengths when messages carry
information of different values.

We propose a novel approach to model the cost and benefit of infor-
mation authentication as a two-party extensive-form game, show how to
find a Nash equilibrium for the game, and determine the optimal tag
lengths for messages. We prove that computing an optimal solution for
the game is NP-complete, and then show how to find an optimal solution
using single Mixed Integer Linear Program (MILP). We apply the app-
roach to the protection of messages in an industrial control system using
realistic messages, and give our analysis with numerical results obtained
using off-the-shelf IBM CPLEX solver.

Keywords: Message authentication · Economics of authentication
Authentication game · Rational adversary in cryptography
Game complexity

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 204–223, 2017.
https://doi.org/10.1007/978-3-319-70972-7_11

Economically Optimal Variable Tag Length Message Authentication 205

1 Introduction

Information authentication is an indispensable part of today’s computer and
communication systems. Gilbert et al. [14] considered codes that detect “decep-
tion” to provide protection against message tampering. A Message Authentica-
tion Code (MAC) is a symmetric key cryptographic primitive that consists of
a pair of algorithms: a tag generation algorithm TAG that generates a short
string called tag that is appended to the message, and a verification algorithm
V ER that takes a message and an appended tag, and accepts or rejects the
message. Message Authentication Codes (MAC) when the adversary has unlim-
ited computational power, were first modelled and analyzed by Simmons [27]
as a two-party zero-sum game. Security of MAC when the adversary is compu-
tationally bounded has also been formalized using a two-party zero-sum game
that allows the adversary to have a learning phase (by querying authentication
and verification oracles), before constructing the forgery. Efficient constructions
of MAC with provable security have been proposed using block ciphers [6] and
hash functions [5]. In all these works, messages are assumed to have equal val-
ues for the adversary and the communicants, and the adversary is considered
successful with any forgery that passes the verification test.

In practice however, messages have different values for the adversary and
the communicants, and the impact of a successful forgery will depend on the
information that they carry: forging a $1,000 transaction will be much more
desirable for the adversary than forging a $1 one! Similarly, in an industrial
control system that uses information communication in the daily operation of
the system, a control message that causes the system to shut down is far more
valuable, than a simple regular status update message.

An authentication system that provides the same protection for all messages,
must either choose security parameters of the system for the protection of the
most high-valued messages in the system, or accept higher risks for the more
important messages.

Cryptographic authentication has two types of cost: the computation cost of
generation and verification of MAC, and the extra communication cost of trans-
mitting and receiving the appended tag. These costs could become significant
for small devices that must minimize their energy and power consumption, and
carefully plan their resources [31]. In the fast growing Internet of Things (IoT),
the bulk of messages that are sent between devices are short status update and
control messages that must be authenticated, and optimizing the cost becomes
highly desirable [26]. In [22], in the context of securing IoT and in particular
machine-type communication, the author noted that:

“They generally have low data rate requirements, periodic data traffic
arrivals, limited hardware and signal processing capabilities, limited storage mem-
ory, compact form factors, and significant energy constraints [20] As an example,
a battery life of ten years at a quarter of the cost of wideband LTE-A devices is
one of the objectives of the Release 13 LTE-A MTC standardization effort [21].”

Our objective is to optimize the cost of message authentication to be com-
mensurate with the value of information that the message carries.

206 R. Safavi-Naini et al.

Our work. We depart from the traditional two-party zero-sum game model of
security of MAC, and consider the problem of using an ideal MAC for protecting
messages that have different values. To adjust the protection level of messages,
we will use variable tag lengths for the ideal MAC: the MAC guarantees that
when the tag length is τ , the adversary’s success chance of a forgery is 2−τ . This
implicitly assumes that the key length is at least the size of the tag length. Ideal
MACs can be closely approximated with existing MAC algorithms in information
theoretic and computational security.

We model the problem as a game between two rational players, a system
designer that includes the sender and the receiver, and an adversary. The game
is an infinite general-sum extensive form game with perfect information. We
consider the following setting: there is a message source with � messages and a
publicly known probability distribution; time is divided into intervals; in each
interval the source generates a message according to the known distribution. We
also allow intervals without any message (empty message). This is similar to
the model considered by Simmons [27] and a natural model for many message
sources including messages that are generated in an industrial control system.

The cost of a successful forgery for the system designer includes the opera-
tional cost of the cryptographic protection that they use, and the loss incurred
because of the particular forgery. The adversary’s gain will also depend on the
particular forgery and the information that the forged message carry.The game
proceeds as follows.

There is a publicly known ideal MAC. First, the system designer chooses a
vector T = (τi) ∈ N

�+1 of authentication tag lengths, one for each message,
and makes the vector public. We assume the empty message will also receive a
tag. Next, a message mi appears in the system (e.g. a message appearing in an
industrial plant). The designer computes a tag of length τi, appends it to the
message, and sends it. Finally, the adversary sees the message and decides how
to replace it with another message, including the empty message. The latter is
equivalent to removing the message from the channel and had not been consid-
ered in traditional MAC systems.We derive expressions that capture the cost
and the gain of the designer and the adversary, and by analyzing the strategies
of the two, show how to find a Nash equilibrium of the game and determine the
optimal tag lengths for messages. Our work makes the following contributions.

(1) It introduces a novel approach to security analysis of cryptographic mes-
sage authentication that takes into account the value of information that
messages carry as well as the cost of using cryptographic protection,and
provides an optimal fine-grained protection mechanism using a secure MAC
algorithm that supports different tag lengths. The model can realistically
capture a variety of costs and rewards for players. The integrity attacks
include traditional message forgeries (i.e. message injection and substitu-
tion) as well as message deletion (jamming) attack.

(2) We present a sound method of finding optimal (Nash equilibrium) strategies
using backward induction argument.The method, however, requires solving

Economically Optimal Variable Tag Length Message Authentication 207

an exponential (in the number of messages) number of non-linear integer
optimization problems.

(3) Using a transformation from the vertex cover problem, we show that com-
puting optimal vector of tag lengths, is NP-hard.

(4) We present an equivalent formulation of the problem in the form of a mixed
integer linear program (MILP) that proves that the decision version of our
problem is NP-complete. The MILP formulation provides an attractive app-
roach which allows us to use an off-the-shelf solver to find a solution to
a concrete instance of the problem. We apply our formulation and MILP
approach to the analysis of message authentication in an industrial control
system for oil pipes.

Paper organization. In Sect. 2 we provide preliminary background and describe
the proposed game of message authentication. Section 3 is the analysis of the
game and finding a Nash equilibrium using backward induction. Sections 3.2
and 4 give computational complexity of the game and the formulation of finding
the Nash equilibrium as a solution to an MILP. In Sect. 5 we discuss related
works. Section 6 concludes the paper and suggests directions for future work.

2 An Economic Model for Information Authentication

In the following we recall the security definition of MAC that is relevant to
our work, and then describe our game model. Game theoretic definitions and
concepts follow [23].

A Message authentication code MAC is a symmetric key cryptographic prim-
itive for providing message integrity. A MAC consists of a pair of algorithms
(TAG, V ER). The TAG algorithm takes two inputs, a shared secret key k, and
a message m, and generates a tag t = TAGk(m) that is appended to the mes-
sage, resulting in a tagged message. The V ER algorithm takes a pair of inputs,
a key k and a tagged pair (m′, t′), and outputs V ERk(m′, t′) = T to indi-
cate that the tagged pair is valid and message is accepted as authentic, and
V ERk(m′, t′) = F to denote detection of a forgery. Correctness of the MAC
requires that V ERk(m, TAGk(m)) = T .

A MAC is (ε, u)-secure if an adversary who has a learning phase during
which they can query u tagged messages from an authentication oracle cannot
successfully forge a message with probability better than ε. (One can also allow
access to verification oracle.) An u-time ideal MAC is a (2−τ , u)-secure MAC,
where τ is the length of the tag in bits. A vlMAC family in this paper is a
family of (2−τ , u)-secure MAC for τ ∈ N, where N = {0} ∪ Z

+ denotes the set
of non-negative integers. We use u = 1. This means that the MAC can detect
with a high probability, forged messages that are injected into the system, or
the substitution of a message with a forged one. Our game theoretic model also
considers the cost of dropping a message. To prevent message replay, one needs
to consider additional mechanisms such as counters, or ensure that each message
includes extra redundancy to make each message unique. This will not affect our
analysis.

208 R. Safavi-Naini et al.

Game setting. Let Iε = {ε, 1, · · · �} denote the set of indexes of possible mes-
sages, including the empty message, and let I = {1, · · · �}, denote the set of
indexes of non-empty messages.

– A sender S wants to send messages to a receiver R over a channel that is con-
trolled by an adversary, Eve.Eve can either inject a message into the channel,
delete (jam), or modify the message that is sent by S. S and R together form
a system designer player.

– Time is divided into intervals. A message source M = {m1, · · ·m�} generates
messages independent of the sender and the receiver. In each time interval a
message mi, i ∈ Iε, may appear at the sender terminal that must be sent to
the receiver.Let Mε = {mi, i ∈ Iε} denote the set of messages in the system
(e.g. an industrial control system), and mε be a special message denoting
“no-message” appearing in the interval. We assume messages from Mε appear
with a publicly known probability distribution (pε, p1, · · · p�), and pi = Pr(mi)
is the probability of mi appearing in the system, and pε = Pr(mε) is the
probability that no message appears in a time interval. Messages have different
lengths. We will also use mi to denote the length of the message mi.

– Messages have different “values” for the system designer and the adversary.
If Eve succeeds in changing mi to mj , where i, j ∈ Iε, their gain will be
gi,j . The impact of a successful forgery on the system designer’s operation is
measured by a cost function c′

i,j
1 that reflects the economic cost of successful

message substitution for the system designer. Note that i = ε corresponds to
message injection and j = ε is message deletion (jamming, dropping) by the
adversary. We also consider the cost di of a detected forgery attempt on mi.
This captures the cost of, for example, request for retransmission or using
alternative channels for retransmission.
We assume gi,j and c′

i,j , i, j ∈ Iε, are non-negative and public.
– The total cost of the system designer when a forgery occurs, includes the eco-

nomic impact of an undetected forgery, the cost associated with detected forg-
eries, and the investment to provide the required computation for MAC gen-
eration and verification, and the communication cost of sending and receiving
messages with the appended tag. We assume that the operational cost of the
MAC system is proportional to the length of the authenticated message (i.e.
message appended with the tag). This is reasonable for small devices in an
IoT setting and can be replaced by other functions to reflect other settings.
We use αt and αr to denote the (per bit) operational cost of the cryptographic
MAC for the sender and the receiver, respectively.

– The system designer uses a vlMAC to provide authentication for messages.
Security of MAC guarantees that a tagged message (m, t) can be forged with
probability 2−τ , where τ is the length of the tag t. We use T = (τε, τ1, · · · τ�) ∈
N

�+1 to denote the vector of tag lengths for messages mε,m1 · · ·m�.

1 For our analysis we define ci,j that includes c′
i,j .

Economically Optimal Variable Tag Length Message Authentication 209

2.1 Game Structure

We model the interaction between the two players (the system designer and the
adversary) in the above scenario when messages are generated by an external
source, using a perfect information extensive form game with chance moves. We
assume a secure key has been shared between the sender and the receiver.

1

c

2

u1(T1,mε ,mε)
u2(T1,mε ,mε)

mε m1 . . .

u1(T1,mε ,m�)
u2(T1,mε ,m�)

m�

pε ,mε

2

. . .

p1,m1

2

mε m1 . . .

u1(T1,m�,m�)
u2(T1,m�,m�)

m�

. . . p�,m�

T1
c

T2
c

Ti = (τi1,τi2, . . . ,τi�)
c

. . .

. . .

.

Fig. 1. A sketch of the game tree Θ that represents the message authentication game.
The circles labeled by 1, 2 and c, represent the points in the game that the players 1,
2, or the chance player, must take action. The labels on the edges denote the actions
taken by the player associated with the circle that is at the higher end of the edge. The
leaves of the tree are labelled by the payoffs of the two players.

The game Γauth = 〈N,H,P, fc, (ui)〉 is defined by the set of players N , the
set of histories H, a player function P , a fixed distribution for chance moves fc,
and the utility functions (ui), i = 1, 2. A tree representation of the game is given
in Fig. 1.

A history is a list of actions by players corresponding to a path from the root
of the game tree to a node in the tree. The length of a history is the number of
elements in the list. The set of histories H is given by:

H = {∅, {T ∈ N
� +1}, {(T,mi) ∈ N

� +1 × Mε}, {(T,mi,mj) ∈ N
� +1 × Mε × Mε}}.

At a history T of length one, the system designer has chosen a tag length
vector T = (τi)i∈Iε

; at a history (T,mi) of length 2, the system designer has
chosen T and the chance move has selected mi; finally at a terminal history
(T,mi,mj) of length 3, a length 2 history (T,mi) has been followed by player
2’s choice of the forged message mj ∈ Mε. A player function P takes a non-
terminal history h ∈ H \ Z, and outputs a player in N . The set of actions
available to a player at history h is denoted by A(h) = {a : (h, a) ∈ H}. For all
chance nodes h = T ∈ N �+1, fc(mi|h) = p(mi) is an independent probability
distribution on possible moves A(h) = Mε, at h.

210 R. Safavi-Naini et al.

Let Kronecker delta δi,j be defined as, δi,j = 0 if j �= i, and δi,j = 1,
otherwise. For a tag length vector T = (τε, τ1 · · · τ�), the chance move mi, and
Eve’s move mj , where i, j ∈ Iε = {ε, 1, · · · �}, the players’ utilities are,

u1(T,mi,mj) = αt(mi + τi) + αr(mj + τj) + c′
i,j2

−τj + di(1 − 2−τj)(1 − δi,j),

u2(T,mi,mj) = gi,j2−τj(1−δi,j).

The utility u1(T,mi,mj) consists of, (i) αt(mi +τi), the sender’s cost of sending
the tagged message (mi, ti), (ii) αr(mj + τj), the receiver’s cost of receiving a
tagged message (mj , tj), (iii) c′

i,j2
−τj , the economic cost of accepting a fraudu-

lent message mj in place of the original message mi, and (iv) di(1−2−τj)(1−δi,j),
the economic cost of detection of a forgery in the organization. The utility
u2(T,mi,mj) of player 2, is their expected gain that is realized by the successful
replacement of mi by mj . We use,

u1(T,mi,mj) = αt(mi + τi) + αr(mj + τj) + c′
i,j2

−τj + di(1 − 2−τj)(1 − δi,j) (1)
= αt(mi + τi) + αr(mj + τj) + ci,j2

−τj + di(1 − δi,j), (2)

where ci,j = c′
i,j − di(1 − δi,j), effectively combining the cost of an undetected

forgery and a detected forgery.

Assumptions: We assume the cost and gain parameters are known to the system
designers. Real world applications of game theory in physical security suggest
that these values can be reliably estimated [28]. Although exact values may be
hard (or impossible) to find, system designers can use risk analysis methods to
categorize messages into types, and attach a value to each type. Small errors in
estimates of system designer’s costs cannot lead to large errors in the proposed
solutions. This might happen due to errors in attacker’s gain estimates, however,
overestimating attacker’s gains for more harmful substitutions increases robust-
ness for the final solution. If the analysis reveals that there is a substantial
uncertainty about the motivations of the attackers, the model can be extended
to a Bayesian game [20], or a game with interval uncertainly [19]. These are
possible future extensions of this work. The case study in the full version of this
paper shows how these costs can be meaningfully estimated.

To simplify the analysis of the game, we assume gi,j and ci,j are non-negative.
In practice one may use negative values. For example including decoy messages
that serve to detect forgeries could result in communicants’ cost to be negative.
We also assume ci,i = 0 and c′

i,j ≥ di. The former implies that not changing
a message incurs zero cost to the designer, and the latter implies that cost of
undetected change of a message to the designer is higher than that of a detected
change, resulting in ci,j = c′

i,j −di(1− δi,j) ≥ 0. This is a reasonable assumption
for all sufficiently valuable messages in the system. We however allow gi,i to
be non-zero (we refer to this as no-change substitution), indicating it may be
beneficial for the adversary not to change the sent message. These assumptions
capture many scenarios in practice and are used in our analysis. Our approach
can be used with other assumptions that model specific application scenarios.

Economically Optimal Variable Tag Length Message Authentication 211

2.2 Players’ Strategies

A player i’s strategy is a tuple that specifies their choices at all histories where
P (h) = i. Player 1 is associated with h = ∅ and their strategy s1 = T ∈ N

�+1

specifies the choice of the tag length vector T . The set of player 1 strategies is
an infinite set that is denoted by S1.

The choice nodes of player 2 are at histories of length 2 and are of the form
h = (T,mi). A player 2 strategy s2 will choose a substitution message for all such
histories. Let S2 denote the set of player 2’s strategies. Histories of length 2 start
with the choice node of player 1, and so player 2 at a history of length 2 knows
the tag lengths that will be used by player 1. A strategy in S2 determines the
substitution message that will be used for every possible player 1 strategy, and
every choice of the chance move. Thus S2 is also an infinite set. We however
introduce basic strategies that are from a finite set, and are used to partition
S1 and construct a finite (although very costly) algorithm for finding a Nash
equilibrium.

Basic strategies of player 2: A basic strategy of player 2, denoted by sb
2, is a

function sb
2 : Mε → Mε that specifies the choices (substitution message) of

player 2 at all histories h(T,mi), i ∈ Iε. For each message, player 2 has � +
1 possible actions, including replacing the message with mε, and keeping the
message unchanged. Thus the number of basic strategies is |S b

2 | = (� + 1)�+1.
A basic strategy is represented by a vector (mjε

,mj1 · · ·mj�
),mji

∈ Mε, or
equivalently, by (jε, j1 · · · j�), ji ∈ Iε. Note that a basic strategy can be used
with any of the player 1’s strategies, and does not depend on the tag lengths.
The set of player 2’s basic strategies is denoted by S b

2 .
A player 2’s strategy s2 is an infinite vector of player 2’s actions at all

histories of length 2, (s2(T,mi), T ∈ N
�+1, i ∈ Iε), where player 1’s action

(their strategy) and the chance player’s action have been specified. The set
of actions (s2(T,mi), i ∈ Iε) for a fixed T , corresponds to a basic strategy
of player 2, denoted by sb

2(T). Thus s2 can be written as an infinite vector
((T, sb

2(T)), T ∈ N
�+1, sb

2(T) ∈ S b
2). The set of basic strategies of player 2 is

finite. The above discussion is summarized in the following proposition.

Proposition 1. The sets S1 and S2 are infinite. The number of player 2’s
basic strategies is (� + 1)�+1.

System designer’s cost: The expected cost of player 1 for a strategy profile
(s1; s2) = (T = (τ1 · · · τ�); ((T, (jε, j1 · · · j�)), (T ′, sb

2(T
′)) : T ′ ∈ S1 \ {T})), is

given by:

Cs1,s2 =
∑

i∈Iε

pi[αt(mi + τi) + αr(mji
+ τji

) + ci,ji
2−τji + di(1 − δi,j)]. (3)

That is, the cost of player 1 for strategy s1 = T will only depend on the basic
strategy sb

2(T) that follows s1 = T .

212 R. Safavi-Naini et al.

3 Finding a Nash Equilibrium Using Backward Induction

The authentication game above is an infinite game: both players’ strategy sets
are infinite and a player 2 strategy is an infinite vector. This prohibits direct use
of backward induction and finding a subgame perfect equilibrium. We however
show how to use backward induction to partition the infinite strategy set S1

into finite number of partitions, and find a Nash equilibrium for the game by
solving a finite number of constrained non-linear integer optimization problems.

Backward induction: We decompose the tree representation of the game Θ into
subtrees, Θ(T), one for each T ∈ N

�+1. The subtree Θ(T) has the same root as
Θ, starts with player 1 strategy T and includes all subsequent actions of chance
node and player 2. We can use backward induction for Θ(T) to determine the
expected cost of player 1 for a strategy sb(T): start from terminal histories of the
tree; the first backward step will arrive at a history h = (T,mi) which is a choice
node for player 2. A tuple of all such choices for all messages mi, i ∈ Iε, is a basic
strategy sb

2(T) . The second backward step reaches the choice node of a chance
move. Here the choice is external to the game and is given by a distribution on
Mε. The third backward step reaches player 1’s choice node. At this node, the
cost of player 1 for sb

2(T) that was selected at step 1 of backward induction by
player 2, is given by (3). We would like to choose the optimal strategy T for
player 1 which minimizes their cost over all choices of player 2. However, there
are infinitely many T and the corresponding Θ(T), and for each one needs to
consider (� + 1)�+1 basic strategies. We make the following crucial observation
that allows us to find a Nash equilibrium of the game in finite number of steps.

The set S1can be partitioned into (� + 1)�+1 parts, one for each player 2 basic
strategy, such that for all player 1 strategies in the partition associated with
sb
2, player 2’s best response (maximizing player 2’s expected gain), is sb

2.One
can then find the best choice of player 1 (T that minimizes their expected cost)
for each partition. The final step is finding the sb

2 that corresponds to the least
expected cost for player 1 over all sb

2 ∈ S1 More details follow.

Backward induction for Θ(T): The backward induction steps for Θ(T) are as
follows.

S1: At a terminal history h = (T,mi,mj), the utilities are,

(u1, u2) = ([αt(mi + τi) + αr(mj + τj) + ci,j2
−τj + di(1 − δi,j)], [gi,j2

−τj(1−δ(i,j))]).

In the first backward step in Θ(T), the best utilities of player 2 at histories
h = (T,mi) ∈ H2, mi ∈ Mε, are found by choosing messages mji

that maximize
player 2 payoffs, where

s2(T,mi) = mji
if, gi,ji

2−τji
(1−δi,ji

) ≥ gi,u2−τu(1−δi,u),∀u ∈ Iε \ {ji}. (4)

The inequalities in (4) ensure that choosing mji
will have at least the same

gain as any other mu, different from mji
. The tuple of optimal choices of player

2 for all m ∈ Mε, determines the (optimal) basic strategy sb∗
2 (T) of player 2.

Economically Optimal Variable Tag Length Message Authentication 213

S2: At history h = (T), we have P (h) = c and the optimal utility of player 1 is
Cs1,sb∗

2 (T), given by the expression (3), when sb
2(T) = sb∗

2 (T), found in step S1.

S3: At history h = ∅, player 1 has to select the best s1 = T by minimizing the
expected cost mins1∈S1 Cs1,sb∗

2 (T) over all choices of s1.
Let T (sb

2) ⊂ N
�+1 be the set of player 1 strategies for which sb

2 is player
2’s optimal strategy at the first step of backward induction, S1. The following
proposition follows from step S1.

Proposition 2. A basic strategy sb
2 = (jε, j1 · · · j�) is optimal for all subtrees

Θ(T) where T = (τε, τ1, · · · τ�), that satisfy the following:

gi,ji
2−τji

(1−δi,ji
) ≥ gi,u2−τu(1−δi,u),∀u ∈ Iε \ {ji}, i ∈ Iε (5)

Moreover,
⋃

sb
2∈S b

2
T (sb

2) = S1 and for any two strategies sb
2, s

b′
2 ∈ S b

2 , T ∈
T (sb

2) ∩ T (sb′
2) ⇒ u2(T, sb

2) = u2(T, sb′
2). Thus, the sets T (sb

2) partition the set
S1 with overlaps only due to attacker’s indifference.

The proof is in the full version of the paper. Using this lemma we prove the
following theorem.

Theorem 1. A Nash equilibrium for Γauth, and the associated optimal strategies
(T ∗, sb∗

2 (T ∗)), can be found by solving the following optimization problem,

C∗ = min
sb
2∈S b

2

C∗
sb
2

= min
{sb

2∈S b
2 }

min
{s1∈T (sb

2)}
Cs1,sb

2
.

The tag length vector T ∗ gives the minimal cost C∗ over all strategies s1 ∈ S1.

The proof is in the full version of the paper.

3.1 Tie Breaking of Indifferent Attacker

In general, there may be multiple Nash equilibria in the game. The algorithm
above soundly finds the one that optimizes the expected payoff of the defender.
When there is equality in (5), that is player 2 has more than one best choice, a
player 1 strategy may belong to multiple partitions T (sb

2).Since the approach in
Theorem 1 select the partition achieving the mimimum cost, if the same strategy
is optimal in multiple partitions, it selects the partition which is most favourable
for player 1. As a result, it resolves the tie in favour of player 1.

To avoid this unrealistic assumption, we further restrict the sets T (sb
2) so

that they include only the player 1 strategies for which sb
2 is the worst possible

best response of the attacker. In order to do this, we add additional constraints
to the definition of T (sb

2) in Proposition 2. The constraints request that the
system designer’s cost be maximized by the substitution of mi by mji

if there
are other alternative messages mu that ensure the same gain to the attacker:

ifgi,ji
2−τji

(1−δi,ji
) = gi,u2−τu(1−δi,u)then

αr(mji
+ τji

) + ci,ji
2−τji

(1−δi,ji
) + di(1 − δi,ji

) ≥
αr(mu + τu) + ci,u2−τu(1−δi,u) + di(1 − δi,u), ∀u ∈ Iε \ {ji}. (6)

214 R. Safavi-Naini et al.

Denote these further restricted sets by T ′(sb
2). They still cover the whole

strategy space of player 1. Moreover, the overlaps of the sets are formed only
by the strategies that make both players indifferent. Computing solution as sug-
gested in Theorem 1 with sets T ′(sb

2) produces the robust solution that assumes
that the attacker breaks ties against the system designer if he is indifferent among
multiple substitutions.

3.2 Computational Complexity

The solution to the above game requires solving exponentially many optimization
problems. It is not likely that there is a substantially simpler method to solve
the game, since we further show that solving the Message Authentication Game
is NP-hard.

Theorem 2. Computing the optimal strategy for the system designer in the
Message Authentication Game is NP-hard. This can be shown even if all mes-
sages have unit length (mi = 1), occur with uniform probability without empty
interval (pi = 1

|M |), detection cost is zero, (di = 0), and regardless of the tie
breaking rule.

The proof is by reducing the NP-complete Vertex (or Node) Cover problem [17]
to the problem of finding an optimal solution to the authentication game Γauth.
Messages correspond to vertices and edges of the graph. Utilities ensure that the
optimal solution for Γauth attaches tags only to messages that correspond to ver-
tices, and a non-zero tag for a message means that the vertex is in subset S. The
basic building block of the reduction is an “edge gadget”,which ensures high cost
if none of its incident vertices is selected (receive a non-zero tag), and lower cost if
one or both of its incident vertices are selected (receive a non-zero tag).The com-
plete proof is in the full version of the paper.

4 MILP Formulation of the Game

The solution provided by Theorem 1 is extremely costly. In this section we
reformulate the optimization problem in Theorem 1 to improve efficiency of
computation and be able to use standard highly optimized solvers. We show a
transformation of this optimization problem to a single Mixed Integer Linear
Program (MILP) that is polynomial in the size of the problem definition, which
in turn is polynomial in the number of messages.

Theorem 1 states that the solution to the game of authentication, is the
solution to the following optimization problem:

min
(jε...jl)∈Sb

2

min
(τε...τl)∈Nl+1

∑

i∈Iε

pi

[
αt(mi + τi) + αr(mji + τji) + ci,ji2

−τji + di(1 − δi,j)
]
,

subject to gi,ji2
−τji

(1−δi,ji
) ≥ gi,u2−τu(1−δi,u) ∀i ∈ Iε, u ∈ Iε \ {ji}.

Economically Optimal Variable Tag Length Message Authentication 215

The problem is structurally similar to finding strong Stackelberg equilib-
rium in Bayesian games2, which is also an NP-hard problem [8]. The proposed
game model is a Stackelberg game because first the system designer selects and
commits to a vector of tag lengths, and then the attacker observes this com-
mitment and plays their best response. The similarity to the Bayesian games is
that there is a set of messages (corresponding to player types) generated with a
fixed probability distribution. For each of these messages, the defender performs
their actions with a distinct set of payoffs. Using these observations, we derive
a MILP for the Authentication Game that is similar to DOBSS [24], the MILP
formulation for computing mixed Stackelberg equilibria in Bayesian games. The
main differences from the Stackelberg games studied in literature is the discrete
combinatorial structure of the commitment and the exponential form of the util-
ity functions. Since our problem is NP-hard, transformation of the problem to a
well studied NP-complete problem (such as MILP) and using an existing solver
is generally the most efficient solution technique.

MILP is an optimization problem that can be described as the optimization
of a linear function, subject to a set of linear constraints, where the variables
can have real or integer domains. There are two kinds of issues that need to
be resolved to transform the above optimization problem to MILP: (1) The
objective function and the constraints are not linear and, (2) the set of basic
strategies of player 2, S b

2 , is exponentially large and in the formulation above,
a set of constraints for each of these strategies is considered. We start with
linearization of the non-linear terms.

4.1 Objective Linearization

The objective function is the minimization of a number of positive terms, some of
which are exponential. Since ciji

is non-negative, we can replace the exponential
terms 2−τji , with new variables eji

, and lower bound the new variables by linear
constraints so that the approximation is exact for all meaningful integer values
of τji

. Increasing the length of τj increases the protection of the system for that
message. Increasing the length by one bit from k to k + 1, reduces the cost of
replacing mi by mj by cij(2−k − 2−(k+1)). It also has a cost αt for transmitting,
and αr for receiving. It does not change the cost related to di. If the saving in
damage incurred by successful forgery is less than the extra cost of sending and
receiving, extending the tag length is not meaningful. Denote τmax

j the maximal
meaningful value of τj . The additional bit in a tag is not worth its cost, if

αt + αr ≥ max
i∈Iε

cij

(
2−τmax

j − 2−(τmax
j +1)

)
⇒ τmax

j ≥ max
i∈Iε

log(
cij

αt + αr
) − 1. (7)

A second reason why the defender may want to increase the tag length, is to
prevent dropping of some other message that the attacker wants to substitute

2 Players in Bayeasian games receive a randomly selected private type which deter-
mines their payoff structure, before they play.

216 R. Safavi-Naini et al.

with mj . This is not worthwhile if the cost of sending and receiving the tags is
more than the cost of the dropped message:

τmax
j (αt + αr) ≥ max

i∈Iε

di ⇒ τmax
j ≥ maxi∈Iε

di

(αt + αr)
.

If we set τmax
j to the maximum of the two values above, the linearized objective

will be:

min
(jε...jl)∈Sb

2

min
(τε...τl)∈Nl

∑

i∈Iε

pi

[
αt(mi + τi) + αr(mji

+ τji
) + ci,ji

eji
+ di(1 − δi,j)

]
(8)

with the additional constraints:

ej ≥ −2−(k+1)(τj − k) + 2−k ∀j ∈ I; k ∈ 0, 1, . . . , (τmax
j + 1).

Note that this linearization does not introduce any error.Variables τj can have
only integer values, and the approximation by the linear functions is exact for
all meaningful integer values for these variables.

4.2 Best Response Constraints Linearization

The constraints in the original problem also contain exponentials, but they can
be linearized by taking the logarithm of both sides. They are equivalent to:

log(gi,ji
) − τji

(1 − δi,ji
) ≥ log(gi,u) − τu(1 − δi,u)∀i ∈ Iε, u ∈ Iε \ {ji}. (9)

The only problem with these constraints can occur if gi,ji
or gi,u, is zero.

In that case, the logarithm is minus infinity. If gi,u is zero and gi,ji
is non-zero,

we can omit the constraint since it would always be satisfied. If gi,u is non-zero
and gi,ji

is zero, the constraint would never be satisfied. Therefore ji can be
prevented from reaching the value that would cause this situation. Finally, if
both values are zero, looking back at the constraint before taking the logarithm
reveals the constraint is trivially satisfied and can be omitted.

If an application requires gij to be negative, it does not change the solution
substantially. If for some i, there are both positive and negative gij , the attacker
will never attempt to make the exchange with the negative gain and we can set
their gains to 0. If for some message all substitutions cause negative gain, we
can reverse the constraint and perform the same linearization.

4.3 Compact Representation of the Attacker’s Strategy

After the linearization steps above, we have to find the minimum of exponentially
many linear optimization problems, i.e., one for each attacker’s basic strategy. We
further combine all the optimization problems to a single minimization to allow

Economically Optimal Variable Tag Length Message Authentication 217

a solver, such as IBM CPLEX3, to automatically formulate problem relaxations
and prune the space of possible attacker’s strategies.

For clarity of exposition, we first describe a more intuitive formulation of the
problem with quadratic terms and then further linearize it. In order to represent
the attacker’s strategies, we define a set of new binary variables aij ∈ {0, 1}. The
semantics of aij = 1 is that the attacker replaces message mi with message mj . To
ensure that each message can be replaced by only one other message, we require:

∑

j∈Iε

aij = 1 ∀i ∈ Iε.

We combine all the optimization problems by activating only the best response
constraints relevant to specific selection of the attacker’s strategy using the stan-
dard “big M” notation. The big M method is used to activate or deactivate spe-
cific constraints in integer programs, dependent on the value of a binary variable.
The quadratic formulation of the original problem is:

min
∑

i∈Iε

pi

⎡

⎣αt(mi + τi) +
∑

j∈Iε

aij(αr(mj + τj) + ci,jej + di(1 − δi,j))

⎤

⎦(10)

ej ≥ −2−(k+1)(τj − k)+2−k, ∀j ∈ I; k∈0, . . . , (τmax
j + 1) (11)

(1 − aij)M + log(
gi,j

gi,u
) − τj(1 − δi,j) ≥ −τu(1 − δi,u),

∀i, j ∈ Iε, u ∈ Iε \ {j} : gi,u > 0 (12)
∑

j∈Iε

aij = 1 ∀i ∈ Iε (13)

aij ∈ {0, 1}; τj ∈ N; ei ≥ 0 (14)

The objective function of this optimization problem is the Eq. (8), rewritten
using the binary variables aij . Instead of adding directly the contribution of
switching a message i to ji, it adds the contribution of switching to all alterna-
tive messages multiplied by the indicator aij , which is zero with the exception of
aiji

. Constraints (11) are from the linearization of the exponentials in the objec-
tive. Constraints (12) are the linearization of the best response with an additional
term (1−aij)M . Here M is a sufficiently large (possibly always different) number,
so that with aij = 0 the constraint does not restrict any meaningful assignment
of variables in the constraint. As a result, the constraint is effective only in case
of aij = 1. Each feasible assignment of variables aij encodes one of the expo-
nential number of minimization problems that we started with. The indicators
in the objective (10) set up the right objective function from Theorem1 and the
indicators in constraints (12) choose the right subset of constraints that is valid
for that subproblem.

In order to be able to use any standard MILP solver, we further linearize the
quadratic objective function. Since aij are binary, the quadratic terms can be
rewritten using the “big M” notation with the same meaning as above. Instead
3 http://www.ibm.com/software/commerce/optimization/cplex-optimizer/.

http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

218 R. Safavi-Naini et al.

of multiplication, they are interpreted more like “if aij = 1 then aij · τj = τj else
aij ·τj = 0”. For each possible term aij ·τj we define a new variable aτij , for each
possible term aij · ej , we define a new variable aeij and we constrain these new
variables to be larger or equal to the original variables only in case of aij = 1.
This way the minimization of the objective, in which these variables are present
in positive terms, ensures that the new variables will reach their lower bounds.

min
∑

i∈Iε

pi

[
αt(mi + τi) +

∑

j∈Iε

(αr(mj + aτij) + ci,jaeij + di(1 − δi,j)aij))

]

constraints(11) − (14) (15)
aτij + (1 − aij)M ≥ τj ∀i, j ∈ Iε (16)
aeij + (1 − aij)M ≥ ej ∀i, j ∈ Iε (17)

aeij ≥ 0; aτij ≥ 0 ∀i, j ∈ Iε (18)
aij = 0 ∀i, j ∈ Iε : gij = 0 & ∃u ∈ Iε gi,u > 0 (19)

The problem formulation in (15–19) is an MILP, which can be solved by
any standard solver. If we require the empty message not to have a tag, we
can add the constraint τε = 0. The algorithm above computes the optimistic
Nash equilibrium assuming that the attacker will break ties in favour of the
defender. However, the discrete nature of the defender’s commitment allows for
a MILP formulation of the pessimistic variant as well. We need to incorporate
the constraints (6) in to the program.

4.4 Examples

We apply the above solution method to two cases. First we consider an example
of a small message space to show how using differentiated tag lengths reduces
the designers’ cost, and then model a real life message space to show that the
problem can be solved for realistic cases using off-the-shelf software.

A 3-message authentication system. The goal of this example is to show
the effectiveness of the proposed variable length tags compared to fixed-length
tags. We consider a three message space and use Table 1 to specify the complete
set of parameters, mi (message length), cij , gij (cost and gain of substitution
of message i with message j), αt = αr = 0.1 (transmission and reception
costs per bit), pi = 1

4 (message distribution including empty message), and
di = 0 (detection cost). The system parameters are such that the adversary
must break a tie between a number of choices (when mε appears, injecting any
of the messages mi, i = 1, 2, 3 has the same gain 2). We consider two cases: the
adversary breaks the tie against the defender, and the case that the adversary is
only concerned about their own gain and breaks ties in favour of the defender.
The resulting two sets of tags are shown by τ−

i and τ+
i , respectively. We also

consider the heuristic maximum tag lengths τmax
i defined by expression (6) for

each message, that effectively show the highest protection that is “worth” offering
to a message. The designers’ cost for these cases is given by u1(x, y) values where

Economically Optimal Variable Tag Length Message Authentication 219

Table 1. (left table) Example with 3 messages, assuming αt = αr = 0.1, di = 0
and pi = 1

4
. Breaking ties in favour of the defender is indicated by + and against

the defender by −. (right table) Defender’s objective values with different tag length
vectors. τ without indices indicates constant length tags.

i mi ciε ci1 ci2 ci3 giε gi1 gi2 gi3 τ+
i τ−

i τmaxi ji
ε 0 0 0 2 1 0 2 2 2 0 0 3 3
1 10 0 0 2 1 1 0 2 2 1 2 4 ε
2 5 0 1 0 2 1 2 0 2 1 3 4 ε
3 1 1 3 2 0 1 2 2 0 1 2 4 ε

u1(τ+, j) = 0.9
u1(τ−, j) = 0.96
u1(τmax,br+) = 1.17
u1(τmax,br−) = 2.14

τ + -
0 2.05 3.18
1 1.55 2.35
2 1.38 2.05
3 1.39 2.06

x is the designers’ strategy given by the set of tags, and y is the best response
strategy for the attacker. The small table on the righthand side of Table 1 gives
player 1 utility u1(x, y), when the tag length is the same (it can be 0,1,2 or 3) for
all messages, and tie breaking is in favour or against the designer, as described
above. It can be seen that: if the attacker breaks ties against the defender, tags
(τ−

i), they will have expected cost 0.96; if the attacker breaks ties in favour of
the defender (indifferent attacker), the optimal tag of all non-empty messages
is one bit (τ+

i), and the expected cost of the defender is 0.9. In both cases the
attacker prefers to replace the empty message with message 3 and drop the
other messages (ji). The defender’s cost in these cases are substantially lower
than using the best fixed length (leading to costs 1.38 and 2.05), or using the
heuristic tag lengths τmax

i .

A case study. In the full version of the paper we also present the case of protect-
ing messages in an industrial control system used for oil pipeline management,
using our proposed approach. We consider a system with 23 message types and
the empty message, and show how to estimate meaningful values for players’ cost,
gain and utilities for the forgeries. We compare the proposed game-theoretic solu-
tion with a simple heuristic that protects each message with the heuristic tag
lengths (τmax

j), as defined in Sect. 4. A single fixed tag length for all messages
would lead to higher cost than this heuristic. The analysis shows that when the
tags on empty messages are not allowed, the proposed method allows reducing the
combined expected cost of the system designer for sending the tagged messages,
successful, and unsuccessful attacks by 26% compared to the heuristic. When tags
are added to the empty message, the cost is reduced by 33%.

Scalability. Figure 2 presents the runtime of solving games assuming that mes-
sages are uniformly distributed, with random game parameters mi ∈ 1 . . . 20,
cij ∈ [0, 100], gij ∈ [0, 100], di ∈ [0, 100], αr ∈ [0, 1], αt ∈ [0, 1], using CPLEX
12.6 on a standard laptop with dual core 2.8 GHz Intel i7 CPU. The solid lines
are for the algorithm assuming breaking ties in favour of player 1 and the dashed
lines are for the algorithm assuming breaking ties against player 1. Black lines
shows the results when the empty message is not tagged, and the gray line shows
the results when empty message is tagged. The points represent means of 20 dif-
ferent instances of the given size, the error bars represent the maximum and

220 R. Safavi-Naini et al.

Fig. 2. Computation time required to solve random instances of the games with and
without tags on the empty message using for the optimistic and pessimistic equilibrium.

minimum computation time out of the 20 instances for the case with no tag
on the empty message and breaking ties against the first player. All problems
with 10 messages can be solved in a fraction of second and the most complex
problems with 35 messages take on average 100 s.

5 Related Works

In the game-theoretic definition of security [18] for cryptographic protocols, secu-
rity is defined as a two-party zero-sum game between a challenger and an adver-
sary who can corrupt a subset of parties, and/or (partially) control communica-
tion among them.

Rational cryptography is a more recent line of research [1,3,11,15,16,21,25],
that assumes protocol participants are “rational” and have well defined prefer-
ences, acting in the system in accordance with these preferences.Rational cryp-
tography has resulted in overcoming some impossibility results [3,15] and pro-
viding better efficiency [4]. Garay et al. [13] modelled security of a cryptographic
protocol as a two-party zero-sum extensive game with perfect information and
observable actions between the protocol designer and the attacker. We also use
the same two types of participants in our game definition but use a completely
different game. The notion of “cost” in all previous works is in terms of the
amount of computation and/or communication. We however consider also the
economic cost (and benefit) of using cryptosystems in practice. Game theoretic
modelling ofauthentication codes is due to Simmons [27] who used two-party
zero-sum games with adversary’s action being message injection and substitu-
tion. The idea of variable length authentication was first proposed in [10]. Using
economics to decide the length of the MAC was proposed in [9].

Using games to model economics of information security and privacy scenar-
ios has been an active area of research [7,12,30].The game FLIPIT is motivated
by the Advanced Persistent Threats in computer systems, and models the behav-
iour of an attacker and a defender who both want to control a resource such as a
cryptographic key [29]. Here the “benefit” of a player is defined as “the fraction

Economically Optimal Variable Tag Length Message Authentication 221

of time the player controls the resource minus the average move cost”, and the
goal of each player is to maximize their benefit. A comprehensive resource list
is maintained at [2].

6 Concluding Remarks and Future Directions

Game theory provides a powerful framework to model economic cost and bene-
fit of cryptographic systems in real life settings. Our work shows the usefulness
of such analysis and insight that can be gained in the case of cryptographic
authentication. The example of a three message space in Sect. 4.4 shows how
using differentiated tag lengths can reduce the total cost of the designer, com-
paring the optimal cost to cases that the tag length is constant.

In economic models, one needs estimates of the system parameters and play-
ers’ gain and cost values. In our model this can be achieved using risk analysis
that takes into account probability of attack in a time interval and the impact of
the attack. The cost function of the designer combines the cost of the successful
forgery, which is the risk of the forgery to the operation of the organization, with
the communication cost of one bit. This latter cost must be estimated by taking
onto account factors such as frequency of messages, life time of the battery and
the operational requirements of the system.

The estimation of system parameters is feasible when the message set is small
(e.g. control messages in an IoT setting), or messages are highly structured and
can be grouped into well defined classes.

Our work provides a starting point for this line of investigations. We focussed
on the basic authentication problem and showed finding Nash equilibrium is NP
hard. More complex version of the problem, for example considering forgery after
observation of t tagged messages or using other cost functions for communica-
tion, could be modelled and analyzed in a similar way. One can also consider
confidentiality where different messages, or different parts of messages, require
different levels of security, and optimize the cryptographic budget of the system
to ensure the best possible protection.

Acknowledgement. First author’s work is in part supported by Natural Sciences
Research Council of Canada, and Alberta Innovates Technology Futures of the province
of Alberta. Third author’s work is supported by EPSRC EP/C538285/1 and by BT,
as BT Chair of Information Security, and by the State of Texas.

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computation.
In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Distributed Computing, pp. 53–62. ACM (2006)

2. Anderson, R.: Economics and security resource page. http://www.cl.cam.ac.uk/
∼rja14/econsec.html. Accessed 19 Feb 2016

http://www.cl.cam.ac.uk/~rja14/econsec.html
http://www.cl.cam.ac.uk/~rja14/econsec.html

222 R. Safavi-Naini et al.

3. Asharov, G., Canetti, R., Hazay, C.: Towards a game theoretic view of secure com-
putation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–
445. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 24

4. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for
realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–
156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 8

5. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 1

6. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

7. Bohme, R., Moore, T.: The iterated weakest link - a model of adaptive security
investment. In: 8th Workshop on the Economics of Information Security (WEIS)
(2009)

8. Conitzer, V., Sandholm, T.: Computing the optimal strategy to commit to. In:
Proceedings of the 7th ACM Conference on Electronic Commerce, pp. 82–90. ACM
(2006)

9. Desmedt, Y.: Analysis of the Security and New Algorithms for Modern Industrial
Cryptography. Ph.D. thesis, K.U. Leuven, Leuven, October 1984

10. Desmedt, Y., Vandewalle, J., Govaerts, R.: The mathematical relation between
the economic cryptographic and information theoretical aspects of authentication.
In: Proceedings of the 4th Symposium on Information Theory in the Benelux, pp.
63–66. Werkgemeenschap voor Informatie- en Communicatietheorie (1983)

11. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in
standard communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 419–436. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-11799-2 25

12. Fultz, N., Grossklags, J.: Blue versus red: towards a model of distributed security
attacks. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 167–183.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4 10

13. Garay, J., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol design:
cryptography against incentive-driven adversaries. In: 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 648–657. IEEE
(2013)

14. Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.: Codes which detect deception. Bell
Syst. Tech. J. 53(3), 405–424 (1974)

15. Groce, A., Katz, J.: Fair computation with rational players. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 7

16. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In:
Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Comput-
ing, pp. 623–632. ACM (2004)

17. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
IRSS, pp. 85–103. Springer, Boston (1972)

18. Katz, J., Lindell, Y.: Introduction to Modern Cryptography: Principles and Pro-
tocols. CRC Press, Boca Raton (2007)

19. Kiekintveld, C., Islam, T., Kreinovich, V.: Security games with interval uncer-
tainty. In: Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-agent Systems, pp. 231–238. International Foundation for Autonomous
Agents and Multiagent Systems (2013)

https://doi.org/10.1007/978-3-642-20465-4_24
https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/978-3-642-03549-4_10
https://doi.org/10.1007/978-3-642-29011-4_7

Economically Optimal Variable Tag Length Message Authentication 223

20. Kiekintveld, C., Marecki, J., Tambe, M.: Approximation methods for infinite
bayesian stackelberg games: modeling distributional payoff uncertainty. In: The
10th International Conference on Autonomous Agents and Multiagent Systems-
Volume 3, pp. 1005–1012. International Foundation for Autonomous Agents and
Multiagent Systems (2011)

21. Kol, G., Naor, M.: Cryptography and game theory: designing protocols for exchang-
ing information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 18

22. Mukherjee, A.: Physical-layer security in the internet of things: sensing and commu-
nication confidentiality under resource constraints. Proc. IEEE 103(10), 1747–1761
(2015)

23. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

24. Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Playing
games for security: an efficient exact algorithm for solving Bayesian stackelberg
games. In: Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pp. 895–902. International Foundation
for Autonomous Agents and Multiagent Systems (2008)

25. Pass, R., Halpern, J.: Game theory with costly computation: formulation and appli-
cation to protocol security. In: Proceedings of the Behavioral and Quantitative
Game Theory: Conference on Future Directions, p. 89. ACM (2010)

26. Rose, K., Eldridge, S., Chapin, L.: The internet of things (IoT): An overview-
understanding the issues and challenges of a more connected world. Internet Society
(2015)

27. Simmons, G.J.: Authentication theory/coding theory. In: Blakley, G.R., Chaum, D.
(eds.) CRYPTO 1984. LNCS, vol. 196, pp. 411–431. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-39568-7 32

28. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press, Cambridge (2011)

29. Van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: FLIPIT: the game of stealthy
takeover. J. Cryptol. 26(4), 655–713 (2013)

30. Varian, H.: System reliability and free riding. In: Camp, L.J., Lewis, S. (eds.) Eco-
nomics of Information Security. ADIS, vol. 12, pp. 1–15. Springer, Boston (2004).
https://doi.org/10.1007/1-4020-8090-5 1

31. Verbauwhede, I.: VLSI design methods for low power embedded encryption. In:
Proceedings of the 26th Edition on Great Lakes Symposium on VLSI, p. 7. ACM
(2016)

https://doi.org/10.1007/978-3-540-78524-8_18
https://doi.org/10.1007/3-540-39568-7_32
https://doi.org/10.1007/1-4020-8090-5_1

Vulnerabilities and Exploits

PEEP: Passively Eavesdropping Private Input
via Brainwave Signals

Ajaya Neupane1(B), Md. Lutfor Rahman2, and Nitesh Saxena1

1 University of Alabama at Birmingham, Birmingham, USA
{aneupane,saxena}@uab.edu

2 University of California Riverside, Riverside, USA
mrahm011@ucr.edu

Abstract. New emerging devices open up immense opportunities for
everyday users. At the same time, they may raise significant security
and privacy threats. One such device, forming the central focus of this
work, is an EEG headset, which allows a user to control her computer
only using her thoughts.

In this paper, we show how such a malicious EEG device or a mali-
cious application having access to EEG signals recorded by the device
can be turned into a new form of a keylogger, called PEEP, that passively
eavesdrops over user’s sensitive typed input, specifically numeric PINs
and textual passwords, by analyzing the corresponding neural signals.
PEEP works because user’s input is correlated with user’s innate visual
processing as well as hand, eye, and head muscle movements, all of which
are explicitly or implicitly captured by the EEG device.

Our contributions are two-fold. First, we design and develop PEEP
against a commodity EEG headset and a higher-end medical-scale EEG
device based on machine learning techniques. Second, we conduct the
comprehensive evaluation with multiple users to demonstrate the fea-
sibility of PEEP for inferring PINs and passwords as they are typed
on a physical keyboard, a virtual keyboard, and an ATM-style numeric
keypad. Our results show that PEEP can extract sensitive input with
an accuracy significantly higher than a random guessing classifier. Com-
pared to prior work on this subject, PEEP is highly surreptitious as
it only requires passive monitoring of brain signals, not deliberate, and
active strategies that may trigger suspicion and be detected by the user.
Also, PEEP achieves orders of magnitude higher accuracies compared to
prior active PIN inferring attacks. Our work serves to raise awareness
to a potentially hard-to-address threat arising from EEG devices which
may remain attached to the users almost invariably soon.

1 Introduction

Brain-computer interfaces (BCI), which extract physiological signals originated
in the human brain to communicate with external devices, were once highly

M. L. Rahman—Work done while being a student at UAB.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 227–246, 2017.
https://doi.org/10.1007/978-3-319-70972-7_12

228 A. Neupane et al.

expensive and used only in medical domains. They were mainly used to develop
neuroprosthetic applications which helped disabled patients to control prosthetic
limbs with their thoughts alone [35]. However, these devices are now commer-
cially available at low-cost and are becoming popular especially in gaming and
entertainment industries.

Electroencephalography (EEG) is the most commonly used physiological sig-
nal in the BCI devices due to its ease of use, high temporal resolution, and
non-invasive setup. EEG measures the task related to electrical activity of the
brain, referred to as event-related potentials. In the commercial domain, these
EEG-based BCI devices have been used to improve the quality of user expe-
rience mainly in gaming and entertainment industries. Currently, EEG-based
BCI devices from different vendors are available in the market (e.g., Emotiv [3],
Neurosky [7], Neurofocus [5]). These devices also provide software developments
kits to build applications, and have application markets (e.g. [2,6]) in which
the vendors host the applications developed by their own developers as well as
provide a platform for third-party developers to share the applications devel-
oped by them. Recently, the BCI devices have been studied for building user
authentication models based on user’s potentially unique brainwave signals [17].

Given their interesting use cases in a wide variety of settings, the popularity
and applicability of these devices is expected to further rise in the future. These
devices may become an inevitable part of a users’ daily life cycles, including
while they use other traditional devices like mobile phones and laptop/desktop
computers. In this light, it is important to analyze the potential security and
privacy risks associated with these devices, and raise users’ awareness to these
risks (and possibly come up with viable mitigation strategies).

Our specific goal in this work is to examine how malicious access to EEG
signals captured by such devices can be used for potentially offensive proposes.
As the use of these devices becomes mainstream, a user may enter passwords or
private credentials to their computers or mobile phones, while the BCI device
is being worn by the user. To this end, we study the potential of a malicious
app to capture the EEG signals when users are typing passwords or PINs in
virtual or physical keyboards, and aim to process these signals to infer the sen-
sitive keystrokes. The device to which the sensitive keystrokes are being entered
could be the same device with which the BCI headset is “paired” or any other
computing terminal. Several previous studies have used EEG signals to infer the
types of mental tasks users are performing [36], to infer the objects users are
thinking about [21], or to infer the limb movements users are imagining [33].
In line with these works, the premise of our presented vulnerability is that the
user’s keystroke input to a computer would be correlated with the user’s innate
visual processing as well as user’s hand, eye and head muscle movements, as the
user provides the input all of which are explicitly or implicitly captured by the
BCI devices.

Based on this premise, we demonstrate the feasibility of inferring user’s sen-
sitive keystrokes (PINs and passwords) based on their neural signals captured
by the BCI device with accuracies significantly greater than random guessing.

PEEP: Passively Eavesdropping Private Input via Brainwave Signals 229

These BCI brain signals may relatively easily get leaked to a malicious app on
the mobile device that is paired with the BCI headset since no extra permissions
to access such signals is required in current mobile or desktop OSs. An addi-
tional avenue of leakage lies with a server, charged with the processing of brain
signals in the outsourced computation model, which may get compromised or be
malicious on its own.

Our Contributions and Novelty Claims: In this paper, we introduce a new
attack vector called PEEP that secretly extracts private information, in particular
users’ private input such as PINs and passwords, from event-related potentials
measured by brain computer interfaces. Our contributions are two-folds:

– We design and develop PEEP, a new type of attack against keystroke infer-
ence exploiting BCI devices based on machine learning techniques. We study
PEEP against a commodity EEG headset and a higher-end medical-scale
EEG device

– We experimentally validate the feasibility of PEEP to infer user’s PINs and
passwords as they are being typed on a physical or virtual keyboard. We also
validate the consistency of results across different BCI headsets.

Related to PEEP, Martinovic et al. [29]) studied the possibility of side-
channel attacks using commercial EEG-based BCI to reveal the users’ private
information like user’s familiar banks, ATMs or PIN digits. Their general idea
is similar to a guilty knowledge test where items familiar to a user is assumed
to evoke the different response as compared to the items unfamiliar to the user.
Thus, when a person is shown images of many banks, the brain response to the
image of the bank with which user has had more interaction or has opened an
account will evoke higher event-related potential. However, their attack setup is
intrusive and can be easily detectable as the users may notice the abnormality
in the application when it shows the images of banks or ATMs related to her. In
contrast, PEEP is highly surreptitious as it only requires passive monitoring of
brain signals as users’ type their PINs and passwords in regular use, not deliber-
ate, and active strategies that may trigger suspicion and be detected by the user.
In addition, PEEP achieves orders of magnitude higher accuracies compared to
the active PIN inferring attack of [29].

2 Background and Prior Work

2.1 EEG and BCI Devices Overview

Electroencephalography (EEG) is a non-invasive method of recording electri-
cal activity in the brain, referred to as event-related potentials (ERPs), using
electrodes on the surface of the scalp. EEG has higher temporal resolution
and can depict changes within milliseconds. The electrical activity can be syn-
chronized with the performed task to study changes in brain activation over
time. ERPs are used as a tool in studying human information processing [20].

230 A. Neupane et al.

P300, a positive change in ERPs which appears around 300 ms post-stimuli if
the stimuli is a known target, is popularly used ERPs in studies involving EEG.
Many devices, both consumer-based and clinical-based devices to measure the
ERPs are currently available in market and are used in security studies (see
Sect. 2.2).

In this study, we used two different EEG headsets for data collection, namely
Emotiv Headset [3] and B-Alert Headset [1]. We use Emotiv as a representa-
tive instance of current commercial consumer-grade BCI devices, and B-Alert
(a clinical-level Headset) as a representative instance of future devices.

Emotiv Epoch Headset: Emotiv Epoc headset is a wireless and lightweight
EEG sensor to acquire and analyze 14 channels of high-quality EEG data. The
sensors of this EEG headset follow the 10–20 international system of placement.
It uses the AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF42 sites
to collect EEG data at 128 Hz.

B-Alert Headset: The B-Alert headset is a clinical grade X10-standard wireless
and lightweight system, developed by Advanced Brain Monitoring (ABM) [1], to
acquire nine channels of high-quality EEG data. The headset also followed the
10–20 international system of electrode placement and used Fz, F3, F4, C3, Cz,
C4, P3, POz, P4 sites to collect EEG data at 256 Hz with fixed gain referenced to
linked mastoids. The tenth channel was used for measuring electrocardiogram
signals. A portable unit is worn on the back of the head which amplifies and
sends signals to the computer connected over Bluetooth.

2.2 Related Work

Information Retrieval using Brain Activations: EEG has been explored by
researchers to develop user authentication model (for example, [10,17,25,30,37]).
Ashby et al. [10] proposed an EEG based authentication system using a consumer
grade 14-sensor Emotiv Epoc headset. Thorpe et al. [37] suggested pass-thoughts
to authenticate users. Chuang et al. [17] used single-sensor Neurosky headset to
develop a user authentication model based on ERPs collected during different
mental tasks including pass-thoughts. Bojinov et al. [14] proposed a coercion-
resistant authentication based on neuroscience based approach. Most relevant to
our work, Martinovic et al. [29] used ERPs as a vector of side-channel attack to
snoop into users private information. The authors showed images of numbers,
banks, ATMs to the participants when their brain signals were measured. They
used the brain signal to decrease entropy of information related to PIN, banks,
ATMs by 23–40%. However, our attack is less intrusive and difficult to detect
and our malicious app can run in background capturing EEG signals.

The BCI devices are also used to understand users’ underlying neural
processes when they are performing security tasks. Neupane et al. used fMRI [31]
to study brain activations when users were subjected to phishing detection and
heeding malware warnings. In another study, Neupane et al. [9] used EEG-based
B-Alert Headset to measure mental states and mental workload when users were
subject to similar security tasks.

PEEP: Passively Eavesdropping Private Input via Brainwave Signals 231

Campbell et al. [16] used P300 ERP, originated when someone shows atten-
tion to specific stimuli, for developing neurophone, a brain controlled app for
dialing phone number in mobile address book. The authors flashed a number of
photos of contact persons in participants’ address book, and when P300 poten-
tial amplitude for a photo matched the person the user thought of dialing, the
app dialed the phone number.

Birbaumer et al. [13] proposed spelling device for paralyzed based on the
P300 spikes. The alphanumeric characters were organized in a grid and were
flashed to the patient. Whenever the patient focused on the target character,
P300 was evoked. Tan et al. [36] asked users to perform different gaming tasks
and used ERPs to classify what mental tasks users were performing. Esfahani
et al. [21] used 14-channel Emotiv headset to collect neural data from 10 users
when they were imagining cube, sphere, cylinder, pyramid or a cone. They were
able to discriminate between these five basic primitive objects with an average
accuracy of 44.6% using best features in Linear Discriminant Classifier (random
guessing would have been 100/5 = 20%).

Other Side Channel Attacks: Keystroke inference has received attention
due to its potential consequences. Asonov et al. [11], Zhuang et al. [41] and
Halevi et al. [22] used sound recorded from physical keyboards when users were
typing passwords to infer keystrokes. Vuagnoux et al. [38] used electromagnetic
waves emanated on users typing such keyboard. Song et al. [34] used inter-
keystroke timing observations to infer keystrokes. Marquardt et al. [28] used
accelerometer on a smartphone to record and interpret surface vibrations due
to keystrokes to identify the user inputs on a nearby keyboard. All these side
channel attacks exploited the physical characteristics of the keyboard, which
became infeasible after the advent of smart phone with touch screen. However,
new types of attacks to detect users’ PINs, passwords and unlock patterns using
motion sensors emerged on these smartphones [12,15,32,40].

Unlike these attacks, we propose a new form of keylogger. We show how a
malicious EEG device or a malicious application having access to EEG signals
recorded by BCI device, can be used to elicit users’ private information. We show
the feasibility of our attack in both the physical keyboard and virtual keyboards.

3 Threat Model

The attackers’ motive in this study is to passively eavesdrop on victim’s neural
signals, recorded by BCI devices, looking for sensitive information (e.g., PINs or
passwords) entered on a virtual or a physical keyboard. The BCI devices pro-
vide APIs which allow easy access of raw signals recorded by the BCI devices
to app developers. So a third-party developer can develop a malicious app with
unfettered access to the ERPs measured by such BCI device. The app developed
by attackers first captures the neural patterns of keystrokes to build a classifica-
tion model (Training Phase) and later utilizes the model to infer the keystrokes
only using the neural data (Testing Phase). Such malicious app developers are
considered adversary of our system.

232 A. Neupane et al.

Training Phase: We assume the adversary has developed a malicious applica-
tion to record neural signals and has fooled the victim to install the app on her
device. The malicious application can be a gaming application which asks users
to press different keys for calibration or enter particular numeric/alphabetical
code before playing different levels of the game or resuming the game after a
break. The developer can claim such codes will secure the game from being
played by other users who has access to the computer. The attacker can then
process the numeric/alphabetical code and neural signals corresponding to them
to extract features and build a training model. The threat model is similar to
the attack model studied in previous work [29]. However, our threat model is
less intrusive and weaker as compared to their study as they propose explicitly
showing images of ATMs or PINs to users, which users may eventually notice.

It is also possible for attacker to obtain keystroke-neural template may be
leaked through servers. For example, a benign application may outsource these
signals to some server for computations which may be malicious or can get
compromised and can infer sensitive info.

We also assume a different threat model in which attacker does not have
access to victims’ keystrokes and corresponding brain signals. In this case, we
assume the attacker builds a training model using her brain data and keystrokes.
The training model is then employed in PEEP.

Testing phase: We assume the attacker has now developed a training model to
classify neural signals for each of the numbers and the alphabetic keys using one
of the methods described in the previous section. The malicious app with train-
ing model is successfully installed in victims device and runs in the background
stealthily recording the neural signals whenever victim enters sensitive informa-
tion in the physical or virtual keyboard. We assume the attacker knows when
the victim is entering private credentials in the device (e.g., in mobile devices,
the keyboard shows up whenever the user starts to type). These neural signals
recorded during the entry of these credentials will then be used by the app to
infer the keystrokes which can then be exploited by attackers.

Apart from mobile and desktop apps, these devices also provide web APIs [4]
which can be exploited to launch remote attacks. In this case, browser add-ons
can be the malicious apps. In our threat model, we assume the victim only uses
random numbers or random uppercase character-based passwords. We keep the
length of the PIN to 4 and password to 6.

Practicality of Attacks: BCI devices are used by gamers to play games con-
trolled by their mind. The game they are playing is malicious in nature. It asks
users to enter predefined set of numbers (like captcha) to restart the game from
the last position when they take a break. Doing this, the malicious app can
record the ERPs related to each of the entered digits. The app can then be
trained with these recorded datasets to predict keystrokes correctly. Now, when
the gamers next take a break from the game and enter their login credentials in
banking or social media websites, with the headset on, the app can listen to the
brain signals and then run the classification model to predict keystrokes.

PEEP: Passively Eavesdropping Private Input via Brainwave Signals 233

4 Experimental Design and Data Collection

4.1 Design of the Task

We followed the similar design for all of our experiments, while we varied different
parameters, such as users, EEG devices (Emotiv vs. high-end), keypads (virtual
vs. real), and data types (4-digit pin vs. 6-character password). Even though the
experiments were conducted in controlled lab environment, we tried to simulate
real-world PIN/Password entry methodologies. The design of the experiments
remained same for both Emotiv and B-Alert headsets.

Virtual Keyboard PIN Entry (VKPE): The goal of this experiment was to
assess whether the event-related potentials recorded using consumer-based EEG
BCI device or B-Alert headset could be used to infer the numbers entered by the
participant. We assume, visual and mental processing of digits, along with the
head, hand, and eye movements while entering PIN may tell what key is being
processed. For this task, we developed a virtual keyboard similar to the ones
employed in login pages of websites (this layout is also similar to the numeric
keyboards in smart phones in landscape view) (see Appendix A Fig. 3(a)). We
had a text box at the top of this virtual keyboard. The participants were asked to
enter 4-digit PIN codes using the mouse in the text box. When the user clicked
a key on the virtual keyboard, the key was flashed in its frame for 500 ms or
till the next key was clicked, similar to the key press events in touch pads of
smart phones. This was done to ensure the user that he had clicked on the right
digit. When the user pressed a key, we put a trigger in the recorded event-related
potentials to synchronize the neural data with key presses.

Virtual ATM PIN Entry (VAPE): Similar to the design of the virtual
numeric keyboard, for this task, we implemented a virtual ATM keyboard with
a text box at the top (see Appendix A Fig. 3(b)). The participants were asked
to enter 4-digit PIN codes in the text box using the mouse. Like the previous
designs, we assumed visual and mental processing of digits might tell what key
is being processed. However, this design had the fewer number of keys in the
keyboard compared to the virtual keyboard, so we expected the distraction while
entering PINs to be lower and results of the prediction model to be higher for
this task. This layout is also similar to the numeric keypad in smart phones in
portrait view.

Physical Numeric Keypad PIN Entry (PNKPE): For this task, we devel-
oped a frame with a text box for entering PIN. Similar to the previous tasks, the
participants were provided with random 4-digit numeric PINs and were asked
to enter them in the text box. However, the mode of the key input, in this case,
was a physical numeric keyboard, unlike virtual keyboard in previous tasks (see
Appendix A Fig. 4). In this task we assumed, the mental processing of digits,

234 A. Neupane et al.

and the movements of facial muscles, eyes, head, hands, and fingers may cre-
ate a digit-specific pattern in event-related potentials. These features may be
eventually used to develop PEEP.

Physical Keyboard Password Entry (PKPE): In this task, we used a frame
with the text box to enter the password. The participants were provided with
random upper-case 6-character based passwords and were asked to enter the
password in the text box using physical keyboard (e.g., laptop keyboard) (see
Appendix A Fig. 5). Like the previous task, in this task, we assumed the fin-
ger/hand movement to create a digit-specific pattern in event-related potentials,
which may eventually be used to develop PEEP.

4.2 Experimental Set-Up

For all the above mentioned tasks, we collected data in the lab environment
using two different headsets, namely Emotiv and B-Alert Headsets. The basic
set-up for both the experiments were similar, apart from the computer used
for data collection. For Emotiv headset our experimental set-up comprised of a
single laptop in which the Emotiv control panel, the virtual keyboards, and the
text-input frames were installed. The Emotiv control panel was used to calibrate
the headset for better signal-to-noise ratio. An in-house program, developed to
record the neural data and the key press logs, was also installed in the stimuli
computer (see Fig. 1 left).

Fig. 1. (a) Experimental set up with Emotiv headset (b) Experimental set up with
B-Alert headset (face masked for anonymity)

For the B-Alert headset, we used stimuli computer to present experimental
tasks and a different data collection computer to record the neural data. The
proprietary B-Alert data acquisition software installed in this data collection
computer was used to calibrate and record brain data during the task. A signal
was sent from stimuli computer to data collection computer using TCP/IP con-
nection to mark the neural data on each key-press to synchronize the brain data
and corresponding keystrokes. We could not install the B-Alert data acquisition
software in stimuli computer as it was a proprietary software with the license
for lab computer only (see Fig. 1 right).

PEEP: Passively Eavesdropping Private Input via Brainwave Signals 235

4.3 Study Protocol

Ethical and Safety Considerations: The study was approved by the Insti-
tutional Review Board of our university. The participants were recruited using
flyers around the campus and on the social media (e.g. Facebook). The participa-
tion in our experiment was strictly voluntary, and the participants were provided
with an option to withdraw from the research at any point in time. The best
standard procedures were applied to ensure the privacy of the participants’ data
(survey responses, and neural data) acquired during the experiment.

Participant Recruitment and Pre-Experiment Phase: Twelve healthy
members of our university (including students, housewives, and workers) were
recruited for our study. Informed consent was obtained from these participants
and were asked to provide their demographic information (such as age, gender
and education level). Our pool was comprised of 66.6% male and 33.3% female,
55% were above the age of 24 and belonged to fairly diverse educational lev-
els (e.g., computer science, civil engineering, business administration, etc.). Ten
of these participants performed VKPE task. Rest of the three tasks were per-
formed by two participants each. Some of these participants were among the ten
participants who had performed VKPE task.

Task Execution Phase: We used the consumer-based 14-sensors Emotiv head-
set and 10-sensor B-Alert headset for the experiment. We prepared Emotiv head-
set and B-Alert headset for proper measurement of the electrical activity in the
brain. We then placed the headset on the head of the participant. We calibrated
the headset using Emotiv control panel and B-Alert software respectively, where
we can validate the signal strength of each electrode, for obtaining better signal-
to-noise ratio. Once the headset was properly calibrated and the participants
were seated comfortably to perform the task, we provided them with a sheet of
paper with randomly generated thirty 4-digit random PINs or randomly gener-
ated thirty-six upper-case 6-character random passwords depending on the tasks
they were performing.

We instructed participant to enter the PINs or passwords in the text box as if
she was logging into her accounts. In case, she realizes to have entered the wrong
digit; she was instructed to press the right digit again. The data was collected
in four different sessions on the same day for each of the tasks. In every session,
users were provided with a new set of randomly generated PINs or passwords.
A break of 10-min was given to participant between each session of 4-min length.

5 Data Preprocessing and Feature Extraction

The APIs provided by the Emotiv headset and the B-Alert headset were used
to collect the raw ERPs during the experiment. We then used EEGLAB [19] to
process the raw data collected from both of these headsets. Before processing
the brain data, we first segregated the samples related to each digit from the
raw data and created a new file for each one of them. For each keystroke, we
considered 235 ms of brain data (30 samples of data) before the key stroke and

236 A. Neupane et al.

468 ms of brain data during the key press (60 samples of data). The reason
behind using 235 ms before keypress is to include the ERPs generated when
user thinks of the digit before pressing it (Fig. 2).

Fig. 2. Data processing flow chart

We processed the raw data using band pass filter in EEGLAB to keep the sig-
nals with frequency above 5 Hz and below 25 Hz. The EEG signals measured by
the electrodes from the scalp do not represent the electrical potential generated
in the sources inside the brain [27]. Rather, they are the aggregation of several
neurons’ electrical activity in brain. So the filtered data was then processed using
independent component analysis (ICA), a technique to separate subcomponents
of a linearly mixed signal [24], to segregate the ERPs generated by statistically
independent sources inside the brain.

A sample of recorded EEG data can be represented as x(t) = (x1(t),
x2(t), ..xm(t)), where m is the number of electrodes in the headset, and t is
the time at which the neuron potential is measured. The ERPs recorded by each
electrode at a time is the sum of the ERPs generated from n independent sources
inside brain and can be represented as (xj(t) = aj1s1 +aj2s2 + ...+ajnsn), where
n is the number of source components and a is the weight (like distance from the
source) applied to the signal from a source. So we used ICA for identifying and
localizing the statistically independent electrical sources s from potential pat-
terns recorded on the scalp surface by electrodes in the headset [27]. This process
was repeated for the data collected for each of the digits for each session.

The data acquired after ICA was then processed using Autoregressive (AR)
model for feature extraction. AR is commonly used algorithm for feature extrac-
tion from EEG data (e.g., [23]). An EEG signal recorded at any discrete time
point t is given by s(t) =

∑p
k=1 akx(t−k)+e(t), where p is the model order, s(t)

is the signal at the timestamps t, ak are the real-valued AR coefficients and e(t)
represents the error term independent of past samples [23]. We computed fea-
tures from all 14-electrodes using sixth order Auto Regressive (AR) coefficients.
Therefore, we had 6 coefficients for each channel giving a total of 84 features
(6 * 14 channels) for each data segment for a digit. The feature extraction process
was repeated for the brain data collected across different sessions for each of the
digit (0–9).

Next, we used these features to build four classification models for predicting
key-strokes based on the neural data. Two of the classification models were
built using simple Instance Based Learning (IB1) [8] and KStar [18] algorithms.
The other two were built using majority voting of two algorithms, first, IB1
with Naive Bayes (NB) [26] algorithm, and second, KStar and NB algorithm.

PEEP: Passively Eavesdropping Private Input via Brainwave Signals 237

We then used 10-fold cross validation for estimation and validation of these
classification models on three different sets of data labeled with 10 different
classes (0–9 digits).

First, we used instances for each digit from single session for each individ-
ual (called as Individual Model – Single Session). Second, we vertically merged
instances of each digit from all sessions of an individual (called as Individual
Model – Merging Sessions). Third, we vertically merged features for each digit
from all users for each session (called as Global Model). Global Model is a stronger
model compared to individual model, where the attacker will train the classi-
fication model on the features extracted from her own neural and keystrokes
data and use it to infer victims’ keystrokes. Even though the brain signals are
assumed to be unique among users, we presumed, there might be similarities in
ERPs when numbers/alphabets are observed.

We report the average true positive rate (TPR) and the average false positive
rate (FPR) for each digit. True positive rate is the ratio of total number of
correctly identified instances to the total number of instances present in the
classification model TPR = TP/(TP + FN), where TP is True Positive and
FN is false negative. False positive rate is the ratio of total number of negative
instances incorrectly classified as positive to the total number of actual negative
instances FPR = FP/(FP + TN), where FP is false positive and TN is true
negative. An ideal classification model has true positive rate of 100% and false
positive rate of 0%.

6 Data Analysis and Results

In this section, we describe the results of the classification models built on the
features extracted from the event-related potentials to infer the keystrokes.

6.1 Task 1: Virtual Keyboard PIN Entry (VKPE)

To recall, in this task, we had asked participants to enter thirty randomly gener-
ated 4-digit PIN in the virtual keyboard using mouse. Table 1(a) lists the results
of different classification models on using datasets from individual sessions. We
can observe that the best average true positive rate of predicting digits in this
model is 43.4% (false positive 6.2%). Likewise, the best average true positive rate
of predicting digits is 31.9% (false positive rate is 7.55) when data from all ses-
sions are merged (see Table 1(b)). We can see that the results are relatively lower
than the models trained on individual session because the amplitude of ERPs
during the first session might have been different than the amplitudes towards
the last session. Similarly, The results of global model are listed in Table 1(c).
We can observe that the best average true positive rate of predicting digits is
31.3% (false positive rate is 7.6%). Since, in this model, the samples from all
individuals are used, the overall prediction rate is lower than the previous mod-
els. The results from both models are significantly better than a random guessing
classification model (10% for each digit) which verifies the feasibility of PEEP.

238 A. Neupane et al.

Table 1. VKPE Task: Average true positive rate and average false positive rate
(a) Individual Model – Single Session (b) Individual Model – Merging Sessions
(c) Global Model

Classifiers Session 1 Session 2 Session 3 Session 4
TPR FPR TPR FPR TPR FPR TPR FPR

IB1 41.1 6.5 39.9 6.6 38.9 6.7 42.2 6.4
KStar 42.4 6.4 40.1 6.6 38.9 6.7 42.8 9.7
IB1+NB 41.5 6.5 39.4 6.6 38.6 6.8 42.1 6.4
KStar+NB 43.4 6.2 42.4 6.4 39.0 6.7 42.4 6.4

Classifier All Sessions
TPR FPR

IB1 30.1 7.7
KStar 31.7 7.6
IB1+NB 30.0 7.8
KStar+NB 31.9 7.5

Classifier All Sessions
TPR FPR

IB1 28.4 7.9
KStar 31.3 7.6
IB1+NB 28.4 7.9
KStar+NB 30.7 7.7

6.2 Task 2: Virtual ATM PIN Entry (VAPE)

The participants in this task were asked to enter thirty randomly generated 4-
digit PIN in virtual keyboard similar to the ones employed in ATM touch screens.
Table 2(a) and (b) have the results of the classification models for individual
single session and merged sessions datasets respectively. We can observe that
on average the digits can be best predicted at true positive rate of 47.5% (false
positive 5.8%) for single session and 32.6% true positive rate (false positive 7.5%)
for merged session. Table 2(c) shows the results for these classification models for
grouped data and we can notice that on average the digits can be best predicted
at 39.1% true positive rate (false positive rate is 6.7%). The results depict that
these models are better than the random guessing model (10%) in predicting
the keys entered by users.

Table 2. VAPE Task: Average true positive rate and average false positive rate
(a) Individual Model – Single Session (b) Individual Model – Merging Sessions
(c) Global Model

Classifiers Session 1 Session 2 Session 3 Session 4
TPR FPR TPR FPR TPR FPR TPR FPR

IB1 47.0 5.9 47.0 5.9 47.5 5.8 44.5 6.1
KStar 42.5 6.4 40.0 6.6 42.5 6.4 39 6.7
IB1+NB 43.5 6.3 41.5 6.5 44.0 6.2 40.5 6.6
KStar+NB 39.5 6.7 42.5 6.4 39.5 6.7 43 6.3

Classifier All Sessions
TPR FPR

IB1 31.1 7.6
KStar 31.6 7.6
IB1+NB 31.1 7.6
KStar+NB 32.6 7.5

Classifier All Sessions
TPR FPR

IB1 39.1 6.7
KStar 39.3 6.7
IB1+NB 39.0 6.8
KStar+NB 37.3 6.9

In this task, we see that the overall true positive rate of the digit prediction
is higher than the true positive rate in VKPE task (see Sect. 6.1). The virtual
keyboard in VKPE task had many keys compared to the virtual keyboard in
VAPE task. The higher number of keys might have caused higher distraction
in processing of digits, reducing the strength of features representing the keys,
resulting in lower prediction rate.

6.3 Task 3: Physical Numeric Keypad PIN Entry (PNKPE)

In this task, the participants had to enter thirty randomly generated 4-digit PIN
using physical numeric keyboard. The movement of the fingers measured using

PEEP: Passively Eavesdropping Private Input via Brainwave Signals 239

Table 3. PNKPE Task: Average true positive rate and average false positive rate
(a) Individual Model – Merging Sessions (b) Global Model

Classifiers Session 1 Session 2 Session 3 Session 4
TPR FPR TPR FPR TPR FPR TPR FPR

IB1 46.0 6.0 37.5 6.9 45.0 6.1 36.5 7.0
KStar 40.5 6.6 31.5 7.6 45.0 6.1 38.5 6.8
IB1+NB 46.0 6.0 3 6.9 44.5 6.2 37.0 7.0
KStar+NB 39.0 6.7 34.0 7.3 46.5 5.9 39.0 6.8

Classifier All Sessions
TPR FPR

IB1 28.4 7.9
KStar 27.5 8.0
IB1+NB 28.4 7.9
KStar+NB 27.6 8.0

Classifier All Sessions
TPR FPR

IB1 33.1 7.4
KStar 34.0 7.3
IB1+NB 32.7 7.4
KStar+NB 33.6 7.4

smart watch worn on victims’ hand while typing password has been previously
used to reveal victims’ PIN [39]. Researchers have also translated thoughts about
moving fingers into action in prosthetic hands [35]. So we assumed that, there
might be unique neural signatures of typing the numbers you are thinking about,
which might be used to predict the victims’ PIN numbers. Table 3(a) and (b)
displays the results on individual model – single session, and individual model
– merged session respectively. We can observe that on average the digits can
be best predicted in individual model – single session at 46.5% true positive
rate (false positive rate is 6.0%), and at 28.4% true positive rate (false positive
rate is 7.9%) in individual model – merged session datasets. Similarly, Table 3(c)
reports that the digits can be best predicted at 33.6% true positive rate (false
positive rate is 6.7%) in global model. All these models again have performance
better than a random model (10%).

We observe that the results of PNKPE task are lower than the results of
VAPE task (see Sect. 6.2). In VAPE task the keys flashing while typing the
numbers, which might have triggered neural signals resulting better features in
building classification model. However, from the results of this task, we find that
the finger movement while typing a number leave a unique trace in the brain
which can be used to infer the keystrokes.

6.4 Task 4: Physical Keyboard Password Entry (PKPE)

To recall, in this task we had asked users to enter thirty-six randomly generated
uppercase 6-character password in laptop keyboard. Using the brain and key-
strokes data recorded during the task, we built classification models to predict the
users’ keystrokes. Table 4(a) shows the results for the individual model - single ses-
sion data. We can see that on average the digits can be best predicted at 34.7%
true positive rate (false positive rate is 4.7%). Similarly, in this task, the classifi-
cation models on merged sessions data can best predict the digits at 23.7% true
positive rate (false positive rate is 5.4%) (Table 4(b)). Table 4(c) reports that on
average the digits can be best predicted at 30.1% true positive rate (false posi-
tive rate is 4.8%) in the group model. Like the previous tasks, we observe that the
results are better than random model for keystroke detection (random prediction
rate of a character is 3.8%). In this task, we see that the overall results for this
classification model is lower than the results in previous tasks (see Sects. 6.1, 6.2
and 6.3). This task involved a physical keyboard with many keys on the keyboard.

240 A. Neupane et al.

Table 4. PKPE Task: Average true positive rate and average false positive rate
(a) Individual Model – Single Session (b) Individual Model – Merging Sessions
(c) Global Model

Classifiers Session 1 Session 2 Session 3 Session 4
TPR FPR TPR FPR TPR FPR TPR FPR

IB1 27.1 5.2 28.7 5.1 34.7 4.7 37.3 4.5
KStar 30.7 5.0 31.3 4.9 28.7 5.1 37.3 4.5
NB+IBk 17.3 5.9 10.7 6.4 23.3 5.5 28.7 5.1
NB+kStar 28.7 5.1 28.9 5.1 34.7 4.7 36.7 4.5

Classifier All Sessions
TPR FPR

IB1 21.15 5.6
KStar 23.7 5.4
IB1+NB 17.75 5.7
KStar+NB 23.5 5.3

Classifier All Sessions
TPR FPR

IB1 27.8 5.1
KStar 30.1 4.8
IB1+NB 19.8 5.7
KStar+NB 29.0 5.1

The numbers were not flashed on entering them and multiple fingers were used
while typing passwords. Because of all these things, the features representing the
digits might not have been strong enough for better detection of the keystrokes.

6.5 High-End B-Alert Headset - VKPE Task

We used high-end B-Alert headset to collect data in VKPE task for one par-
ticipant, to test the feasibility of our attacks on different categories of headsets
used for recording the neural signals.

Table 5. B-Alert Headset VKPE Task: Average true positive rate and average false
positive rate (a) Individual Model –Single Session (b) Individual Model – Merging
Sessions

Classifiers Session 1 Session 2 Session 3 Session 4
TPR FPR TPR FPR TPR FPR TPR FPR

IB1 39.0 6.8 31.0 7.7 31.0 7.7 37.3 4.5
KStar 34.0 7.3 23.0 8.6 36.0 7.1 37.3 4.5
IB1 + NB 37.0 7.0 31.0 7.7 24.0 8.4 28.7 5.1
KStar +NB 25.0 8.3 25.0 8.3 38.0 6.9 36.7 4.5

Classifier All Sessions
TPR FPR

20.5 8.8
KStar 19.8 8.9
IB1+NB 17.5 9.2
KStar+NB 19.5 8.9

IB1

Table 5(a) shows the results of these classification models on single session
data. We can see that on average the digits can be predicted at a true positive
rate of 39.0% (false positive 6.8). The performance of the classification models on
merged sessions data are presented in Table 5(b). We can see that on average the
digits can be best predicted at 20.5% true positive rate (false positive is 8.8%).
These results are significantly better than a random guessing classification model
(10% for each digit) which shows the feasibility of side-channel attacks using BCI
devices.

7 Discussion and Future Work

In this section, we summarize and further discuss the main findings from our
study. We also outline the strengths and limitations of our study.

PEEP: Passively Eavesdropping Private Input via Brainwave Signals 241

7.1 Vulnerability of the Brainwave Signals

In this study, we focused on studying the vulnerability of BCI devices towards
revealing the private information to malicious attackers. We designed PEEP to
study the feasibility of brainwave side-channel attacks using such devices. PEEP
stealthily monitors and records event-related potentials (ERPs) measured by
BCI devices when users are typing their PINs or passwords on to physical or
virtual keyboards. PEEP can then analyze the ERPs for extracting features
representing each of the digit or character. These features are then used to build
a training model which is later used to predict the keystrokes made by the users.
We experimentally verified the feasibility of PEEP for both individual and global
training models.

Closely related to our study is the work done by Martinovic et al. [29]. They
also studied the feasibility of side-channel attack with brain-computer interfaces.
They showed the images of banks, ATMs, digits, months, etc., to participants
to elucidate their private information related to banks, ATMs, PINs, and month
of birth. They used the amplitude of P300 ERP, which appears in neuronal
electrical activity for known artifacts, to infer such details. The participants in
their study were asked to memorize 4-digit PINs and were shown the images of
randomly permuted numbers between 0 and 9, one by one. Each number was
shown 16 times, and the experiment lasted around 90 seconds. They were able to
correctly predict the first digit of the PIN at 20% accuracy. In contrast, PEEP,
on average, was able to predict digits at the true positive rate of 46.5% (FPR
6.0%) for PIN entered in the VAPE task (this is the task closely related to PIN
study of Martinovic et al.). Also, their attack set-up is intrusive and can be
easily detectable as the users may notice the abnormality in the app when it
shows the images of banks or ATMs related to the user. In comparison, PEEP
is highly surreptitious as it only requires passive monitoring of brain signals as
users’ type their PINs and passwords in regular use of computing devices, not
fraudulent strategies that may trigger suspicion and be detected by the user. By
the passive nature of our attack, it can be used to learn private input from any
(secondary) computing device, not necessarily the (primary) one to which the
BCI device is connected like in [29].

7.2 Password Entropy

PEEP reduces the entropy of the PIN or textual passwords, making it easier
to launch dictionary or brute force attacks. In our study, we assumed the pass-
words and PINs to be random. We used 0–9 digits to create 4-digit PIN and
A-Z characters to create six character-based passwords. If brute-force attack is
launched, it will take 104 guesses to correctly identify the PIN and 266 guesses
to correctly identify the password. The success of randomly guessing a digit of
the PIN is 100/10 (10%) and the success of randomly guessing a character is
100/26 (3.84%). PEEP increases this accuracy of correctly identifying the digits
of PIN to 47.5% and passwords to 34.7%. In case of non-random passwords,
PEEP can be used in conjunction with dictionary-based password attacks, and
further reduce the number of guesses in the brute-force attacks.

242 A. Neupane et al.

7.3 Possible Defensive Mechanisms

One of the possible strategies to mitigate the threat invoked by PEEP is to
automatically insert noise in the neural signals when the user starts typing pass-
words or PINs (or other sensitive input). However, this might affect other benign
applications dependent on brain signals during that time frame. Currently, the
third-party developers are offered unfettered access to the neural signals cap-
tured by such devices. This access can be managed by operating systems to stop
apps other than intended apps to listen on to brain signals while entering the
private information in desktops or mobiles. The more sophisticated attacks are
imminent with the technological advancements in these BCI devices. So it is
important to study probable mitigations of such attacks in the future, especially
given their potential hideous and powerful nature.

7.4 Study Strengths and Limitations

We believe that our study has several strengths. The study used randomly gen-
erated passwords which users knew at the time of the experiment. Despite the
lack of pre- familiarity with the passwords/PINs, we were still able to predict
them with true positive rate significantly better than random guessing. In real
life, the password might remain in the memory for longer time, and the users
might only be using certain fixed digits or characters in their PINs or passwords,
which might provide better feature space and better prediction true positive rate.
Further, we launched our side channel attacks using different categories of head-
sets (both consumer and clinical EEG headsets) and verified the feasibility of
our attacks in a variety of contexts. Similar to any study involving human sub-
jects, our study also had certain limitations. Our study was conducted in a lab
environment. Although we tried to simulate the real-world scenarios of enter-
ing PINs or passwords, the layouts of the experimental tasks were simplistic.
Also, the performance of the users might have been affected by the fact that
their brain signal was recorded during the task. The EEG headsets we used in
our experiment were quite light-weight, and the duration of the experiment was
short (maximum four minutes for each task), however, the participants might
have felt some discomfort that may have impacted their brain responses. Future
work may be needed to assess the feasibility of our attacks in real-world or field
settings. We believe that our work lays the necessary foundation that serves to
highlight the vulnerability.

8 Concluding Remarks

The popularity of BCI devices is ever increasing. In not so distant future, these
devices are going to be less costly and more sophisticated and will be integrated
into many spheres of daily lives of users. In this light, it is important to study
the possible security vulnerabilities of such devices and make people aware of

PEEP: Passively Eavesdropping Private Input via Brainwave Signals 243

such vulnerabilities. In this paper, we examined the possibility of one such side-
channel attack for the purpose of inferring users’ private information, in partic-
ular, their sensitive keystrokes in the form of PINs and passwords. We designed
and developed PEEP, which successfully predicts the sensitive keystrokes made
by the users just from the event-related potentials passively recorded during
those keystrokes. PEEP predicts numbers entered in 4-digit PINs in virtual
keyboard with an average TPR of 43.4%, virtual ATM keyboard with an aver-
age TPR of 47.5%, physical numeric keyboard with an average TPR of 46.5%
and alphabets entered in 6-character passwords with an average TPR of 37.3%,
demonstrating the feasibility of such attacks.

A Design of Experiments

Fig. 3. (a) VKPE task: virtual keyboard (b) VAPE task: virtual ATM keyboard

Fig. 4. PNKPE task: (a) Layout to enter the PIN (b) Physical numeric keyboard used

244 A. Neupane et al.

Fig. 5. PKPE task: (a) Layout to enter 6-digit character based password (b) Physical
keyboard used

References

1. B-Alert X-10 Set-Up Manual. http://www.biopac.com/Manuals/b-alert
2. Emotiv app store. https://www.emotiv.com/store/app.php. Accessed 28 Jul 2016
3. Emotiv EEG headset. https://www.emotiv.com. Accessed 28 Jul 2016
4. Emotiv web APIs. https://cpanel.emotivinsight.com/BTLE/document.htm#

Toc396152456. Accessed 28 Jul 2016
5. Neurofocus. http://www.nielsen.com/us/en/solutions/capabilities/consumer-

neuroscience.html. Accessed 14 Aug 2016
6. Neurosky app store. https://store.neurosky.com/. Accessed 28 Jul 2016
7. Neurosky EEG headset. https://www.neurosky.com. Accessed 28 Jul 2016
8. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach.

Learn. 6(1), 37–66 (1991)
9. Neupane, A., Rahman, M.L., Saxena, N., Hirshfield, L.: A multimodal neuro-

physiological study of phishing and malware warnings. In: ACM Conference on
Computer and Communications Security (CCS). ACM, Denver (2015)

10. Ashby, C., Bhatia, A., Tenore, F., Vogelstein, J.: Low-cost electroencephalogram
(EEG) based authentication. In: 2011 5th International IEEE/EMBS Conference
on Neural Engineering (NER), pp. 442–445. IEEE (2011)

11. Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: IEEE Symposium on
Security and Privacy, vol. 2004, pp. 3–11 (2004)

12. Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of accelerometer side
channels on Smartphones. In: Proceedings of the 28th Annual Computer Security
Applications Conference, pp. 41–50. ACM (2012)

13. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B.,
Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed.
Nature 398(6725), 297–298 (1999)

14. Bojinov, H., Sanchez, D., Reber, P., Boneh, D., Lincoln, P.: Neuroscience meets
cryptography: designing crypto primitives secure against rubber hose attacks. In:
Presented as part of the 21st USENIX Security Symposium (USENIX Security
12), pp. 129–141 (2012)

15. Cai, L., Chen, H.: TouchLogger: inferring keystrokes on touch screen from Smart-
phone motion. In: HotSec 2011, p. 9 (2011)

16. Campbell, A., Choudhury, T., Hu, S., Lu, H., Mukerjee, M.K., Rabbi, M., Raizada,
R.D.: Neurophone: brain-mobile phone interface using a wireless EEG headset. In:
Proceedings of the Second ACM SIGCOMM Workshop on Networking, Systems,
and Applications on Mobile Handhelds, pp. 3–8. ACM (2010)

http://www.biopac.com/Manuals/b-alert
https://www.emotiv.com/store/app.php
https://www.emotiv.com
https://cpanel.emotivinsight.com/BTLE/document.htm#_Toc396152456
https://cpanel.emotivinsight.com/BTLE/document.htm#_Toc396152456
http://www.nielsen.com/us/en/solutions/capabilities/consumer-neuroscience.html
http://www.nielsen.com/us/en/solutions/capabilities/consumer-neuroscience.html
https://store.neurosky.com/
https://www.neurosky.com

PEEP: Passively Eavesdropping Private Input via Brainwave Signals 245

17. Chuang, J., Nguyen, H., Wang, C., Johnson, B.: I think, therefore i am: usability
and security of authentication using brainwaves. In: Adams, A.A., Brenner, M.,
Smith, M. (eds.) FC 2013. LNCS, vol. 7862, pp. 1–16. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41320-9 1

18. Cleary, J.G., et al.: K*: an instance-based learner using an entropic distance mea-
sure

19. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis. J. Neurosci.
Method. 134(1), 9–21 (2004)

20. Donchin, E.: Event-related brain potentials: a tool in the study of human infor-
mation processing. In: Begleiter, H. (ed.) Evoked Brain Potentials and Behavior.
The Downstate Series of Research in Psychiatry and Psychology, vol. 2, pp. 13–88.
Springer, Boston (1979). https://doi.org/10.1007/978-1-4684-3462-0 2

21. Esfahani, E.T., Sundararajan, V.: Classification of primitive shapes using brain-
computer interfaces. Comput.-Aided Des. 44(10), 1011–1019 (2012)

22. Halevi, T., Saxena, N.: A closer look at keyboard acoustic emanations: random
passwords, typing styles and decoding techniques. In: Proceedings of the 7th ACM
Symposium on Information, Computer and Communications Security, pp. 89–90.
ACM (2012)

23. Huan, N.J., Palaniappan, R.: Neural network classification of autoregressive fea-
tures from electroencephalogram signals for brain? computer interface design. J.
Neural Eng. 1(3), 142 (2004)

24. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applica-
tions. Neural Netw. 13(4), 411–430 (2000)

25. Johnson, B., Maillart, T., Chuang, J.: My thoughts are not your thoughts. In:
Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct Publication, pp. 1329–1338. ACM (2014)

26. Jordan, A.: On discriminative vs. generative classifiers: A comparison of logistic
regression and naive bayes (2002)

27. Makeig, S., et al.: Independent component analysis of electroencephalographic
data. In: Advances in Neural Information Processing Systems, pp. 145–151 (1996)

28. Marquardt, P., Verma, A., Carter, H., Traynor, P.: (SP) iPhone: decoding vibra-
tions from nearby keyboards using mobile phone accelerometers. In: Proceedings
of the 18th ACM Conference on Computer and Communications Security, pp.
551–562. ACM (2011)

29. Martinovic, I., Davies, D., Frank, M., Perito, D., Ros, T., Song, D.: On the feasibil-
ity of side-channel attacks with brain-computer interfaces. In: Presented as part of
the 21st USENIX Security Symposium (USENIX Security 12), pp. 143–158 (2012)

30. Monrose, F., Rubin, A.: Authentication via keystroke dynamics. In: Proceedings of
the 4th ACM conference on Computer and Communications Security, pp. 48–56.
ACM (1997)

31. Neupane, A., Saxena, N., Kuruvilla, K., Georgescu, M., Kana, R.: Neural signatures
of user-centered security: an fMRI study of phishing, and malware warnings. In:
Proceedings of the Network and Distributed System Security Symposium (NDSS),
pp. 1–16 (2014)

32. Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: Accessory: password inference
using accelerometers on Smartphones. In: Proceedings of the Twelfth Workshop
on Mobile Computing Systems and Applications, p. 9. ACM (2012)

33. del R Millan, J., Mouriño, J., Franzé, M., Cincotti, F., Varsta, M., Heikkonen, J.,
Babiloni, F.: A local neural classifier for the recognition of EEG patterns associated
to mental tasks. IEEE Trans. Neural Netw. 13(3), 678–686 (2002)

https://doi.org/10.1007/978-3-642-41320-9_1
https://doi.org/10.1007/978-1-4684-3462-0_2

246 A. Neupane et al.

34. Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing attacks
on SSH. In: Proceedings of the 10th Conference on USENIX Security Symposium,
SSYM 2001, vol. 10, USENIX Association, Berkeley, CA, USA (2001). http://dl.
acm.org/citation.cfm?id=1251327.1251352

35. Sumon, M.S.P.: First man with two mind-controlled prosthetic limbs. Bangladesh
Med. J. 44(1), 59–60 (2016)

36. Tan, D., Nijholt, A.: Brain-computer interfaces and human-computer interac-
tion. In: Tan, D., Nijholt, A. (eds.) Brain-Computer Interfaces. Human-Computer
Interaction Series, pp. 3–19. Springer, London (2010). https://doi.org/10.1007/
978-1-84996-272-8 1

37. Thorpe, J., van Oorschot, P.C., Somayaji, A.: Pass-thoughts: authenticating with
our minds. In: Proceedings of the 2005 Workshop on New Security Paradigms, pp.
45–56. ACM (2005)

38. Vuagnoux, M., Pasini, S.: Compromising electromagnetic emanations of wired and
wireless keyboards. In: Proceedings of the 18th USENIX Security Symposium, pp.
1–16. No. LASEC-CONF-2009-007. USENIX Association (2009)

39. Wang, H., Lai, T.T.T., Roy Choudhury, R.: MoLe: motion leaks through smart-
watch sensors. In: Proceedings of the 21st Annual International Conference on
Mobile Computing and Networking, pp. 155–166. ACM (2015)

40. Xu, Z., Bai, K., Zhu, S.: TapLogger: inferring user inputs on smartphone touch-
screens using on-board motion sensors. In: Proceedings of the Fifth ACM Confer-
ence on Security and Privacy in Wireless and Mobile Networks, pp. 113–124. ACM
(2012)

41. Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. ACM
Trans. Inf. Syst. Secur. (TISSEC) 13(1), 3 (2009)

http://dl.acm.org/citation.cfm?id=1251327.1251352
http://dl.acm.org/citation.cfm?id=1251327.1251352
https://doi.org/10.1007/978-1-84996-272-8_1
https://doi.org/10.1007/978-1-84996-272-8_1

Fantastic Timers and Where to Find Them:
High-Resolution Microarchitectural

Attacks in JavaScript

Michael Schwarz(B), Clémentine Maurice, Daniel Gruss, and Stefan Mangard

Graz University of Technology, Graz, Austria
michael.schwarz@iaik.tugraz.at

Abstract. Research showed that microarchitectural attacks like cache
attacks can be performed through websites using JavaScript. These tim-
ing attacks allow an adversary to spy on users secrets such as their key-
strokes, leveraging fine-grained timers. However, the W3C and browser
vendors responded to this significant threat by eliminating fine-grained
timers from JavaScript. This renders previous high-resolution microar-
chitectural attacks non-applicable.

We demonstrate the inefficacy of this mitigation by finding and evalu-
ating a wide range of new sources of timing information. We develop mea-
surement methods that exceed the resolution of official timing sources
by 3 to 4 orders of magnitude on all major browsers, and even more on
Tor browser. Our timing measurements do not only re-enable previous
attacks to their full extent but also allow implementing new attacks.
We demonstrate a new DRAM-based covert channel between a website
and an unprivileged app in a virtual machine without network hard-
ware. Our results emphasize that quick-fix mitigations can establish a
dangerous false sense of security.

1 Introduction

Microarchitectural attacks comprise side-channel attacks and covert channels,
entirely implemented in software. Side-channel attacks exploit timing differences
to derive secret values used in computations. They have been studied extensively
in the past 20 years with a focus on cryptographic algorithms [2,10,16,29–31,48].
Covert channels are special side channels where a sender and a receiver use the
side channel actively to transmit data covertly. These attacks require highly
accurate timing and thus are typically implemented in native binaries written
in C or assembly language to use the best available timing source.

Side channels exist on virtually all systems and software not hardened against
side channels. Thus, browsers are an especially easy target for an attacker,
because browsers process highly sensitive data and attackers can easily trick
a victim to open a malicious website in the browser. Consequently, timing side-
channel attacks have been demonstrated and observed in the wild, to recover a
user’s browser history [8,13,41], but also a user’s geolocation [14], whether a user
c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 247–267, 2017.
https://doi.org/10.1007/978-3-319-70972-7_13

248 M. Schwarz et al.

is logged in to another website [4] and even CSRF tokens [11]. Van Goethem et al.
[37] exploited more accurate in-browser timing to obtain information even from
within other websites, such as contact lists or previous inputs.

Oren et al. [28] recently demonstrated that cache side-channel attacks can
also be performed in browsers. Their attack uses the performance.now method
to obtain a timestamp whose resolution is in the range of nanoseconds. It allows
spying on user activities but also building a covert channel with a process running
on the system. Gruss et al. [9] and Bosman et al. [5] demonstrated Rowhammer
attacks in JavaScript, leveraging the same timing interface. In response, the
W3C [40] and browser vendors [1,3,6] have changed the performance.now
method to a resolution of 5µs. The timestamps in the Tor browser are even
more coarse-grained, at 100 ms [25]. In both cases, this successfully stops side-
channel attacks by withholding necessary information from an adversary.

In this paper, we demonstrate that reducing the resolution of timing infor-
mation or even removing these interfaces is completely insufficient as an attack
mitigation. We propose several new mechanisms to obtain absolute and relative
timestamps. We evaluated 10 different mechanisms on the most recent versions
of 4 different browsers: Chrome, Firefox, Edge, as well as the Tor browser, which
took even more drastic measures. We show that all browsers leak highly accurate
timing information that exceeds the resolution of official timing sources by 3 to
4 orders of magnitude on all browsers, and by 8 on the Tor browser. In all cases,
the resolution is sufficient to revive the attacks that were thought mitigated [28].

Based on our novel timing mechanisms, we are the first to exploit DRAM-
based timing leaks from JavaScript. There were doubts whether DRAM-based
timing leaks can be exploited from JavaScript, as it is not possible to directly
reach DRAM [32]. We demonstrate that a DRAM-based covert channel can be
used to exfiltrate data from highly restricted, isolated execution environments
that are not connected to the network. More specifically, we transmit data from
an unprivileged process in a Virtual Machine (VM) without any network hard-
ware to a website, by tunneling the data through the DRAM-based covert chan-
nel to the JavaScript running in a web browser on the same host machine.

Our key contributions are:

– We performed a comprehensive evaluation of known and new mechanisms to
obtain timestamps. We compared 10 methods on the 3 major browsers on
Windows, Linux and Mac OS X, as well as on Tor browser.

– Our new timing methods increase the resolution of official methods by 3 to
4 orders of magnitude on all browsers, and by 8 orders of magnitude on Tor
browser. Our evaluation therefore shows that reducing the resolution of timer
interfaces does not mitigate any attack.

– We demonstrate the first DRAM-based side channel in JavaScript to exfiltrate
data from a highly restricted execution environment inside a VM with no
network interfaces.

– Our results underline that quick-fix mitigations are dangerous, as they can
establish a false sense of security.

Fantastic Timers and Where to Find Them 249

The remainder of this paper is organized as follows. In Sect. 2, we provide
background information. In Sect. 3, we comprehensively evaluate new timing
measurement methods on all major browsers. In Sect. 4, we demonstrate the
revival of cache attacks with our new timing primitives as well as a new DRAM-
based covert channel between JavaScript in a website and a process that is
strictly isolated inside a VM with no network hardware. Finally, we discuss
effective mitigation techniques in Sect. 5 and conclude in Sect. 6.

2 Background

2.1 Microarchitectural Attacks

A large body of recent work has focused on cross-VM covert channels. A first class
of work uses the CPU cache for covert communications. Ristenpart et al. [33]
are the first to demonstrate a cache-based covert channel between two Amazon
EC2 instances, yielding 0.2 bps. Xu et al. [47] optimized this covert channel
and assessed the difference in performance between theoretical and practical
results. They obtain 215.11 bps with an error rate of 5.12%. Maurice et al. [23]
built a cross-VM covert channel, using the last-level cache and a Prime+Probe
approach, that achieves a bit rate of 751 bps with an error rate of 5.7%. Liu et al.
[21] demonstrated a high-speed cache-based covert channel between two VMs
that achieves transmission speeds of up to 600 Kbps and an error rate of less than
1%. In addition to the cache, covert channels have also been demonstrated using
memory. Xiao et al. [46] demonstrated a memory-based covert channel using
page deduplication. Wu et al. [45] built a covert channel of 746 bps with error
correction, using the memory bus. Pessl et al. [32] reverse engineered the DRAM
addressing functions that map physical addresses to their physical location inside
the DRAM. The mapping allowed them to build a covert channel that relies solely
on the DRAM as shared resource. Their cross-core cross-VM covert channel
achieves a bandwidth of 309 Kbps. Maurice et al. [24] demonstrated an error-
free covert channel between two Amazon EC2 instances of more than 360 Kbps,
which allows building an SSH connection through the cache.

2.2 JavaScript and Timing Measurements

JavaScript is a scripting language supported by all modern browsers, which
implement just-in-time compilation for performance. Contrary to low-level lan-
guages like C, JavaScript is strictly sandboxed and hides the notion of addresses
and pointers. The concurrency model of JavaScript is based on a single-threaded
event loop [26], which consists of a message queue and a call stack. Events are
handled in the message queue, moved to the call stack when the stack is empty
and processed to completion. As a drawback, if a message takes too long to
process, it blocks other messages to be processed, and the browser becomes
unresponsive. Browsers received the support for multithreading with the intro-
duction of web workers. Each web worker runs in parallel and has its own event
loop [26].

250 M. Schwarz et al.

For timing measurement, the timestamp counter of Intel CPUs provides the
number of CPU cycles since startup and thus a high-resolution timestamp.
In native code, the timestamp counter is accessible through the unprivileged
rdtsc instruction. In JavaScript, we cannot execute arbitrary instructions such
as the rdtsc instruction. One of the timing primitives provided by JavaScript
is the High Resolution Time API [40]. This API provides the performance.now
method that gives a sub-millisecond timestamp. The W3C standard recommends
that the timestamp should be monotonically increasing and accurate to 5µs. The
resolution may be lower if the hardware has no support for such a high resolution.

Remarkably, until Firefox 36 the High Resolution Time API returned
timestamps accurate to one nanosecond. This is comparable to the native rdtsc
instruction which has a resolution of 0.5 ns on a 2 GHz CPU. As a response to
the results of Oren et al. [28], the timer resolution was decreased for security
reasons [3]. In recent versions of Chrome and WebKit, the timing resolution was
also decreased to the suggested 5µs [1,6]. The Tor project even reduced the
resolution to 100 ms [25]. The decreased resolution of the high-resolution timer
is supposed to prevent time-based side-channel attacks. In a concurrent work,
Kohlbrenner et al. [18] showed that it is possible to recover a high resolution
by observing clock edges, as well as to create new implicit clocks using browser
features. Additionally, they implemented fuzzy time that aims to degrade the
native clock as well as all implicit clocks.

2.3 Timing Attacks in JavaScript

Van Goethem et al. [37] showed different timing attacks in browsers based on
the processing time of resources. They aimed to extract private data from users
by estimating the size of cross-origin resources. Stone [35] showed that the opti-
mization in SVG filters introduced timing side channels. He showed that this
side channel can be used to extract pixel information from iframes.

Microarchitectural side channels have only recently been exploited in
JavaScript. Oren et al. [28] showed that it is possible to mount cache attacks in
JavaScript. They demonstrated how to generate an eviction set for the last-level
cache that can be used to mount a Prime+Probe attack. Based on this attack,
they built a covert channel using the last-level cache that is able to transmit
data between two browser instances. Furthermore, they showed that the timer
resolution is high enough to create a spy application that tracks the user’s mouse
movements and network activity. As described in Sect. 2.2, this attack caused all
major browsers to decrease the resolution of the performance.now method.

Gruss et al. [9] demonstrated hardware faults triggered from JavaScript,
exploiting the so-called Rowhammer bug. The Rowhammer bug occurs when
repeatedly accessing the same DRAM cells with a high frequency [15]. This
“hammering” leads to bit flips in neighboring DRAM rows. As memory accesses
are usually cached, they also implemented cache eviction in JavaScript.

All these attacks require a different timestamp resolution. The attacks from
Goethem et al. [37] and Stone [35] require a timestamp resolution that is on
the order of a microsecond, while the attack of Oren et al. [28] relies on the

Fantastic Timers and Where to Find Them 251

fine-grained timestamps on the order of nanoseconds. More generally, as microar-
chitectural side channel attacks aim at exploiting timing differences of a few
CPU cycles, they depend on the availability of fine-grained timestamps. We
note that decreasing the resolution therefore only mitigates microarchitectural
attacks on the major browsers that have a resolution of 5µs, but mitigates more
side-channel attacks on the Tor browser which has a resolution of 100 ms.

3 Timing Measurements in the JavaScript Sandbox

This section describes techniques to get accurate measurements with a high-
resolution timestamp in the browser. In the first part, we describe methods
to recover a high resolution for the provided High Resolution Time API. The
second part describes different techniques that allow deriving highly accurate
timestamps, with implicit timers. These methods are summarized in Table 1.

3.1 Recovering a High Resolution

In both Chrome and Webkit, the timer resolution is decreased by rounding the
timestamp down to the nearest multiple of 5µs. As our measurements fall below
this resolution, they are all rounded down to 0. We refer to the underlying clock’s
resolution as internal resolution and to the decreased resolution of the provided
timer as provided resolution. It has already been observed that it is possible to
recover a high resolution by observing the clock edges [18,22,34,38]. The clock
edge aligns the timestamp perfectly to its resolution, i.e., we know that the
timestamp is an exact multiple of its provided resolution at this time.

Clock Interpolation. As the underlying clock source has a high resolution, the
difference between two clock edges varies only as much as the underlying clock.
This property gives us a very accurate time base to build upon. As the time
between two edges is always constant, we interpolate the time between them.
This method has also been used in JavaScript in a concurrent work [18].

Clock interpolation requires a calibration before being able to return accurate
timestamps. For this purpose, we repeatedly use a busy-wait loop to increment a
counter between two clock edges. This gives us the number of steps we can use for
the interpolation. We refer to the average number of increments as interpolation
steps. The time it takes to increment the counter once equals the resolution
we are able to recover. It can be approximated by dividing the time difference
of two clock edges by the number of interpolation steps. This makes the timer
independent from both the internal and the provided resolution.

The measurement with the improved resolution works as follows. We busy
wait until we observe a clock edge. At this point, we start with the operation
we want to time. After the timed operation has finished, we again busy wait for
the next clock edge while incrementing a counter. We assume that the increment
operation is a constant time operation, thus allowing us to linearly interpolate
the passed time. From the calibration, we know the time of one interpolation step

252 M. Schwarz et al.

which will be a fraction of the provided resolution. Multiplying this time by the
number of increments results in the interpolated time. Adding the interpolated
time to the measured time increases the timer’s resolution again.

Using this method, we recover a highly accurate timestamp. Listing A.1
shows the JavaScript implementation. Table 1 shows the recovered resolution
for various values of provided resolution. Even for a timer rounded down to a
multiple of 100 ms, we recover a resolution of 15µs.

Edge Thresholding. We do not require an exact timestamp in all cases. For
many side-channel attacks it is sufficient to distinguish two operations ffast and
fslow based on their execution time. We refer to the execution times of the
short-running function and long-running function as tfast and tslow respectively.

We devise a new method that we call edge thresholding. This method again
relies on the property that we can execute multiple constant-time operations
between two edges of the clock. Edge thresholding works as long as the difference
in the execution time is larger than the time it takes to execute one such constant-
time operation. Figure 1 illustrates the main idea of edge thresholding. Using
multiple constant-time operations, we generate a padding after the function we
want to measure. The execution time of the padding tpadding is included into the
measurement, increasing the total execution time by a constant value. The size
of the padding depends on the provided resolution and on the execution time of
the functions. We choose the padding in such a way that tslow + tpadding crosses
one more clock edge than tfast + tpadding, i.e., both functions take a different
amount of clock edges.

f slow

f fast P adding

P adding

Fig. 1. Edge thresholding: apply padding such that the slow function crosses one more
clock edge than the fast function.

To choose the correct padding, we start without padding and increase the
padding gradually. We align the function start at a clock edge and measure the
number of clock edges it takes to execute the short-running and the long-running
function. As soon as the long-running function crosses one more clock edge than
the short-running function, we have found a working padding. Subsequently,
this padding is used for all execution time measurements. Figure 2 shows the
results of classifying two functions with an execution time difference of 0.9µs
and a provided resolution of 10µs. A normal, unaligned measurement is able to
classify the two functions only in the case when one of the measurements crosses
a clock edge, whereas the edge thresholding method categorizes over 80% of the
function calls correctly by their relative execution time. Moreover, there are no
false classifications.

Fantastic Timers and Where to Find Them 253

unaligned aligned padded

0

50

100

13
0

8287
100

18
0 0 0p

er
ce
nt
ag
e

both correct f slow misclassified f fast misclassified

Fig. 2. Results of edge thresholding where the difference between the function’s exe-
cution time is less then the provided resolution.

3.2 Alternative Timing Primitives

In cases where the High Resolution Time API [40] is not available, e.g., on
Tor browser, we have to resort to different timing primitives, as highlighted by
Kohlbrenner et al. [18]. As there is no different high-resolution timer available in
JavaScript and we cannot access any native timers, we have to create our own
timing sources. In most cases, it is sufficient to have a fast-paced monotonically
increasing counter as a timing primitive that is not a real representation of time
but an approximation of a highly accurate monotonic timer. While this concept
was already presented by Wray in 1992 [44], Lipp et al. [20] recently demon-
strated a practical high-resolution timing primitive on ARM using a counting
thread. As JavaScript is inherently based on a single threaded event loop with
no true concurrency, the timing primitive has to be based either on recurring
events or non-JavaScript browser features.

We present several novel methods to construct timing primitives in
JavaScript. We refer to them as free-running timers and blocking timers. Free-
running timers do not depend on the JavaScript’s event loop and run indepen-
dently from the remaining code. Blocking timers are based on JavaScript events
and are either only usable to recover a high resolution or in combination with
web workers. If used in combination with web workers, the timers become free-
running timers.

At first, it seems that timing primitives blocking the JavaScript event loop
might not be useful at all. The higher the resolution of the timing primitive,
the more events are added to the event queue and the less time remains for
actual code. However, there are still two constructions that are able to use such
primitives. First, these primitives can be used for very accurate interpolation
steps when applying either clock interpolation or edge thresholding. Second, it
is possible to take advantage of the multithreading support with web workers to
run the timing primitive in parallel to the method to time.

Timeouts. The first asynchronous feature dating back to the introduction
of JavaScript is the WindowTimers API. Specifically the setTimeout and
setInterval functions allow scheduling a timer-based callback. The time is

254 M. Schwarz et al.

specified in a millisecond resolution. After specifying the timeout, the browser
keeps track of the timer and calls the callback as soon as the timer has expired.

A concurrent timer-based callback allows us to simulate a counting thread.
We create a callback function that increments a global counter and schedules
itself again using the setTimeout function. This method has also been used
in a concurrent work [18]. Although the minimal supported timeout is 0, the
real timeout is usually larger. The HTML5 specification defines a timeout of at
least 4 ms for nested timers, i.e., specifying the timeout from within the callback
function has a delay of at least 4 ms [42]. This limitation also applies to timeouts
specified by the setInterval function.

Most browsers comply to the HTML5 specification and treat all timeouts
below 4 ms as 4 ms. In Firefox, the minimum timeout is determined by the value
of the flag dom.min timeout value which defaults to 4 ms as well. Note that the
timeout only has such a high frequency if it is run in an active tab. Background
tasks do not allow such high frequencies.

Microsoft implemented another timeout function in their browsers which
is not standardized. The setImmediate function behaves similarly to the
setTimeout function with a timeout of 0. The function is not limited to 4 ms and
allows to build a high-resolution counting thread. A counting thread using this
function results in a resolution of up to 50µs which is three orders of magnitude
higher than the setTimeout method.

Message Passing. By default, the browser enforces a same-origin policy, i.e.,
scripts are not allowed to access web page data from a page that is served from
a different domain. JavaScript provides a secure mechanism to circumvent the
same-origin policy and to allow cross-origin communication. Scripts can install
message listeners to receive message events from cross-origin scripts. A script
from a different origin is allowed to post messages to a listener.

Despite the intended use for cross-origin communication, we can use this
mechanism within one script as well. The message listener is not limited to
messages sent from cross-origin scripts. Neither is there any limitation for the
target of a posted message. Adding checks whether a message should be handled
is left to the JavaScript developer. According to the HTML standard, posted
messages are added to the event queue, i.e., the message will be handled after any
pending event is handled. This behavior leads to a nearly immediate execution
of the installed message handler. A counting thread using the postMessage
functions achieves a resolution of up to 35µs. An implementation is shown in
Listing A.2.

To obtain a free-running timing primitive, we have to move the message
posting into separate web workers. This appears to be a straightforward task.
However, there are certain limitations for web workers. Web workers cannot post
messages to other web workers (including themselves). They can only post mes-
sages to the main thread and web workers they spawn, so called sub workers.
Posting messages to the main thread again blocks the main thread’s event loop,
leaving sub web workers as the only viable option. Listing A.3 shows a sample

Fantastic Timers and Where to Find Them 255

implementation using one worker and one sub worker. The worker can communi-
cate with the main thread and the sub worker. If the worker receives a message
from the main thread, it sends back its current counter value. Otherwise, the
worker continuously “requests” the current counter value from the sub worker.
The sub worker increments the counter on each request and sends the current
value back to the worker. The resulting resolution is even higher than with the
blocking version of the method. On Tor browser, the achieved resolution is up to
15µs, which is 4 orders of magnitude higher than the resolution of the native
timer.

An alternative to sub workers are broadcast channels. Broadcast channels
allow the communication between different sources from the same origin. A
broadcast channel is identified by its name. In order to subscribe to a chan-
nel, a worker can create a BroadcastChannel object with the same name as an
existing channel. A message that is posted to the broadcast channel is received
by all other clients subscribed to this broadcast channel. We can build a con-
struct that is similar to the sub worker scenario using two web workers. The
web workers broadcast a message in their broadcast receiver to send the counter
value back and forth. One of the web workers also responds to messages from
the main thread to return the current counter value. With a resolution of up to
55µs, this method is still almost as fast as the worker thread variant.

Message Channel. The Channel Messaging API provides bi-directional pipes
to connect two clients. The endpoints of the pipe are called ports, and every port
can both send and receive data. A message channel can be used in a similar way
as cross-origin message passing. Listing A.4 shows a simple blocking counting
thread using a message channel.

As with the cross-origin message passing method, we can also adapt this code
to work inside a web worker yielding a free-running timing primitive. Listing A.5
shows the implementation for web workers. The resolution for the free-running
message channel method is up to 30µs, which is lower compared to the cross-
origin communication method. However, it is currently the only method that
works across browsers and has a resolution in the order of microseconds.

CSS Animations. With CSS version 3, the support for animations [39] was
added. These animations are independent of JavaScript and are rendered by the
browser. Users can specify keyframes and attributes that will then be animated
without any further user interaction.

We demonstrate a new method that uses CSS animations to build a tim-
ing primitive. A different method using CSS animations has been used in a
concurrent work [18]. We define an animation that changes the width of an ele-
ment from 0 px to 1 000 000 px within 1 s. Theoretically, if all animation steps
are calculated, the current width is incremented every microsecond. However,
browsers limit the CSS animations to 60 fps, i.e., the resolution of our timing
primitive is 16 ms in the best case. Indeed, most monitors have a maximum
refresh rate of 60 Hz, i.e., they cannot display more than 60 fps. Thus, a higher

256 M. Schwarz et al.

frame rate would only waste resources without any benefit. To get the current
timestamp, we retrieve the current width of the element. In JavaScript, we can
get the current width of the element using window.getComputedStyle(elem,
null).getPropertyValue("width").

SharedArrayBuffer. Web workers do not have access to any shared resource.
The communication is only possible via messages. If data is passed using a
message, either the data is copied, or the ownership of the data is transferred.
This design prevents race conditions and locking problems without having to
depend on a correct use of locks. Due to the overhead of message passing for
high-bandwidth applications, approaches for sharing data between workers are
discussed by the ECMAScript committee [27]. An experimental extension for
web workers is the SharedArrayBuffer. The ownership of such a buffer can be
shared among multiple workers, which can access the buffer simultaneously.

A shared resource provides a way to build a real counting thread with a
negligible overhead compared to a message passing approach. This already raised
concerns with respect to the creation of a high-resolution clock [19]. In this
method, one worker continuously increments the value of the buffer without
checking for any events on the event queue. The main thread simply reads the
current value from the shared buffer and uses it as a high-resolution timestamp.

We implemented a clock with a parallel counting thread using the
SharedArrayBuffer. An implementation is shown in Listing A.6. The result-
ing resolution is close to the resolution of the native timestamp counter. On our
Intel Core i5 test machine, we achieve a resolution of up to 2 ns using the shared
array buffer. This is equivalent to a resolution of only 4 CPU cycles, which is 3
orders of magnitude better than the timestamp provided by performance.now.

3.3 Evaluation

We evaluated all methods on an Intel Core i5-6200U machine using the most
popular browsers, up to date at the time of writing: Firefox 51, Chrome 53, Edge
38.14393.0.0, and Tor 6.0.4. All tests were run on Ubuntu 16.10, Windows 10,
and Mac OS X 10.11.4. Table 1 shows the timing resolution of every method for
every browser and operating system combination. We also evaluated our methods
using Fuzzyfox [17], the fork of Firefox hardened against timing attacks [18].

The introduction of multithreading in JavaScript opened several possibilities
to build a timing primitive that does not rely on any provided timer. By building
a counting thread, we are able to get a timer resolution of several microseconds.
This is especially alarming for the Tor browser, where the provided timer only has
a resolution of 100 ms. Using the demonstrated methods, we can build a reliable
timer with a resolution of up to 15µs. The lower resolution was implemented as
a side channel mitigation and is rendered useless when considering the results of
the alternative timing primitives.

The best direct timing source we tested is the experimental
SharedArrayBuffer. The best measurement method we tested is edge threshold-
ing. Both increase the resolution by at least 3 orders of magnitude compared to

Fantastic Timers and Where to Find Them 257

Table 1. Timing primitive resolutions on various browsers and operating systems.

Free-running Firefox 51 Chrome 53 Edge 38 Tor 6.0.4 Fuzzyfox

performance.now ✓ 5µs 5µs 1µs 100 ms 100 ms

CSS animations ✓ 16 ms 16 ms 16 ms 16 ms 125 ms

setTimeout 4 ms 4 ms 2 ms 4 ms 100 ms

setImmediate – – 50µs – –

postMessage 45µs 35µs 40µs 40µs 47 ms

Sub worker ✓ 20µs –b 50µs 15µs –

Broadcast Channel ✓ 145µs – – 55µs 760µs

MessageChannel 12µs 55µs 20µs 20µs 45 ms

MessageChannel (W) ✓ 75µs 100µs 20µs 30µs 1120µs

SharedArrayBuffer ✓ 2 nsc 15 nsd – – 2 ns

Interpolationa 500 ns 500 ns 350 ns 15µs –

Edge thresholdinga 2 ns 15 ns 10 ns 2 ns –
aUses performance.now for coarse-grained timing information.
bSub workers do not work in Chrome, this is a known issue since 2010 [7].
cCurrently only available in the nightly version.
dIt has to be enabled by starting Chrome with --js-flags=--harmony-sharedarraybuffer--

enable-blink-feature=SharedArrayBuffer.

performance.now in all browsers. Countermeasures against timing side-channels
using fuzzy time have been proposed by Hu et al. [12] and Vattikonda et al. [38].
They suggested to reduce the provided resolution and to randomize the clock
edges. However, we can fall back to the constructed timing primitives if this
countermeasure is not applied on all implicit clocks.

In a concurrent work, Kohlbrenner et al. [18] proposed Fuzzyfox, a fork of
Firefox that uses fuzzy time on both explicit and implicit clocks, and aims to
cap all clocks to a resolution of 100 ms. Our evaluation shows that the explicit
timer performance.now is reduced to 100 ms, and is fuzzed enough that the
interpolation and edge thresholding methods do not work to recover a high reso-
lution. Similarly, some of the implicit timers, such as setTimeout, postMessage,
and Message Channel, are also mitigated, with a resolution between 45 ms and
100 ms. However, the Broadcast Channel, Message Channel with web workers,
and SharedArrayBuffer still have a fine grained resolution, between 2 ns and 1 ms.
It is to be noted that, while these methods stay accurate, the resulting clock is
too fuzzy to derive a finer clock with either interpolation or edge thresholding.

4 Reviving and Extending Microarchitectural Attacks

In this section, we demonstrate that with our timing primitives, we are able to
revive attacks that were thought mitigated, and build new DRAM-based attacks.

258 M. Schwarz et al.

4.1 Reviving Cache Attacks

Oren et al. [28] presented the first microarchitectural side-channel attack running
in JavaScript. Their attack was mitigated by decreasing the timer resolution. We
verified that the attack indeed does not work anymore on current browser ver-
sions. However, we are able to revive cache attacks by using our newly discovered
timing sources. Figure 3 shows the timing difference between cache hits and cache
misses, measured with the SharedArrayBuffer method. The ability to measure
this timing difference is the building block of all cache attacks.

300 350 400 450 500 550 600 650 700 750

100

200

300

Access time [SharedArrayBuffer increments]

N
um

be
r
of

ca
se
s cache hit cache miss

Fig. 3. Histogram for cache hits and cache misses.

4.2 A New DRAM-Based Covert Channel

Pessl et al. [32] established that timing differences in memory accesses can be
exploited to build a cross-CPU covert channel. We demonstrate that this attack
is also possible using JavaScript. In our scenario, the sender is an unprivileged
binary inside a VM without a network connection. The receiver is implemented
in sandboxed JavaScript running in a browser outside the VM, on the same host.

Overview. To communicate, the sender and the receiver agree on a certain
bank and row of physical memory. This agreement can be done in advance and
is not part of the transmission. The receiver continuously measures the access
time to a value located inside the agreed row. For continuous accesses, the value
will be cached in the row buffer and the access will be fast, resulting in a low
access time. The receiver considers this as a 0. If the sender wants to transmit
a 1, it accesses a different row inside the same bank. This access triggers a row
conflict, resulting in a replacement of the row buffer content. On the receiver’s
next access, the request cannot be served from the row buffer but has to be
fetched from the DRAM, resulting in a high access time.

Challenges. For the sender, we assume that we can run arbitrary unprivileged
binary programs inside the VM. We implement the sender in C, which allows us
to use the computer’s high-resolution timestamp counter. Furthermore, we can

Fantastic Timers and Where to Find Them 259

flush addresses from the cache using the unprivileged clflush instruction. The
only limitation on the sender is the absence of physical addresses.

On the receiver side, as the covert channel relies on timing differences that are
in the order of tens of nanoseconds, we require a high-resolution timing primitive.
We presented in Sect. 3 different methods to build timing primitives if the pro-
vided High Resolution Time API is not accurate enough. However, implement-
ing this side channel in JavaScript poses some problems besides high-resolution
timers. First, the DRAM mapping function requires the physical address to
compute the physical location, i.e., the row and the bank, inside the DRAM.
However, JavaScript does not know the concept of pointers. Therefore, we nei-
ther have access to virtual nor physical addresses. Second, we have to ensure
that memory accesses will always be served from memory and not the cache,
i.e., we have to circumvent the cache. Finally, the noise present on the system
might lead to corrupt transfers. We have to be able to detect such bit inversions
for reliable communication.

Address Selection. The DRAM mapping function reverse engineered by Pessl
et al. [32] takes a physical address and calculates the corresponding physical
memory location. Due to the absence of addresses in JavaScript, we cannot
simply use these functions. We have to rely on another side channel to be able
to infer address bits in JavaScript.

We exploit the fact that heap memory in JavaScript is allocated on demand,
i.e., the browser acquires additional heap memory from the operating system if
this is required. These heap pages are internally backed by 2 MB pages, called
Transparent Huge Pages (THP). Due to the way virtual memory works, for
THPs, the 21 least-significant bits of a virtual and physical address are the
same. On many systems, this is already sufficient as input to the DRAM mapping
function. This applies to the sender as well, with the advantage that we know
the virtual address which we can use immediately without any further actions.

To get the beginning of a THP in JavaScript, we iterate through an array
of multiple megabytes while measuring the time it takes to access the array
element, similarly to Gruss et al. [9]. As the physical pages for these THPs are
also mapped on-demand, a page fault occurs as soon as an allocated THP is
accessed for the first time. Such an access takes significantly longer than an
access to an already mapped page. Thus, higher timings for memory accesses
with a distance of 2 MB indicate the beginning of a THP. At this array index,
the 21 least-significant bits of both the virtual and the physical address are 0.

Cache Circumvention. To measure DRAM access times we have to ensure
that all our accesses go to the DRAM and not to the cache. In native code,
we can rely on the clflush instruction. This unprivileged instruction flushes
a virtual address from all cache levels, i.e., the next access to the address is
ensured to go to the DRAM.

However, in JavaScript we neither have access to the clflush instruction nor
does JavaScript provide a function to flush the cache. Thus, we have to resort to

260 M. Schwarz et al.

cache eviction. Cache eviction is the process of filling the cache with new data
until the data we want to flush is evicted from the cache. The straightforward
way is to fill a buffer with the size of the last-level cache with data. However,
this is not feasible in JavaScript as writing multiple megabytes of data is too
slow. Moreover, on modern CPUs, it might not suffice to iteratively write to the
buffer as the cache replacement policy is not pseudo-LRU since Ivy Bridge [43].

Gruss et al. [9] demonstrated fast cache eviction strategies for numerous
CPUs. They showed that their functions have a success rate of more than 99.75%
when implemented in JavaScript. We also rely on these functions to evict the
address which we use for measuring the access time.

Transmission. To transmit data from inside the VM to the JavaScript, they
have to agree on a common bank. It is not necessary to agree on a bank dynam-
ically, it is sufficient to have the bank hardcoded in both programs. The sender
and the receiver both choose a different row from this bank. Again, this can be
hardcoded, and there is no requirement for an agreement protocol.

On the sender side, the application inside the VM continuously accesses a
memory address in its row if it wants to transmit a binary 1. These accesses cause
row conflicts with the receiver’s row. To send a binary 0, the sender does nothing
to not cause any row conflict. On the receiver side, the JavaScript constantly
measures the access time to a memory address from its row and evicts the address
afterwards. If the sender has accessed its row, the access to the receiver’s row
results in a row conflict. As a row conflict takes significantly longer than a row
hit, the receiver can determine if the sender has accessed its row.

To synchronize sender and receiver, the receiver measures the access time in a
higher frequency than the sender is sending. The receiver maintains a constant-
size sliding window that moves over all taken measurements. As soon as the
majority of the measurements inside the sliding window is the same, one bit
is received. The higher the receiver’s sampling frequency is, compared to the
sender’s sending frequency, the lower the probability of wrongly measured bits.
However, a higher sampling frequency also leads to a slower transmission speed
due to the increased amount of redundant data.

Due to different noise sources on the system, we encounter transmission
errors. Such noise sources are failed evictions, high DRAM activity of other
programs or not being scheduled at all. To have a reliable transmission despite
those interferences, we encapsulate the data into packets with sequence num-
bers and protect each packet with an error detection code as shown in Fig. 4.
The receiver is then able to detect any transmission error and to discard the
packet. The sequence number ensures to keep the data stream synchronized.
Thus, transmission errors only result in missing data, but the data stream is
still synchronized after transmission errors. To deal with missing data, we can
apply high-level error correction as shown by Maurice et al. [24].

Using the SharedArrayBuffer, we achieve a transmission rate of 11 bps for
a 3 kB file with an error rate of 0% on our Intel Core i5 test machine. The
system workload did not influence the transmission, as long as there is at least

Fantastic Timers and Where to Find Them 261

Data EDC
S
E
Q

Fig. 4. One packet of the covert channel. It has a 2-bit preamble ‘‘10’’, 5 data bits,
3 bits of error detection code and a 1 bit sequence number.

one core fully available to the covert channel. We optimized the covert channel
for reliability and not speed. We expect that it is possible to further increase the
transmission rate by using multiple banks to transmit data in parallel. However,
the current speed is two orders of magnitude higher than the US government’s
minimum standard for covert channels [36].

5 Countermeasures

Lowering the Timer Resolution. As a reaction to the JavaScript cache
attacks published by Oren et al. [28], browsers reduced the resolution of the
high-resolution timer. Nevertheless, we are able to recover a higher resolution
from the provided timer, as well as to build our own high-resolution timers.

Fuzzy Time. Vattikonda et al. [38] suggested the concept of fuzzy time to get
rid of high-resolution timers in hypervisors. Instead of rounding the timestamp
to achieve a lower resolution, they move the clock edge randomly within one
clock cycle. This method prevents the detection of the underlying clock edge
and thus makes it impossible to recover the internal resolution. In a concurrent
work, Kohlbrenner et al. [18] implemented the fuzzy time concept in Firefox
to show that this method is also applicable in JavaScript. The implementation
targets explicit clocks as well as implicit clocks. Nonetheless, we found different
implicit clocks exceeding the intended resolution of 100 ms.

Shared Memory and Message Passing. A proposed mitigation is to intro-
duce thread affinity to the same CPU core for threads with shared memory [19].
This prevents true parallelism and should therefore prevent a real asynchronous
timing primitive. However, we showed that even without shared memory we
can achieve a resolution of up to 15µs by using message passing. Enforcing the
affinity to one core for all communicating threads would lead to a massive perfor-
mance degradation and would effectively render the use of web workers useless.
A compromise is to increase the latency of message passing which should not
affect low- to moderate-bandwidth applications. Compared to Fuzzyfox’s delay
on the main event queue, this has two advantages. First, the overall usability
impact is not as severe as only messages are delayed and not every event. Sec-
ond, it also prevents the high accuracy of the Message Channel and Broadcast
Channel method as the delay is not limited to the main event queue.

262 M. Schwarz et al.

6 Conclusion and Outlook

High-resolution timers are a key requirement for side-channel attacks in browsers.
As more side-channel attacks in JavaScript have been demonstrated against
users’ privacy, browser vendors decided to reduce the timer resolution.

In this article, we showed that this attempt to close these vulnerabilities was
merely a quick-fix and did not address the underlying issue. We investigated dif-
ferent timing sources in JavaScript and found a number of timing sources with
a resolution comparable to performance.now. This shows that even removing
the interface entirely, would not have any effect. Even worse, an adversary can
recover a resolution of the former performance.now implementation through
measurement methods we proposed. We evaluated our new measurement meth-
ods on all major browsers as well as the Tor browser that has applied the highest
penalty to the timer resolution. Our results are alarming for all browsers, includ-
ing the privacy-conscious Tor browser, as we are able to recover a resolution in
the order of nanoseconds in all cases. In addition to reviving attacks that were
now deemed infeasible, we demonstrated the first DRAM-based side channel in
JavaScript. In this side-channel attack, we implemented a covert channel between
an unprivileged binary in a VM with no network interface and a JavaScript pro-
gram in a browser outside the VM, on the same host.

While fuzzy timers can lower the resolution of the provided timer interfaces,
we show that applying the same mitigation on all implicit clocks, including the
one that are not discovered yet, is a complex task. Thus, we conclude that it is
likely that an adversary can obtain sufficiently accurate timestamps when run-
ning arbitrary JavaScript code. As microarchitectural attacks are not restricted
to JavaScript, we recommend to mitigate them at the system- or hardware-level.

Acknowledgments We would like to thank our shepherd Jean Paul Degabriele,
Georg Koppen from the Tor Browser project as well as all our anonymous reviewers.

We would also like to thank the major browser vendors
for their quick responses when reporting our findings.
This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No. 681402).

Fantastic Timers and Where to Find Them 263

A JavaScript Code

264 M. Schwarz et al.

Fantastic Timers and Where to Find Them 265

References

1. Christensen, A.: Reduce resolution of performance.now (2015). https://bugs.
webkit.org/show bug.cgi?id=146531

2. Bernstein, D.J.: Cache-Timing Attacks on AES (2004). http://cr.yp.to/
antiforgery/cachetiming-20050414.pdf

3. Zbarsky, B.: Reduce resolution of performance.now. https://hg.mozilla.org/
integration/mozilla-inbound/rev/48ae8b5e62ab

4. Bortz, A., Boneh, D.: Exposing private information by timing web applications.
In: WWW 2007 (2007)

5. Bosman, E., Razavi, K., Bos, H., Giuffrida, C.: Dedup Est Machina: Memory Dedu-
plication as an Advanced Exploitation Vector. In: S&P 2016 (2016)

https://bugs.webkit.org/show_bug.cgi?id=146531
https://bugs.webkit.org/show_bug.cgi?id=146531
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab

266 M. Schwarz et al.

6. Chromium: window.performance.now does not support sub-millisecond preci-
sion on Windows (2015). https://bugs.chromium.org/p/chromium/issues/detail?
id=158234#c110

7. Chromium Bug Tracker: HTML5 nested workers are not supported in chromium
(2010). https://bugs.chromium.org/p/chromium/issues/detail?id=31666.
Accessed 18 Oct 2016

8. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: CCS 2000 (2000)
9. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced

fault attack in JavaScript. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300–321. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40667-1 15

10. Gullasch, D., Bangerter, E., Krenn, S.: Cache games – bringing access-based cache
attacks on AES to practice. In: S&P 2011 (2011)

11. Heiderich, M., Niemietz, M., Schuster, F., Holz, T., Schwenk, J.: Scriptless attacks:
stealing the pie without touching the sill. In: Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security, pp. 760–771. ACM (2012)

12. Hu, W.M.: Lattice scheduling and covert channels. In: S&P 1992, pp. 52–61 (1992)
13. Jang, D., Jhala, R., Lerner, S., Shacham, H.: An empirical study of privacy-

violating information flows in javascript web applications. In: CCS 2010 (2010)
14. Jia, Y., Dong, X., Liang, Z., Saxena, P.: I know where you’ve been: geo-inference

attacks via the browser cache. IEEE Internet Comput. 19(1), 44–53 (2015)
15. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai, K.,

Mutlu, O.: Flipping bits in memory without accessing them: an experimental study
of DRAM disturbance errors. In: ISCA 2014 (2014)

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

17. Kohlbrenner, D., Shacham, H.: Fuzzyfox (2016). https://github.com/dkohlbre/
gecko-dev/tree/fuzzyfox. Accessed 23 January 2017

18. Kohlbrenner, D., Shacham, H.: Trusted browsers for uncertain times. In: USENIX
Security Symposium (2016)

19. Hansen, L.T.: Shared memory: Side-channel information leaks (2016). https://
github.com/tc39/ecmascript sharedmem/blob/master/issues/TimingAttack.md

20. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: cache
attacks on mobile devices. In: USENIX Security Symposium (2016)

21. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: S&P 2015 (2015)

22. Martin, R., Demme, J., Sethumadhavan, S.: TimeWarp: rethinking timekeeping
and performance monitoring mechanisms to mitigate side-channel attacks. In: Pro-
ceedings of the 39th International Symposium on Computer Architecture (ISCA
2012) (2012)

23. Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: cross-cores cache
covert channel. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015.
LNCS, vol. 9148, pp. 46–64. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-20550-2 3

24. Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Alberto Boano, C.,
Mangard, S., Römer, K.: Hello from the other side: SSH over robust cache covert
channels in the cloud. In: NDSS 2017 (2017, to appear)

25. Perry, M.: Bug 1517: Reduce precision of time for Javascript (2015). https://gitweb.
torproject.org/user/mikeperry/tor-browser.git/commit/?h=bug1517

https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=31666
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/3-540-68697-5_9
https://github.com/dkohlbre/gecko-dev/tree/fuzzyfox
https://github.com/dkohlbre/gecko-dev/tree/fuzzyfox
https://github.com/tc39/ecmascript_sharedmem/blob/master/issues/TimingAttack.md
https://github.com/tc39/ecmascript_sharedmem/blob/master/issues/TimingAttack.md
https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-20550-2_3
https://gitweb.torproject.org/user/mikeperry/tor-browser.git/commit/?h=bug1517
https://gitweb.torproject.org/user/mikeperry/tor-browser.git/commit/?h=bug1517

Fantastic Timers and Where to Find Them 267

26. Mozilla Developer Network: Concurrency model and Event Loop (2016). https://
developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop

27. Mozilla Inc.: Ecmascript shared memory and atomics (2016). http://tc39.github.
io/ecmascript sharedmem/shmem.html

28. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The Spy in the
sandbox: practical cache attacks in JavaScript and their implications. In: CCS
2015 (2015)

29. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

30. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Cryp-
tology ePrint Archive, Report 2002/169 (2002)

31. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan (2005)
32. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: exploiting

DRAM addressing for cross-CPU attacks. In: USENIX Security Symposium (2016)
33. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My

cloud: exploring information leakage in third-party compute clouds. In: CCS 2009
(2009)

34. Seaborn, M.: Comment on ecmascript shared memory and atomics (2015). https://
github.com/tc39/ecmascript sharedmem/issues/1#issuecomment-144171031

35. Stone, P.: Pixel perfect timing attacks with HTML5. Context Information Security
(White Paper) (2013)

36. U.S. Department of Defense: Trusted computing system evaluation “the orange
book”. Technical report 5200.28-STD (1985)

37. Van Goethem, T., Joosen, W., Nikiforakis, N.: The clock is still ticking: timing
attacks in the modern web. In: CCS 2015 (2015)

38. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained timers in xen.
In: CCSW 2011 (2011)

39. W3C: CSS Animations (2016). https://www.w3.org/TR/css3-animations/
40. W3C: High Resolution Time Level 2 (2016). https://www.w3.org/TR/hr-time/
41. Weinberg, Z., Chen, E.Y., Jayaraman, P.R., Jackson, C.: I still know what you

visited last summer: leaking browsing history via user interaction and side channel
attacks. In: S&P 2011 (2011)

42. WHATWG: HTML Living Standard – Timers (2016). https://html.spec.whatwg.
org/multipage/webappapis.html#timers. Accessed 18 Oct 2016

43. Wong, H.: Intel Ivy Bridge Cache Replacement Policy. http://blog.stuffedcow.net/
2013/01/ivb-cache-replacement/. Accessed 18 Oct 2016

44. Wray, J.C.: An analysis of covert timing channels. J. Comput. Secur. 1(3–4), 219–
232 (1992)

45. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: high-bandwidth and reli-
able covert channel attacks inside the cloud. IEEE/ACM Trans. Netw. PP(99), 1
(2014)

46. Xiao, J., Xu, Z., Huang, H., Wang, H.: A covert channel construction in a virtual-
ized environment. In: CCS 2012 (2012)

47. Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.: An
exploration of L2 cache covert channels in virtualized environments. In: CCSW
2011 (2011)

48. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache side-
channel attack. In: USENIX Security Symposium (2014)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
http://tc39.github.io/ecmascript_sharedmem/shmem.html
http://tc39.github.io/ecmascript_sharedmem/shmem.html
https://doi.org/10.1007/11605805_1
https://github.com/tc39/ecmascript_sharedmem/issues/1#issuecomment-144171031
https://github.com/tc39/ecmascript_sharedmem/issues/1#issuecomment-144171031
https://www.w3.org/TR/css3-animations/
https://www.w3.org/TR/hr-time/
https://html.spec.whatwg.org/multipage/webappapis.html#timers
https://html.spec.whatwg.org/multipage/webappapis.html#timers
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

Attacks on Secure Logging Schemes

Gunnar Hartung(B)

Karlsruhe Institute of Technology, Karlsruhe, Germany
gunnar.hartung@kit.edu

Abstract. We present four attacks on three cryptographic schemes
intended for securing log files against illicit retroactive modification. Our
first two attacks regard the LogFAS scheme by Yavuz et al. (Financial
Cryptography 2012), whereas our third and fourth attacks break the BM-
and AR-FssAgg schemes by Ma (AsiaCCS 2008).

All schemes have an accompanying security proof, seemingly contra-
dicting the existence of attacks. We point out flaws in these proofs, resolv-
ing the contradiction.

Keywords: Log files · LogFAS · FssAgg · Digital signatures
Forward security · Attack · Cryptanalysis

1 Introduction

Log files record user-actions and events in computer systems, providing valuable
information for intrusion detection, after-the-fact digital forensics, as well as
system maintenance. For all of these objectives, having reliable information is
imperative. Therefore, a number of historical and contemporary works on system
security (e.g. [8, p. 10], [16, Sects. 18.3, 18.3.1], [7, Sect. 8.6]) recommend or
require that log files be protected from unauthorized or retroactive modification.

It is generally desirable to use dedicated hardware (e.g. write-once read
many times drives, so-called WORM drives) for this task, since such hard-
ware can actually prevent the modification of log data. However, such special-
purpose hardware is not always available. Therefore, cryptographers have devised
schemes to provide integrity checks for log files that can purely be implemented
in software. Such mechanisms can not prevent the manipulation of log data in the
first place, but must be able to discern correct from manipulated information.
The cryptographic schemes must retain their functionality even if an attacker
has broken into the system and obtained the secret key. In order to achieve this,
cryptographers have resorted to schemes (e.g. [5,9,11,13,14,17,21,22]) that do
not use a single secret key to authenticate information, but use a sequence of

G. Hartung—The research project leading to this report was funded by the German
Federal Ministry of Education and Research under grant no. 01|S15035A. The author
bears the sole responsibility for the content of this report.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 268–284, 2017.
https://doi.org/10.1007/978-3-319-70972-7_14

Attacks on Secure Logging Schemes 269

secret keys sk1, . . . , skT instead.1 Each key ski is used for some time period (called
the i-th epoch), until it is eventually replaced by its successor. In the following,
we will focus on digital signature schemes, though MAC schemes using such a
key-chain are used as well.

Informally speaking, a cryptographic signature scheme is called forward-
secure if no attacker, who is given signatures on messages of his choice as well
as a secret key ski from the sequence, can forge a signature relating to an epoch
before the key-compromise. If a forward-secure signature scheme is used to sign
log entries, an attacker breaking into the system during some epoch i will not
be able to modify log entries from previous epochs j < i without this change
being detectable. (The attacker may, however, be able to arbitrarily modify log
entries from later epochs. But since the attacker is in control of the input to the
logging system once he has corrupted the signer, the attacker could control the
log file’s content even if the cryptographic scheme somehow prevented him from
computing a signature).

Since a log file will accumulate log entries over a possibly long period of
time, the number of signatures being stored to verify the log messages will grow
accordingly. For efficiency reasons, it is therefore desirable to be able to “com-
press” the signatures. Aggregate signature schemes [6] allow the signer to merge
signatures on different messages (possibly even originating from different sign-
ers) into just one signature, which may be as small as a signature for a single
message. Using aggregate signatures for secure logging does not only improve
the logging system’s efficiency, but also helps preventing so-called truncation
attacks [13].

A special, but restricted case of aggregation is sequential aggregation. Sequen-
tial aggregation demands that aggregation/compression must be done at the time
of creating a new signature. Ad-hoc aggregation of signatures that have been cre-
ated independently needs not be supported. Ma and Tsudik [12] introduced the
abbreviation “FssAgg” for forward-secure sequential aggregate signatures.

The LogFAS scheme [22] as well as the BM-FssAgg and AR-FssAgg [11]
schemes are modern constructions for securing log files. All three of them try
to attain forward-security and aggregation, and were published on notable and
peer-reviewed conferences.

Our Contribution. We describe two attacks on LogFAS [22,23], which allow for
virtually arbitrary log file forgeries and for the confusion of legitimate signers,
respectively, in Sect. 2. Our attacks on LogFAS have been acknowledged in pri-
vate communication by one of authors of [22].

Furthermore, we present two attacks against the BM-FssAgg and AR-FssAgg
schemes [11], which even allow for recovery of the signing key ski for specific
epochs i. Our findings are given in Sect. 3. We implemented these attacks to
verify our findings and to determine the required effort. We found that our first

1 For efficiency reasons, schemes where each secret key can be computed from the pre-
vious one, and where there is only single, compact key for verification are desirable.
However these properties are not strictly required.

270 G. Hartung

attack on the BM-FssAgg scheme takes (depending on the parameters) between
two and fifty minutes of computation, even with an implementation that misses
a number of rather obvious optimizations. Our attack on AR-FssAgg required
less than 0.05 s in all of our experiments. We present our experimental results in
Sect. 3.7.

While LogFAS is a rather recent scheme, the BM- and AR-FssAgg schemes
have been proposed several years ago. Nonetheless, the attacks we present have
not been brought to public attention.

All three schemes have an accompanying security proof, which should rule out
any meaningful attack on the schemes. We analyzed these proofs and identified
a flaw in each of them, resolving the contradiction between our findings and
the claimed security properties of the schemes. Note that our second attack on
LogFAS is outside the security model considered in [22]; it therefore does not
contradict the claimed security.

2 LogFAS

LogFAS [22] is a recently proposed forward-secure and aggregate audit log
scheme. It offers high computational efficiency and compact public key sizes
at the expense of large secret keys and signatures.

Before we describe our attacks, we will briefly introduce LogFAS. The reader
is referred to [22,23] for a more detailed presentation.

2.1 Description of LogFAS

Let G be a subgroup of prime order q of Z∗
p, where p is a prime number such that

q divides p−1. Let α be a generator of G, and T be the total number of supported
epochs. LogFAS assumes a Key Generation Center (KGC) that generates keys for
individual signers. Each signer i has an identity IDi. Signatures consist of several
values, some of which can be aggregated. For the remainder of this section, we
employ the convention that variables with two indices are aggregated values of
several epochs. For instance, s0,l is the aggregation of the values s0, . . . , sl.

LogFAS uses three fundamental building blocks: an ordinary signature
scheme Σ = (KeyGen,Sign,Verify), the Schnorr signature scheme [18,19] (briefly
recapped in Appendix A), and an incremental hash function IH based on a
collision-resistant hash function H, which is modelled as a random oracle [4].

The key of IH consists of T factors z0, . . . , zT−1. The hash value of a sequence
of l ∈ {0, . . . , T − 1} messages (m0, . . . ,ml) is then given by

IH (m0, . . . ,ml) :=
l∑

i=0

H(mi)zi (mod q).

The security of this hash function can be shown under subset-sum-style assump-
tions, see the references in [22,23] for details.

Attacks on Secure Logging Schemes 271

An individual signer’s secret key is derived from a central long-term secret
b ∈ Z

∗
q held by the KGC (which can be compared to a secret key of the Schnorr

scheme) and several values chosen uniformly at random. Each signer’s secret
key includes a set of coefficients z0, . . . , zT−1 (derived from b) that form the key
of IH . The exact relations between the values in the secret key, the public key
and the signature are a little complicated, but our attack can be understood
without fully comprehending how these values relate to each other.

The algorithms used by LogFAS are given below.

Key Generation. The KGC chooses a random value b ∈ Z
∗
q and generates a

key pair (ŝk , p̂k) using Σ. The long term private and public keys are (b, ŝk) and
(B := αb−1 (mod q), p̂k), respectively. These values are shared for all signers.
Next, for each identity IDi, the KGC generates temporary keys for each epoch
j ∈ {0, . . . , T − 1} based on random values rj , aj , dj , xj ← Z

∗
q . These values

are used to create interdependent variables as follows:

yj := aj − dj (mod q),
zj := (aj − xj)b (mod q),

Mj := αxj−dj (mod p), and
Rj := αrj (mod p).

Finally, the KGC generates “tokens” βj ← Sign(ŝk ,H(IDi ‖ j)) for each signer
IDi and each epoch number j. These serve as witnesses that signer IDi has
created at least j signatures. Let sk′

i := (ri, yi, zi,Mi, Ri, βi) for each i ∈
{0, . . . , T − 1}. The initial secret key of IDi is sk0 =

〈
sk′

0, . . . , sk
′
T−1

〉
.

Key Update. A signer updates his key skl (l ∈ {0, . . . , T − 2}) to the next
epoch skl+1 by simply erasing rl, yl,Ml, and βl from sk′

l.
Signature Generation. A LogFAS signature σ0,l−1 consists of aggregate-so-

far values s0,l−1 ∈ Zq and M ′
0,l−1 ∈ Z

∗
p, the most recent token βl−1, as well

as the random group elements Rj and the elements zj of IH ’s key for all
j ∈ {0, . . . , l − 1}.2

Given an aggregate signature σ0,l−1 for 〈m0, . . . ,ml−1〉, a new entry ml and
the temporary secret key (rl, yl, zl,Ml, Rl, βl) for epoch l, first compute the
hash value el := H(ml ‖ l ‖ zl ‖ Rl). Then compute sl := rl − elyl (mod q)
and aggregate this value into s0,l := s0,l−1 + sl (mod q). Next, set M ′

l :=
Mel

l (mod p) and aggregate this into M ′
0,l := M ′

0,l−1M
′
l (mod p). The new

aggregate signature is

σ0,l := (s0,l,M ′
0,l, βl, 〈(Rj , zj)〉lj=0).

Verification. To verify an aggregate signature σ0,l = (s0,l,M ′
0,l, βl,

〈(Rj , zj)〉lj=0) over l + 1 log entries 〈m0, . . . ,ml〉, one first checks the validity

2 The original scheme in [22] includes the value ej in the signature. We have omitted
this, as ej can be recomputed by the verifier.

272 G. Hartung

of the token βl. If Verify(p̂k,H(IDi ‖ l), βl) = 0, then output 0 and exit. Oth-
erwise, compute z0,l := IH (m0 ‖ 0 ‖ z0 ‖ R0, . . . , ml ‖ l ‖ zl ‖ Rl), and check
if

l∏

j=0

Rj
?≡ M ′

0,l · Bz0,l · αs0,l (mod p). (1)

Accept if the equation holds (output 1 and exit). Otherwise, reject the signa-
ture (output 0 and exit).

2.2 The Attacks

We report two simple and efficient attacks on LogFAS. The first one allows for
virtually arbitrary modification of log entries, but can not change the log file
size. It requires only minimal computation and a single signature. This attack
contradicts the claimed security of LogFAS. We analyzed the proof of security
in [23] and found a flaw, resolving this contradiction.

Our first attack allows an attacker to masquerade a signature created by
a signer as originating from another (valid) signer. This attack is outside the
formal security model considered in [22], and therefore does not contradict the
claimed security. It nonetheless presents a serious threat, as it undermines the
signature’s authenticity.

Signature Forgery. Our first attack can be used to sign any sequence of log
messages 〈m∗

0, . . . ,m
∗
l 〉 (l ∈ {0, . . . , T − 1}), provided the attacker has a valid

signature for some other sequence of log messages 〈m0, . . . ,ml〉 of the same
length, and knows the public key pk.

On a high level, our attack exploits the fact that the right hand side of Eq. 1
can be fully determined M ′

0,l. Since M ′
0,l is part of the signature, an attacker

can simply set M ′
0,l to a value such that the equation holds. Computing the

respective value essentially only requires modular multiplication, exponentiation
and inversion, which can be implemented quite efficiently.

Concretely, let σ0,l = (s0,l,M ′
0,l, βl, 〈(Rj , zj)〉lj=0) be the signature

known to the attacker. At first, the adversary computes R0,l =
∏l

j=0 Rj

(mod p), and z∗
0,l = IH (m∗

0 ‖ 0 ‖ z0 ‖ R0, . . . , m∗
l ‖ l ‖ zl ‖ Rl). (S)he then

sets M∗
0,l := R0,l · B−z∗

0,l · α−s0,l (mod p). The forged signature is σ∗
0,l =

(s0,l,M∗
0,l, βl, 〈(Rj , zj)〉lj=0).

It is easy to see that this signature will be accepted by the verification algo-
rithm. Since βl is taken from the original signature, it is a valid signature for
H(IDi ‖ l) and so Verify(p̂k,H(IDi ‖ l), βl) will return 1, i.e. the first check of the
verification algorithm will succeed. Now, by our setup, we have

M∗
0,l · Bz∗

0,l · αs0,l ≡ (R0,l · B−z∗
0,l · α−s0,l) · Bz∗

0,l · αs0,l ≡ R0,l ≡
l∏

j=0

Rj (mod p).

Attacks on Secure Logging Schemes 273

Therefore, the verification algorithm will accept the signature, and the attack is
successful. Note that the attack only replaces a single component of the signa-
ture, namely M ′

0,l. All other parts of the signature are copied without modifi-
cation. This simple attack is possible due to the structure of Eq. (1), where the
right hand side can be fully determined by M ′

0,l and this requires only modular
multiplication, exponentiation and inversion.

Sender Confusion. If an attacker has two aggregate signatures σ0,l, σ′
0,l for

two sequences of log messages of the same length l+1, created by different signers
IDi, IDi′ the attacker can just exchange the βl tokens. The receiver will accept
σ0,l as a signature from IDi′ , when the messages were really signed by signer i,
and vice versa. This attack is due to the fact that the identity IDi of the signer
is only bound to βj but not to the other signature components s0,l,M

′
0,l, Rj , zj .

2.3 Attack Consequences

In this section we present a scenario that shows how our attacks might be used
in a real-world attack. Consider a corporate network, where there are multiple
servers S1, . . . , Sn (n ∈ N) offering different services. Each server Si collects
information in its log files, and regularly transfers all new log entries together
with a signature to some central logging server L. The logging server L checks
the signatures, stores the log data, and might examine it automatically for signs
of a security breach using an intrusion detection system (IDS). If a server Si

does not transmit any new log entries to L within a certain amount of time,
L raises an alarm (as there might be an attacker suppressing the delivery of log
messages to L). Assume that LogFAS is used for signing log entries.

An attacker who has broken into a server Si in the corporate network without
raising an alarm might retroactively change the log entries not yet transmitted
to L to cover his traces, and then create a new (valid) signature for the modified
log file using our first attack. He continues to transmit log entries to L regularly,
in order not to raise an alarm, albeit he replaces log entries that might raise
suspicion with ones that appear perfectly harmless.

Now, assume that the attacker can bring himself into a man-in-the-middle
position between some other server Sj and L. (This might be achieved using
techniques such as ARP spoofing.) He may now filter and change log entries
sent from Sj to L on-the-fly, while our first attack allows him to create valid
signatures. Thus, the attacker may attack Sj without risking detection by the
IDS at L.

To illustrate our second attack, suppose that the logging system was fixed
to prevent the signature forgery. However, bringing himself into a man-in-the-
middle position again, the attacker might still exchange the identities of some
servers Sj , Sk included in the signature using our sender confusion attack. He
may then try to compromise Sj , while the IDS raises an alarm regarding an
attack on Sk. The attacker can thus misdirect the network administrators’ efforts
to defend their network, giving him an advantage, or at least gaining time until
the administrators notice the deception.

274 G. Hartung

2.4 The Proof of Security

In this section we point out the mistake in LogFAS’ proof of security that allowed
for the false conclusion of LogFAS being secure. The reader is advised to con-
sider [23] while reading this section, or to skip this section entirely.

The security proof for LogFAS follows a simple and mostly standard scheme.
One assumes an attacker A that breaks LogFAS, and constructs an attacker F
against the Schnorr signature scheme, using A as a subroutine. F first guesses an
index w of a message block that A will modify. F ’s challenge public key (for the
Schnorr scheme) is then embedded into the temporary key pair for that message,
the remaining key pairs are set up honestly.

When the attacker outputs a forgery, the proof considers three cases. The
first case deals with attackers that actually create a new message together with
a valid signature (as does our attack). The second case deals with truncation
attacks and the third case models a hash collision.

The error is located in the first case, where the authors conclude that a forgery
for an entirely new message must imply a forgery of a Schnorr-type signature,
i.e. that the values Rw, sw (when properly extracted from the LogFAS signature)
must be a valid signature for the message mw. We can see that this conclusion is
false, since our attack does not modify the values Rw, sw at all, but only replaces
the original message with an arbitrary one. Thus, the verification algorithm of
the Schnorr scheme will reject the signature with very high probability, while
the authors conclude that the signature will be accepted.

3 The FssAgg Schemes

This section presents the BM-FssAgg scheme, the AR-FssAgg scheme and our
attacks on these constructions. Both schemes were presented in [11], and are
intended to provide a single signature per epoch. Thus, the respective secret key
must be updated every time a message has been signed.

3.1 Description of the BM-FssAgg Scheme

The BM-FssAgg signature scheme [11] is based on a forward-secure signature
scheme by Bellare and Miner [3]. Both schemes utilize repeated squaring modulo
a Blum integer N . (An integer N is called a Blum integer if it is a product of
two primes p, q such that p ≡ q ≡ 3 (mod 4)). Again, we first describe the
BM-FssAgg scheme before we turn to our attack.

Let T be the number of supported epochs and H a hash function that maps
arbitrary bit strings to bit strings of some fixed length l ∈ N.

Intuitively, the scheme is built on l + 1 sequences of units modulo N , where
in each sequence, each number is obtained by squaring the predecessor. Once
the starting points r0 and si,0 (for i ∈ {1, . . . , l}) have been selected during key
generation, the scheme successively computes

rj+1 := r2j (mod N) for j ∈ {0, . . . , T}
si,j+1 := s2i,j (mod N) for j ∈ {0, . . . , T} and i ∈ {1, . . . , l} .

(2)

Attacks on Secure Logging Schemes 275

When r0 and the si,0 are clear from the context, we may thus naturally refer
to rj and si,j for j ∈ {1, . . . , T + 1} throughout this section. Observe that these
sequences form one-way chains: Given any element si,j of a chain, it is easy to
compute the subsequent elements si,j′ with j′ > j, but it is unknown how to
efficiently compute the previous ones without knowing the factors of N . (The
same holds analogously for the chain of the rj-s).

We now describe the BM-FssAgg scheme in more detail.

Key Generation. Pick two random, sufficiently large primes p, q, each con-
gruent to 3 modulo 4, and compute N = pq. Next, pick l + 1 random
integers r0, s1,0, . . . sl,0 ← Z

∗
N . Compute y := 1/rT+1 (mod N), and ui :=

1/si,T+1 (mod N) for all i ∈ {1, . . . , l}. The public key is then defined as
pk := (N,T, u1, . . . ul, y), whereas the initial secret key is sk1 := (N, j =
1, T, s1,1, . . . , sl,1, r1).

Key Update. In order to update the secret key, simply replace all rj , si,j by
the respective rj+1, si,j+1 (i.e., square all these values), and increment the
epoch counter j.

Signing. In order to sign a message mj , first compute the hash value c :=
H(j, y,m). Let c1, . . . , cl ∈ {0, 1} be the bits of c. The signature for m is
σj := rj

∏l
i=1 scii,j , i.e., the signature is the product of rj and all si,j where

ci = 1. An aggregate signature for multiple messages is computed by multi-
plying the individual signatures. Thus, a signature can be added to an aggre-
gate signature σ1,j−1 by computing the new aggregate as σ1,j = σ1,j−1 · σj

(mod N).
Verification. Given an aggregate signature σ1,t for messages m1, . . . ,mt signed

in epochs 1 through t, the verification algorithm will effectively “strip off”
the individual signatures one-by-one, starting with the last signature.
More precisely, to verify σ1,t, act as follows: Recompute the hash value ct =
c1,t . . . cl,t := H(t, y,mt) of the last message. (Recall that the signature for
mt is rt

∏l
i=1 s

ci,t
i,t .) Square σ1,t exactly T + 1 − t times, effectively adding

T + 1 − t to the j-indices of all rj , si,j contained in σ1,t. (In particular, this
effectively changes the signature for mt to rT+1

∏l
i=1 s

ci,T+1
i,T+1). Multiply the

result with y
∏l

i=1 u
ci,t
i , cancelling out the last signature because y and the

ui are the modular inverses of rT+1 and the si,T+1.
For the last-but-one message, square the result another time (projecting
the last-but-one signature into the epoch T + 1), recompute the hash value
c1,t−1 . . . cl,t−1, and cancel out the last-but-one signature by multiplication
with y

∏l
i=1 u

ci,t−1
i .

The scheme continues analogously for the remaining messages mt−2, . . . ,m1.
If the procedure terminates at a value of 1, the aggregate signature is accepted
as valid, otherwise it is rejected as invalid.

3.2 Attack on the BM-FssAgg Scheme

We show a conceptually simple way to recover the secret key skt (t ≥ l+1) from
t successive aggregate signatures and the public key pk. (Our attack may work

276 G. Hartung

with t = l +1 signatures, but has a higher success probability if t > l +1. In our
experiments, t = l + 11 signatures have been sufficient for all cases).

Our attack makes use of the fact that the rj values, which are supposed
to randomize the signatures, are not chosen independently at random, but are
strongly interdependent.3 This allows us to set up a set of equations with a
limited number of variables (namely, rt and the si,t), and then solve the equations
for these variables, which together make up the secret key skt.

We will now describe our attack in more details. Fix arbitrary messages
m1, . . . ,mt and the respective aggregate signatures σ1,j , each valid for messages
m1, . . . ,mj . Let ci,j denote the i-th bit of the hash value of message mj , as
computed by the signing algorithm.

First, recover the individual signatures σj := σ1,j/σ1,j−1 (mod N) for all
j ∈ {1, . . . , t}, letting σ1,0 = 1. Observe that

σ1 = r1 s
c1,1
1,1 . . . s

cl,1
l,1

...
...

...
. . .

...
σt = rt s

c1,t
1,t . . . s

cl,t
l,t .

For ease of presentation, we let s0,j = rj and c0,j = 1 for all j. We define τj :=

σ
(2t−j)
j , i.e. we square each signature σj for t − j times, effectively adding t − j

to the j-index of the rj , si.j because of Eq. (2). We thus obtain

τ1 = σ
(2t−1)
1 = s

c0,1
0,t s

c1,1
1,t . . . s

cl,1
l,t

τ2 = σ
(2t−2)
2 = s

c0,2
0,t s

c1,2
1,t . . . s

cl,2
l,t

...
...

...
...

. . .
...

τt−1 = σ
(21)
t−1 = s

c0,t−1
0,t s

c1,t−1
1,t . . . s

cl,t−1
l,t

τt = σ
(20)
t = s

c0,t
0,t s

c1,t
1,t . . . s

cl,t
l,t ,

(3)

where all ci,j ∈ {0, 1}. We thus have t ≥ l + 1 equations in the l + 1 unknown
variables si,t. We now want to solve these equations for the si,t, by doing linear
algebra “in the exponent”. We can later realize addition and subtraction of
row vectors (c0,j , . . . , cl,j) by multiplication and division of the τj , respectively.
Likewise, multiplication of a row vector by a scalar z ∈ Z can be realized by
raising the respective τj to its z-th power.

More concretely, we consider the ci,j as a matrix C over the integers, and try
to express each standard basis vector ei as an integer linear combination of the
row vectors cj = (c0,j , . . . , cl,j).

Note that the Gaussian elimination method is not suited for this setting,
since it will compute a linear combination of the row-vectors if one exists, but
the output may not be an integer linear combination. Moreover, a set of l + 1

3 For this reason, our attack does not carry over to the underlying forward-secure
signature scheme by Bellare and Miner [3]. There, the values rj are chosen uniformly
and independently at random, which prevents our attack.

Attacks on Secure Logging Schemes 277

row vectors (c0,j . . . cl,j) may not form a basis of Zl+1 even if they are linearly
independent, since Z is not a field, and thus Zl+1 is not a vector space but only a
Z-module. (We will nonetheless continue to refer to elements of Zl+1 as “vectors”
for simplicity). We therefore need to employ different algorithms.

Specifically, we compute the Hermite Normal Form (HNF) of C. The exact
definitions and conventions used for the HNF differ in the literature. The fol-
lowing definition is a special case of Definition 2.8 given by [2, p. 301], applying
the preceding Example 2.7 (1) on the same page.

Definition 1. Let A ∈ Z
m×n be an integer matrix. Denote the i-th row of A

by ai, and the j-th entry of the i-th row by ai,j (for i ∈ {1, . . . ,m} and j ∈
{1, . . . , n}). A is in Hermite Normal Form iff there is a non-negative integer r
with 0 ≤ r ≤ m such that

1. ai
= 0 for all 1 ≤ i ≤ r and ai = 0 for all r + 1 ≤ i ≤ m, and
2. there is a sequence of column indices 1 ≤ n1 < . . . < nr ≤ n such that for all

i ∈ {1, . . . , r} the following three conditions hold:

ai,ni
> 0

ai,j = 0 for j < ni, and
0 ≤ aj,ni

< ai,ni
for 1 ≤ j < i.

Intuitively, a matrix is in HNF if only the first r rows are occupied (and the
remaining m−r rows are zero), each non-zero row has a positive “pivot” element
ai,ni

(which is the first non-zero element in this row), the pivot element of each
row is further to the right than the pivot of the preceding row, and all elements
above a pivot element are between 0 (inclusive) and the pivot (exclusive).

Each integer matrix A can be transformed into a matrix H in HNF by a set of
invertible row operations, represented by a unimodular matrix R (i.e. RA = H)
[2, Theorem 2.9, p. 302], and the HNF H of a given integer matrix A is unique
[2, Theorem 2.13, p. 304]. Furthermore, the HNF is known to be computable in
polynomial time, see e.g. [10,15].

Assume for now that the rows of C span Z
l+1. (We will show that this is

a realistic assumption given enough signatures in Sect. 3.7). If this is the case,
then the HNF of C is

H =
(

1l+1

0t−(l+1),l+1

)
(4)

where 1l+1 is the (l + 1) × (l + 1) identity matrix and 0t−(l+1),l+1 is the all-
zero matrix with t − (l + 1) rows and l + 1 columns. In the following, let ei =
(ei,1, . . . , ei,l+1) ∈ Z

l+1 be the i-th unit vector. (Thus ei,j = 1 if i = j, and
ei,j = 0 otherwise).

Continuing our attack, we compute the matrix R = (ri,j) ∈ Z
t×t that

transforms C into its Hermite Normal Form H (i.e., RC = H). We then fix

278 G. Hartung

i ∈ {0, . . . , l} and compute

t∏

j=1

(τj)ri,j = (sc0,10,t . . . s
cl,1
l,t)ri,1 · . . . · (sc0,t0,t . . . s

cl,t
l,t)ri,t

= s
ri,1c0,1+...+ri,tc0,t
0,t · . . . · s

ri,1cl,1+...+ri,tcl,t
l,t

= s
ei,0
0,t · . . . · s

ei,l
l,t

= si,t

where the first equality follows from substituting the τj according to Eq. (3) and
writing out the product, and the second equality can be obtained by sorting the
product by the base terms. To see the third and fourth equality, note that the
exponents for the si,t match the i-th row of the matrix RC = H, and that the
first l + 1 rows of H are the unit vectors (see Eq. (4)).

Overall, this gives away si,t. Repeating this step for all i ∈ {0, . . . , l} allows
us to reconstruct all si,t, thus leaking the entire secret key skt of the t-th epoch.
This concludes the description of our attack against BM-FssAgg.

3.3 Description of the AR-FssAgg Scheme

The AR-FssAgg scheme by Ma [11] is based on a forward-secure digital signature
scheme by Abdalla and Reyzin [1], which itself is based on the forward-secure
signature scheme by Bellare and Miner [3], but is considerably more efficient.

In the following, we will briefly describe the differences between the AR-
FssAgg scheme and the BM-FssAgg scheme. The reader is referred to [11] for a
complete description of the AR-FssAgg construction.

The main difference between the AR-FssAgg scheme and the BM-FssAgg
scheme is that the former interprets the hash function’s output c as an integer
in [0, 2l − 1]. Consequently, the l + 1 chains of squares rj , si,j are replaced by
just two chains rj , sj of higher powers, namely:

rj+1 := r
(2l)
j (mod N) for j ∈ {0, . . . , T}

sj+1 := s
(2l)
j (mod N) for j ∈ {0, . . . , T} .

As for the BM-FssAgg scheme, the starting points r0 and s0 are chosen randomly,
and N is a Blum integer. The key update procedure is adapted canonically: rj
and sj are raised to their 2l-th power instead of being squared. Thus, they are
replaced by r2

l

j and s2
l

j , respectively. In the signing procedure, the hash value c is
computed as before, but the signature for the single message is now σj := rj · scj
(mod N). The aggregate signature is σ1,j := σ1,j−1 · σj (mod N), as before.

3.4 Attack on the AR-FssAgg Scheme

As with the BM-FssAgg scheme, our attack on the AR-FssAgg scheme allows us
to reconstruct the secret key of a particular epoch t (t ≥ 3), requiring only the

Attacks on Secure Logging Schemes 279

public key and a few consecutive aggregate signatures σ1,1, . . . , σ1,t. Our attack
again exploits the fact that the supposedly random values rj are not actually
chosen independently at random, but depend on each other.4

As before, we first recover the individual signatures as σj := σ1,j/σ1,j−1

(mod N) for j ∈ {1, . . . , t}, and “project” them into the epoch t, by computing:
τj = σ2l(t−j)

j . We again obtain a system of equations:

τ1 = σ2l(t−1)

1 = rt · sc1t
...

...
...

...
τt = σ

(20)
t = rt · sctt

(5)

We pick one of the τj arbitrarily, say τ1, and use it to strip the rt from the
other τj-s, by computing φj := τj/τ1 = scj/sc1 = scj−c1 for all j ∈ {2, . . . , t}.

For brevity, let c′
j = cj − c1 for all j ∈ {2, . . . t}. We assume for now that

the greatest common divisor of all c′
j is 1. (We will revisit this assumption in

Sect. 3.7).
Once we have the φj , we use the extended Euclidean algorithm to obtain

coefficients f2, . . . , ft such that c′
2f2 + c′

3f3 + . . . + c′
tft = gcd(c′

2, c
′
3, . . . c

′
t) = 1.

We can then compute φf2
2 · φf3

3 · · · φft
t = s

c′
2f2

t · s
c′
3f3

t · · · sc′
tft

t = s1t = st.
Once we know st, rt can be recovered trivially from (e.g.) τ1, by computing

rt := τ1/sc1t (mod N). We have thus recovered the secret key for epoch t.

3.5 Attack Consequences

Reconsider the scenario from Sect. 2.3, but assume that log entries are signed
with the BM-FssAgg or AR-FssAgg scheme instead of LogFAS.

Assume again that an attacker has managed to break into a server Si without
raising an alarm. He may then bring himself into a man-in-the-middle position
between another server Sj and L again, and first passively observes several trans-
missions of log entries from Sj to L, storing the respective signatures.

If at least t signatures for individual messages can be recovered from the
(aggregate) signatures sent to L, the attacker can launch one of the attacks
described above to recover a recent secret key.5 He may then attack the server Sj ,
filtering the log messages sent from Sj to L on-the-fly, and create valid signatures
using the known secret key.

While it may seem unnatural that the aggregate signatures observed by the
attacker are directly consecutive, it is actually a plausible scenario. For example,
this might happen when the server Sj is mostly idle, e.g. at night.

4 As with our attack on the BM-FssAgg scheme, our attack does not carry over to
the underlying forward-secure signature scheme by Abdalla and Reyzin [1], since the
values rj are chosen independently at random in their signature scheme.

5 Our attacks can be easily generalized to work with any t + 1 consecutive aggre-
gate signatures σ1,k, . . . , σ1,k+t+1 or even with any t pairs of directly consecutive
aggregate signatures (σ1,k1 , σ1,k1+1), . . . , (σ1,kt , σ1,kt+1).

280 G. Hartung

3.6 The Proofs of Security

Security proofs for the BM-FssAgg and AR-FssAgg schemes are given in the
appendix of [11]. Both proofs give a reduction to the hardness of factoring a Blum
integer, assuming an efficient forger A on the respective scheme, and constructing
an attacker B on the factorization of N . The proofs are incorrect for they assume
that not only A may use a signing oracle, but B has access to a signing oracle, too.

3.7 Experimental Results

We implemented our attacks on the BM-FssAgg and AR-FssAgg schemes in
order to verify them, and to empirically determine the number t of signatures
required. (Recall that we assumed that the matrix C spanned Z

l+1 for the attack
on BM-FssAgg, and that gcd(c′

2, . . . , c
′
t) = 1 for the attack on AR-FssAgg,

respectively). We measured the run times of our attacks, and found that they
are entirely practical.

Since the attacks require a number of signatures, we also implemented the
key generation, key updating and signing procedures of the two schemes.6 The
implementations are written for the computer algebra system Sage [20].

Our attack implementations miss a number of quite obvious optimizations:
we did not parallelize independent tasks, and some computations are repeated
during the attacks. Our measurements should therefore not be regarded as a
precise estimate of the resources required for the respective attacks, but as an
upper bound.

Experiment Setup. All experiments used a modulus size of 2048 bit and were
conducted on a desktop office PC, equipped with a four-core AMD A10-7850K
Radeon R7 processor with a per-core adaptively controlled clock frequency of
up to 3.7 GHz, different L1-caches with a total capacity of 256 KiB, two 2 MiB
L2-Caches, each shared between two cores, and 14.6 GiB of RAM. The PC was
running version 16.04 of the Ubuntu Desktop GNU/Linux operating system,
Sage in version 6.7, and Python 2.7.

For our attack on the BM-FssAgg scheme, we used the SHA-224, SHA-256,
SHA-384 and SHA-512 hash functions to examine the influence of the
hash length l on the runtime of our attack. The BM-FssAgg scheme was instan-
tiated with 512 epochs for the SHA-224, SHA-256 and SHA-384 hash functions,
and with 1024 epochs for the SHA-512 hash function. (Recall that the scheme
signs exactly one message per epoch, and our attack on the BM-FssAgg scheme
requires at least l signatures, where l is the hash length).7

6 Our implementation of the schemes is only intended to provide a background for
our attacks. We did therefore not attempt to harden our implementation against
different types of attacks at all.

7 The number of supported epochs T may be unrealistically low. But since T does not
influence the time required for executing our attacks, a small T is sufficient for our
demonstration.

Attacks on Secure Logging Schemes 281

Our implementation of the attacks first collects the minimum required num-
ber of signatures (l + 1 for the BM-FssAgg scheme, where l is the output length
of the hash function, and 3 for the AR-FssAgg scheme), and then checks if
the respective requirement on the hash values is fulfilled. If this is the case, the
attack is continued as described above. Otherwise, our implementation gradually
requests additional signatures until the requirements are fulfilled.

For both of our schemes, we measured the time that was necessary to collect
the total number of signatures. (This includes the time necessary to compute the
signatures in the first place, and to update the keys respectively). For our BM-
FssAgg implementation, this time also includes the computation of the Hermite
Normal Form of the given matrix, along with the transformation matrix. For the
AR-FssAgg attack, the time includes the computation of the gcd of the c′

i, as
well as the factors fi. We refer to these times as the signature collection times.
The remaining time required for the attacks is referred to as reconstruction time.
A measurement corresponds to one execution of an attack.

Our experiments quickly showed that the reconstruction times for BM-
FssAgg were quite long. Given the large amount of time required for the recon-
struction and the small amount of variation in the reconstruction times, we
restricted our examination of the reconstruction times of BM-FssAgg to 50 mea-
surements per hash-function. For the reconstruction time of the attack on the
AR-FssAgg scheme, the number of requested signatures (for both schemes), and
the signature collection times (for both schemes), we collected 250 measurements
per scheme and hash-function.

Results. Our results are summarized in Table 1. All times are given in seconds.
In our experiments regarding the attack on BM-FssAgg, the greatest differ-

ence d = t−(l+1) between t (the number of actual required signatures) and l+1
(the minimum number of required signatures) was 10. (So, t = l + 11 signatures
were always sufficient). For AR-FssAgg, t = 3 + 4 have been sufficient for all
of our 250 tries. The number of signatures actually required in our experiments
is shown in the top third of Table 1. The theoretical minimum of signatures
required to launch the attacks is given for comparison, denoted as “Theoretical
Optimum”.

We found that despite the lack of optimizations, our attack on BM-FssAgg
took only minutes to recover the respective secret key (in the case of SHA-224)
and at most 50 min (in the case of SHA-512). Our attack on the AR-FssAgg
scheme took less than 0.05 s in all 250 measurements.

For BM-FssAgg, the reconstruction time turned out to be the major part of
the attack time. In retrospect, this is understandable, since the computation of
a single si,t requires t modular exponentiations, so the reconstruction of all si,t
(including rt = s0,t) required t · (l + 1) ≥ (l + 1)2 modular exponentiations.

4 Summary

We have presented four attacks on LogFAS [22], the BM-FssAgg scheme, and the
AR-FssAgg scheme [11]. The attacks on LogFAS have been acknowledged by one

282 G. Hartung

Table 1. Experimental results. All times are given in seconds.

Scheme BM-FssAgg AR-FssAgg

Hash function SHA-224 SHA-256 SHA-384 SHA-512 SHA-256

Signatures required

Theoretical optimum 225 257 385 513 3

Observed minimum 226 258 386 514 3

Average 227.15 259.05 387.27 514.97 3.67

Standard deviation 1.42 1.33 1.73 1.38 0.97

Maximum 234 264 395 522 7

Signature collection times

Minimum 11.74 17.13 65.46 180.02 9.0e−3

Average 22.18 28.79 118.98 292.33 11e−3

Standard deviation 9.88 12.34 62.34 136.14 3.0e−3

Maximum 67.87 76.59 430.97 1006.61 22e−3

Reconstruction times

Minimum 104.06 154.14 580.41 1502.37 6.0e−3

Average 121.48 170.81 634.34 1753.68 9.2e−3

Standard deviation 9.09 17.17 48.24 126.57 4.4e−3

Maximum 137.94 207.54 736.52 1935.59 24e−3

of LogFAS’ authors, and we have demonstrated the practicality of our attacks
on BM-FssAgg and AR-FssAgg experimentally. Our attacks allow for virtually
arbitrary forgeries, or even reconstruction of the secret key. We conclude that
neither of these schemes should be used in practice. If one of these should already
be in use, we suggest immediate replacement.

Acknowledgements. I’d like to thank Alexander Koch for his detailed comments,
as well as for questioning the security proof of the BM-FssAgg scheme, which was the
starting point for my research presented in Sect. 3.

A The Schnorr Signature Scheme

The Schnorr Signature Scheme [18,19] is based on the hardness of the discrete
logarithm problem in some group G. It uses a prime-order subgroup G of Z∗

p,
where p is large a prime, G’s order q is also a large prime, and q divides p − 1.
Let α be a generator of G. A secret key for Schnorr’s scheme is y ← Z

∗
q , the

corresponding public key is Y := αy (mod p).
In order to sign a message m, choose r ← Z

∗
q , set R := αr (mod p), compute

the hash value e := H(m ‖ R) and set s := r − ey (mod q). The signature is the
tuple (R, s). To verify such a signature, recompute the hash value e := H(m ‖ R)

Attacks on Secure Logging Schemes 283

(where R is taken from the signature and m is given as input to the verification
algorithm). Then check if R = Y eαs (mod p) and return 1 if and only if this holds.

The Schnorr signature scheme can be shown to be secure based on the hard-
ness of the discrete logarithm problem in G, if H is modelled as a random
oracle [4].

References

1. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 10

2. Adkins, W.A., Weintraub, S.H.: Algebra: An Approach via Module Theory. Grad-
uate Texts in Mathematics, vol. 136. Springer, New York (1992). https://doi.org/
10.1007/978-1-4612-0923-2

3. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993)

5. Bellare, M., Yee, B.S.: Forward integrity for secure audit logs. Technical report,
University of California at San Diego (1997)

6. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-39200-9 26

7. Common Criteria for Information Technology Security Evaluation, version 3.1 r4,
part 2, Accessed 19 Nov 2017. https://www.commoncriteriaportal.org/cc/

8. Department of defense trusted computer system evaluation criteria, Accessed 19
Nov 2017. http://csrc.nist.gov/publications/history/dod85.pdf

9. Holt, J.E.: Logcrypt: forward security and public verification for secure audit logs.
In: Proceedings of the 2006 Australasian Workshops on Grid Computing and e-
Research - Volume 54, ACSW Frontiers 2006, pp. 203–211. Australian Computer
Society Inc., Darlinghurst (2006)

10. Kannan, R., Bachem, A.: Polynomial algorithms for computing the smith and
hermite normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979)

11. Ma, D.: Practical forward secure sequential aggregate signatures. In: Proceedings
of the 2008 ACM Symposium on Information, Computer and Communications
Security, ASIACCS 2008, pp. 341–352. ACM, New York (2008)

12. Ma, D., Tsudik, G.: Forward-secure sequential aggregate authentication. Cryptol-
ogy ePrint Archive, Report 2007/052 (2007). http://eprint.iacr.org/

13. Ma, D., Tsudik, G.: A new approach to secure logging. In: Atluri, V. (ed.) DBSec
2008. LNCS, vol. 5094, pp. 48–63. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70567-3 4

14. Marson, G.A., Poettering, B.: Practical secure logging: seekable sequential key gen-
erators. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS,
vol. 8134, pp. 111–128. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40203-6 7

https://doi.org/10.1007/3-540-44448-3_10
https://doi.org/10.1007/978-1-4612-0923-2
https://doi.org/10.1007/978-1-4612-0923-2
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://www.commoncriteriaportal.org/cc/
http://csrc.nist.gov/publications/history/dod85.pdf
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-540-70567-3_4
https://doi.org/10.1007/978-3-540-70567-3_4
https://doi.org/10.1007/978-3-642-40203-6_7
https://doi.org/10.1007/978-3-642-40203-6_7

284 G. Hartung

15. Micciancio, D., Warinschi, B.: A linear space algorithm for computing the hermite
normal form. In: Proceedings of the 2001 International Symposium on Symbolic
and Algebraic Computation, ISSAC 2001, pp. 231–236. ACM, New York (2001)

16. An Introduction to Computer Security: The NIST Handbook, October 1995. NIST
Special Publication 800-12

17. Schneier, B., Kelsey, J.: Cryptographic support for secure logs on untrusted
machines. In: The Seventh USENIX Security Symposium Proceedings (1998)

18. Schnorr, C.P.: Efficient identification and signatures for smart cards. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
688–689. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 68

19. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

20. Stein, W.: Sagemath. https://www.sagemath.org/. Accessed 19 Nov 2017
21. Yavuz, A.A., Peng, N.: BAF: an efficient publicly verifiable secure audit logging

scheme for distributed systems. In: Annual Computer Security Applications Con-
ference, 2009, ACSAC 2009, pp. 219–228, December 2009

22. Yavuz, A.A., Peng, N., Reiter, M.K.: Efficient, compromise resilient and append-
only cryptographic schemes for secure audit logging. In: Keromytis, A.D. (ed.) FC
2012. LNCS, vol. 7397, pp. 148–163. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32946-3 12

23. Yavuz, A.A., Reiter, M.K.: Efficient, compromise resilient and append-only crypto-
graphic schemes for secure audit logging. Technical Report TR-2011-21, North Car-
olina State University. Department of Computer Science, September 2011. http://
www.lib.ncsu.edu/resolver/1840.4/4284

https://doi.org/10.1007/3-540-46885-4_68
https://www.sagemath.org/
https://doi.org/10.1007/978-3-642-32946-3_12
https://doi.org/10.1007/978-3-642-32946-3_12
http://www.lib.ncsu.edu/resolver/1840.4/4284
http://www.lib.ncsu.edu/resolver/1840.4/4284

Economy Class Crypto: Exploring Weak Cipher
Usage in Avionic Communications via ACARS

Matthew Smith1(B), Daniel Moser2, Martin Strohmeier1, Vincent Lenders3,
and Ivan Martinovic1

1 Department of Computer Science, University of Oxford, Oxford, UK
{matthew.smith,martin.strohmeier,ivan.martinovic}@cs.ox.ac.uk
2 Department of Computer Science, ETH Zürich, Zürich, Switzerland

daniel.moser@inf.ethz.ch
3 armasuisse, Bern, Switzerland
vincent.lenders@armasuisse.ch

Abstract. Recent research has shown that a number of existing wireless
avionic systems lack encryption and are thus vulnerable to eavesdropping
and message injection attacks. The Aircraft Communications Addressing
and Reporting System (ACARS) is no exception to this rule with 99%
of the traffic being sent in plaintext. However, a small portion of the
traffic coming mainly from privately-owned and government aircraft is
encrypted, indicating a stronger requirement for security and privacy
by those users. In this paper, we take a closer look at this protected
communication and analyze the cryptographic solution being used. Our
results show that the cipher used for this encryption is a mono-alphabetic
substitution cipher, broken with little effort. We assess the impact on
privacy and security to its unassuming users by characterizing months
of real-world data, decrypted by breaking the cipher and recovering the
keys. Our results show that the decrypted data leaks privacy sensitive
information including existence, intent and status of aircraft owners.

1 Introduction

Aviation is undergoing a period of modernization which is expected to last until
at least 2030, with the International Civil Aviation Organization (ICAO) aiming
to reduce emissions, increase safety and improve efficiency of air transport [11].
This program seeks to replace ageing avionic systems with newer solutions, a
significant section of which revolves around avionic data links.

The main data communications system in current use is the Aircraft Com-
munications Addressing and Reporting System (ACARS). A general purpose
system, it has become the standard to transfer a wide range of information; for
example, it is often used by crews to request permission from air traffic control
(ATC) to fly a particular part of their route. Although ACARS will be replaced
at some point in the future, this migration is unlikely to be completed within
the next 20 years [11]. In the meantime, the vast majority of commercial aircraft
and business jets must use ACARS for their data link needs.
c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 285–301, 2017.
https://doi.org/10.1007/978-3-319-70972-7_15

286 M. Smith et al.

Like many current wireless air traffic communication technologies, ACARS
was designed several decades ago when security was not considered a main objec-
tive. Consequently, it did not include any form of encryption during its original
standardization. Due to the technological advantage that aviation held over most
potential threat agents, this fact did not raise significant attention over two
decades. In recent years, however, cheap software defined radios (SDRs) have
changed the threat landscape [21]. Using low-cost hardware and software down-
loadable from the internet, the capability to eavesdrop on ACARS has become
commonplace.

The impact of this changing threat on security and privacy of the data link are
manifold: among other possibilities, adversaries can track sensitive flight move-
ments of private, business or government aircraft; confidential information such
as financial or health information can be read and compromised; and potentially
safety-related data such as engine and maintenance reports can be modified.

As users of ACARS became aware of its practical insecurity and demanded
improvements to the confidentiality of their data, several cryptographic solutions
were developed to provide a short-term fix but then these became long-term
solutions. Only one of these solutions, a proprietary approach, is extensively
used. Unfortunately, it has many serious design flaws—the most serious being
that it is a mono-alphabetic substitution cipher—which negate any potential
security and privacy gain. Indeed, as we argue in this work, this type of solution
provides a false sense of security for ACARS users and consequently does more
harm for their reasonable expectations of privacy than no solution at all.

Contributions

In this paper, we present our findings on a specific security vulnerability of the
aviation data link ACARS. Our contributions are as follows:

– We show that the current most commonly used security solution for ACARS
is highly insecure and can be broken on the fly. We analyze the shortcomings
of the cipher used in this solution and its implementation.

– We quantify the impact on different aviation stakeholders and users. We ana-
lyze the extent of the privacy and security breach to its unassuming users, in
particular owners of private and business jets, and government aircraft.

– From this case study, we provide lessons for the development of security
solutions for existing legacy technologies, particular in slow-moving, safety-
focused critical infrastructure sectors.

The remainder of the paper is structured as follows: We consider privacy
aspects in aviation in Sect. 2 and our threat model in Sect. 3. Section 4 describes
the workings of ACARS before we illustrate steps taken to break the cipher
in question in Sect. 5. The impact of the weakness of the cipher is explained
in Sect. 6. In Sect. 7, we discuss the lessons learned from this case and make
recommendations for the future. Section 8 covers the related work, Sect. 9 covers
legal and ethical considerations, before Sect. 10 concludes.

Economy Class Crypto 287

2 Privacy in Aviation

This section discusses a widely used mechanism with which an aircraft owner
can protect their privacy, and the privacy expectations of private aircraft.

2.1 Blocked and Hidden Aircraft

Whilst no provision exists to restrict the sharing of flight information relating
to commercial aircraft, it does for smaller, private aircraft. Schemes such as the
Federal Aviation Administration’s (FAA) Aircraft Situation Display to Industry
(ASDI) register allow aircraft owners to restrict the tracking of their aircraft [9].
Some years ago, the scheme changed requiring that for a block to be imple-
mented, a “valid security concern” must be demonstrated [6]. This included a
“verifiable threat” against an individual, company or area, illustrating the severe
privacy requirements of such entities. Since then, the scheme has been once more
relaxed to allow any non-commercial aircraft owner to register a block [8]; even
so, we claim that any aircraft owner is making a clear effort to protect their
privacy in requesting a block.

ASDI is a data feed produced by the FAA and offered to registrants such as
flight tracking websites. The FAA offers two levels of block for this feed—either
at the FAA dissemination level, or at the industry level [7]. With the former,
information about the aircraft is not included in the ASDI feed at all, whereas
for the latter, the requirement to not share the data lies on the registrant. The
requesting aircraft owner can choose which level of block to use, however if none
is stated, the FAA defaults to the FAA-level block.

In practice, an ASDI-blocked aircraft will display either no information at
all, or only rudimentary information such as the registration, on flight tracking
websites. If an aircraft uses the FAA-level ASDI block then information about
it can usually only be sourced from third-party databases such as Airframes.org
(see Sect. 4.5 for more details). If an aircraft does not appear even in such third-
party sources, we consider them ‘unknown’.

Blocking aircraft in this way is particularly relevant as air traffic manage-
ment is modernized. Most continents are in the process of mandating that new
surveillance technologies be fitted to aircraft flying in classified airspace. These
will automatically report flight data, thus meaning that schemes such as ASDI
blocks will become a key factor in private aircraft user privacy.

2.2 Privacy Expectations

We consider these aircraft which make an effort to hide their activities to be
privacy sensitive. More specifically, we consider them sensitive with respect to
existence, intention, and status. These three categories are defined as follows:

– Existence: Observing an aircraft in the collection range. Simply receiving a
message from an aircraft is enough to reveal its existence.

http://www.airframes.org/

288 M. Smith et al.

– Intention: ACARS messages that reveal what the aircraft will do in the
future of its flight; for example, when and where it will land.

– Status: Information which describes the current activities of the aircraft.
This includes current location, its flight origin, or the flight altitude.

By restricting appearance on flight tracking websites, users of these aircraft
make a concerted effort to hide information belonging to each of these categories.
Thus, ACARS messages revealing such information can be considered a breach
of these privacy expectations.

3 Threat Model

As the basis of our model, we consider an honest-but-curious attacker who is
passive with respect to the medium but actively decrypts messages: they collect
ACARS messages and aim to break the cipher and decrypt messages that use it.

An attacker of this capability could achieve their aims for a relatively low
financial outlay. A low-cost computer such as a Raspberry Pi is sufficient to
run the collection, connected to a $10 RTL-SDR stick. Using freely available,
open source software and a standard VHF airband antenna available for under
$150, an attacker will be able to collect ACARS messages from aircraft. The
ease-of-use and availability of SDRs has in turn created an active community
which produces a range of free and open-source tools. Avionic communications
are no exception, with several tools available to decode ACARS messages, for
example. This has brought previously hard-to-access avionic communications
into the domain of relatively low-skilled users.

We consider a typical attacker to operate from a single location with the
aforementioned equipment, collecting and attempting to decipher messages over
a number of months. A more capable attacker would be able to deploy multiple
collection units across a larger geographic area in order to increase the message
collection rate and the number of unique aircraft observed. As demonstrated
below, this will increase the rate at which the analyzed cipher can be broken.

Intention also affects the magnitude of threat—an honest-but-curious
attacker is likely to be small scale, while threat agents with specific motives
could afford a larger-scale collection. Indeed, tracking aircraft movements as
part of insider trading has been used in the past (e.g., [10]), which will require
a wider collection network to increase the chance of sightings.

4 Aircraft Communications Addressing and Reporting
System

In this section, we describe ACARS, its message structure and methods of trans-
mission, the use cases in aviation, and finally, the existing security mechanisms.

Economy Class Crypto 289

4.1 ACARS at the Physical Level

ACARS is widely utilized around the world as an avionic communications sys-
tem. Deployed in 1978, it provides support for airlines and ATC to communicate
with the vast majority of commercial aircraft [13]. For example, airlines transfer
flight plans via ACARS, while ATC issues clearances for particular routes.

ACARS has three delivery methods—High Frequency (HF), satellite (SAT-
COM) and Very High Frequency (VHF) [14]. VHF is further subdivided into
‘Plain Old’ ACARS (POA) and VHF Data Link Mode 2 (VDLm2) ACARS, the
latter using a general purpose aviation data link. SATCOM ACARS is offered
via the Iridium and Inmarsat satellite constellations, each with slightly different
options and service levels. The key properties are summarized in Table 1.

Table 1. Comparison of ACARS delivery sub-networks

Mode Coverage Frequency Link speed

HF Worldwide 2–30MHza Up to 5.4 kbpsb

‘Plain Old’ VHF Continental, over
land

∼131MHz ∼2.4 kbps

VHF Data Link
mode 2

Continental, over
land, limited
deployment

∼136MHz ∼30 kbps

SATCOM Worldwide, except
polar regions

L-Band (1–2GHz) uplink Either 10 kbps or
up to ∼400 kpbsc

C-Band (6–8GHz) downlink
aDepending on atmospheric conditions, HF frequencies are reassigned regularly.
bThis depends on the baud rate and keying used.
cExact speeds vary depending on service, here 10 kbps is provided by the Inmarsat
ClassicAero service, with the higher rate provided by their SwiftBroadband service.

A high-level diagram of VHF ACARS is shown in Fig. 1(a), with SATCOM
ACARS depicted in Fig. 1(b). Messages are transmitted between an aircraft and
ground stations managed by service providers. Generally, service providers han-
dle the infrastructure apart from the aircraft and endpoints. For ACARS, end-
points can either be ATC in order to manage air traffic, or airline administration
who use ACARS for fleet operational purposes.

4.2 ACARS Messages

All versions of ACARS have the same message structure built around a free text
element which forms the largest part of the message (see Fig. 2). Although the
system character set is ASCII, Aeronautical Radio Inc. (ARINC) standard 618
notes that most parts of the network are only compatible with a reduced ASCII
set [2]. However, to guarantee all parts of the network can handle the message
content, the even further reduced Baudot character set would need to be used,
effectively limiting the set to A-Z, 0-9, ,-./, and some control characters.

290 M. Smith et al.

(a) VHF ACARS infrastructure (b) SATCOM ACARS infrastructure

Fig. 1. High-level diagrams of ACARS modes used in our data collection.

(a) Uplink message format (b) Downlink message format

Fig. 2. ACARS message structures for uplink (air-to-ground) and downlink (ground-
to-air) based on ARINC 618 [2]. Field sizes in ASCII characters/bytes.

Of particular interest is the ‘label’ field which allows the Communications
Management Unit (CMU) to route ACARS messages to the correct endpoint in
the aircraft network [14]. Most labels are standardized in ARINC 620, though
parts of the label space are user defined, including the labels used by the
encrypted messages discussed in this paper [3]. The ICAO registration and flight
ID fields are useful for identifying the origin of messages. ICAO registrations are
unique to an aircraft, allowing identification across flights. In contrast, flight IDs
are tied to a single flight and often only used properly by commercial aircraft.

4.3 Uses of ACARS

As mentioned above, ACARS has gradually developed from being used for a
narrow set of tasks to being the most general-purpose data link available in
aviation. These tasks can broadly be split into two groups—air traffic control
and airline operational/administrative messages.

Air traffic control messages are used to ensure that the aircraft can fly on its
route safely. This usually takes the form of clearances and informational data.
Clearance is needed for an aircraft to fly a particular route, and is organized by
ATC. This usually takes place using voice communications, but in congested or
remote regions voice channels are difficult to use. ACARS can be used instead,

Economy Class Crypto 291

even when voice cannot. Informational data takes the form of reports on relevant
flight data such as weather and aerodromes.

Airline operational and administrative messages form a significant part of
ACARS traffic. These messages use the free-text nature of ACARS, with mes-
sages ranging from automated, structured reporting to text messaging between
crew and ground operators. Lists of passengers transferring to other flights, main-
tenance issues and requests for aid of disabled passengers are common sights,
though exact usage varies between airlines. It is also common for flight plans to
be served over ACARS, which a pilot will then input into the flight computer.

4.4 Security in ACARS

Although ACARS has no security system mandated or included in its origi-
nal standard, fully-featured ‘add-on’ systems are available. These adhere to the
ARINC 823 standard, ACARS Message Security (AMS) [4], an example of which
is Secure ACARS, from Honeywell Inc. [16]—this offers security through a num-
ber of common cryptographic algorithms and tools. Outside of this, ARINC are
promoting a common implementation in Protected ACARS [19]. AMS provides
message authentication, integrity and confidentiality protection mechanisms,
using modern cryptographic methods. However, implementations are proprietary
and subject to little scrutiny beyond internal testing.

Despite the existence of these security suites, deployment is limited. No offi-
cial statistics exist and since all implementations are proprietary, performing
security analysis on them is difficult. In the course of the analysis carried out in
this paper, we could not clearly identify any regular use of AMS-based solutions.
Furthermore, these systems typically cost extra on top of the standard ACARS
service charge which an aircraft operator will pay—this has slowed uptake and
created reluctance from the operators to use it. It has also prompted the use and
practical deployment of more temporary security solutions, as explored in this
paper. To the best of our knowledge, these schemes have no publicly available
documentation with regards to implementation.

4.5 Real World Analysis

We utilized three methods of obtaining real-world air traffic data, in line with the
capabilities of an honest-but-curious attacker as defined in our threat model. All
data collection was done at sites in Continental Europe, with 1,634,106 messages
collected in total.

VHF Collection. VHF collection is possible with low investment using the
equipment described in Sect. 3, which can be fed into the ACARSDec decoder.1

This allows the decoding of ‘Plain Old’ ACARS signals transmitted around
131 MHz.

1 https://sourceforge.net/projects/acarsdec/.

https://sourceforge.net/projects/acarsdec/

292 M. Smith et al.

Satellite Collection. Collection of L-band SATCOM is similarly achievable
with minimal equipment and setup. For example, an L-band (1–2 GHz) horn
antenna pointed towards the INMARSAT 3F2 satellite can be fed into band-
pass filter and low-noise amplifier. Using an RTL-SDR stick and the open-source
JAERO decoder2 the ACARS message data can be then be recovered. To collect
C-band uplink messages more costly antenna would be required.

Third Party Data Sources. In order to compare collected data to a publicly
available source, flight tracking websites such as Flightradar243 allow verification
of many aircraft being in the air or the flights they have completed. However,
it is susceptible to government-mandated filtering as explained in Sect. 2.1. To
get more comprehensive records on aircraft, one can use the Airframes.org data-
base [12]. This provides ICAO registration information and records on aircraft
not available on the flight tracker. To the best of our knowledge, this is the most
complete and up-to-date publicly available aircraft registration database.

Beyond this, ACARS data has been collected and disseminated on the inter-
net for a number of years. A wide range of ACARS decoders existed in the
early 2000s, though most apart from acarsd4 appear to no longer be maintained.
Indeed, the acarsd website lists a range of webservers using the software to pro-
duce public ACARS feeds. Some services, such as AvDelphi5 go further, offering
ACARS feeds and tools to understand the messages for a fee.

5 Cryptanalysis of the ACARS Cipher

As our first contribution, we analyze the proprietary cipher used in ACARS
communications. Our curiosity was piqued when we noted that some aircraft
transmit scrambled ACARS messages, sent primarily with labels ‘41’, ‘42’ and
‘44’ and prefixed by two numbers.6 In order to decrypt these messages, we follow
several classic cryptanalytic steps. We first describe how character substitutions
can be recovered before moving to analyze the properties of the cipher.

5.1 Recovering Character Substitutions

Inspecting the available ciphertext, we note that all messages ciphered under
this label are prefixed by two digits, from 01 to 09. We refer to this as the key
identifier. When messages are grouped by these digits, repeating characters in
the same position across messages can be seen. From the similar set of characters
used between messages of the same key identifier, this implies the use of a sub-
stitution cipher as well as an underlying common structure between messages.
2 https://github.com/jontio/JAERO.
3 https://www.flightradar24.com/.
4 http://www.acarsd.org/.
5 https://www.avdelphi.com.
6 Labels ‘41’ and ‘42’ are primarily used in SATCOM and label ‘44’ is most common

in VHF—as such we focus our analysis in this way.

http://www.airframes.org/
https://github.com/jontio/JAERO
https://www.flightradar24.com/
http://www.acarsd.org/
https://www.avdelphi.com

Economy Class Crypto 293

Next, frequency analysis can be used to compare the per-character distri-
bution for each key identifier against all messages in our dataset. Since the
encrypted messages are a small portion of our overall message set, we expected
the character distribution of the underlying plaintext to be similar to the overall
ACARS character distribution. Examples of these frequency distributions are
shown in Fig. 3. We can see two clear peaks, which we match to peaks for fre-
quency analysis per key identifier. This provides a starting point for decryption.

Fig. 3. Character frequency distribution across all received ACARS messages (top)
and messages of one key identifier (bottom).

This knowledge can be combined with the fact that some messages sent on the
same labels are in plaintext and of similar length. Using the substitutions gained
from frequency analysis, we see that the majority of the messages are of a similar
structure—later identified as a status update. A labelled plaintext status report
message can be seen in Fig. 4, in which we identified the fields based on meta-
information and structure. Using this, we recover other substituting characters
using domain knowledge as explained in the remainder of this section.

5.2 Character Recovery Heuristics

Since we have a limited set of ciphertexts but now possess knowledge about the
underlying structure of one message type and content of the fields, we can use
heuristics to recover the remaining characters.

Recovering Coordinates. As the second field in plaintext messages is a coor-
dinate field, we use this to retrieve a number of substitution characters exploiting
the position of the receiver. Since the reported coordinates are limited to ±2–4◦

longitude and latitude from a receiver, the options for the first two digits and
direction letter (i.e. N for north) are restricted. This becomes less reliable if the
collection location lies on a point of 0◦ longitude or latitude.

294 M. Smith et al.

Message Prefixes. For some message types, the first field follows the structure
of a three-letter code followed by two digits which we refer to as a message
prefix; in the plaintext example of Fig. 4, this is POS02. Looking at all plaintext
messages received, one three-letter code is significantly more common. Combined
with already known letters, this reveals further substitution characters.

Fig. 4. Plaintext status report message sent under label ‘44’.

Airport Codes. As indicated in Fig. 4, two of the fields are ICAO airport
codes. Based again on the collection location, we can determine that local airport
codes are more likely and use this as a heuristic for recovering substitutions; for
example, if the collection range solely covers a part of the United States, one of
the airport codes is likely to begin with K. We also exploit partially decrypted
messages containing airport codes—which are publicly available—by comparing
various possible airport codes with a common encrypted character, revealing
many further alphabetic characters.

SATCOM Meteorological Messages. Not all character substitutions can be
recovered from the reporting messages as used above. However, aircraft receive
periodic meteorological data over the SATCOM uplink to inform the pilots about
the weather on their destination airport. Such messages take the form of Pilot
Weather Reports (PIREP), Notice to Airmen (NOTAM), Meteorological Aero-
drome Reports (METAR) and Terminal Aerodrome Forecasts (TAF). Each has
a consistent structure and contains regularly occurring phrases, which allows for
character recovery when compared with plaintext obtained from other aircraft.

5.3 Key Recovery

Based on our observations, many of these messages use a limited set of
ASCII characters, namely digits 0-9, characters A-Z and symbols ,.*-:/? and
whitespace which falls between the Baudot and limited ASCII sets defined in
ARINC 620 [3]. With this in mind, using 2690 messages, from the Baudot set of
44 characters per key we recovered 377/396 (95.2%) of the substitutions across
the nine keys. For limited ASCII, with there being 97 substitutions for each
key, we recovered 661/873 (75.7%) substitution characters across the nine keys.
However, we can decode and read most received messages, implying the Baudot

Economy Class Crypto 295

set is closer to the actual character set. By extending the collection range or
period, we will be able to recover the remaining characters.

Theoretically, the ACARS alphabet size of 127 offers a potential space of
127! keys. For reasons unknown to us, only 9 of these 3 × 10213 possibilities are
used—and they are clearly marked. Furthermore, these keys are shared across
all aircraft using this cipher. This significantly reduces the difficulty of recovery
by quickly providing sufficient known plaintext for each key.

6 Impact Analysis

Even without recovering every single substitution, the nature of the cipher
enables us to still read practically all message content. Indeed, recovering the full
keys is a matter-of-time process, simply requiring more messages. This process
could be sped up significantly by having many sensors distributed over a wide
geographic area, increasing the collection from unique aircraft. In this section,
we demonstrate why the weakness of the cipher is a significant problem: the data
it should protect is naturally considered private by many of its users.

6.1 Usage Analysis

Our observations indicate that it is exclusively ‘business jet’ type aircraft that
use this encryption. In Table 2 we provide a breakdown of these aircraft by
manufacturers alphabetically for anonymity purposes. Manufacturers A and B
make up the vast majority of the aircraft transmitting these kinds of messages.
In Table 2 we also give a breakdown of models by manufacturer, in which we
see that models A-1, A-2, A-3 and B-1 make up the majority of aircraft using
this weak cipher. These models are of varying ages, some of which were built
within the last two years. On top of this, aircraft appear to either send encrypted
messages or not, with no crossover.

Table 2. Number of unique aircraft using the cipher by manufacturer and model.
Names have been removed for anonymity.

Manufacturer A B C D E

Model A-1 A-2 A-3 B-1 B-2 B-3 C-1 D-1 E-1

Avg. Manuf. year 2008 2008 2014 2014 2010 2012 2010 2002 2011

No. per Model 118 56 12 11 3 2 1 1 1

No. per Manuf. 186 16 1 1 1

In looking for a connection, we found that all models use Primus suite avionics
equipment from Honeywell, Inc., pointing towards the source of the cipher. As
such, we believe that any aircraft choosing this suite will be affected by the
weak cipher, should they opt to use it. Given the use of a small set of global
keys, users of many different aircraft models might have the illusion of privacy

296 M. Smith et al.

when in fact this security solution is breakable. Furthermore, we have seen no
attempts at key distribution or rekeying over the course of several months; the
substitution characters recovered from the first collected data work on our most
recent data, too.

6.2 Blocked Aircraft

Although the pool of aviation stakeholders affected is relatively small, the privacy
impact is significant simply due to the nature of aircraft using the cipher. This is
illustrated by the number of aircraft concealing their existence on flight tracking
websites as described in Sect. 6.2. In Table 3 we see the distribution of ASDI
blocks on flight tracking websites for aircraft using this encryption. For ‘not
blocked’ aircraft we can see location and flight history, whereas ‘blocked’ are
aircraft with some level of ASDI block, i.e. missing flight history or information.
We use flight tracking websites for this purpose since they utilize ASDI data;
whilst direct ASDI access would be preferable, steps to obtain the feed appear
to be outside of the public domain.

Table 3. Absolute and relative distributions of flight tracking website blocks on aircraft
transmitting encrypted messages.

Data set Not blocked Blocked Unknown Total

VHF 5 (10%) 41 (84%) 3 (6%) 49

SATCOM 10 (6%) 93 (60%) 53 (34%) 156

We can see that in the VHF set, 90% of the aircraft seen to be using this
encryption are making a concerted effort to hide their existence, whereas in the
SATCOM set a similar fraction of 94% do the same. This implies that those
aircraft are particularly privacy-conscious and using a weak cipher like the one
seen here undermines their desire to protect their sensitive information. For
example, we observed several ASDI-blocked military-owned jets (United States
and Netherlands) using this encryption.

6.3 Security and Privacy Implications of the Message Content

After establishing that the vast majority of encrypting aircraft have a great
interest in hiding existence, intent and status of the aircraft, we now consider
the content of the encrypted messages and analyze its sensitivity. We collected
a total of 2690 messages from encrypting aircraft.

Status Reports. From the 2690 encrypted messages collected, 29.5% are status
reports (as seen in Fig. 4). Although we have no official documentation on these
messages, from the message format we can deduce with certainty the fields for
coordinates, ICAO airport codes, date, current time and ETA. Decrypting these
messages reveals a significant amount of potentially private data. As indicated

Economy Class Crypto 297

above, many of the aircraft which we have observed transmitting status reports
are at least subject to ASDI blocks. We observed that 63.3% of aircraft sending
this type of message use an ASDI block, with an even higher percentage of
all status reporting messages (90.3%) coming from these aircraft. As such, the
blocked aircraft we observed made more use of encrypted position reports than
visible aircraft and are undermined greatly by their insecurity.

Airport Information. As part of status reporting messages, both the depar-
ture and arrival airports are provided. This reveals a great deal of information on
routing, particularly for blocked aircraft. Using this section of the message, not
only can we determine the existence of an aircraft but also its intention. Across
all status reporting messages, we identified 151 airport codes over 50 country
codes, using 1569 instances. From these, 12.6% of instances were from the coun-
tries in which data was collected. We claim that using this data, a threat actor
can learn a significant amount of information about the aircraft from a single
message. By using sensors deployed to cover as great an area as possible, this
could allow the tracking of target aircraft without having to cover their entire
flightpath.

Free Text Messages. As with airport information, free text messages—
especially those relating to flight plans—have the potential to reveal a signif-
icant amount of information about an aircraft from a single message. Through
this, we saw some examples of using the cipher to protect this type of mes-
sage. We received 555 free-text messages, 184 of which were related to flight
plan administration, with 150 of these revealing the departure/arrival airports.
In two instances, in searching for flight plans, previous flight plan information
seemingly used by that aircraft were also transmitted.

Meteorological Reporting. Meteorological reports (METAR) are encrypted
by a smaller section of the aircraft, primarily over satellite ACARS. We observed
1395 encrypted METAR messages from 125 aircraft, all of which came from
satellite collection. Of these, 21.6% of aircraft were ASDI blocked. Whilst the
scope for privacy sensitive information is limited, METAR, can also reveal arrival
airports.

7 Discussion

As protocols are in use for many decades and are surpassed by technical progress
and new user requirements, the temptation for quick fixes is great. In aviation,
data links evolved to serve applications for which they were not initially intended
(e.g., ACARS for ATC [13]) and requirements changed to include confidentiality
to enable privacy for its users. Unfortunately, the presently deployed attempt to
protect ACARS does not meet these requirements as we have shown.

298 M. Smith et al.

It is thus critical to take away several lessons from this study. We strongly
believe similar cases can be found not only in the wider aviation scenario but in
many safety-focused critical infrastructures using legacy communication systems.

1. As the discussed solution has been greatly obscured, we could not obtain
the exact time when it was first deployed but the age of the aircraft using
it points to the mid-2000s. This in turn means this solution has been in use
for at least 10 years without proper independent analysis. Integrating the
security community early on could have avoided the deployment of inferior
solutions.

2. The described attack serves to illustrate the dangers of attempting to pro-
duce cryptosystems without due peer-review or use of well-known secure
primitives—indeed in this case, without any reasonable primitives at all. This
is especially the case in this situation where the nature of ACARS limits the
cryptographic solution due to characterset, message size and bit rate. Indeed,
proposals such as Secure ACARS use AES, which is standardized and widely
tested [16]. To draw parallels outside of the aviation scenario, WEP encryp-
tion suffered a similar fate in that an attempt to devise a security solution was
critically impaired simply by misusing cryptographic primitives [5]. However
in the case of WEP, the primitives themselves were sound—in the system
discussed in this paper, even the primitives were not sound.

3. Developing—and deploying—solutions without such expertise can indeed be
harmful. A solution that provides no effective protection has two distinct neg-
ative effects: First, it undermines the development and use of better solutions.
In the case of ACARS, a demonstrably secure solution based on ACARS Mes-
sage Security would be standardized and use reasonable primitives, but users
who want data link confidentiality have opted exclusively for the discussed
cipher be it for cost or marketing reasons. Secondly, it provides its users with
a false sense of security. Believing in the hardness of the encryption may lead
operators to rely on the confidentiality they seek and potentially even modify
their behavior.

Based on these lessons, we recommend that this security solution should
not be used further. With little cryptographic knowledge or resources, message
content can be recovered in real time. At the very least, manufacturers should
discontinue the inclusion of it in future systems. Ideally, it would be patched
out or replaced with a more secure option on existing aircraft and avionics. For
users relying on this cipher and seeking better protection, we propose that they
demand an established solution such as Secure ACARS which is a more complete
security suite.

8 Related Work

Contrary to large parts of the aviation community, the military is aware of
security issues in ACARS, see, e.g., [17] where the clear-text nature of ACARS
is considered an important weakness. Furthermore, [15] demonstrates efforts to

Economy Class Crypto 299

manage the lack of security through encryption, highlighting the requirement for
privacy in the military context. In both, ACARS defaulting to clear-text drives
users to require some measure of security. As shown in our work, this led to a
weak cipher being used widely.

The role of ACARS security has occasionally been discussed outside of acad-
emic research. In [1], the authors note the challenges of deploying Secure ACARS,
as well as its development process with the US military. Elsewhere, [22] claims
to use ACARS to upload malware onto a flight management computer. From
this we can see that ACARS is used across aviation, and given the claims of
exploitation, the case for encryption is strong.

In [18,19] issues caused by the lack of security on standard ACARS are
discussed. Particularly in the latter, the authors highlight that crews rely on
information sent via ACARS, which could have safety implications. In [23], a
security solution is presented but it has not seen production or further analysis
of its security properties. As demonstrated these steps are crucial for effective,
lasting security.

User perceptions are also notable: [20] shows that out of hundreds of pilots,
users of general aviation, and air traffic controllers, who were asked about the
integrity and authenticity of ACARS, most believed the protocol offered some
kind of protection.

9 Legal and Ethical Considerations

Due to the sensitive nature of this work, we have ensured that it has been
conducted in a manner which upholds good ethical and legal practice. At the
start of the work we obtained ethical approval process to sensitive messages and
we followed a responsible disclosure process with Honeywell, Inc. We adhered to
all relevant local laws and regulations.

We have further chosen not to name the aircraft manufacturers and models
affected, as this could unduly impact the users of the affected aircraft before
there is a chance to address the problem. Furthermore, we have outlined the
steps taken to break the cipher but decided to omit further details and example
messages in order to avoid making such an attack straightforward to replicate.
Overall, we believe it is crucial that all aviation users are aware of weak security
solutions protecting their communications so that they do not fall prey to a false
sense of security but instead can take the necessary steps to protect themselves.

10 Conclusion

In this paper we have demonstrated the shortcomings of a proprietary encryption
technique used to protect sensitive information relating to privacy-aware aircraft
operators. More specifically, we have shown that it cannot meet any security
objective. As such we recommend its users are made fully aware that it does not
provide actual protection; thus, users should either seek a more robust security
solution or avoid using ACARS for sensitive material.

300 M. Smith et al.

We demonstrated the privacy issues arising due to this, since the cipher is pri-
marily used to transmit locations and destinations by aviation users attempting
to hide their existence and intentions. We show the cipher’s weakness consis-
tently undermines the users’ efforts to hide their positional reporting, or protect
message content which might be valuable to an attacker.

Consequently, we claim that when such solutions are deployed in practice
it does more harm than good for users who require confidentiality from their
data link. It is crucial that the aviation industry takes the lessons learned from
this case study and addresses these problems before they are widely exploited
in real-world attacks.

Acknowledgements. This work has been funded by armasuisse under the
Cyberspace and Information research program. Matthew Smith has been supported
by the Engineering and Physical Sciences Research Council UK (EPSRC UK), as part
of the Centre for Doctoral Training for Cyber Security at the University of Oxford.
Daniel Moser has been supported by the Zurich Information Security and Privacy
Center. It represents the views of the authors.

References

1. Adams, C.: Securing ACARS: Data Link in the Post 9/11 Environment. Avionics
Magazine, 24–26 June 2006

2. Aeronautical Radio Inc. (ARINC): 618–7: Air/Ground Character-Oriented Proto-
col Specification. Technical Standard (2013)

3. Aeronautical Radio Inc. (ARINC): 620–8: Datalink Ground System Standard and
Interface Specification. Technical Standard (2014)

4. Aeronautical Radio Inc. (ARINC): 823–P1: DataLink Security, Part 1 - ACARS
Message Security. Technical Standard (2007)

5. Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: the
insecurity of 802.11. In: Proceedings of the 7th Annual International Conference
on Mobile Computing and Networking (MobiCom) (2001)

6. Federal Aviation Administration: Access to Aircraft Situation Display (ASDI)
and National Airspace System Status Information (NASSI) (2011). https://www.
federalregister.gov/documents/2011/03/04/2011-4955/access-to-aircraft-situation-
display-asdi-and-national-airspace-system-status-information-nassi. Accessed 11
Nov 2016

7. Federal Aviation Administration: Access to Aircraft Situation Display to Industry
(ASDI) and National Airspace System Status Information (NASSI) Data (2012).
https://www.federalregister.gov/documents/2012/05/09/2012-11251/access-to-
aircraft-situation-display-to-industry-asdi-and-national-airspace-system-status.
Accessed 11 Nov 2016

8. Federal Aviation Administration: Access to Aircraft Situation Display to Industry
(ASDI) and National Airspace System Status Information (NASSI) Data (2013).
https://www.federalregister.gov/documents/2013/08/21/2013-20375/access-to-
aircraft-situation-display-to-industry-asdi-and-national-airspace-system-status.
Accessed 11 Nov 2016

https://www.federalregister.gov/documents/2011/03/04/2011-4955/access-to-aircraft-situation-display-asdi-and-national-airspace-system-status-information-nassi
https://www.federalregister.gov/documents/2011/03/04/2011-4955/access-to-aircraft-situation-display-asdi-and-national-airspace-system-status-information-nassi
https://www.federalregister.gov/documents/2011/03/04/2011-4955/access-to-aircraft-situation-display-asdi-and-national-airspace-system-status-information-nassi
https://www.federalregister.gov/documents/2012/05/09/2012-11251/access-to-aircraft-situation-display- to-industry-asdi-and-national-airspace-system-status
https://www.federalregister.gov/documents/2012/05/09/2012-11251/access-to-aircraft-situation-display- to-industry-asdi-and-national-airspace-system-status
https://www.federalregister.gov/documents/2013/08/21/2013-20375/access-to-aircraft-situation-display-to-industry-asdi-and-national-airspace-system-status
https://www.federalregister.gov/documents/2013/08/21/2013-20375/access-to-aircraft-situation-display-to-industry-asdi-and-national-airspace-system-status

Economy Class Crypto 301

9. Federal Aviation Administration: Limiting Aircraft Data Displayed via Aircraft
Situation Display to Industry (ASDI) (Formerly the Block Aircraft Registra-
tion Request (BARR) Program) (2016). https://www.fly.faa.gov/ASDI/asdi.html.
Accessed 11 Nov 2016

10. Gloven, D., Voreacos, D.: Dream Insider Informant Led FBI From Galleon to SAC
(2012). http://www.bloomberg.com/news/articles/2012-12-03/dream-insider-info
rmant-led-fbi-from-galleon-to-sac. Accessed 11 Nov 2016

11. International Civil Aviation Organization: Global Air Navigation Plan, Fourth
Edition. Technical rep., International Civil Aviation Organization, Montreal, p.
120 (2013). http://www.icao.int/publications/Documents/97504eden.pdf

12. Kloth, R.D.: Airframes.org (2016). http://www.airframes.org/. Accessed 11 Nov
2016

13. Oishi, R.T., Heinke, A.: Air-ground communication. In: Spitzer, C.R., Ferrell, U.,
Ferrell, T. (eds.) Digital Avionics Handbook, 3rd edn., pp. 2.1–2.3. CRC Press
(2015)

14. Oishi, R.T., Heinke, A.: Data communications. In: Spitzer, C.R., Ferrell, U., Ferrell,
T. (eds.) Digital Avionics Handbook, 3rd edn., pp. 2.7–2.13. CRC Press (2015)

15. Risley, C., McMath, J., Payne, B.: Experimental encryption of Aircraft Commu-
nications Addressing and Reporting System (ACARS) Aeronautical Operational
Control (AOC) Messages. In: 20th Digital Avionic Systems Conference. IEEE,
Daytona Beach (2001)

16. Roy, A.: Secure Aircraft Communications Addressing and Reporting System
(ACARS). US Patent 6,677,888, January 2004

17. Roy, A.: Security strategy for US Air Force to use commercial data link. In: 19th
Digital Avionics Systems Conference. IEEE, Philadephia (2000)

18. Smith, M., Strohmeier, M., Lenders, V., Martinovic, I.: On the security and privacy
of ACARS. In: Integrated Communications Navigation and Surveillance Confer-
ence (ICNS), Herndon (2016)

19. Storck, P.E.: Benefits of commercial data link security. In: Integrated Communi-
cations, Navigation and Surveillance Conference (ICNS). IEEE, Herndon (2013)

20. Strohmeier, M., Schäfer, M., Pinheiro, R., Lenders, V., Martinovic, I.: On percep-
tion and reality in wireless air traffic communication security. IEEE Trans. Intell.
Transp. Syst. 18(6), 1338–1357 (2017)

21. Strohmeier, M., Smith, M., Schäfer, M., Lenders, V., Martinovic, I.: Assessing the
impact of aviation security on cyber power. In: 8th International Conference on
Cyber Conict (CyCon). NATO CCD COE, Tallinn (2016)

22. Teso, H.: Aircraft hacking: practical aero series. Presented at the fourth annual
hack in the box security conference in Europe (HITB), Amsterdam, NL, April
2013

23. Yue, M., Wu, X.: The approach of ACARS data encryption and authentication. In:
International Conference on Computational Intelligence and Security (CIS). IEEE
(2010)

https://www.fly.faa.gov/ASDI/asdi.html
http://www.bloomberg.com/news/articles/2012-12-03/dream-insider-informant-led-fbi-from-galleon-to-sac
http://www.bloomberg.com/news/articles/2012-12-03/dream-insider-informant-led-fbi-from-galleon-to-sac
http://www.icao.int/publications/Documents/97504eden.pdf
http://www.airframes.org/

Short Paper: A Longitudinal Study of Financial
Apps in the Google Play Store

Vincent F. Taylor(B) and Ivan Martinovic

Department of Computer Science, University of Oxford, Oxford, UK
{vincent.taylor,ivan.martinovic}@cs.ox.ac.uk

Abstract. Apps in the FINANCE category constitute approximately 2%
of the 2,000,000 apps in the Google Play Store. These apps handle
extremely sensitive data, such as online banking credentials, budgets,
salaries, investments and the like. Although apps are automatically vet-
ted for malicious activity before being admitted to the Google Play Store,
it remains unclear whether app developers themselves check their apps
for vulnerabilities before submitting them to be published. Additionally,
it is not known how financial apps compare to other apps in terms of
dangerous permission usage or how they evolve as they are updated. We
analyse 10,400 apps to understand how apps in general and financial apps
in particular have evolved over the past two years in terms of danger-
ous permission usage and the vulnerabilities they contain. Worryingly,
we discover that both financial and non-financial apps are getting more
vulnerable over time. Moreover, we discover that while financial apps
tend to have less vulnerabilities, the rate of increase in vulnerabilities in
financial apps is three times as much as that of other apps.

1 Introduction

Android is the dominant mobile operating system with control of 84.7% of the
smartphone market as of 2015 Q3, dwarfing its nearest rival, iOS, at 13.1% [10].
Smartphone users use over 26 different apps per month, and spend more than
one hour per day using apps on average [14]. In the United Kingdom, banking
using a mobile device such as a smartphone or tablet has already overtaken the
act of going into a branch or using a PC to bank [4]. Recently, Finance Monthly
reported that usage of finance and banking apps rose 17% among “affluent middle
class” customers [9]. Along similar lines, Google reports that 75% of users use
only one or two finance apps, but that 44% of users use these finance apps on a
daily basis [11].

Fraudsters and other adversaries have long been known to exploit victims
for the greatest financial gain, and with the rising popularity of financial apps,
we expect their attention to turn there. Previous work has analysed apps in the
Google Play Store as a whole [6], but it remains unclear whether a one-size-fits-
all approach to understanding smartphone apps in general properly encapsulates
the idiosyncrasies of financial apps in particular. Indeed, financial apps handle

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 302–309, 2017.
https://doi.org/10.1007/978-3-319-70972-7_16

Short Paper: A Longitudinal Study of Financial Apps 303

Google Play Store

Web page request for App x Web page response for App x

Worker 1 Worker 2 Worker n...

Name of App x Full app data for App x

App Data Repository Command & Control server App list from GPSC project

Fig. 1. Highly-scalable cloud-based crawler architecture.

more sensitive information than most typical apps and thus have a requirement
for the secure storage, processing and transmission of this data.

To address this gap in the literature, we performed several tasks. We collected
snapshots of the entire Google Play Store quarterly over a two-year period to
understand how apps in general and financial1 apps in particular have evolved
in terms of dangerous2 permission usage. Additionally, we used our most recent
snapshot of apps to compare and contrast financial apps to the remainder of
apps in the Google Play Store. Finally, we used open-source Android app vul-
nerability scanning tools to understand how financial apps compare to other
apps in terms of the vulnerabilities they contain and how this changes as apps
are updated by their developers.

Contributions. Specifically, our contributions are as follows:

– We analyse how financial apps have evolved over the past two years when
compared to other apps in terms of their dangerous permission usage.

– We perform security analyses on 10,400 apps using static vulnerability analy-
sis tools to understand how financial apps compare to other apps in terms of
the vulnerabilities they contain and how they change as apps are updated.

Roadmap. Sect. 2 overviews the evolution of dangerous permission usage;
Sect. 3 describes how our dataset was collected and the vulnerabilities exam-
ined; Sect. 4 presents our vulnerability scanning results; Sect. 5 discusses our
observations and future work; Sect. 6 surveys the most related work; and finally
Sect. 7 concludes the paper.

2 Google Play Store Analysis

Our first task was to understand how financial apps have evolved in terms of dan-
gerous permission usage. To capture app metadata, we developed a highly-scalable
1 We consider financial apps to be those apps listed in the Google Play Store under

the FINANCE category.
2 Dangerous permissions guard access to sensitive user data and must be requested

by apps and approved by users before the relevant data can be accessed [3].

304 V. F. Taylor and I. Martinovic

cloud-based crawler as shown in Fig. 1. This crawler is run quarterly and is
capable of harvesting full app metadata in less than 48 h. Our crawler is informed
of all the apps in the Google Play Store by the Google Play Store Crawler Project
(GPSC) [13]. Using our crawler, we obtained approximately two years of app meta-
data3, from OCT-2014 to SEP-2016, on all available apps.

Table 1. Mean dangerous permission usage (and percentage change) across apps over
the two-year period based on number of app downloads.

Downloads ALL apps FINANCE apps

OCT-2014 SEP-2016 Change OCT-2014 SEP-2016 Change

1-1K 3.13 3.16 +0.96% 2.75 2.85 +3.64%

1K-1M 2.37 2.45 +3.38% 3.20 3.43 +7.19%

1M-5B 3.40 3.58 +5.29% 5.62 6.44 +14.59%

C
O

M
M

U
N

IC
A

T
IO

N
B

U
S

IN
E

S
S

T
R

A
V

E
L_

A
N

D
_L

O
C

A
L

T
R

A
N

S
P

O
R

T
A

T
IO

N
S

O
C

IA
L

S
H

O
P

P
IN

G
LI

F
E

S
T

Y
LE

S
P

O
R

T
S

F
IN

A
N

C
E

P
H

O
T

O
G

R
A

P
H

Y
M

E
D

IA
_A

N
D

_V
ID

E
O

M
E

D
IC

A
L

H
E

A
LT

H
_A

N
D

_F
IT

N
E

S
S

P
R

O
D

U
C

T
IV

IT
Y

G
A

M
E

_R
O

LE
_P

LA
Y

IN
G

G
A

M
E

_C
A

S
IN

O
M

U
S

IC
_A

N
D

_A
U

D
IO

N
E

W
S

_A
N

D
_M

A
G

A
Z

IN
E

S
E

N
T

E
R

T
A

IN
M

E
N

T
E

D
U

C
A

T
IO

N
W

E
A

T
H

E
R

T
O

O
LS

G
A

M
E

_A
D

V
E

N
T

U
R

E
G

A
M

E
_S

T
R

A
T

E
G

Y
G

A
M

E
_S

IM
U

LA
T

IO
N

LI
B

R
A

R
IE

S
_A

N
D

_D
E

M
O

G
A

M
E

_M
U

S
IC

B
O

O
K

S
_A

N
D

_R
E

F
E

R
E

N
C

E
G

A
M

E
_R

A
C

IN
G

G
A

M
E

_S
P

O
R

T
S

G
A

M
E

_A
C

T
IO

N
C

O
M

IC
S

G
A

M
E

_C
A

S
U

A
L

G
A

M
E

_W
O

R
D

G
A

M
E

_T
R

IV
IA

G
A

M
E

_C
A

R
D

G
A

M
E

_E
D

U
C

A
T

IO
N

A
L

G
A

M
E

_A
R

C
A

D
E

G
A

M
E

_B
O

A
R

D
P

E
R

S
O

N
A

LI
Z

A
T

IO
N

G
A

M
E

_P
U

Z
Z

LE

Category of App

0
1
2
3
4
5

M
ea

n

Fig. 2. Mean number of dangerous permissions used per category of app.

Figure 2 shows how the number of dangerous permissions per category of
app varied. Apps in the FINANCE category use among the highest number of
dangerous permissions at 3.3. Moreover, as shown in Table 1, financial apps had
a greater percentage increase in the number of dangerous permissions used over
the last two years when compared to all apps. From Fig. 3, we can see that
financial apps use permissions typical to that of other apps, except permissions
used to access a user’s location, camera, and contacts, as notable examples.

3 Our app metadata is available to the research community upon request.

Short Paper: A Longitudinal Study of Financial Apps 305

R
E

A
D

_E
X

T
E

R
N

A
L_

S
T

O
R

A
G

E

W
R

IT
E

_E
X

T
E

R
N

A
L_

S
T

O
R

A
G

E

R
E

A
D

_P
H

O
N

E
_S

T
A

T
E

A
C

C
E

S
S

_F
IN

E
_L

O
C

A
T

IO
N

A
C

C
E

S
S

_C
O

A
R

S
E

_L
O

C
A

T
IO

N

G
E

T
_A

C
C

O
U

N
T

S

C
A

M
E

R
A

R
E

C
O

R
D

_A
U

D
IO

C
A

LL
_P

H
O

N
E

R
E

A
D

_C
O

N
T

A
C

T
S

S
E

N
D

_S
M

S

W
R

IT
E

_C
O

N
T

A
C

T
S

R
E

C
E

IV
E

_S
M

S

R
E

A
D

_C
A

LL
_L

O
G

R
E

A
D

_C
A

LE
N

D
A

R

W
R

IT
E

_C
A

LL
_L

O
G

R
E

A
D

_S
M

S

P
R

O
C

E
S

S
_O

U
T

G
O

IN
G

_C
A

LL
S

W
R

IT
E

_C
A

LE
N

D
A

R

R
E

C
E

IV
E

_M
M

S

U
S

E
_S

IP

B
O

D
Y

_S
E

N
S

O
R

S

R
E

C
E

IV
E

_W
A

P
_P

U
S

H

A
D

D
_V

O
IC

E
M

A
IL

Dangerous Permissions

0
10
20
30
40
50
60

P
er

ce
nt

ag
e

(%
)

FINANCE apps

ALL apps

Fig. 3. Permission usage in FINANCE apps compared to ALL apps.

3 Dataset and Tools

The next step was to understand how the vulnerabilities contained within finan-
cial apps changed as apps were updated. To construct our app dataset, we ran-
domly chose and downloaded 200 apps in the FINANCE category and 5,000 apps
from all OTHER categories. Additionally, we leveraged the PlayDrone [16] dataset
to get the corresponding .apk files for these apps from two years ago for a total
of 10,400 apps. Our dataset is summarised in Table 2.

Table 2. Dataset of apps used in the analysis.

Category Dataset name # of APKs Source Date

FINANCE FIN-OLD 200 PlayDrone Oct-2014

FIN-NEW 200 Google Play Sep-2016

OTHER OTH-OLD 5,000 PlayDrone Oct-2014

OTH-NEW 5,000 Google Play Sep-2016

3.1 Vulnerabilities Analysed

The vulnerabilities that were analysed are listed in Table 3. Vulnerabilities were
synthesised from the OWASP Top 10 [15] which lists common vulnerabilities
affecting mobile apps. We used two popular app security analysis frameworks to
analyse apps for vulnerabilities: AndroBugs [1] and MobSF [2]. These frameworks
leverage static code analysis and are lightweight and scalable, making them
suitable for our purpose.

306 V. F. Taylor and I. Martinovic

Static analysis tools suffer from their reduced ability to handle dynamic pro-
gramming features such as reflection and dynamic code loading. Thus our vul-
nerability scanning may fail to detect issues that only emerge at runtime. For
this reason, the number of vulnerabilities reported should be considered a lower
bound on the actual number of vulnerabilities present within apps.

Table 3. List of vulnerabilities considered.

Identifier Description Tool Used

INF-DISC-WRLRD App uses world readable/writeable files AndroBugs

INF-DISC-PRVDR ContentProvider exported but not secured

INF-DISC-KSNPW Keystores not protected by a password

SSL-TLSX-PLAIN Sending data over plain HTTP AndroBugs

SSL-TLSX-INVLD Invalid SSL certificate verification

SSL-TLSX-WVIEW Improper WebView certificate validation

BRK-CRYP-ECBMD Use of the ECB cryptographic function MobSF

BRK-CRYP-RANDG Use of insecure random number generators

OTH-MISC-INTNT Starting services with implicit Intents AndroBugs

OTH-MISC-DEBUG App is debuggable

BIN-ROOT-DTECT App does not have root detection MobSF

4 Results

The results of our vulnerability analysis is shown in Table 4. Worryingly, both
classes of apps became more vulnerable as they were updated for a majority
of the vulnerabilities considered. For financial apps however, the prevalence of
vulnerabilities overall was lower when compared to other apps. While this is wel-
come, we note that the average percentage increase in vulnerabilities in financial
apps was approximately three times that of other apps.

Non-financial apps had four types of vulnerabilities that actually improved
as apps were updated: SSL-TLSX-VERIF, SSL-TLSX-WVIEW, OTH-MISC-DEBUG and
BIN-ROOT-DTECT. The only vulnerability that improved for financial apps was
BIN-ROOT-DTECT. The Top 4 vulnerabilities that had the highest increase in
prevalence were shared between financial and non-financial apps. These vulnera-
bilities involved apps creating world readable/writeable files (INF-DISC-WRLRD),
using unsecured ContentProviders (INF-DISC-PRVDR), generating random
numbers insecurely (BRK-CRYP-RANDG) and using implicit intents to start ser-
vices (OTH-MISC-INTNT). Unsecured ContentProviders and world-readable files
introduce the possibility of malicious apps on a device reading data stored by
a vulnerable app. Considering that financial apps handle sensitive data, care
should be taken by app developers to ensure that such data is stored securely
on the device.

Short Paper: A Longitudinal Study of Financial Apps 307

Table 4. Percentage of apps within each dataset containing one or more of each studied
vulnerability.

Vulnerability OTH-OLD (%) OTH-NEW (%) FIN-OLD (%) FIN-NEW (%)

INF-DISC-WRLRD 16.5 24.7 10.5 20.5

INF-DISC-PRVDR 2.22 2.92 2.00 3.00

INF-DISC-KSNPW 2.32 2.34 2.00 2.00

SSL-TLSX-PLAIN 80.1 80.7 75.5 77.0

SSL-TLSX-VERIF 15.4 14.6 15.5 16.0

SSL-TLSX-WVIEW 9.74 9.21 9.50 10.0

BRK-CRYP-ECBMD 12.7 12.7 10.5 11.1

BRK-CRYP-RANDG 59.3 63.8 54.5 61.1

OTH-MISC-INTNT 3.22 5.19 2.50 7.50

OTH-MISC-DEBUG 2.30 2.06 2.00 2.00

BIN-ROOT-DTECT* 95.2 93.4 96.5 92.9
∗Root detection may be implemented in many ways, thus false positives may
be present in our result, and consequently we consider these numbers an upper
bound.

5 Discussion

It is welcome to observe that financial apps on average have a lower prevalence
of vulnerabilities. However, it is worrying that these numbers are increasing,
and indeed increasing faster than that of other apps. Given that financial apps
potentially handle very sensitive information, great care needs to be taken by
app developers to safeguard the data that their apps use.

As a first step, app developers should familiarise themselves with the OWASP
Top 10 [15] to understand the typical security problems that affect mobile apps.
By gaining a better understanding of typical security problems, app developers
can avoid common mistakes that make their apps easily exploitable by adver-
saries. App developers can also leverage any of the myriad open-source sta-
tic/dynamic vulnerability analysis tools to check their apps for vulnerabilities
before publishing them to app stores. In some cases, app developers may not
be the primary source of the vulnerabilities contained within their apps. Many
app developers unwittingly use vulnerable libraries and introduce vulnerabilities
into otherwise secure apps. App developers must take care to ensure that they
always use up-to-date versions of libraries whenever they update their apps.

The official Android app store, Google Play, can be a catalyst for improving
the quality of apps by performing vulnerability analysis checks on apps at the
time when they are submitted to be published. During this research, we observed
that scanning apps for vulnerabilities takes less than one minute on average.
Publishing an app to the Google Play Store already takes up to several hours,
so we expect that lightweight vulnerability scanning will not cause a notice-
able delay. Apps containing vulnerabilities can be returned to app developers

308 V. F. Taylor and I. Martinovic

for fixing, penalised in search results, or flagged as being vulnerable when pre-
sented to users.

Static analysis alone does not paint the full picture of what is happening
inside apps. For future work, we plan to use dynamic analysis tools to further
understand the vulnerabilities contained within apps, as well as explore a wider
range of app vulnerabilities.

6 Related Work

Viennot et al. [16] developed a tool called PlayDrone and used it to perform
the first indexing of apps in the Google Play Store. We leverage their dataset to
obtain old versions of apps to perform our longitudinal analysis of vulnerability
evolution. Along similar lines, Book et al. [5] perform a longitudinal analysis
of permission usage in ad libraries. The authors discover that not only have ad
libraries gained greater sensitive access to devices over time, but they typically
get access that risks user privacy and security. We complement this analysis by
evaluating how permissions have increased in apps overall and within financial
apps specifically.

A number of authors identified different classes of vulnerabilities in Android
apps and proposed various tools to detect them. We list a few for brevity. Fahl
et al. [8] investigated SSL/TLS related vulnerabilities using a tool called Mallo-
droid. The authors found that approximately 8% of the apps that were exam-
ined were potentially vulnerable to man-in-the-middle attacks. Equally impor-
tant, Lu et al. [12] investigated Android apps being vulnerable to component
hijacking attacks. Subsequently, Egele et al. [7] investigated whether apps were
using cryptographic APIs securely. They found that 88% of the apps investigated
made at least one mistake when using cryptographic APIs. Complementary to
these pieces of work, we use static analysis tools to evaluate the extent to which
Android apps currently suffer from these and other vulnerabilities. Additionally,
we examine how the prevalence of vulnerabilities has changed as apps have been
updated, as well as how financial apps compare to regular apps as it relates to
vulnerability evolution.

7 Conclusion

In this paper, we investigated permission usage in Android apps in general and in
finance apps in particular. While both classes of apps had increases in the number
of permissions used, financial apps typically used more permissions and also had
greater percentage increases in permission usage. By doing vulnerability analysis
of apps, we observed that apps tend to become more vulnerable as they are
updated. While financial apps were less likely to contain vulnerabilities overall,
as they were updated their prevalence in containing vulnerabilities increased
three times as much as other apps. As users become more comfortable with using
smartphone apps for sensitive tasks, it becomes imperative that app developers
take appropriate measures to secure sensitive data.

Acknowledgement. Vincent F. Taylor is supported by the UK EPSRC.

Short Paper: A Longitudinal Study of Financial Apps 309

References

1. AndroBugs Framework. https://github.com/AndroBugs/AndroBugs Framework
2. Mobile Security Framework. https://github.com/ajinabraham/Mobile-Security-

Framework-MobSF
3. Requesting Permissions. https://developer.android.com/guide/topics/

permissions/ requesting.html
4. BBA: Mobile phone apps become the UK’s number one way to bank, June 2015.

https://www.bba.org.uk/news/press-releases/mobile-phone-apps-become-the-uks-
number-one-way-to-bank/

5. Book, T., Pridgen, A., Wallach, D.S.: Longitudinal analysis of Android ad library
permissions. arXiv preprint arXiv:1303.0857 (2013)

6. Carbunar, B., Potharaju, R.: A longitudinal study of the Google app market. In:
2015 Proceedings of the 2015 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, ASONAM 2015, pp. 242–249. ACM,
New York (2015)

7. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of crypto-
graphic misuse in android applications. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2013, pp. 73–84.
ACM, New York (2013)

8. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why eve and mallory love android: an analysis of android SSL (in)security. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS 2012, pp. 50–61. ACM, New York (2012)

9. Finance Monthly. Banking and finance app usage rises 17 class customers,
July 2016. http://www.finance-monthly.com/2016/07/banking-and-finance-app-
usage-rises-17-amongst-affluent-middle-class-customers-sounding-a-warning-shot-
for-loyalty-initiatives/

10. Gartner: Gartner Says Emerging Markets Drove Worldwide Smartphone Sales
to 15.5 Percent Growth in Third Quarter of 2015, November 2015. http://www.
gartner.com/newsroom/id/3169417

11. Google Inc., Apps And Mobile Sites: Consumption Across Finance, Retail
And Travel, March 2016. https://www.thinkwithgoogle.com/intl/en-gb/research-
studies/apps-and-mobile-sites-consumption-across-finance-retail-and-travel.html

12. Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: CHEX: statically vetting android apps for
component hijacking vulnerabilities. In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security, pp. 229–240 (2012)

13. Lins, M.: Google Play Apps Crawler. https://github.com/MarcelloLins/ Google-
PlayAppsCrawler

14. Nielson: Smartphones: So Many Apps, So Much Time, July 2014. http://www.
nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps-so-much-time.
html

15. OWASP: Projects/OWASP Mobile Security Project - Top Ten Mobile Risks.
https://www.owasp.org/index.php/Projects/OWASP Mobile Security Project -
Top Ten Mobile Risks

16. Viennot, N., Garcia, E., Nieh, J.: A measurement study of Google play. In: The
2014 ACM International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS 2014, pp. 221–233. ACM, New York, NY, USA (2014)

https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/ajinabraham/Mobile-Security-Framework-MobSF
https://github.com/ajinabraham/Mobile-Security-Framework-MobSF
https://developer.android.com/guide/topics/permissions/
https://developer.android.com/guide/topics/permissions/
https://www.bba.org.uk/news/press-releases/mobile-phone-apps-become-the-uks-number-one-way-to-bank/
https://www.bba.org.uk/news/press-releases/mobile-phone-apps-become-the-uks-number-one-way-to-bank/
http://arxiv.org/abs/1303.0857
http://www.finance-monthly.com/2016/07/banking-and-finance-app-usage-rises-17-amongst-affluent-middle-class-customers-sounding-a-warning-shot-for-loyalty-initiatives/
http://www.finance-monthly.com/2016/07/banking-and-finance-app-usage-rises-17-amongst-affluent-middle-class-customers-sounding-a-warning-shot-for-loyalty-initiatives/
http://www.finance-monthly.com/2016/07/banking-and-finance-app-usage-rises-17-amongst-affluent-middle-class-customers-sounding-a-warning-shot-for-loyalty-initiatives/
http://www.gartner.com/newsroom/id/3169417
http://www.gartner.com/newsroom/id/3169417
https://www.thinkwithgoogle.com/intl/en-gb/research-studies/apps-and-mobile-sites-consumption-across-finance-retail-and-travel.html
https://www.thinkwithgoogle.com/intl/en-gb/research-studies/apps-and-mobile-sites-consumption-across-finance-retail-and-travel.html
https://github.com/MarcelloLins/
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps-so-much-time.html
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps-so-much-time.html
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps-so-much-time.html
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks

Short Paper: Addressing Sophisticated Email
Attacks

Markus Jakobsson(B)

Agari, San Mateo, CA, USA
mjakobsson@agari.com

Abstract. We argue that as email attacks continue to increase in sophis-
tication, error rates and filter processing times are both likely to increase.
We address the problem at its root by introducing the notion of open
quarantine, an approach that avoids tradeoffs between filtering precision
and delivery delays. This is achieved using a multi-phase filtering app-
roach, combined with the neutralization of messages with undetermined
security posture.

Keywords: Email · Error rate · Nation-state attacks
Social engineering

1 Introduction

Just ten years ago, Internet security abuses were almost synonymous with small-
time crime, whether involving poorly spelled email messages used in attempts
to steal banking credentials or computer viruses used to send Viagra spam to
millions of consumers.

The threat is very different these days, and points in the direction of dra-
matically increased attacker sophistication. This increase can be tracked and
predicted by observing techniques used in nation-state sponsored attacks, such
as recent politically motivated attacks, as techniques developed for or perfected
in nation-state attacks are commonly re-used to attack enterprise targets and—
in some cases—individuals.

While early politically motivated cyberattacks focused on disruption—
whether related to the Internet [2], the power grid [5] or the operation of ura-
nium centrifuges [14]—a more recent breed of politically motivated attacks have
instead aimed at extraction of sensitive information [1,3,6,19]. Another form of
attack based on extraction focuses on funds instead of information; an exam-
ple of this is the 2016 attacks on banks using Swift, epitomized by the heist
on Bangladesh Bank [17]. This attack straddled the fence between politics and
profit by transferring massive amounts of funds to a politically ostracized regime.

Interestingly, while the sophistication of attacks has shot through the roof
as groups sponsored by nation states have entered the playing field, the princi-
pal attack vectors have remained much the same. Namely, most of the attacks
described above involved malware, and most used deceptive emails—commonly
c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 310–317, 2017.
https://doi.org/10.1007/978-3-319-70972-7_17

Short Paper: Addressing Sophisticated Email Attacks 311

for delivering Trojans, sometimes for stealing credentials. This paper focuses on
the use of email as an attack vector.

Deceptive emails are used by cyberattackers to carry out three different types
of attacks: (1) to coerce the recipient to follow a hyperlink to a website mas-
querading as a trusted site, where the recipient’s login credentials are requested;
(2) to compel the recipient to install malware – whether by opening a malicious
attachment or visiting a malicious website; and (3) to convince the recipient
to surrender sensitive information or willingly transmit money to the attacker.
To succeed with their deception, attackers masquerade as parties trusted by
their intended victims; use social engineering laden messages; and, occasionally,
hyperlinks or attachments that pose danger to users.

In contrast to traditional phishing attacks and typical spam, the detection of
deceptive emails cannot be done in ways that leverage large volumes of identical
or near-identical unwanted messages, disreputable senders, or keywords indica-
tive of abuse. This is because cyberattacks typically are targeted. They use cus-
tomized messages, senders and hyperlinks without bad reputation, and—to the
extent that they contain malware attachments—individually repacked malware
instances that avoid triggering signature-based anti-virus filters.

The analysis of messages with the goal of identifying targeted attacks, accord-
ingly, is time consuming. Diligent scrutiny can easily take minutes of computa-
tional effort for difficult emails, and the time is expected to increase as more
rules are added to address the mushrooming of new attacks and the increased
sophistication likely to be seen onwards. Particularly subtle forms of deceit may
require human-assisted review to detect, further adding to the worst-case deliv-
ery delays. Without meticulous screening, of course, we expect to see either false
positives or false negatives to increase—or, potentially, both of these.

The delays caused by filtering—and the associated fears of lost messages—
may very well become the greatest liability when it comes to deploying strong
security against targeted attacks. This is due to the resistance among decision
makers to accept security methods that have the potential of introducing notice-
able delivery delays or, worse still, causing false positives. Given the relatively
low commonality of targeted attacks and a widespread hubris among end users
as it comes to being able to identify threats, this reluctance is understandable.

This paper addresses the intrinsic tradeoffs between false positives, false neg-
atives and delivery delays by introducing a new filtering paradigm that we refer
to as open quarantine. Open quarantine balances the needs of security and usabil-
ity using a two-phase filter process. In the first phase, a risk score is computed
for each incoming message. Messages with a risk score corresponding to near-
certainty malice (e.g., those containing known malware attachments) are blocked,
and messages with a risk score corresponding to a near-certainty benevolence
(e.g., messages from trusted parties, with no risky contents) are delivered. The
remainder—which comprises on the order of 1% of the traffic volume for typ-
ical organizations—will be subject to careful scrutiny carried out in a second
phase. The power of open quarantine is that the undetermined emails will not
be kept out of the inbox of the recipient as they are being subjected to additional

312 M. Jakobsson

scrutiny. Instead, they will be neutralized and delivered. The neutralization
limits the functionality of the email but allows the recipient to access non-risky
components while the second-phase filtering is performed. After the second phase
of filtering concludes, the neutralization will be reverted (for safe emails) or a
blocking action will be carried out.

Open quarantine enables additional security measures that were not prac-
tically meaningful in a world where filtering decisions need to be made within
milliseconds. For example, consider an email received from a trusted sender,
e.g., a party with whom the recipient has communicated extensively in the past.
Under normal circumstances, this would be considered safe. However, if the email
contains high-risk content, such as apparent wiring instructions, and the sender
does not have a DMARC reject policy, then this poses an uncomfortable risk
since the email may have been spoofed. To address this potential threat, the
receiver’s system can send an automated message to the apparent sender1, ask-
ing this party to confirm having sent the email by clicking on a link or replying
to the message. If an affirmative user response is received then this is evidence
that the email was not spoofed, as an attacker that spoofs emails would not
receive the confirmation request.

Outline. After reviewing the related work (Sect. 2), we describe open quar-
antine, providing detailed examples of the filters to be used in the two phases
(Sect. 3). We then turn to the user experience, describing example neutralization
methods (Sect. 4).

2 Related Work

Our focus is on addressing fraudulent email. DMARC [20], which combines
DKIM and SPF, has done a terrific job addressing one type of fraudulent mail,
namely spoofed emails. However, it does not address abuse using look-alike
domains, display name attacks or corrupted accounts, nor does it protect an
organization against malicious incoming email as much as it protects it against
abuse of its brand. This paper considers the threat of fraudulent email from
the perspective of the receiving organization, as opposed to the impersonated
organization.

The use of social engineering in cyberattacks is on the rise [7,10], and has long
been known that the use of targeting increases an attacker’s yield dramatically [9].
Publicly available resources, including social network services, can be used by crim-
inals to improve the success of targeting [8]. In addition to being part of the recipe
of many of the attacks described in the introduction, the confluence of email-borne
social engineering and Trojans has recently resulted in a rapid rise of ransomware
attacks [15].

A problem of growing importance is the attack of personal accounts of users
belonging to targeted organizations; this is known to have taken place, for

1 Note, however, that the confirmation request would not be sent to a potential reply-
to address.

Short Paper: Addressing Sophisticated Email Attacks 313

example, in the attacks on the DNC [1,6]. This is made easier as a result of
large-scale breaches (e.g., [18]) and using clustering of identities [4]. One of the
reasons for the increasing prominence of this attack is that it is mounted outside
the security perimeter of the targeted organization, and as such, circumvents tra-
ditional detection methods. We show how open quarantine enables the validation
of high-risk messages coming from personal accounts.

Another problem is that, increasingly, sophisticated attacks rely on custom
messages and, to the extent malware is employed, custom-packed Trojans. This
complicates automated analysis, sometimes requiring manual review of contents
to make security determinations. This is an approach that has been started to be
tested in a handful organizations (e.g., [16]). While promising, it is an approach
that causes longer processing times. Consequently, manual review is impractical
for the traditional email delivery paradigm, as it requires quarantine in order to
offer security improvements. The use of open quarantine enables increased use
of manual review without imposing delays.

Traditional wisdom has that there is a tradeoff between false positives and
false negatives where ROC curves are defined in the context of a limited amount
of processing. This means that the maximum tolerable to delivery delay defines
the ROC curve in the context of a particular problem and filter technology.
Our approach shows that these constraints can be escaped by the introduction
of temporary neutralization methods applied to messages of uncertain security
posture, and a user experience designed to convey potential risk.

3 Open Quarantine

The notion of open quarantine depends on being able to perform a tripartite
classification of messages into good, bad and undetermined, where the two first
categories have a close to negligible probability of containing misclassified mes-
sages. For email delivery, this classification can be done in flow, i.e., without any
notable delay. One approach uses a scoring, of each incoming email, in terms of
its measured authenticity (determining the likelihood that it was not spoofed,
based on the infrastructure that it originated from); reputation (a measure of
the past behavior of the sending infrastructure) and trust (a measure of previ-
ous engagement between the sender and the recipient, and their organizations).
More details can be found in the extended version of this paper [12].

The second phase filtering depends on the outcome of the first phase filtering,
and may involve in-depth database lookups; manual review; automated messag-
ing to the apparent sender; and more. We will provide details around three of
these filtering actions to clarify the approach:

High Risk of Spoofing. While DMARC deployment is on the rise, there is far
from universal deployment of this de-factor standard. As a result, email spoofing
is still a reality organizations have to deal with. Roughly half of all attempts to
pose as somebody else involve spoofing. For emails that the first-phase review
identify as undetermined due to a low authenticity score, more thorough scrutiny
should be performed.

314 M. Jakobsson

Automated analysis can identify senders that are particularly vulnerable to
spoofing attacks, as DMARC records are publicly available. This corresponds
to email from senders whose organizations do not have a DMARC reject policy
in place. Messages that are at high risk of having been spoofed can be vali-
dated by generating an automated message for the apparent sender, requesting
a confirmation that he or she sent the message. If an affirmative reaction to
this message is observed, the initial message is classified as good; if a negative
reaction is received, it is classified as bad. Heuristics can be used how to classify
messages resulting in no response after a set time has elapsed; for example, a
message with a reply-to address not previously associated with the sender, or
containing high-risk content, could be classified as spoofed if there is no affirma-
tive reaction within ten minutes of the transmission of the automated validation
request.

High Risk of Impersonation. The first phase filtering may indicate a higher
than normal risk for impersonation. Consider, for example, an email is received
from a sender that is neither trusted by the recipient or her organization, nor has
a good reputation in general, but for which the display name is similar to the dis-
play name of a trusted party or a party with high reputation (see, e.g., [10]). This,
by itself, is not a guarantee that the email is malicious, of course. Therefore, addi-
tional scrutiny of the message is beneficial.

Automated analysis can be used to identify some common benevolent and
malicious cases. One common benevolent case involves a sender for which the dis-
play name and user name match2, and where the sender’s domain is one for which
account creation is controlled3. A common malevolent case corresponds to a newly
created domain, and especially if the domain is similar to the domain of the trusted
user to which the sender’s display name is similar. There are additional heuristic
rules that are useful to identify likely benevolent and malevolent cases. However,
a large portion of display names and user names do not match any of these com-
mon cases—whether the message is good or bad—for these, manual review of the
message contents can be used to help make a determination.

Another helpful approach is to send an automated request to the trusted
party whose name is matches the sender’s name, asking to confirm whether the
email from the new identity was sent by him or her. For example, the request
may say “Recently, <recipient> received an email from a sender with a similar
name to yours. If you just sent that email, please click on the link below and
copy in the subject line of the email and click submit. Doing this will cause your
email to be immediately delivered, and fast-track the delivery of future emails
sent from the account.”

High Risk of Account Take-Over. The first phase filtering may indicate a
higher than normal risk for an account take-over of the account of the sender.
2 This does not mean a character-by-character equivalence, but rather, a match accord-

ing to one of the common user name conventions.
3 This corresponds to typical enterprise, government and university accounts, for

example, but not to typical webmail accounts or domains that may have been cre-
ated by a potential attacker.

Short Paper: Addressing Sophisticated Email Attacks 315

For example, one such indication is an email with high trust, authenticity and
risk scores—this is an email likely to be sent from the account of a trusted party,
but whose content indicates potential danger.

If the source of potential danger is an attachment then this can be scrutinized,
including both an anti-virus scan and processing of potential text contents of the
attachment to identify high-risk storylines (see, e.g., [13]). Similarly, a suspect
URL can be analyzed by automatically visit the site and determine whether it
causes automated software downloads, or has a structure indicative of a phish-
ing webpage. The system can also attempt to identify additional indications of
risk; for example, by determining if the sender of the suspect email is associated
with a recent traffic anomaly: if the sender has communication relationships
with a large number of users protected by the system, and an unusual number
of these received emails from the sender in the recent past, then this increases
the probability of an ATO having taken place. A second-phase risk score is com-
puted using methods like this. If the cumulative risk score falls below a low-risk
threshold, then the message is deemed safe, and the second phase concludes. If
the cumulative score exceeds a high-risk threshold, then the message is deter-
mined to be dangerous, and a protective filter action is taken. If the score is
in between these two thresholds then additional analysis may be performed.
For example, the message can be sent for manual review, potentially after being
partially redacted to protect the privacy of the communication. An another app-
roach involves automatically contacting the sender using a second channel (such
as SMS) to request a confirmation that the sender intended to send the message.
Based on the results of the manual review, the potential response of the sender,
and other related results, a filtering decision is made.

4 Recipient User Experience

The user experience of the recipient is closely related to the method of neutral-
ization of messages that are classified as undetermined. As soon as a message
is identified as undetermined, its primary risk(s) are also identified, and one or
more neutralization actions are taken accordingly. Generally speaking, the neu-
tralization may involve a degradation or modification of functionality and the
inclusion of warnings. We provide details on the same three cases described in
Sect. 3:

High Risk of Spoofing. A message that is identified in the first phase as
being at a higher-than-normal risk of being spoofed can be modified by rewriting
the the display name associated with the email with a subtle warning—e.g.,
replacing “Pat Peterson” with “Claims to be Pat Peterson”—and by inclusion
of a warning. An example warning may state “This email has been identified
as potentially being forged, and is currently scrutinized in further detail. This
will take no more than 30min. If you need to respond to the message before the
scrutiny has completed, please proceed with caution.”. In addition, any potential
reply-to address can be rewritten by the system, e.g., by a string that is not
an email address but which acts as a warning: “You cannot respond to this

316 M. Jakobsson

email until the scrutiny has completed. If you know that this email is legitimate,
please ask the sender to confirm its legitimacy by responding to the automatically
generated validation message he/she has received. You will then be able to reply.”

High Risk of Impersonation. Emails appearing to be display name attacks
can be modified by removing or rewriting the display name, and by adding warn-
ings. These warnings would be different from those for a high-risk spoof message;
an example warning is “This sender has a similar name to somebody you have
interacted with in the past, but may not be the same person”. Alternatively, the
recipient can be challenged to classify the source of the email [11] in order to
identify situations in which the recipient believes an email comes from a trusted
party, whereas it does not.

HighRisk of Account Take-Over. Account Take-Overs (ATOs) are often used
by attackers to send requests, instructions and attachments to parties who have
a trust relationship with the user whose account was compromised. Accordingly,
when an email suspected of being the result of an ATO contains any element of
this type, the email recipient needs to be protected. One traditional way to do this
is to rewrite any URL to point to a proxy; this allows the system to alert the user
of risk and to block access without having to rewrite the message. Attachments
can be secured in a similar way—namely, by replacing the attachment with an
attachment of a proxy website that, when loaded, provides the recipient with a
warning and the attachment. Text that is considered high-risk can be partially
redacted or augmented with warnings, such as instructions to verify the validity
of the message in person, by phone or SMS before acting on it.

In addition, emails with an undetermined security posture can be augmented
by control of access to associated material – whether websites, attachments, or
aspects of attachments (such as a macro for an excel file). All emails with an
undetermined security posture can also be visually modified, e.g., by changing
the background color of the text. As soon as the second-phase classification of
an email has made a determination—whether identifying an email as good or
bad—any modifications can be undone and limitations lifted by a replacement
of the modified message with an unmodified version in the inbox of the recipient.

References

1. Alperovitch, D.: Bears in the midst: intrusion into the Democratic National Com-
mittee. CrowdStrike Blog, 15 June 2016

2. Anderson, N.: Massive DDoS attacks target Estonia; Russia accused. Arstechnica,
14 May 2007

3. Barrett, D., Yadron, D., Paletta, D.: U.S. suspects hackers in china breached about
four (4) million people’s records, official say. Wall Street J., 5 June 2015

4. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email
social networks. In: Proceedings of the 2006 International Workshop on Mining
Software Repositories, MSR 2006, pp. 137–143. ACM, New York (2006)

5. E-ISAC and SANS. Analysis of the Cyber Attack on the Ukrainian Power Grid
Defense, 18 March 2016

Short Paper: Addressing Sophisticated Email Attacks 317

6. Franceshi-Bicchierai, L.: How hackers broke into John Podesta and Colin Powell’s
Gmail accounts. Motherboard, 20 October 2016

7. Hadnagy, C.: Social Engineering: The Art of Human Hacking. Wiley, Indianapolis
(2010). ISBN-13: 978–0470639535

8. Irani, D., Balduzzi, M., Balzarotti, D., Kirda, E., Pu, C.: Reverse social engineer-
ing attacks in online social networks. In: Holz, T., Bos, H. (eds.) DIMVA 2011.
LNCS, vol. 6739, pp. 55–74. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22424-9 4

9. Jagatic, T.N., Johnson, N.A., Jakobsson, M., Menczer, F.: Social phishing. Com-
mun. ACM 50(10), 94–100 (2007)

10. Jakobsson, M.: Understanding Social Engineering Based Scams. Springer,
New York (2016). ISBN 978-1-4939-6457-4

11. Jakobsson, M.: User trust assessment: a new approach to combat deception. In:
STAST (2016)

12. Jakobsson, M.: Addressing sophisticated email attacks. In: Proceedings of Financial
Cryptography (2017). Full version of paper at http://www.markus-jakobsson.com/
publications

13. Jakobsson, M., Leddy, W.: Fighting today’s targeted email scams. IEEE Spectr.,
April 2016

14. Kushner, D.: The real story of Stuxnet-How Kaspersky Lab tracked down the
malware that stymied Iran’s nuclear-fuel enrichment program. IEEE Spectr., 26
February 2013

15. Manly, L., Salvador, M., Maglalang, A.: From RAR to JavaScript: ransomware
figures in the fluctuations of email attachments. Trendmicro blog, 22 September
2016

16. Olivarez-Giles, N.: To fight trolls, periscope puts users in flash juries. Wall Street
J., 31 May 2016

17. Shevchenko, S.: Two Bytes To $951M, BAE Systems Threat Research Blog, 25
April 2016

18. Snider, M., Weise, E.: 500 Million Yahoo accounts breached. USA Today, 22 Sep-
tember 2016

19. Turton, W.: YahooMail is so bad that congress just banned it. Gizmodo, 10 May
2016

20. Zwicky, E., Martin, F., Lear, E., Draegen, T., Andersen, K.: Interoperability
issues between DMARC and indirect email flows. Internet-Draft draft-ietf-dmarc-
interoperability-18, Internet Engineering Task Force, September 2016. Work in
Progress

https://doi.org/10.1007/978-3-642-22424-9_4
https://doi.org/10.1007/978-3-642-22424-9_4
http://www.markus-jakobsson.com/publications
http://www.markus-jakobsson.com/publications

Blockchain Technology

Escrow Protocols for Cryptocurrencies:
How to Buy Physical Goods Using Bitcoin

Steven Goldfeder1(B), Joseph Bonneau2,3, Rosario Gennaro4,
and Arvind Narayanan1

1 Princeton University, Princeton, USA
{stevenag,arvindn}@cs.princeton.edu

2 Stanford University, Stanford, USA
jbonneau@cs.stanford.edu
3 EFF, San Francisco, USA

4 City College, City University of New York, New York, USA
rosario@cs.ccny.cuny.edu

Abstract. We consider the problem of buying physical goods with cryp-
tocurrencies. There is an inherent circular dependency: should be the
buyer trust the seller and pay before receiving the goods or should the
seller trust the buyer and ship the goods before receiving payment? This
dilemma is addressed in practice using a third party escrow service. How-
ever, we show that naive escrow protocols introduce both privacy and
security issues. We formalize the escrow problem and present a suite of
schemes with improved security and privacy properties. Our schemes are
compatible with Bitcoin and similar blockchain-based cryptocurrencies.

1 Introduction

While Bitcoin and its many successor cryptocurrencies offer a secure way to
transfer ownership of coins, difficulty arises when users wish to exchange digital
assets for physical goods. At a high level, parties wish to perform an atomic
exchange with guaranteed fairness—i.e. either both the currency and goods will
change ownership or neither will. The same difficulty arises in electronic com-
merce with traditional payment mechanisms. A buyer doesn’t want to pay with-
out assurance that the seller will ship the purchased goods, while a seller doesn’t
want to ship without assurance that payment will be received

Traditionally, this problem is solved in one of two ways. For large retailers
with significant reputation (e.g. Walmart or Overstock) most customers are suf-
ficiently confident that goods will be shipped that they are willing to pay in
advance. For smaller sellers without a global reputation, buyers typically pay
via a trusted third party, such as eBay or Amazon. If the buyer does not receive
the item or the transaction is otherwise disputed, the third party will mediate
the dispute and refund the buyer if deemed necessary. In the interim, the funds
are in escrow with the intermediary.When users pay with credit cards, credit

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 321–339, 2017.
https://doi.org/10.1007/978-3-319-70972-7_18

322 S. Goldfeder et al.

card companies often serve a similar role. A buyer can register a complaint with
their issuer who will mediate and reverse charges if fraud is suspected.

This model has been adapted for online marketplaces employing cryptocur-
rencies for payment, including the original Silk Road [22] and many successors.
In this model, the buyer transfers the payment to a trusted third party who only
transfers it to the seller once it has ascertained that the product was delivered.
However, this approach is not optimal for two reasons. First, it requires the third
party to be actively involved in every transaction, even when there is no dispute.
Second, it is vulnerable to misbehavior by the mediator, which can simply pocket
the buyer’s payment and never transfer it to the seller. This is considerably more
difficult to trace or rectify due to the irreversible and pseudonymous nature of
Bitcoin transactions. Furthermore, the history of Bitcoin exchanges [38] and
online marketplaces [22] has been plagued by fraud and hacks, making it diffi-
cult for buyers or sellers to place high trust in any single service as a trusted
third party. While better escrow protocols, which do not allow the mediator to
trivially abscond with funds, are known in the literature [19] (and in practice [7]),
they still introduce a number of problems.

Fortunately, Bitcoin’s scripting language enables better protocols than the
ones currently in use. We define a series of desirable properties for escrow pro-
tocols to have:

Security. Intuitively, an escrow protocol is secure if the mediator(s) cannot
transfer the funds to anyone other than the buyer or the seller.

Passivity. A passive escrow protocol requires no action on the part of the
mediator if no dispute arises, making the common case efficient.

Privacy. If implemented naively, escrow transactions can leave a distinct
fingerprint visible on the blockchain which can potentially leak sensitive business
information. For example, online merchants may not want their competitors to
learn the rate at which they enter disputes with customers. We define a series
of privacy properties regarding whether observers can determine that an escrow
protocol was used, if a dispute occurred, or how that dispute was resolved.

Group escrow. To reduce the risk of trusting any single party to adjudicate
disputes honestly, we introduce the notion of group escrow, relying on a group of
mediators chosen jointly by the buyer and seller. Group escrow schemes should
not require communication between the mediators, leaving the buyer and seller
free to assemble a new group in an ad-hoc manner. Cheating should only be
possible if a majority of the mediators colludes with one of the transacting
parties.

Our contributions. To our knowledge, we are the first to formally study
the escrow problem for physical goods and define the related properties. We
introduce a series schemes with various properties, building up to our group
escrow schemes which is secure, private, and passive. We note that our protocol
is fully compatible with Bitcoin today as well as most other blockchain-based
cryptocurrencies.

Escrow Protocols for Cryptocurrencies 323

2 Background and Tools

2.1 ECDSA

Bitcoin, along with most subsequent cryptocurrencies, employs the Elliptic Curve
Digital Signature Algorithm (ECDSA) using NIST’s secp256k1 curve [2–4].
Our protocols in this paper are largely agnostic to the details of the signature algo-
rithm, but we include a summary of ECDSA in the full version of this paper.

2.2 Secret Sharing and Threshold Cryptography

Threshold secret sharing is a way to split a secret value into shares that can be
given to different participants, or players, with two properties: (1) any subset
of shares can reconstruct the secret, as long as the size of the subset equals or
exceeds a specified threshold (2) any subset of shares smaller than this threshold
together yields no information about the secret. In the most popular scheme,
due to Shamir, the secret is encoded as a degree t polynomial, and a random
point on this polynomial is given to each of n players, any t + 1 of which can be
used to precisely reconstruct the polynomial using Lagrange interpolation [40].

Secret sharing schemes are fundamentally one-time use in that once the secret
is reconstructed, it is known to those who participated in reconstructing it. A
more general approach is threshold cryptography, whereby a sufficient quorum of
participants can agree to use a secret to execute a cryptographic computation
without necessarily reconstructing the secret in the process. A (t, n)-threshold
signature scheme distributes signing power to n players such that any group of
at least t + 1 players can generate a signature, whereas a smaller group cannot.

A key property of threshold signatures is that the private key need not ever
be reconstructed. Even after repeated signing, nobody learns any information
about the private key that would allow them to produce signatures without a
threshold sized group. Indeed, threshold cryptography is a specific case which
led to the more general development of secure multiparty computation [29].

2.3 ECDSA Threshold Signatures

Gennaro et al. presented an ECDSA threshold signature scheme in [26]. While
previous threshold DSA signature schemes existed in the literature [27,28,34],
the scheme in [26] is the only ECDSA scheme that works for arbitrary n and
any t < n. All of our constructions that use threshold signatures can be instan-
tiated with the scheme from [26]. The shared key in this scheme can either be
distributed by a trusted dealer or generated jointly by the participating parties
in a trustless manner.

2.4 Stealth Addresses and Blinded Addresses

Bitcoin stealth addresses [6] are a special address type that solve the following
problem: Alice would like to publish a static address to which people can send

324 S. Goldfeder et al.

money. While she can do this, a blockchain observer will be able to trace all
incoming payments to Alice. Alice would thus like to publish such an address
while ensuring that the incoming payments she receives are neither linkable to
her nor to each other. Moreover, the payer and Alice should not need to have
any off-blockchain communication.

While stealth addresses are an elegant solution to this problem, these
addresses have a unique structure, and as a result, the anonymity set provided
by using stealth addresses is limited to the set of Bitcoin users that use them.
For the use cases in this paper, we can relax the requirement that all commu-
nication must take place on the blockchain. Indeed, when there is a dispute in
an escrow transaction, we expect that the parties will communicate offline with
the mediator. Thus, we allow offline communication and as a result are able to
extend the anonymity set provided by such addresses to all Pay-to-PubkeyHash
transactions on the blockchain.

Our basic technique is largely the same as the one used in Bitcoin stealth
addresses [6] as well as deterministic wallets [41]. However, to our knowledge, we
are the first to prove its security. We present the details here, and refer to these
addresses as blinded addresses.

An ECDSA key pair is a private key x ∈ Zq and a public key y = gx computed
in G. For a given ECDSA key pair, (y, x), we show a blinding algorithm that
has the following property: anybody that knows just the public key y can create
a new public key y′ and an auxiliary secret x̂ such that in order to create a
signature over a message with the key y′, one needs to know both the original
key x as well as the auxiliary secret x̂. We stress that the input to this algorithm
is only the public parameters and the public key y.

On input y:

– choose x̂ ∈ Zq at random
– compute ŷ = gx̂ in G
– compute y′ = y · ŷ in G
– output blinded public key y′ and auxiliary secret x̂

One who knows both x and x̂ can create a signature that will verify with
the public key y′. This is clear as the private key corresponding to y′ is simply
x′ = x + x̂ in G.

See the full version of this paper for a security and privacy argument for this
blinding scheme.

3 Related Work

3.1 Fair Exchange

The problem of fair exchange is how two mutually distrusting parties can jointly
exchange digital commodities such that both parties receive the other party’s
input or neither do. Indeed, fair exchange is a special case of fair two-party
computation in which two parties wish to jointly perform a function over private
inputs such that either both parties receive the output or neither does.

Escrow Protocols for Cryptocurrencies 325

Fair exchange has been studied extensively in the cryptographic literature
[12,16,30]. Blum [18] and later Bahreman et al. [14] studied the problem of
contract signing and how to send certified electronic mail – that is one party
sends a document and the other sends a receipt – in a fair manner. Jakobsson
studied fair exchange in the context of electronic checks [30].

The study of fair exchange naturally leads to the desire for optimistic (or
passive) protocols [12] in which the third party only gets involved when there
is a dispute. Such protocols are ideal in that they are far easier to use at scale
as presumably the majority of transactions will not be disputed. This model is
often used in designing fair protocols [13,20,25,32,37].

One approach to building fair two-party protocols uses monetary penalties
[32,33]. Intuitively, parties are incentivized to complete the protocol fairly, and
if one party receives its output but aborts before the other party does, the
cheating party will have to pay a penalty. Recently, several papers have proposed
variations of this idea and shown how one could build secure protocols on top
of Bitcoin, crafting Bitcoin transactions in such a way that a cheater will be
automatically penalized or an honest party rewarded [10,11,17].

3.2 Exchanging Bitcoins for Digital Goods

Exchanging units of a cryptocurrency for a digital good can be thought of as
a special case of fair exchange. Elegant protocols exist which facilitate cross-
currency exchange in a fair and trustless manner [1,9,19,23].

Zero-knowledge contingent payments (ZKCP) solves the problem of using
Bitcoin to purchase a solution to an NP-problem. Maxwell first presented the
ZKCP protocol in 2011 [36] and it was publicly demonstrated in 2016 when
bitcoins were traded for the solution to a Sudoku puzzle [35]. Banasiki et al.
formalize and refine Maxwell’s ZKCP protocol [15].

Juels et al. [31] propose a protocol for purchasing the private key to a specified
public key, using a platform with a Turing-complete scripting language such as
Ethereum. We limit our focus to the simpler capabilities of Bitcoin, which are
sufficient to build protocols for escrowing payment for physical goods.

4 Escrow: Motivation, Definitions, and Model

Existing fair-exchange schemes apply only to the transfer of digital assets and
generally fall into one of the following categories:

– Protocols that rely on transferring a digital signature (or “electronic
check” [30]). These protocols give a trusted third party the ability to recon-
struct the signature, thus assuring fairness.

– Protocols that rely on the fact that the digital asset can be reproduced and
re-sent. Broadly, these schemes resolve disputes by enabling the mediator to
reconstruct the desired asset. The disputing party in essence deposits a copy
of its digital asset with the mediator.

326 S. Goldfeder et al.

Bitcoin breaks both of these assumptions, so none of the existing fair-
exchange techniques work. While Bitcoin transactions are signed with digital
signatures, they are fundamentally different from the electronic checks and other
electronic forms of payment that are discussed in the existing literature. Under
those schemes, the assumption was always that the transfer of the digitally signed
transaction was equivalent to being paid. This was either because it relied on an
older form of electronic cash in which the signed statement served as a bearer
token and anyone bearing it could cash in the money, or it was due to the fact
that the signed statement served as a contract, and one could take the contract
to a court to receive payment.

With Bitcoin, however, a digitally signed transaction is insufficient since until
the transaction is included in the blockchain, the buyer can double spend that
transaction. Thus, bitcoins cannot be escrowed in the traditional manner. The
buyer can sign a transaction that pays the seller, but this cannot be kept in
escrow. If it is in escrow, the buyer can attempt to prevent its inclusion in the
blockchain by frontrunning. That is, the buyer can quickly broadcast a conflicting
transaction if he sees the escrowed transaction broadcast to the network.

The only guaranteed way to know a signed transaction will have value is to
include it in the blockchain—but at that point the seller has been paid.

Of course, if the buyer double spends, the seller can use the signed transaction
to prove that fraud has occurred. But remember that Bitcoin does not use real-
world identities and often parties interact anonymously, so proof of fraud will
generally be insufficient to recover lost money.

From the seller’s point of view, shipping physical goods is also unlike sce-
narios considered in the fair exchange literature because it is not possible to
cryptographically prove that the seller behaved honestly. We assume our medi-
ator will have to evaluate non-cryptographic evidence, such as package tracking
numbers or sign-on-delivery receipts, as online merchants already do today.

The public nature of the Bitcoin blockchain – i.e. the entire transaction his-
tory of Bitcoin is public – is also distinct from traditional fair exchange assump-
tions. In a traditional fair exchange protocol, there is no global ledger so no
outsider could learn anything about the exchange or the escrow transactions.
With Bitcoin transactions, however, we will need to consider and actively protect
against the privacy implications imposed by the public nature of the blockchain.

Thus, unlike existing protocols for fair-exchange, our goal in this paper is
not to provide a cryptographic way to mediate disputes. Our goal is instead
to develop techniques in which the transacting parties can passively and pri-
vately allow a third party to mediate their transaction. To achieve fairness, our
protocols will make sure that both transacting parties cannot deviate from the
semi-trusted third party’s ruling.

4.1 Our Scenario

Suppose Alice, an (online) merchant, is selling an item to Bob, a (remote) cus-
tomer. A natural dilemma arises: when should Bob pay? If Bob pays immedi-
ately, he runs the risk of Alice defrauding him and never sending him the item.

Escrow Protocols for Cryptocurrencies 327

Yet if he demands to receive the item before paying, Alice runs the risk of being
defrauded by never being paid.

This problem arises in any payment system where the service and the pay-
ment cannot be simultaneously exchanged. A trivial solution is to use a payment
platform which escrows the payment and can mediate in the event of a dispute.
Reversible payment systems (e.g. credit card payments) enable the transaction
to go through right away, but we still describe them as escrow services because
the intermediary has the ability to undo the payment. Because Bitcoin transac-
tions are irreversible, we must rely on an explicit escrow service if the buyer and
seller don’t trust each other. Thus, instead of sending money to Alice directly,
Bob sends the payment to a special escrow address that neither Bob nor Alice is
able to withdraw from unilaterally. A mediator is a third-party used to mediate
a transaction which is capable of deciding which party can withdraw funds from
the escrow address.

4.2 Active and Optimistic Protocols

While a mediator must take action in the case of a dispute, we would like to
avoid requiring any action by the mediator if no dispute arises. We define the
requirements placed on the mediator with the following two properties:

Definition 4.1 (Active on deposit). An escrow protocol is active on deposit
if the mediator must actively participate when transacting parties deposit money
into escrow.

Definition 4.2 (Active on withdrawal). An escrow protocol is active on
withdrawal if the mediator must actively participate when transacting parties
withdraw money from escrow even if there is no dispute.

Of course a protocol may be both active on deposit and active on withdrawal.
Note that the mediator is, by definition, always active in the event of a dispute,
so we only consider the dispute-free case in our definition of active on withdrawal.
Combining these two definitions, we can define the requirements for a mediator
to be purely passive, or optimistic:

Definition 4.3 (Optimistic). An escrow protocol is optimistic (eq. passive) if
it is neither active on deposit nor active on withdrawal.

4.3 Security of Escrow Protocols

While the essential nature of a mediator is that both parties must trust it to
make a fair decision in the event of a dispute, we can consider the consequences
if a mediator acts maliciously.

We will consider only an external malicious mediator, meaning an adversary
that does not also control one of the transacting parties. An internal malicious
mediator also controls (or perhaps is) one of the participating parties. It is clear
that security against an internal malicious mediator is unachievable. Recall that

328 S. Goldfeder et al.

when a dispute arises, it is the responsibility of the mediator to award the funds
to the correct party even if the losing party objects. Thus, any mediator by
definition must have the ability to award the funds to one of the parties when
both the mediator and that party cooperate. An internal adversary that controls
the mediator as well as one of the transacting parties can create a dispute and
have the mediator rule in its favor, guaranteeing that it receives the funds. For
this reason, we define security of mediators only using the notion of an external
attacker1:

Definition 4.4 (Secure). An escrow protocol is secure if a malicious mediator
cannot transfer any of the money held in escrow to an arbitrary address without
the cooperation of either the buyer or seller.

4.4 Privacy

Another concern for escrow protocols is privacy. The Bitcoin blockchain is public
and reveals considerable information, including the amounts and addresses of all
transactions. For escrow transactions, we consider three notions of privacy. An
external observer is a party other than the transacting parties or the mediator.

Definition 4.5 (Dispute-hiding). An escrow protocol is dispute-hiding if an
external observer cannot tell whether there was a dispute that needed to be
resolved by the mediator.

Definition 4.6 (Externally-hiding). An escrow protocol is externally-hiding
if an external observer cannot determine which transactions on the blockchain
are components of that escrow protocol.

Note that our definition of externally hiding inherently relies on what baseline
(non-escrow) transactions are occurring on the blockchain. For our purposes, we
assume all non-escrow transactions are simple transactions sending money to a
specified address (in Bitcoin parlance, a P2PKH transaction).

Definition 4.7 (Internally-hiding). An escrow protocol is internally-hiding if
the mediator itself cannot identify that the protocol has been executed with itself
as a mediator in the absence of a dispute.

We note that internally-hiding and externally-hiding are distinct properties
and neither implies the other. Clearly, a scheme could be externally-hiding but
not internally-hiding. This will occur if the mediator can tell that money has
been put in its escrow, but an outsider looking at the blockchain cannot detect
that escrow is being used. More interestingly though, a scheme can be internally-
hiding but not externally-hiding. This occurs when it is clear from looking at
the blockchain that escrow is being used, but the mediator cannot detect that
its service is the one being used.
1 There may be other desirable features that can be categorized as security properties

that are out of the scope of this work.

Escrow Protocols for Cryptocurrencies 329

It is clear why a company may want full privacy as they may want to keep
all details of their business private. However, it is possible that an online mer-
chant might not need its escrowed payments externally or internally hiding (say,
it publicizes on its website that it uses escrow with a specific mediator). The
company may however still want the escrow protocol to be dispute-hiding so
that competitors cannot determine how often sales are disputed.

Of course, a buyer may take the exact opposite approach and demand trans-
parency – i.e. that any company that it interacts with uses an escrow service that
is not dispute-hiding so that the buyer can use this information to determine
how often the seller’s transactions are disputed.

4.5 Denial of Service

Our definition of security only prevents a directly profitable attack. Namely, the
goal of the adversary is to steal some or all of the money being held in escrow
by transferring the money elsewhere (e.g. to an address the adversary controls).
However, a malicious mediator might instead deny service by refusing to mediate
when there is a dispute.

The power of a denial-of-service attack is directly related to the type of
mediator. For an active-on-withdrawal protocol, the denial-of-service attack can
be launched even when the parties do not dispute, whereas for an optimistic
protocol a denial-of-service attack can only be launched when the parties dispute.

Note that a denial-of-service attack may be profitable if the mediator is able
to extort a bribe from the transacting parties in order to resolve a dispute. If
the mediator suffers no loss if the dispute is never resolved, then it carries no
financial risk from attempting such extortion. Of course, it may face significant
risk to its reputation.

We can design schemes that prevent denial of service in Sect. 5.5, but as we
will see, running such a service requires the mediator to put its own money into
escrow as a surety bond and requires an active-on-deposit protocol.

5 Escrow Protocols

In the previous section, we provided several definitions and security models out-
lining various types of mediators. We now propose several protocols for mediators
and show which properties they fulfill; we refer the reader to the full version of
this paper for detailed analysis of each scheme’s properties.

5.1 Escrow via Direct Payment (The Silk Road Scheme)

The simplest scheme is one in which the buyer sends money directly to the
mediator’s address. The mediator will then transfer the funds to the seller or back
to the buyer as appropriate. In case of a dispute, the mediator will investigate and
send the funds to the party that it deems to be correct. The illicit marketplace
Silk Road famously used a variation of this method of escrow.

330 S. Goldfeder et al.

To improve privacy, rather than sending the funds to the mediator’s long term
address, the buyer can send funds to a blinded address (Sect. 2.4). This will allow
the scheme to remain not-active-on-deposit while also not using the mediator’s
long term identifiable address. The buyer and seller can jointly generate the
randomness and run this algorithm together so that they are both convinced
that it was run properly.

To redeem the escrowed funds, the party to be paid will hand over x̂ to the
mediator. Using (x̂) together with its secret key x, the mediator can now sign
over the key y′, and thus create the pay-out transaction.

Properties. This naive scheme has many drawbacks: it is not secure, not opti-
mistic, and not internally hiding. On the other hand, the scheme is not active-
on-deposit and its simplistic nature scheme is somewhat privacy-preserving as
it is both dispute hiding and externally hiding.

5.2 Escrow via Multisig

A well-known improvement uses Bitcoin’s multisig feature. In this scheme, the
money is not sent directly to the escrow service’s address, but instead it is sent
to a 2-of-3 multisig address with one key controlled by each of the transacting
parties and one controlled by the mediator. When there is no dispute, the two
transacting parties can together create the pay-out transaction. Only when there
is a dispute will the mediator get involved, collaborating with either the buyer
or seller (as appropriate) to redeem the funds. This scheme is available today.2

As in the Silk Road scheme, for the sake of adding privacy, rather than
including a longstanding address that is publicly associated with the mediator,
the parties can use a blinded address.

Properties. This protocol is secure as the mediator cannot unilaterally redeem
the escrowed funds. It is also optimistic. However it is susceptible to denial-of-
service attack as the mediator can refuse to mediate a dispute.

The use of a blinded address for the mediator makes this scheme internally-
hiding. The 2-of-3 structure makes the scheme not externally hiding, however,
and it is also not dispute-hiding as one may be able to detect a dispute through
transaction graph analysis (see the full version of this paper for more details).

If one’s goal is an escrow scheme that is transparent, then the non-blinded
version of this scheme is a good candidate as it is secure and allows blockchain
observers to detect disputed transactions.

5.3 Escrow via Threshold Signatures

Replacing the 2-of-3 multisignature address with a single 2-of-3 threshold address
improves the privacy of this scheme. With threshold signatures, the three parties
jointly generate shares of a regular single key address such that any 2 of them can
jointly spend the money in that address. Unlike multisig, this threshold address
is indistinguishable from a typical address and to an external observer would

2 See for example https://escrowmybits.com/.

https://escrowmybits.com/

Escrow Protocols for Cryptocurrencies 331

look like the (blinded) Silk Road scheme. Moreover, the signed transaction on
the blockchain does not give any indication as to which parties participated in
generating the signature.

Properties. This scheme is secure, externally hiding, and dispute hiding. It
is not, however, optimistic as it is active-on-deposit – the threshold signature
scheme requires an interactive setup in which all 3 parties must participate. It is
also susceptible to denial of service. It also generates a new key every time that
both parties as well as the mediator must keep track of.

5.4 Escrow via encrypt-and-swap

We now present a new optimistic protocol which meets all of our privacy prop-
erties:

1. Alice and Bob generate a 2− of − 2 shared ECDSA key. Note that we do not
need a full threshold scheme, but the Thresh-Key-Gen protocol of Gennaro
et al. [26] is suitable to generate the secret shares in a distributed manner. At
the end of the protocol, Alice has xA, Bob has xB , and the shared public key
is y = gxA+xB . Moreover, as part of the protocol, both parties learn yA = gxA

and yB = gxB .
2. Alice sends cA = EM (xA), an encryption of her secret xA under M ’s public

key, to Bob together with a zero-knowledge proof3 πA that gD(cA) = yA.
3. Bob sends cB = EM (xB) to Alice together with a zero-knowledge proof πB

that gD(cB) = yB .
4. In the absence of a dispute, Alice sends xA to Bob and Bob can now transfer

the funds to his own account. Conversely, if both parties agree that a refund
is in order, Bob sends xB to Alice.

5. In the event of a dispute, the mediator investigates and chooses the “winner”,
which we’ll denote W ∈ {A,B}. The winner sends cW to M. M decrypts it
and sends it back to W , who now has both shares of the key and thus can
sign a redeem transaction.

3 The zero knowledge proof proves that a ciphertext encrypts the discrete log of
a known value for a known base. For details of how to construct this proof see
Camenisch et al. [21]. Gennaro et al. demonstrates that these proofs work with
ECDSA and Bitcoin keys [26].

332 S. Goldfeder et al.

Equivocation. This scheme introduces the risk of an equivocation attack in
which a malicious mediator tells both parties that they won the dispute. Each
party will give their ciphertext to the mediator, at which point the mediator can
reconstruct the entire key and steal the escrowed funds.

We can prevent this attack by replacing 2-of-2 shared address with a 3-of-3
address. The third share xC will be shared by the transacting parties and never
given to the mediator. This way, even if the mediator equivocates, it will only
receive two shares xA and xB and cannot transfer the money.

Properties. This protocol is both secure and optimistic. Moreover it satisfies all
of our privacy properties: it is internally-hiding, externally-hiding, and dispute-
hiding (on the blockchain, it appears as if funds were sent to an ordinary address).
The only con of this scheme is that it is susceptible to a denial-of-service attack.

5.5 Escrow with Bond

We now present a scheme that is resilient to denial-of-service attacks. To do
this, we include an incentive system to punish a mediator who fails to release
the funds from escrow. At a high level, we require the mediator to deposit a surety
bond alongside the transacting parties. The general idea of preventing denial-
of-service attacks by having the third party put money in bond has appeared in
other contexts [30].

We make use of a feature of the Bitcoin scripting language that requires one
to present an x such that SHA-256(x) = y as a condition of spending money. This
feature has previously been used, for example, to construct atomic cross-chain
swap protocols (see Sect. 3.2) or offline micropayment channels [39].

We use this feature to build a transaction that ensures that the mediator will
only be able to take his money out of bond if the escrow transaction is resolved.

1. Alice and Bob agree on a value x that is unknown to the mediator. They
compute y = SHA-256(x).

2. Bob, the buyer, creates a transaction with two inputs. One input is the funds
that he is putting in escrow; the other is the mediator’s bond. The bond
should be equal to Bob’s payment amount.

3. The first output of the transaction requires 2-of-3 of Alice, Bob, and the
mediator to sign. Moreover, it requires a SHA-256 preimage of y (e.g. x).

4. The second output requires a signature from the mediator as well as a SHA-
256 preimage of y.

Escrow Protocols for Cryptocurrencies 333

In the absence of a dispute, Alice and Bob can redeem the first output them-
selves). However, in the process, they must reveal x publicly on the blockchain,
which the mediator can then use to recover their bond. In case of a dispute,
Alice and Bob will refuse to reveal x until the mediator chooses a winner and
signs the output transaction, preventing the mediator from recovering the bond
until the dispute is resolved.

Properties. This protocol is both secure and resistant to denial of service.
However, it is active-on-deposit and not externally-hiding, internally-hiding, nor
dispute-hiding.

6 Group Escrow

The escrow protocols we have described so far assume that there is a single
mediator. Moreover, only one of these schemes (escrow bond) was resistant to
denial-of-service attacks, and this scheme achieved this property at the expense
of being active-on-deposit and compromising privacy.

Instead, we propose an entirely different way to deal with denial-of-service
attacks (as well as improve resistance to collusion attacks or a mediator simply
going offline). By distributing the signing power among n mediators who will
resolve disputes by a majority vote (we assume n is odd), we can ensure that no
single mediator has the ability to abort and deny service. As long as the majority
are willing to complete the protocol, a denial-of-service attack is thwarted.

A recurring lesson in Bitcoin’s history is that putting trust in any single party
is risky. Bitcoin has been plagued by exit scams in which third-party services
gain consumer trust and then disappear [5]. In a study of 40 Bitcoin exchanges,
Moore and Christin find that approximately 40% of these services went under,
often leaving no funds and no recourse for the customers that trusted them
[38]. In 2014, the then-largest exchange, Mt. Gox, famously claimed to have lost
850,000 bitcoins, and passed the losses directly to its customers.

6.1 Definitions and Models

Our definitions from single-mediator escrow protocols all remain in place, with
the exception that security now requires protection from theft even if all of the
mediators collude.

Definition 6.1 (Secure group escrow protocol). A group escrow service is
said to be secure if an external adversary that fully controls all of the mediators
cannot transfer any of the money being held in escrow.

We discuss two different models for how such groups of escrow services are
assembled. First, we might use an ad-hoc group of mediators. In this model, the
buyer and seller are free to (jointly) choose anybody with a Bitcoin address
to serve as mediators and the mediators need not ever communicate with
each other. Note that only one mediator must be jointly chosen (and trusted).

334 S. Goldfeder et al.

The buyer may choose k mediators and the seller chooses k mediators. They
then jointly choose 1 mediator as a “tie-breaker.”

We can also leverage predetermined groups which have already communicated
and agreed to work together. The buyer and the seller merely choose one of these
groups to act as their mediator service.

6.2 Group Escrow via Multisig

We can build a scheme using a script specifying that the funds can be redeemed if
either (1) the transacting parties both sign or (2) one of the transacting parties
together with a majority of the mediators signs. Using A and B to represent
signatures by the transacting parties and M1, . . . ,M2n+1 to represent respective
signatures by the mediators, the script will check that the following Boolean
formula is satisfied:

(A ∧ B) ∨ (A ∧ n+1-of-{M1, . . . ,M2n+1}) ∨ (B ∧ n+1-of-{M1, . . . ,M2n+1})

For privacy, the mediators’ addresses can be blinded as before.
While Bitcoin does limit the number of signature operations that a script can

contain, the limits are reasonable in practice. In particular, using Bitcoin’s pay
to script hash (P2SH) feature, one can create a script that specifies 15 signature
operations [8]. The script above requires up to 4 + 2m signature operations
to validate, where m is the number of moderators. Thus, this script would be
acceptable for m ≤ 5, and in practice 5 mediators will generally be sufficient.

Properties. This scheme is secure and optimistic. Since the mediators’
addresses are blinded, it is also internally hiding. However, it is neither dis-
pute hiding nor internally-hiding. It is partially resistant to denial-of-service
attacks as in order to launch such an attacks, the majority of the mediators
must participate.

6.3 Group Escrow via encrypt-and-swap

We can build a group-analog to our encrypt-and-swap scheme. As before, the
transacting parties run the Thresh-Key-Gen protocol of [26] to generate a shared
2-of-2 threshold address. Once they run this protocol, Alice has her key share
xA, and Bob has xB. Moreover, as a side effect of the Thresh-Key-Gen protocol,
both parties learn yA = gxA and yB = gxB .

The parties then create a Shamir secret sharing of xA and xB . If there are
n = 2t + 1 mediators, the transacting parties share their secret on a degree
t polynomial, thus ensuring that a majority of the mediators is necessary and
sufficient to recover the secret.

Using each mediator’s public key Mi, each party encrypts the corresponding
share to that mediator and gives all of these ciphertexts to the other party.

If there is no dispute, the party that is paying will give its key share to the
other party, who now has both shares and can redeem the money.

Escrow Protocols for Cryptocurrencies 335

In the event of a dispute, the mediators will vote. The winning party will
give each mediator the corresponding ciphertext that it received from the other
party. The mediators decrypt their shares, and a majority reconstructs the losing
party’s threshold key share. They then give this reconstructed key share to the
winning party who can now create a pay-out transaction to itself.

If all players honestly follow the protocol, it is clear that this protocol is both
secure and correct. However, we wish to achieve security against a malicious
player that may deviate from the protocol. Intuitively, in order to achieve this,
each party needs to prove to the other party that the values that it gives it are
indeed Shamir-secret sharings of their threshold secret share.

We implement this proof in two phases: for each mediator, when Alice gives
Bob the ciphertext ci = EMi

(Pi), Alice additionally includes a Feldman VSS [24]
(see the full version of this paper for a summary of Feldman VSS) value wi = gPi

as well as a zero-knowledge proof of consistency between these two values. Using
Feldman’s scheme, Bob then verifies that wi is indeed a Shamir secret-share
of xA.

We now present the details of this protocol:

1. Alice and Bob run Thresh-Key-Gen of Gennaro et al. [26] to generate a
shared 2-of-2 ECDSA key. Alice has xA, Bob has xB , and the shared public
key is y = gxA+xB . As part of the protocol, both parties learn yA = gxA and
yB = gxB .

2. Alice shares xA over a degree t polynomial with coefficients a1, . . . , at.

P (a)(w) = xA + a1w + · · · + atw
t

3. Alice computes a share P
(a)
i = P (a)(i) for each mediator and encrypts that

mediator’s share under their public key as follows:

c
(a)
i = EMi

(P (a)
i)

Alice gives Bob {c1, c2, . . . , cn}.
4. For each mediator’s share, Alice computes w

(a)
i = gP

(a)
i and gives Bob {w

(a)
1 ,

w
(a)
2 , . . . , w

(a)
n }.

5. For each mediator, Alice gives Bob a zero knowledge proof Π
(a)
i that states

gDMi
(c

(a)
i) = w

(a)
i

That is Alice proves that the c
(a)
i is an encryption of the discrete log with

respect to g of w
(a)
i .

6. Alice creates a Feldman VSS of the shared secret. In particular, she gives Bob
c
(a)
1 = ga1 , . . . , c

(a)
n = gan . Bob already has c

(a)
0 = gxA as this was output in

step 1.
7. Bob verifies each of the zero-knowledge proofs Π

(a)
i . Bob also verifies ∀i,

w
(a)
i = c

(a)
0 · (c(a)1)i · (c(a)2)i

2 · · · (c(a)t)i
t

If any of these checks fail, Bob aborts.

336 S. Goldfeder et al.

8. Bob and Alice perform steps 2–8 in reverse.
9. Now that each party is convinced that they hold the VSS of the other party’s

share encrypted to the mediators, Bob (the buyer) deposits the money in the
escrow address.

Properties. This protocol is secure, optimistic, internally-hiding, externally-
hiding, and dispute-hiding. It supports ad-hoc groups. Moreover, it’s group
nature means that it has partial denial-of-service resistance as in order to launch
such an attack, a majority of the mediators must participate.

7 Conclusion

We have proposed a number of protocols, as summarized and compared in
Table 1. Assuming the goal is complete privacy, our recommendation is to use
group escrow via encrypt-and-swap as it comes closest to fulfilling all of the
properties that we set forth. If, however, the goal is transparency, then one
should choose the non-blinded version of the 2-of-3 multisig scheme or the group
multisig scheme as they are not dispute-hiding.

Table 1. Comparative evaluation of escrow schemes.

No
t a
cti
ve
-on

-d
ep
os
it

No
t a
cti
ve
-on

-w
ith
dr
aw
al

Op
tim

ist
ic

Se
cu
re

Do
S
res
ist
an
t

Di
sp
ut
e-h
idi
ng

Ex
ter
na
lly
-h
idi
ng

In
ter
na
lly
-h
idi
ng

W
or
ks
for

pr
ed
ete
rm
ine
d
gr
ou
ps

W
or
ks
for

ad
-h
oc
gr
ou
ps

Protocol Sec. Activity Security Privacy Groups

Direct payment 5.1 • •
2-of-3 multisig 5.2 • • • • ◦ ◦ •
2-of-3 threshold signature 5.3 • • • •
Encrypt-and-swap 5.4 • • • • • • •
Escrow with bond 5.5 • • • ◦
Group multisig 6.2 • • • • ◦ • • •
Group encrypt-and-swap 6.3 • • • • ◦ • • • • •

• fully achieves
◦ partially achieves

Acknowledgements. We would like to thank Andrew Miler and Washington Sanchez
for useful discussions and feedback.

Steven Goldfeder is supported by the NSF Graduate Research Fellowship under
grant number DGE 1148900. Rosario Gennaro is supported by NSF Grant 1545759.
Arvind Narayanan is supported by NSF Grant CNS-1421689.

Escrow Protocols for Cryptocurrencies 337

References

1. Bitcoin wiki: Atomic cross-chain trading. https://en.bitcoin.it/wiki/Atomic cross-
chain trading. Accessed 14 Nov 2016

2. Bitcoin wiki: Elliptic Curve Digital Signature Algorithm. https://en.bitcoin.it/
wiki/Elliptic Curve Digital Signature Algorithm. Accessed 11 Feb 2014

3. Bitcoin wiki: Secp265k1. https://en.bitcoin.it/wiki/Secp256k1. Accessed 01 Nov
2016

4. Bitcoin wiki: Transactions. https://en.bitcoin.it/wiki/Transactions. Accessed 01
Nov 2016

5. Monero Loses Darknet Market in Apparent Exit Scam. https://cointelegraph.com/
news/monero-loses-darknet-market-in-apparent-exit-scam. Accessed 14 Nov 2016

6. Stealth payments. http://sx.dyne.org/stealth.html. Accessed 14 Nov 2016
7. Open bazaar protocol (2016). https://docs.openbazaar.org/
8. Andresen, G.: Github: Proposal: open up IsStandard for P2SH transactions.

https://gist.github.com/gavinandresen/88be40c141bc67acb247. Accessed 16 Feb
2017

9. Andrew, M.: Bitcoin forum post: Alt chains and atomic transfers
10. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair two-

party computations via bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T.,
Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 105–121. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44774-1 8

11. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE (2014)

12. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange.
In: Proceedings of the 4th ACM Conference on Computer and Communications
Security, pp. 7–17. ACM (1997)

13. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054156

14. Zhou, J., Gollmann, D.: Certified electronic mail. In: Bertino, E., Kurth, H.,
Martella, G., Montolivo, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 160–171.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61770-1 35

15. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 261–280.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3 14

16. Bao, F., Deng, R.H., Mao, W.: Efficient and practical fair exchange protocols
with off-line TTP. In: Proceedings of the 1998 IEEE Symposium on Security and
Privacy, pp. 77–85. IEEE (1998)

17. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

18. Blum, M.: Three Applications of the Oblivious Transfer: Part I: Coin Flipping
by Telephone; Part II: How to Exchange Secrets; Part III: How to Send Certified
Electronic Mail. University of California, Berkeley (1981)

19. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: Sok:
research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015
IEEE Symposium on Security and Privacy (SP), pp. 104–121. IEEE (2015)

https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Secp256k1
https://en.bitcoin.it/wiki/Transactions
https://cointelegraph.com/news/monero-loses-darknet-market-in-apparent-exit-scam
https://cointelegraph.com/news/monero-loses-darknet-market-in-apparent-exit-scam
http://sx.dyne.org/stealth.html
https://docs.openbazaar.org/
https://gist.github.com/gavinandresen/88be40c141bc67acb247
https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/BFb0054156
https://doi.org/10.1007/3-540-61770-1_35
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-662-44381-1_24

338 S. Goldfeder et al.

20. Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 6

21. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 8

22. Christin, N.: Traveling the silk road: a measurement analysis of a large anony-
mous online marketplace. In: Proceedings of the 22nd International Conference
on World Wide Web, pp. 213–224. International World Wide Web Conferences
Steering Committee (2013)

23. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. arXiv preprint
arXiv:1505.06895 (2015)

24. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th Annual Symposium on Foundations of Computer Science, pp. 427–438. IEEE
(1987)

25. Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 29

26. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA signa-
tures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi, A.-R.,
Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-39555-5 9

27. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signa-
tures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 31

28. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 21

29. Goldreich, O.: Secure multi-party computation. Manuscript. Preliminary version
(1998)

30. Jakobsson,M.:RippingCoins for aFairExchange. In:Guillou,L.C.,Quisquater, J.-J.
(eds.)EUROCRYPT1995.LNCS,vol. 921, pp. 220–230. Springer,Heidelberg (1995).
https://doi.org/10.1007/3-540-49264-X 18

31. Juels, A., Kosba, A., Shi, E.: The ring of gyges: using smart contracts for crime.
Aries 40, 54 (2015)

32. Küpçü, A., Lysyanskaya, A.: Usable optimistic fair exchange. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 252–267. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11925-5 18

33. Lindell, A.Y.: Legally-enforceable fairness in secure two-party computation. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 121–137. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79263-5 8

34. MacKenzie, P., Reiter, M.K.: Two-party generation of DSA signatures. Int. J. Inf.
Secur. 2(3–4), 218–239 (2004)

35. Maxwell, G.: The first successful zero-knowledge contingent payment
36. Maxwell, G.: Zero knowledge contingent payment
37. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:

Proceedings of the Twenty-second Annual Symposium on Principles of Distributed
Computing, pp. 12–19

https://doi.org/10.1007/3-540-44598-6_6
https://doi.org/10.1007/3-540-44598-6_6
https://doi.org/10.1007/978-3-540-45146-4_8
http://arxiv.org/abs/1505.06895
https://doi.org/10.1007/3-540-48405-1_29
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/3-540-49264-X_18
https://doi.org/10.1007/978-3-642-11925-5_18
https://doi.org/10.1007/978-3-642-11925-5_18
https://doi.org/10.1007/978-3-540-79263-5_8

Escrow Protocols for Cryptocurrencies 339

38. Moore, T., Christin, N.: Beware the middleman: empirical analysis of bitcoin-
exchange risk. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 25–33.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 3

39. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments. Technical report

40. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
41. Wuille, P.: Bip 32: Hierarchical deterministic wallets. https://github.com/bitcoin/

bips/blob/master/bip-0032.mediawiki. Accessed 14 Nov 2016

https://doi.org/10.1007/978-3-642-39884-1_3
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

Trust Is Risk: A Decentralized Financial
Trust Platform

Orfeas Stefanos Thyfronitis Litos1(B) and Dionysis Zindros2

1 National Technical University of Athens, Athens, Greece
olitos@corelab.ntua.gr

2 National and Kapodistrian University of Athens, Athens, Greece
dionyziz@di.uoa.gr

Abstract. Centralized reputation systems use stars and reviews and
thus require algorithm secrecy to avoid manipulation. In autonomous
open source decentralized systems this luxury is not available. We cre-
ate a reputation network for decentralized marketplaces where the trust
each user gives to the other users is quantifiable and expressed in mone-
tary terms. We introduce a new model for bitcoin wallets in which user
coins are split among trusted associates. Direct trust is defined using
shared bitcoin accounts via bitcoin’s 1-of-2 multisig. Indirect trust is sub-
sequently defined transitively. This enables formal game theoretic argu-
ments pertaining to risk analysis. We prove that risk and maximum flows
are equivalent in our model and that our system is Sybil-resilient. Our
system allows for concrete financial decisions on the subjective monetary
amount a pseudonymous party can be trusted with. Risk remains invari-
ant under a direct trust redistribution operation followed by a purchase.

1 Introduction

Online marketplaces can be categorized as centralized and decentralized. Two
examples of each category are ebay (http://www.ebay.com/) and OpenBazaar
(https://www.openbazaar.org/). The common denominator of established online
marketplaces is that the reputation of each vendor and client is typically
expressed in the form of stars and user-generated reviews that are viewable
by the whole network.

The goal of “Trust Is Risk” is to offer a reputation system for decentralized
marketplaces where the trust each user gives to the other users is quantifiable
in monetary terms. The central assumption used throughout this paper is that
trust is equivalent to risk, or the proposition that Alice’s trust in another user
Charlie is defined as the maximum sum of money Alice can lose when Charlie
is free to choose any strategy. To flesh out this concept, we will use lines of
credit as proposed by Sanchez [1]. Alice joins the network by explicitly entrust-
ing some money to another user, say her friend, Bob (see Figs. 1 and 2). If Bob
has already entrusted some money to a third user, Charlie, then Alice indirectly

D. Zindros—Research supported by ERC project CODAMODA, project #259152.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 340–356, 2017.
https://doi.org/10.1007/978-3-319-70972-7_19

http://www.ebay.com/
https://www.openbazaar.org/

Trust Is Risk: A Decentralized Financial Trust Platform 341

trusts Charlie since if the latter wished to play unfairly, he could have already
stolen the money entrusted to him by Bob. We will later see that Alice can now
engage in economic interaction with Charlie.

To implement lines-of-credit, we use Bitcoin [2], a decentralized cryptocur-
rency that differs from conventional currencies in that it does not depend on
trusted third parties. All transactions are public as they are recorded on a decen-
tralized ledger, the blockchain. Each transaction takes some coins as input and
produces some coins as output. If the output of a transaction is not connected
to the input of another one, then this output belongs to the UTXO, the set
of unspent transaction outputs. Intuitively, the UTXO contains all coins not
yet spent.

Fig. 1. A indirectly trusts C 10B Fig. 2. A indirectly trusts C 5B

We propose a new kind of wallet where coins are not exclusively owned, but
are placed in shared accounts materialized through 1-of-2 multisigs, a bitcoin
construct that permits any one of two pre-designated users to spend the coins
contained within a shared account [3]. We use the notation 1/{Alice,Bob} to
represent a 1-of-2 multisig that can be spent by either Alice or Bob. In this
notation, the order of names is irrelevant, as either user can spend. However, the
user who deposits the money initially into the shared account is relevant – she
is the one risking her money.

Our approach changes the user experience in a subtle but drastic way. A user
no more has to base her trust towards a store on stars or ratings which are not
expressed in financial units. She can simply consult her wallet to decide whether
the store is trustworthy and, if so, up to what value, denominated in bitcoin.
This system works as follows: Initially Alice migrates her funds from her private
bitcoin wallet to 1-of-2 multisig addresses shared with friends she comfortably
trusts. We call this direct trust. Our system is agnostic to the means players use
to determine who is trustworthy for these direct 1-of-2 deposits. Nevertheless,
these deposits contain an objective value visible to the network that can be used
to deterministically evaluate subjective indirect trust towards other users.

Suppose Alice is viewing the listings of vendor Charlie. Instead of his stars,
Alice sees a positive value calculated by her wallet representing the maximum
value she can safely pay to purchase from Charlie. This value, known as indirect
trust, is calculated in Theorem 2 – Trust Flow.

Indirect trust towards a user is not global but subjective; each user views
a personalized indirect trust based on the network topology. The indirect trust
reported by our system maintains the following desired security property: If Alice
makes a purchase from Charlie, then she is exposed to no more risk than she
was already taking willingly. The existing voluntary risk is exactly that which
Alice was taking by sharing her coins with her trusted friends. We prove this in

342 O. S. Thyfronitis Litos and D. Zindros

Theorem 3 – Risk Invariance. Obviously it is not safe for Alice to buy anything
from any vendor if she has not directly entrusted any value to other users.

In Trust Is Risk the money is not invested at the time of purchase and
directly to the vendor, but at an earlier point in time and only to parties that
are trustworthy for out of band reasons. The fact that this system can function
in a completely decentralized fashion will become clear in the following sections.
We prove this in Theorem 5 – Sybil Resilience.

We make the design choice that an entity can express her trust maximally
in terms of her available capital. Thus, an impoverished player cannot allocate
much direct trust to her friends, no matter how trustworthy they are. On the
other hand, a rich player may entrust a small fraction of her funds to a player
that she does not extensively trust and still exhibit more direct trust than the
impoverished player. There is no upper limit to trust; each player is only limited
by her funds. We thus take advantage of the following remarkable property of
money: To normalise subjective human preferences into objective value.

A user has several incentives to join. First, she has access to otherwise inacces-
sible stores. Moreover, two friends can formalize their mutual trust by directly
entrusting the same amount to each other. A company that casually subcon-
tracts others can express its trust towards them. Governments can choose to
directly entrust citizens with money and confront them using a corresponding
legal arsenal if they make irresponsible use of this trust. Banks can provide
loans as outgoing and manage savings as incoming direct trust. Last, the net-
work is an investment and speculation field since it constitutes a new area for
financial activity.

Observe that the same physical person can maintain multiple pseudonymous
identities in the same trust network and that multiple independent trust net-
works for different purposes can coexist.

Trust Is Risk is not just a theoretical conception, but can be deployed and
applied in existing decentralized markets such as OpenBazaar. All the neces-
sary bitcoin constructs such as multisigs are readily available. Our only concern
pertains to the scalability of such an implementation, but we are confident that
such difficulties can be overcome.

2 Mechanics

We now trace Alice’s steps from joining the network to successfully completing a
purchase. Suppose initially all her coins, say 10B, are under her exclusive control.

Two trustworthy friends, Bob and Charlie, persuade her to try out Trust Is
Risk. She installs the Trust Is Risk wallet and migrates the 10B from her regular
wallet, entrusting 2B to Bob and 5B to Charlie. She now exclusively controls
3B. She is risking 7B to which she has full but not exclusive access in exchange
for being part of the network.

A few days later, she discovers an online shoes shop owned by Dean, also
a member of Trust Is Risk. She finds a nice pair of shoes that costs 1B and
checks Dean’s trustworthiness through her new wallet. Suppose Dean is deemed

Trust Is Risk: A Decentralized Financial Trust Platform 343

trustworthy up to 5B. Since 1B < 5B, she confidently proceeds to purchase the
shoes with her new wallet.

She can then see in her wallet that her exclusive coins have remained 3B,
the coins entrusted to Charlie have been reduced to 4B and Dean is entrusted
1B, equal to the value of the shoes. Also, her purchase is marked as pending.
If she checks her trust towards Dean, it still is 5B. Under the hood, her wallet
redistributed her entrusted coins in a way that ensures Dean is directly entrusted
with coins equal to the value of the purchased item and that her reported trust
towards him has remained invariant.

Eventually all goes well and the shoes reach Alice. Dean chooses to redeem
Alice’s entrusted coins, so her wallet does not show any coins entrusted to Dean.
Through her wallet, she marks the purchase as successful. This lets the system
replenish the reduced trust to Bob and Charlie, setting the entrusted coins to
2B and 5B respectively once again. Alice now exclusively owns 2B. Thus, she can
now use a total of 9B, which is expected, since she had to pay 1B for the shoes.

3 The Trust Graph

We now engage in the formal description of the proposed system, accompanied
by helpful examples.

Definition 1 (Graph). Trust Is Risk is represented by a sequence of directed
weighted graphs (Gj) where Gj = (Vj , Ej) , j ∈ N. Also, since the graphs are
weighted, there exists a sequence of weight functions (cj) with cj : Ej → R

+.

The nodes represent the players, the edges represent the existing direct trusts
and the weights represent the amount of value attached to the corresponding
direct trust. As we will see, the game evolves in turns. The subscript of the
graph represents the corresponding turn.

Definition 2 (Players). The set Vj = V (Gj) is the set of all players in the
network, otherwise understood as the set of all pseudonymous identities.

Each node has a corresponding non-negative number that represents its capital.
A node’s capital is the total value that the node possesses exclusively and nobody
else can spend.

Definition 3 (Capital). The capital of A in turn j, CapA,j, is defined as the
number of coins that belong exclusively to A at the beginning of turn j.

The capital is the value that exists in the game but is not shared with trusted
parties. The capital of A can be reallocated only during her turns, according to
her actions. We model the system in a way that no capital can be added in the
course of the game through external means. The use of capital will become clear
once turns are formally defined.

344 O. S. Thyfronitis Litos and D. Zindros

The formal definition of direct trust follows:

Definition 4 (Direct Trust). Direct trust from A to B at the end of turn j,
DTrA→B,j, is defined as the total finite amount that exists in 1/{A,B} multisigs
in the UTXO in the end of turn j, where the money is deposited by A.

DTrA→B,j =

{
cj (A,B) , if (A,B) ∈ Ej

0, else
. (1)

The definition of direct trust agrees with the title of this paper and coincides
with the intuition and sociological experimental results of Karlan et al. [4] that
the trust Alice shows to Bob in real-world social networks corresponds to the
extent of danger in which Alice is putting herself into in order to help Bob. An
example graph with its corresponding transactions in the UTXO can be seen
in Fig. 3.

Fig. 3. Trust Is Risk game graph and equivalent bitcoin UTXO

Any algorithm that has access to the graph Gj has implicitly access to all
direct trusts of this graph.

Definition 5 (Neighbourhood). We use the notation N+ (A)j to refer to
the nodes directly trusted by A at the end of turn j and N− (A)j for the nodes
that directly trust A at the end of turn j.

N+ (A)j = {B ∈ Vj : DTrA→B,j > 0},
N− (A)j = {B ∈ Vj : DTrB→A,j > 0}. (2)

These are called out- and in-neighbourhood of A on turn j respectively.

Trust Is Risk: A Decentralized Financial Trust Platform 345

Definition 6 (Total In/Out Direct Trust). We use inA,j , outA,j to refer
to the total incoming and outgoing direct trust respectively.

inA,j =
∑

v∈N−(A)j

DTrv→A,j , outA,j =
∑

v∈N+(A)j

DTrA→v,j . (3)

Definition 7 (Assets). Sum of A’s capital and outgoing direct trust.

AsA,j = CapA,j + outA,j . (4)

4 Evolution of Trust

Trust Is Risk is a game that runs indefinitely. In each turn, a player is chosen,
decides what to play and, if valid, the chosen turn is executed.

Definition 8 (Turns). In each turn j a player A ∈ V, A = Player (j), chooses
one or more actions from the following two kinds:

Steal(yB, B): Steal value yB from B ∈ N− (A)j−1, where 0 ≤ yB ≤
DTrB→A,j−1. Then set DTrB→A,j = DTrB→A,j−1 − yB.

Add(yB , B): Add value yB to B ∈ V, where −DTrA→B,j−1 ≤ yB. Then set
DTrA→B,j = DTrA→B,j−1 + yB.

yB < 0 amounts to direct trust reduction, while yB > 0 to direct trust
increase.

Let Yst, Yadd be the total value to be stolen and added respectively by A. The
capital is updated in every turn: CapA,j = CapA,j−1 + Yst − Yadd. For a turn
to be valid we require CapA,j ≥ 0 and DTrA→B,j ≥ 0 and DTrB→A,j ≥ 0. A
player cannot choose two actions of the same kind against the same player in
one turn. Turnj denotes the set of actions in turn j. The graph that emerges by
applying the actions on Gj−1 is Gj.

Definition 9 (Prev/Next Turn). Let j ∈ N be a turn with Player (j) = A.
Define prev (j) /next (j) as the previous/next turn A is chosen to play. Formally,
let

P = {k ∈ N : k < j ∧ Player (k) = A} and
N = {k ∈ N : k > j ∧ Player (k) = A}.

Then we define prev (j) , next (j) as follows:

prev (j) =

{
maxP, P �= ∅
0, P = ∅ , next (j) = minN.

Definition 10 (Damage). Let j be a turn such that Player (j) = A.

DmgA,j = outA,prev(j) − outA,j−1. (5)

We say that A has been stolen value DmgA,j between prev (j) and j. We omit
turn subscripts if they are implied from the context.

346 O. S. Thyfronitis Litos and D. Zindros

Definition 11 (History). We define History, H = (Hj), as the sequence of all
tuples containing the sets of actions and the corresponding player.

Hj = (Player (j) , Turnj) . (6)

Knowledge of the initial graph G0, all players’ initial capital and the history
amount to full comprehension of the evolution of the game. Building on the
example of Fig. 3, we can see the resulting graph when D plays

Turn1 = {Steal (1, A) , Add (4, C) , Add (−1, B)}. (7)

Fig. 4. Game graph after Turn1 (7) on the graph of Fig. 3

We now define the Trust Is Risk Game formally. We assume players are chosen
so that, after her turn, a player will eventually play again later (Fig. 4).

Trust Is Risk Game
1 j = 0
2 while (True)

3 j += 1; A
$← Vj

4 Turn = strategy[A](G0, A, CapA,0, H1...j−1)
5 (Gj, CapA,j, Hj) = executeTurn(Gj−1, A, CapA,j−1, Turn)

strategy[A]() provides player A with full knowledge of the game, except
for the capitals of other players. This assumption may not be always realis-
tic. executeTurn() checks the validity of Turn and substitutes it with an empty
turn if invalid. Subsequently, it creates the new graph Gj and updates the history
accordingly.

5 Trust Transitivity

In this section we define some strategies and show the corresponding algorithms.
Then we define the Transitive Game, the worst-case scenario for an honest player
when another player plays maliciously.

Definition 12 (Idle Strategy). A player plays the idle strategy if she passes
her turn.

Trust Is Risk: A Decentralized Financial Trust Platform 347

Idle Strategy
Input : graph G0, player A, capital CapA,0, history (H)1...j−1

Output : Turnj

1 idleStrategy(G0, A, CapA,0, H) :
2 return(∅)

The inputs and outputs are identical to those of idleStrategy() for the
rest of the strategies, thus we avoid repeating them.

Definition 13 (Evil Strategy). A player plays the evil strategy if she steals
all incoming direct trust and nullifies her outgoing direct trust.

1 evilStrategy(G0, A, CapA,0, H) :
2 Steals =

⋃
v∈N−(A)j−1

{Steal(DTrv→A,j−1, v)}

3 Adds =
⋃

v∈N+(A)j−1

{Add(−DTrA→v,j−1, v)}

4 Turnj = Steals ∪ Adds
5 return(Turnj)

Definition 14 (Conservative Strategy). A player plays conservatively if she
replenishes the value she lost since the previous turn by stealing from others who
directly trust her as much as she can up to DmgA.

1 consStrategy(G0, A, CapA,0, H) :
2 Damage = outA,prev(j) - outA,j−1

3 if (Damage > 0)
4 if (Damage >= inA,j−1)
5 Turnj =

⋃
v∈N−(A)j−1

{Steal (DTrv→A,j−1, v)}

6 else
7 y = SelectSteal(Gj, A, Damage) #y = {yv : v ∈ N− (A)j−1}

8 Turnj =
⋃

v∈N−(A)j−1

{Steal (yv, v)}

9 else Turnj = ∅
10 return(Turnj)

SelectSteal() returns yv with v ∈ N− (A)j−1 such that

∑
v∈N−(A)j−1

yv = DmgA,j ∧ ∀v ∈ N− (A)j−1 , yv ≤ DTrv→A,j−1. (8)

Player A can arbitrarily define how SelectSteal() distributes the Steal ()
actions each time she calls the function, as long as (8) is respected.

348 O. S. Thyfronitis Litos and D. Zindros

The rationale behind this strategy arises from a real-world common situation.
Suppose there are a client, an intermediary and a producer. The client entrusts
some value to the intermediary so that the latter can buy the desired product
from the producer and deliver it to the client. The intermediary in turn entrusts
an equal value to the producer, who needs the value upfront to be able to com-
plete the production process. However the producer eventually does not give the
product neither reimburses the value, due to bankruptcy or decision to exit the
market with an unfair benefit. The intermediary can choose either to reimburse
the client and suffer the loss, or refuse to return the money and lose the client’s
trust. The latter choice for the intermediary is exactly the conservative strategy.
It is used throughout this work as a strategy for all the intermediary players
because it models effectively the worst-case scenario that a client can face after
an evil player decides to steal everything she can and the rest of the players do
not engage in evil activity.

We continue with a possible evolution of the game, the Transitive Game.

Transitive Game

Input : graph G0, A ∈ V idle player, B ∈ V evil player

1 Angry = Sad = ∅ ; Happy = V \ {A,B}
2 for (v ∈ V \ {B}) Lossv = 0

3 j = 0

4 while (True)

5 j += 1; v
$← V \ {A} # Choose this turn’s player

6 Turnj = strategy[v](G0, v, Capv,0, H1...j−1)

7 executeTurn(Gj−1, v, Capv,j−1, Turnj)

8 for (action ∈ Turnj)

9 action match do

10 case Steal(y, w) do # For each Steal,
11 exchange = y #

12 Lossw += exchange # pass on Loss
13 if (v != B) Lossv -= exchange #

14 if (w != A) # and change the

15 Happy = Happy \ {w} # mood of the

16 if (inw,j == 0) Sad = Sad ∪ {w} # affected player

17 else Angry = Angry ∪ {w}
18 if (v != B)

19 Angry = Angry \ {v} # Change the mood of

20 if (Lossv > 0) Sad = Sad ∪ {v} # the active player

21 if (Lossv == 0) Happy = Happy ∪ {v}
In turn 0, there is already a network in place. All players apart from A and

B follow the conservative strategy. The set of players is not modified throughout
the Transitive Game, thus we can refer to Vj as V. Each conservative player can
be in one of three states: Happy, Angry or Sad. Happy players have 0 loss, Angry
players have positive loss and positive incoming direct trust (line 17), thus are
able to replenish their loss at least in part and Sad players have positive loss,
but 0 incoming direct trust (line 16), thus they cannot replenish the loss. An
example execution can be seen in Fig. 5.

Trust Is Risk: A Decentralized Financial Trust Platform 349

Fig. 5. B steals 7B, then D steals 3B and finally C steals 3B

Let j0 be the first turn on which B is chosen to play. Until then, all players
will pass their turn since nothing has been stolen yet (see the Conservative World
theorem in Appendix A of the full version [5]). Moreover, let v = Player(j). The
Transitive Game generates turns:

Turnj =
⋃

w∈N−(v)j−1

{Steal (yw, w)}, where (9)

∑
w∈N−(v)j−1

yw = min (inv,j−1,Dmgv,j) . (10)

We see that if Dmgv,j = 0, then Turnj = ∅. From the definition of Dmgv,j and
knowing that no strategy in this case can increase any direct trust, we see that
Dmgv,j ≥ 0. Also Lossv,j ≥ 0 because if Lossv,j < 0, then v has stolen more
value than she has been stolen, thus she would not be following the conservative
strategy.

6 Trust Flow

We can now define indirect trust from A to B.

Definition 15 (Indirect Trust). Indirect trust from A to B after turn j is
defined as the maximum possible value that can be stolen from A after turn j in
the setting of TransitiveGame(Gj,A,B).

Note that TrA→B ≥ DTrA→B . The next result shows TrA→B is finite.

350 O. S. Thyfronitis Litos and D. Zindros

Theorem 1 (Trust Convergence Theorem). Consider a Transitive Game.
There exists a turn such that all subsequent turns are empty.

Proof Sketch. If the game didn’t converge, the Steal () actions would continue
forever without reduction of the amount stolen over time, thus they would reach
infinity. However this is impossible, since there exists only finite total direct trust.

Proofs of all theorems can be found in Appendix A of the full version [5].
In the setting of TransitiveGame(G,A,B) and j being a turn in which

the game has converged, we use the notation LossA = LossA,j . LossA is not
the same for repeated executions of this kind of game, since the order in which
players are chosen may differ between executions and conservative players can
choose which incoming direct trusts they will steal and how much from each.

Let G be a weighted directed graph. We investigate the maximum flow on it.
For an introduction to maximum flows see Introduction to Algorithms, p. 708 [6].
Considering each edge’s capacity as its weight, a flow assignment X = [xvw]V×V
with source A and sink B is valid when:

∀(v, w) ∈ E , xvw ≤ cvw and (11)

∀v ∈ V \ {A,B},
∑

w∈N+(v)

xwv =
∑

w∈N−(v)

xvw. (12)

The flow value is
∑

v∈N+(A)

xAv =
∑

v∈N−(B)

xvB . We do not suppose skew symmetry

in X. There exists an algorithm MaxFlow (A,B) that returns the maximum
possible flow from A to B. This algorithm needs full knowledge of the graph
and runs in O (|V||E|) time [7]. We refer to the flow value of MaxFlow (A,B)
as maxFlow (A,B).

We will now introduce two lemmas that will be used to prove one of the
central results of this work, the Trust Flow theorem.

Lemma 1 (MaxFlows Are Transitive Games). Let G be a game graph, let
A,B ∈ V and MaxFlow(A,B) the maximum flow from A to B executed
on G. There exists an execution of TransitiveGame(G, A,B) such that
maxFlow (A,B) ≤ LossA.

Proof Sketch. The desired execution of TransitiveGame() will contain all flows
from the MaxFlow (A,B) as equivalent Steal () actions. The players will play
in turns, moving from B back to A. Each player will steal from his predecessors
as much as was stolen from her. The flows and the conservative strategy share
the property that the total input is equal to the total output. �
Lemma 2 (Transitive Games Are Flows). Let H =TransitiveGame(G, A,
B) for some game graph G and A,B ∈ V. There exists a valid flow X =
{xwv}V×V on G0 such that

∑
v∈V

xAv = LossA.

Proof Sketch. If we exclude the sad players from the game, the Steal () actions
that remain constitute a valid flow from A to B. �

Trust Is Risk: A Decentralized Financial Trust Platform 351

Theorem 2 (Trust Flow Theorem). Let G be a game graph and A,B ∈ V.
It holds that

TrA→B = maxFlow (A,B) .

Proof. From lemma 1 there exists an execution of the Transitive Game such that
LossA ≥ maxFlow (A,B). Since TrA→B is the maximum loss that A can suffer
after the convergence of the Transitive Game, we see that

TrA→B ≥ maxFlow (A,B) . (13)

But some execution of the Transitive Game gives TrA→B = LossA. From
lemma 2, this execution corresponds to a flow. Thus

TrA→B ≤ maxFlow (A,B) . (14)

The theorem follows from (13) and (14). �
Note that the maxFlow is the same in the following two cases: If a player chooses
the evil strategy and if that player chooses a variation of the evil strategy where
she does not nullify her outgoing direct trust.

Further justification of trust transitivity through the use of MaxFlow can be
found in the sociological work by Karlan et al. [4] where a direct correspondence
of maximum flows and empirical trust is experimentally validated.

Here we see another important theorem that gives the basis for risk-invariant
transactions between different, possibly unknown, parties.

Theorem 3. (Risk Invariance Theorem). Let G be a game graph, A,B ∈ V
and l the desired value to be transferred from A to B, with l ≤ TrA→B. Let also
G′ with the same nodes as G such that

∀v ∈ V ′ \ {A},∀w ∈ V ′,DTr′
v→w = DTrv→w.

Furthermore, suppose that there exists an assignment for the outgoing direct trust
of A,DTr′

A→v, such that

Tr′
A→B = TrA→B − l. (15)

Let another game graph, G′′, be identical to G′ except for the following change:
DTr′′

A→B = DTr′
A→B + l. It then holds that

Tr′′
A→B = TrA→B .

Proof. The two graphs G′ and G′′ differ only in the weight of the edge (A,B),
which is larger by l in G′′. Thus the two MaxFlows will choose the same flow,
except for (A,B), where it will be x′′

AB = x′
AB + l. �

A can reduce her outgoing direct trust in a manner that achieves (15), since
maxFlow (A,B) is continuous with respect to A’s outgoing direct trusts.

352 O. S. Thyfronitis Litos and D. Zindros

7 Sybil Resilience

One of our aims is to mitigate Sybil attacks [8] whilst maintaining decentralized
autonomy [9]. We begin by extending the definition of indirect trust.

Definition 16 (Indirect Trust to Multiple Players). Indirect trust from
player A to a set of players, S ⊂ V is defined as the maximum possible value
that can be stolen from A if all players in S are evil, A is idle and everyone else
(V \ (S ∪ {A})) is conservative. Formally, let choices be the different actions
between which the conservative players choose, then

TrA→S,j = max
j′:j′>j,choices

[outA,j − outA,j′]. (16)

We now extend the Trust Flow theorem to many players.

Theorem 4 (Multi-player Trust Flow). Let S ⊂ V and T be an auxiliary
player such that, for the sake of argument, ∀B ∈ S,DTrB→T = ∞. It holds that

∀A ∈ V \ S, TrA→S = maxFlow (A, T) .

Proof. If T chooses the evil strategy and all players in S play according to
the conservative strategy, they will have to steal all their incoming direct trust
since they have suffered an infinite loss, thus they will act in a way identical to
following the evil strategy as far as MaxFlow is concerned. The theorem follows
thus from the Trust Flow theorem. �
We now define several useful notions to tackle the problem of Sybil attacks. Let
Eve be a possible attacker.

Definition 17 (Corrupted Set). Let G be a game graph and let Eve have a set
of players B ⊂ V corrupted, so that she fully controls their outgoing and incoming
direct trusts with any player in V. We call this the corrupted set. The players B
are considered legitimate before the corruption, thus they may be directly trusted
by any player in V.

Definition 18 (Sybil Set). Let G be a game graph. Participation does not
require registration, so Eve can create unlimited players. We call the set of these
players C, or Sybil set. Moreover, Eve controls their direct and indirect trusts
with any player. However, players C can be directly trusted only by players B ∪C
but not by players V \ (B ∪ C), where B is the corrupted set.

Definition 19 (Collusion). Let G be a game graph. Let B ⊂ V be a corrupted
set and C ⊂ V be a Sybil set. The tuple (B, C) is called collusion and is controlled
by Eve.

From a game theoretic point of view, players V \(B∪C) perceive the collusion
as independent players with a distinct strategy each, whereas in reality they are
all subject to a single strategy dictated by Eve (Fig. 6).

Trust Is Risk: A Decentralized Financial Trust Platform 353

Fig. 6. Collusion

Theorem 5 (Sybil Resilience). Let G be a game graph and (B, C) be a col-
lusion of players on G. It is

TrA→B∪C = TrA→B.

Proof Sketch. The incoming trust to B ∪ C cannot be higher than the incoming
trust to B since C has no incoming trust from V \ (B ∪ C). �
We have proven that controlling |C| is irrelevant for Eve, thus Sybil attacks are
meaningless. Note that the theorem does not reassure against deception attacks.
Specifically, a malicious player can create several identities, use them legitimately
to inspire others to deposit direct trust to these identities and then switch to
the evil strategy, thus defrauding everyone that trusted the fabricated identities.
These identities correspond to the corrupted set of players and not to the Sybil
set because they have direct incoming trust from outside the collusion.

In conclusion, we have delivered on our promise of a Sybil-resilient decen-
tralized financial trust system with invariant risk for purchases.

8 Related Work

Webs-of-trust can be used as a basis for trust as shown by Caronni [10]. PGP [11]
implements one and Pathfinder [12] explores its transitive closure. Freenet [13]
implements a transitive web-of-trust for fighting spam. Mui et al. [14] and Jøsang
et al. [15] propose ways of calculating trust towards distant nodes. Vişan et al.
[16] calculate trust in a hierarchical way. CA- and Byzantine-based [17] PKIs [18]
and Bazaar [19] require central trusted third parties or at least authenticated
membership. FIRE [20], CORE [21], Grünert et al. [22] and Repantis et al. [23]
do not prove any Sybil resilience. All these systems define trust in a non-financial
manner.

We agree with Gollmann [24] in that the meaning of trust should not be
extrapolated. We adopted their advice and urge our readers to adhere to the
definitions of direct and indirect trust as defined here.

Beaver [25] includes a trust model that, to discourage Sybil attacks, relies
on fees, something we chose to avoid. Our motivating application for exploring

354 O. S. Thyfronitis Litos and D. Zindros

trust in a decentralized setting is OpenBazaar, where transitive financial trust
has previously been explored by Zindros [9]. That work however does not define
trust as a monetary value. We are strongly inspired by Karlan et al. [4] who
give a sociological justification for the central design choice of identifying trust
with risk. We appreciate the work in TrustDavis [26], which proposes a financial
trust system with transitivity and in which trust is defined as lines-of-credit,
similar to us. We extended their work by using the blockchain for automated
proofs-of-risk, a feature not available to them at the time.

Our conservative strategy and Transitive Game are similar to the mechanism
proposed by Fugger [27] which is also financially transitive and is used by Ripple
[28] and Stellar [29]. IOUs in those correspond to reversed edges of trust in
our system. The critical difference is that our trust is expressed in a global
currency and there is no money-as-debt. Furthermore, we proved that trust and
maximum flows are equivalent, a direction not explored in their papers, even
though it seems to hold for their systems as well.

9 Further Research

When a purchase is made, outgoing direct trust must be reduced such that (15)
holds. Trust redistribution algorithms for this will be discussed in a future paper.

Our game is static. In a future dynamic setting, users should be able to play
simultaneously, freely join, depart or disconnect temporarily from the network.
An interesting analysis would involve modelling repeated purchases with the
respective edge updates on the trust graph and treating trust on the network
as part of the utility function. Other types of multisigs, such as 1-of-3, can be
explored.

MaxFlow in our case needs complete network knowledge, which can lead to
privacy issues [30]. Calculating the flows in zero knowledge remains an open
question. SilentWhispers [31] and its centralized predecessor, PrivPay [32], offer
insight into how privacy can be achieved.

A wallet implementation of our game on any blockchain is welcome. Exper-
imental results can be harvested by a simulation or implementation of Trust Is
Risk. Afterwards, our system can be used in decentralized social networks, such
as Synereo [33], and other applications.

References

1. Sanchez, W.: Lines of credit (2016). https://gist.github.com/drwasho/
2c40b91e169f55988618#part-3-web-of-credit

2. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
3. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Cryptocurrencies.

O’Reilly Media Inc., Sebastopol (2014)
4. Karlan, D., Mobius, M., Rosenblat, T., Szeidl, A.: Trust and social collateral. Q.

J. Econ. 124(3), 1307–1361 (2009)
5. Thyfronitis Litos, O.S., Zindros, D.: Trust is risk: a decentralized financial trust

platform. IACR, Cryptology ePrint Archive (2017)

https://gist.github.com/drwasho/2c40b91e169f55988618#part-3-web-of-credit
https://gist.github.com/drwasho/2c40b91e169f55988618#part-3-web-of-credit

Trust Is Risk: A Decentralized Financial Trust Platform 355

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press and McGraw-Hill, Cambridge (2009)

7. Orlin, J.B.: Max flows in O(nm) time, or better. In: STOC 2013 Proceedings of
the Forty-fifth Annual ACM Symposium on Theory of Computing, pp. 765–774.
ACM, New York (2013). http://dx.doi.org/10.1145/2488608.2488705

8. Douceur, J.R.: The Sybil attack. In: International Workshop on Peer-To-Peer Sys-
tems (2002)

9. Zindros, D.: Trust in Decentralized Anonymous Marketplaces (2015)
10. Caronni, G.: Walking the web of trust. In: Enabling Technologies: Infrastructure for

Collaborative Enterprises, IEEE 9th International Workshops, pp. 153–158 (2000)
11. Zimmermann, P.: PGP Source Code and Internals. The MIT Press, Cambridge

(1995)
12. Penning, H.P.: PGP pathfinder. pgp.cs.uu.nl
13. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: a distributed anonymous

information storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy
Enhancing Technologies. LNCS, vol. 2009, pp. 46–66. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44702-4 4

14. Mui, L., Mohtashemi, M., Halberstadt, A.: A computational model of trust and
reputation. In: Proceedings of the 35th Annual Hawaii International Conference
on System Sciences, pp. 2431–2439. IEEE (2002)

15. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled Electronic Commerce Conference (2002)

16. Vişan, A., Pop, F., Cristea, V.: Decentralized trust management in peer-to-peer
systems. In: 10th International Symposium on Parallel and Distributed Computing,
pp. 232–239 (2011)

17. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Progr. Lang. Syst. 4(3), 382–401 (1982)

18. Adams, C., Lloyd, S.: Understanding PKI: Concepts, Standards, and Deployment.
Addison-Wesley Professional, Reading (2003)

19. Post, A., Shah, V., Mislove, A.: Bazaar: strengthening user reputations in online
marketplaces. In: Proceedings of NSDI 2011, 8th USENIX Symposium on Net-
worked Systems Design and Implementation, p. 183 (2011)

20. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation
model for open multi-agent systems. Auton. Agent. Multi-Agent Syst. 13(2), 119–
154 (2006)

21. Michiardi, P., Molva, R.: Core: a collaborative reputation mechanism to
enforce node cooperation in mobile Ad Hoc networks. In: Jerman-Blažič, B.,
Klobučar, T. (eds.) Advanced Communications and Multimedia Security. ITI-
FIP, vol. 100, pp. 107–121. Springer, Boston, MA (2002). https://doi.org/10.1007/
978-0-387-35612-9 9

22. Grünert, A., Hudert, S., Köning, S., Kaffille, S., Wirtz, G.: Decentralized reputa-
tion management for cooperating software agents in open multi-agent systems. In:
ITSSA, vol. 1, No. 4, pp. 363–368 (2006)

23. Repantis, T., Kalogeraki, V.: Decentralized trust management for ad-hoc peer-to-
peer networks. In: Proceedings of the 4th International Workshop of Middleware
for Pervasive and Ad-hoc Computing, MPAC, p. 6. ACM (2006)

24. Gollmann, D.: Why trust is bad for security. Electron. Notes Theor. Comput. Sci.
157(3), 3–9 (2016)

25. Soska, K., Kwon, A., Christin, N., Devadas, S.: Beaver: A Decentralized Anony-
mous Marketplace with Secure Reputation (2016)

http://dx.doi.org/10.1145/2488608.2488705
http://pgp.cs.uu.nl
https://doi.org/10.1007/3-540-44702-4_4
https://doi.org/10.1007/978-0-387-35612-9_9
https://doi.org/10.1007/978-0-387-35612-9_9

356 O. S. Thyfronitis Litos and D. Zindros

26. DeFigueiredo, D.D.B., Barr, E.T.: TrustDavis: a non-exploitable online reputation
system. In: CEC, vol. 5, pp. 274–283 (2005)

27. Fugger, R.: Money as IOUs in social trust networks & a proposal for a
decentralized currency network protocol (2004). http://archive.ripple-project.org/
decentralizedcurrency.pdf

28. Schartz, D., Youngs, N., Britto, A.: The Ripple protocol consensus algorithm.
White Paper, Ripple Labs Inc., vol. 5 (2014)

29. Mazieres, D.: The stellar consensus protocol: a federated model for internet-level
consensus. Stellar Development Foundation (2015)

30. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Proceedings of
the 30th Symposium on Security and Privacy, pp. 173–187. IEEE (2009). http://
dx.doi.org/10.1109/SP.2009.22

31. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: SilentWhispers: Enforcing
Security and Privacy in Decentralized Credit Networks (2016)

32. Moreno-Sanchez, P., Kate, A., Maffei, M., Pecina, K.: Privacy preserving payments
in credit networks. In: Network and Distributed Security Symposium (2015)

33. Konforty, D., Adam, Y., Estrada, D., Meredith, L.G.: Synereo: The Decentralized
and Distributed Social Network (2015)

http://archive.ripple-project.org/decentralizedcurrency.pdf
http://archive.ripple-project.org/decentralizedcurrency.pdf
http://dx.doi.org/10.1109/SP.2009.22
http://dx.doi.org/10.1109/SP.2009.22

A Smart Contract for Boardroom Voting
with Maximum Voter Privacy

Patrick McCorry(B), Siamak F. Shahandashti, and Feng Hao

School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{patrick.mccorry,siamak.shahandashti,feng.hao}@ncl.ac.uk

Abstract. We present the first implementation of a decentralised and
self-tallying internet voting protocol with maximum voter privacy using
the Blockchain. The Open Vote Network is suitable for boardroom elec-
tions and is written as a smart contract for Ethereum. Unlike previously
proposed Blockchain e-voting protocols, this is the first implementation
that does not rely on any trusted authority to compute the tally or to
protect the voter’s privacy. Instead, the Open Vote Network is a self-
tallying protocol, and each voter is in control of the privacy of their own
vote such that it can only be breached by a full collusion involving all
other voters. The execution of the protocol is enforced using the consen-
sus mechanism that also secures the Ethereum blockchain. We tested the
implementation on Ethereum’s official test network to demonstrate its
feasibility. Also, we provide a financial and computational breakdown of
its execution cost.

1 Introduction

Ethereum is the second most popular cryptocurrency with a $870m market cap-
italisation as of November 2016. It relies on the same innovation behind Bitcoin
[28]: namely, the Blockchain which is an append-only ledger. The Blockchain
is maintained by a decentralised and open-membership peer-to-peer network.
The purpose of the Blockchain was to remove the centralised role of banks
for maintaining a financial ledger. Today, researchers are trying to re-use the
Blockchain to solve further open problems such as coordinating the Internet of
Things [20], carbon dating [6], and healthcare [10].

In this paper, we focus on decentralised internet voting using the Blockchain.
E-voting protocols that support verifiability normally assume the existence of a
public bulletin board that provides a consistent view to all voters. In practice, an
example of implementing the public bulletin board can be seen in the yearly elec-
tions of the International Association of Cryptologic Research (IACR) [22]. They
use the Helios voting system [1] whose bulletin board is implemented as a single
web server. This server is trusted to provide a consistent view to all voters. Instead
of such a trust assumption, we explore the feasibility of using the Blockchain as a
public bulletin board. Furthermore, we consider a decentralised election setting
in which the voters are responsible for coordinating the communication amongst

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 357–375, 2017.
https://doi.org/10.1007/978-3-319-70972-7_20

358 P. McCorry et al.

themselves. Thus, we also examine the suitability of the Blockchain’s underlying
peer-to-peer network as a potential authenticated broadcast channel.

There already exist proposals to use a Blockchain for e-voting. The
Abu Dhabi Stock Exchange is launching a Blockchain voting service [19] and
a recent report [3] by the Scientific Foresight Unit of the European Parliamen-
tary Research Service discusses whether Blockchain-enabled e-voting will be a
transformative or incremental development. In practice, companies such as The
Blockchain Voting Machine [18], FollowMyVote [2] and TIVI [34] propose solu-
tions that use the Blockchain as a ballot box to store the voting data.

These solutions achieve voter privacy with the involvement of a trusted
authority. In FollowMyVote, the authority obfuscates the correspondence
between the voter’s real world identity and their voting key. Then, the voter
casts their vote in plaintext. In TIVI, the authority is required to shuffle the
encrypted votes before decrypting and counting the votes. In our work, we show
that the voter’s privacy does not need to rely on a central authority to decou-
ple the voter’s real world identity from their voting key, and the votes can be
counted without the cooperation of a central authority. Furthermore, these solu-
tions only use the Blockchain as an append-only and immutable global database
to store the voting data. We propose that the network’s consensus that secures
the Blockchain can also enforce the execution of the voting protocol itself.

To date, both Bitcoin and Ethereum have inherent scalability issues. Bitcoin
only supports a maximum of 7 transactions per second [8] and each transaction
dedicates 80 bytes for storing arbitrary data. On the other hand, Ethereum
explicitly measures computation and storage using a gas metric, and the network
limits the gas that can be consumed by its users. As deployed today, these
Blockchains cannot readily support storing the data or enforcing the voting
protocol’s execution for national scale elections. For this reason, we chose to
perform a feasibility study of a boardroom election over the Blockchain
which involves a small group of voters (i.e. 40 participants) whose identities are
publicly known before the voting begins. For example, a boardroom election may
involve stakeholders voting to appoint a new director.

We chose to implement the boardroom voting protocol as a smart contract on
Ethereum. These smart contracts have an expressive programming language and
the code is stored directly on the Blockchain. Most importantly, all peers in the
underlying peer-to-peer network independently run the contract code to reach
consensus on its output. This means that voters can potentially not perform
all the computation to verify the correct execution of the protocol. Instead, the
voter can trust the consensus computing provided by the Ethereum network to
enforce the correct execution of the protocol. This enforcement turns detection
measures seen in publicly verifiable voting protocols into prevention measures.

Our contributions. We provide the first implementation of a decentralised and
self-tallying internet voting protocol. The Open Vote Network [17] is a board-room
scale voting protocol that is implemented as a smart contract in Ethereum. The
Open Vote Network provides maximum voter privacy as an individual vote can
only be revealed by a full-collusion attack that involves compromising all other

A Smart Contract for Boardroom Voting with Maximum Voter Privacy 359

voters; all voting data is publicly available; and the protocol allows the tally to
be computed without requiring a tallying authority. Most importantly, our imple-
mentation demonstrates the feasibility of using the Blockchain for decentralised
and secure e-voting.

2 Background

2.1 Self-tallying Voting Protocols

Typically, an e-voting protocol that protects the voter’s privacy relies on the role
of a trustworthy authority to decrypt and tally the votes in a verifiable manner.
E-voting protocols in the literature normally distribute this trust among multiple
tallying authorities using threshold cryptography; for example, see Helios [1].
However, voters still need to trust that the tallying authorities do not collude
altogether, as in that case, the voter’s privacy will be trivially breached.

Remarkably, Kiayias and Yung [24] first introduced a self-tallying voting
protocol for boardroom voting with subsequent proposals by Groth [16] and Hao
et al. [17]. A self-tallying protocol converts tallying into an open procedure that
allows any voter or a third-party observer to perform the tally computation once
all ballots are cast. This removes the role of a tallying authority in an election
as anyone can compute the tally without assistance. These protocols provide
maximum ballot secrecy as a full collusion of the remaining voters is required
to reveal an individual vote and dispute-freeness that allows any third party to
check whether a voter has followed the voting protocol correctly. Unfortunately,
self-tallying protocols have a fairness drawback as the last voter can compute
the tally before anyone else1 which results in both adaptive and abortive issues.

The adaptive issue is that knowledge of the tally can potentially influence
how the last voter casts their vote. Kiayias and Yung [24] and Groth [16] propose
that an election authority can cast the final vote which is excluded from the tally.
However, while this approach is applicable to our implementation discussed later,
it effectively re-introduces an authority that is trusted to co-operate and not
to collude with the last voter. Instead, we implement an optional round that
requires all voters to hash their encrypted vote and store it in the Blockchain
as a commitment. As a result, the final voter can still compute the tally, but is
unable to change their vote.

The abortive issue is that if the final voter is dissatisfied with the tally, they
can abort without casting their vote. This abortion prevents all other voters
and third parties from computing the final tally. Previously, Kiayias and Yung
[24] and Khader et al. [23] proposed to correct the effect of abortive voters by
engaging the rest of the voters in an additional recovery round. However, the
recovery round requires full cooperation of all the remaining voters, and will
fail if any member drops out half-way. We highlight that the Blockchain and

1 It is also possible for voters that have not yet cast their vote to collude and compute
the partial tally of the cast votes. For simplicity, we discuss a single voter in regards
to the fairness issue.

360 P. McCorry et al.

smart contracts can enforce a financial incentive for voter participation using a
deposit and refund paradigm [25]. This allows providing a new countermeasure
to address the abortive issue: all voters deposit money into a smart contract to
register for an election and are refunded upon casting their vote. Any voter who
does not vote before the voting deadline simply loses their deposit.

In the next section we present Open Vote Network [17] before discussing
its smart contract implementation on Ethereum. We chose to implement this
protocol instead of others (e.g., [16,24]) because it is the most efficient boardroom
voting protocol in the literature in each of the following aspects: the number of
rounds, the computation load per voter and the bandwidth usage [17]. As we will
detail in Sect. 3, the efficiency of the voting protocol is critical as even with the
choice of the most efficient boardroom voting protocol, its implementation for a
small-scale election is already nearing the capacity limit of an existing Ethereum
block.

2.2 The Open Vote Network Protocol

The Open Vote Network is a decentralized two-round protocol designed for sup-
porting small-scale boardroom voting. In the first round, all voters register their
intention to vote in the election, and in the second round, all voters cast their
vote. The systems assumes an authenticated broadcast channel is available to all
voters. The self-tallying property allows anyone (including non-voters) to com-
pute the tally after observing messages from the other voters. In this paper, we
only consider an election with two options, e.g., yes/no. Extending to multiple
voting options, and a security proof of the protocol can be found in [17].

A description of the Open Vote Network is as follows. First, all n voters agree
on (G, g) where G denotes a finite cyclic group of prime order q in which the
Decisional Diffie-Hellman (DDH) problem is intractable, and g is a generator in
G. A list of eligible voters (P1, P2, ..., Pn) is established and each eligible voter
Pi selects a random value xi ∈R Zq as their private voting key.

Round 1. Every voter Pi broadcasts their voting key gxi and a (non-interactive)
zero knowledge proof ZKP (xi) to prove knowledge of the exponent xi on the
public bulletin board. ZKP (xi) is implemented as a Schnorr proof [32] made
non-interactive using the Fiat-Shamir heuristic [15].

At the end, all voters check the validity of all zero knowledge proofs before
computing a list of reconstructed keys:

Yi =
i−1∏

j=1

gxj/

n∏

j=i+1

gxj

Implicitly setting Yi = gyi , the above calculation ensures that
∑

i xiyi = 0.

Round 2. Every voter broadcasts gxiyigvi and a (non-interactive) zero knowl-
edge proof to prove that vi is either no or yes (with respect to 0 or 1) vote.

A Smart Contract for Boardroom Voting with Maximum Voter Privacy 361

This one-out-of-two zero knowledge proof is implemented using the Cramer,
Damg̊ard and Schoenmakers (CDS) technique [7].

All zero knowledge proofs must be verified before computing the tally to
ensure the encrypted votes are well-formed. Once the final vote has been cast,
then anyone (including non-voters) can compute

∏
i g

xiyigvi and calculate g
∑

i vi

since
∏

i g
xiyi = 1 (see [17]). The discrete logarithm of g

∑
i vi is bounded by the

number of voters and is a relatively small value. Hence the tally of yes votes can
be calculated subsequently by exhaustive search.

Note that for the election tally to be computable, all the voters who have
broadcast their voting key in Round 1 must broadcast their encrypted vote in
Round 2. Also note that in Round 2, the last voter to publish their encrypted
vote has the ability to compute the tally before broadcasting their encrypted vote
(by simulating that he would send a no-vote). Depending on the computed tally,
he may change his vote choice. In our implementation, we address this issue by
requiring all voters to commit to their votes before revealing them, which adds
another round of commitment to the protocol.

The decentralised nature of the Open Vote Network makes it suitable to
implement over a Blockchain. Bitcoin’s blockchain could be used as the public
bulletin board to store the voting data for the Open Vote Network. However,
this requires the voting protocol to be externally enforced by the voters. Instead,
we propose using Ethereum to enforce the voting protocol’s execution. This is
possible as conceptually Ethereum can be seen as a global computer that can
store and execute programs. These programs are written as smart contracts, and
their correct execution is enforced using the same network consensus that secures
the Ethereum blockchain. Furthermore, its underlying peer-to-peer network can
act as an authenticated broadcast channel.

2.3 Ethereum

In this section, we focus on the types of accounts available, the transaction
structure and the Blockchain protocol used in Ethereum.

Ethereum has two account types:

– An externally owned account (user-controlled) is a public-private key
pair controlled by the user. We denote these accounts by A,B,

– A contract account is a smart contract that is controlled by its code. We
denote a smart contract account by λ.

Both account types can store the Ethereum currency ‘ether’. Ethereum does
not perform computation in a contract without user interaction. As such, a con-
tract account must be activated by a user-controlled account before its code
can be executed. Executing code requires the user-controlled account to pur-
chase ‘gas’ using the ether currency and a gas price set by the user determines
the conversion rate of ether to gas. The cost of gas is essentially a transaction
fee to encourage miners to include the code execution in the Blockchain. Most
importantly, gas is a metric that standardises the cost of executing code on the

362 P. McCorry et al.

network and each assembly operation (opcode) has a fixed gas cost based on its
expected execution time.

Fig. 1. Alice creates a smart contract on the Blockchain and the contract code is sent
in the transaction’s ‘data’ field. The contract is given an address λ. Bob can call a
function of the contract using a second transaction sending gas to the address λ.

An Ethereum Transaction’s structure can be seen in Fig. 1. Each field of
the transaction is described below:

– From: A signature from a user-controlled account to authorise the transac-
tion.

– To: The receiver of the transaction and can be either a user-controlled or
contract address.

– Data: Contains the contract code to create a new contract or execution
instructions for the contract.

– Gas Price: The conversion rate of purchasing gas using the ether currency.
– Total Gas: The maximum amount of gas that can be consumed by the

transaction.
– Nonce: A counter that is incremented for each new transaction from an

account.

The Ethereum blockchain is considered an orderly transaction-based state
machine. If multiple transactions call the same contract, then the contract’s
final state is determined by the order of transactions that are stored in the
block. Strictly, Ethereum’s blockchain is a variation of the GHOST protocol [33]
which is a tree-based blockchain. This tree has a main branch of blocks that is
represents the ‘Blockchain’ and transactions in these blocks determine the final
state of contracts and account balances. Similar to Bitcoin, the security of the

A Smart Contract for Boardroom Voting with Maximum Voter Privacy 363

Blockchain relies upon miners providing a ‘proof of work’ which authorises the
miner to append a new block. This proof of work is a computationally difficult
puzzle, and the miner is rewarded 5 ether if the block is successfully appended.

Blocks are created approximately every twelve seconds in Ethereum which is
significantly faster than Bitcoin’s 10 min interval. As a consequence, it is proba-
bilistically more likely that two or more blocks are created by different miners at
the same time. In Bitcoin, only one of the competing blocks can be accepted into
the Blockchain, and the remaining blocks are discarded. However, in Ethereum,
these discarded blocks are appended to the Blockchain as leaf nodes (‘uncle
blocks’). It should be noted that the uncle block still rewards the miner a pro-
portion of the 5 ether block reward based on when the block is included in the
Blockchain.

Ethereum’s blockchain provides a natural platform for the Open Vote Net-
work. It provides a public bulletin board and an authenticated broadcast channel
which are necessary in decentralised internet voting protocols to support co-
ordination amongst voters. As well, almost all computations in the Open Vote
Network are public computations that can be written as a smart contract. Most
importantly, the entire execution of the voting protocol is enforced by the same
consensus that secures the Blockchain. In the next section, we discuss our imple-
mentation and the feasibility of performing internet voting over the Blockchain.

3 The Open Vote Network over Ethereum

We present an implementation of the Open Vote Network over Ethereum. The
code is publicly available2. Three HTML5/JavaScript pages are developed to
provide a browser interface for all voter interactions. The web browser interacts
with an Ethereum daemon running in the background. The protocol is executed
in five stages, and requires voter interaction in two (and an optional third)
rounds. We give an overview of the implementation in the following.

3.1 Structure of Implementation

There are two smart contracts that are both written in Ethereum’s Solidity lan-
guage. The first contract is called the voting contract. It implements the voting
protocol, controls the election process and verifies the two types of zero knowl-
edge proofs we have in the Open Vote Network. The second contract is called
the cryptography contract. It distributes the code for creating the two types of
zero knowledge proofs3. This provides all voters with the same cryptography
code that can be used locally without interacting with the Ethereum network.
We have also provided three HTML5/JavaScript pages for the users:

2 https://github.com/stonecoldpat/anonymousvoting.
3 We have included the code to create and verify the two types of zero knowledge

proofs in the cryptography contract. The code is independent of the Open Vote
Network and can be used by other smart contracts.

https://github.com/stonecoldpat/anonymousvoting

364 P. McCorry et al.

– Election administrator (admin.html) administers the election. This
includes establishing the list of eligible voters, setting the election question,
and activating a list of timers to ensure the election progresses in a timely
manner. The latter includes notifying Ethereum to begin registration, to close
registration and begin the election, and to close voting and compute the tally.

– Voter (vote.html) can register for an election, and once registered must cast
their vote.

– Observer (livefeed.html) can watch the election’s progress consisting of
the election administrator starting and closing each stage and voters regis-
tering and casting votes. The running tally is not computable.

We assume that voters and the election administrator have their own
Ethereum accounts. The Web3 framework is provided by the Ethereum Foun-
dation to facilitate communication between a user’s web browser and their
Ethereum client. The user can unlock their Ethereum account (decrypt their
Ethereum’s private key using a password) and authorise transactions directly
from the web browser. There is no need for the user to interact with an Ethereum
wallet, and the Ethereum client can run in the background as a daemon.

3.2 Election Stages

Figure 2 presents the five stages of the election in our implementation. The
smart contract has a designated owner that represents the election adminis-
trator. This administrator is responsible for authenticating the voters with their
user-controlled account and updating the list of eligible voters. A list of timers is
enforced by the smart contract to ensure that the election progresses in a timely
manner. The contract only allows eligible voters to register for an election, and
registered voters to cast a vote. Furthermore, the contract can require each voter
to deposit ether upon registration, and automatically refund the ether when their
vote is accepted into the Blockchain. Each stage of the election is described in
more detail below:

SETUP. The election administrator authenticates each voter with their user-
controlled account and updates the voting contract to include a whitelist of
accounts as eligible voters. He defines a list of timers to ensure that the election
progresses in a timely manner:

Fig. 2. There are five stages to the election.

A Smart Contract for Boardroom Voting with Maximum Voter Privacy 365

– tfinishRegistration: all voters must register their voting key gxi before this
time.

– tbeginElection: the election administrator must notify Ethereum to begin the
election by this time.

– tfinishCommit: all voters must commit to their vote H(gxiyigvi) before this
time. This is only used if the optional COMMIT stage is enabled.

– tfinishV ote: all voters must cast their vote gxiyigvi before this time.
– π: a minimum length of time in which the commitment and voting stages

must remain active to give voters sufficient time to vote.

The administrator also sets the registration deposit d, the voting question,
and if the optional COMMIT stage should be enabled. Finally, the administrator
notifies Ethereum to transition from the SETUP to the SIGNUP stage.

SIGNUP. All eligible voters can choose to register for the vote after review-
ing the voting question and other parameters set by the election administrator.
To register, the voter computes their voting key gxi and ZKP (xi). Both the
key and proof are sent to Ethereum alongside a deposit of d ether. Ethereum
does not accept any registrations after tfinishRegistration. The election adminis-
trator is responsible for notifying Ethereum to transition from the SIGNUP to
either the optional COMMIT or the VOTE stage. All voter’s reconstructed keys
gy0 , gy1 , ..., gyn are computed by Ethereum during the transition.

COMMIT (Optional). All voters publish a hash of their vote H(gxiyigvi) to
the Ethereum blockchain. The contract automatically transitions to the VOTE
stage once the final commitment is accepted into the Blockchain.

VOTE. All voters publish their (encrypted) vote gxiyigvi and a one-out-of-two
zero knowledge proof to prove that vi is either zero or one. The deposit d is
refunded to the voter when their vote is accepted by Ethereum. The election
administrator notifies Ethereum to compute the tally once the final vote is cast.

TALLY. The election administrator notifies Ethereum to compute the tally.
Ethereum computes the product of all votes

∏
i g

xiyigvi = g
∑

i vi and brute
forces the discrete logarithm of the result to find the number of yes votes.

As mentioned before, Open Vote Network requires all the registered voters to
cast a vote to enable tally calculation. The deposit d in our implementation pro-
vides a financial incentive for registered voters to vote. This deposit is returned
to the voter if they follow through with the voting protocol and do not drop out.
The list of timestamps defined by the election administrator determines if the
voter’s deposit d is forfeited or refunded. There are three refund scenarios if a
deadline is missed:

– Registered voters can claim their refund if the election does not begin by
tbeginElection.

– Registered voters who have committed can claim their refund if not all regis-
tered voters commit to their vote by tfinishCommit.

– Registered voters can claim their refund if not all registered voters cast their
vote by tfinishV ote.

366 P. McCorry et al.

4 Design Choices

In this section, we discuss the design choices we made when developing the imple-
mentation. In particular, we elaborate on some attack vectors that are addressed
in our smart contract and clarify the trust assumptions that are required for our
implementation to be secure.

Individual and public verifiability. We assume that the voter’s machine,
including their web browser, is not compromised. The voter has an incentive to
ensure their machine is secure. If the machine or web browser is compromised,
the voter’s ether is likely to be stolen. The voter can check that their vote
has been recorded as cast and cast as intended by inspecting the Blockchain
and decrypting their vote using the key xi. Also, the voter, or any observer for
that matter, can independently compute the tally to verify that the cast votes
have been tallied as recorded. Unfortunately, this public verifiability does not
provide any coercion resistance as the voting is conducted in a “unsupervised”
environment. The voter may vote under the direct duress of a coercer who stands
over their shoulder. The voter can also reveal x to prove how their vote was
cast to others. As such, in a similar fashion to Helios [1], we note that our
implementation is only suitable for low-coercion elections.

Voter authentication. Smart contracts can call other smart contracts. As a
result, there exist two methods to identify the caller. The first is tx.origin that
identifies the user-controlled account that authorised the transaction, and not
the immediate caller. The second is msg.sender that identifies the immediate
caller which can be a contract or a user-controlled address. Initially, a developer
might use tx.origin as it appears the appropriate choice to identify the voter.
Unfortunately, this approach allows a malicious smart contract to impersonate
the voter and register for an election.

To illustrate, a voter is given the interface to a smart contract called Bet-
tingGame. This lets the voter place a bet using BettingGame.placeBid().
Unknowingly to the voter, if this function is called, then BettingGame will call
TheOpenVoteNetwork.register() and register a voting key on behalf of the
voter. To overcome this issue, we recommend using msg.sender as it identifies
the immediate caller whose address should be in the list of eligible voters.

Defending against replay attacks. All voting keys gxi and their zero knowl-
edge proofs ZKP (xi) are publicly sent to the Ethereum blockchain. A potential
attack is that another eligible voter can attempt to register the same voting
keys by replaying gxi and ZKP (xi). This would also let them later copy the
targeted voter’s vote. We highlight that the commitment (i.e., input arguments
to the hash function) in the zero knowledge proof includes msg.sender and
Ethereum will not accept the zero knowledge proof ZKP (xi) if msg.sender
does not match the account that is calling the contract. As such, it is not possi-
ble to replay another voter’s key gxi without their co-operation. This also applies
to the one-out-of-two zero knowledge proofs.

A Smart Contract for Boardroom Voting with Maximum Voter Privacy 367

Blocking re-entrancy. A hacker recently exploited a re-entrancy vulnerability
in theDAO to steal over 3.6 million ether. Luu et al. highlight [26] that 186
distinct smart contracts stored on the Blockchain (including theDAO) are also
potentially vulnerable. This attack relies on the contract sending ether to the user
before deducting their balance. The attacker can recursively call the contract in
such a way that the sending of ether is repeated, but the balance is only deducted
once. To prevent this attack, we follow the advice of Reitwiessner [30] to first
deduct the voter’s balance before attempting to send the ether.

The role of timers. The election administrator sets a list of timers to allow
Ethereum to enforce that the election progresses in a timely manner. A minimum
time interval π (unit in seconds) is set during the SETUP stage to ensure each
stage remains active for at least a time interval of length π. In particular, the
rules tfinishCommit − tbeginElection > π and tfinishV ote − tfinishCommit > π are
enforced to provide sufficient time for voters to commit to and cast their vote.
Also, it provides a window for the voter’s transaction to be accepted into the
Blockchain. This is necessary to prevent a cartel of miners (<51%) attempting to
censor some transactions. Voters need to check that π is not a small value such
as π = 1. In this case, the voting stage can finish one second after the election
begins. As a result, all voters are likely to lose their deposits. Of course, both
the COMMIT and VOTE stage can finish early if all voters have participated.

The block’s timestamp is used to enforce the above timers. Ethereum has a
tight bound on the timestamp which must conform to the following two rules.
First, a new block’s timestamp must be greater than the previous block. Second,
the block’s timestamp must be less than the user’s local clock. Furthermore, the
miner’s ability to drift a block’s timestamp by 900 s (15 min) as reported in [26]
is no longer possible [11].

Ethereum miners. The tip of the Blockchain is uncertain and the state of a
contract at the time of signing a transaction is not guaranteed to remain the
same. Furthermore, miners control the order of transactions in a block, and
can control the order of a contract’s execution if there are two or more trans-
actions calling the same contract. Although the order of voting keys or cast-
ing a vote does not matter, the order of transactions is important if a timer
is about to expire. For example, if the voter attempts to register around the
time that tfinishRegistration expires, then the miner can prevent the registration
in two ways. First, the miner can choose a block timestamp that expires the
tfinishRegistration timer. Second, if the miner has the voter’s registration trans-
action and the election administrator’s begin election transaction, he can order
the transactions in the block such that the smart contract begins the election
before allowing the voter to register for the election. Unfortunately, in both cases,
the voter’s registration will fail.

It is important that voters authorise their transactions in good time before
the stage is destined to end. We must assume that the majority of miners are
not attempting to disrupt the election. A smaller cartel of miners (<51%) can
potentially delay transactions being accepted into the Blockchain using tech-

368 P. McCorry et al.

niques such as selfish mining [14,31] or feather forking [29]. This ability of miners
to delay a transaction is a fundamental problem for any contract.

The election administrator. An election administrator is required to add
voters to the list of eligible voters, set the election’s parameters and to begin the
registration stage. Unfortunately, smart contracts cannot execute code without
the notification of an external user-controlled account. As such, a user is still
required to notify the smart contract to begin the election and compute the
tally. Deciding who is responsible for notifying Ethereum is an implementation
trade-off and we have assumed it is the election administrator’s role. If neces-
sary, the contract can be modified to allow any registered voter to perform the
notification. However, in that case it is possible that two or more voters attempt
to notify Ethereum at the same time and broadcast transactions to the network.
If this happens, only one transaction can begin the election or compute the tally.
All unsuccessful transactions will still be stored in the Blockchain and all the
broadcasting users will still be charged transaction fees.

Removing the COMMIT stage. The COMMIT stage prevents the final voter
computing the tally and using this information to decide how to vote. It is pos-
sible to remove this stage if we require the election administrator (or a separate
external party) to perform some extra tasks. In this case, the administrator is
the first voter to register a voting key gx and deposit of d ether before voter reg-
istration begins. Next, he is required to merely reveal his secret x once all voters
have cast their vote. Revealing x allows Ethereum to calculate a final dummy
vote and compute the tally. The administrator is now trusted not to collude with
the last voter. This approach removes the COMMIT phase but requires extra
an trust assumption.

Do voters need to use Ethereum? Today, all voters need to download the full
Ethereum blockchain to confirm the voting protocol is being executed correctly.
In the future, voters will be able to use the Light Ethereum Subprotocol (LES)
[12] which is similar to Bitcoin’s simplified payment verification (SPV) protocol.
In LES, voters will only verify the voting protocol’s state and not be required
to store the full Blockchain.

Most importantly, it is possible for the voter to participate in the voting
protocol without the full Blockchain. In this case, the voter merely broadcasts
their transactions and trusts the consensus mechanism of the Ethereum network
to enforce the correct execution of the protocol. This would enable voters who
have devices with limited resources to vote in our implementation. We have
provided livefeed.html to allow voters to visit an external website and confirm
their registration or vote has been recorded in the Blockchain.

5 Experiment on Ethereum’s Test Network

Our implementation was deployed on Ethereum’s official test network that mim-
ics the production network. We sent 126 transactions to simulate forty voters par-
ticipating in the protocol. Each transaction’s computational and financial cost is

A Smart Contract for Boardroom Voting with Maximum Voter Privacy 369

outlined in Table 1. Each transaction by the election administrator (denoted by
the prefix ‘A:’ in the table) is broadcast only once, and each transaction by a voter
(denoted by the prefix ‘V:’ in the table) is broadcast once per voter, i.e., a total
of 40 times. Also, we have rounded the cost in US Dollars (denoted by $) to two
decimal places.

Table 1. A breakdown of the costs for 40 participants using the Open Vote Network.
We have approximated the cost in USD ($) using the conversion rate of 1 ether = $11
and the gas price of 0.00000002 ether which are the real world costs in November 2016.
Also, we have identified the cost for the election administrator ‘A’ and the voter ‘V’.

Entity: Transaction Cost in Gas Cost in $

A: VoteCon 3,779,963 0.83

A: CryptoCon 2,435,848 0.54

A: Eligible 2,153,461 0.47

A: Begin Signup 234,984 0.05

V: Register 763,118 0.17

A: Begin Election 3,085,449 0.68

V: Commit 70,112 0.02

V: Vote 2,490,412 0.55

A: Tally 746,485 0.16

Administrator total 12,436,190 2.74

Voter total 3,323,642 0.73

Election total 145,381,858 31.98

We had to split the Open Vote Network into two contracts as the code was
too large to store in an Ethereum block which has a capacity of approximately
4.7 million gas. The voting contract VoteCon (80% of block capacity, and $0.83
transaction fee) contains the protocol logic. The cryptography contract Cryp-
toCon (52% of block capacity, and $0.54 transaction fee) contains the code to
create and verify the two types of zero knowledge proofs we have in the protocol.

CryptoCon can be reused by other contracts requiring similar zero knowledge
proofs. It is important to note that the code for computing the zero knowledge
proofs is run locally on the voter’s machine, and no transactions are sent to the
network. CryptoCon’s purpose is to ensure that all voters have access to the
same cryptography code.

As the figures show, voter registrations and vote casting cost around 16% and
53% of block capacity, respectively. This suggests that the current block sizes in
Ethereum support at most six voter registration per block and at most one vote
casting per block. Recall that blocks are currently generated in Ethereum at a
rate of one block per 12 s.

370 P. McCorry et al.

0.00

0.50

1.00

1.50

2.00

2.50

5 10 15 20 25 30 35 40 45 50 55 60

Co
st

 ($
)

Number of voters

Elec on administrator

Voter

Fig. 3. The average cost for the election administrator and the voter based on the
number of voters participating in the election.

Overall, running the election with 40 voters costs the election administrator
$2.74. The total election cost including the cost for the administrator and the
voters is $31.98 which breaks down to a reasonable cost of $0.73 per voter.

To see how the cost for the election administrator and the voter vary with
different number of voters we have carried out experiments with 5, 10, 15,. . . ,
60 voters. Figure 3 highlights the distribution of cost for the election adminis-
trator and the voter based on the number of voters participating in the election.
This shows that the election administrator’s cost increases linearly based on the
number of voters, and the voter’s cost remains constant.

All testing was performed on the test network due to an ongoing DoS attack,
starting from 22 September 2016, on Ethereum’s production network [5]. Miners
set the block’s gas limit to 1,500,000 gas to reduce the impact on the network
and a hard fork [4] was deployed on 18 October 2016 to prevent the attack. How-
ever, a second DoS attack began on 19 October 2016. Ethereum developers have
recommended a temporary gas limit of 2,000,000 until the next scheduled hard
fork. As such, the Open Vote Network cannot run on the production network at
this time.

5.1 Timing Analysis

Table 2 outlines the timing analysis measurements for tasks in the Open Vote
Network. All measurements were performed on a MacBook Pro running OS X
10.10.5 equipped with 4 cores, 2.3 GHz Intel Core i7 and 16 GB DDR3 RAM.
All time measurements are rounded up to the next whole millisecond. We use
the Web3 framework to facilitate communication between the web browser and
the Ethereum daemon. All tasks are executed using .call() that allows us to
measure the code’s computation time on the local daemon.

The cryptography smart contract is responsible for creating the zero knowl-
edge proofs for the voter. The time required to create the proofs is 81 ms for the
Schnorr proof and 461 ms for the one-out-of-two zero knowledge proof. These
actions are always executed using .call() as this contract should never receive
transactions.

A Smart Contract for Boardroom Voting with Maximum Voter Privacy 371

Table 2. A time analysis for actions that run on the Ethereum daemon.

Action Avg. time (ms)

Create ZKP(x) 81

Register voting key 142

Begin election 277

Create 1-out-of-2 ZKP 461

Cast vote 573

Tally 132

The voting smart contract is responsible for enforcing the election process.
Registering a vote involves verifying the Schnorr zero knowledge proof and
in total requires 142 ms. To begin the election requires computing the recon-
structed public keys which takes 277 ms in total for forty voters. Casting a vote
involves verifying the one-out-of-two zero knowledge proof which requires 573 ms.
Tallying involves summing all cast votes and brute-forcing the discrete logarithm
of the result and on average takes around 132 ms.

We decided to distribute the cryptography code using the Ethereum
blockchain to allow all voters to use the same code. Running the code on the
voter’s local daemon is significantly slower than using a seperate library such
as OpenSSL. For example, creating a Schnorr signature using OpenSSL on a
comparable machine requires 0.69 ms [27]. This slowness is mostly due to the
lack of native support for elliptic curve math in Ethereum smart contracts. The
Ethereum Foundation has plans to include native support and we expect this to
significantly improve our reported times.

6 Discussion on Technical Difficulties

In this section, we discuss the difficulties faced while implementing the Open
Vote Network on Ethereum.

Lack of support for cryptography. Ethereum supports up to 256-bit
unsigned integers. For this reason, we chose to implement the protocol over an
elliptic curve instead of a finite field. However, Solidity does not currently sup-
port Elliptic Curve cryptography, and we had to include an external library to
perform the computation. Including the library led to our voting contract becom-
ing too large to store on the Blockchain. As previously discussed, we separated
the program into two smart contracts: one voting contract and one cryptogra-
phy contract. The cryptographic computations are expensive and this results in
a block only being able to support six voter registrations, or a single vote.

Call stack issues. The call stack of a program has a hard-coded limit of 1024
stack frames. This limits the amount of local memory available, and the number
of function calls allowed. These limitations led to difficulty while implementing

372 P. McCorry et al.

the 1-out-of-2 ZKP as the temporary variables typically required exceeded the
hard-coded limit of 16 local variables [21]. We had to use variables extremely
sparingly to ensure that the 1-out-of-2 ZKP could be implemented.

Lack of debugging tools. The Mix IDE that provides a solidity source code
debugger has been discontinued [13] and could not be used for our work. Remix
is the replacement for the Mix IDE and it provides a debugger for contracts at
the assembly level, but this is too low for debugging Solidity contracts. Instead,
we had to create Events that log data along with the contract to help with
debugging which is incorporated into the contract before deployment.

Mitigate loss of voting key. The voting key is kept secret by the voter and
needs to be stored on their local machine. This is important to ensure that if
the voter’s web browser crashes or is closed, then the voting key is not lost. We
provide a standalone Java program votingcodes.jar to generate the voting
key and store it in votingcodes.txt. The voter is required to upload this file
to their web browser.

Maximum number of voters. Figure 4 demonstrates the results of our experi-
ment and highlights the breakdown of the election administrator’s gas consump-
tion. Except for opening registration, the gas cost for each task increases linearly
with the number of voters. The gas limit for a block was set at 4.7 million gas by
the miners before the recent DoS attacks. This means that the smart contract
reaches the computation and storage limit if it is computing the voter’s recon-
structed keys for around sixty registered voters. This limit exists as all keys
are computed in a single transaction and the gas used must be less than the
block’s gas limit. To avoid reaching this block limit, we currently recommend a
safe upper limit of around 50 voters. However, the contract can be modified to
perform the processing in batches and allow multiple transactions to complete
the task.

0
500,000

1,000,000
1,500,000
2,000,000
2,500,000
3,000,000
3,500,000
4,000,000
4,500,000
5,000,000

5 10 15 20 25 30 35 40 45 50 55 60

Ga
s

Number of voters

Gas Limit

Compute Reconstructed Keys

Set Voters as Eligible

Compute Tally

Begin Registra on

Fig. 4. The gas cost for the election administrator based on the number of voters
participating in the election.

A Smart Contract for Boardroom Voting with Maximum Voter Privacy 373

7 Conclusion

In this paper, we have presented a smart contract implementation for the Open
Vote Network that runs on Ethereum. Our implementation was tested on the
official Ethereum test network with forty simulated voters. We have shown that
our implementation can be readily used with minimal setup for elections at a
cost of $0.73 per voter. The cost can be considered reasonable as this voting
protocol provides maximum voter privacy and is publicly verifiable. This is the
first implementation of a decentralised internet voting protocol running on a
Blockchain. It uses the Ethereum blockchain not just as a public bulletin board,
but more importantly, as a platform for consensus computing that enforces the
correct execution of the voting protocol.

In future work, we will investigate the feasibility of running a national-scale
election over the Blockchain. Based on the knowledge gained from this paper, we
believe that if such a perspective is ever considered possible, its implementation
will almost certainly require a dedicated Blockchain. For example, this can be
an Ethereum-like blockchain that only stores the e-voting smart contract. This
new blockchain can have a larger block size to store more transactions on-chain
and may be maintained in a centralised manner similar to RSCoin [9].

Acknowledgements. The second and third authors are supported by the European
Research Council (ERC) Starting Grant (No. 306994). We would like to thank Nick
Johnson for taking the time to answer questions about Ethereum, Solidity and the
test-framework Dapple. We thank Maryam Mehrnezhad and Ehsan Toreini for their
support in this work during the Economist Case Study Challenge, Malte Möser for
his comments on an early draft of the paper, and the anonymous reviewers for their
constructive feedback.

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium,
vol. 17, pp. 335–348 (2008)

2. Aradhya, P.: Distributed Ledger Visible to All? Ready for Blockchain? Huffington
Post, April 2016

3. Boucher, P.: What if blockchain technology revolutionised voting? Scientific
Foresight Unit (STOA), European Parliamentary Research Service, September
2016. http://www.europarl.europa.eu/RegData/etudes/ATAG/2016/581918/
EPRS ATA(2016)581918 EN.pdf

4. Buterin, V.: Long-term gas cost changes for IO-heavy operations to mitigate
transaction spam attacks. Ethereum Blog, October 2016. https://github.com/
ethereum/EIPs/issues/150. Accessed 01 Nov 2016

5. Buterin, V.: Transaction spam attack: next steps. Ethereum Blog, September 2016.
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/

6. Clark, J., Essex, A.: CommitCoin: carbon dating commitments with Bitcoin. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 390–398. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32946-3 28

http://www.europarl.europa.eu/RegData/etudes/ATAG/2016/581918/EPRS_ATA(2016)581918_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/ATAG/2016/581918/EPRS_ATA(2016)581918_EN.pdf
https://github.com/ethereum/EIPs/issues/150
https://github.com/ethereum/EIPs/issues/150
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://doi.org/10.1007/978-3-642-32946-3_28

374 P. McCorry et al.

7. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

8. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meikle-
john, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016.
LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53357-4 8

9. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. In: 23nd Annual
Network and Distributed System Security Symposium, NDSS 2016 (2016)

10. Ekblaw, A., Azaria, A., Halamka, J.D., Lippman, A.: A case study for blockchain
in healthcare: MedRec prototype for electronic health records and medical research
data (2016). http://dci.mit.edu/assets/papers/eckblaw.pdf. Accessed 26 Oct 2016

11. Eth: How do Ethereum mining nodes maintain a time consistent with the
network? Ethereum Wiki, June 2016. https://github.com/ethereum/wiki/wiki/
Light-client-protocol. Accessed 6 Feb 2017

12. Ethereum: Light client protocol. Ethereum Wiki, May 2016. https://github.com/
ethereum/wiki/wiki/Light-client-protocol

13. Ethereum: The mix Ethereum DApp development tool. GitHub (2016). https://
github.com/ethereum/mix. Accessed 10 Oct 2016

14. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

15. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

16. Groth, J.: Efficient maximal privacy in boardroom voting and anonymous broad-
cast. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 90–104. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27809-2 10

17. Hao, F., Ryan, P.Y., Zielinski, P.: Anonymous voting by two-round public discus-
sion. IET Inf. Secur. 4(2), 62–67 (2010)

18. Hertig, A.: The first Bitcoin voting machine is on its way. Motherboard
Vice, November 2015. http://motherboard.vice.com/read/the-first-bitcoin-voting-
machine-is-on-its-way

19. Higgins, S.: Abu Dhabi stock exchange launches blockchain voting. CoinDesk,
October 2016. http://www.coindesk.com/abu-dhabi-exchange-blockchain-voting/

20. Higgins, S.: IBM invests $200 million in blockchain-powered IoT. CoinDesk,
October 2016. http://www.coindesk.com/ibm-blockchain-iot-office/

21. Horrocks, R.: Error while compiling: stack too deep. Ethereum Stack Exchange,
June 2015. http://ethereum.stackexchange.com/a/6065

22. International Association for Cryptologic Research: About the Helios System,
October 2016. http://www.iacr.org/elections/eVoting/about-helios.html

23. Khader, D., Smyth, B., Ryan, P.Y., Hao, F.: A fair and robust voting system by
broadcast. In: 5th International Conference on Electronic Voting, vol. 205, pp.
285–299. Gesellschaft für Informatik (2012)

24. Kiayias, A., Yung, M.: Self-tallying elections and perfect ballot secrecy. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 141–158. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3 10

25. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computa-
tions. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pp. 30–41. ACM (2014)

https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
http://dci.mit.edu/assets/papers/eckblaw.pdf
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/ethereum/mix
https://github.com/ethereum/mix
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-27809-2_10
http://motherboard.vice.com/read/the-first-bitcoin-voting-machine-is-on-its-way
http://motherboard.vice.com/read/the-first-bitcoin-voting-machine-is-on-its-way
http://www.coindesk.com/abu-dhabi-exchange-blockchain-voting/
http://www.coindesk.com/ibm-blockchain-iot-office/
http://ethereum.stackexchange.com/a/6065
http://www.iacr.org/elections/eVoting/about-helios.html
https://doi.org/10.1007/3-540-45664-3_10

A Smart Contract for Boardroom Voting with Maximum Voter Privacy 375

26. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

27. McCorry, P., Shahandashti, S.F., Clarke, D., Hao, F.: Authenticated key exchange
over Bitcoin. In: Chen, L., Matsuo, S. (eds.) SSR 2015. LNCS, vol. 9497, pp. 3–20.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27152-1 1

28. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, November 2008.
https://bitcoin.org/bitcoin.pdf. Accessed 01 Jan 2015

29. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and
Cryptocurrency Technologies. Princeton University Press, Princeton (2016)

30. Reitwiessner, C.: Smart contract security, June 2016. https://blog.ethereum.org/
2016/06/10/smart-contract-security/

31. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
Bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

32. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

33. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 32

34. Business Wire: Now you can vote online with a selfie. Business Wire,
October 2016. http://www.businesswire.com/news/home/20161017005354/en/
Vote-Online-Selfie

https://doi.org/10.1007/978-3-319-27152-1_1
https://bitcoin.org/bitcoin.pdf
https://blog.ethereum.org/2016/06/10/smart-contract-security/
https://blog.ethereum.org/2016/06/10/smart-contract-security/
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-47854-7_32
http://www.businesswire.com/news/home/20161017005354/en/Vote-Online-Selfie
http://www.businesswire.com/news/home/20161017005354/en/Vote-Online-Selfie

Improving Authenticated Dynamic Dictionaries,
with Applications to Cryptocurrencies

Leonid Reyzin1,3(B), Dmitry Meshkov2, Alexander Chepurnoy2,
and Sasha Ivanov3

1 Boston University, Boston, USA
reyzin@bu.edu

2 IOHK Research, Sestroretsk, Russia
{dmitry.meshkov,alex.chepurnoy}@iohk.io

3 Waves Platform, Moscow, Russian Federation
sasha@wavesplatform.com

Abstract. We improve the design and implementation of two-party and
three-party authenticated dynamic dictionaries and apply these dictio-
naries to cryptocurrency ledgers.

A public ledger (blockchain) in a cryptocurrency needs to be easily
verifiable. However, maintaining a data structure of all account balances,
in order to verify whether a transaction is valid, can be quite burden-
some: a verifier who does not have the large amount of RAM required for
the data structure will perform slowly because of the need to continually
access secondary storage. We demonstrate experimentally that authen-
ticated dynamic dictionaries can considerably reduce verifier load. On
the other hand, per-transaction proofs generated by authenticated dic-
tionaries increase the size of the blockchain, which motivates us to find
a solution with most compact proofs.

Our improvements to the design of authenticated dictionaries reduce
proof size and speed up verification by 1.4–2.5 times, making them better
suited for the cryptocurrency application. We further show that proofs
for multiple transactions in a single block can compressed together,
reducing their total length by approximately an additional factor of 2.

We simulate blockchain verification, and show that our verifier can
be about 20 times faster than a disk-bound verifier under a realistic
transaction load.

1 Introduction

The Motivating Application. A variety of cryptocurrencies, starting with
Bitcoin [Nak08], are based on a public ledger of the entire sequence of all trans-
actions that have ever taken place. Transactions are verified and added to this
ledger by nodes called miners. Multiple transactions are grouped into blocks
before being added, and the ledger becomes a chain of such blocks, commonly
known as a blockchain.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 376–392, 2017.
https://doi.org/10.1007/978-3-319-70972-7_21

Authenticated Dynamic Dictionaries and Cryptocurrencies 377

If a miner adds a block of transactions to the blockchain, other miners
verify that every transaction is valid and correctly recorded before accepting the
new block. (Miners also perform other work to ensure universal agreement on the
blockchain, which we do not address here.) However, not only miners participate
in a cryptocurrency; others watch the blockchain and/or perform partial verifi-
cation (e.g., so-called light nodes, such as Bitcoin’s SPV nodes [Nak08, Sect. 8]).
It is desirable that these other participants are able to check a blockchain with
full security guarantees on commodity hardware, both for their own benefit and
because maintaining a large number of nodes performing full validation is impor-
tant for the health of the cryptocurrency [Par15]. To verify each transactions,
they need to know the balance of the payer’s account.

The simple solution is to have every verifier maintain a dynamic dictionary
data structure of (key, value) pairs, where keys are account addresses (typically,
public keys) and values are account balances. Unfortunately, as this data struc-
ture grows, verifiers need to invest into more RAM (and thus can no longer
operate with commodity hardware), or accept significant slowdowns that come
with storing data structures in secondary storage. These slowdowns (especially
the ones caused by long disk seek times in an adversarially crafted set of trans-
actions) have been exploited by denial of service attacks against Bitcoin [Wik13]
and Ethereum [But16].

Authenticated Dictionaries to the Rescue. We propose using crypto-
graphically authenticated data structures to make verifying transactions in the
blockchain much cheaper than adding them to the blockchain. Cheaper verifi-
cation benefits not only verifiers, but also miners: in a multi-token blockchain
system (where tokens may represent, for example, different currencies or com-
modities), such as Nxt [nxt], miners may choose to process transactions only for
some types of tokens, but still need to verify all transactions.

Specifically, we propose storing balance information in a dynamic authenti-
cated dictionary. In such a data structure, provers (who are, in our case, miners)
hold the entire data structure and modify it as transactions are processed, pub-
lishing proofs that each transaction resulted in the correct modification of the
data structure (these proofs will be included with the block that records the
transaction). In contrast, verifiers, who hold only a short digest of the data
structure, verify a proof and compute the new digest that corresponds to the
new state of the data structure, without ever having to store the structure itself.
We emphasize that with authenticated data structures, the verifier can perform
these checks and updates without trusting the prover: the verification algorithm
will reject any attempt by a malicious prover or man-in-the-middle who tries
to fool the verifier into accepting incorrect results or making incorrect modi-
fications. In contrast to the unauthenticated case discussed above, where the
verifier must store the entire data structure, here verifier storage is minimal: 32
bytes suffice for a digest (at 128-bit security level), while each proof is only a
few hundred bytes long and can be discarded immediately upon verification.

378 L. Reyzin et al.

1.1 Our Contributions

A Better Authenticated Dictionary Data Structure. Because reducing
block size a central concern for blockchain systems [CDE+16,DW13], we focus
on reducing the length of a modification proof, which must be included into the
block for each transaction. Moreover, because there is no central arbiter in a
blockchain network, we require an authenticated data structure that can work
without any assumptions about the existence of a trusted author or setup and
without any secret keys (unlike, for example, [PTT16,BGV11,CF13,CLH+15,
MWMS16,CLW+16]). And, because miners may have incentives to make verifi-
cation more time-consuming for others, we prefer data structures whose perfor-
mance is independent of the choices made by provers.

We design and implement an authenticated dictionary data structure requir-
ing no trusted setup or authorship whose proofs are, on average, 1.4 times shorter
than authenticated skip lists of [PT07] and 2.5 times shorter than the red-black
trees of [CW11]. Moreover, our prover and verifier times are faster by the same
factor than corresponding times for authenticated skip lists, and, unlike the work
of [PT07], our data structure is deterministic, not permitting the prover to bias
supposedly random choices in order to make performance worse for the veri-
fier. In fact, our data structure’s worst-case performance is comparable to the
expected-case performance of [PT07]. Our work was inspired by the dynamic
Merkle [Mer89] trees of [NN00,AGT01,CW11,MHKS14] in combination with
the classic tree-balancing algorithm of [AVL62].

We further reduce proof length per operation when putting together proofs for
multiple operations. For example, when proofs for 1000 operations on a 1 000 000-
entry dictionary are put together, our proof length is cut almost by half.

Our setting of authenticated data structures—in which verifiers are able to
compute the new digest after modifications—is often called the “two-party”
case (because there are only two kinds of parties: provers and verifiers). It
should not be confused with the easier “three-party” case addressed in multiple
works [Mer89,NN00,GT00,GTS01,AGT01,MND+04,GPT07,CW11], in which
verifiers are simply given the new digest after modifications (e.g., by a trusted
data owner). While we design primarily for the two-party case, our results can
be used also in the three-party case, and can, for example, replace authenticated
skip lists of [GTS01] in both two-party and three-party applications that rely
on them (e.g., [BP07,GPTT08,HPPT08,EK13] and many others), improving
performance and removing the need for randomization.

Application to Blockchains. We consider a multi-token blockchain system
(unlike Bitcoin, which has bitcoins as the only tokens) with accounts in which
balances can grow or shrink over time (again, unlike Bitcoin, in which a trans-
action output must be spent all at once). One example of such a system is Nxt
[nxt]. For each token type t, there is an authenticated data structure St main-
taining balances of all accounts, locally stored by miners who are interested in
the ability to add transactions for that token type. All miners, regardless of
interest, maintain a local copy of the short digest of St.

Authenticated Dynamic Dictionaries and Cryptocurrencies 379

In order to publish a block with a number of transactions, a miner adds
to the block the proof of validity of these transactions, including the proofs of
correct updates to St, and also includes the new digest of St into the block
header. All miners, as well as verifiers, verify the proof with respect to the
digest they know and check that the new digest in the block header is correct.
(It is important to note that verification of transactions includes other steps that
have nothing to do with the data structure, such as verifying the signature of
the payer on the transaction; these steps do not change.) In contrast to simple
payment verification nodes [Nak08, Sect. 8] in Bitcoin, who cannot fully verify
the validity of a new block because they do not store all unspent outputs, our
verifiers can do so without storing any balance information.

While there have been many proposals to use authenticated data structures
for blockchains (see, e.g., [Tod16,Mil12] and references therein), not many have
suggested publishing proofs for modifications to the data structure. At a high
level, our approach is similar to (but considerably more efficient than) the pro-
posal by White [Whi15], who suggests building a trie-based authenticated data
structure for Bitcoin (although he does not use those terms).

Because of our improved authenticated data structure, provers1 and verifiers
are more efficient, and proofs are shorter, than they would be with previous solu-
tions. We show that whenever a block includes multiple transactions for a given
token, their proofs can be combined, further reducing the amount of space used
per transaction, by about a factor of 2 for realistic conditions. We benchmark
block generation verification and demonstrate that verifying the authenticated
data structure can be about 20 times faster than maintaining a full on-disk
unauthenticated data structure, while generating proofs does not add much to
a miner’s total cost.

Reducing the Cost of a Miner’s Initial Setup. A new miner Molly wish-
ing to join the network has to download the entire blockchain and verify the
validity of every block starting from the first (so-called “genesis”) block. It is
not necessary to verify the validity of every transaction, because the presence of
the block in the blockchain assures Molly that each transaction was verified by
other miners when the block was added. However, without authenticated data
structures, Molly still needs to download and replay all the transactions in order
to establish the up-to-date amount held in each account and be able to validate
future transactions.

Our solution allows Molly to reduce communication, computation, and mem-
ory costs of joining the network, by permitting her to download not entire blocks
with their long lists of transactions, but only the block headers, which, in addi-
tion to demonstrating that the block has been correctly generated and linked to

1 How much efficiency of proof generation matters depends on the cryptocurrency
design. In those cryptocurrencies for which every miner attempts to generate a block
(such as Bitcoin), it matters a lot, because every miner has to run the proof gener-
ation procedure. On the other hand, in those cryptocurrencies for which the miner
wins a right to generate a block before the block is produced (such as ones based on
proof of stake [BGM16,KKR+16]), only one miner per block will generate proofs.

380 L. Reyzin et al.

the chain, contain the digest of all the transactions processed and digests of every
authenticated data structure St that has changed since the previous block. This
information is enough to start validating future transactions. If Molly wants to
not only validate, but also process transactions for tokens of type t, she needs
to obtain the full St; importantly, however, she does not need a trusted source
for this data, because she can verify the correctness of St against the digest.2

2 The Model for Two-Party Authenticated Dictionaries

Given the variety of security models for authenticated data structures, let
us briefly explain ours (to the best of our knowledge, it was first implicitly
introduced in [BEG+91] and more explicitly in [GSTW03,PT07]; it is com-
monly called the two-party model; see [Pap11] for an overview of the relevant
literature).

Each state of the data structure is associated with an efficiently computable
digest ; it is computationally infeasible to find two different states of the data
structure that correspond to the same digest. There are two types of parties:
provers and verifiers. The provers possess the data structure, perform opera-
tions on it, and send proofs of these operations to verifiers, who, possessing only
the digest of the current state of the data structure, can use a proof to obtain
the result of the operation and update their digests when the data structure is
modified. The security goal is to ensure that malicious provers can never fool
verifiers into accepting incorrect results or computing incorrect digests. Impor-
tantly, neither side generates or possesses any secrets.

A secondary security goal (to prevent denial of service attacks by provers who
may have more computing resources than verifiers) is to ensure that a malicious
prover cannot create proofs (whether valid or not) that take the verifier more
time to process than a prespecified upper bound.

Importantly, the model assumes that the verifiers and the provers agree on
which data structure operations need to be performed (in our cryptocurrency
application, the operations will come from the transactions, and the verifier will
check whether the operations themselves are valid by, for example, checking the
signature and account balance of the payer). A verifier is not protected if she
performs an operation that is different from the prover’s, because she may still
compute a valid new digest; she will notice this difference only if she is able
to see that her new digest is different from the prover’s new digest. The model
also assumes that the verifier initially has the correct digest (for example, by

2 Ethereum [Woo14] adds the digest of the current state of the system to each block,
but, because it does not implement proofs for data structure modifications, this
digest cannot be used unless the miner downloads the entire state of the system—
although, importantly, this state may be downloaded from an untrusted source and
verified against the digest. Miller et al. [MHKS14, Appendix A] suggested using
authenticated data structures to improve memory usage, but not communication or
computation time, of Bitcoin’s initial setup.

Authenticated Dynamic Dictionaries and Cryptocurrencies 381

maintaining it continuously starting with the initial empty state of the data
structure).

The specific data structure we wish to implement is a dictionary (also known
as a map): it allows insertion of (key, value) pairs (for a new key), lookup of a
value by key, update of a value for a given key, and deletion by key.

We provide formal security definitions in the full version [RMCI16].

3 Our Construction

Despite a large body of work on authenticated data structures, to the best of
our knowledge, only two prior constructions—those of [PT07] (based on skip
lists) and [MHKS14] (based on skip lists and red-black trees)—address our exact
setting. As mentioned in the introduction, many other works address the three-
party setting (which we also improve), in which modifications are performed by
a trusted author and only lookups are performed by the provers, who trust the
digest. Some works also propose solutions requiring a secret key that remains
unknown to the prover.

We will explain our construction from the viewpoint of unifying prior work
and applying a number of optimizations to existing ideas. The explanation here
is terse for lack of space; a more detailed and accessible explanation is available
in the full version of the paper [RMCI16].

Starting Point: Merkle Tree. We start with a Merkle tree [Mer89] (not nec-
essarily perfectly balanced) with leaves storing (key, value) pairs, sorted by key.
Each internal node stores the minimum of its right subtree to enable search-
ing like in binary search trees (the same way as in [NN00,AGT01,MHKS14],
but not in [CW11], where (key, value) pairs are stored also in internal nodes,
which, as we demonstrate below in Sect. 4, results in longer proofs). To ensure
every non-leaf has two children, and every insertion creates a new internal node
with an existing left leaf and a new right leaf, we start with a −∞ sentinel. To
enabling proving nonmembership of a key (in particular, during insertion), each
leaf stores the next key in addition to its own.

Updates and Simple Insertions. If the prover updates the value stored
at a leaf (for example, subtracting from it money used for a transaction), the
authenticating path for the leaf already contains all the information needed to
compute the new digest. Thus, the proof for an update is the same as the proof
for a lookup. Similarly for insertions: as long as an insertion doesn’t require
rebalancing the tree, the authenticating path to the leaf where insertion took
place already contains the information necessary to compute the new digest.

3.1 Our Improvements

Observation 1: Use Tree-Balancing Operations that Stay on Path.
A variety of algorithms for balancing binary search trees exist. Here we focus

382 L. Reyzin et al.

on AVL trees [AVL62], red-black trees [GS78] (and their left-leaning vari-
ant [Sed08]), and treaps [SA96] (and their equivalent randomly-balanced binary
search trees [MR98]). They all maintain some extra information in the nodes that
enables the insertion and deletion algorithms to make a decision as to whether,
and how, to perform tree rotations in order to maintain a reasonably balanced
tree. We will add this information to the hash function input for computing the
label of each node and to the authenticating path. For insertions, we observe that
if the tree balancing operation rotates only ancestors of the newly inserted leaf,
and does not use or modify information in any other nodes, then the authen-
ticating path already has sufficient information for the verifier to perform the
insertion and the tree-balancing operation. This is the case for AVL trees and
treaps, but not for red-black trees.

However, of all the balanced tree options, only red-black trees have been
implemented in our setting [MHKS14], and this implementation sometimes
must access the color of a node that is not an ancestor of the newly inserted
leaf. According to Miller [Mil16], proofs for insertions in the red-black trees
of [MHKS14] are therefore approximately three times longer than proofs for
lookups. Other balancing approaches enable us to keep insertion proofs short.

Observation 2: Do Not Hash Internal Keys. To verify that a particular
leaf is present (which is all we need for both positive and negative answers), the
verifier does not need to know how the leaf was found—only that it is connected
to the root via an appropriate hash chain. Therefore, like the authors of [PT07]
(and many works in the three-party setting), we do not add the keys of internal
nodes into the hash input, and do not put them into the proof. This is in contrast
to the work of [MHKS14], whose general approach requires the label to depend
on the entire contents of a node, and therefore requires keys of internal nodes to
be sent to the verifier, so that the verifier can compute the labels. When keys do
not take up much space (as in [MHKS14]), the difference between sending the
key of an internal node and sending the direction (left or right) that the search
path took is small. However, when keys are comparable in length to labels (as in
the cryptocurrency application, because they are account identifiers, computed
as hash function outputs or public keys), this difference can mean nearly a factor
of two in the proof length.

Observation 3: Skip Lists are Just a Variant of Treaps. Dean and
Jones [DJ07] observed that skip lists [Pug90] are equivalent to binary search
trees. This view enables us to test the performance of skip lists and treaps with
essentially the same implementation, which no prior implementation has done.
(More details are provided in [RMCI16]).

Observation 4: Deterministic is Better. Treaps and skip lists performwell in
expectation when the priorities (for treaps) and levels (for skip lists) are chosen at
random, independently of the keys in the data structure.However, if an adversary is
able to influence or predict the random choices, performance guarantees no longer
hold. In our setting, the problem is that the provers and verifiers need to somehow
agree on the randomness used. (This is not a problem for the three-party setting,
where the randomness can be supplied by the trusted author).

Authenticated Dynamic Dictionaries and Cryptocurrencies 383

Prior work in the three-party model suggested choosing priorities and lev-
els by applying hash functions to the keys [CW11, Sect. 3.1.1]. However, since
inserted keys may be influenced by the adversary, this method of generating
randomness may give an attacker the ability to make the data structure very
slow and the proofs very long, effectively enabling a denial of service attack. To
eliminate this attack by an external adversary, we could salt the hash function
after the transactions are chosen for incorporation into the data structure (for
example, including a fresh random salt into each the block header). However,
an internal adversary still presents a problem: the prover choosing this salt and
transactions would have the power to make the data structure less efficient for
everyone by choosing a bad salt, violating our secondary security goal stated in
Sect. 2.

Observation 5: AVL Trees Outperform on the Most Relevant Parame-
ters. Regardless of the tree balancing method (as long as it satisfies observations
1 and 2), costs of lookups, updates, and insertions are determined simply by the
depth of the relevant leaf, because the amount of nodes traversed, the size of
the proof, and the number of hashes performed by both provers and verifiers is
directly proportional to this depth.

The average-case distance between the root and a random leaf for both AVL
and red-black trees after the insertion of n random keys is very close to the opti-
mal log2 n [Knu98, p. 468], [Sed08]. The worst-case distance for red-black trees
is twice the optimal [Sed08], while the worst-case distance for AVL trees is 1.44
times the optimal [Knu98, p. 460]. In contrast, the expected (not worst-case!)
distance for treaps and skip lists is 1.5 times the optimal [Pug90]. Thus, AVL
trees, even the worst case, are better than treaps and skip lists in expectation.

Observation 6: Proofs for Multiple Operations Can Be Compressed.
When multiple operations on the data structure are processed together, their
proofs can be compressed. A verifier will not need the label of any node more
than once. Moreover, the verifier will not need the label of any node that lies
on the path to a leaf in another proof (because it will be computed during the
verification of that proof). Nor will the verifier need the label of any node that is
created by the verifier (for example, if there is an insertion into the right subtree
of the root, then the verifier will replace the right child of the root with a new
node and will thus know its label when the label is needed for a proof about
some subsequent operation on the left subtree).

Performing this compression is nontrivial (generic compression algorithms, as
used in [MHKS14] and reported to us by [Mil16], can take care of repeated labels,
but will not perform the other optimizations). Our approach for compressing a
batch of operations is described in [RMCI16].

Putting these observations together, we obtain the data structure to imple-
ment: an AVL tree with values stored only at the leaves, sometimes known as
an AVL+ tree. We implement this data structure and compare it against other
options in the next section. We prove its security in [RMCI16].

384 L. Reyzin et al.

4 Implementation and Evaluation

We implemented our AVL+ trees, as well as treaps and our tree-based skip
lists, in the Scala [sca] programming language using the Blake2b [ANWOW13]
hash function with 256-bit (32-byte) outputs. Our implementation is avail-
able at [cod]3. For the AVL+ implementation, we used the textbook descrip-
tion [Wei06] with the same balance computation procedure as in [Pfa02, Chap. 5].
We ran experiments by measuring the cost of 1000 random insertions (with
26-byte keys and 8-byte values), into the data structure that already had size
n = 0, 1000, 2000, . . . , 999000 keys in it.

As expected, the length of the path from the root to a random leaf in the
n-leaf AVL+ tree was only 2–3% worse than the optimal log2 n. In contrast, the
length of the path in a skip list was typically about 44% worse than optimal,
and in a treap about 32% worse than optimal.

Proof length for a single operation. The average length of our proof for
inserting a new key into a 1 000 000-node tree with 32-byte hashes, 26-byte keys,
and 8-byte values, is 753 bytes. We now explain this number and compare it to
prior work.

Note that for a path of length k, the proof consists of:

– k labels (which are hash values),
– k + 1 symbols indicating whether the next step is right or left, or we are at a

leaf with no next step (these fit into two bits each),
– k pieces of balance or level information (these fit into two bits for an AVL+

tree, but require a byte for skip lists and three or four bytes for treaps),
– the leaf key, the next leaf key, and the value stored in the leaf node (the leaf

key is not needed in the proof for lookups and updates of an existing key,
although our compression technique of Observation 6 will include it anyway,
because it does not keep track of why a leaf was reached)

Thus, the proof length is almost
directly proportional to the path
length: with the 32-byte hashes,
26-byte keys, and 8-byte values, the
proof takes 34k+61 bytes assuming we
don’t optimize at bit level, or about
k bytes fewer if we do (our implemen-
tation currently does not). Note that
the value of k for n = 1000 000 is
about 20 for AVL+ trees and about 29
for skip lists, which means that AVL-
tree-based proofs are about 1.4 times
3 Note that the implementation of AVL+ trees with proof compression for a batch of

multiple operations is fully featured, while the other implementations (contained in
subdirectory “legacy”) are sufficient to perform the measurements reported in this
paper, but are missing features, such as deletions, error handling, and compression
of multiple proofs.

Authenticated Dynamic Dictionaries and Cryptocurrencies 385

shorter than skip-list-based ones. Treap proofs have slightly smaller k, but this
advantage is completely negated in our experiments by the extra bytes needed
to write down the level.

Proof length for deletions is more variable (because the deletion operation
goes to two neighboring leaves and may also need off-path nodes for rotations),
but is on average 50 bytes greater than for insertions, lookups, and updates.

Proof Length Comparison with Existing Work. Our numbers are con-
sistent with those reported by Papamanthou and Tamassia [PT07, Sect. 4], who
also report paths of length 30 for skip lists with 1 000 000 entries. (They use a
less secure hash function whose output length is half of ours, resulting in shorter
proofs; if they transitioned to a more secure hash function, their proofs would be
about the same length as our skip-list-based proofs, thus 1.4 times longer than
our AVL+-based proofs).

Direct comparison with the work of [MHKS14] is harder, because informa-
tion on proof length for a single insertion in red-black trees is not provided
in [MHKS14] (what is reported in [MHKS14] is the result of off-the-shelf data
compression by gzip [GA] of the concatenation of proofs for 100 000 lookup oper-
ations). However, because keys of internal nodes are included in the proofs of
[MHKS14], the proofs for lookups should be about 1.7 longer than in our AVL+
trees (for our hash and key lengths). According to [Mil16], the proofs for inser-
tions for the red-black trees of [MHKS14] are about 3 times longer than for
lookups (and thus about 5 times longer than proofs for insertions in our AVL+
trees). Of course, the work [MHKS14] has the advantage of being generic, allow-
ing implementation of any data structure, including AVL+ trees, which should
reduce the cost of insertions to that of lookups; but, being generic, it cannot
avoid sending internal keys, so the cost of lookups will remain.

We can also compare our work with work on three-party authenticated data
structures, because our data structure also works in the three-party model (but
not vice versa: three-party authenticated data structures do not work in our
model, because they do not allow the verifier to compute the new digest, though
some can be adapted to do so). Work based on skip lists, such as [AGT01,GTS01,
GPT07], has proof sizes that are the same as the already-mentioned [PT07], and
therefore our improvement is about the same factor of 1.4.

For three-party work based on red-black trees, there are two variants. The
variant that stores values only at leaves, like we do, was implemented by
Anagnostopoulos et al. [AGT01], who do not report proof length; however, we
can deduce it approximately from the number of hashes reported in [AGT01,
Fig. 6, “hashes per insertion”] and conclude that it is about 10–20% worse than
ours. The variant that uses a standard binary search tree, with keys and values
in every node, was implemented by [CW11] and had the shortest proofs among
the data structures tested in [CW11]. The average proof length (for a positive
answer) in [CW11] is about 1500 bytes when searching for a random key in a
tree that starts empty and grows to 105 nodes, with 28-byte keys, values, and
hashes. In contrast, our average proof size in such a scenario is only 593 bytes
(an improvement of 2.5 times), justifying our decision to put all the values in
the leaves.

386 L. Reyzin et al.

Finally, Ethereum implements a
Merkle patricia trie [Woo14, Appendix
D] in a model similar to the three-
party model (because it does not
implement proofs for changes to the
trie). In our experiments (which used
the code from [Tea16, trie/proof.go] to
generate proofs for the same parame-
ter lengths as ours) using for n rang-
ing from 2000 to 1 000 000, Ethereum’s
proofs for lookups were consistently
over 3 times longer than our AVL+-
based ones. Tendermint’s implementation of Merkle AVL+ trees [Kwo16] has
no provisions for proving absence of a key (nor for proving any modifications,
because it is in the three-party model), but appears to have roughly the same
proof length as ours when we adjust for hash and key lengths.

Proof Length for Multiple Operations. Compressing together proofs for a
batch of B operations at once (using Observation 6 in Sect. 3) reduces the proof
length per operation by approximately 36 · log2 B bytes. This improvement is
considerably greater than what we could achieve by concatenating individual
proofs and then applying gzip [GA], which, experimentally, never exceeded 150
bytes, regardless of the batch size. The improvements reported in this section
and in Fig. 1 are for uniformly random keys; biases in key distribution can only
help our compression, because they result in more overlaps among tree paths
used during the operations.

For example, for n = 1000 000, the combined proof for 1000 updates and 1000
inserts was only 358 bytes per operation. If a transaction in a block modifies two

Fig. 1. Left: proof size per modification for B = 2000, as a function of starting tree size
n. Right: proof size per modification for a tree with n = 1000 000 keys, as a function
of batch size B. In both cases, half of the modifications were inserts of new (key, value)
pairs and half were changes of values for existing keys.

Authenticated Dynamic Dictionaries and Cryptocurrencies 387

accounts, and there are 1 000 000 accounts and 1 000 transactions in the block
(this number is realistic—see [tbp]), then we can obtain proofs of 716 bytes per
transaction remaining at 128-bit security level. If some accounts are more active
and participate in more than one transaction, then the per transaction space is
even less, because repeated paths get compressed.

We can compare our results with those reported in Miller et al. [MHKS14,
Fig. 13d], who report the results of batching together (using a “suspended
disbelief” buffer to eliminate some labels and gzip to compress the stream)
B = 100 000 proofs for lookup operations on a red-black tree of size n rang-
ing from 24 to 221. For these parameter ranges, our proofs are at least 2.4 times
shorter, even though we use 1.6-times longer hashes, as well as longer keys and
values. For example, for n = 221, our proofs take up 199 bytes per operation
vs. 478 bytes of [MHKS14]. Proofs for insertions are even longer in [MHKS14],
while in our work they are the same as for lookups. We emphasize, again, that
the work of Miller et al. has the advantage of supporting general data structures.

Prover and Verifier Running times. The benchmarks below were run on
an Intel(R) Core(TM) i7-5820K CPU @ 3.30 GHz Linux machine with 8 GB of
RAM running in 64-bit mode and using only one core. We used Java 8.0.51 and
compiled our Scala code with scalac 2.11.8. The Java implementation of Blake2b
hash function was obtained from the official Blake website https://blake2.net/.
The average prover (resp, verifier) time for inserting a random key into our
AVL+ tree with 1 000 000 random keys was 31 µs (resp., 47 µs).

It is difficult to make comparisons of running times across implementations
due the variations in hardware environments, programming language used, etc.
Note, however, that regardless of those variables, the running times of the prover
and verifier are closely correlated with path length k: the prover performs k key
comparisons (to find the place to insert) and computes k + 1 hash values (to
obtain the label of two new nodes and k−1 existing nodes whose labels change),
while the verifier performs two comparisons (with the keys of two neighboring
leaves) and computes 2k + 1 hash values (k to verify the proof and k + 1 to

https://blake2.net/

388 L. Reyzin et al.

compute the new digest). Tree rotations do not change these numbers. Therefore,
AVL+ trees perform about 1.4 times faster than skip lists.

When we batch multiple transactions together, prover and verifier times
improve slightly as the batch size grows, in particular because labels of nodes
need not be computed until the entire batch is processed, and thus labels of
some nodes (the ones that are created and then replaced) are never computed.

Simulated Blockchain Proving and Verifying. We used a server (Intel(R)
Core(TM) i7-5820K CPU @ 3.60 GHz Linux machine with 64 GB of RAM and
SSD storage) to simulate two different methods of verifying account balances:
simply maintaining a full on-disk (SSD) data structure of (key, value) pairs (sim-
ilar to the process a traditional “full verifier” would perform) vs. maintaining
only a digest of this data structure and verifying proofs for data structure oper-
ations, using very little RAM and no on-disk storage (similar to the process
a “light verifier” would perform when provers use our AVL+ trees). The data
structure was populated with 5 000 000 random 32-byte keys (with 8-byte val-
ues) at the start. Our simulated blocks contained 1500 updates of values for
randomly chosen existing keys and 500 insertions of new random keys. We ran
the simulation for 90 000 blocks (thus ending with a data structure of 50 000 000
keys, similar to Bitcoin UTXO set size [Lop] at the time of writing).

Both the full and the light veri-
fier were limited to 1 GB of RAM.
Because the actual machine had 64
GB of RAM, in order to prevent
the OS from caching the entire on-
disk data structure, we simulated a
limited-RAM machine by invalidating
the full verifier’s OS-level disk cache
every few 10 s. We measured only the
data structure processing time, and
excluded the time to read the block
from the network or disk, to verify sig-
natures on transactions, etc. The full
verifier’s running time grew rapidly, ending at about 1800 ms per block on aver-
age, while our light verifier stayed at about 85 ms per block, giving our authen-
ticated data structures a 20x speed advantage once the size gets large.

To make sure that generating proofs is feasible for a powerful machine, we also
ran our prover, but permitted it to use up to 48 GB of RAM. The prover stayed
at about 70 ms per block, which is a small fraction of a full node’s total cost. For
example, the cost to verify 1000 transaction signatures—just one of the many
things a full node has to do in order to include transactions into a block—was
280 ms on the same machine (using the Ed25519 [BDL+12] signature scheme).
The proofs size varied from 0.8 to 1.0 MB per block (i.e., 423–542 bytes per data
structure operation).

Authenticated Dynamic Dictionaries and Cryptocurrencies 389

5 Conclusion

We demonstrated the first significant performance improvement in two-party
authenticated data structures since [PT07] and three-party authenticated data
structures since [CW11]. We did so by showing that skip lists are simply a
special case of the more general balanced binary search tree approach; finding
a better binary search tree to use; and developing an algorithm for putting
together proofs for multiple operations. We also demonstrated that our two-
party authenticated data structures can be used to greatly improve blockchain
verification by light nodes without adding much burden to full nodes—providing
the first such demonstration in the context of cryptocurrencies.

Acknowledgements. We thank Andrew Miller for helpful and detailed explanations
of his work [MHKS14], for running his code to get us comparison data, and for com-
ments on our draft. We thank Peter Todd and Pieter Wuille for fascinating discussions.

References

[AGT01] Anagnostopoulos, A., Goodrich, M.T., Tamassia, R.: Persistent authen-
ticated dictionaries and their applications. In: Davida, G.I., Frankel, Y.
(eds.) ISC 2001. LNCS, vol. 2200, pp. 379–393. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45439-X 26

[ANWOW13] Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.:
BLAKE2: simpler, smaller, fast as MD5. In: Jacobson, M., Locasto,
M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954,
pp. 119–135. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38980-1 8

[AVL62] Adel’son-Vel’skii and Landis. An algorithm for the organization of infor-
mation. Dokladi Akademia Nauk SSSR, 146(2), : English translation in
Soviet Math. Doklady 3(1962), 1259–1263 (1962)

[BDL+12] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-
speed high-security signatures. J. Cryptographic Eng. 2(2), 77–89
(2012). https://ed25519.cr.yp.to/

[BEG+91] Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking
the correctness of memories. In: 32nd Annual Symposium on Founda-
tions of Computer Science, San Juan, Puerto Rico, 1–4 October 1991,
pp. 90–99. IEEE Computer Society (1991). Later appears as [?], which
is available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.29.2991

[BGM16] Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of
work. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner,
M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 142–157. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 10

[BGV11] Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of compu-
tation over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 111–131. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 7

https://doi.org/10.1007/3-540-45439-X_26
https://doi.org/10.1007/978-3-642-38980-1_8
https://doi.org/10.1007/978-3-642-38980-1_8
https://ed25519.cr.yp.to/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-642-22792-9_7
https://doi.org/10.1007/978-3-642-22792-9_7

390 L. Reyzin et al.

[BP07] Di Battista, G., Palazzi, B.: Authenticated relational tables and authen-
ticated skip lists. In: Barker, S., Ahn, G.-J. (eds.) DBSec 2007. LNCS,
vol. 4602, pp. 31–46. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73538-0 3

[But16] Buterin, V.: Transaction spam attack: Next steps (2016). https://blog.
ethereum.org/2016/09/22/transaction-spam-attack-next-steps/

[CDE+16] Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba,
A., Miller, A., Saxena, P., Shi, E., Gün, E.: On scaling decentralized
blockchains. In: Proceedings of 3rd Workshop on Bitcoin and Blockchain
Research (2016)

[CF13] Catalano, D., Fiore, D.: Vector commitments and their applications.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36362-7 5

[CLH+15] Chen, X., Li, J., Huang, X., Ma, J., Lou, W.: New publicly verifiable
databases with efficient updates. IEEE Trans. Dependable Sec. Comput.
12(5), 546–556 (2015)

[CLW+16] Chen, X., Li, J., Weng, J., Ma, J., Lou, W.: Verifiable computation over
large database with incremental updates. IEEE Trans. Comput. 65(10),
3184–3195 (2016)

[cod] Implementation of authenticated data structures within scorex. https://
github.com/input-output-hk/scrypto/

[CW11] Crosby, S.A., Wallach, D.S.: Authenticated dictionaries: real-world
costs and trade-offs. ACM Trans. Inf. Syst. Secur. 14(2), 17 (2011).
http://tamperevident.cs.rice.edu/Storage.html

[DJ07] Dean, B.C., Jones, Z.H.: Exploring the duality between skip lists and
binary search trees. In: John, D., Kerr, S.N. (eds.) Proceedings of
the 45th Annual Southeast Regional Conference, 2007, Winston-Salem,
North Carolina, USA, 23–24 March 2007, pp. 395–399. ACM (2007).
https://people.cs.clemson.edu/∼bcdean/skip bst.pdf

[DW13] Decker, C., Wattenhofer, R.: Information propagation in the bitcoin net-
work. In: IEEE P2P 2013 Proceedings, pp. 1–10. IEEE (2013)

[EK13] Etemad, M., Küpçü, A.: Database outsourcing with hierarchical authen-
ticated data structures. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013.
LNCS, vol. 8565, pp. 381–399. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-12160-4 23

[GA] Gailly, J.-L., Adler, M.: gzip. http://www.gzip.org/
[GPT07] Goodrich, M.T., Papamanthou, C., Tamassia, R.: On the cost of per-

sistence and authentication in skip lists. In: Demetrescu, C. (ed.) WEA
2007. LNCS, vol. 4525, pp. 94–107. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-72845-0 8

[GPTT08] Goodrich, M.T., Papamanthou, C., Tamassia, R., Triandopoulos, N.:
Athos: efficient authentication of outsourced file systems. In: Wu, T.-C.,
Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp.
80–96. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85886-7 6

[GS78] Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced
trees. In: 19th Annual Symposium on Foundations of Computer Sci-
ence, Ann Arbor, Michigan, USA, 16–18 October 1978, pp. 8–21. IEEE
Computer Society (1978). http://professor.ufabc.edu.br/∼jesus.mena/
courses/mc3305-2q-2015/AED2-13-redblack-paper.pdf

https://doi.org/10.1007/978-3-540-73538-0_3
https://doi.org/10.1007/978-3-540-73538-0_3
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://github.com/input-output-hk/scrypto/
https://github.com/input-output-hk/scrypto/
http://tamperevident.cs.rice.edu/Storage.html
https://people.cs.clemson.edu/~bcdean/skip_bst.pdf
https://doi.org/10.1007/978-3-319-12160-4_23
https://doi.org/10.1007/978-3-319-12160-4_23
http://www.gzip.org/
https://doi.org/10.1007/978-3-540-72845-0_8
https://doi.org/10.1007/978-3-540-72845-0_8
https://doi.org/10.1007/978-3-540-85886-7_6
https://doi.org/10.1007/978-3-540-85886-7_6
http://professor.ufabc.edu.br/~jesus.mena/courses/mc3305-2q-2015/AED2-13-redblack-paper.pdf
http://professor.ufabc.edu.br/~jesus.mena/courses/mc3305-2q-2015/AED2-13-redblack-paper.pdf

Authenticated Dynamic Dictionaries and Cryptocurrencies 391

[GSTW03] Goodrich, M.T., Shin, M., Tamassia, R., Winsborough, W.H.: Authenti-
cated dictionaries for fresh attribute credentials. In: Nixon, P., Terzis, S.
(eds.) iTrust 2003. LNCS, vol. 2692, pp. 332–347. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-44875-6 24

[GT00] Goodrich, M.T., Tamassia, R.: Efficient authenticated dictionaries with
skip lists and commutative hashing. Technical report, Johns Hopkins
Information Security Institute (2000). http://cs.brown.edu/cgc/stms/
papers/hashskip.pdf

[GTS01] Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an
authenticated dictionary with skip lists and commutative hashing. Pre-
sented in Proceedings of DARPA Information Survivability Conference
and Exposition II (DISCEX II) (2001). http://cs.brown.edu/cgc/stms/
papers/discex2001.pdf

[HPPT08] Heitzmann, A., Palazzi, B., Papamanthou, C., Tamassia, R.: Efficient
integrity checking of untrusted network storage. In: Kim, Y., Yurcik,
W. (eds.) Proceedings of the 2008 ACM Workshop On Storage Secu-
rity and Survivability, StorageSS 2008, Alexandria, VA, USA, 31 Octo-
ber 2008, pp. 43–54. ACM (2008). http://www.ece.umd.edu/∼cpap/
published/alex-ber-cpap-rt-08b.pdf

[KKR+16] Kiayias, A., Konstantinou, I., Russell, A., David, B., Oliynykov, R.: A
provably secure proof-of-stake blockchain protocol. Cryptology ePrint
Archive, Report 2016/889 (2016). http://eprint.iacr.org/2016/889

[Knu98] Knuth, D.: The Art of Computer Programming: Volume 3: Sorting and
Searching. Addison-Wesley, 2nd edition (1998)

[Kwo16] Kwon, J.: Tendermint go-merkle (2016). https://github.com/
tendermint/go-merkle

[Lop] Lopp, J.: Unspent transactions outputs in Bitcoin. http://statoshi.info/
dashboard/db/unspent-transaction-output-set. Accessed 7 Nov 2016

[Mer89] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York
(1990). https://doi.org/10.1007/0-387-34805-0 21

[MHKS14] Miller, A., Hicks, M., Katz, J., Shi, E.: Authenticated data structures,
generically. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2014, San Diego, CA, USA, 20–21 January 2014, pp. 411–
424. ACM (2014). http://amiller.github.io/lambda-auth/paper.html

[Mil12] Miller, A.: Storing UTXOs in a balanced Merkle tree (zero-trust
nodes with O(1)-storage) (2012). https://bitcointalk.org/index.php?
topic=101734.msg1117428

[Mil16] Miller, A.: Private communication (2016)
[MND+04] Martel, C.U., Nuckolls, G., Devanbu, P.T., Gertz, M.,

Kwong, A., Stubblebine, S.G.: A general model for authen-
ticated data structures. Algorithmica 39(1), 21–41 (2004).
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.3658

[MR98] Mart́ınez, C., Roura, S.: Randomized binary
search trees. J. ACM 45(2), 288–323 (1998).
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.243

[MWMS16] Miao, M., Wang, J., Ma, J., Susilo, W.: Publicly verifiable databases
with efficient insertion/deletion operations. J. Comput. Syst. Sci. (2016).
http://dx.doi.org/10.1016/j.jcss.2016.07.005. To appear in print

https://doi.org/10.1007/3-540-44875-6_24
http://cs.brown.edu/cgc/stms/papers/hashskip.pdf
http://cs.brown.edu/cgc/stms/papers/hashskip.pdf
http://cs.brown.edu/cgc/stms/papers/discex2001.pdf
http://cs.brown.edu/cgc/stms/papers/discex2001.pdf
http://www.ece.umd.edu/~cpap/published/alex-ber-cpap-rt-08b.pdf
http://www.ece.umd.edu/~cpap/published/alex-ber-cpap-rt-08b.pdf
http://eprint.iacr.org/2016/889
https://github.com/tendermint/go-merkle
https://github.com/tendermint/go-merkle
http://statoshi.info/dashboard/db/unspent-transaction-output-set
http://statoshi.info/dashboard/db/unspent-transaction-output-set
https://doi.org/10.1007/0-387-34805-0_21
http://amiller.github.io/lambda-auth/paper.html
https://bitcointalk.org/index.php?topic=101734.msg1117428
https://bitcointalk.org/index.php?topic=101734.msg1117428
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.3658
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.243
http://dx.doi.org/10.1016/j.jcss.2016.07.005

392 L. Reyzin et al.

[Nak08] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008).
https://bitcoin.org/bitcoin.pdf

[NN00] Naor, M., Nissim, K.: Certificate revocation and certificate
update. IEEE J. Sel. Areas Commun. 18(4), 561–570 (2000).
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7072

[nxt] The Nxt cryptocurrency. https://nxt.org/
[Pap11] Papamanthou, C.: Cryptography for efficiency: new directions in authen-

ticated data structures. Ph.D. thesis, Brown University (2011). http://
www.ece.umd.edu/cpap/published/theses/cpap-phd.pdf

[Par15] Parker, L.: The decline in bitcoin full nodes (2015). http://bravenewcoin.
com/news/the-decline-in-bitcoins-full-nodes/

[Pfa02] Pfaff, B.: GNU libavl 2.0.2 (2002). http://adtinfo.org/libavl.html/index.
html

[PT07] Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for
two-party authenticated data structures. In: Qing, S., Imai, H., Wang,
G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 1–15. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77048-0 1

[PTT16] Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash
tables based on cryptographic accumulators. Algorithmica 74(2), 664–
712 (2016)

[Pug90] Pugh, W.: Skip lists: a probabilistic alternative to bal-
anced trees. Commun. ACM 33(6), 668–676 (1990).
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.9072

[RMCI16] Reyzin, L., Meshkov, D., Chepurnoy, A., Ivanov, S.: Improving authenti-
cated dynamic dictionaries, with applications to cryptocurrencies. Tech-
nical report 2016/994, IACR Cryptology ePrint Archive (2016). http://
eprint.iacr.org/2016/994

[SA96] Seidel, R., Aragon, C.R.: Randomized search
trees. Algorithmica 16(4/5), 464–497 (1996).
https://faculty.washington.edu/aragon/pubs/rst96.pdf

[sca] The Scala programming language. http://www.scala-lang.org/
[Sed08] Sedgewick, R.: Left-leaning red-black trees (2008). http://www.cs.

princeton.edu/rs/talks/LLRB/LLRB.pdf
[tbp] Transactions per block. https://blockchain.info/charts/n-transactions-

per-block
[Tea16] The Go Ethereum Team. Official golang implementation of the ethereum

protocol (2016). http://geth.ethereum.org/
[Tod16] Todd, P.: Making UTXO set growth irrelevant with low-latency delayed

TXO commitments (2016). https://petertodd.org/2016/delayed-txo-
commitments

[Wei06] Weiss, M.A.: Data Structures and Algorithm Analysis in Java, 2nd edn.
Prentice Hall, Pearson (2006)

[Whi15] White, B.: A theory for lightweight cryptocurrency ledgers (2015).
http://qeditas.org/lightcrypto.pdf. (see also code at https://github.
com/bitemyapp/ledgertheory)

[Wik13] Bitcoin Wiki. CVE-2013-2293: New DoS vulnerability by forcing con-
tinuous hard disk seek/read activity (2013). https://en.bitcoin.it/wiki/
CVE-2013-2293

[Woo14] Wood, G.: Ethereum: A secure decentralised generalised transaction
ledger (2014). http://gavwood.com/Paper.pdf

https://bitcoin.org/bitcoin.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7072
https://nxt.org/
http://www.ece.umd.edu/ cpap/published/theses/cpap-phd.pdf
http://www.ece.umd.edu/ cpap/published/theses/cpap-phd.pdf
http://bravenewcoin.com/news/the-decline-in-bitcoins-full-nodes/
http://bravenewcoin.com/news/the-decline-in-bitcoins-full-nodes/
http://adtinfo.org/libavl.html/index.html
http://adtinfo.org/libavl.html/index.html
https://doi.org/10.1007/978-3-540-77048-0_1
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.9072
http://eprint.iacr.org/2016/994
http://eprint.iacr.org/2016/994
https://faculty.washington.edu/aragon/pubs/rst96.pdf
http://www.scala-lang.org/
http://www.cs.princeton.edu/ rs/talks/LLRB/LLRB.pdf
http://www.cs.princeton.edu/ rs/talks/LLRB/LLRB.pdf
https://blockchain.info/charts/n-transactions-per-block
https://blockchain.info/charts/n-transactions-per-block
http://geth.ethereum.org/
https://petertodd.org/2016/delayed-txo-commitments
https://petertodd.org/2016/delayed-txo-commitments
http://qeditas.org/lightcrypto.pdf
https://github.com/bitemyapp/ledgertheory
https://github.com/bitemyapp/ledgertheory
https://en.bitcoin.it/wiki/CVE-2013-2293
https://en.bitcoin.it/wiki/CVE-2013-2293
http://gavwood.com/Paper.pdf

Short Paper: Service-Oriented Sharding
for Blockchains

Adem Efe Gencer(B), Robbert van Renesse, and Emin Gün Sirer

Initiative for CryptoCurrencies and Contracts (IC3),
Computer Science Department, Cornell University, Ithaca, USA

{gencer,rvr,egs}@cs.cornell.edu

Abstract. The rise of blockchain-based cryptocurrencies has led to an
explosion of services using distributed ledgers as their underlying infra-
structure. However, due to inherently single-service oriented blockchain
protocols, such services can bloat the existing ledgers, fail to provide suf-
ficient security, or completely forego the property of trustless auditability.
Security concerns, trust restrictions, and scalability limits regarding the
resource requirements of users hamper the sustainable development of
loosely-coupled services on blockchains.

This paper introduces Aspen, a sharded blockchain protocol designed
to securely scale with increasing number of services. Aspen shares the
same trust model as Bitcoin in a peer-to-peer network that is prone to
extreme churn containing Byzantine participants. It enables introduction
of new services without compromising the security, leveraging the trust
assumptions, or flooding users with irrelevant messages.

1 Introduction

Blockchains offer many opportunities for facilitating innovation in traditional
industries. They have received extensive attention due to the trustless auditabil-
ity, tamper-resistance, and transparency they provide in networks with Byzan-
tine participants. Not surprisingly, there is much commercial interest in devel-
oping specialized blockchain solutions [13]. There have been proposals to use
blockchains as an underlying layer for services including managing digital
assets [14], issuing securities [12], tracking intellectual property [8,22,28], main-
taining land records and deeds [1,30], facilitating online voting [2], register-
ing domain names [24], as well as others. Ongoing projects explore ways to
make it easier to build such services using Blockchain-as-a-Service (BaaS) plat-
forms [20,26].

This movement, towards increased adoption of blockchains for specialized
purposes, portends a dangerous trend: accommodating all of these diverse uses,
either in a single blockchain or in separate blockchains, inherently requires com-
plex tradeoffs. The simplest approach, of layering these additional blockchains on
top of an existing, secure blockchain with sufficient mining power to withstand
attacks, such as Bitcoin [27], leads to a stream of costly and burdensome trans-
actions. Indeed, we have seen the controversial OP RETURN opcode adopted for
c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 393–401, 2017.
https://doi.org/10.1007/978-3-319-70972-7_22

394 A. E. Gencer et al.

this purpose, and its use has been increasing rapidly [4], in line with increased
usage of layered blockchains. Yet these transactions, which use Bitcoin solely
as a timestamping and ordering service, increase the resource requirements for
system participation and the time to bootstrap a node. In contrast, creating
a dedicated, specialized, standalone blockchain avoids this problem, but suffers
from a lack of independent mining power to secure the infrastructure. Dupli-
cating the mining infrastructure used to secure Bitcoin is not only costly and
environmentally unfriendly, but it is difficult to bootstrap such a system. Faced
with this dilemma, some have turned to permissioned ledgers with closed partic-
ipants [11,23], forgoing the open architecture, the flexible trust model, and the
strong security guarantees of the existing Bitcoin mining ecosystem.

In this paper, we present Aspen, a protocol that securely shards the
blockchain to provide high scalability to service users. This protocol employs
a sharding approach that comes with the following benefits: (1) preserves the
total computational power of miners to secure the whole blockchain, (2) prevents
users from double-spending their funds while maintaining the same trustless
setup assumptions as Bitcoin, (3) improves scalability by absolving non-miner
participants – i.e. service users – from the responsibility of storing, processing,
and propagating irrelevant data to confirm the validity of services they are inter-
ested in. In this protocol, a coffee shop does not have to worry about the land
and deed records in the blockchain to validate the payment system.

Sharding is a well-established technique to improve scalability by distributing
contents of a database across nodes in a network. But sharding blockchains is
non-trivial. The main difficulty is to preserve the trustless nature while hiding
parts of a blockchain from other nodes. It is an open research question whether
it is possible to shard blockchains in a way that the output of a transaction in
one shard can be spent at another while still satisfying the trustless validation of
transaction history. In this work, the key insight behind sharding the blockchain
is to distribute transactions to blocks with respect to services they are used for.

This paper outlines service-oriented sharding, a technique for sharding block-
chains that promises higher scalability and extensibility without modifying Bit-
coin’s trust model. It instantiates this technique in Aspen, a blockchain sharding
protocol that expedites user access to relevant services, makes service integra-
tion and maintenance easier, and achieves better fairness while demanding only
a fraction of resources from users.

2 Service-Oriented Sharding

The core idea behind service-oriented sharding is to partition a blockchain such
that users can fully validate the correct functioning of their services (1) without
relying on trusted entities and (2) while keeping track of only the subset of the
blockchain relevant to their services. This technique shares the same network and
trust model as Bitcoin and related cryptocurrencies. Service-oriented sharding
is built around a multiblockchain structure, where multiple chains are rooted
in the same genesis block and share common checkpoints (See Fig. 1). Building
blocks comprising service-oriented sharding can be summarized as follows:

Short Paper: Service-Oriented Sharding for Blockchains 395

...

t

Fig. 1. Multiblockchain structure of service-oriented sharding. Each channel contains
the same genesis block (drop) and checkpoints (valves), as well as the exclusive trans-
actions of a specific service (buckets with the same symbol). Generating a checkpoint
requires a proof of work. Miners distribute transactions to designated blocks (a subset
of dashed rectangles) secured by checkpoints.

Channel. A chain in a blockchain built on a shared genesis block containing
(1) all transactions of a specific service, and (2) common checkpoints involving
transactions for the overall management of services. For instance, a domain name
resolution service would use a dedicated channel to store custom transactions
in the form of DNS resource records. Such transactions are kept separate from
common checkpoints. Hence, services are loosely coupled and resilient to changes.

Service-oriented sharding handles requests associated with a certain service
by annotating each channel and the corresponding transactions with the same
unique identifier, called service number. Two special channels, payment and reg-
istration, are defined by the system and help bootstrap the network. The default
service that enables users to exchange funds runs on the payment channel, and
the registration channel is used to add or update services. Users store, process,
and propagate transactions on channels only for the relevant services.

Protocol. A set of rules regarding services and their integration. A service pro-
tocol defines the validity of transactions in a given channel. It describes: (1) the
syntax for each transaction type, (2) the relationship between transactions within
a channel, (3) the size, frequency, and format constraints for blocks that keep
transactions. The integration protocol specifies the security, incentive mechanism,
valid service numbers, the genesis block, and the inter-channel communication
process between the payment channel and the other channels.

Transaction. The smallest unit of data for adding content to a channel. Trans-
actions are grouped into blocks and appended to each channel according to their
service number. A block is valid if it (1) embodies valid transactions sharing
the same service number and (2) complies with the integration protocol and the
relevant service protocol.

Service Integration and Maintenance. The process of introducing ser-
vices and updating the existing ones. Service-oriented sharding resolves this
process completely on the blockchain in three phases. First, users propose pro-
tocols to introduce or update services by generating transactions for the reg-
istration channel. Each such transaction contains a set of service protocols
with distinct service numbers. A service protocol is specified in a platform-

396 A. E. Gencer et al.

independent language such as WebAssembly [5] or Lua [3]. In the second phase,
miners conduct an election to choose a registration channel transaction. This
transaction specifies the protocols that miners are collectively willing to adopt.
Miners indicate their choice using ballots. A ballot is a transaction that contains
a reference to a particular transaction in the registration channel. Each ballot
is part of a checkpoint that requires a proof of work to generate. This provides
(1) representation proportional to mining power, and (2) protection against cen-
sorship of ballots. Finally, if a particular transaction is referred by more than
a certain fraction τ of ballots, its protocols become active. An active service
protocol determines the validity of new transactions added to the corresponding
channel.

This process enables evolutionary refinement with the confidence of sustain-
ability. Users are involved in the process through their proposals. The election
mechanism ensures that the majority of the mining power intends to serialize
transactions for the new or updated services.

3 Aspen

While service-oriented sharding can be built on any blockchain protocol [16,17,
21,27], we instantiate on Bitcoin-NG [17], a blockchain protocol that improves
transaction throughput and consensus latency of Bitcoin under the same trust
model. The protocol makes the following changes with service-oriented sharding:

Multiple Microblock Chains. Traditional blockchain protocols strive to agree
on a single main chain in which all transactions are totally ordered. However, not
all transactions are related or even need such an ordering. This leads to a seem-
ingly irreconcilable tradeoff between the scalability of independent blockchains
and the security of monolithic ones. The central idea behind Aspen is to resolve
this conundrum by having a series of independent microblock chains conjoined
at common key blocks. A channel represents the combination of the same gen-
esis block, all key blocks, and the set of microblock chains containing custom
transactions annotated with the same service number. Figure 2 illustrates the
structure.

Each channel maintains key blocks to enforce the integration protocol. To
prevent bloating key blocks, Aspen (1) limits the number of channel references
in a key block and (2) omits references to non-payment channels with no trans-
actions on their latest microblock chain – i.e. inert channels. Note that users can
fully validate an inert channel service using key blocks of the payment channel.

Extensibility. Aspen updates or introduces services at designated growth
points, called buds (See Fig. 2). A bud is a key block at a protocol-defined height
representing the number of key blocks from the genesis block. Aspen adopts pro-
posals based on ballots in key blocks between the current and the preceding bud.

Flow of Funds. Aspen enables users to detect double spends by making each
fund spendable only in a specific channel. A special payment channel trans-
action, funding pore, enables users to lock funds to other channels. A funding

Short Paper: Service-Oriented Sharding for Blockchains 397

t

C0:

C2:

...C3:

C1:

C0:payment
C1:registration

C2:domain name
C3:intellectual property

Fig. 2. Structure of the Aspen chain. Upon generating a key block shared by all
channels, a miner serializes service-specific transactions only in the corresponding
microblock (circles) chains. Shading indicates blocks generated by a specific miner.
A bud (dashed key block) introduces the intellectual property service.

......Payment
channel :

t

(a) A funding pore.

...

...

...

(b) A coinbase transaction.

Fig. 3. (a) A funding pore (cylinder) makes payment channel outputs (pentagons)
spendable at specific channels. (b) Rewards are split between the current and the
previous miner for each channel.

pore annotates each output with the service number of an existing destination
channel where it can be spent. Note that transfers across channels are allowed
only in one way, from the payment channel to others. Figure 3(a) illustrates a
funding pore.

Alternatively, users can directly buy locked funds at the target channel to
pay for the service running on the corresponding channel. The protocol enforces
a high minimum fee for serializing funding pores to (1) discourage users from
bloating the payment channel and (2) improve the fungibility of funds in non-
payment channels. Contrary to Bitcoin’s OP RETURN transactions, this process
does not yield any unspendable outputs.

Following sections detail the incentive and security mechanisms in Aspen.

3.1 Reward Structure

The process of keeping the complete blockchain, serializing transactions, and
securing the system consumes miner resources. Aspen uses a Bitcoin-like cryp-
tocurrency to encourage miners to continue facilitating this costly process.
A coinbase transaction in a key block provides separate outputs to compensate
the current and the previous miner for each service they provision. Each output
indicates the source channel of rewards where funds can be spent (See Fig. 3(b)).

398 A. E. Gencer et al.

Generating Key Blocks. Miners receive a fixed subsidy for each key
block they generate as an incentive for using their mining power to secure
the blockchain and facilitating the voting process of service integration and
maintenance.

Serializing Transactions. Each service protocol specifies the validity require-
ments for its transactions. The common property of all transactions is a fee that
miners collect for adding them to the corresponding microblocks.

Extending the Longest Chains. As an incentive for the next miner to attach
her key block to the latest microblock [17], Aspen distributes fees between the
current miner and the next one for each microblock chain.

Extending Multiple Chains. Miners can spend transaction fees only in the
corresponding channels that they were collected from. The high minimum fees
for funding pores encourage users to purchase locked funds. Hence miners gain
additional incentives to serialize non-payment channel transactions.

3.2 Security

The following properties are critical to the security of a blockchain protocol.

Authenticity. The property of having an indisputable origin. Transactions
require a set of cryptographic signatures to prove the ownership of funds that are
used as fees. Hence, provided that it is infeasible to forge signatures, pseudony-
mous identities cannot deny committing transactions.

Irreversibility. The protection against overwriting or deleting transactions.
Double spending is an instance of violating this property. Malicious miners may
modify or remove a set of transactions from a blockchain by updating some
common prefix with different blocks – i.e. forks. Aspen secures the blockchain
against (1) key block forks by picking the chain containing the most proof of work
with random tie-breaking and (2) microblock forks using poison transactions [17].

Censorship. The ability of miners to block submission or retrieval of transac-
tions. A key block miner becomes eligible to update the blockchain for a discrete
epoch. However, she may ignore certain transactions in particular channels due
to benign failures or malicious behavior. The extend of such censorship is limited
to the miner’s epoch, which can be adjusted by changing the key block frequency.

An adversary can leave a victim unable to retrieve transactions by controlling
all of its connections [19] or delaying the delivery of valid transactions to her [18].
Countermeasures to mitigate such attacks apply to this work, as well.

4 Related Work

Federated Chains. Sidechains [7] allow users to transfer funds across
blockchains. However, this leads to fragmentation of the hash power. A com-
promised sidechain makes the main chain and the other sidechains vulnerable.

Short Paper: Service-Oriented Sharding for Blockchains 399

Transfers across sidechains bloat the main chain. To guarantee that funds will
not be pruned from the corresponding chains, such transfers incur high latencies.
Drivechain [31] attempts to minimize the impact of sidechains on the main chain
regarding the required knowledge and effort to prove validity of transfers. How-
ever, this approach does not address inherent limitations regarding the security
of sidechains.

Multiple Services in Bitcoin’s Blockchain. Bitcoin permits storage of arbi-
trary data on its blockchain using OP RETURN transactions [10]. While there is
no format requirement for the data, the size limit (currently 80 bytes) usually
enforces users to store only a hash of their original content on the blockchain,
which they externally validate [14,29]. This limitation imposes a critical tradeoff
between data growth management and the diversity of services.

Users download and process the full history to validate the state of the exist-
ing blockchain protocols [16,17,27]. Using commodity hardware, this bootstrap-
ping process takes many hours in Bitcoin [15]. Such protocols force users to
handle the complexity of irrelevant services. Therefore, a monolithic history is
not a viable option for scaling blockchains with multiple services.

Outsourcing the Security. Services with distinct blockchains attempt to
improve their security with merged mining [9] and anchoring.

In merged mining, a blockchain with insufficient mining power accepts proof
of work submissions from a designated parent chain. This approach raises three
issues. First, if a miner is already part of the parent blockchain, she can use
her mining power to attack the merged-mined blockchain at no cost. Second,
a merged-mined blockchain becomes dependent on its parent chain, making it
fragile with respect to changes in the parent’s security. Finally, it is non-trivial
to maintain the miner coordination across blockchains. Ali et al. [6] show that
even the largest merged-mined cryptocurrency, NameCoin [24], suffers from a
single merged mining pool whose mining power exceeds the 51% threshold.

Anchoring relies on periodically submitting the cumulative hash of all data,
such as the root of a Merkle tree, to a trusted publishing medium, such as the
blockchain of Bitcoin. Anchoring bloats the external blockchain and becomes
dependent on its security.

Sharding the Same Service. Elastico is a service-agnostic protocol for shard-
ing blockchains [25]. This approach assigns miners to committees for serializing
transactions using a classical Byzantine consensus protocol. As in anchoring, a
final committee creates a cumulative digest based on all shards and broadcasts
it to the network. However, to prevent double spends, Elastico requires splitting
up the payment functionality into as many sub-services as the number of shards,
which effectively means as many cryptocurrencies.

Treechains [32] is a sharding idea based on restructuring a blockchain into a
tree of blocks, where each output has a dedicated branch to spend. However, this
proposal is at an early stage with no prototype or a detailed technical analysis.

400 A. E. Gencer et al.

5 Conclusion

Service-oriented sharding provides a means for improving the scalability and
extensibility of blockchains with multiple services. Aspen, the instantiation of
this technique, reduces the resource requirements and the bootstrapping time to
participate in the system. It provides trustless validation while preserving the
same network and trust model as Bitcoin. Finally, it avoids fragmentation of the
mining power that secures the blockchain.

Acknowledgements. The authors thank Ittay Eyal, and the anonymous reviewers
for their comments and suggestions. This work was supported in part by NSF grants
CNS-1422544, CNS-1561209, CNS-1518779, NIST, a Google Faculty Research Award,
IC3 sponsorship from Chain, IBM, and Intel, as well as gifts from Infosys and Facebook.

References

1. Benben. http://benben.com.gh/. Accessed Oct 2016
2. Follow my vote. https://followmyvote.com/. Accessed Oct 2016
3. Lua. http://www.lua.org/. Accessed Nov 2016
4. OP RETURN stats. http://opreturn.org/. Accessed Nov 2016
5. WebAssembly. http://webassembly.org/. Accessed Nov 2016
6. Ali, M., Nelson, J., Shea, R., Freedman, M.J.: Blockstack: a global naming and

storage system secured by blockchains. In: USENIX Annual Technical Conference,
Denver, CO, USA (2016)

7. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poel-
stra, A., Timón, J., Wuille, P.: Enabling blockchain innovations with pegged
sidechains (2014). https://blockstream.com/sidechains.pdf

8. BigchainDB GmbH. Ascribe. https://www.ascribe.io/. Accessed Oct 2016
9. Bitcoin Community. Merged mining specification. https://en.bitcoin.it/wiki/

Merged mining specification. Accessed Oct 2016
10. Bitcoin Community. OP RETURN. https://en.bitcoin.it/wiki/OP RETURN.

Accessed Oct 2016
11. Brown, R.G., Carlyle, J., Grigg, I., Hearn, M.: Corda: An introduction, August

2016. http://r3cev.com/s/corda-introductory-whitepaper-final.pdf
12. Chain Inc. Chain open standard: A secure blockchain protocol for high-scale finan-

cial networks. http://chain.com/os/. Accessed Sep 2016
13. CoinDesk. State of blockchain Q1 2016: Blockchain funding overtakes Bitcoin.

http://coindesk.com/state-of-blockchain-q1-2016/. Accessed Oct 2016
14. Colu. Colored Coins. http://coloredcoins.org/. Accessed Sep 2016
15. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller, A.,

Saxena, P., Shi, E., Sirer, E.G., Song, D., Wattenhofer, R.: On scaling decentral-
ized blockchains (a position paper). In: 3rd Workshop on Bitcoin and Blockchain
Research, Barbados (2016)

16. Ethereum Foundation. A next generation smart contract and decentralized appli-
cation platform. https://github.com/ethereum/wiki/wiki/White-Paper. Accessed
Oct 2016

17. Eyal, I., Gencer, A.E., Sirer, E.G., van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In: 13th USENIX Symposium on Networked Systems Design
and Implementation, Santa Clara, CA, USA, pp. 45–59 (2016)

http://benben.com.gh/
https://followmyvote.com/
http://www.lua.org/
http://opreturn.org/
http://webassembly.org/
https://blockstream.com/sidechains.pdf
https://www.ascribe.io/
https://en.bitcoin.it/wiki/Merged_mining_specification
https://en.bitcoin.it/wiki/Merged_mining_specification
https://en.bitcoin.it/wiki/OP_RETURN
http://r3cev.com/s/corda-introductory-whitepaper-final.pdf
http://chain.com/os/
http://coindesk.com/state-of-blockchain-q1-2016/
http://coloredcoins.org/
https://github.com/ethereum/wiki/wiki/White-Paper

Short Paper: Service-Oriented Sharding for Blockchains 401

18. Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the delivery
of blocks and transactions in Bitcoin. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, pp.
692–705 (2015)

19. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s
peer-to-peer network. In: 24th USENIX Security Symposium, Washington, D.C.,
USA, pp. 129–144 (2015)

20. IBM Corporation. IBM Blockchain on Bluemix. http://www.ibm.com/blockchain/
bluemix.html. Accessed Oct 2016

21. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.:
Enhancing Bitcoin security and performance with strong consistency via collec-
tive signing. arXiv preprint arXiv:1602.06997 (2016)

22. Ledger Assets Pty Ltd., Uproov. https://uproov.com/. Accessed Sep 2016
23. Linux Foundation. Hyperledger. https://hyperledger.org/. Accessed Sep 2016
24. Loibl, A.: Namecoin (2014). https://namecoin.info
25. Luu, L., Narayanan, V., Baweja, K., Zheng, C., Gilbert, S., Saxena, P.: A secure

sharding protocol for open blockchains. In: Conference on Computer and Commu-
nications Security, Vienna, Austria. ACM (2016)

26. Microsoft. Blockchain-as-a-Service. https://azure.microsoft.com/en-us/solutions/
blockchain/. Accessed Oct 2016

27. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
28. OMI. Open music initiative. http://open-music.org/. Accessed Oct 2016
29. Omni Team. Omni layer. http://www.omnilayer.org/. Accessed Oct 2016
30. Shin, L.: Republic of Georgia to pilot land titling on blockchain. Forbes, 21 April

2016
31. Sztorc, P.: Drivechain (2015). http://www.truthcoin.info/blog/drivechain/
32. Todd, P.: [bitcoin-development] Tree-chains preliminary summary (2014). https://

lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-March/004797.html

http://www.ibm.com/blockchain/bluemix.html
http://www.ibm.com/blockchain/bluemix.html
http://arxiv.org/abs/1602.06997
https://uproov.com/
https://hyperledger.org/
https://namecoin.info
https://azure.microsoft.com/en-us/solutions/blockchain/
https://azure.microsoft.com/en-us/solutions/blockchain/
http://open-music.org/
http://www.omnilayer.org/
http://www.truthcoin.info/blog/drivechain/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-March/004797.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-March/004797.html

Security of Internet Protocols

The Security of NTP’s Datagram Protocol

Aanchal Malhotra1(B), Matthew Van Gundy2, Mayank Varia1,
Haydn Kennedy1, Jonathan Gardner2, and Sharon Goldberg1

1 Boston University, Boston, USA
aanchal4@bu.edu

2 Cisco (ASIG), San Jose, USA

Abstract. For decades, the Network Time Protocol (NTP) has been
used to synchronize computer clocks over untrusted network paths. This
work takes a new look at the security of NTP’s datagram protocol. We
argue that NTP’s datagram protocol in RFC5905 is both underspecified
and flawed. The NTP specifications do not sufficiently respect (1) the
conflicting security requirements of different NTP modes, and (2) the
mechanism NTP uses to prevent off-path attacks. A further problem
is that (3) NTP’s control-query interface reveals sensitive information
that can be exploited in off-path attacks. We exploit these problems
in several attacks that remote attackers can use to maliciously alter a
target’s time. We use network scans to find millions of IPs that are
vulnerable to our attacks. Finally, we move beyond identifying attacks
by developing a cryptographic model and using it to prove the security
of a new backwards-compatible client/server protocol for NTP.

1 Introduction

Millions of hosts [10,19,22,27,31] use the Network Time Protocol (NTP) [25] to
synchronize their computer clocks to public Internet timeservers (using NTP’s
client/server mode), or to neighboring peers (using NTP’s symmetric mode).
Over the last few years, the security of NTP has come under new scrutiny.
Along with significant attention paid to NTP’s role in UDP amplification
attacks [10,18], there is also a new focus on attacks on the NTP protocol
itself, both in order to maliciously alter a target’s time (timeshifting attacks)
or to prevent a target from synchronizing its clock (denial of service (DoS)
attacks) [19,39]. These attacks matter because the correctness of time under-
pins many other basic protocols and services. For instance, cryptographic pro-
tocols use timestamps to prevent replay attacks and limit the use of stale or
compromised cryptographic material (e.g., TLS [17,34], HSTS [33], DNSSEC,
RPKI [19], bitcoin [9], authentication protocols [17,19]), while accurate time
synchronization is a basic requirement for various distributed protocols.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 405–423, 2017.
https://doi.org/10.1007/978-3-319-70972-7_23

406 A. Malhotra et al.

1.1 Problems with the NTP Specification

We start by identifying three fundamental problems with the NTP specification
in RFC5905, and then exploit these problems in four different off-path attacks
on ntpd, the “reference implementation” of NTP.

Problem 1: Lack of respect for basic protection measures. The first issue stems
from a lack of respect for TEST2, the mechanism that NTP uses to prevent off-
path attacks. Off-path attacks are essentially the weakest (and therefore the
most scary) threat model that one could consider for a networking protocol.
An off-path attacker cannot eavesdrop on the NTP traffic of their targets, but
can spoof IP packets i.e., send packets with a bogus source IP. This threat
model captures ‘remote attacks’ launched by arbitrary IPs that do not occupy a
privileged position on the communication path between the parties. (See Fig. 2.)

NTP attempts to prevent off-path attacks much in the same way that TCP
and UDP do: every client query includes a nonce, and this nonce is reflected
back to the client in the server’s response. The client then checks for matching
nonces in the query and response, i.e., “TEST2”. Because an off-path attacker
cannot see the nonce (because it cannot eavesdrop on traffic), it cannot spoof
a valid server response. Despite the apparent simplicity of this mechanism, its
specification in RFC5905 is flawed and leads to several off-path attacks.

Problem 2: Same code for different modes. NTP operates in several different
modes. Apart from the popular client/server mode (where the client synchronizes
to a time server), NTP also has a symmetric mode (where neighboring peers take
time from each other), and several other modes. RFC5905 recommends that
all of NTP’s different modes be processed by the same codepath. However, we
find that the security requirements of client/server mode and symmetric mode
conflict with each other, and result in some of our off-path attacks.

Problem 3: Leaky control queries. NTP’s control-query interface is not specified in
RFC5905, but its specification does appear in the obsoleted RFC1305 [23] from
1992 and a new IETF Internet draft [24]. We find that it can be exploited remotely
to leak information about NTPs internal timing state variables. While the DDoS
amplification potential of NTP’s control query interface is well known [10,18], here
we show that it is also a risk to the correctness of time (Fig. 1).

 Same code
for different

modes

Lack of respect for
basic protections

(TEST2)

Zero-0rigin
timestamp

DoS on
symmetric

mode

Problems with
RFC5905

Resulting
Attacks

Leaky control
queries

Interleaved
pivot

Leaky
origin

timestamp

Fig. 1. Paper overview.

We exploit these three
problems to find working
off-path attacks on ntpd
(Sects. 3 and 4), and use
IPv4 Internet scans to iden-
tify millions of IPs that are
vulnerable to our attacks
(Sect. 5). The first three
attacks maliciously shift
time on a client using NTP’s
client/server mode, and the
fourth prevents time synchronization in symmetric mode.

The Security of NTP’s Datagram Protocol 407

Attack 1: Leaky Origin Timestamp Attack (Sect. 4). Our network scans find a
staggering 3.8 million IPs that leak the nonce used in TEST2 in response to
control queries made from arbitrary IPs (CVE-2015-8139). An off-path attacker
can maliciously shift time on a client by continuously querying for this nonce,
and using it to spoof packets that pass TEST2.

Attack 2: Zero-0rigin Timestamp Attack (Sect. 3.3). This attack (CVE-2015-
8138) follows from RFC5905, and is among the strongest timeshifting attacks on
NTP that has been identified thus far. The attacker bypasses TEST2 by spoofing
server response packets with their nonce set to zero. We use leaky NTP control
queries as a side-channel to measure the prevalence of this attack. We find 1.3
million affected IPs. However, we expect that the true attack surface is even
larger, since this attack itself does not require the control-query interface, works
on clients operating in default mode, and has been part of ntpd for seven years
(since ntpd v4.2.6, December 2009).

Attack 3: Interleaved-Pivot Attack (Sect. 4). Our third off-path timeshifting
attack (CVE-2016-1548) exploits the fact that NTP’s client/server mode shares
the same codepath as NTP’s interleaved mode. First, the attacker spoofs a single
packet that tricks the target into thinking that he is in interleaved mode. The
target then rejects all subsequent legitimate client/server mode packets. This
is a DoS attack (Sect. 4). We further leverage NTP’s leaky control queries to
convert this DoS attack to an off-path timeshifting attack. NTP’s control-query
interface also leaks the nonce used in the special version of TEST2 used in inter-
leaved mode. The attacker spoofs a sequence of interleaved-mode packets, with
nonce value revealed by these queries, that maliciously shifts time on the client.
Our scans find 1.3 million affected IPs.

Attack 4: Attacks on symmetric mode (full version). We then present security
analysis of NTP’s symmetric mode, as specified in RFC5905, and present off-
path attacks that prevent time synchronization. We discuss why the security
requirements of symmetric mode are at odds with that of client/server mode,
and may have been the root cause of the zero-0rigin timestamp attack.

Disclosure. Our disclosure timeline is in the full version. Our research was
done against ntpd v4.2.8p6, the latest version as of April 25, 2016. Since then,
three versions have been released: ntpd v4.2.8p7 (April 26, 2016), ntpd v4.2.8p8
(June 2, 2016), ntpd v4.2.8p9 (November 21, 2016). Most of our attacks have
been patched in these releases. We provide recommendations for securing the
client/server mode in Sect. 7 and symmetric mode in the full version.

1.2 Provably secure protocol design.

Our final contribution is to go beyond attacks and patches, and identify a more
robust security solution (Sect. 6) We propose a new backwards-compatible pro-
tocol for client/server mode that preserves the semantics of the timestamps in
NTP packets (Figs. 6 and 7). We then leverage ideas from the universal com-
posability framework [7] to develop a cryptographic model for attacks on NTP’s

408 A. Malhotra et al.

datagram protocol. We use this model to prove (in the full version) that our
protocol correctly synchronizes time in the face of both (1) off-path attackers
when NTP is unauthenticated and (2) on-path attackers when NTP packets are
authenticated with a MAC. We also use our model to prove similar results about
a different protocol that is used by chronyd [2] and openntpd [4] (two alternate
implementations of NTP). The chronyd/openntpd protocol is secure, but unlike
our protocol, does not preserve the semantics of packet timestamps.

 Sender Receiver

Off-path
attacker

 Sender Receiver

On-path
attacker

 Sender Receiver
Man
in the

middle

Fig. 2. Threat models.

Our cryptographic model models both on-
path attackers and off-path attackers. An on-
path attacker can eavesdrop, inject, spoof,
and replay packets, but cannot drop, delay,
or tamper with legitimate traffic. An on-path
attacker eavesdrops on a copy of the tar-
get’s traffic, so it need not disrupt live net-
work traffic, or even operate at line rate.
For this reason, on-path attacks are com-
monly seen in the wild, disrupting TCP [40],
DNS [12], BitTorrent [40], or censoring web
content [8]. Meanwhile, we cannot prove that
NTP provides correct time synchronization
in the face of the traditional Man-in-The-
Middle (MiTM) attacks (aka. ‘in-path attacks’) because an MiTM can always
prevent time synchronization by dropping packets. Moreover, an MiTM can also
bias time synchronization by delaying packets [28,29].1

Taking a step back, our work can be seen as a case study of the security
risks that arise when network protocols are underspecified. It also highlights the
importance of handling diverse protocol requirements in separate and rigorously
tested codepaths. Finally, our network protocol analysis introduces new ways of
reasoning about network attacks on time synchronization protocols.

1.3 Related Work

Secure protocols. Our design and analysis of secure client/server protocols com-
plement recent efforts to cryptographically secure NTP and its “cousin” PTP
(Precision Time Protocol) [29]. Our interest is in securing the core datagram
protocol used by NTP, which was last described in David Mill’s book [26]. To
the best of our knowledge, the security of the core NTP datagram protocol has
never previously been analyzed. Meanwhile, our analysis assumes that parties
1 This follows because time-synchronization protocols use information about the delay

on the network path in order to accurately synchronize clocks (Sect. 2). A client
cannot distinguish the delay on the forward path (from client to server) from the
delay on the reverse path (from server to client). As such, the client simply takes the
total round trip time δ (forward path + reverse path), and assumes that delays on
each path are symmetric. The MiTM can exploit this by making delays asymmetric
(e.g., causing the delay on the forward path to be much longer than delay on the
reverse path), thus biasing time synchronization.

The Security of NTP’s Datagram Protocol 409

correctly distribute cryptographic keys and use a secure MAC. A complemen-
tary stream of works propose protocols for distributing keys and performing the
MAC, beginning with the Autokey protocol in RFC5906 [15], which was bro-
ken by Rottger [32], which was followed by NTS [36], ANTP [11], other works
including [16,30], and on-going activity in the IETF [1].

Attacks. Our analysis of the NTP specification is motivated, in part, by discovery
of over 30 ntpd CVEs between June 2015 to July 2016 [39]. These implementa-
tion flaws allow remote code execution, DoS attacks, and timeshifting attacks.
Earlier, Selvi [33,34] demonstrated MiTM timeshifting attacks on ‘simple NTP
(SNTP)’ (rather than full-fledged NTP). Even earlier, work [9,17,26] consid-
ered the impact of timeshifting on the correctness of other protocols. The recent
academic work [19] also attacks NTP, but our attacks are stronger. [19] pre-
sented attacks that are on-path (weaker than our off-path attacks), or off-path
DoS attacks (weaker than our timeshifting attacks), or off-path time-shifting
attacks that needed special client/server configurations (our Zero-0rigin Times-
tamp attack works in default mode). Also, our measurements find millions of
vulnerable clients, while [19] finds thousands. Finally, NTP’s broadcast mode is
outside our scope; see [20,29,37] instead.

Measurement. Our work is also related to studies measuring the NTP ecosystem
(in past decades) [27,31], the use of NTP for DDoS amplification attacks [10],
the performance of NIST’s timeservers [35], and network latency [13]. Our attack
surface measurements are in the same spirit as those in [19,20], but we use a
new set of NTP control queries. We also provide updated measurements on the
presence of cryptographically-authenticated NTP associations.

2 NTP Background

NTP’s default mode of operation is a hierarchical client/server mode. In this
mode, timing queries are solicited by clients from a set of servers; this set of
servers is typically static and configured manually. Stratum i systems act as
servers that provide time to stratum i + 1 systems, for i = 1, ...15. Stratum 1
servers are at the root of the NTP hierarchy. Stratum 0 and stratum 16 indicate
failure to synchronize. Client/server packets are not authenticated by default,
but a Message Authentication Code (MAC) can optionally be appended to the
packet. NTP operates in several additional modes. In broadcast mode, a set of
clients listen to a server that broadcasts timing information. In symmetric mode,
peers exchange timing information. There is also an interleaved mode for more
accurate timestamping.

T1: Origin timestamp. Client’s local time when sending query.
T2: Receive timestamp. Server’s local time when receiving query.
T3: Transmit timestamp. Server’s local time when sending response.
T4: Destination timestamp. Client’s local time when receiving response.

Fig. 3. Timestamps induced by the server response packet (mode 4).

410 A. Malhotra et al.

NTP’s client/server protocol consists of a periodic two-message exchange.
The client sends the server a query (mode 3), and the server sends back a
response (mode 4). Each exchange provides a timing sample, which uses the
four timestamps in Fig. 3. All four timestamps are 64 bits long, where the first
32 bits are seconds elapsed since January 1, 1970, and the last 32 bits are frac-
tional seconds. T1, T2, and T3 are fields in the server response packet (mode 4)
shown in Fig. 4. The delay δ is an important NTP parameter [25] that measures
the round trip time between the client and the server:

δ = (T4 − T1) − (T3 − T2) (1)

If there are symmetric delays on the forward and reverse network paths, then
the difference between the server and client clock is T2 − (T1 + δ

2) for the client
query, and T3 − (T4 − δ

2) for the server response. Averaging, we get offset θ:

θ = 1
2 ((T2 − T1) + (T3 − T4)) (2)

A client does not immediately update its clock with the offset θ upon receipt
of a server response packet. Instead, the client collects several timing samples
from each server by completing exchanges at infrequent polling intervals (on the
order of seconds or minutes). The length of the polling interval is determined by
an adaptive randomized poll process [25, Sect. 13]. The poll p is a field on the
NTP packet, where [25] allows p ∈ {4, 5, .., 17}, which corresponds to a polling
interval of about 2p (i.e., 16 s to 36 h).

Fig. 4. NTP server response packet (mode 4).
(Client queries have the same format, but with
mode field set to 3. Symmetric mode uses mode
1 or 2. Broadcast mode uses mode 5).

Once the client has enough
timing samples from a server, it
computes the jitter ψ. First, it
finds the offset value θ∗ corre-
sponding to the sample of low-
est delay δ∗ from the eight most
recent samples, and then takes
jitter ψ as

ψ2 = 1
k − 1

k∑

i=1

(θi − θ∗)2 (3)

Typically, 4 ≤ k ≤ 8. A client
considers updating its clock only
if it gets a stream of k timing
samples with low delay δ and jit-
ter ψ. This is called TEST11.

After each exchange, the
client chooses a single server to
which it synchronizes its local
clock. This decision is made adaptively by a set of selection, cluster, combine
and clock discipline algorithms [25, Sect. 10–12]. Importantly, these algorithms

The Security of NTP’s Datagram Protocol 411

can also decide not to update the client’s clock; in this case, the clock runs
without input from NTP.

Implementation vs. Specification. RFC5905 [25] specifies NTP version 4, and its
“reference implementation” is ntpd [38]. Mills, the inventor of NTP, explains [26]
the “relationship between the published standard and the reference implemen-
tation” as follows: “It is tempting to construct a standard from first principles,
submit it for formal verification, then tell somebody to build it. Of the four
generations of NTP, it did not work that way. Both the standard and the refer-
ence implementation were evolved from an earlier version... Along the way, many
minor tweaks were needed in both the specification and implementation...” For
this reason, we consider both ntpd and the specification in RFC5905.

3 The Client/Server Protocol in RFC5905

We now argue that the client/server datagram protocol in RFC5905 is under-
specified and flawed. RFC5905 mentions the protocol in two places: in its main
body (Sect. 8) and in a pseudo-code listing (Appendix A). Because the two men-
tions are somewhat contradictory, we begin with an overview of the components
of NTP’s datagram protocol, and then present its specification in Appendix A
of RFC5905, and in the prose of Sect. 8 of RFC5905.

3.1 Components of NTP’s Datagram Protocol

1 receive()

2 if (pkt.T3 == 0 or # fail test3

3 pkt.T3 == org): # fail test1

4 return

5

6 synch = True

7 if !broadcast:

8 if pkt.T1 == 0: # fail test3

9 synch = False

10 elif pkt.T1 != xmt: # fail test2

11 synch = False

12

13 org = pkt.T3

14 rec = pkt.time_received

15 if (synch):

16 process(pkt)

Fig. 5. Pseudocode for the receive function,
RFC5905 Appendix A.5.1.

NTP uses the origin
timestamp field of the NTP
packet to prevent off- and
on-path attacks. (Recall from
Fig. 2 that an off-path
attacker can spoof IP pack-
ets but cannot eavesdrop
on its target’s NTP traffic,
while an on-path attacker can
eavesdrop, inject, spoof, and
replay packets, but cannot
drop, delay, or tamper with
legitimate traffic.) Whenever
a client queries its server,
the client records the query’s
sending time T1 in a local
state variable [25] named
“xmt”. The client then sends
T1 in the transmit timestamp
of its client query (Fig. 4). Upon receipt of the query, the server learns T1 and
copies it into the origin timestamp field of its server response (Fig. 4). When the
client receives the server response, it performs TEST2:

412 A. Malhotra et al.

TEST2: The client checks that the origin timestamp T1 on the server response
matches the client’s time upon sending the query, as recorded in the client’s local
state variable xmt.
The origin timestamp is therefore a nonce that the client must check (with
TEST2) before it accepts a response.2 An off-path attacker cannot see the
origin timestamp (because it cannot observe the exchange between client and
server), and thus has difficulty spoofing a server response containing a valid
origin timestamp. Indeed, the origin timestamp looks somewhat random to the
off-path attacker. Specifically, its first 32 bits are seconds, and the last 32 bits
are subseconds (or fractional seconds). The first 32 bits appear slightly random
because the off-path attacker does not know the exact moment that the client
sent its query; indeed, Appendix A of RFC5905 has a comment that says “While
not shown here, the reference implementation randomizes the poll interval by a
small factor” and the current ntpd implementation randomizes the polling inter-
val by 2p − 4 s when poll p > 4. Moreover, the last 32 bits also appear somewhat
random because RFC5905 requires a client with a clock of precision ρ randomize
the (32 − ρ)- lowest-order bits of the origin timestamp.

The origin timestamp thus is analogous to source port randomization in
TCP/UDP, sequence number randomization in TCP, etc. When NTP packets
are cryptographically authenticated with a MAC, this nonce also provides some
replay protection: even an on-path attacker cannot replay a packet from an
earlier polling interval because its origin timestamp is now stale.

NTP also has mechanisms to prevent replays within the same polling interval.
These are needed because an NTP client continuously listens to network traffic,
even when it has no outstanding (i.e., unanswered) queries to its servers. When-
ever a client receives a server response packet, it records the transmit timestamp
field from the packet in its org state variable. The client uses the following test
to reject duplicate server response packets:

TEST1: The client checks that the transmit timestamp field T3 of the server
response is different from the value in the client’s org state variable.
The client deals with the duplicates of the client’s query as follows:

Clear xmt: If a server response passes TEST2, the client sets its local xmt state
variable to zero.
Suppose the server receives two identical client queries. The server would send
responses to both (because NTP servers are stateless [25]). If the client cleared
xmt upon receipt of the first server response, the second server response packet
will be rejected (by TEST2) because its origin timestamp is non-zero. At this
point, one might worry that an off-path attacker could inject a packet with
origin timestamp set to zero. But, TEST3 should catch this:

TEST3: Reject any response packet with origin, receive, or transmit timestamp
T1, T2, T3 set to zero.

2 Note that ntpd does not randomize the UDP source port to create an additional
nonce; instead, all NTP packets have UDP source port 123.

The Security of NTP’s Datagram Protocol 413

3.2 Query Replay Vulnerability in Appendix A of RFC5905

Pseudocode from Appendix A of RFC5905 (see Fig. 5) handles the processing of
received packets of any mode, including server mode packets (mode 4), broadcast
mode packets (mode 5), and symmetric mode packets (mode 1 or 2). Importantly,
this pseudocode requires a host to always listen to and process incoming packets.
This is because some NTP modes (e.g., broadcast) process unsolicited packets,
and RFC5905 suggest that all modes use the same codepath. We shall see that
this single codepath creates various security problems.

On-path query replay vulnerability. The pseudocode in Fig. 5 is vulnerable to
replays of the client’s query. Suppose a client query is replayed to the server.
Then, the server will send two responses, each with a valid origin timestamp
field (passing TEST2) and each with a different transmit timestamp field (passing
TEST1). The client will accept both responses. Our experiments show that replays
of the client query harm time synchronization; see the full version.

3.3 Zero-0rigin Timestamp Vulnerability in RFC5905 Prose

Meanwhile, we find the following in Sect. 8 of RFC5905:

Before the xmt and org state variables are updated, two sanity checks are
performed in order to protect against duplicate, bogus, or replayed packets.
In the exchange above, a packet is duplicate or replay if the transmit
timestamp t3 in the packet matches the org state variable T3. A packet is
bogus if the origin timestamp t1 in the packet does not match the xmt state
variable T1. In either of these cases, the state variables are updated, then
the packet is discarded. To protect against replay of the last transmitted
packet, the xmt state variable is set to zero immediately after a successful
bogus check.

This text describes TEST1 and TEST2, but what does it mean to update the
state variables? Comparing this to the pseudocode in Appendix A of RFC5905
(Fig. 5 lines 13–14) suggests that this means updating org and rec upon receipt
of any packet (including a bogus one failing TEST2), but not the xmt state
variable.3 Next, notice that the quoted text does not mention TEST3, which
rejects packets with a zero-0rigin timestamp. Thus, we could realize the quoted
text as pseudocode by deleting lines 8–9 of Fig. 5. Finally, notice that the quote
suggests clearing xmt if a received packet passes TEST2. Thus, we could add the
following after line 11 of Fig. 5 (with lines 8–9 deleted):

else: xmt = 0

3 Indeed, suppose we did update the xmt variable even after receipt of a bogus packet
that fails TEST2, with the bogus origin timestamp in the received packet. In this
case, we would be vulnerable to a chosen-origin-timestamp attack, where an attacker
injects a first packet with an origin timestamp of the their choosing. The injected
packet fails TEST2 and is dropped, but its origin timestamp gets written to the
target’s local xmt variable. Then, the attacker injects another packet with this same
origin timestamp, which passes TEST2 and is accepted by the target.

414 A. Malhotra et al.

However, if xmt is cleared but TEST3 is not applied, we have:

Zero-0rigin Timestamp Attack. The zero-0rigin timestamp vulnerability allows
an off-path attacker to hijack an unauthenticated client/server association and
shift time on the client.

The attacker sends its target client a spoofed server response packet, spoofed
with the source IP address of the target’s server.4 The spoofed server response
packet has its origin timestamp T1 set to zero, and its other timestamps T2, T3

set to bogus values designed to convince the client to shift its time. The target
will accept the spoofed packet as long is it does not have an outstanding query
to its server. Why? If a client has already received a valid server response, the
valid response would have cleared the client’s xmt variable to zero. The spoofed
zero-0rigin packet is then subjected to TEST2, and its origin timestamp (which
is set to zero) will be compared to the xmt variable (which is also zero). TEST3
is never applied, and so the spoofed zero-0rigin packet will be accepted.

Suppose that the attacker wants to convince the client to change its clock
by x years. How should the attacker set the timestamps on its spoofed packet?
The origin timestamp is set to T1 = 0 and the transmit timestamp T3 is set to
the bogus time now + x. The destination timestamp T4 (not in the packet) is
now + d, where d is the latency between the moment when the attacker sent its
spoofed packet and the moment the client received it. Now, the attacker needs
to choose the receive timestamp T2 so that the delay δ is small. (Otherwise, the
spoofed packet will be rejected because it fails TEST11 (Sect. 2).) Per Eq. (1), if
the attacker wants delay δ = d, then T2 should be:

T2 = δ + T3 − (T4 − T1) = d + now + x − (now + d + 0) = x

The offset is therefore θ = x − d
2 . If the attacker sends the client a stream of

spoofed packets with timestamps set as described above, their jitter φ is given
by the small variance in d (since x is constant) and therefore will be accepted.
This vulnerability is actually present in the current version of ntpd. We discuss
how we executed it (CVE-2015-8138) against ntpd in the full version.

4 Leaky Control Queries

Thus far, we have implicitly assumed that the timestamps stored in a target’s
state variables are difficult for an attacker to obtain from off-path. However,
we now show how they can be learned from off-path via NTP control queries.

4 As observed by [19], hosts respond to unauthenticated mode 3 queries from arbitrary
IP addresses by default. The mode 4 response (Fig. 4) has a reference ID field that
reveals the IPv4 address of the responding host’s time server. Thus, our off-path
attacker sends its target a (legitimate) mode 3 query, and receives in response a
mode 4 packet, and learns the target’s server from its reference ID. Moreover, if
the attacker’s shenanigans cause the target to synchronize to a different server, the
attacker can just learn the IP of the new server by sending the target a new mode
3 query. The attacker can then spoof packets from the new server as well.

The Security of NTP’s Datagram Protocol 415

UDP-based control queries are notorious as a vector for DDoS amplification
attacks [10,18]. These DoS attacks exploit the length of the UDP packets sent
in response to NTP’s mode 7 monlist control query, and sometimes also NTP’s
mode 6 rv control query. Here, however, we will exploit their contents.

The leaky control queries. We found control queries that reveal the values stored
in the xmt (which stores T1 per Fig. 3) and rec (which stores T4) state variables.
First, launch the as control query to learn the association ID that a target
uses for its server(s). (Association ID is a randomly assigned number that the
client uses internally to identify each server [23].) Then, the query rv assocID
org reveals the value stored in xmt (i.e., expected origin timestamp T1 for that
server). Moreover, rv assocID rec reveals the value in rec (i.e., the destination
timestamp T4 for the target’s last exchange with its server).

Off-path timeshifting via leaky origin timestamp. If an attacker could contin-
uously query its target for its expected origin timestamp (i.e., the xmt state
variable), then all bets are off. The off-path attacker could spoof bogus packets
that pass TEST2 and shift time on the target. This is CVE-2015-8139.

Off-path timeshifting attack via interleaved pivot. NTP’s interleaved mode is
designed to provide more accurate time synchronization. Other NTP modes use
the 3-bit mode field in the NTP packet (Fig. 4) to identify themselves (e.g., client
queries use mode 3 and server responses use mode 4). The interleaved mode,
however, does not. Instead, a host will automatically enter interleaved mode if
it receives a packet that passes Interleaved TEST2. Interleaved TEST2 checks that
the packet’s origin timestamp field T1 matches rec state variable, which stores
T4 from the previous exchange. Importantly, there is no codepath that allows
the host to exit interleaved mode. The full version shows that this leads to an
extremely low-rate DoS attack that works even in the absence of leaky control
queries. This is CVE-2016-1548.

Now consider an off-path attacker that uses NTP control queries to continu-
ously query for rec. This attacker can shift time on the client by using its knowl-
edge of rec to (1) spoof a single packet passing ‘interleaved TEST2’ that pivots
the client into interleaved mode, and then (2) spoof a stream of self-consistent
packets that pass ‘interleaved TEST2’ and contain bogus timing information. We
have confirmed that this attack works on ntpd v4.2.8p6.

Recommendation: Block control queries! By default, ntpd allows the client to
answer control queries sent by any IP in the Internet. However, in response
to monlist-based NTP DDoS amplification attacks, best practices recommend
configuring ntpd with the noquery parameter [38]. While noquery should block
all control queries, we suspect that monlist packets are filtered by middleboxes,
rather than by the noquery option, and thus many “patched” systems remain
vulnerable to our attacks. Indeed, the openNTPproject’s IPv4 scan during the
week of July 23, 2016 found 705,183 unique IPs responding to monlist. Mean-
while, during the same week we found a staggering 3,964,718 IPs responding
to the as query.5 The control queries we exploit likely remain out of firewall
5 To avoid being blacklisted, we refrained from sending monlist queries.

416 A. Malhotra et al.

blacklists because (1) they are undocumented in RFC5905 and (2) are thus far
unexploited. As such, we suggest that either (1) noquery be used, or (2) firewalls
block all mode 6 and mode 7 NTP packets from unwanted IPs.

5 Measuring the Attack Surface

We use network measurements to determine the number of IPs in the wild that
are vulnerable to our off-path attacks. We start with zmap [14] to scan the entire
IPv4 address space (from July 27 – July 29, 2016) using NTP’s as control query
and obtain responses from 3,964,718 unique IPs. The scan was broken up into
254 shards, each completing in 2–3 min and containing 14,575,000 IPs. At the
completion of each shard, we run a script that sends each responding IP the
sequence of queries shown below.

rv ‘associd’
rv ‘associd’ org
rv ‘associd’ rec
rv
mode 3 NTPv4 query

These queries check for leaky origin and destination
timestamps, per Sect. 4, and also solicit a regular NTP
server response packet (mode 4). Our scan did not mod-
ify the internal state of any of the queried systems.
We solicit server responses packets using RFC5905-
compliant NTP client queries (mode 3), and RFC1305-
compliant mode 6 control packets identical to those

produced by the standard NTP control query program ntpq. We obtained a
response to at least one of the control queries from 3,822,681 (96.4%) of the IPs
responding to our as scan of IPv4 address space. We obtained server response
packets (mode 4) from 3,274,501 (82.6%) of the responding IPs.

5.1 State of Crypto

The general wisdom suggests that NTP client/server communications are typ-
ically not cryptographically authenticated; this follows because (1) NTP uses
pre-shared symmetric keys for its MAC, which makes key distribution cumber-
some [5], and (2) NTP’s Autokey [15] protocol for public-key authentication is
widely considered to be broken [32]. We can use our scan to validate the gen-
eral wisdom, since as also reveals a host’s ‘authentication status’ with each of
its servers or peers. Of 3,964,718 IPs that responded to the as command, we
find merely 78,828 (2.0%) IPs that have all associations authenticated. Mean-
while, 3,870,933 (97.6%) IPs have all their associations unauthenticated. We find
93,785 (2.4%) IPs have at least one association authenticated.

5.2 Leaky Origin Timestamps

Table 1. Hosts leaking origin timestamp.
Total Unauthenticated Stratum 2–15 Good timekeepers

3,759,832 3,681,790 2,974,574 2,484,775

Of 3,964,718 IPs respond-
ing to the as query,
a staggering 3,759,832
(94.8%) IPs leaked their
origin timestamp.

The Security of NTP’s Datagram Protocol 417

But how many of these leaky hosts are vulnerable to off-path timeshifting
attacks described in Sect. 4? Our results are summarized in Table 1. First, we
find that only 78,042 (2.1%) of the IPs that leak org to us have authenticated all
associations with their servers, leaving them out of the attackable pool. Next, we
note that stratum 1 hosts are not usually vulnerable to this attack, since they sit
a the root of the NTP hierarchy (see Sect. 2) and thus don’t take time from any
server. On the other hand, there are 2,974,574 (80.8%) stratum 2–15 IPs that leak
their origin timestamp and synchronize to at least one unauthenticated server.
These are all vulnerable to our attack. We do not count 601,043 (16.3%) IPs that
have either (1) stratum 0 or 16 (unsynchronized), OR (2) conflicting stratums in
rv and server responses (mode 4). Finally, we check if these 3M vulnerable IPs
are ‘functional’ or are just misconfigured or broken systems by using data from
our mode 3 query scan to determine the quality of their timekeeping. We found
that 2,484,775 (83.5%) of these leaky IPs are good timekeepers—their absolute
offset values were less than 0.1 s.6 Of these, we find 490,032 (19.7%) IPs with
stratum 2. These are good targets for attack, so that the impact of the attack
trickles down the NTP stratum hierarchy.

5.3 Zero-0rigin Timestamp Vulnerability

Table 2. Hosts leaking zero-0rigin timestamp.
Total Unauthenticated Stratum 2–15 Good timekeepers

1,269,265 1,249,212 892,672 691,902

The zero-0rigin timestamp
vulnerability was intro-
duced seven years ago in
ntpd v4.2.6 (Dec 2009),
when a line was added to clear xmt after a packet passes TEST2.7 Thus, one
way to bound the attack surface for the zero-0rigin timestamp vulnerability is
to use control queries as measurement side-channel. We consider all our origin-
timestamp leaking hosts, and find the ones that leak a timestamp of zero. Of
3,759,832 (94.8%) origin-leaking IPs, we find 1,269,265 (33.8%) IPs that leaked
a zero-0rigin timestamp. We scrutinize these hosts in Table 2 and find ≈ 700K
interesting targets. Importantly, however, that this is likely an underestimate
of the attack surface, since the zero-0rigin vulnerability does not require the
exploitation of leaky control queries.

5.4 Interleaved Pivot Vulnerability

Table 3. Hosts leaking rec and zero-0rigin timestamps.
(Underestimates hosts vulnerable to the interleaved pivot
timeshifting attack.)
Total Unauthenticated Stratum 2–15 Good timekeepers

1,267,628 1,247,656 893,979 691,393

The interleaved pivot
DoS vulnerability was
introduced in the same
version as the zero-
0rigin timestamp vul-
nerability. Thus, the IPs described in Sect. 5.3 are also vulnerable to this attack.

6 We compute the offset θ using Eq. (2), with T1, T2, T3 from the packet timestamps
and T4 from the frame arrival time of the mode 4 response packet .

7 See Line 1094 in ntp proto.c in https://github.com/ntp-project/ntp/commit/
fb8fa5f6330a7583ec74fba2dfb7b6bf62bdd246.

https://github.com/ntp-project/ntp/commit/fb8fa5f6330a7583ec74fba2dfb7b6bf62bdd246
https://github.com/ntp-project/ntp/commit/fb8fa5f6330a7583ec74fba2dfb7b6bf62bdd246

418 A. Malhotra et al.

Next, we check which IPs are vulnerable to the interleaved pivot timeshifting
attacks (Sect. 4). These hosts must (1) leak the rec state variable and (2) use
a version of ntpd later than 4.2.6. Leaks of rec are also surprisingly prevalent:
3,724,465 IPs leaked rec (93.9% of the 4M that responded to as). These could
be vulnerable if they are using ntpd versions post v4.2.6. We cannot identify the
versions of all of these hosts, but we do know that hosts that also leak zero as
their expected origin timestamp are using versions post v4.2.6. We find 1,267,265
(34%) such IPs and scrutinize them in Table 3.

6 Securing the Client/Server Protocol

We now move beyond identifying attacks and prove security for modified
client/server datagram protocols for NTP. Figures 6 and 7 present a new
client/server protocol that provides 32-bits of randomization for the origin times-
tamp used in TEST2.

Clients use the algorithm in Fig. 6 to process received packets. While the
client continues to listen to server response packets (mode 4) even when it does
not have an outstanding query, this receive algorithm has several features that
differ from RFC5905 (Fig. 5). First, when a packet passes TEST2, we clear xmt
by setting it to a random 64-bit value, rather than to zero. We also require that,
upon reboot, the client initializes its xmt values for each server to a random 64-bit
value. Second, TEST2 alone provides replay protection and we eliminate TEST1
and TEST3. (TEST3 is not needed because of how xmt is cleared. Eliminating
TEST3 is also consistent with the implementation in ntpd versions after v4.2.6.)

Clients use the algorithm in Fig. 7 to send packets. Recall that the first 32
bits of the origin timestamp are seconds, and the last 32 bits are subseconds.

def client_receive_mode4(pkt):

server = find_server(pkt.srcIP)

if (server.auth == True and
pkt.MAC is invalid):
return # bad MAC

if pkt.T1 != server.xmt:
return # fail test2

server.xmt = randbits(64) # clear xmt
server.org = pkt.T3 # update state variables
server.rec = pkt.receive_time()
process(pkt)

return

Fig. 6. Pseudocode for processing a response.
We also require that the xmt variable be ini-
tialized as a randomly-chosen 64-bit value, i.e.,
server.xmt = randbits(64), when ntpd first
boots.

def client_transmit_mode3_e32(precision):

r = randbits(precision)
sleep for r*(2**(- precision)) seconds

fuzz LSB of xmt
fuzz = randbits(32 - precision)
server.xmt = now ^ fuzz

form the packet
pkt.T1 = server.org
pkt.T2 = server.rec
pkt.T3 = server.xmt
... # fill in other fields

if server.auth == True:
MAC(pkt) #append MAC

send(pkt)
return

Fig. 7. This function is run when
the polling algorithm signals that
it is time to query server. If
server.auth is set, then pkt is
authenticated with a MAC.

The Security of NTP’s Datagram Protocol 419

First, a client with a clock of precision ρ put a (32 − ρ)-bit random value in
the (32 − ρ) lowest order bits. Next, the client obtains the remaining ρ bits of
entropy by randomizing the packet’s sending time. When the polling algorithm
indicates that a query should be sent, the client sleeps for a random subsecond
period in [0, 2−ρ] seconds, and then constructs the mode 3 query packet. We
therefore obtain 32 bits of entropy in the expected origin timestamp, while still
preserving the semantics of NTP packets—the mode 4 packet’s origin timestamp
field (Fig. 4) still contains T1 (where T1 is as defined in Fig. 3).

The chronyd and openNTPd implementations also use a client/server proto-
col that differs from the one in RFC5905. This protocol just sets the expected
origin timestamp to be a random 64-bit nonce (see Fig. 8).

def client_transmit_mode3_e64(precision):

store the origin timestamp locally
server.localxmt = now

form the packet
server.xmt = randbits(64) #64-bit nonce
pkt.T1 = server.org
pkt.T2 = server.rec
pkt.T3 = server.xmt
... # fill in other fields

if server.auth == True:
MAC(pkt) #append MAC

send(pkt)
return

Fig. 8. Alternate client/server protocol
used by chronyd/openNTPd, that random-
izes all 64-bits of the origin timestamp.
This function is run when the polling algo-
rithm signals that it is time to query
server.

While this provides 64-bits of ran-
domness in the origin timestamp, it
breaks the semantics of the NTP
packet timestamps, because the server
response packet no longer contains T1

as defined in Fig. 3. (Instead, the client
must additionally retain T1 in local
state variable server.localxmt.) In
the full version we explain why this
means that the chrony/openNTPd
protocol cannot be used for NTP’s
symmetric mode (mode 1/2), but our
protocol (which preserves timestamp
semantics) can be used for symmetric
mode.

Both our protocol (Figs. 6 and 7)
and the chronyd/openNTPd protocol
(Figs. 6 and 8) can be used to pro-
tect client/server mode from off-path
attacks (when NTP packets are unauthenticated) and on-path attacks (when
NTP packets are authenticated with a secure message authentication code
(MAC)8.) Security holds as long as (1) all randomization is done with a
cryptographic pseudorandom number generator (RNG), rather than the weak
ntp random() function currently used by ntpd [3], (2) the expected origin times-
tamp is not leaked via control queries, and (3) NTP strictly imposes k = 4 or
k = 8 as the minimum number of consistent timing samples required before
the client considers updating its clock. The last requirement is needed because
32-bits of randomness, alone, is not sufficient to thwart a determined attacker.
However, by requiring k consistent timing samples in a row, the attacker has
to correctly guess about 32k random bits (rather than just 32 random bits).

8 RFC5905 specifies MD5(key||message) for authenticating NTP packets, but this is
not a secure MAC [6]. We are currently in the processes of standardizing a new
secure MAC for NTP [21].

420 A. Malhotra et al.

Fortunately, because of TEST11 (see Sect. 2), ntpd already requires k ≥ 4 most
of the time.9

We obtained these results by developing a cryptographic model for security
against off- and on-path NTP attacks. We then used this model prove security for
off- and on-path attacks, both for our protocol, and for the chronyd/openNTPd
protocol. Details are in the full version.

7 Summary and Recommendations

We have identified several vulnerabilities in the NTP specifications both in
RFC5905 [25] and in its control query specification in (obsoleted) RFC1305 [23],
leading to several working off-path attacks on NTP’s most widely used
client/server mode (Sects. 3 and 4). Millions of IPs are vulnerable our these
attacks (Sect. 5). In the full version, we also discuss denial-of-service attacks on
symmetric mode.

Many of our attacks are possible because RFC5905 recommends that same
codepath is used to handle packets from all of NTP’s different modes. Our
strongest attack, the zero-0rigin timestamp attack (CVE-2015-8139), follows
because NTP’s client/server mode shares the same codepath as symmetric mode.
(In the full version, we explain why the initialization of symmetric mode requires
that hosts accept NTP packets with origin timestamp set to zero; this leads to
the zero-0rigin timestamp attack on client/server mode, where the attacker con-
vinces a target client to accept a bogus packet because its origin timestamp is set
to zero.) Similarly, the fact that interleave mode and client/server mode shares
the same codepath gives rise to the interleave pivot attack (CVE-2016-1548).
Thus, we recommend that different codepaths be used for different modes. This
is feasible, since a packet’s mode is trivially determined by its mode field (Fig. 4).
The one exception is interleaved mode, so we suggest that interleaved mode be
assigned a distinguishing value in the NTP packet.

Our attacks also follow because the NTP specification does not properly
respect TEST2. We therefore propose a new backwards-compatible client/server
protocol that gives TEST2 the respect it deserves (Sect. 6). We developed a frame-
work for evaluating the security of NTP’s client/server protocol and used it to
prove that our protocol prevents (1) off-path spoofing attacks on unauthen-
ticated NTP and (2) on-path replay attacks when NTP is cryptographically
authenticated with a MAC. We have proved the similar results for a different
client/server protocol used by chronyd and openNTPD. (The proofs are in the
full version.) We recommend that implementations adopt either protocol.

Our final recommendation is aimed at systems administrators. We suggest
that firewalls and ntpd clients block all incoming NTP control (mode 6, 7) and
timing queries (mode 1, 2 or 3) from unwanted IPs (Sect. 4), rather than just
the notorious monlist control query exploited in DDoS amplification attacks.

9 However, it is not always true that k ≥ 4. In the full version we present an ntpd bug
(CVE-2016-7433) that allows for k = 1 upon reboot.

The Security of NTP’s Datagram Protocol 421

Acknowledgements. We are grateful to Jared Mauch for access to the openNTP-
project data. We thank the Network Time Foundation and the maintainers of chrony
and NTPsec for patching vulnerabilities described here. We also thank Majdi Abbas,
Stephen Gray, Ran Canetti, Ethan Heilman, Yossi Gilad, Leonid Reyzin, and Matt
Street for useful discussions. This work was supported by the MACS project under
NSF Frontier grant CNS-1414119, by NSF grant 1350733, by a Sloan Research Fellow-
ship, and by gifts from Cisco.

References

1. https://github.com/dfoxfranke/nts
2. https://github.com/mlichvar/chrony/blob/master/ntp core.c#L908
3. https://github.com/ntp-project/ntp/blob/1a399a03e674da08cfce2cdb847bfb65d

65df237/libntp/ntp random.c
4. https://github.com/philpennock/openntpd/blob/master/client.c#L174
5. The NIST authenticated NTP service (2010). http://www.nist.gov/pml/div688/

grp40/auth-ntp.cfm. Accessed July 2015
6. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-

tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 1

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE (2001)

8. Clayton, R., Murdoch, S.J., Watson, R.N.M.: Ignoring the Great Firewall of China.
In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 20–35. Springer,
Heidelberg (2006). https://doi.org/10.1007/11957454 2

9. corbixgwelt. Timejacking & bitcoin: The global time agreement puzzle (culubas
blog) (2011). http://culubas.blogspot.com/2011/05/timejacking-bitcoin 802.html.
Accessed Aug 2015

10. Czyz, J., Kallitsis, M., Gharaibeh, M., Papadopoulos, C., Bailey, M., Karir, M.:
Taming the 800 pound gorilla: the rise and decline of NTP DDoS attacks. In:
Proceedings of the 2014 Internet Measurement Conference, pp. 435–448. ACM
(2014)

11. Dowling, B., Stebila, D., Zaverucha, G.: Authenticated network time synchroniza-
tion. In: 25th USENIX Security Symposium (USENIX Security 2016), Austin, TX,
pp. 823–840. USENIX Association, August 2016

12. Duan, H., Weaver, N., Zhao, Z., Hu, M., Liang, J., Jiang, J., Li, K., Paxson, V.:
Hold-on: protecting against on-path DNS poisoning. In: Proceedings of Workshop
on Securing and Trusting Internet Names, SATIN (2012)

13. Durairajan, R., Mani, S.K., Sommers, J., Barford, P.: Time’s forgotten: using NTP
to understand internet latency. In: HotNets 2015, November 2015

14. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its security applications. In: USENIX Security, pp. 605–620. Citeseer (2013)

15. Haberman, B., Mills, D.: RFC 5906: Network Time Protocol Version 4: Autokey
Specification. Internet Engineering Task Force (IETF) (2010). https://tools.ietf.
org/html/rfc5906

16. Itkin, E., Wool, A.: A security analysis and revised security extension for the
precision time protocol. CoRR, abs/1603.00707 (2016)

17. Klein, J.: Becoming a time lord - implications of attacking time sources. Shmoocon
Firetalks 2013 (2013). https://youtu.be/XogpQ-iA6Lw

https://github.com/dfoxfranke/nts
https://github.com/mlichvar/chrony/blob/master/ntp_core.c#L908
https://github.com/ntp-project/ntp/blob/1a399a03e674da08cfce2cdb847bfb65d65df237/libntp/ntp_random.c
https://github.com/ntp-project/ntp/blob/1a399a03e674da08cfce2cdb847bfb65d65df237/libntp/ntp_random.c
https://github.com/philpennock/openntpd/blob/master/client.c#L174
http://www.nist.gov/pml/div688/grp40/auth-ntp.cfm
http://www.nist.gov/pml/div688/grp40/auth-ntp.cfm
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/11957454_2
http://culubas.blogspot.com/2011/05/timejacking-bitcoin_802.html
https://tools.ietf.org/html/rfc5906
https://tools.ietf.org/html/rfc5906
https://youtu.be/XogpQ-iA6Lw

422 A. Malhotra et al.

18. Krämer, L., Krupp, J., Makita, D., Nishizoe, T., Koide, T., Yoshioka, K., Rossow,
C.: AmpPot: monitoring and defending against amplification DDoS attacks. In:
Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp. 615–636.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26362-5 28

19. Malhotra, A., Cohen, I.E., Brakke, E., Goldberg, S.: Attacking the network time
protocol. In: NDSS 2016, February 2016

20. Malhotra, A., Goldberg, S.: Attacking NTP’s authenticated broadcast mode. In:
SIGCOMM Computer Communication Review, April 2016

21. Malhotra, A., Goldberg, S.: Message Authentication Codes for the Network Time
Protocol. Internet Engineering Task Force (IETF), November 2016. https://
datatracker.ietf.org/doc/draft-ietf-ntp-mac/

22. Mauch, J.: openntpproject: NTP Scanning Project. http://openntpproject.org/
23. Mills, D.: RFC 1305: Network Time Protocol (Version 3) Specification, Implemen-

tation and Analysis. Internet Engineering Task Force (IETF) (1992). http://tools.
ietf.org/html/rfc1305

24. Mills, D., Haberman, B.: draft-haberman-ntpwg-mode-6-cmds-00: Control Mes-
sages Protocol for Use with Network Time Protocol Version 4. Internet Engineering
Task Force (IETF), May 2016. https://datatracker.ietf.org/doc/draft-haberman-
ntpwg-mode-6-cmds/

25. Mills, D., Martin, J., Burbank, J., Kasch, W.: RFC 5905: Network Time Protocol
Version 4: Protocol and Algorithms Specification. Internet Engineering Task Force
(IETF) (2010). http://tools.ietf.org/html/rfc5905

26. Mills, D.L.: Computer Network Time Synchronization, 2nd edn. CRC Press,
Boca Raton (2011)

27. Minar, N.: A survey of the NTP network (1999)
28. Mizrahi, T.: A game theoretic analysis of delay attacks against time synchroniza-

tion protocols. In: Precision Clock Synchronization for Measurement Control and
Communication (ISPCS), pp. 1–6. IEEE (2012)

29. Mizrahi, T.: RFC 7384 (Informational): Security Requirements of Time Protocols
in Packet Switched Networks. Internet Engineering Task Force (IETF) (2012).
http://tools.ietf.org/html/rfc7384

30. Moreira, N., Lazaro, J., Jimenez, J., Idirin, M., Astarloa, A.: Security mechanisms
to protect IEEE 1588 synchronization: state of the art and trends. In: 2015 IEEE
International Symposium on Precision Clock Synchronization for Measurement,
Control, and Communication (ISPCS), pp. 115–120. IEEE (2015)

31. Murta, C.D., Torres Jr. P.R., Mohapatra, P.: Characterizing quality of time and
topology in a time synchronization network. In: GLOBECOM (2006)

32. Röttger, S.: Analysis of the ntp autokey procedures. Master’s thesis, Technische
Universitt Braunschweig (2012)

33. Selvi, J.: Bypassing HTTP strict transport security. In: Black Hat Europe (2014)
34. Selvi, J.: Breaking SSL using time synchronisation attacks. In: DEFCON’23 (2015)
35. Sherman, J.A., Levine, J.: Usage analysis of the NIST internet time service. J. Res.

Natl. Inst. Stand. Technol. 121, 33 (2016)
36. Sibold, D., Roettger, S.: draft-ietf-ntp-network-time-security: Network Time Secu-

rity. Internet Engineering Task Force (IETF) (2015). http://tools.ietf.org/html/
draft-ietf-ntp-network-time-security-08

37. Sibold, D., Roettger, S., Teichel, K.: draft-ietf-ntp-network-time-security-10: Net-
work Time Security. Internet Engineering Task Force (IETF) (2015). https://tools.
ietf.org/html/draft-ietf-ntp-network-time-security-10

38. Stenn, H.: Securing the network time protocol. ACM Queue 13(1), 20–25 (2015).
Communications of the ACM

https://doi.org/10.1007/978-3-319-26362-5_28
https://datatracker.ietf.org/doc/draft-ietf-ntp-mac/
https://datatracker.ietf.org/doc/draft-ietf-ntp-mac/
http://openntpproject.org/
http://tools.ietf.org/html/rfc1305
http://tools.ietf.org/html/rfc1305
https://datatracker.ietf.org/doc/draft-haberman-ntpwg-mode-6-cmds/
https://datatracker.ietf.org/doc/draft-haberman-ntpwg-mode-6-cmds/
http://tools.ietf.org/html/rfc5905
http://tools.ietf.org/html/rfc7384
http://tools.ietf.org/html/draft-ietf-ntp-network-time-security-08
http://tools.ietf.org/html/draft-ietf-ntp-network-time-security-08
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-10
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-10

The Security of NTP’s Datagram Protocol 423

39. Stenn, H.: Security notice, 27 April 2016. http://support.ntp.org/bin/view/Main/
SecurityNotice

40. Weaver, N., Sommer, R., Paxson, V.: Detecting forged TCP reset packets. In:
NDSS (2009)

http://support.ntp.org/bin/view/Main/SecurityNotice
http://support.ntp.org/bin/view/Main/SecurityNotice

Short Paper: On Deployment of DNS-Based
Security Enhancements

Pawel Szalachowski(B) and Adrian Perrig

ETH Zurich, Zürich, Switzerland
psz@inf.ethz.ch

Abstract. Although the Domain Name System (DNS) was designed as
a naming system, its features have made it appealing to repurpose it for
the deployment of novel systems. One important class of such systems are
security enhancements, and this work sheds light on their deployment.
We show the characteristics of these solutions and measure reliability
of DNS in these applications. We investigate the compatibility of these
solutions with the Tor network, signal necessary changes, and report on
surprising drawbacks in Tor’s DNS resolution.

1 Introduction

DNS is one of the most successful Internet infrastructures. It is a naming sys-
tem for resources over the Internet, and its most prominent use is to translate
human-readable names to IP addresses. Currently, this hierarchical and distrib-
uted system is a core infrastructure of the Internet, and over the years the avail-
ability and reliability of standard DNS operations have increased [17]. Although
DNS is primarily (and was designed as) a system for name resolution, due to its
success and flexibility it is used by various, not initially intended, applications.
One family of such applications are various security enhancements. These sys-
tems are particularly difficult to deploy [16], as different actors are reluctant to
deploy and invest in a security-dedicated infrastructure. Due to low cost, well-
understood operations and administration, and its ubiquity, DNS seems like an
ideal environment to support deployment of new security enhancements. Thus,
it is naturally appealing to protocol designers to repurpose the DNS infrastruc-
ture, rather than designing and deploying a new one. For those reasons, DNS is
currently being employed by various security enhancements. As a consequence,
new systems rely on the infrastructure designed decades ago. Therefore, it is nec-
essary to investigate how robust and applicable the infrastructure is for these use
cases. The essence of the new uses is to transport additional information using
DNS, however, there exist indications that such a transport can be unreliable.

In this work we make the following contributions: (1) investigate the use of
DNS-based security enhancements, (2) study DNS reliability for these applica-
tions, (3) check the compatibility of the enhancements if the DNS resolution
occurs over Tor.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 424–433, 2017.
https://doi.org/10.1007/978-3-319-70972-7_24

Short Paper: On Deployment of DNS-Based Security Enhancements 425

2 Background

DNS Resolution is a process of translating human-readable domain names
to IP addresses. It is conducted through the DNS infrastructure, namely DNS
clients, resolvers, and servers. To resolve a domain name, e.g., www.a.com, a
client initiates the process by querying its resolver, which in turn contacts one
of the DNS root servers (root servers’ IP addresses are fixed and known to
resolvers). The root server returns an address of a DNS authoritative server for
the com domain. Then, the resolver queries the com authoritative server to find
an authoritative server for a.com, which finally is queried about www.a.com. The
a.com authoritative server returns the IP address(es) of www.a.com. The lengthy
resolution process is usually shortcut by using cached information.

DNS allows to associate various information with domain names. Information
is encoded and delivered within resource records (RRs) with dedicated types, e.g.,
A and AAAA RRs map domain names to IPv4 and IPv6 addresses, respectively,
NS RRs indicate authoritative servers, while TXT RRs can associate an arbitrary
text. DNS responses can contain multiple RRs of the queried type. It is also
possible to translate IP addresses into domain names (to this end PTR RRs are
used).

DNS deploys UDP as a default transport protocol, however, for responses
larger than 512 bytes a failover mechanism is introduced. Larger responses are
truncated to fit 512 bytes and marked by a truncated flag. Resolvers receiv-
ing a truncated response query the server again via TCP to obtain the com-
plete response. (Clients can increase the limit by signaling the maximum UDP
response size they can handle [18].)

DNS Resolution (Un)Reliability. Although DNS is reliable for its major
application (i.e., translating names to IP addresses), the reliability for other
applications is questionable. For instance, many of DNS clients, resolvers, and
servers are realized as non-compliant implementations [3]. It was reported [9]
that a significant fraction of all clients (2.6%) and a large fraction of resolvers
(17%) cannot perform the UDP-to-TCP failover. This behavior limits clients
ability to receive responses larger than 512 bytes. Another potential issue [3] is
caused by network environments, where devices can handle only unusually small
Maximum Transmission Unit (MTU) packets, thus introducing IP fragmentation
decreasing the reliability of the DNS resolution. DNS traffic is also a subject
to traffic analysis, and some middleboxes manipulate DNS responses [7,19]. It
is believed that some non-standard RRs are discriminated by non-compliant
implementations or/and network devices. For instance, some experiments [12,19]
indicate that A RRs are more reliable than TXT RRs.

3 Security Enhancements Employing DNS

We focus our study on two families of security enhancements that can benefit
from a robust DNS infrastructure, namely email and TLS PKI enhancements.

426 P. Szalachowski and A. Perrig

The main reason why DNS infrastructure can be appealing for these technolo-
gies is that both email and TLS PKI are domain based. As the DNS lookup
usually precedes the email exchange or TLS connection establishment, the client
can obtain some relevant information before the connection setup. Addition-
ally, such DNS-based information pre-fetching does not violate the privacy, as
no additional third party is contacted (DNS servers are contacted anyways).
A security assumption for these schemes is that an adversary cannot control
DNS entries of targeted domains.

3.1 Email

SPF [10] enables domains to make assertions (in DNS) about hosts that are
authorized to originate email for that domain. When an email is received by an
email exchanger, it parses the domain name from the email’s From address field,
and queries the DNS to check whether the sender is authorized to send email.
This mitigates spam and phishing emails that abuse the From field. SPF mainly
uses TXT RRs, although a dedicated SPF RR was introduced.

Sender ID [1] is an anti-spoofing proposal based on SPF. The main differ-
ence is that it aims in verifying the sender address displayed to an email client
(the From field and the address displayed by email clients can differ). Such an
address is introduced as a Purported Responsible Address (PRA) [15]. By set-
ting a special TXT or SPF record, a domain can specify if only SPF should be
verified, or both SPF and PRA, or PRA only.

DKIM [4] is an email authentication protocol based on signatures. A domain
publishes RR with its public key. Next, the domain’s outbound email server signs
sent emails with the corresponding private key. An inbound email server, after
receiving a signed email, extracts its origin domain name (via the From field)
and performs a DNS lookup to obtain the domain’s public key used to verify
the email. Usually, DKIM is executed by email servers rather than email clients
(i.e., authors and recipients). Public keys are stored in TXT RRs, and to obtain a
key of a.com, dkim.a.com is queried. DKIM protects emails from modification,
however, the scheme can be bypassed by an active adversary by simply stripping
the DKIM headers.

DMARC [11] is a comprehensive system that allows an email-originating
organization to express domain-level policies for email management. A policy
can specify how emails should be validated and how receivers should handle
validation failures. Additionally, DMARC policies can be used to implement a
reporting system (i.e., to report on actions performed under a policy). DMARC
deploys SPF and DKIM, and domain owners can specify which of those mecha-
nisms (or both) should be used to validate their emails. DMARC uses TXT RRs
to store policies, and the RRs are associated with domain names prepended with
the dmarc. prefix, e.g., dmarc.a.com.

Short Paper: On Deployment of DNS-Based Security Enhancements 427

3.2 TLS PKI Enhancement

DANE [8] allows domains to specify their key(s) or key(s) of Certificate Author-
ities (CAs) they trust. To this end, a domain publishes a special DNS entry with
its public key(s) or public key(s) of trusted CA(s). DANE introduces a new TLSA
RR. The scheme relies on DNSSEC, requiring that the RRs be signed with the
domain’s DNSSEC key. DANE records are created per service, thus a DANE
query encodes a transport protocol, and a port number used. For instance,
keys of a HTTPS server running at www.a.com can be checked by querying
443. tcp.www.a.com. Such a flexible mechanism allows to use DANE for all
services that deploy TLS.

CAA [6] aims to provide trust agility and remove a single point of failure
from the TLS PKI. Specifically, it allows a domain to specify (in DNS) CA(s)
authorized to issue certificates for the domain. This simple procedure can prevent
the two following threats: (i) compromised CA: a CA that is not listed by a
domain cannot issue a valid certificate for the domain, (ii) identity spoofing:
a benign CA can refuse certificate issuance if it is not listed by the domain.
CAA introduces new CAA RRs, which do not have to be protected via DNSSEC,
although it is recommended.

Log-based approaches are recent PKI enhancements that introduce
publicly-verifiable logs. The most prominent example is CT [13], whose goal
is to make all certificates issued by CAs visible. To this end, every certificate is
submitted to a log, which returns a signed promise that the certificate will be
logged. Then, in every TLS connection a client receives a certificate accompanied
with the logging promise. However, it is important to verify whether the promise
was met, and to do so the client has to obtain a proof from the log that given
certificate indeed was logged. Laurie et al. propose [14] that clients ask a special
CT-supported DNS server for such a proof. An advantage of this scheme is that
DNS requests are sent via a local resolver, thus the CT DNS server (and the
log) cannot identify the client, but only his resolver (usually run by his ISP).

4 Current State of Deployment

First, we investigate deployment characteristics of the enhancements. In partic-
ular, we focus on factors that can influence reliability of DNS as a transport (i.e.,
RRs used and response sizes). To this end, we conduct a measurement of the
hundred thousand most popular domains of the Internet (according to the Alexa
list: http://www.alexa.com/topsites). For each domain name we queried for RRs
that implement a given functionality. We queried for DANE’s RRs specific to
HTTPS, i.e., 443. tcp., and 443. tcp.www. prepended to a queried domain
name. We omitted log-based mechanism, as no scheme is combined with DNS
yet (up to our knowledge).

Table 1 presents the measured scale of deployment with the response size
characteristics, while Fig. 1 presents a CDF of the measured response sizes. As
depicted, TXT RRs dominate, constituting about 94% of all successful responses.
It is mainly due to well-established deployment of the mail enhancements

http://www.alexa.com/topsites

428 P. Szalachowski and A. Perrig

Table 1. Measured scale of deployment and response sizes.

Mechanism RR(s) queried Successful responses Response size (B)

Min Med Avg Max

SPF TXT 53365 (53.37%) 25 148 185 3138

SPF 4182 (4.18%) 27 122 144 1606

Sender ID TXT 1766 (1.77%) 56 303 333 1285

SPF 98 (0.10%) 79 234 247 538

DKIM TXT 5049 (5.05%) 49 64 97 1007

DMARC TXT 7361 (7.36%) 35 133 140 1003

DANE TLSA 48 (0.05%) 80 88 96 182

CAA CAA 15 (0.02%) 58 106 106 269

Fig. 1. CDF of the measured response sizes.

(SPF mainly). Although, new RR types (like SPF) were introduced, the oper-
ators clearly prefer to rely on older TXT RRs. PKI enhancements do not have
significant deployment, which is probably caused by their relative immaturity
(e.g., SPF was introduced in 2006, while DANE and CAA in 2012 and 2013,
respectively). Another finding is that most of the responses fit the limit of 512
bytes. An exception are responses including Sender ID’s data (approximately
15% of them exceed the limit).

5 Reliability of DNS

To investigate how reliable DNS is for the security enhancements, we conducted a
series of experiments using RIPE Atlas (https://atlas.ripe.net/), the largest pub-
licly available global testbed for network measurements. RIPE Atlas is a network
of hardware devices, called probes, used for active Internet measurements. It sup-
ports DNS measurements, and provides good geographic coverage [2]. Through
the measurements we wanted to answer the two following questions:

https://atlas.ripe.net/

Short Paper: On Deployment of DNS-Based Security Enhancements 429

1. Are TXT RRs discriminated (dropped or manipulated) by some DNS
clients/resolvers or network devices?

2. How reliable is DNS in transporting UDP responses larger than 512 bytes?

The first question is motivated by the importance of TXT RRs (see Sect. 3)
and by the common belief that a significant fraction of TXT RRs is not trans-
ported correctly (probably due to its non-standard type). We investigate the
second question to verify how the 512 bytes limit for UDP DNS responses is
enforced by the DNS infrastructure. This question is important as the previ-
ous work indicates that the TCP support at DNS resolvers is incomplete [9],
thus it is risky to rely on the failover mechanism. (Note, that RIPE Atlas does
not expose an option to check whether a probe’s DNS client/resolver correctly
handles responses with the truncated flag set.)

In order to conduct the measurements, we launched an authoritative DNS
server, and prepared it with DNS responses of the following sizes:

494 bytes: the size is below the 512 bytes limit, but it can handle most of the
current responses (see Fig. 1). We investigated transport over A and TXT RRs,
to verify whether TXT RRs are discriminated (while compared to A RRs).

1005 bytes: responses with this size allow us to investigate how robust the
DNS infrastructure is, when the UDP response size limit is exceeded. This
size is also below the standard MTUs (i.e., about 1500 bytes).

1997 bytes: by responses with this size, we want to investigate how exceeding
the standard MTU influences DNS transport.

Our DNS server was configured not to set the truncated flag, and in the
RIPE Atlas setting we set the acceptable response size to 4096 bytes. We sched-
uled measurements on the RIPE Atlas at the end of August 2016. We assigned
all 9270 connected probes to query our DNS server. For response sizes of 1005
and 1997 bytes we investigated only TXT RRs. Depending on the queried tar-
get, the following number of probes have responded: 8952 for queried A and TXT
RRs sent in 494 bytes responses, 8934 for 1005 bytes responses, and 7990 for
1997 bytes responses. Note, that each probe could respond with multiple DNS
responses.

In Table 2 we present the obtained results. As probes can use the same, pop-
ular resolvers, beside the absolute number of responses, we also present results
for unique resolutions, where a unique resolution is defined as a triple: number
of RRs within a response, response size, and resolver’s address. The successful
results are divided into responses that were received with the exact size served
(by the authoritative DNS server), and larger responses (resolvers add other
information that is relevant to the query, like addresses of authoritative servers).
Failed resolutions are divided into three categories. First, the fraction of reso-
lution errors is presented. These are errors such as a DNS resolver that could
not be found, or a failed connection. Then, we present empty DNS responses
(i.e., number of answers equals zero). The last category shows the number of
truncated responses, i.e., responses with fewer number of RRs than expected
or/and shorter payload of the response.

430 P. Szalachowski and A. Perrig

Table 2. Measured reliability of DNS.

Test Total Successful resolutions Failed resolutions

Total Exact Larger Total Error Empty Truncated

All responses A 16570 15468 15356 112 1102 867 189 46

494B 100% 93.35% 92.67% 0.68% 6.65% 5.23% 1.14% 0.28%

TXT 16570 15460 15343 117 1110 892 206 12

494B 100% 93.30% 92.60% 0.71% 6.70% 5.38% 1.24% 0.07%

TXT 16553 13480 936 12544 3073 1504 1155 414

1005B 100% 81.44% 5.65% 75.78% 18.56% 9.09% 6.98% 2.50%

TXT 13727 7286 29 7257 6441 2360 3617 464

1997B 100% 53.08% 0.21% 52.87% 46.92% 17.19% 26.35% 3.38%

Unique responses A 7452 6625 6526 99 827 633 166 28

494B 100% 88.90% 87.57% 1.33% 11.10% 8.49% 2.23% 0.38%

TXT 7447 6618 6516 102 829 638 181 10

494B 100% 88.87% 87.50% 1.37% 11.13% 8.57% 2.43% 0.13%

TXT 7938 6222 450 5772 1716 922 636 158

1005B 100% 78.38% 5.67% 72.71% 21.62% 11.62% 8.01% 1.99%

TXT 6887 3741 19 3722 3146 1252 1652 242

1997B 100% 54.32% 0.28% 54.04% 45.68% 18.18% 23.99% 3.51%

Our first observation is that for the 494 bytes long responses there is only
a negligible difference between reliability of A-only responses versus TXT-only
responses. Secondly, the results show that UDP responses with size above the
512 bytes limit increase the failure rate from 6.70% to 18.56% (all responses) and
from 11.13% to 21.62% (unique responses). Taking into consideration the results
about failing TCP support, it might be more effective to use UDP with increased
size instead of TCP. Lastly, the largest responses investigated (1997 bytes) are
successfully delivered only in about 50% of all cases. That is probably caused by
MTU issues, as common MTUs over the Internet are about 1500 bytes. We also
observe, that resolvers enlarge responses usually when they are large already.

Although RIPE Atlas is an ideal open testbed for such tests, it introduces
some biases. Probes are plug-and-forget devices, thus an owner may be not aware
that DNS resolution at his/her probe does not work properly (this could explain
the large fraction of DNS errors even for the smallest responses investigated).
Moreover, probes are usually installed by network-savvy users like research insti-
tutions, Internet operators, hobbyists, and the probe distribution (based on their
ASes) is heavy-tailed [2].

6 Tor and Security Enhancements

Tor [5] is the most popular software and infrastructure for enabling anonymous
communication over the Internet. It is an onion routing protocol, where an
encryption circuit is selected by the Tor client software. DNS querying over
Tor is also anonymous and conducted by an exit node of the circuit (this node
will forward traffic to destinations).

Short Paper: On Deployment of DNS-Based Security Enhancements 431

The DNS resolution in Tor is restricted only to A, AAAA, and PTR RRs. This
obviously limits the deployment of DNS-supported security enhancements in
Tor. It is especially important for the PKI enhancements, as they assume clients
to participate in the protocol (the mail enhancements are deployed mainly by
the mail infrastructure).

Fig. 2. Tor-based measurement scenario.

In this section, we investigate
whether the supported RRs can be used
to implement DNS-supported enhance-
ments (for instance, one could con-
vey information on a series of A or
AAAA RRs). We measured DNS resolu-
tion over Tor, using our authoritative
server, that was also configured as a
Tor Linux client (i.e., the server queried
itself through the Tor network, as pre-
sented in Fig. 2). For every set of queries, a new Tor circuit was selected, and we
conducted 15000 such resolutions. We investigated how reliable Tor is in resolv-
ing requests for the supported RRs (i.e., A, AAAA, and PTR). We checked PTR
queries for both, IPv4 and IPv6 addresses.

Table 3. Fraction of successful res-
olutions (i.e., single RR returned)
depending on type.
A PTR (IPv4) PTR (IPv6) AAAA

99.78% 99.22% 98.89% 23.05%

The first observation is that all asked
resolvers limited DNS responses only to a
single RR. This limits ways the supported
RRs can be used to encode some additional
data (e.g., single A query can return only four
bytes). Table 3 presents the fraction of suc-
cessfully resolved requests. As depicted, A queries are resolved slightly more reli-
ably than PTR queries for IPv4 addresses, which in turn are less reliable for IPv6
addresses. The results also show, that although AAAA RRs are supported, they
are resolved correctly only for 23% of requests (probably, only nodes supporting
IPv6 resolve them).

Surprisingly, we observed that some resolvers fail to return any response when
the response from the authoritative server is large (but still below 512 bytes).
To further investigate this phenomena, we prepared responses with A RRs with
different sizes. We then measured when requests are processed successfully (by
success we mean a response to the client that contains a single RR, although
many were served). The results (see Table 4) show that reliability of DNS

Table 4. Fraction of successful resolutions (i.e., single A RR returned) depending on
the response size (from the authoritative server).

61B 110B 158B 254B 366B 398B 430B 462B 478B 494B

1 RRs 4 RRs 7 RRs 13 RRs 20 RRs 22 RRs 24 RRs 26 RRs 27 RRs 28 RRs

99.77% 99.77% 99.77% 99.77% 99.23% 99.16% 98.10% 92.87% 91.27% 38.36%

432 P. Szalachowski and A. Perrig

resolution decreases with the response size. Only 38% of all resolutions succeeded
at all with 494 bytes long responses served.

7 Conclusions

Our study confirms that DNS-based security enhancements should respect the
conservative limit of 512 bytes for responses, as robustness of DNS transport can
be influenced by many uncontrollable factors. Fortunately, the limit is sufficient
for about 95% of all received responses. However, our study does not confirm
the common belief that TXT RRs are being discriminated. Our work identifies
DNS resolution in Tor as an interesting subject for future work, as we found
it surprising and inconsistent: resolvers fail to return large responses, slightly
differently handle PTR RRs for IPv4 and IPv6 addresses, AAAA RRs are officially
supported, but in practice are resolved only by 23% of all resolvers. We also
observe that restricting other RRs (especially PKI-related, like TLSA) will actu-
ally decrease security of end users. Hence, to fulfill Tor’s mission (i.e., “to allow
people to improve their privacy and security on the Internet”) the developers
should consider supporting DNS-based security enhancements.

Acknowledgment. We gratefully acknowledge support from ETH Zurich and from
the Zurich Information Security and Privacy Center (ZISC). We thank Brian Trammell
and the anonymous reviewers, whose feedback helped to improve the paper.

References

1. Allman, E., Katz, H.: SMTP Service Extension for Indicating the Responsible
Submitter of an E-Mail Message. RFC 4405 (2006)

2. Bajpai, V., Eravuchira, S.J., Schönwälder, J.: Lessons learned from using the RIPE
Atlas platform for measurement research. In: SIGCOMM CCR (2015)

3. Buddhdev, A.: Testing your Resolver for DNS Reply Size Issues (2009). https://
goo.gl/gU7mNu

4. Crocker, D., Hansen, T., Kucherawy, M.: DomainKeys Identified Mail (DKIM)
Signatures. RFC 6376 (2011)

5. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. Technical report, DTIC Document (2004)

6. Hallam-Baker, P., Stradling, R.: DNS Certification Authority Authorization (CAA)
Resource Record. RFC 6844 (2013)

7. Hätönen, S., Nyrhinen, A., Eggert, L., Strowes, S., Sarolahti, P., Kojo, M.: An
experimental study of home gateway characteristics. In: ACM IMC (2010)

8. Hoffman, P., Schlyter, J.: The DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698 (2012)

9. Huston, G.: A Question of DNS Protocols (2013). https://goo.gl/d8kwCK
10. Kitterman, S.: Sender Policy Framework (SPF) for Authorizing Use of Domains

in Email, Version 1. RFC 7208 (2014)
11. Kucherawy, M., Zwicky, E.: Domain-Based Message Authentication, Reporting,

and Conformance (DMARC). RFC 7489 (2015)
12. Langley, A.: Why not DANE in browsers (2015). https://goo.gl/0kVppI

https://goo.gl/gU7mNu
https://goo.gl/gU7mNu
https://goo.gl/d8kwCK
https://goo.gl/0kVppI

Short Paper: On Deployment of DNS-Based Security Enhancements 433

13. Laurie, B., Langley, A., Kasper, E.: Certificate Transparency. RFC 6962 (2013)
14. Laurie, B., Phaneuf, P., Eijdenberg, A.: Certificate transparency over DNS (2016).

https://goo.gl/PoLkmu
15. Lyon, J.: Purported Responsible Address in E-Mail Messages. RFC 4407 (2006)
16. Nikkhah, M., Dovrolis, C., Guérin, R.: Why didn’t my (great!) protocol get

adopted? In: HotNets (2015)
17. Pappas, V., Xu, Z., Lu, S., Massey, D., Terzis, A., Zhang, L.: Impact of configura-

tion errors on DNS robustness. In: SIGCOMM CCR (2004)
18. Vixie, P.: Extension Mechanisms for DNS (EDNS0). RFC 2671 (1999)
19. Weaver, N., Kreibich, C., Nechaev, B., Paxson, V.: Implications of Netalyzrs DNS

measurements. In: SATIN (2011)

https://goo.gl/PoLkmu

Blind Signatures

A Practical Multivariate Blind Signature Scheme

Albrecht Petzoldt1,2, Alan Szepieniec3,4(B),
and Mohamed Saied Emam Mohamed5

1 Kyushu University, Fukuoka, Japan
2 NIST, Gaithersburg, USA
albrecht.petzoldt@nist.gov

3 KU Leuven, ESAT/COSIC, Heverlee, Belgium
alan.szepieniec@esat.kuleuven.be

4 imec, Leuven, Belgium
5 Technische Universität Darmstadt, Darmstadt, Germany

mohamed@cdc.informatik.tu-armstadt.de

Abstract. Multivariate Cryptography is one of the main candidates for
creating post-quantum cryptosystems. Especially in the area of digital
signatures, there exist many practical and secure multivariate schemes.
However, there is a lack of multivariate signature schemes with special
properties such as blind, ring and group signatures. In this paper, we pro-
pose a generic technique to transform the Rainbow multivariate signature
scheme into a blind signature schemes. The resulting scheme satisfies the
usual blindness criterion and a one-more-unforgeability criterion adapted
to MQ signatures, produces short blind signatures and is very efficient.

Keywords: Multivariate cryptography · Blind signatures
Rainbow signature scheme

1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [19], DSA [11] and ECC. However, schemes like these will
become insecure as soon as large enough quantum computers are built. The
reason for this is Shor’s algorithm [23], which solves number theoretic prob-
lems like integer factorization and discrete logarithms in polynomial time on a
quantum computer. Therefore, one needs alternatives to those classical public
key schemes which are based on hard mathematical problems not affected by
quantum computer attacks (so called post-quantum cryptosystems).

The increasing importance of research in this area has recently been empha-
sized by a number of authorities. For example, the american National Security
Agency has recommended governmental organizations to change their security

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 437–454, 2017.
https://doi.org/10.1007/978-3-319-70972-7_25

438 A. Petzoldt et al.

infrastructures from schemes like RSA to post-quantum schemes [13] and the
National Institute of Standards and Technologies (NIST) is preparing to stan-
dardize these schemes [14]. According to NIST, multivariate cryptography is one
of the main candidates for this standardization process. Multivariate schemes
are in general very fast and require only modest computational resources, which
makes them attractive for the use on low cost devices like smart cards and RFID
chips [3,4]. However, while there exist many practical multivariate standard sig-
nature schemes such as UOV [12], Rainbow [6] and Gui [18], there is a lack of
multivariate signature schemes with special properties such as blind, ring, and
group signatures.

Blind signature schemes allow a user, who is not in charge of the private sign-
ing key, to obtain a signature for a message d by interacting with the signer. The
important point is that this signer, who holds the secret key, receives no informa-
tion about the message d that is signed nor about the signature s that is created
through the interaction. Nevertheless, anyone with access to the public verifica-
tion key is capable of verifying that signature. Because of these unlinkability and
public verifiability properties, blind signature schemes are an indispensable prim-
itive in a host of privacy-preserving applications ranging from electronic cash to
anonymous database access, e-voting, and anonymous reputation systems.

In this paper, we present a technique to transform Rainbow, a multivariate
quadratic (MQ) signature scheme, into a blind signature scheme. This trans-
formation is accomplished by joining the MQ signature scheme with the zero-
knowledge MQ-based identification scheme of Sakumoto et al. [22]. The user
queries the signer on a blinded version of the message to be signed; the signer’s
response is then combined with the blinding information in order to produce
a non-interactive zero-knowledge proof of knowledge of a pre-image under the
public verification key, which is a set of quadratic polynomials that contains the
signer’s public key in addition to a large random term. The only way the user
can produce such a proof is by querying the signer at some point for a partial
pre-image; however, because it is zero-knowledge, this proof contains no infor-
mation on the message that was seen and signed by the signer, thus preventing
linkage and ensuring the user’s privacy.

We obtain one of the first multivariate signature schemes with special prop-
erties and more generally one of the very few candidates for establishing prac-
tical and secure post-quantum blind signatures. In terms of security require-
ments, our scheme satisfies the usual blindness notion, but an adapted one-
more-unforgeability one which we call universal -one-more-unforgeability. This
change is justified by the observation that the usual one-more-unforgeability
notion generalizes existential unforgeability for regular signatures; however, MQ
signatures can only be shown to offer universal unforgeability and hence require
a universal one-more-unforgeability generalization. We instantiate our scheme
with the Rainbow signature scheme and propose parameters targeting various
levels of security.

The rest of this paper is organized as follows. Section 2 recalls the basic con-
cepts of blind signatures anddiscusses the basic security notions. In Sect. 3we recall

A Practical Multivariate Blind Signature Scheme 439

the basic concepts of multivariate cryptography and review the Rainbow signature
scheme, Sakumoto’s multivariate identification scheme [22], and its transforma-
tion into a digital signature scheme due to Hülsing [9]. Section 4 presents our tech-
nique to extend multivariate signature schemes such as Rainbow to blind signature
schemes, while Sect. 5 discusses the security of our construction. In Sect. 6 we give
concrete parameter sets and analyze the efficiency of our scheme. Furthermore, in
this section, we describe a proof of concept implementation of our scheme and com-
pare it with other existing (classical and post-quantum) blind signature schemes.
Finally, Sect. 7 concludes the paper.

2 Blind Signatures

Blind signature schemes as proposed by David Chaum in [2] allow a user, who is
not in charge of the private signing key, to obtain a signature for a message d on
behalf of the owner of the private key (called the signer). The key point hereby
is that the signer gets no information about the content of the message d.

The signature generation process of a blind signature scheme is an interactive
process between the user and the signer. In the first step, the user computes from
the message d a blinded message d� and sends it to the signer. The signer uses his
private key to generate a signature σ� for the message d� and sends it back to the
signer. Due to certain homomorphic properties in the inner structure of the blind
signature scheme, the user is able to compute from σ� a valid signature σ for the
original message d. The receiver of a signed message can check the authenticity
of the signature σ in the same way as in the case of a standard signature scheme.
Figure 1 shows a graphical illustration of the signature generation process of a
blind signature scheme.

Fig. 1. Signature generation process of a blind signature scheme

Formally, a blind signature scheme BS is a three-tuple, consisting of two poly-
nomial time algorithms KeyGen and Verify and an interactive signing protocol
Sign [10].

– KeyGen(1κ): The probabilistic algorithm KeyGen takes as input a security
parameter κ and outputs a key pair (sk, pk) of the blind signature scheme.

440 A. Petzoldt et al.

– Sign: The signature generation step is an interactive protocol between the
User, who gets as input a message d and a public key pk and the Signer who
is given the pair (pk, sk) generated by algorithm KeyGen. At the end of the
protocol, the Signer outputs either “completed” or “non-completed”, while
the user outputs either “failed” or a signature σ.

– Verify((d, σ), pk): The deterministic algorithm Verify takes as input a mes-
sage/signature pair (d, σ) and the public key pk. It outputs TRUE, if σ is a
valid signature for the message d and FALSE otherwise.

In the following, we assume the correctness of the blind signature scheme BS: If
both the User and the Signer follow the protocol, the Signer outputs always
“completed”, independently of the message d and the output (sk, pk) of the
algorithm KeyGen. Similarly, the User always outputs a signature σ and we have

Pr[Verify((d, σ), pk) = TRUE] = 1.

The basic security criteria of a blind signature scheme are Blindness and
One-More-Unforgeability.

– Blindness: By signing the blinded message d�, the signer of a message gets
no information about the content of the message to be signed nor about the
final blind signature σ. More formally, blindness can be defined using the
following security game.

Game[Blindness]:
1. The adversary A uses the algorithm KeyGen to generate a key pair (sk, pk)

of the blind signature scheme. The public key pk is made public, while A
keeps sk as his private key.

2. The adversary A outputs two messages d0 and d1, which might depend
on sk and pk.

3. Let u0 and u1 be users with access to the public key pk but not to the
secret key sk. For a random bit b that is unknown to A, user u0 is given the
message db, while the message d1−b is sent to user u1. Both users engage
in the interactive signing protocol (with A as signer), obtaining blind
signatures σ0 and σ1 for the messages d0 and d1. The message/signature
pairs (d0, σ0) and (d1, σ1) are given to the adversary A.

4. A outputs a bit b̄. He wins the game, if and only if b̄ = b holds.

The blind signature scheme BS is said to fulfill the blindness property, if the
advantage

Advblindness
BS (A) = |2 · Pr[b′ = b] − 1|

for every PPT adversary A is negligible in the security parameter.

– One-More-Unforgeability: Even after having successfully completed L
rounds of the interactive signing protocol, an adversary A not in charge of
the private key sk cannot forge another valid blind signatures for a given
message. More formally, we can define One-More-Unforgeability using the
following game.

A Practical Multivariate Blind Signature Scheme 441

Game [Universal-One-More-Unforgeability]
1. The algorithm KeyGen is used to generate a key pair (sk, pk). The pub-

lic key pk is given to the adversary A, while sk is kept secret by the
challenger.

2. The adversary A engages himself in polynomially many interactive signing
protocols with different instances of Signer. Let L be the number of cases
in which the Signer outputs completed.

3. A outputs a list L of L message/signature pairs. The challenger checks if
all the message/signature pairs are valid and pairwise distinct.

4. The challenger outputs a message d� not contained in the list L. The
adversary wins the game, if he is able to generate a valid blind signature
σ for the message d�, i.e. if Verify((d�, σ), pk) = TRUE holds.

The blind signature scheme BS is said to provide the One-More-
Unforgeability property, if the success probability

Pr[A wins]

is, for any PPT adversary A, negligible in the security parameter.
We note that this formalism is different from the standard security game

for blindness, where the adversary is allowed to choose his own message but
is required to forge at least L + 1 valid and distinct signatures. We choose to
restrict the adversary’s choice to accurately reflect the similar lack of choice
in the standard security model for MQ signatures: universal unforgeability as
opposed to existential unforgeability.

3 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate quad-
ratic polynomials. Their security is based on the MQ Problem: Given m multi-
variate quadratic polynomials p(1)(x), . . . , p(m)(x) in n variables x1, . . . , xn, find
a vector x̄ = (x̄1, . . . , x̄n) such that p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ problem is proven to be NP-hard even for quadratic polynomials
over the field GF(2) [8]. Moreover, it is widely assumed as well as experimentally
validated that solving random instances of the MQ problem (with m ≈ n) is a
hard task, see for example [25].

To build a public key cryptosystem on the basis of the MQ problem, one
starts with an easily invertible quadratic map F : Fn → F

m (central map). To
hide the structure of F in the public key, one composes it with two invertible
affine (or linear) maps S : Fm → F

m and T : Fn → F
n. The public key of the

scheme is therefore given by P = S ◦ F ◦ T : Fn → F
m. The private key consists

of S, F and T and therefore allows to invert the public key.

Note: Due to the above construction, the security of multivariate schemes is
not only based on the MQ-Problem, but also on the EIP-Problem (“Extended
Isomorphism of Polynomials”) of finding the decomposition of P.

442 A. Petzoldt et al.

Fig. 2. Standard workflow of multivariate signature schemes

In this paper we concentrate on multivariate signature schemes. The standard
signature generation and verification process of a multivariate signature scheme
works as shown in Fig. 2.

Signature generation: To sign a message w ∈ F
m, one computes recursively

x = S−1(w) ∈ F
m, y = F−1(x) ∈ F

n and z = T −1(y). The signature of the
message w is z ∈ F

n. Here, F−1(x) means finding one (of possibly many) pre-
image of x under the central map F .

Verification: To check the authenticity of a signature z ∈ F
n, one simply com-

putes w′ = P(z) ∈ F
m. If w′ = w holds, the signature is accepted, otherwise

rejected.

3.1 The Rainbow Signature Scheme

The Rainbow signature scheme [6] is one of the most promising and best studied
multivariate signature schemes. The scheme can be described as follows:

Let F = Fq be a finite field with q elements, n ∈ N and v1 < v2 < . . . < v� <
v�+1 = n be a sequence of integers. We set m = n − v1, Oi = {vi + 1, . . . , vi+1}
and Vi = {1, . . . , vi} (i = 1, . . . , �).

Key Generation: The private key of the scheme consists of two invertible affine
maps S : Fm → F

m and T : Fn → F
n and a quadratic map F(x) = (f (v1+1)(x),

. . . , f (n)(x)) : Fn → F
m. The polynomials f (i) (i = v1 +1, . . . , n} are of the form

f (i) =
∑

k,l∈Vj

α
(i)
k,l · xk · xl +

∑

k∈Vj ,l∈Oj

β
(i)
k,l · xk · xl +

∑

k∈Vj∪Oj

γ
(i)
k · xk + η(i) (1)

with coefficients randomly chosen from F. Here, j is the only integer such that
i ∈ Oj . The public key is the composed map P = S ◦ F ◦ T : Fn → F

m.

A Practical Multivariate Blind Signature Scheme 443

Signature Generation: To generate a signature for a document w ∈ F
m, we

compute recursively x = S−1(w) ∈ F
m, y = F−1(x) ∈ F

n and z = T −1(y).
Here, F−1(x) means finding one (of approximately qv1) pre-image of x under
the central map F . This is done as shown in Algorithm 1.

Algorithm 1. Inversion of the Rainbow central map
Input: Rainbow central map F , vector x ∈ F

m.
Output: vector y ∈ F

n such that F(y) = x.
1: Choose random values for the variables y1, . . . , yv1 and substitute these values into

the polynomials f (i) (i = v1 + 1, . . . , n).
2: for k = 1 to � do
3: Perform Gaussian Elimination on the polynomials f (i) (i ∈ Ok) to get the values

of the variables yi (i ∈ Ok).
4: Substitute the values of yi (i ∈ Ok) into the polynomials f (i), i ∈

{vk+1 + 1, . . . , n}.
5: end for

It might happen that one of the linear systems in step 3 of the algorithm does
not have a solution. In this case one has to choose other values for y1, . . . , yv1

and start again. The signature of the document w is z ∈ F
n.

Signature Verification: To verify the authenticity of a signature z ∈ F
n, one

simply computes w′ = P(z) ∈ F
m. If w′ = w holds, the signature is accepted,

otherwise rejected.

3.2 The MQ-based Identification Scheme

In [22] Sakumoto et al. proposed an identification scheme based on multivari-
ate polynomials. There exist two versions of the scheme: a 3-pass and a 5-pass
variant. In this section we introduce the 5-pass variant.

The scheme uses a system P of m multivariate quadratic polynomials in n
variables as a public parameter. The prover chooses a random vector s ∈ F

n as
his secret key and computes the public key v ∈ F

m by v = P(s).
To prove his identity to a verifier, the prover performs several rounds of the

interactive protocol shown in Fig. 3.
Here,

G(x,y) = P(x + y) − P(x) − P(y) + P(0) (2)

is the polar form of the system P.
The scheme is a zero-knowledge argument of knowledge for a solution of the

system P(x) = v.
The knowledge error per round is 1

2 + 1
2q . To decrease the impersonation

probability below 2−η, one therefore needs to perform r = � −η
log2(1/2+1/2q)� rounds

of the protocol. For identification purposes, η ≈ 30 may be sufficient, but for
signatures we require η to be at least as large as the security level.

444 A. Petzoldt et al.

Fig. 3. The 5-pass MQ identification scheme of Sakumoto et al. [22].

3.3 The MQDSS Signature Scheme

In [9], Hülsing et al. developed a technique to transform (2n+1) pass identifi-
cation schemes into signature schemes. The technique can be used to transform
the above described 5-pass multivariate identification scheme into an EU-CMA
secure signature scheme.

To generate an MQDSS signature for a message d, the signer produces a
transcript of the above identification protocol over r rounds. The challenges
α1, . . . , αr and ch1, . . . , chr are hereby computed from the message d and the
commitments (using a publicly known hash function H). Therefore, the signature
has the form

σ = (c0,1, c1,1, . . . , c0,r, c1,r, t1,1, e1,1, . . . , t1,r, e1,r, resp1, . . . , respr).

To check the authenticity of a signature σ, the verifier parses σ into its compo-
nents, uses the commitments to compute the challenges αi and chi (i = 1, . . . , r)
and checks the correctness of the responses respi as shown in Fig. 3 (for
i = 1, . . . , r).

4 Our Blind Signature Scheme

In this section we present MBSS, an extension of the Rainbow signature scheme
of Sect. 3.1 to a multivariate blind signature scheme. We chose to restrict our

A Practical Multivariate Blind Signature Scheme 445

discussion to Rainbow due to its short signatures and good performance. More-
over, the key sizes of Rainbow are acceptable and can be further reduced by the
technique of Petzoldt et al. [17].

Nevertheless, our technique applies to any MQ signature scheme relying on
the construction of Fig. 2, i.e., relying on the hiding of a trapdoor to a quadratic
map behind linear or affine transforms. As other MQ signature schemes rely on
the same construction, our technique applies to those cryptosystems as well. We
do not use any property of Rainbow that is not shared by, e.g., HFEv− [18],
pC∗ [5], or UOV [12]. The exceptions are the MQ-based signature schemes that
do not have the construction of Fig. 2, such as Quartz [15] and MQDSS [9].

4.1 The Basic Idea

The public key of our scheme consists of two multivariate quadratic systems
P : Fn → F

m and R : Fm → F
m. Hereby, P is the Rainbow public key, while R

is a random system. The signer’s private key allows him to invert the system P.
In order to obtain a blind signature for a message (hash value) w ∈ F

m,
the user chooses randomly a vector z� ∈ F

m, computes w̃ = w − R(z�) and
sends w̃ to the signer. The signer uses his private key to compute a signature
z for the message w̃ and sends it to the user. Therefore, the user obtains a
solution (z, z�) of the system P(x1) + R(x2) = w. However, the user can not
publish (z, z�) as his signature for the document w since this would destroy the
blindness of the scheme. Instead, the user has to prove knowledge of a solution
to the system P(x1) + R(x2) = w using a zero knowledge protocol. We use the
MQDSS technique (see Sect. 3.3) for this proof.

4.2 Description of the Scheme

In this section we give a detailed description of our blind signature scheme. As
every blind signature scheme, MBSS consists of three algorithms KeyGen, Sign
and Verify, where Sign is an interactive protocol between user and signer.

Parameters: Finite field F, integers m,n and r (depending on a security parame-
ter κ). r hereby determines, how many rounds of the identification scheme are
performed during the generation of a signature.

Key Generation: The signer chooses randomly a Rainbow private key (consisting
of two affine maps S : Fm → F

m and T : Fn → F
n and a Rainbow central map

F : Fn → F
m). He computes the public key P as P = S ◦ F ◦ T : Fn → F

m (see
Sect. 3.1) and uses a CSPRNG to generate the system R = CSPRNG(P) : Fm →
F

m. The public key of our blind signature scheme is the pair (P,R), the signer’s
private key consists of S,F and T . However, since R can be computed from the
system P, it is not necessary to publish R (if the CSPRNG in use is publicly
accessible).

Signature Generation: The interactive signature generation process of our blind
signature scheme can be described as follows: To get a signature for the message
d with hash value H(d) = w ∈ F

m, the user chooses randomly a vector z� ∈ F
m.

446 A. Petzoldt et al.

He computes w� = R(z�) ∈ F
m and sends w̃ = w −w� ∈ F

m to the signer. The
signer uses his private key (S,F , T) to compute a Rainbow signature z ∈ F

n

such that P(z) = w̃ (see Sect. 3.1) and sends z back to the user, who therefore
obtains a solution (z, z�) of the system P̄(x) = P(x1) + R(x2) = w.
To prove this knowledge to the verifier in a zero knowledge way, the user gen-
erates an MQDSS signature for the message w. As the public parameter of the
scheme he hereby uses the system P̄(x) = P(x1) + R(x2), which is a system of
m quadratic equations in n+m variables. Furthermore, G(x,y) is the polar form
of the system P̄, i.e. G(x,y) = P̄(x + y) − P̄(x) − P̄(y) + P̄(0). In particular,
the user performs the following steps.

1. Use a publicly known hash function H to compute C = H(P||w) and D =
H(C||w).

2. Choose random values for r0,1, . . . , r0,r, t0,1, . . . , t0,r ∈ F
m+n, e0,1, . . . , e0,r ∈

F
m, set r1,i = (z||z�) − r0,i (i = 1, . . . , r) and compute the commitments

c0,i = Com(r0,i, t0,i, e0,i) and
c1,i = Com(r1,i,G(t0,i, r1,i) − e0,i) (i = 1, . . . , r).

Set COM = (c0,1, c1,1, c0,2, c1,2, . . . , c0,r, c1,r).

3. Derive the challenges α1, . . . , αr ∈ F from (D, COM).
4. Compute t1,i = αi·r0,i−t0,i ∈ F

m+n and e1,i = αi·P̄(r0,i)−e0,i (i = 1, . . . , r).
Set Rsp1 = (t1,1, e1,1, . . . , t1,r, e1,r).

5. Derive the challenges (ch1, . . . , chr) from (D, COM,Rsp1).
6. Set Rsp2 = (rch1,1, . . . , rchr,r).
7. The blind signature σ for the message w ∈ F

m is given by

σ = (C, COM,Rsp1, Rsp2).

The length of the blind signature σ is given by

|σ| = 1 · |hash value| + 2r · |Commitment| + r · (2n + 3m) F−elements.

Signature Verification: To check the authenticity of a blind signature σ for a

message d with hash value w ∈ F
m, the verifier parses σ into its components

and computes D = H(C||w). He derives the challenges αi ∈ F from (D, COM)
and chi from (D, COM,Rsp1) (i = 1, . . . , r).

Finally, he parses COM into (c0,1, c1,1, c0,2, c1,2, . . . , c0,r, c1,r), Rsp1 into
t1, e1, . . . , tr, er and Rsp2 into r1, . . . , rr and checks if, for all i = 1, . . . , r, ri

is a correct response to chi with respect to COM , ti and ei, i.e.

c0,i
?= Com(ri, αi · ri − ti, αi · P(ri) − ei) (for chi = 0)

c1,i
?= Com(ri, αi · (w − P(ri)) − G(ti, ri) − ei) (for chi = 1). (3)

If all of these tests are fulfilled, the blind signature σ is accepted, otherwise
rejected.

A Practical Multivariate Blind Signature Scheme 447

Note: As the resulting blind signature depends on the randomness sampled for
generating the zero-knowledge proof, there may be many signatures associated to
one tuple (z, z�). To prevent a malicious user from reusing the same preimage to
P(x̄1) + R(x̄2), two signatures to messages d1, d2 are considered essentially dif-
ferent whenever w1 = H(d1) �= w2 = H(d2). In other words, the zero-knowledge
proof is taken into account for validity but not for distinctness.

4.3 Reducing the Signature Length

In this section we present a technique to reduce the length of the blind signature
σ, which was already mentioned in [22] and [9].

Instead of including all of the commitments c0,1, c1,1, . . . , c0,r, c1,r into the sig-
nature, we just transmit COM = H(c0,1||c1,1 . . . c0,r||c1,r). However, in this sce-
nario, we have to add (c1−ch1,1, . . . , c1−chr,r) to Rsp2. In the verification process,
the verifier recovers (cch1,1, . . . , cchr,r) by Eq. (3) and checks if

COM
?= H(c0,1, c1,1, . . . , c0,r, c1,r)

is fulfilled. By doing so, we can reduce the length of the blind signature σ to

|σ| = 2 · |hash value| + r · (2n + 3m) F elements + r · |Commitment|.

4.4 Correctness

At the end of the interactive process, the user obtains a solution (z, z�) of the
system P(x1) + R(x2) = w. This can be seen as follows. In the course of the
interactive protocol, the (honest) user chooses randomly a vector z�, computes
w� = R(z�) and w̃ = w − w� and sends w̃ to the signer. The (honest) signer
uses his private key to compute a vector z such that P(z) = w̃. Altogether, we
get P(z) + R(z�) = w̃ + w� = w − w� + w� = w, which means that (z, z�) is
indeed a solution of the public system P̄(x) = P(x1) + R(x2).

The correctness proof of the MQDSS [9] shows that an MQDSS signature
produced by an honest signer knowing a solution to the public system P̄ is
accepted with certainty by an honest verifier.

5 Security

In this section, we analyze the security of our construction. We assume abstractly
that the underlying MQ signature scheme is secure. (For a concrete security
analysis of the underlying Rainbow scheme we refer to [16]). For this, we have
to show the blindness and one-more-unforgeability of the derived scheme.

448 A. Petzoldt et al.

5.1 Blindness

The adversary has to link w̃ from one interaction, to the pair (d, σ) from another
interaction. Due to the perfect zero-knowledge property of the perfectly hiding
commitment scheme, σ contains no information about the solution (z, z�) and
hence no information about R(z�) or P(z). Therefore the adversary’s task is
equivalent linking w̃ to d, since knowledge of σ gives him no advantage. How-
ever, z� is chosen uniformly at random and so R(z�) is computationally indis-
tinguishable from uniform. As a result, the blinded message w̃ = w − R(z�) is
computationally indistinguishable from uniform and no polynomial-time adver-
sary can compute any predicate of w from w̃ with more than a negligible success
probability. This includes the predicate H(d) ?= w or any similar predicate that
would allow the adversary to link w̃ to d.

5.2 (One-More) Unforgeability

The full version of this paper presents a sequence of games argument showing
that an adversary who wins the universal-one-more-unforgeability game is capa-
ble of finding a solution to the following problem: find a solution x = (x1,x2)
such that P̄(x) = P(x1) + R(x2) = 0, which is a system of m quadratic equa-
tions in n+m variables. We argue here that this problem is hard. There are two
attack strategies known against multivariate systems:

Direct Attacks: In a direct attack, one tries to solve the system P̄(x) = 0
as an instance of the MQ Problem. Since the system P̄ is underdetermined,
there are two possibilities to do this. One can use a special algorithm against
underdetermined multivariate systems [24] or, after fixing n of the variables, a
Gröbner Basis algorithm such as Faugéres F4 [7]. For suitably chosen parameters,
both approaches are infeasible.

The second possibility to solve a multivariate system such as P ′ are the so
called Structural Attacks. In this type of attack one uses the known structure
of the system P̄ in order to find a decomposition P̄ into easily invertible maps.
Note that, in our case we can write

P̄(x) = P(x1) + R(x2)
= S ◦ F ◦ T (x1) + S ◦ S−1 ◦ R︸ ︷︷ ︸

R′

(x2)

= S ◦ (F + R′)︸ ︷︷ ︸
F ′

◦T ′(x) .

In order to solve the system P̄ using a structural attack, we have to use the
known structure of the map F ′ = F + S−1 ◦ R to recover the linear maps S
and T ′ (or rather, its action on the first n components as it leaves the other
m intact). However, since the coefficients of both S and R are chosen uni-
formly at random, the map R′ = S−1 ◦ R is a random quadratic map over F

m.

A Practical Multivariate Blind Signature Scheme 449

The only structure we can use for a structural attack therefore comes from the
map F , which is the central map of the underlying multivariate signature scheme.
Therefore, we are in exactly the same situation as if attacking the underlying
multivariate scheme using a structural attack. By choosing the parameters of
the underlying scheme in an appropriate way, we therefore can prevent this type
of attack against our blind signature scheme.

5.3 Quantum Security

The technique proposed in [9] is capable of transforming (2n + 1)-pass zero-
knowledge proofs into non-interactive zero-knowledge proofs that are secure
against classical adversaries in the random oracle model. However, the behaviour
of this transform against quantum adversaries is not well understood because
the random oracle should be accessible to the quantum adversary and answer
queries in quantum superposition, and many standard proof techniques do not
carry over to this setting. See Boneh et al. [1] for an excellent treatment of proofs
that fail in the quantum random oracle model.

Formally proving soundness against quantum adversaries seems to be a rather
involved task beyond the scope of this paper. Instead, we are content to con-
jecture that there exists a commitment scheme such that the technique of [9]
results in a non-interactive zero-knowledge proof that is secure against quantum
adversaries as well as classical ones. This conjecture is implicit in the works of
Sakumoto et al. [22], and Hülsing et al. [9].

6 Discussion

6.1 Parameters

In this section we propose concrete parameter sets for our blind signature scheme.
As observed in the previous section, we have to choose the parameters in a way
that

(a) solving a random system of m quadratic equations in m variables is
infeasible,

(b) inverting an MQ public key with the given parameters is infeasible, and
(c) a direct attack against a system of m quadratic equations in n+m variables

is infeasible.

Since condition (a) is implied by (c), we only have to consider (b) and (c). In order
to defend our scheme against attacks of type (b), we follow the recommendations
of [16]. Regarding (c), we have to consider that the system P(x1) + R(x2) = w
is highly underdetermined (in the case of P being a Rainbow public key, the
number of variables in this system exceeds the number of equations by a factor
of about 3). As a result of Thomae et al. shows, such systems can be solved
significantly faster than determined systems.

450 A. Petzoldt et al.

Proposition 1 [24]. Solving an MQ system of m equations in n = ω·m variables
is only as hard as solving a determined MQ system of m − 	ω
 + 1 equations.

According to this result, we have to increase the number of equations in our
system by 2 (compared to the parameters of a standard Rainbow instance).
Table 1 shows the parameters we propose for our scheme for various targeted
security levels.

Table 1. Proposed parameters for our blind signature scheme (GF(31)).

Security
level (bit)

Parameters (F, (v1, o1, o2)) # rounds Public key
size (kB)

Private key
size (kB)

Blind sig.
size (kB)

80 (GF(31), (16,18,17)) 84 29.4 20.1 11.5

100 (GF(31), (20,22,21)) 105 54.6 36.6 17.6

128 (GF(31), (25,27,27)) 135 106.8 70.2 28.5

192 (GF(31), (37,35,35)) 202 342.8 219.0 63.2

256 (GF(31), (50,53,53)) 269 802.4 507.1 111.9

6.2 Efficiency

During the interactive part of the signature generation process, the signer has
to generate one Rainbow signature for the message w̃ = w − w�.

For the user, the most costly part of the signature generation is the repeated
evaluation of the system P̄(x) = P(x1) + R(x2). During the computation of the
commitments c0,i and c1,i (i = 1, . . . , r) (step 2 of the signature generation
process) this has to be done 3 · r times (one evaluation of G corresponds to
3 evaluations of P̄). In step 4 of the process (computation of e1,i) we need r
evaluations of P̄. Altogether, the user has to evaluate the system 4r times.

During verification, the verifier has to compute the commitments cchi,i (i =
1, . . . , r). If chi = 0, he needs for this 1 evaluation of P̄, in the case of ch2 = 1 he
needs 4 evaluations. On average, the verifier needs therefore r

2 · (1 + 4) = 2.5 · r
evaluations of the system P̄.

While the system P̄ consists of m quadratic equations in m+n variables, the
inner structure of the system can be used to speed up the evaluation. In fact,
the system P̄ is the sum of two smaller systems P : Fn → F

m and R : Fm → F
m.

Therefore, we can evaluate P̄ by evaluating P and R separately and adding the
results.

6.3 Implementation

We implemented all functionalities in Sage [21] to prove concept validity. Table 2
contains the timing results for the matching parameter sets of Table 1, demon-
strating that our scheme is somewhat efficient and practicable even for very

A Practical Multivariate Blind Signature Scheme 451

Table 2. Timing results of a Sage implementation of our blind signature scheme. All
units are milliseconds, except for the security level.

sec. lvl Key Gen Sign (Signer) Sig. Gen. (User) Sig. verification

80 4,007 7 2,018 1,424

100 9,392 13 3,649 2,656

128 25,517 19 7,760 5,505

192 87,073 41 23,692 16,040

256 613,968 103 86,540 59,669

poorly-optimized Sage code. These results were obtained on a 3.3 GHz Intel
Quadcore with 6,144 kB of cache.

Despite of these relatively large numbers, we are very optimistic about the
speed of our blind signatures when implemented in a less abstract and more
memory-conscious programming language. For instance, Hülsing et al.’s opti-
mized MQDSS manages to generate (classically) 256-bit-secure signatures in
6.79 ms and verify them in even less time [9]. As the MQDSS represents the bot-
tleneck of our scheme, a similarly optimized implementation could potentially
drop signature generation and verification time by several orders of magnitude.

Table 3. Comparison of different blind signature schemes. The security levels are
adopted from Rückert [20].

Security
lvl. (bit)

Scheme Comm Pub. key
size (kB)

Sig. size
(kB)

Post-
quantum?

76 RSA-1229 2 1.2 1.2 ×
Lattice-1024 4 10.2 66.9 �
Our scheme (GF(31),16,18,17) 2 29.4 11.5 �

102 RSA-3313 2 3.3 3.3 ×
Lattice-2048 4 23.6 89.4 �
Our scheme (GF(31),20,22,21) 2 54.6 17.6 �

6.4 Comparison

Table 3 shows a comparison of our scheme to the standard RSA blind signature
scheme and the lattice-based blind signature scheme of Rückert [20]. The RSA
blind signature scheme does not offer any security against quantum comput-
ers. The public keys of Rückert’s scheme are smaller than those of our scheme,
although ours are still competitive. Like the standard RSA blind signature
scheme, our scheme requires 2 steps of communication between the user and the
signer in order to produce the blind signature. This is in contrast to Rückert’s
scheme where this number is 4. More importantly, our scheme outperforms that
of Rückert in terms of signature size.

452 A. Petzoldt et al.

At this point, an apples-to-apples comparison of operational speed is not
possible. Nevertheless, regardless of speed, the main selling point of our scheme
is its reliance on different computational problems from those used in other
branches of cryptography, including lattice-based cryptography.

7 Conclusion

In this paper we proposed the first multivariate based blind signature scheme.
Our scheme is very efficient and produces much shorter blind signatures than
the lattice based scheme of Rückert [20], making our scheme the most promising
candidate for establishing a post-quantum blind signature scheme.

Our construction is notably generic. While we only show that it applies to
Rainbow and MQDSS, we use their properties abstractly and it is perfectly
conceivable that another combination of trapdoor-based MQ signature scheme
with a non-interactive proof of knowledge of the solution to an MQ system will
give the same result. Indeed, our design demonstrates that the combination of
a dedicated signature scheme with an identification scheme relying on the same
hard problem, is a powerful construction — and may apply in other branches of
cryptography as well.

Lastly, one major use case of blind signatures is anonymous identification.
In this scenario, one may reasonably dispense with the transformed signature
scheme and instead directly use the underlying interactive identification scheme,
thus sacrificing non-interactivity for less computation and bandwidth. Likewise,
other use cases such as anonymous database access require reusable anonymous
credentials. Our scheme can be adapted to fit this scenario as well, simply by
specifying that all users obtain a blind signature on the same public parameter.

Acknowledgements. The authors would like to thank the reviewers and the shep-
herd in particular for their helpful comments. This work was supported in part by
the Research Council KU Leuven: C16/15/058. In addition, this work was supported
by the European Commission through the Horizon 2020research and innovation pro-
gramme under grant agreement No H2020-ICT-2014-644371 WITDOM, H2020-ICT-
2014-645622 PQCRYPTO and H2020-DS-2014-653497 PANORAMIX, and through the
SECURITY programme under FP7-SEC-2013-1-607049 EKSISTENZ. Alan Szepieniec
is being supported by a doctoral grant of the Flemish Agency for Innovation and
Entrepreneurship (VLAIO, formerly IWT).

References

1. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

2. Chaum, D.: Blind signatures for untraceable payment. In: Proceedings of CRYPTO
1982, pp. 199–203. Plenum Press (1983)

https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

A Practical Multivariate Blind Signature Scheme 453

3. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-
key engines: MQ-cryptosystems as replacement for elliptic curves? In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 4

4. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern
x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9 3

5. Ding, J., Dubois, V., Yang, B.-Y., Chen, O.C.-H., Cheng, C.-M.: Could SFLASH
be repaired? In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 691–701.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 56

6. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

7. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139, 61–88 (1999)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

9. Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: From 5-pass MQ-
based identification to MQ-based signatures. Cryptology ePrint Archive: Report
2016/708

10. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052233

11. Kravitz, D.: Digital Signature Algorithm. US patent 5,231,668, July 1991
12. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.

In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 15

13. Goodin, D.: NSA preps quantum-resistant algorithms to head
off crypto-apocalypse. http://arstechnica.com/security/2015/08/
nsa-preps-quantum-resistant-algorithms-to-head-off-crypto-apocolypse/

14. National Institute of Standards and Technology: Report on post-quantum Cryptog-
raphy. NISTIR draft 8105. http://csrc.nist.gov/publications/drafts/nistir-8105/
nistir 8105 draft.pdf

15. Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-bit long digital signatures.
In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 21

16. Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting parameters for the rainbow
signature scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 218–
240. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2 16

17. Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow – a multivariate signa-
ture scheme with a partially cyclic public key. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 33–48. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17401-8 4

18. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for
HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 14

19. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

https://doi.org/10.1007/978-3-540-85053-3_4
https://doi.org/10.1007/978-3-642-04138-9_3
https://doi.org/10.1007/978-3-540-70583-3_56
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/3-540-48910-X_15
http://arstechnica.com/security/2015/08/nsa-preps-quantum-resistant-algorithms-to-head-off-crypto-apocolypse/
http://arstechnica.com/security/2015/08/nsa-preps-quantum-resistant-algorithms-to-head-off-crypto-apocolypse/
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
https://doi.org/10.1007/3-540-45353-9_21
https://doi.org/10.1007/978-3-642-12929-2_16
https://doi.org/10.1007/978-3-642-17401-8_4
https://doi.org/10.1007/978-3-662-48797-6_14

454 A. Petzoldt et al.

20. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 24

21. SageMath, the Sage Mathematics Software System (Version 7.1), The Sage Devel-
opers (2016). http://www.sagemath.org

22. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based
on multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 706–723. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 40

23. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

24. Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic
equations revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 156–171. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30057-8 10

25. Yasuda, T., Dahan, X., Huang, Y.-J., Takagi, T., Sakurai, K.: MQ challenge:
hardness evaluation of solving multivariate quadratic problems. IACR Cryptology
ePrint Archive 2015/275 (2015)

https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
http://www.sagemath.org
https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/978-3-642-30057-8_10
https://doi.org/10.1007/978-3-642-30057-8_10

Efficient Round-Optimal Blind Signatures
in the Standard Model

Essam Ghadafi(B)

University of the West of England, Bristol, UK
essam.ghadafi@uwe.ac.uk

Abstract. Blind signatures are at the core of e-cash systems and have
numerous other applications. In this work we construct efficient blind and
partially blind signature schemes over bilinear groups in the standard
model. Our schemes yield short signatures consisting of only a couple of
elements from the shorter source group and have very short communica-
tion overhead consisting of 1 group element on the user side and 3 group
elements on the signer side. At 80-bit security, our schemes yield signa-
tures consisting of only 40 bytes which is 67% shorter than the most effi-
cient existing scheme with the same security in the standard model. Ver-
ification in our schemes requires only a couple of pairings. Our schemes
compare favorably in every efficiency measure to all existing counterparts
offering the same security in the standard model. In fact, the efficiency
of our signing protocol as well as the signature size compare favorably
even to many existing schemes in the random oracle model. For instance,
our signatures are shorter than those of Brands’ scheme which is at the
heart of the U-Prove anonymous credential system used in practice. The
unforgeability of our schemes is based on new intractability assumptions
of a “one-more” type which we show are intractable in the generic group
model, whereas their blindness holds w.r.t. malicious signing keys in the
information-theoretic sense. We also give variants of our schemes for a
vector of messages.

Keywords: Blind signatures · Round-optimal · Partial blindness
E-Cash

1 Introduction

Blind signatures introduced by Chaum [23] are an interactive protocol that allows
a user to obtain signatures on messages of her choice without revealing the
messages to the signer. Blindness in these schemes ensures that it is infeasible
for a malicious signer to link the final signatures to their corresponding sign-
ing requests. Blindness can be either proven in the honest-key model where the

The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007–
2013)/ERC Grant Agreement n. 307937 and EPSRC grant EP/J009520/1. The work
was done while the author was at University College London.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 455–473, 2017.
https://doi.org/10.1007/978-3-319-70972-7_26

456 E. Ghadafi

key pair is produced by the challenger and then revealed to the adversary or in
the stronger malicious-key model [1,49] where the key pair is chosen by the adver-
sary herself and she is not required to reveal the signing key to the challenger. On
the other hand, unforgeability ensures that it is infeasible for a malicious user to
obtain more valid signatures on distinct messages than the number of completed
interactions with the honest signer. Such a primitive is at the core of e-cash sys-
tems [23] where the bank acts as the signer; the privacy requirement comes from
the non-traceability requirement of cash. It also finds applications in e-voting [34],
anonymous credentials [8] and direct anonymous attestation [12,20]. The primi-
tive is very relevant to practice, besides its prominent role in realizing e-cash sys-
tems, blind signatures are the backbone of some anonymous credential systems
deployed in practice, which include the U-Prove system [19].

Measures of importance when designing such schemes include their round
complexity, i.e. the number of moves between the parties before the user can
derive a signature. Round-optimal schemes [27] consisting of only two moves are
known to imply security under concurrent executions.

Related Work. After their introduction by Chaum [23], a long line of research
on blind signatures has evolved. Constructions of blind signatures relying on
random oracles [26] include [2,8,11,15,18,23,52–54]. Most of the early construc-
tions relying on random oracles are essentially Full-Domain-Hash (FDH) style
signatures. The user sends a blinded message digest of the message to the signer
who in turn returns a signature on such a digest. Upon receiving the signa-
ture, thanks to the homomorphic property of the underlying signature scheme,
the user is able to transform such a signature to one on the message. This is
the underlying idea behind the original (RSA based) scheme in [23] which was
proven secure in [52]. The same applies to the (DLog based) scheme in [15].

Constructions dispensing with relying on random oracles but at the expense
of assuming a trusted common reference string (CRS) include [6,21,40,46].
Fischlin [27] gave a generic construction of two-move schemes in the CRS model
satisfying blindness in the malicious-key model. His construction requires the
user to send a commitment to her message which in turn gets signed by the
signer. The final signature is then merely a zero-knowledge proof of knowledge
of a signature on the (hidden) commitment to the message. Most subsequent
constructions in the CRS model are either direct instantiations of Fischlin’s con-
struction, e.g. [3,5], or variations thereof, e.g. [3,30]. The scheme in [3,30] adopts
a similar approach as Fischlin’s but instead of hiding the signed commitment, it
exploits a feature of the underlying signature scheme to transform a signature
on the commitment to a signature on the message itself. Other round-optimal
constructions in the CRS model include [13,14,48,56].

Round-optimal constructions not relying on either of the aforementioned
assumptions, i.e. in the standard model, are preferable. However, it is well-known
that such schemes are harder to design. Lindell [47] showed that it is impossible to
design round-optimal schemes in the standard model conforming to simulation-
based (rather than game-based) security definitions. However, Hazay et al. [44]
showed that (non-round-optimal) realizations are possible under game-based

Efficient Round-Optimal Blind Signatures in the Standard Model 457

definitions. Abe and Ohkubo [6] showed that universally composable blind signa-
tures, even non-committing ones, are impossible in the standard model. Okamoto
[49] gave a non-round-optimal construction in the standard model which satisfies
blindness in the malicious-key model. Fischlin and Schröder [29] proved that it
is impossible to reduce the security of a standard-model blind signature scheme
in a blackbox manner to the intractability of a non-interactive assumption if the
scheme has any of the following properties: (i) the signing protocol has less than
4 moves. (ii) Its blindness holds statistically (iii) the signing transcript allows one
to check if a valid signature can be derived from it.

Existing constructions in the standard model [36,37] circumvent the impossi-
bility result by making use of a non-blackbox reduction to the underlying prim-
itive. Garg et al. [37] gave the first round-optimal construction in the stan-
dard model solving a long-standing open problem. Their scheme combines fully
homomorphic encryption with two-move witness-indistinguishable proofs known
otherwise as ZAPs [25]. Their scheme is inefficient and is only considered as a
feasibility result. Recently, Garg and Gupta [36] gave a more efficient round-
optimal construction which combines structure-preserving signature schemes [3]
and Groth-Sahai NIZK proofs [41]. To eliminate the need for a trusted party,
they use two CRSs which are part of the signer’s public key. The signer is forced
to choose those honestly as otherwise she needs to solve an exponential-time
problem in order to cheat. The security of their scheme holds w.r.t. non-uniform
adversaries and relies on complexity leveraging. Consequently, it suffers from a
large communication overhead and a rather large computational cost.

Recently, Fuchsbauer et al. [33] gave a semi-generic construction of round-
optimal schemes in the standard model which combines the Pedersen commit-
ment scheme [50] with structure-preserving signatures on equivalence classes [42].
Their construction satisfies blindness againstmalicious keys. They gave an efficient
instantiation whose security relies on a couple of interactive assumptions where
they used the optimal construction of signature on equivalence classes from [32].
More recently, Fuchsbauer et al. [31] weakened the assumptions on which the
instantiation in [33] is based by eliminating one of the interactive assumptions on
which the blindness in [33] was relying. However, the unforgeability of the new
variant still relies on an interactive intractability assumption. Hanzlik and Klucz-
niak [43] gave a construction in the standard model in the honest-key model. The
downside of their construction is that it uses an encryption scheme over composite-
order groups which requires groups of a large order as well as a strong non-standard
“knowledge” assumption [9]. Very recently, Döttling et al. [24] showed that blind
signatures in the standard model can be constructed from maliciously circuit-
private homomorphic encryption for logarithmic depth circuits.

Baldimtsi and Lysyanskaya [7] showed that existing techniques fall short for
proving the security of some existing blind signatures lacking a security proof
in the random oracle model. Concerned constructions include Schnorr’s [54] and
Brands’ [18] schemes. The latter is at the core of the U-Prove system.

Abe and Fujisaki [4] put forward the notion of partially blind signatures which
extends blind signatures to allow some part of the message to be public. This

458 E. Ghadafi

makes it possible to attach some public attributes, e.g. an expiration date, to
the signatures. Recently, Fuchsbauer et al. [31,33] gave the first efficient round-
optimal partially blind schemes in the standard model.

Our Contribution. We construct two efficient blind signature schemes in the
standard model satisfying blindness in the malicious-key model. Our schemes
yield very short signatures consisting of only a pair of elements from the shorter
source group. At 80-bit security, our signatures are only 40 bytes long which
means they are 67% shorter than the best existing scheme offering the same
security [33]. Verifying signatures in our schemes involves evaluating a couple of
pairings. The latter matches the verification overhead of the most efficient exist-
ing (non-blind) signature schemes over bilinear groups [16,17]. Such desirable
efficiency means that our schemes can even be deployed on devices with limited
computational power if the evaluation of pairings required for verification is out-
sourced to a third party, e.g. using techniques from [22]. Our schemes have a very
low communication overhead on both sides. The blindness of our schemes holds
in the information-theoretic sense whereas their unforgeability relies on new
intractability assumptions which we show hold in the generic group model [57].
Note that it is well-known that blind signature schemes in the standard model
based solely on non-interactive assumptions, e.g. [36,37], are much less efficient.
Furthermore, all existing efficient round-optimal schemes in the standard model
offering the same security as ours [31,33] also rely on interactive intractability
assumptions.

We also construct efficient partially blind signature schemes and efficient
blind signature schemes for a vector of messages. The techniques underlying
our constructions are akin to the blind-unblind paradigm which usually form
the basis of the efficient constructions in the random oracle model. However,
to obtain the desired efficiency in the standard model, we apply various tech-
niques. Similarly to [31,33,40], our constructions do not require expensive zero-
knowledge proofs.

Paper Organization. The rest of the paper is organized as follows. In Sect. 2, we
give some preliminary definitions. In Sect. 3, we introduce and prove intractability
of our new assumptions. In Sect. 4, we recall the syntax and security of blind signa-
tures. In Sect. 5, we give our blind signature constructions. We show in Sect. 6 how
to extend our schemes to sign a vector of messages. In Sect. 7, we give our partially
blind signature constructions.

Notation. We write b = Alg(a; r) when algorithm Alg on input a and randomness
r outputs b. We write b ← Alg(a) for the process of setting b = Alg(a; r) where
r is sampled at random. For an algorithm Alg and an oracle O, AlgOk(·) denotes
that Alg can access O at most k times on inputs of Alg’s choice. We write a ← S
for sampling a uniformly at random from the set S. A function ν(.) : N → R

+

is negligible (in λ) if for every polynomial ρ(·) and all sufficiently large values of
λ, it holds that ν(λ) < 1

ρ(λ) . PPT stands for running in probabilistic polynomial
time in the relevant security parameter. For � ∈ N \ {0}, by [�] we denote the set
{1, . . . , �}.

Efficient Round-Optimal Blind Signatures in the Standard Model 459

2 Preliminaries

In this section we provide some preliminary definitions.

Bilinear Groups. A bilinear group is a tuple P := (G, Ĝ,T, p,G, Ĝ, e) where
G, Ĝ and T are groups of a prime order p, and G and Ĝ generate G and Ĝ,
respectively. The function e is a non-degenerate bilinear map e : G × Ĝ −→ T.
To distinguish between elements of G and Ĝ, the latter will be accented with .̂
We use multiplicative notation for all the groups. We let G

× := G \ {1G} and
Ĝ

× := Ĝ \ {1
Ĝ
}. In this paper, we work in the efficient Type-III setting [35],

where G �= Ĝ and there is no efficiently computable isomorphism between the
groups in either direction. We assume there is an algorithm BG that on input
a security parameter λ, outputs a description of bilinear groups. Without loss
in generality and similarly to e.g. [31,33] in this work we will assume BG is
deterministic, which as argued by [31,33] is the case for instance in the most
widely used groups based on BN curves [10].

Pedersen Commitment Scheme. We use a generalized variant of the Peder-
sen commitment scheme [50] which allows committing to a vector of messages at
once. The scheme is information-theoretically hiding and computationally bind-
ing under the discrete logarithm assumption. The generalized variant is defined
by the following algorithms:

Setup(1λ, n) On input the security parameter λ and the size of the vector n, this
algorithm chooses a cyclic group G of prime order p where log p ∈ Θ(λ). It
also samples the elements G1, . . . , Gn,H ← G. It returns the commitment
key ck := (G1, . . . , Gn,H) which we assume is an implicit input to the rest of
the algorithms.

Commit(m, r) On input a message vector m = (m1, . . . ,mn) ∈ Z
n
p and a ran-

domness r ∈ Zp, this algorithm returns the commitment Co := Hr
∏n

i=1 Gmi
i

and the opening information d := (m, r).
Open(Co, d = (m, r)) On input a commitment Co and its associated opening

information d, this algorithm verifies whether such opening information is a
valid one by checking that Co = Hr

∏n
i=1 Gmi

i returning 1 or 0 accordingly.

Since the hiding property of the scheme holds in the information-theoretic sense,
such a property still holds even if we let the recipient runs the Setup algorithm
which is otherwise usually run by a trusted third party. The above argument
holds as long as H �= 1G which is easy to check.

3 New Intractability Assumptions

In this section we introduce some new assumptions of a “one-more” type where
the adversary interacts with an oracle k times and is tasked with outputting k+1
valid tuples. They are similar in nature to the E-LRSW assumption introduced
by Ghadafi and Smart [40].

460 E. Ghadafi

3.1 The BSOM Assumption

Our first new assumption which we refer to as the BSOM (short for Blind Signa-
ture One More) assumption will form the basis for the unforgeability of our first
blind signature construction. It is inspired in part by the assumption underlying
the recent signature scheme by Ghadafi [38].

Definition 1 (BSOM Assumption). Let P = (G, Ĝ,T, G, Ĝ, e, p) be the
description of Type-III bilinear groups output by BG(1λ), and let H := Gh,
Ĥ := Ĝh, X̂ := Ĝx, Ŷ := Ĝy for some h, x, y ← Zp. Let OBSOMH,Ĥ,X̂,Ŷ (·) be
an oracle that on input a message M = Gm (for some possibly unknown m ∈ Zp)
returns a triple

(
A := Ga, B := (GxM)

a
y , C := H

a
y
) ∈ G

3 for some a ← Zp. We
say the BSOM assumption holds (relative to BG) if for all PPT adversaries A,
the following advantage is negligible (in λ):

Pr

⎡

⎢
⎣

P ← BG(1λ); h, x, y ← Zp; (H, Ĥ, X̂, Ŷ) := (Gh, Ĝh, Ĝx, Ĝy);
{(Ai, Bi,mi)}k+1

i=1 ← AOBSOMk
H,Ĥ,X̂,Ŷ

(·) (
P,H, Ĥ, X̂, Ŷ

)
:

∣
∣{mi}k+1

i=1

∣
∣ = k + 1 ∧ ∀i ∈ [k + 1] : Ai �= 1G ∧ e(Bi, Ŷ) = e(Ai, X̂Ĝmi)

⎤

⎥
⎦

The proof for the following theorem can be found in the full version [39].

Theorem 1. For any generic adversary A against the BSOM assumption, if p is
the (prime) order of the bilinear group and A makes qG group operation queries,
qP pairing queries and qO queries to the BSOM oracle OBSOMH,Ĥ,X̂,Ŷ , then

the probability of A against the BSOM assumption is O(q2
GqO+q2

P qO+q3
O

p).

3.2 The BSOMI Assumption

Our second new assumption which we refer to as the BSOMI assumption will
form the basis for the unforgeability of our second blind signature construction.
It is inspired in part by the assumption underlying the recent signature scheme
by Pointcheval and Sanders [51].

Definition 2 (BSOMI Assumption). Let P = (G, Ĝ,T, G, Ĝ, e, p) be the
description of Type-III bilinear groups output by BG(1λ), and let H := Gh,
Ĥ ′ := Ĝ

1
h , X̂ := Ĝx, Ŷ := Ĝy for some h, x, y ← Zp. Let OBSOMIH,Ĥ′,X̂,Ŷ (·)

be an oracle that on input a message M := Gm (for some possibly unknown
m ∈ Zp) returns a triple

(
A := Ga, B := AxMay, C := Hay

) ∈ G
3 for some

a ← Zp. We say the BSOMI assumption holds (relative to BG) if for all PPT
adversaries A, the following advantage is negligible (in λ):

Pr

⎡

⎢
⎣

P ← BG(1λ); h, x, y ← Zp; (H, Ĥ ′, X̂, Ŷ) := (Gh, Ĝ
1
h , Ĝx, Ĝy);

{(Ai, Bi,mi)}k+1
i=1 ← AOBSOMIk

H,Ĥ′,X̂,Ŷ
(·) (

P,H, Ĥ ′, X̂, Ŷ
)

:
∣
∣{mi}k+1

i=1

∣
∣ = k + 1 ∧ ∀i ∈ [k + 1] : Ai �= 1G ∧ e(Bi, Ĝ) = e(Ai, X̂Ŷ mi)

⎤

⎥
⎦

The proof for the following theorem can be found in the full version [39].

Efficient Round-Optimal Blind Signatures in the Standard Model 461

Theorem 2. For any generic adversary A against the BSOMI assumption,
if p is the (prime) order of the bilinear group and A makes qG group
operation queries, qP pairing queries and qO queries to the BSOMI oracle
OBSOMIH,Ĥ′,X̂,Ŷ , then the probability of A against the BSOMI assumption is

O(q2
GqO+q2

P qO+q3
O

p).

4 Syntax and Security of Blind Signatures

In this section, we define the syntax and security of blind signatures. Since we
are interested in round-optimal schemes, we will specialize our definitions to this
case. A blind signature scheme BS (with a two-move signature request) consists
of the following polynomial-time algorithms:

KeyGenBS(1λ) On input a security parameter 1λ, this probabilistic algorithm
outputs a pair (vkBS, skBS) of public/secret keys for the signer. Without loss
of generality we assume the security parameter is an implicit input to the rest
of the algorithms.

Request0BS(vkBS,m): This algorithm run by the user takes as input a message m
in the message space M and the public key vkBS, and produces a signature
request ρ, plus some state st (which is assumed to contain m).

IssueBS(skBS, ρ): This probabilistic algorithm run by the signer takes as input the
secret key skBS and the signature request ρ, and produces a pre-signature β.

Request1BS(vkBS, β, st): On input the public key vkBS, the pre-signature β, and
the state st, this algorithm produces a blind signature σ on m, or it outputs
⊥ if it does not accept the transcript.

VerifyBS(vkBS,m, σ): This deterministic algorithm outputs 1 if σ is a valid signa-
ture on the message m, or 0 otherwise.

(Perfect) correctness of blind signatures requires that for all λ ∈ N and all
m ∈ M, we have

Pr

[
(vkBS, skBS) ← KeyGenBS(1

λ); (ρ, st) ← Request0BS(vkBS, m);
β ← IssueBS(skBS, ρ); σ ← Request1BS(vkBS, β, st) : VerifyBS(vkBS, m, σ) = 1

]
= 1.

Security of blind signatures [45,52] which was strengthened by [28,55] requires
blindness and unforgeability.

Unforgeability. Unforgeability requires that it is infeasible for an adversarial
user who interacts with an honest signer on k occasions to output k + 1 valid
signatures on k + 1 distinct messages.

Definition 3 (Unforgeability). A blind scheme BS satisfies unforgeability if
for all λ ∈ N, for all PPT adversaries A, the advantage AdvUnforge

BS,A (λ) against
the game ExpUnforge

BS,A defined in Fig. 1. is negligible (in λ) where

AdvUnforge
BS,A (λ) = Pr[ExpUnforge

BS,A (λ) = 1].

462 E. Ghadafi

Fig. 1. The security experiments for unforgeability (left) and blindness w.r.t. malicious
keys (right)

Blindness. Blindness (w.r.t. malicious keys [1,49]) requires that an adversarial
signer who freely chooses two messages m0 and m1 as well as the keys and then
takes part in interactions with an honest user to generate signatures on those
messages cannot tell the order in which the messages were signed.

Definition 4 (Blindness w.r.t. malicious keys). A blind scheme BS satisfies
blindness w.r.t. malicious keys if for all λ ∈ N, for all PPT adversaries A, the
advantage AdvBlind

BS,A (λ) defined as

AdvBlind
BS,A (λ) =

∣
∣
∣
∣Pr[ExpBlind

BS,A (λ) = 1] − 1
2

∣
∣
∣
∣

is negligible (in λ) where ExpBlind
BS,A is defined in Fig. 1.

5 Blind Signature Constructions

Here we present our two constructions of blind signatures satisfying blindness in
the malicious-key model.

5.1 Construction I

Here we present our first construction whose unforgeability is based on the
BSOM assumption. The high-level idea is that when requesting a blind signature
on the message m ∈ Zp, the user uses the Pedersen commitment scheme to com-
mit to m as Co := GmHr and sends the commitment Co to the signer. Unlike
many existing constructions, neither the user nor the signer in our construction
are required to produce expensive zero-knowledge proofs to prove correctness of
their computation. Note that since the Pedersen commitment is perfectly hiding,
the commitment Co reveals no information about the committed message. We
can think of such a commitment as the message M on which the oracle in the
BSOM assumption is queried. Now the signer, playing the role of the oracle in

Efficient Round-Optimal Blind Signatures in the Standard Model 463

the definition of the BSOM assumption, returns the tuple (A′, B′, C ′). The user
can check whether such a tuple corresponds to a valid pre-signature by first ver-
ifying that the last element (which is independent of the message) is constructed
correctly. This is achieved by verifying that e(C ′, Ŷ) = e(A′, Ĥ). If such a check
does not pass, the user returns ⊥. Otherwise, since the user already knows the
randomness r she used in constructing the commitment Co, she can now adapt
the pre-signature (A′, B′) on the commitment Co to one on the message m by
letting B′ := B′C ′−r and then randomizing the signature (A′, B′) into a new
one (A,B) so that the two pairs are unlinkable. Similarly to e.g. [31,33], by
assuming that the bilinear group generator BG is deterministic combined with
the fact that the Pedersen commitment remains hiding even if the commitment
key is generated maliciously, we achieve blindness w.r.t. malicious keys. The
construction is detailed in Fig. 2.

Fig. 2. Our 1st blind signature construction

Note that the checks performed in the Request0BS algorithm to verify well-
formedness of the signer’s verification key need only be performed once when
requesting the first signature and not each time a signature is requested.

Theorem 3. The construction is a secure blind signature scheme in the
malicious-key model.

Proof. We first show that the scheme is correct. We have that Co = GmHr, B′ =
(GxCo)

a′
y = G

a′x
y Co

a′
y = G

a′x
y (GmHr)

a′
y and C ′ = H

a′
y . We have that B′ =

B′C ′−r = G
a′x
y (GmHr)

a′
y H

−a′r
y = G

a′x
y G

ma′
y . Thus, (A′, B′) satisfy e(B′, Ŷ) =

e(A′, X̂Ĝm).
The following 2 lemmata complete the proof.

Lemma 1 (Unforgeability). The construction is unforgeable if the BSOM
assumption is intractable.

464 E. Ghadafi

Proof. Let A be an adversary against the unforgeability of the scheme. We show
how to use A to construct an adversary B against the BSOM assumption. Adver-
sary B gets the tuple (P,H, Ĥ, X̂, Ŷ) from her game and she has access to
the oracle OBSOM

H,Ĥ,X̂,Ŷ
(·) which she can query polynomially many times. B

starts A on vkBS := (H, Ĥ, X̂, Ŷ). When queried on Coi, B forwards such query
to her oracle and returns the answer to A. Eventually, when A outputs her k+1
message-signatures tuples {(mi, Ai, Bi)}k+1

i=1 , B returns that as the answer in her
game. It is clear that B wins her game with the same advantage as that of A in
her game. Thus, we have AdvUnforge

BS,A = AdvBSOM,B.

Lemma 2. The construction is perfectly blind in the malicious-key model.

Proof. Since the Pedersen commitment is perfectly hiding, it is clear that Co sent
by the user reveals no information about the committed message. Now the check
we perform on the pre-signatures ensures that each pre-signature is valid on its
respective commitment. If any of those pre-signatures is invalid, we return (⊥,⊥).
It is obvious in the latter case the adversary gains no information about the order
in which the messages were signed. If the checks on the pre-signatures pass, it
means the first pre-signature is a valid signature on the message mb committed
in Cob whereas the second signature is valid on the message m1−b committed
in Co1−b. From the adversary’s point of view each signature could be on either
message since the commitment could have been on either message. What remains
now is to show that (A′, B′, C ′) are unlinkable to (A,B). By definition we have
that A′

0 �= 1G and A′
1 �= 1G. Now each final signature is computed by raising

the corresponding pre-signature to a random exponent from Z
×
p . Thus, each final

signature is uniformly distributed over the space of possible signatures and it
follows that the final signature is independent of the pre-signature. 	

5.2 Construction II

Here we present our second construction whose unforgeability is based on the
BSOMI assumption. The high-level idea is similar to that of the first construc-
tion. When requesting a blind signature on the message m ∈ Zp, the user uses
the Pedersen commitment scheme to commit to m as Co := GmHr and sends
the commitment Co to the signer. Here we view the commitment as the message
M on which the oracle in the BSOMI assumption is queried. Now the signer,
playing the role of the oracle in the definition of the BSOMI assumption, returns
the tuple (A′, B′, C ′). The user can check whether such a tuple corresponds to
a valid pre-signature by first verifying that the last element (which is indepen-
dent of the message) is constructed correctly. This is achieved by verifying that
e(C ′, Ĥ ′) = e(A′, Ŷ). If such a check does not pass, the user returns ⊥. Other-
wise, since the user already knows the randomness r she used in constructing the
commitment Co, she can now adapt the pre-signature (A′, B′) on the commit-
ment Co to one on the message m by letting B′ := B′C ′−r and then randomizing
the signature (A′, B′) into a new one (A,B) so that the two pairs are unlinkable.

Efficient Round-Optimal Blind Signatures in the Standard Model 465

Again as in our first construction, by assuming that the bilinear group genera-
tor BG is deterministic combined with the fact that the Pedersen commitment
remains hiding even if the commitment key is generated maliciously, we achieve
blindness w.r.t. malicious keys. The construction is detailed in Fig. 3.

Note that the checks performed in the Request0BS algorithm to verify well-
formedness of the signer’s verification key need only be performed once when
requesting the first signature and not each time a signature is requested.

Fig. 3. Our 2nd blind signature construction

The proof for the following theorem can be found in the full version [39].

Theorem 4. The construction is a secure blind signature scheme in the
malicious-key model in the standard model.

Efficiency Comparison. We compare in Table 1 the efficiency of our blind
signature constructions with the most efficient existing schemes offering the
same security in the standard model [31,33]. As can be seen from the table,
our schemes outperform existing schemes in every efficiency metric. At 80-bit
security, the size of our signatures is 40 bytes, i.e. 67% shorter than those of [33].
Also, blindness in our schemes holds in the information-theoretic sense which is
another advantage. The security of all schemes in the table including ours rely
on interactive intractability assumptions. Note that the most efficient scheme
based on non-interactive assumptions in the standard model [36] is much less
efficient than the schemes in the table, e.g. the signature size in [36] is 183 group
elements in symmetric bilinear groups. In the table, P stands for pairing, A for
point addition, and MK Model for the malicious-key model.

466 E. Ghadafi

Table 1. Efficiency comparison

Scheme σ vk Communication Verification MK Model Blindness

G Ĝ G Ĝ User Signer

G Ĝ G Ĝ

[33] 4 1 1 4 2 - 2 1 7P Yes Computational

[31] 7 3 - 4 4 - 2 1 15P Yes Computational

Ours I 2 - 1 3 1 - 3 - 2P + 1A Yes Perfect

Ours II 2 - 1 3 1 - 3 - 2P + 1A Yes Perfect

6 Blind Schemes for a Vector of Messages

In this section we give constructions of blind signatures for a vector of messages.
These constructions are extensions of their single-message counterparts in which
we replace the single-message Pedersen commitment scheme by its generalized
variant which allows committing to a vector of messages at once, and make the
necessary changes.

6.1 Construction I

We show in Fig. 4 that we can without affecting the signature size or the number
of pairings involved in the verification extend our scheme from Sect. 5.1 to blindly
sign a vector of messages. This variant is unforgeable under the same assumption
as the single-message scheme.

Fig. 4. A blind signature scheme I for a vector of messages ∈ Z
n
p

Efficient Round-Optimal Blind Signatures in the Standard Model 467

All the checks performed in the Request0BS algorithm to verify well-formedness
of the signer’s verification key need only be performed once when requesting the
first signature and not each time a signature is requested.

Theorem 5. The scheme in Fig. 4 is a secure blind signature.

Proof. Correctness is straightforward to verify. Perfect blindness in the
malicious-key model holds similarly to the perfect blindness of the single-message
scheme. The following lemma proves unforgeability of the scheme.

Lemma 3 (Unforgeability). The scheme is unforgeable if the BSOM assump-
tion is intractable.

Proof. Let A be an adversary against the unforgeability of the scheme. We
show how to use A to construct an adversary B against the BSOM assump-
tion. Adversary B gets the tuple (P,H, Ĥ, X̂, Ŷ) from her game and she has
access to the oracle OBSOM

H,Ĥ,X̂,Ŷ
(·) which she can query polynomially many

times. B chooses z1, . . . , zn−1 ← Z
×
p and computes (Zi, Ẑi) := (Gzi , Ĝzi)

for all i ∈ [n − 1]. She then starts A on vkBS := (H, Ĥ, X̂, Ŷ , {Zi, Ẑi}n−1
i=1).

When queried on Coi, B forwards such query to her oracle and returns the
answer to A. Eventually, when A outputs her k + 1 message-signature tuples
{(mi = (mi,1, . . . ,mi,n), Ai, Bi)}k+1

i=1 where the vectors mi are distinct, B com-
putes m′

i = mi,1 +
∑n

j=2 zj−1mi,j for all i ∈ [k + 1] and returns the k + 1
tuples {(m′

i, Ai, Bi)}k+1
i=1 as the answer in her game. It is clear that B wins

her game with the same advantage as that of A in her game. Thus, we have
AdvUnforge

BS,A = AdvBSOM,B. 	

6.2 Construction II

We extend our scheme from Sect. 5.2 to blindly sign a vector of messages as
shown in Fig. 5. This scheme is unforgeable under the same assumption as the
single-message scheme.

All the checks performed in the Request0BS algorithm to verify well-formedness
of the signer’s verification key need only be performed once when requesting the
first signature and not each time a signature is requested.

The proof for the following theorem can be found in the full version [39].

Theorem 6. The scheme in Fig. 5 is a secure blind signature.

468 E. Ghadafi

Fig. 5. A blind signature scheme II for a vector of messages ∈ Z
n
p

7 Partially Blind Signature Schemes

Here we show how to modify our schemes in Sects. 6.1 and 6.2 to obtain par-
tially blind signature schemes. For more generality, we give schemes where the
public information is also a vector τ = (τ1, . . . , τn′) ∈ Z

n′
p . This allows to attach

multiple attributes to the signature.

7.1 Construction I

To realize our first construction, we modify the blind scheme on vector messages
from Sect. 6.1 to attach a vector τ = (τ1, . . . , τn′) ∈ Z

n′
p of public information to

the signature. To do so, we add to the public key of the scheme in Fig. 4 the ele-
ments Ŵi := Ĝwi for some randomly chosen elements wi ← Zp for i = 1, . . . , n′.
When asked to sign a commitment Co along with the public information τ , the
signer signs the modified commitment Co′ := CoG

∑n′
i=1 τiwi . Upon receiving the

pre-signature, the user checks that it is valid on the tuple (m, τ). The details
of the construction are in Fig. 6. The unforgeability of the scheme relies on a
slight extension of the BSOM assumption which we refer to as the E-BSOM
assumption. See full version [39] for details.

All the checks performed in the Request0BS algorithm to verify well-formedness
of the signer’s verification key need only be performed once when requesting the
first signature and not each time a signature is requested.

The proof for the following theorem can be found in the full version [39].

Theorem 7. The scheme in Fig. 6 is a secure partially blind signature.

Efficient Round-Optimal Blind Signatures in the Standard Model 469

Fig. 6. A partially blind signature scheme I for a vector of messages ∈ Z
n
p

7.2 Construction II

Our second partially blind signature construction shown in Fig. 7 is an exten-
sion of our blind construction from Fig. 5 in a similar manner to the first con-
struction. The unforgeability of the scheme relies on a slight extension of the
BSOMI assumption which we refer to as the E-BSOMI assumption. See full
version [39] for details.

The proof for the following theorem can be found in the full version [39].

Theorem 8. The scheme in Fig. 7 is a secure partially blind signature.

Fig. 7. A partially blind signature scheme II for a vector of messages ∈ Z
n
p

Acknowledgments. We thank Ian Goldberg for pointing out an issue in the descrip-
tion of the partially blind scheme in an earlier version.

470 E. Ghadafi

References

1. Abdalla, M., Namprempre, C., Neven, G.: On the (im)possibility of blind message
authentication codes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860,
pp. 262–279. Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 17

2. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 9

3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

4. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto,
T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0034851

5. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups
for modular protocol design. Cryptology ePrint Archive, Report 2010/133. http://
eprint.iacr.org/2010/133.pdf

6. Abe, M., Ohkubo, M.: A framework for universally composable non-committing
blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 435–
450. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 26

7. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
82–99. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 5

8. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: ACM-CCS 2013,
pp. 1087–1098. ACM (2013)

9. Barbosa, M., Farshim, P.: Strong knowledge extractors for public-key encryption
schemes. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 164–
181. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-5 11

10. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

11. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

12. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous
attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)

13. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomiz-
able ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8 25

14. Blazy, O., Pointcheval, D., Vergnaud, D.: Compact round-optimal partially-blind
signatures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp.
95–112. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9 6

15. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the Gap-Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

16. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

https://doi.org/10.1007/11605805_17
https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/BFb0034851
http://eprint.iacr.org/2010/133.pdf
http://eprint.iacr.org/2010/133.pdf
https://doi.org/10.1007/978-3-642-10366-7_26
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-642-14081-5_11
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-642-19379-8_25
https://doi.org/10.1007/978-3-642-19379-8_25
https://doi.org/10.1007/978-3-642-32928-9_6
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3

Efficient Round-Optimal Blind Signatures in the Standard Model 471

17. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004)

18. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press, Cambridge (2000)

19. Brands, S., Paquin, C.: U-Prove Cryptographic Specification v1 (2010)
20. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS 2004,

pp. 132–145. ACM (2004)
21. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient blind signatures with-

out random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS,
vol. 3352, pp. 134–148. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-30598-9 10

22. Canard, S., Devigne, J., Sanders, O.: Delegating a pairing can be both secure
and efficient. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014.
LNCS, vol. 8479, pp. 549–565. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07536-5 32

23. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Springer, Cham (1983).
https://doi.org/10.1007/978-1-4757-0602-4 18

24. Döttling, N., Fleischhacker, N., Krupp, J., Schröder, D.: Two-message, oblivi-
ous evaluation of cryptographic functionalities. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9816, pp. 619–648. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 22

25. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS 2000, pp. 283–293.
IEEE (2000)

26. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

27. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 4

28. Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 17

29. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 10

30. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application
to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320.
http://eprint.iacr.org/2009/320.pdf

31. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal
blind signatures in the standard model from weaker assumptions. In: Zikas, V., De
Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 391–408. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44618-9 21

32. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. Cryptology ePrint
Archive, Report 2014/944. http://eprint.iacr.org/2014/944.pdf

33. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signa-
tures in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 12

https://doi.org/10.1007/978-3-540-30598-9_10
https://doi.org/10.1007/978-3-540-30598-9_10
https://doi.org/10.1007/978-3-319-07536-5_32
https://doi.org/10.1007/978-3-319-07536-5_32
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-3-662-53015-3_22
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-642-00468-1_17
https://doi.org/10.1007/978-3-642-13190-5_10
http://eprint.iacr.org/2009/320.pdf
https://doi.org/10.1007/978-3-319-44618-9_21
http://eprint.iacr.org/2014/944.pdf
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12

472 E. Ghadafi

34. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1 66

35. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156, 3113–3121 (2008)

36. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 27

37. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 36

38. Ghadafi, E.: More efficient structure-preserving signatures - or: bypassing the type-
III lower bounds. Cryptology ePrint Archive, Report 2016/255. http://eprint.iacr.
org/2016/255.pdf

39. Ghadafi, E.: Efficient round-optimal blind signatures in the standard model. Cryp-
tology ePrint Archive, Report 2017/045. http://eprint.iacr.org/2017/045.pdf

40. Ghadafi, E., Smart, N.P.: Efficient two-move blind signatures in the common ref-
erence string model. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS,
vol. 7483, pp. 274–289. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33383-5 17

41. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

42. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 26

43. Hanzlik, L., Kluczniak, K.: A short paper on blind signatures from knowl-
edge assumptions. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS,
vol. 9603, pp. 535–543. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54970-4 31

44. Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-secure blind signatures
without random oracles or setup assumptions. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-70936-7 18

45. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052233

46. Kiayias, A., Zhou, H.-S.: Concurrent blind signatures without random oracles. In:
De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 49–62. Springer,
Heidelberg (2006). https://doi.org/10.1007/11832072 4

47. Lindell, Y.: Bounded-concurrent secure two-party computation without setup
assumptions. In: STOC 2003, pp. 683–692. ACM (2003)

48. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from
composite-order to prime-order groups: the case of round-optimal blind signatures.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 30

49. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (2006). https://doi.org/10.1007/11681878 5

https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-22792-9_36
http://eprint.iacr.org/2016/255.pdf
http://eprint.iacr.org/2016/255.pdf
http://eprint.iacr.org/2017/045.pdf
https://doi.org/10.1007/978-3-642-33383-5_17
https://doi.org/10.1007/978-3-642-33383-5_17
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1007/978-3-662-54970-4_31
https://doi.org/10.1007/978-3-662-54970-4_31
https://doi.org/10.1007/978-3-540-70936-7_18
https://doi.org/10.1007/978-3-540-70936-7_18
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/11832072_4
https://doi.org/10.1007/978-3-642-17373-8_30
https://doi.org/10.1007/11681878_5

Efficient Round-Optimal Blind Signatures in the Standard Model 473

50. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

51. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

52. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

53. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 24

54. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

55. Schröder, D., Unruh, D.: Security of blind signatures revisited. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 662–679.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 39

56. Seo, J.H., Cheon, J.H.: Beyond the limitation of prime-order bilinear groups,
and round optimal blind signatures. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 133–150. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-28914-9 8

57. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-642-30057-8_39
https://doi.org/10.1007/978-3-642-28914-9_8
https://doi.org/10.1007/978-3-642-28914-9_8
https://doi.org/10.1007/3-540-69053-0_18

Searching and Processing Private Data

Secure Multiparty Computation from SGX

Raad Bahmani1(B), Manuel Barbosa2, Ferdinand Brasser1, Bernardo Portela2,
Ahmad-Reza Sadeghi1, Guillaume Scerri3, and Bogdan Warinschi4

1 Technische Universität Darmstadt, Darmstadt, Germany
raad.bahmani@trust.tu-darmstadt.de

2 HASLab – INESC TEC & DCC-FCUP, Porto, Portugal
3 Laboratoire DAVID – Université de Versailles St-Quentin & INRIA,

Versailles, France
4 University of Bristol, Bristol, UK

Abstract. In this paper we show how Isolated Execution Environments
(IEE) offered by novel commodity hardware such as Intel’s SGX provide a
new path to constructing general secure multiparty computation (MPC)
protocols. Our protocol is intuitive and elegant: it uses code within an
IEE to play the role of a trusted third party (TTP), and the attestation
guarantees of SGX to bootstrap secure communications between partic-
ipants and the TTP. The load of communications and computations on
participants only depends on the size of each party’s inputs and outputs
and is thus small and independent from the intricacies of the functionality
to be computed. The remaining computational load– essentially that of
computing the functionality – is moved to an untrusted party running an
IEE-enabled machine, an attractive feature for Cloud-based scenarios.

Our rigorous modular security analysis relies on the novel notion of
labeled attested computation which we put forth in this paper. This
notion is a convenient abstraction of the kind of attestation guarantees
one can obtain from trusted hardware in multi-user scenarios.

Finally, we present an extensive experimental evaluation of our solu-
tion on SGX-enabled hardware. Our implementation is open-source and it
is functionality agnostic: it can be used to securely outsource to the Cloud
arbitrary off-the-shelf collaborative software, such as the one employed on
financial data applications, enabling secure collaborative execution over
private inputs provided by multiple parties.

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrusting par-
ties to collaboratively carry out a computation that involves their private inputs.

This work was supported by the European Union’s 7th Framework Program
(FP7/2007-2013) under grant agreement no. 609611 (PRACTICE). Manuel Barbosa
and Bernardo Portela were funded by project “NanoSTIMA: Macro-to-Nano Human
Sensing: Towards Integrated Multimodal Health Monitoring and Analytics/NORTE-
01-0145-FEDER-000016”, which is financed by the North Portugal Regional Oper-
ational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership
Agreement, and through the European Regional Development Fund (ERDF).

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 477–497, 2017.
https://doi.org/10.1007/978-3-319-70972-7_27

478 R. Bahmani et al.

The security guarantee that parties get are essentially those provided by carrying
out the same computation using a Trusted Third Party (TTP). The computa-
tions to be carried out range from simple functionalities, for example where a
party commits to a secret value and later on reveals it; or they can be highly
complex, for example running sealed bid auctions [9] or bank customer bench-
marking [17]. Most of the existent approaches are software only. The trust barrier
between parties is overcome using cryptographic techniques that permit comput-
ing over encrypted and/or secret-shared data [18,25,31]. Another approach first
studied by Katz [28] formalizes a trusted hardware assumption— where users
have access to tamper-proof tokens on which they can load arbitrary code—that
is sufficient to bootstrap universally composable MPC.

Broadly speaking, this work fits within the same category as that by
Katz [13]. However, our starting point is a novel real-world form of trusted
hardware that is currently shipped on commodity PCs: Intel’s Software Guard
Extensions [27]. Our goal is to leverage this hardware to significantly reduce the
computational costs of practical secure computation protocols. The main secu-
rity capability that such hardware offers are Isolated Execution Environments
(IEE) – a powerful tool for boosting trust in remote systems under the total or
partial control of malicious parties (hijacked boot, corrupt OS, running malicious
software, or simply a dishonest service provider). Specifically, code loaded in an
IEE is executed in isolation from other software present in the system, and built-
in cryptographic attestation mechanisms guarantee the integrity of the code and
its I/O behaviour to a remote user.

Protocol outline. The functionality outlined above suggests a simple and
natural design for general multiparty computation: load the functionality to be
computed into an IEE (which plays the role of a TTP) and have users provide
inputs and receive outputs via secure channels to the IEE. Attestation ensures
the authenticity of the computed function, inputs and outputs. The resulting
protocol is extremely efficient when compared to existing solutions that do not
rely on hardware assumptions. Indeed, the load of communications and compu-
tations on protocol participants is small and independent of the intricacies of the
functionality that is being computed; it depends only on the size of each party’s
inputs and outputs. The remaining computational load — essentially that of
computing the functionality expressed as a transition function in a standard pro-
gramming language — is moved to an untrusted party running an IEE-enabled
machine. This makes the protocol attractive for Cloud scenarios. Furthermore,
the protocol is non-interactive in the sense that each user can perform an ini-
tial set-up, and then provide its inputs and receive outputs independently of
other protocol participants, which means that it provides a solution for “secure
computation on the web” [24] with standard MPC security.

Due to its obvious simplicity, variations of the overall idea have been proposed
in several practice-oriented works [23,36]. However, currently there is no thor-
ough and rigorous analysis of the security guarantees provided by this solution
in the sense of a general approach to MPC. The intuitive appeal of the protocol

Secure Multiparty Computation from SGX 479

obscures multiple obstacles in obtaining a formal security proof, including: i. the
lack of private channels between the users and the remote machine; ii. the need to
authenticate/agree on a computation in a setting where communication between
parties is inherently asynchronous and only mediated by the IEE; iii. the need
to ensure that the “right” parties are engaged in the computation; iv. dealing
with the interaction between different parts of the code that coexist within the
same IEE, sharing the same memory space, each potentially corresponding to
different users; and v. ensuring that the code running inside an IEE does not
leak sensitive information to untrusted code running outside.

In this paper we fill this gap through the following contributions: i. a rigor-
ous specification of the protocol for general MPC computation outlined above;
ii. formal security definitions for the security of the overall protocol and that of
its components;1 iii. a modular security analysis of our protocol that relies on
a novel notion of labelled attested computation; and iv. an open-source imple-
mentation of our protocol and a detailed experimental analysis in SGX-enabled
hardware. We give an overview of our results next.
Labeled attested computation. Our protocol relies on ideal functionalities
viewed as programs written as transition functions in a programming language
compatible with the IEE-enabled machine. We instrument these programs to run
inside an IEE and add bootstrapping code that permits protocol participants to
establish independent secure channels with the functionality, so that they can
provide inputs and receive outputs. The crux of the protocol is a means to
provide attestation guarantees which ensures that parties are involved in the
“right” run of the protocol (i.e. with the right parties all interacting with the
same IEE). We take inspiration from the recent work of Barbosa et al. [4] who
provide a formalization for the notion of attested computation that can convince
a party that its local view of the interaction with a remote IEE matches what
actually occurred remotely. This guarantee is close to the one that we need, but
it is unfortunately insufficient. The problem is that attested computation a la
[4] is concerned with the interaction between a single party and an IEE, and it
is non-trivial to extend these guarantees to the interaction of multiple parties
with the same IEE when the goal is to reason about concurrent asynchronous
interactions.

To overcome these problem, we introduce the notion of labelled attested com-
putation (LAC), a powerful and clean generalization of the attested computation
notion in [4]. In a nutshell, this notion assumes that (parts of) the code loaded in
an IEE is marked with labels pertaining to users, and that individual users can
get attestation guarantees for those parts of the code that corresponds to specific
labels. The gain is that users can now be oblivious of other user’s interactions
with the IEE, which leads to significantly more simple and efficient protocols.
Nonetheless, the user can still derive attestation guarantees about the overall

1 Since our emphasis is on efficiency and analysing SGX-based protocols used in prac-
tice, we do not consider Universal Composability, but rather a simulation-based
security model akin to those used for other practical secure computation protocols,
e.g. [6].

480 R. Bahmani et al.

execution of the system, since LAC binds each users’ local view to the same
code running within the IEE, and one can use standard cryptographic tech-
niques to leverage this binding in order to obtain indirect attestation guarantees
as to the honest executions of the interactions with other users.

We provide syntax and a formal security model for LAC and show how this
primitive can be used to deploy arbitrary (labelled) programs to remote IEEs
with flexible attestation guarantees. Our provably secure LAC protocol relies on
hardware equipped with SGX-like IEEs. Our construction of the MPC protocol
then builds on LACs in a modular way. First, we show how to use labelled
attested computation schemes2 to bootstrap an arbitrary number of independent
secure channels between local users and an IEE with joint attestation guarantees.
We formalize this result as an utility theorem. The security of the overall MPC
protocol which uses these channels for communication with functionality code
inside an IEE is then built on this utility theorem.

Implementation and experimental validation. We conclude the paper
with an experimental evaluation of our protocol via a detailed comparison
of our solution to state-of-the-art multiparty computation. The experimental
results confirm the theoretical performance advantages that we have highlighted
above in comparison to non hardware-based solutions. Our implementation of a
generic MPC protocol —sgx-mpc— relies on the NaCl3 cryptographic library [8]
and inherits its careful approach to dealing with timing side-channels. We dis-
cuss side-channels in SGX-like systems and explain how our constant-time code
thwarts all leaks based on control-flow or memory access patterns that depend
on secret data.

Our implementation is functionality agnostic and can be used to outsource to
the Cloud arbitrary off-the-shelf collaborative software, enabling multiple par-
ties to jointly execute complex interactive computations without revealing their
own inputs. Taking the financial sector as an example, our implementation per-
mits carrying out financial benchmarking [17] using off-the-shelf software, rather
than requiring the conversion of the underlying computation into circuit form,
as is the case in state-of-the-art secure multiparty computation protocols. One
should of course mention that, in order to meet the level of side-channel attack
resilience of sgx-mpc, the code that is outsourced to the Cloud should itself be
implemented according to the constant-time coding policy. This, however, is a
software engineering issue that is outside of the scope of this paper.

Related Work. A relevant line of research leverages trusted hardware to boot-
strap entire platforms for secure software execution (e.g. Flicker [32], Trusted
Virtual Domains [14], Haven [5]). These are large systems that are currently
outside the scope of provable-security techniques. Smaller protocols which solve

2 We use schemes which satisfy the additional notion of minimal leakage which ensures
that the outsourced instrumented program P ∗ reveals no information about its inter-
nal state beyond what the normal input/output behavior of the original program P
would reveal.

3 https://nacl.cr.yp.to.

https://nacl.cr.yp.to

Secure Multiparty Computation from SGX 481

specific problems are more susceptible to rigorous analysis. Examples of these
are secure disk encryption [33], one-time password authentication [26] outsourced
Map-Reduce computations [36], Secure Virtual Disk Images [22], two-party com-
putation [23], secure embedded devices [29,34]. Although some of these protocols
(e.g., those of Hoekstra et al. [26] and Gupta et al. [23]) come only with intuition
regarding their security, others—most notably those by Schuster et al. [36]—
come with a proof of security. The use of attestation in those protocols is akin to
our use of attestation in our general MPC protocol. Provable security of real-
istic protocols that use trusted hardware-based protocols based on the Trusted
Platform Module (TPM) have been considered in [10,11,20,21,37]. The weaker
capabilities offered by the TPM makes them more suitable for static attestation
than for a dynamic setting like the one we consider in this paper.

In recent independent work Pass, Shi and Tramer [35] formalize attestation
guarantees offered by trusted hardware in the Universal Composability setting,
and consider the feasibility of achieving UC-secure MPC from such assump-
tions. Interestingly, they show that in the setting that they consider (UC with a
Global Setup (GUC) [12]) multiparty computation is impossible to achieve with-
out additional assumptions, unless all parties have access to trusted hardware.
They bypass this impossibility result by assuming that all parties have access to
both trusted hardware as well some additional set-up. The resulting protocols
are more intricate and less efficient than ours, so our results can be interpreted as
a practice-oriented approach to the security of the most natural MPC protocol
that relies on SGX, which trades composability for efficiency while still preserv-
ing strong privacy guarantees for the inputs to the computation. Furthermore,
contrary to their approach, performing parallel executions of our protocol also
entails several initializations, thus increasing performance overhead accordingly.

2 IEEs, Programs, and Machines

The models that we develop in this paper rely on the abstraction for IEEs
introduced in [4]. Here we recall the key features of that model. A more in depth
description of these formalisms is provided in the full version [3].

An IEE is viewed as an idealised machine running some fixed program P and
which exposes an interface through which one can pass inputs and receive outputs
to/from P . The I/O behaviour of a process running in an IEE is determined by
the program it is running, and the inputs it receives. The interface models the
strict isolation between processes running in different IEEs and formalizes that
the only information that is revealed about a program running within an IEE is
contained in its input-output behaviour.

programs. We extend the model for programs from [4] to the setting where
inputs/outputs are labeled: programs are transition functions which take a cur-
rent state st and a label-input pair (l, i), and produce a new output o and an
updated state. We write o ← P [st](l, i) for each such action and refer to it as
an activation. Throughout the paper we restrict our attention to programs (even
if they are adversarially created) for which the transition function is guaranteed

482 R. Bahmani et al.

to run in polynomial-time. Programs are assumed to be deterministic modulo of
system calls; in particular we assume a system can call rand for providing pro-
grams with fresh randomness. Additionally, outputs are assumed to include a
flag finished that indicating if the transition function will accept further input.
We extend our notation to account for probabilistic programs that invoke the
rand system call. We write o ← P [st; r](l, i) for the activation of P which when
invoked on labeled input (l, i) (with internal state st and random coins r) produced
output o. We write a sequence of activations as (o1, . . . , on) ← P [st; r](l1, i1, . . . ,
ln, in) and denote by TraceP [st;r](l1, i1, . . . , ln, in) the corresponding input/output
trace (l1, i1, o1, . . . , ln, in, on). For a trace T , we write filter[L](T) for the projection
of the trace that retains only I/Opairs that correspond to labels inL.Weuse filter[l]
whenL is a singleton.We also extend the basic notion of programcomposition in [4]
to consider label-based parallel and sequential program composition. Intuitively,
when two labelled programs are composed, the set of labels of the composed pro-
gram is enriched to encode the precise sub-program that should be activated and
the label on which it should be activated.

Machines. As in [4] we model machines via a simple external interface, which
we see as both the functionality that higher-level cryptographic schemes can
rely on when using the machine, and the adversarial interface that will be the
basis of our attack models. This interface can be thought of as an abstraction
of Intel’s SGX [27]. The interface consists of three calls: 1. Init(1λ) initialises the
machine and outputs the global parameters prms. 2. Load(P) loads the program
P in a fresh IEE and returns its handle hdl 3. Run(hdl, l, i) passes the label-input
pair (l, i) to the IEE with handle hdl We define the I/O trace TraceM(hdl) of a
process hdl running in a machine M as the tuple (l1, i1, o1, . . . , ln, in, on) that
includes the entire sequence of n inputs/outputs resulting from all invocations
of Run on hdl; ProgramM(hdl) is the code (program) running under handle hdl;
CoinsM(hdl) represents the coins given to the program by the rand system call;
and StateM(hdl) is the internal state of the program. Finally, we will write AM

to indicate that algorithm A has access to machine M.

3 Labelled Attested Computation

We now formalize a cryptographic primitive that generalizes the notion of
Attested Computation proposed in [4], called Labelled Attested Computation.
The main difference to the original proposal is that, rather than fixing a particu-
lar form of program composition for attestation, Labelled Attested Computation
is agnostic of the program’s internal structure; on the other hand, it permits con-
trolling data flows and attestation guarantees via the label information included
in program inputs.

Syntax. A Labelled Attested Computation (LAC) scheme is defined by the fol-
lowing algorithms:

– Compile(prms, P, L∗) is the deterministic program compilation algorithm. On
input global parameters for some machine M, program P and an attested

Secure Multiparty Computation from SGX 483

label set L∗, it outputs program P ∗. This algorithm is run locally. P ∗ is the
code to be run as an isolated process in the remote machine, whereas L∗

defines which labelled inputs should be subject to attestation guarantees.
– Attest(prms, hdl, l, i) is the stateless attestation algorithm. On input global

parameters for M, a process handle hdl and label-input pair (l, i), it uses the
interface of M to obtain attested output o∗. This algorithm is run remotely,
but in an unprotected environment: it is responsible for interacting with
the isolated process running P ∗, providing it with inputs and recovering the
attested outputs that should be returned to the local machine.

– Verify(prms, l, i, o∗, st) is the public (stateful) output verification algorithm.
On input global parameters for M, a label l, an input i, an attested output
o∗ and some state st it produces an output value o and an updated state, or the
failure symbol ⊥. This failure symbol is encoded so as to be distinguishable
from a valid output of a program, resulting from a successful verification.
This algorithm is run locally on claimed outputs from the Attest algorithm.
The initial value of the verification state is set to be (prms, P, L∗), the same
inputs provided to Compile.

Intuitively, a LAC scheme is correct if, for any given program P and attested
label set L∗, assuming an honest execution of all components in the scheme, both
locally and remotely, the local user is able to accurately reconstruct a partial
view of the I/O sequence that took place in the remote environment, for an
arbitrary set of labels L. A formal definition of correctness is provided in the full
version [3].

Security. Security of labelled attested computation imposes that an adversary
with control of the remote machine cannot convince the local user that some
arbitrary remote (partial) execution of a program P has occurred, when it has
not. It says nothing about the parts of the execution trace that are hidden
from the client or are not in the attested label set L∗. Formally, we allow the
adversary to freely interact with the remote machine, whilst providing a sequence
of (potentially forged) attested outputs for a specific label l ∈ L∗. The adversary
wins if the local user reconstructs an execution trace without aborting (i.e., all
attested outputs must be accepted by the verification algorithm) and one of two
conditions occur: i. there does not exist a remote process hdl∗ running a compiled
version of P where a consistent set of inputs was provided for label l; or ii. the
outputs recovered by the local user for those inputs are not consistent with the
semantics of P .

Technically, these conditions are checked in the definition by retrieving the
full sequence of label-input pairs and random coins passed to all compiled copies
of P running in the remote machine and running P on the same inputs to
obtain the expected outputs. One then checks that for at least one of these
executions, when the traces are restricted to special label l, that the expected
trace matches the locally recovered trace via Verify. Since the adversary is free
to interact with the remote machine as it pleases, we cannot hope to prevent
it from providing arbitrary inputs to the remote program at arbitrary points
in time, while refusing to deliver the resulting (possibly attested) outputs to

484 R. Bahmani et al.

the local user. This justifies the winning condition referring to a prefix of the
execution in the remote machine, rather than imposing trace equality. Indeed, the
definition’s essence is to impose that, if the adversary delivers attested outputs
for a particular label in the attested label set, then the subtrace of verified
outputs for that label will be an exact prefix of the projection of the remote
trace for that label.

We note that a higher-level protocol relying on LAC can fully control the
semantics of labels, as these depend on the semantics of the compiled program.
In particular, adopting the specific forms of parallel and sequential composition
presented in Sect. 2, it is possible to use labels to get the attested execution of
a sub-program that is fully isolated from other programs that it is composed
with. This provides a much higher degree of flexibility than that offered by the
original notion of Attested Computation.

Definition 1 (Security). A labelled attested computation scheme is secure if,
for all ppt adversaries A, the probability that experiment in Fig. 1 returns T is
negligible.

Fig. 1. Game defining the security of LAC.

The adversary loses the game if there exists at least one remote process that
matches the locally reconstructed trace. This should be interpreted as the guar-
antee that IEE resources are indeed being allocated in a specific remote machine
to run at least one instance of the remote program (note that if the program is
deterministic, many instances could exist with exactly the same I/O behaviour,
which is not seen as a legitimate attack). Furthermore, our definition imposes
that the compiled program uses essentially the same randomness as the source
program (except of course for randomness that the security module internally
uses to provide its cryptographic functionality), as otherwise it is easy for the
adversary to make the (idealized) local trace diverge from the remote. This is a
consequence of our modelling approach, but it does not limit the applicability
of our primitive: it simply spells out that the transformation performed on the
code for attestation will typically consist of an instrumentation of the code by
applying cryptographic processing to the inputs and outputs it receives.

Secure Multiparty Computation from SGX 485

Minimal leakage. The above discussion shows that a LAC scheme guarantees
that the I/O behaviour of the program in the remote machine includes at least
the information required to reconstruct an hypothetical local execution of the
source program. Next, we require that a compiled program does not reveal any
information beyond what the original program would reveal. The following def-
inition imposes that nothing from the internal state of the source programs (in
addition to what is public, i.e., the code and I/O sequence) is leaked in the trace
of the compiled program.

Definition 2 (Minimal leakage). A labelled attested computation scheme LAC
ensures security with minimal leakage if it is secure according to Definition 1
and there exists a ppt simulator S that, for every adversary A, the following
distributions are identical:

{ Leak-RealLAC,A(1λ) } ≈ { Leak-IdealLAC,A,S(1λ) }

where games Leak-RealLAC,A and Leak-IdealLAC,A,S are shown in Fig. 2.

Fig. 2. Games defining minimum leakage of LAC.

Intuitively, this means that one can construct a perfect simulation of the
remote trace by simply appending cryptographic material to the local trace.
This property is important when claiming that the security of a cryptographic
primitive is preserved when it is run within an attested computation scheme.

486 R. Bahmani et al.

4 LAC from SGX-like Systems

Our labelled attested computation protocol relies on the capabilities offered by
the security module of Secure Guard Extensions (SGX) architecture proposed by
Intel [2] (i.e. MACs for authenticated communication between IEEs, and digital
signatures for inter-platform attestation of executions). Our security module
formalization is the same as the one adopted in [4].

Security module. The security module relies on a signature scheme and a
MAC scheme, and operates as follows:

– On initialization, the security module generates a key pair (pk, sk) and a
symmetric key key. It also creates a special process running code S∗ in an
IEE with handle 0. The security module then securely stores the key material,
and outputs the public key.

– The operation of IEE with handle 0 is different from all other IEEs in the
machine. Program S∗ will permanently reside in this IEE, and it will be the
only one with direct access to both sk and key. The code of S∗ is dedicated
to transforming messages authenticated with key into messages signed with
sk. On activation, it expects an input (m, t). It obtains key from the security
module and verifies the tag. If the previous operation was successful, it obtains
sk from the security module, signs the message and outputs the signature.

– The security module exposes a single system call mac(m) to code running in
all other IEEs. On such a request from a process running program P , the
security module returns a MAC tag t computed using key over both the code
of P and the input message m.

Labelled Attested Computation scheme. We now define a LAC scheme
that relies on a remote machine supporting such a security module. Basic replay
protection using a sequence number does not suffice to bind a remote process
to a subtrace, since the adversary could then run multiple copies of the same
process and mix and match outputs from various traces. This is similar to the
reasoning in [4]. However, in this paper we are interested in validating traces
for specific attested labels, independently from each other, rather than the full
remote trace. Our LAC scheme works as follows:

– Compile(prms, P, L) generates a new program P ∗ and outputs it. Program P ∗

is instrumented as follows:
• In addition to the internal state st of P , it maintains a list iosl of all the

I/O pairs it has previously received and computed for each label l ∈ L.
• On input (l, i), P ∗ computes o←$ P [stP](l, i) and verifies if l ∈ L. If this

is not the case, then P ∗ simply outputs non-attested output o.
• Otherwise, it updates the list ios by appending (l, i, o), computes the

subset of ios for label l : iosl ← filter[l](ios) and requests from the security
module a MAC of for that list. Due to the operation of the security
module, this will correspond to a tag t on the tuple (P ∗, iosl).

Secure Multiparty Computation from SGX 487

• It finally outputs (o, t, P ∗, iosl). We note that we include (P ∗, iosl) explic-
itly in the outputs of P ∗ for clarity of presentation only. This value would
be kept in an insecure environment by a stateful Attest program.

– Attest(prms, hdl, l, i) invokes M.Run(hdl, (l, i)) using the handle and input
value it has received. Attest then checks is the produced output o is to be
attested and if so transforms the tag into a signature σ using the IEE with
handle 0 and outputs (o′, σ). Otherwise it simply outputs o.

– Verify(prms, l, i, o∗, st) is the stateful verification algorithm. Initially st =
(prms, P, L∗), on first activation Verify computes and stores P ∗ and initialises
an empty list ios of input-output pairs. Verify returns o∗ if l �∈ L. Otherwise,
it first parses o∗ into (o, σ), appends (l, i, o) to ios and verifies the digital
signature σ using prms and (P ∗, filter[l](ios)). If parsing or verification fails,
Verify outputs ⊥. If not, then Verify outputs o.

Correctness of our LAC scheme is clear – a detailed analysis is in the full
version [3].

Theorem 1 (LAC scheme security). The LAC scheme presented above pro-
vides secure attestation if the underlying MAC scheme Π and signature scheme Σ
are existentially unforgeable. Furthermore, it unconditionally ensures minimum
leakage.

The proof of this theorem generalizes that of basic attestation schemes in [4] and
can be found in the full version [3]. All attested outputs are bound to a partial
execution trace that contains the entire I/O sequence associated with the corre-
sponding attested label, so all messages accepted by Verify must exist as a prefix for
a remote trace of some instance of P ∗. The adversary can only cause an inconsis-
tency in T � T ′ if the signature verification performed by Verify accepts a message
of label l ∈ L∗ that was never authenticated by an IEE running P ∗. However, in
this case the adversary either breaks the MAC scheme (and dishonestly executing
Attest), or breaks the signature (directly forging attested outputs).

5 Secure Computation with IEEs

Functionalities. We want to securely execute a functionality F defined by a
four-tuple (n,F, Lin, Lout), where F is a deterministic stateful transition function
that takes inputs of the form (id, i). Here, id is a party identifier, which we assume
to be an integer in the range [1..n], and n is the total number of participating
parties. On each transition, F produces an output that is intended for party id, as
well as an updated state. We associate to F two leakage functions Lin(k, i, st) and
Lout(k, o, st) which define the public leakage that can be revealed by a protocol
about a given input i or output o for party k, respectively; for the sake of
generality, both functions may depend on the internal state st of the functionality,
although this is not the case in the examples we consider in this paper. Arbitrary
reactive functionalities formalized in the Universal Composability framework can

488 R. Bahmani et al.

be easily recast as a transition function such as this. The upside of our approach is
that one obtains a precise code-based definition of what the functionality should
do (this is central to our work since these descriptions give rise to concrete
programs); the downside is that the code-based definitions may be less clear
to a human reader, as one cannot ignore the tedious book-keeping parts of the
functionality.

Execution model. We assume the existence of a machine M allowing for
the usage of isolated execution environments, as defined in Sect. 2. In secure
computation terms, this machine should not be seen as an ideal functionality that
enables some hybrid model of computation, but rather an additional party that
comes with a specific setup assumption, a fixed internal operation, and which
cannot be corrupted. Importantly, all interactions with M and all the code that
is run in M but outside IEEs is considered to be adversarially controlled.

Syntax. A protocol π for functionality F is a seven-tuple of algorithms as
follows:

– Setup – This is the party local set-up algorithm. Given the security parameter,
the public parameters prms for machine M and the party’s identifier id, it
returns the party’s initial state st (incluing its secret key material) and its
public information pub.

– Compile – This is the (deterministic) code generation algorithm. Given the
description of a functionality F, and public parameters (prms,Pub) for both
the remote machine and the entire set of public parameters for the partici-
pating parties, it generates the instrumented program that will run inside an
IEE.

– Remote – This is the untrusted code that will be run in M and which ensures
the correctness of the protocol by controlling its scheduling and input col-
lection order. It has oracle access to M and is in charge of collecting inputs
and delivering outputs. Its initial state describes the order in which inputs of
different parties should be provided to the functionality.

– Init – This is the party local protocol initialization algorithm. Given the
party’s state st produced by Setup and the public information of all par-
ticipants Pub it outputs an uptated state st. We note that a party can choose
to engage in a protocol by checking if the public parameters of all parties are
correct and assigned to roles in the protocol that match the corresponding
identities.

– AddInput – This is the party local input providing algorithm. Given the party’s
current state st and an input in, it outputs an uptated state st.

– Process – This is the party local message processing algorithm. Given its
internal state st, and an input message m, it runs the next protocol stage,
updates the internal state and returns output message m′.

– Output – This is the party local output retrieval algorithm. Given internal
state st, it returns the current output o.

Secure Multiparty Computation from SGX 489

Intuitively such a protocol is correct if it can support any execution schedule
whilst evaluating the functionality correctly. A precise definition is provided in
the full version [3].

Security. As is customary in secure computation models, we take the ideal
world versus real world approach to define security of a protocol. Our security
model is presented in Fig. 3, and is described as follows. In the real world, the
adversary interacts with an IEE-enabled machine M under adversarial control
and oracles SetInput, GetOutput and Send providing it with the locally run part of
the protocol. In the ideal world, the adversary is presented with 1. a simulator S
emulating the remote machine, the setup phase, and the Send oracle 2. idealised
oracles SetInput, GetOutput. The idealised oracles only do book-keeping of which
input should be transmitted next and which output should be retrieved next for
each honest party. S gets given oracle access to a functionality evaluation oracle
Fun that consumes the next input of a party (defined in SetInput if the party
is honest, passed as input otherwise) and sets the next output for this party,
returning the leakage of the input and output if the party is honest, and the full
output otherwise. A protocol is deemed secure if there exists a ppt simulator
such that no ppt adersary can distinguish the two worlds.

Fig. 3. Real and ideal security games.

490 R. Bahmani et al.

Definition 3. We say π is secure for F if, for any ppt adversary A, there exists
a ppt simulator S such that the following definition of advantage is a negligible
function in the security parameter.

|Pr[RealF,π,A,M(1λ) ⇒ b = 1] − Pr[IdealF,π,A,S(1λ) ⇒ b = 1] |
Succinctly, our model is inspired in the UC framework, and can be derived

from it when natural restrictions are imposed: PKI, static corruptions, and a dis-
tinguished non-corruptible party modeling an SGX-enabled machine.4 A security
proof for a protocol in our model can be interpreted as translation of any attack
against the protocol in the real world, as an attack against the ideal functional-
ity in the ideal world. The simulator performs this translation by presenting an
execution environment to the adversary that is consistent with what it is expect-
ing in the real world. It does this by simulating the operations of the Load, Run
and Send oracles, which represent the operation of honest parties in the proto-
col. While the adversary is able to provide the inputs and read the outputs for
honest parties directly from the functionality, the simulator is only able obtain
partial leakage about this values via the Lin and Lout functions. Conversely, it
can obtain the functionality outputs for corrupt parties via the Fun oracle and,
furthermore, it is also able to control the rate and order in which all inputs
are provided to the functionality. Were this not the case, the adversary would
be able to distinguish the two worlds by manipulating scheduling in a way the
simulator could not possibly match.

6 A New MPC Protocol from SGX

Fig. 4. Boxing using authenticated
encryption

In this section we describe our secure mul-
tiparty computation protocol based on LAC
that works for any functionality. The proto-
col starts by running bootstrap code in an
isolated execution environment in the remote
machine; the code exchanges keys with each
of the participants in the protocol. These key
exchange programs are composed in paral-
lel, as seen in Sect. 2. We reuse the notion of
AttKE (key exchange for attested computa-
tion) from [4] which provides the right notion
of key exchange security in this context. Once
this bootstrap stage is concluded, the code of
the functionality starts executing. The func-
tionality uses the secure channels established before to ensure that the inputs
and outputs are private and authenticated. The security of this protocol relies
on a utility theorem similar to that of [4] for the use of key exchange in the
context of attestation.
4 This particular choice in our model has implications for the composability properties

of our results, as discussed in the related work section.

Secure Multiparty Computation from SGX 491

Theorem 2. (Local AttKE utility). If the AttKE is correct and secure, and
the LAC protocol is correct, secure and ensures minimal leakage, then for all
ppt adversaries in the labelled utility experiment: the probability that the adver-
sary violates the AttKE two-sided entity authentication is negligible; and the key
secrecy advantage 2 · Pr[guess] − 1 is negligible.

This theorem shows that, under the specific program composition pattern that
we require for our MPC protocol, which guarantees AttKE isolation from other
programs, each party obtains a secret key that is indistinguishable from a random
string. The detailed labelled utility experiment and the theorem proof can be found
in the full version [3]. It follows that the key can be used to construct a secure
channel that connects it to code emulating the functionality within an IEE.

Boxing using authenticated encryption. As explained above, after the
bootstrapping stage of our protocol, we run the ideal functionality within an iso-
lated execution environment. We implement this part of the execution using the
boxing construction shown in Fig. 4. The name comes by analogy with placing
the functionality within a box, which parties can access via secure channels. The
labelled program Box〈F ,Λ〉 is parametrized by a functionality F for n parties and
a secure authenticated encryption encryption scheme Λ. Its initial state is assumed
to contain n symmetric keys compatible with Λ, denoted sk1 to skn (one for each
participating party) and the empty initial state for the functionality stF. The Box
expects encrypted inputs i∗ under a label l identifying the party providing the
input. These are then decrypted using the respective key skl and provided to F .
The value returned by the functionality is encrypted using the same skl and is then
returned. To avoid replays of encrypted messages, we keep one sequence number
seqid per communicating party id.

The Protocol. Building on top of a LAC scheme, an AttKE scheme and our
Box construction we define a general secure multiparty computation protocol
that works for any (possibly reactive) functionality F. The core of the protocol
is the execution of an AttKE for each participant in parallel, followed by the
execution of the functionality F on the remote machine, under a secure channel
with each participant as specified in the Box construct. More precisely:

– Setup derives the code for a remote key exchange program RemKE using the
AttKE setup procedure. This code (which intuitively includes cryptographic
public key material) is set to be the public information for this party. The
algorithm also stores various parameters in the local state for future usage.

– Compile uses the LAC compilation algorithm on a program that results from
the parallel composition of all the remote key exchange programs for all par-
ties, which is then sequentially composed with the boxed functionality.

– Init locally reconstructs the program that is intended for remote execution,
as this is needed for attestation verification. The set of labels that define the
locally recovered trace is set to the pair ((p, (id, ε)), (q, id)), corresponding to
the parts of the remote trace that are relevant for this party, namely its key
exchange and its inputs/outputs.

492 R. Bahmani et al.

– Process is split into two stages. In the first stage it uses LAC with attested
labels of the form (p, (id, ε)) to execute AttKE protocol and establish a secure
channel with the remote program. In the second stage, it uses non-attested
labels of the form (q, id), and it provides inputs to the remote functionality
(on request) and recovers the corresponding outputs when they are delivered.

– Output reads the output in the state of the participant and returns it.
– AddInput adds an input to the list of inputs to be transmitted by the partic-

ipant.

Pseudo code of the protocol as well as formal details of the (untrusted)
scheduling algorithm can be found in the full version [3].

For proving security, we restrict the functionalities we consider to a par-
ticular leakage function: size of inputs/outputs. We say that a functionality
(n,F, Lin, Lout) leaks size if it is such that Lin and Lout return the length of
the inputs/outputs (Lin(k, x, st) = Lout(k, x, st) = |x| for every k, x, st).

Theorem 3. If LAC is a correct and secure LAC scheme, AttKE is a secure
AttKE scheme and Λ a secure authenticated encryption scheme, then the protocol
described in this Section is correct and secure for any functionality that leaks size.

Proof Sketch. We build the required simulator S as follows. For dishonest
parties, the simulator executes the protocol normally while for the honest par-
ties instead of encrypting the inputs/outputs the simulator encrypts dummy
messages of the correct length (obtained through the leakage function) under
freshly generated keys.

We sketch a proof of indistinguishability between the real and ideal worlds.
The full proof can be found in the full version [3]. The proof consists of 3 hops,
the first is a hybrid argument over the honest parties. In this hybrid argument
one gradually replaces the key derived by each honest party by a random one. In
each step, the utility theorem is used to show that this change cannot be noticed
by the adversary. In the second hop, we replace the encrypted inputs/outputs
for honest parties by encrypted dummy payloads of the correct length. This hop
is correct by the indistinguishability of encrypted ciphertexts. After this game
hop, the resulting game is identical until bad to the ideal world, where the bad
event corresponds to the simulator aborting due to an inconsistent message being
accepted as the next undelivered input or output. Due to the use of sequence
numbers, this bad event can be reduced to the authenticity of the encryption
scheme.

7 Implementation

We provide an implementation of our protocol sgx-mpc-nacl relying on NaCl for
the cryptographic library and Intel SGX for the IEEs. We use elliptic curves for
both the key exchange (Diffie-Hellman) and signatures, and a combination of
the Salsa20 and Poly1305 encryption and authentication schemes [8] for authen-
ticated encryption. Our implementation relies on Intel’s Software Development

Secure Multiparty Computation from SGX 493

Kit for dealing with the SGX low-level operations. These include loading code
into an IEE (our Load abstraction), calling a function within the IEE (our
Run abstraction), and constructing an attested message (first getting a MAC’ed
message within the IEE, and using the quoting enclave to convert it into a sig-
nature). It employs the LAC scheme proposed here, and include wrappers that
match our abstractions of signatures and authenticated encryption. These are
then used to construct the bootstrapping protocol (AttKE) that enables each
party to establish an independent secret key and secure channel to communicate
with the Box construction running inside the IEE. Finally, our implementation
of the Box is agnostic of the intended functionality, and can be linked to arbi-
trary functionality implementations, provided that these comply with a simple
labelled I/O interface. The top-level interface to our protocol includes the code
that runs inside the IEE, the code that runs outside the IEE in the remote
machine for book-keeping operations and the client-side code that bootstraps a
secure channel and then sends/receives messages from the functionality.

We compare our implementation with measurements we performed using
the ABY framework [19]. We chose ABY for comparison, as we could evaluate
it on the same platform we used for assessing our protocol, therefore avoiding
differences due to performance disparities of heterogeneous evaluation platforms.
Although it is specific to the two-party secure computation setting, ABY is
representative of state-of-the-art MPC implementations and we expect results
for other frameworks such as Sharemind [16] and SPDZ [18] to lead to similar
conclusions; indeed, the crux of our performance gains resides in the fact that
our solution does not require encoding the computation in circuit form, unlike
all the aforementioned protocols.5

Like our protocol, the ABY protocol has two phases: a preparation phase and
an online phase. The preparation phase comprises the key exchange between the
input parties by means of oblivious transfer (OT), and generation of the garbled
circuit (GC) representing the desired function. In the online phase the GC gets
evaluated and the result is sent back to the output party. In our protocol, the
preparation phase is used to establish a secure channel between the IEE and
the input parties. The online phase of our protocol comprises the decryption of
inputs in the Box component, the evaluation of the payload function, and the
encryption of the results, again by the Box component.

We evaluated the performance of four different secure two-party computation
use cases (Table 1): AES, millionaire’s problem, private set intersection and ham-
ming distance. In comparison to ABY, the preparation phase and online phase
are shorter with sgx-mpc-nacl, and consequently the overall runtime is faster
as well. In general, sgx-mpc-nacl is faster for all the testing computations per-
formed. However, the gains are considerably more noticeable when we increase
with input size and computation. This has the highest significance on evaluation
of the private set intersection with the largest input size (1 mill.), where our
implementation is roughly 300 times faster.

5 We also note that ABY assumes a semi-honest adversary, which is weaker than the
one we consider; but still our performance gains are significant.

494 R. Bahmani et al.

Table 1. Clockwisely, starting from upper left: hamming distance, AES, millionaire’s
problem and private set intersection

Phase Preparation (ms) Online (ms) Total (ms)
Protocol ABY Ours ABY Ours ABY Ours

In
pu
t
si
ze

(b
it
s
)

160 196.3 115.7 0.752 0.050 197.1 117.75
1,600 196.7 115.7 1.819 0.302 198.5 116.00

16,000 201.6 115.7 13.14 2.798 214.7 118.50
160,000 226.2 115.2 144.4 27.77 370.6 142.97

Phase ABY Ours
Preparation (ms) 197.9 115.84
Online (ms) 3.249 0.661
Total (ms) 201.1 116.50

Phase Preparation Online Total
Protocol ABY Ours ABY Ours ABY Ours

Se
ts
iz
e

100 224.8 115.8 1.084 0.043 225.9 115.84
1000 368.1 115.8 2.168 0.199 370.3 116.00

10,000 1442.2 115.8 12.88 1.758 1455.1 117.56
100,000 10,698.7 115.7 109.5 17.39 10,808.2 133.09

1,000,000 84,096.6 115.7 1616.0 173.1 85,712.6 288.80

Phase ABY Ours
Preparation (ms) 196.3 127.7
Online (ms) 0.404 0.024
Total (ms) 196.7 127.7

Side channels and software resilient against timing attacks. Recent
works [15,38] have pointed out that IEE-enabled systems such as Intel’s SGX
do not offer more protection against side-channel attacks than traditional micro-
processors. This is a relevant concern, since the IEE trust model which we also
adopt in this paper admits that the code outside IEEs is potentially malicious
and that the machine is under the control of an untrusted party. We believe that
there are two aspects to this problem that should be considered separately. The
first aspect is the production of the IEE-enabled hardware/firmware itself and
the protection of the long-term secrets used by the attestation security module. If
the computations performed by the attestation infrastructure itself are vulnera-
ble, then there is nothing that can be done at the protocol design/implementation
level. This aspect of trust is within the remit of the manufacturers.

An orthogonal issue is the possibility that software running inside an IEE
leaks part of its state or short-term secrets via side channels. One should dis-
tinguish between software observations and hardware/physical observations. In
the former, software co-located in the machine observes timing channels based
on memory access patterns, control flow, branch prediction, cache-based based
attacks [15], page-fault side channels [38], etc. Protection against these side-
channel attacks has been widely studied in the practical crypto community,
where a consensus exists that writing so-called constant-time software is the
most effective countermeasure [7,30]. As mentioned above, constant-time soft-
ware has the property that the entire sequence of memory addresses (in both
data and code memory) accessed by a program can be predicted in advance from
public inputs, e.g., the length of messages. When it comes to hardware/physical
side-channel attacks such as those relying on temperature measurements, power
analysis, or electromagnetic radiation, the effectiveness of software countermea-
sures is very limited, and improving hardware defenses again implies obtaining
additional guarantees from the equipment manufacturer.

Secure Multiparty Computation from SGX 495

Our implementation sgx-mpc-nacl enforces a strict constant-time policy that is
consistent with the IEE trust model. To provide a protocol that is fully constant-
time, one must also ensure that the executed functionality is constant-time.
Recentwork in the formal verification area sheds new light how this can be achieved
over low-level code in a fully automatic way [1].

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: USENIX Security Symposium. USENIX Asso-
ciation (2016)

2. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: HASP (2013)

3. Bahmani, R., Barbosa, M., Brasser, F., Portela, B., Sadeghi, A., Scerri, G.,
Warinschi, B.: Secure multiparty computation from SGX. IACR Cryptology ePrint
Archive (2016)

4. Barbosa, M., Portela, B., Scerri, G., Warinschi, B.: Foundations of hardware-based
attested computation and application to SGX. In: 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS&P). IEEE (2016)

5. Baumann, A., Peinado, M., Hunt, G.C.: Shielding applications from an untrusted
cloud with haven. In: OSDI. USENIX Association (2014)

6. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: a system for secure multi-party
computation. In: CCS. ACM (2008)

7. Bernstein, D.J.: Cache-timing attacks on AES (2005). http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf

8. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryp-
tographic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS,
vol. 7533, pp. 159–176. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33481-8 9

9. Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A prac-
tical implementation of secure auctions based on multiparty integer computation.
In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147.
Springer, Heidelberg (2006). https://doi.org/10.1007/11889663 10

10. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from
bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS,
vol. 4968, pp. 166–178. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-68979-9 13

11. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS.
ACM (2004)

12. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

13. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

14. Catuogno, L., Dmitrienko, A., Eriksson, K., Kuhlmann, D., Ramunno, G., Sadeghi,
A.-R., Schulz, S., Schunter, M., Winandy, M., Zhan, J.: Trusted virtual domains
– design, implementation and lessons learned. In: Chen, L., Yung, M. (eds.)
INTRUST 2009. LNCS, vol. 6163, pp. 156–179. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14597-1 10

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/11889663_10
https://doi.org/10.1007/978-3-540-68979-9_13
https://doi.org/10.1007/978-3-540-68979-9_13
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-642-14597-1_10

496 R. Bahmani et al.

15. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive
(2016)

16. CYBERNETICA. Sharemind. http://sharemind.cyber.ee/
17. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential

benchmarking based on multiparty computation. IACR Cryptology ePrint Archive
(2015)

18. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

19. Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-
protocol secure two-party computation. In: NDSS. The Internet Society (2015)

20. Francillon, A., Nguyen, Q., Rasmussen, K.B., Tsudik, G.: A minimalist approach
to remote attestation. In: Proceedings of the conference on Design, Automation &
Test in Europe DATE (2014)

21. Ge, H., Tate, S.R.: A direct anonymous attestation scheme for embedded devices.
In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 16–30. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8 2

22. Gebhardt, C., Tomlinson, A.: Secure virtual disk images for grid computing. In:
APTC. IEEE (2008)

23. Gupta, D., Mood, B., Feigenbaum, J., Butler, K., Traynor, P.: Using intel software
guard extensions for efficient two-party secure function evaluation. In: Clark, J.,
Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC
2016. LNCS, vol. 9604, pp. 302–318. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53357-4 20

24. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22792-9 8

25. Henecka, W., Kögl, S., Sadeghi, A., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: CCS. ACM (2010)

26. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., del Cuvillo, J.: Using innova-
tive instructions to create trustworthy software solutions. In: HASP@ISCA. ACM
(2013)

27. Intel. software guard extensions programming reference (2014). http://software.
intel.com/sites/default/files/managed/48/88/329298-002.pdf

28. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4 7

29. Koeberl, P., Schulz, S., Sadeghi, A., Varadharajan, V.: Trustlite: a security archi-
tecture for tiny embedded devices. In: EuroSys. ACM (2014)

30. Langley, A.: Lucky thirteen attack on TLS CBC (2013). http://www.imperialviolet.
org/2013/02/04/luckythirteen.html

31. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computa-
tion system. In: USENIX Security Symposium, USENIX (2004)

32. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an execu-
tion infrastructure for tcb minimization. In: EuroSys. ACM (2008)

33. Microsoft. BitLocker drive encryption: data encryption toolkit for mobile PCS: secu-
rity analysis (2007). http://technet.microsoft.com/en-us/library/cc162804.aspx

http://sharemind.cyber.ee/
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-540-71677-8_2
https://doi.org/10.1007/978-3-662-53357-4_20
https://doi.org/10.1007/978-3-662-53357-4_20
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
http://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://doi.org/10.1007/978-3-540-72540-4_7
http://www.imperialviolet.org/2013/02/04/luckythirteen.html
http://www.imperialviolet.org/2013/02/04/luckythirteen.html
http://technet.microsoft.com/en-us/library/cc162804.aspx

Secure Multiparty Computation from SGX 497

34. Noorman, J., Agten, P., Daniels, W., Strackx, R., Herrewege, A.V., Huygens, C.,
Preneel, B., Verbauwhede, I., Piessens, F.: Sancus: Low-cost trustworthy extensi-
ble networked devices with a zero-software trusted computing base. In: USENIX
Security Symposium. USENIX Association (2013)

35. Pass, R., Shi, E., Tramèr, F.: Formal abstractions for attested execution secure
processors. IACR Cryptology ePrint Archive (2016)

36. Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz,
G., Russinovich, M.: VC3: trustworthy data analytics in the cloud using SGX. In:
2015 IEEE Symposium on Security and Privacy. IEEE (2015)

37. Smyth, B., Ryan, M., Chen, L.: Direct Anonymous Attestation (DAA): ensuring
privacy with corrupt administrators. In: Stajano, F., Meadows, C., Capkun, S.,
Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 218–231. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73275-4 16

38. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy. IEEE (2015)

https://doi.org/10.1007/978-3-540-73275-4_16

Efficient No-dictionary Verifiable Searchable
Symmetric Encryption

Wakaha Ogata1(B) and Kaoru Kurosawa2

1 Tokyo Institute of Technology, Tokyo, Japan
ogata.w.aa@m.titech.ac.jp

2 Ibaraki University, Hitachi, Japan
kaoru.kurosawa.kk@vc.ibaraki.ac.jp

Abstract. In the model of no-dictionary verifiable searchable symmet-
ric encryption (SSE) scheme, a client does not need to keep the set of
keywords W in the search phase, where W is called a dictionary. Still a
malicious server cannot cheat the client by saying that “your search word
w does not exist in the dictionary W” when it exists. In the previous
such schemes, it takes O(logm) time for the server to prove that w �∈ W,
where m = |W| is the number of keywords.

In this paper, we show a generic method to transform any SSE scheme
(that is only secure against passive adversaries) to a no-dictionary ver-
ifiable SSE scheme. In the transformed scheme, it takes only O(1) time
for the server to prove that w �∈ W.

Keywords: Searchable symmetric encryption · Verifiable · Dictionary

1 Introduction

The notion of searchable symmetric encryption (SSE) schemes was introduced
by Song et al. [25]. In the store phase, a client encrypts a set of files and an index
table by a symmetric encryption scheme, and then stores them on an untrusted
server. In the search phase, he can efficiently retrieve the matching files for a
search keyword w keeping the keyword and the files secret.

Since then, single keyword search SSE schemes [10,11,13,18,20], dynamic
SSE schemes [8,15,16,19,21,23], multiple keyword search SSE schemes [1,3,7,
14,17,27] and more [9] have been studied extensively by many researchers.

Curtmola et al. [11,12] gave a rigorous definition of privacy against honest but
curious servers. Kurosawa and Ohtaki [18,20] showed a definition of reliability
against malicious servers who may return incorrect search results to the client,
or may delete some encrypted files to save her memory space. Kurosawa and
Ohtaki [18,20] also proved a weak equivalence between the UC security and the
stand alone security (i.e., the privacy and the reliability), where the UC security
is a very strong security notion such that if a protocol Π is UC secure, then its
security is preserved under a general protocol composition operation [4].

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 498–516, 2017.
https://doi.org/10.1007/978-3-319-70972-7_28

Efficient No-dictionary Verifiable Searchable Symmetric Encryption 499

Now in the model of no-dictionary verifiable SSE scheme, a client does not
need to keep the set of keywords W in the search phase, where W is called a
dictionary. Still a malicious server cannot cheat the client by saying that “your
search word w does not exist in the dictionary W” if it exists. This model is
really practical, but it is not an easy task to prove that w �∈ W.

Recently, Taketani and Ogata [26] constructed a no-dictionary verifiable SSE
scheme. In their scheme, it takes O(N log mN) time for the server to prove that
w �∈ W, where m = |W| is the number of keywords and N is the number of
documents.

Very recently, Bost et al. [2] proposed a generic construction of no-dictionary
verifiable SSE schemes as an independent work of ours. The idea of their concrete
scheme (Algorithm 1 in [2]) is similar to that of Taketani and Ogata [26], and it
takes O(log m)+time(Search0) time for the server to prove that w �∈ W,1 where
time(Search0) is the search time in the underlying non-verifiable scheme. They
further claim that their generic construction works for dynamic SSE schemes as
well. However, they do not show how to instantiate it.

In this paper, we show a generic method to transform any SSE scheme (that is
only secure against passive adversaries) to a no-dictionary verifiable SSE scheme.
In the transformed scheme, it takes only O(1) time for the server to prove that
w �∈ W. The search time for w ∈ W remains almost the same as that of the
original SSE scheme. We also prove that the transformed scheme is UC-secure
in Appendix similarly to [18,20].

2 Verifiable Searchable Symmetric Encryption

In this section, we define a no-dictionary (verifiable) SSE scheme and its security.
Basically, we follow the notation used in [7,18,20].

– Let D = {D1, . . . , DN} be a set of documents.
– Let W ⊂ {0, 1}∗ be a set of keywords. We call W a dictionary.
– For w ∈ {0, 1}∗, define

D(w) =
{

the set of documents that contain w if w ∈ W
∅ otherwise

– Let C = {C1, . . . , CN}, where Ci is a ciphertext of Di.
– Let

C(w) = {Ci | Ci is a ciphertext of Di ∈ D(w)}. (1)

Note that C(w) = ∅ if w �∈ W.

If X is a bit string, |X| denotes the bit length of X. If X is a set, |X| denotes
the cardinality of X. “PPT” refers to probabilistic polynomial time, and “PT”
refers to polynomial time.
1 This is because the server needs to find i ∈ {1, . . . ,m} such that keyi < PRFk(w) <
keyi+1, where PRFk(w) is sent to the server by the client in the search phase,
{key1, . . . , keym} = {PRFk(wj) | wj ∈ W} is stored on the server in the store phase
and key1 < . . . < keym. PRFk denotes a pseudo-random function with key k.

500 W. Ogata and K. Kurosawa

2.1 Model

An SSE scheme has two phases, the store phase (which is executed only once)
and the search phase (which is executed a polynomial number of times). In the
store phase, the client encrypts all documents in D and stores them on the server.
In the search phase, the client sends a ciphertext of a word w, and the server
returns C(w). If there is a mechanism to verify the validity of C(w), the scheme
is called a verifiable SSE (vSSE).

Formally, a vSSE scheme consists of the following six polynomial-time algo-
rithms vSSE = (Gen, Enc, Trpdr, Search, Dec, Verify) such that

– K ← Gen(1λ): a PPT algorithm that generates a key K, where λ is a security
parameter. This algorithm is run by the client in the store phase.

– (I, C) ← Enc(K,D,W, {(w,D(w)) | w ∈ W}): a PPT algorithm that outputs
an encrypted index I and the set of encrypted documents C = {C1, . . . , CN}.
This algorithm is run by the client in the store phase. He then stores (I, C)
on the server.

– t(w) ← Trpdr(K,w): a PPT algorithm that outputs a trapdoor t(w) for
w ∈ {0, 1}∗. In no-dictionary scheme, w is not necessarily a keyword. This
algorithm is run by the client in the search phase. t(w) is sent to the server.

– (C(w),Proof) ← Search(I, C, t(w)): a PT algorithm that outputs the search
result C(w) and Proof for the validity check. This algorithm is run by the
server in the search phase. She then returns (C(w),Proof) to the client.

– accept/reject ← Verify(K, t(w), C̃,Proof): a PT algorithm that verifies the
validity of the search result C̃ based on Proof. This algorithm is run by the
client in the search phase.

– D ← Dec(K,C): a PT algorithm that decrypts C. The client applies this
algorithm to each C ∈ C̃ when Verify(K, t(w), C̃,Proof) = accept in the
search phase.

We say that a no-dictionary vSSE satisfies correctness if the following holds
for any K,D,W, {(w,D(w)) | w ∈ W} and any word w ∈ W.

– If

(I, C) ← Enc(K,D,W, {(w,D(w)) | w ∈ W}),
t(w) ← Trpdr(K,w),

(C̃,Proof) ← Search(I, C, t(w)),

then

Verify(K, t(w), C̃,Proof) = accept

{Di | Di ← Dec(K,Ci), Ci ∈ C̃} = D(w).

An (not verifiable) SSE scheme is defined by omitting Proof and Verify.

Efficient No-dictionary Verifiable Searchable Symmetric Encryption 501

2.2 Security Definition

We next define the security of no-dictionary vSSE schemes. Note that searched
word w does not need to belong to the set W.

Privacy. In a (v)SSE, the server should learn almost no information on D,W
and the search words w. Let L1(D,W) denote the information that the server
can learn in the store phase, and let L2(D,W,w, w) denote that in the search
phase, where w is the current search word and w = (w1, w2, . . .) is the list of the
past search words queried so far.

In most existing SSE schemes, L1(D,W) = (|D1|, . . . , |DN |, |W|), and
L2(D,W,w, w) consists of {j | Dj ∈ D(w)} and the search pattern

SPattern((w1, . . . , wq−1), w) = (sp1, . . . , spq−1),

where

spj =
{

1 if wj = w,
0 if wj �= w.

The search pattern reveals which past queries are the same as w.
Let L = (L1, L2). The client’s privacy is defined by using two games: a real

game Gamereal and a simulation game GameL
sim, as shown in Figs. 1 and 2,

1. Adversary A chooses (D,W) and sends them to challenger C.
2. C generates K ← Gen(1λ) and sends (I, C) ← Enc(K,D,W, {(w,D(w)) | w ∈

W}) to A.
3. For i = 1, . . . , q, do:

(a) A chooses a word wi ∈ {0, 1}∗ and sends it to C.
(b) C sends the trapdoor t(wi) ← Trpdr(K,wi) back to A.

4. A outputs bit b.

Fig. 1. Real game Gamereal

1. Adversary A chooses (D,W) and sends them to challenger C.
2. C sends L1(D,W) to simulator S.
3. S computes (I, C) from L1(D,W), and sends them to C.
4. C relays (I, C) to A.
5. For i = 1, . . . , q, do:

(a) A chooses wi ∈ {0, 1}∗ and sends it to C.
(b) C sends L2(D,W,w, wi) to S, where w = (w1, . . . , wi−1).
(c) S computes t(wi) from L2(D,W,w, wi) and sends it to C.
(d) C relays t(wi) to A.

6. A outputs bit b.

Fig. 2. Simulation game GameL
sim

502 W. Ogata and K. Kurosawa

respectively. Gamereal is played by a challenger C and an adversary A, and
GameL

sim is played by C, A and a simulator S.

Definition 1 (L-privacy). We say that a no-dictionary vSSE scheme has L-
privacy, if there exists a PPT simulator S such that

|Pr[A outputs b = 1 in Gamereal] − Pr[A outputs b = 1 in GameL
sim]| (2)

is negligible for any PPT adversary A.

Reliability. In an SSE scheme, a malicious server might cheat a client by return-
ing a false result C̃∗(�= C(w)) during the search phase. (Weak) reliability guar-
antees that the client can detect such a malicious behavior. Formally, reliability
is defined by game Gamereli shown in Fig. 3, which is played by an adversary
B = (B1,B2) (malicious server) and a challenger C. B1 and B2 are assumed to
be able to communicate freely.

(Store phase)

1. B1 chooses (D,W) and sends them to C.
2. C generates K ← Gen(1λ), and sends (I, C) ← Enc(K,D,W, {(w,D(w)) | w ∈

W}) to B2.

(Search phase) For i = 1, . . . , q, do

1. B1 chooses wi ∈ {0, 1}∗ and sends it to C.
2. C sends the trapdoor t(wi) ← Trpdr(K,wi) to B2.
3. B2 returns (C̃∗

i ,Proof
∗
i) to C.

4. C computes

accept/reject ← Verify(K, t(wi), C̃∗
i ,Proof

∗
i)

and returns D(wi)
∗ = {Di | Di ← Dec(K,Ci), Ci ∈ C̃∗

i } to B1 if the result is
accept, otherwise sends ⊥ to B1.

Fig. 3. Gamereli

Definition 2 (Reliability). We say that B wins in Gamereli if B1 receives
D(wi)∗ such that D(wi)∗ �∈ {D(wi),⊥} for some i. We say that a no-dictionary
vSSE scheme satisfies reliability if for any PPT adversary B,

Pr[B wins in Gamereli]

is negligible.

Strong reliability was also defined in [20]. In strong reliability, the server has
to answer a wrong pair (C̃∗,Proof∗)(�= (C(w),Proof)) that will be accepted in
the search phase to win the game.

Efficient No-dictionary Verifiable Searchable Symmetric Encryption 503

Definition 3 (Strong Reliability). We say that B strongly wins in Gamereli

if there exists i, such that both Verify(K, t(wi), C̃∗
i ,Proof∗i) = accept and

(C̃∗
i ,Proof∗i) �= (C(wi),Proofi) hold. We say that a no-dictionary vSSE scheme

satisfies strong reliability if for any PPT adversary B,

Pr[B strongly wins in Gamereli]

is negligible.

3 Building Blocks

3.1 Cuckoo Hashing

Cuckoo Hashing [24] is a hashing algorithm with the advantage that the search
time is constant. To store n keys, it uses two tables T1 and T2 of size m, and two
independent random hash functions h1 and h2 with the range {1, . . . , m}. Every
key x is stored at one of two positions, T1(h1(x)) or T2(h2(x)). So we need to
inspect at most two positions to search x.

It can happen that both possible places T1(h1(x)) and T2(h2(x)) of a given
key x are already occupied. This problem is solved by allowing x to throw out the
key (say y) occupying the position T1(h1(x)). Next, we insert y at its alternative
position T2(h2(y)). If it is already occupied, we repeat the above steps until we
find an empty position. If we failed after some number of trials, we choose new
hash functions and rebuild the data structure.

Let n = m(1 − ε) for some ε ∈ (0, 1). Then the above algorithm succeeds
with probability 1 − c(ε)/m + O(1/m2) for some explicit function c(·) [22]. The
expected construction time of (T1, T2) is bounded above by [22]

2n
1 − eε−1

(1 − eε−1) + ε
. (3)

3.2 Pseudo-random Function

Let R be a family of all functions f : {0, 1}∗ → {0, 1}n. We say that F : {0, 1}� ×
{0, 1}∗ → {0, 1}n is a pseudo-random function if for any PPT distinguisher D,∣∣∣Pr[k $← {0, 1}� : DF (k,·) = 1] − Pr[f $← R : Df(·) = 1]

∣∣∣
is negligibly small.

It is well known that a pseudo-random function works as a MAC which is
existentially unforgeable against chosen message attack.

4 Generic Transformation from SSE to vSSE

In this section, we show a generic method to transform any SSE (with only
privacy) to a no-dictionary verifiable SSE. Namely, in our vSSE scheme, the
server can return a proof of the search result even if the search word is not in
the dictionary used in the store phase.

504 W. Ogata and K. Kurosawa

4.1 Construction

Let (Gen0, Enc0, Trpdr0, Search0, Dec0) be an SSE scheme. We construct a no-
dictionary verifiable SSE (Gen1, Enc1, Trpdr1, Search1, Verify1, Dec1) as fol-
lows. Let F be a pseudo-random function.

– Gen1(1λ) : Run Gen0(1λ) to obtain K0. Also randomly choose a key k of F .
Output (K0, k). We write Fk(x) instead of F (k, x).

– Enc1((K0, k),D,W, {(w,D(w)) | w ∈ W}) : Let W = {w1, w2, . . . , w|W|}.
1. Run Enc0(K0,D,W, {(w,D(w)) | w ∈ W}) to obtain (I0, C). Note that

Ci ∈ C is a ciphertext of each document Di ∈ D.
2. Compute keyj ← Fk(0‖wj) for all wj ∈ W.
3. Construct cuckoo hash tables (T ′

1, T
′
2) of size |W| + 1 which store

{keyj}|W|
j=1. Let (h1, h2) be the hash functions which are used to construct

(T ′
1, T

′
2). This means that

T ′
1(h1(keyj)) = keyj or T ′

2(h2(keyj)) = keyj

for each keyj .
4. Construct two tables (T1, T2) of size |W| + 1 as follows.

For a = 1, 2, do
For i = 1, . . . , |W| + 1, do

If T ′
a(i) = keyj for some keyj = Fk(0‖wj), then

Ta(i) ← 〈keyj , Fk(a‖i‖keyj), Fk(3‖keyj‖C(wj)〉
Else

Ta(i) ← 〈null, Fk(a‖i‖null), null〉
5. Output (I = (I0, T1, T2, h1, h2), C).

We note that for each keyj = Fk(0‖wj), it holds that

T1(h1(keyj)) = 〈keyj , Fk(1‖h1(keyj)‖keyj), Fk(3‖keyj‖C(wj))〉
or

T2(h2(keyj)) = 〈keyj , Fk(2‖h2(keyj)‖keyj), Fk(3‖keyj‖C(wj))〉.
– Trpdr1((K0, k), w) : Compute key ← Fk(0‖w) and t0(w) ← Trpdr0(K0, w).

Output t(w) = (key, t0(w)).
– Search1((I0, T1, T2, h1, h2), C, t(w) = (key, token)): Retrieve

〈α1, β1, γ1〉 ← T1(h1(key)),
〈α2, β2, γ2〉 ← T2(h2(key)).

Let

C∗ =
{
Search0(I0, C, token) if key ∈ {α1, α2}
∅ otherwise

Proof =

⎧⎨
⎩

γ1 if key = α1

γ2 if key = α2

(α1, β1, α2, β2) otherwise

Output (C∗,Proof).

Efficient No-dictionary Verifiable Searchable Symmetric Encryption 505

– Verify1((K0, k), t(w) = (key, token), C∗,Proof) :
(Case 1) Proof = γ.
If γ = Fk(3‖key‖C∗), then output accept. Otherwise output reject.
(Case 2) Proof = (α1, β1, α2, β2).
If C∗ �= ∅ or key ∈ {α1, α2} or β1 �= Fk(1‖h1(key)‖α1) or β2 �=
Fk(2‖h2(key)‖α2), then output reject. Otherwise output accept.

– Dec1((K0, k), Ci) : Output Di ← Dec0(K0, Ci).

4.2 Example

Suppose that there are 7 keywords W = {w1, . . . , w7} and 8 ciphertexts C =
{C1, . . . , C8} such that C(wj) are given in Table 1. In the same table, h1(keyj)
and h2(keyj) are the hash values which are used to construct the cuckoo hash
tables (T ′

1, T
′
2) for the set {keyj = Fk(0‖wj) | j = 1, . . . , 7}.

Table 1. Example

Keyword wj C(wj) h1(keyj) h2(keyj)

w1 C1, C4, C5, C8 6 1

w2 C2 2 4

w3 C1, C4 6 4

w4 C1, C3, C7 6 3

w5 C2, C6 7 8

w6 C5, C8 7 6

w7 C1 2 8

Then T1 and T2 are constructed as shown in Table 2.

(Case 1) Suppose that a client searches for a keyword w3 ∈ W.

1. The client sends trapdoor (key3, t0(w3)) to the server.
2. Since h1(key3) = 6, h2(key3) = 4, the server retrieves

〈α1, β1, γ1〉 = T1(6) = 〈key3, Fk(1‖6‖key3), Fk(3‖key3‖C1, C4)〉,
〈α2, β2, γ2〉 = T2(4) = 〈key2, Fk(2‖4‖key2), Fk(3‖key2‖C2)〉

from T1 and T2.
Because α1 = key3, the server obtains the search result

C∗ = (C1, C4) ← Search0(I0, C, t0(w3))
Proof = γ1 = Fk(3‖key3‖C1, C4).

and returns (C∗,Proof) to the client.
3. The client verifies if γ1 = Fk(3‖key3‖C∗).

506 W. Ogata and K. Kurosawa

Table 2. Tables (T1, T2)

(Case 2) Suppose that the client searches for w �∈ W.

1. The client computes key ← Fk(0‖w) and t0(w) ← Trpdr0(K0, w). He sends
t(w) = (key, t0(w)) to the server.

2. Suppose that h1(key) = 5 and h2(key) = 3. Then the server retrieves

〈α1, β1, γ1〉 = T1(5) = 〈null, Fk(1‖5), null〉,
〈α2, β2, γ2〉 = T2(3) = 〈key4, Fk(2‖3‖key4), Fk(3‖key4‖C1, C3, C7)〉.

Because key �∈ {α1, α2}, the server returns C∗ = ∅ and

Proof = (α1, β1, α2, β2) = (null, Fk(1‖5), key4, Fk(2‖3‖key4)).

3. The client verifies if key �∈ {α1, α2}, β1 = Fk(1‖h1(key)‖α1) and β2 =
Fk(2‖h2(key)‖α2).

4.3 Efficiency

In our transformed scheme,

– In the store phase, the client takes the expected time O(|W|) + time(Enc0)
to run Enc1 from Eq. (3).

– In the search phase, the search time for w ∈ W is almost the same as that of
the original scheme.

– The server takes only O(1) time to prove that w �∈ W because the search
time is constant in cuckoo hashing.

Efficient No-dictionary Verifiable Searchable Symmetric Encryption 507

To prove that w �∈ W, in the method of [26], the server takes O(N log N |W|)
time. In the concrete method (Algorithm 1+2) in [2], it takes O(log |W|) +
time(Search0).

4.4 Security

Theorem 1. If the SSE scheme has L = (L1, L2)-privacy and F is a pseudo-
random function, then our vSSE scheme has L′ = (L′

1, L
′
2)-privacy such that

L′
1(D,W) = L1(D,W) ∪ {|W|},

L′
2(D,W,w, wi) = L2(D,W,w, wi) ∪ {SPattarn(w, wi), [wi ∈ W]}.

In the all existing SSE schemes, |W| ∈ L1(D,W) and {SPattarn(w, wi),
[wi ∈ W]} ⊆ L′

2(D,W,w, wi). (There may be some exceptions which use oblivi-
ous RAM. But such SSE schemes are inefficient.) So, the client’s privacy in our
vSSE scheme has the same level as that of the underlying SSE scheme.

Proof. Let S0 be a simulator of the underlining SSE scheme which has (L1, L2)-
privacy. We construct a simulator S of our vSSE scheme which achieves (L′

1, L
′
2)-

privacy as follows.

(Store phase). In Gamesim, S takes L′
1(D,W) = L1(D,W)∪{|W|} as an input.

S runs S0(L1(D,W)) and gets its output (I0, C). Next S constructs T1 and T2

as follows. Note that the size of each T1, T2 is m = |W| + 1.

– Choose random strings key′
1, . . . , key′

|W|, and construct the cuckoo hash tables
(T ′

1, T
′
2) which store (key′

π(1), . . . , key′
π(|W|)), where π is a random permuta-

tion. Let h1, h2 be the two hash functions which are used to construct (T ′
1, T

′
2).

– For a = 1, 2, do
For i = 1, . . . , |W| + 1, do

If T ′
a(i) = key′

j for some j, then
choose two random strings r, r′ and Ta(i) ← 〈key′

j , r, r
′〉

Else
choose a random string r and Ta(i) ← 〈null, r, null〉

S sends (I0, T1, T2, h1, h2) and C to the challenger. Let counter ← 1.

(Search phase). In the ith search phase, S takes L′
2(D,W,w, w∗) = L2(D,W,

w, w∗) ∪ {SPattarn(w, w∗), [w∗ ∈ W])} as an input. S first obtains t0(w∗) by
running S0(L2(D,W,w, w∗)), and sets

key∗
i ←

⎧⎨
⎩

key′
counter if spj = 0 for all j and w∗ ∈ W,

key∗
j if spj = 1 for some j,

a random string otherwise.

counter ←
{

counter + 1 if spj = 0 for all j and w∗ ∈ W,
counter otherwise.

S outputs (key∗
i , t0(w∗)) as a simulated trapdoor.

508 W. Ogata and K. Kurosawa

We will prove that there is no adversary A who can distinguish between
Gamereal and Gamesim. We consider a game sequence (Gamereal,Gamemid,
Gamesim). Gamemid is the same as Gamereal except that all values of Fk(·)
are replaced with random strings. For i ∈ {real,mid, sim}, define

Pi = Pr[A outputs b = 1 in Gamei].

Then |Preal − Pmid| is negligible because F is a pseudorandom function. We
can also see that |Pmid − Psim| is negligible from the (L1, L2)-privacy of the
underlying SSE scheme. Consequently, |Preal − Psim| is negligible. ��
Theorem 2. Our vSSE scheme satisfies strong reliability if F is a pseudoran-
dom function.

Proof. We look at the pseudorandom function F as a MAC. Suppose that there
exists an adversary B = (B1,B2) who can break the strong reliability of our
vSSE scheme, and B runs the search phase q times. Let (C̃∗

i , ˜Proofi) be B2’s
response to t(wi) = (keyi, t0(wi)) in the ith search phase, and let

(C(wi),Proofi) = Search1(I, C, t(wi)).

From the definition, B strongly wins if there exists i ∈ {1, . . . , q} such that

(C̃∗
i , ˜Proofi) �= (C(wi),Proofi)

and Verify1(K, (keyi, t0(wi)), C̃∗
i , ˜Proofi) = accept. (4)

By using B, we will construct a forger F against the MAC, where F has
oracle access to Fk.

F at first randomly chooses J ∈ {1, . . . , q}. Then, F runs B by playing the
role of the challenger C (see Fig. 3) until the (J −1)th search phase. During this
simulation, when C needs to compute Fk(x) for some x, F queries x to its oracle
Fk to obtain Fk(x).

In the Jth search phase, we have the following three cases.

(1) ˜ProofJ = γ̃.
In this case, F outputs m′ = (3‖keyJ‖C̃∗

J) and tag′ = γ̃ as a forgery of the
MAC F .

(2) ProofJ = γ and ˜ProofJ = (α̃1, β̃1, α̃2, β̃2).
Since ProofJ = γ, there exists a ∈ {1, 2} such that Ta(ha(keyJ)) = 〈keyJ ,
Fk(a‖ha(keyJ)‖keyJ), . . .〉. For this a, F outputs m′ = (a‖ha(keyJ)‖α̃a) and
tag′ = β̃a as a forgery.

(3) ProofJ = (α1, β1, α2, β2) and ˜ProofJ = (α̃1, β̃1, α̃2, β̃2).
If there exists a ∈ {1, 2} s.t. (αa, βa) �= (α̃a, β̃a), then, F outputs m′ =
(a‖ha(keyJ)‖α̃a) and tag′ = β̃a as a forgery. Otherwise F outputs “fail.”

Efficient No-dictionary Verifiable Searchable Symmetric Encryption 509

Now F succeeds in forgery if B strongly wins and F correctly predicts i which
satisfies Eq. (4), i.e., Eq. (4) holds in i = J . Since F predicts J correctly with
probability 1/q, we obtain that

Pr[F succeeds in forgery] ≥ Pr[B strongly wins in Gamereli] × 1
q
. ��

We prove the UC-security of the transformed scheme in Appendix.

A UC-Security for No-Dictionary vSSE

If a protocol is secure in the universally composable (UC) security framework,
its security is maintained even if the protocol is combined with other protocols
[4–6]. The UC security is defined based on ideal functionality F . Kurosawa and
Ohtaki introduced an ideal functionality of vSSE [18,20]. Taketani and Ogata
[26] generalized it in order to handle the general leakage functions L = (L1, L2)
as shown in Fig. 4.

Store: Upon receiving the input (store, sid,D1, . . . , DN ,W) from the dummy
client, verify that this is the first input from the client with (store, sid).
If it is, then store D = {D1, . . . , DN}, and send L1(D,W) to Suc. Otherwise,
ignore this input.

Search: Upon receiving (search, sid, w) from the client, send L2(D,W,w, w) to
Suc. Note that in a no-dictionary vSSE scheme, the client may send w .
If Suc returns accept, then send D(w) to the client. If Suc returns reject,
then send ⊥ to the client.

Fig. 4. Ideal functionality FL
vSSE

In the no-dictionary verifiable SSE setting, the real world is described as
follows. We assume a real adversary, Auc, can control the server arbitrarily, and
the client is always honest. For simplicity, we ignore session id.

In the store phase, an environment, Z, chooses (D,W) and sends them
to the client. The client computes K ← Gen(1λ) and (I, C) ← Enc(K,D,W,
{(w,D(w)) | w ∈ W}), and sends (I, C) to the server. The client stores K 2 and
the server stores (I, C). In the search phase, Z chooses a word w ∈ {0, 1}∗ and
sends it to the client. The client computes t(w) ← Trpdr(K,w) and sends it to
the server. The server, who may be controlled by real adversary Auc, returns
(C̃∗, ˜Proof) to the client. If Verify(K, t(w), C̃∗, ˜Proof) outputs accept, then the
client decrypts all C̃i ∈ C̃∗, and sends the list of plaintexts D̃(w) = (D̃1, D̃2, . . .)
to Z. If Verify(K, t(w), C̃∗, ˜Proof) outputs reject, then ⊥ is sent to Z. After
the store phase, Z outputs a bit b.
2 he may forget D,W, C, I.

510 W. Ogata and K. Kurosawa

On the other hand, the ideal world is described as follows.
In the store phase, Z sends (D,W) to the dummy client. The dummy client

sends (store,D,W) to functionality FL
vSSE (see Fig. 4). In the search phase, Z

sends w to the dummy client. The dummy client sends (search, w) to FL
vSSE ,

and receives D(w) or ⊥ (according to ideal adversary Suc’s decision), which is
relayed to Z. At last, Z outputs a bit b

In both worlds, Z can communicate with Auc (in the real world) or Suc (in
the ideal world) in an arbitrary way.

UC-security of no-dictionary vSSE scheme is defined as follows.

Definition 4 (UC-security with leakage L). We say that no-dictionary
vSSE scheme has universally composable (UC) security with leakage L against
non-adaptive adversaries, if for any PPT real adversary Auc, there exists a PPT
ideal adversary (simulator) Suc, and for any PPT environment Z,

|Pr[Z outputs 1 in the real world] − Pr[Z outputs 1 in the ideal world]|

is negligible.

We can show a weak equivalence of UC security and privacy with reliability.

Theorem 3. If a no-dictionary vSSE scheme satisfies L-privacy and strong reli-
ability for some L, it has UC security with leakage L against non-adaptive adver-
saries.

Proof. Assume that the scheme satisfies L-privacy and strong reliability.
We consider four games Game0, . . . ,Game3. Let

pi = Pr[Z outputs 1 in Gamei]

for a fixed Auc. Game0 is equivalent to the real world in the definition of UC
security. So,

p0 = Pr[Z outputs 1 in the real world].

Game1 is different from Game0 in the following points.

– In the store phase, the client records (D,W, I) as well as the key K.
– In the search phase, if Auc instructs the server to return (C̃∗, ˜Proof) such

that (C̃∗, ˜Proof) �= (C∗,Proof) ← Search(I, C, t(w)), then the server returns
reject to the client. Otherwise the server returns accept.

– If the client receives accept from the server, he sends D(w) to Z. Otherwise,
he sends ⊥ to Z.

Game1 is the same as Game0 until Auc instructs the server to return (C̃∗, ˜Proof)
such that

Verify(K, t(w), C̃∗, ˜Proof) = accept and (C̃∗, ˜Proof) �= (C∗,Proof).

Efficient No-dictionary Verifiable Searchable Symmetric Encryption 511

The above condition is the (strongly) winning condition of B in Gamereli. So,
we can obtain

|p0 − p1| ≤ max
B

Pr[B strongly wins in Gamereli].

From the assumption, |p0 − p1| is negligibly small.
In Game2, we split the client into two entities, client1 and client2, as follows.

(See Fig. 5(a).)

Z

client1

client2
server

Auc

(a)

Z

client1

client2
server

Auc

S

FL
vSSE

Suc

(b)

Fig. 5. (a) Game2, (b) Game3

– Both client1 and client2 receive all input from Z.
– In the store/search phase, only client2 sends (I, C)/t(w) to the server.
– In the search phase, only client1 receives accept/reject from the server, and

sends D(w)/⊥ to Z.

This change is conceptual only. Therefore p2 = p1.
Now, we look at (Z, client1, server,Auc) and client2 as an adversary A and a

challenger C in the real game of privacy, respectively. Then, from the assumption,
there exists a simulator S such that Eq. (2) is negligible.

In Game3, client2 plays the role of the challenger in the simulation game of
privacy; he sends L1(D,W) or L2(D,W,w, w) to the simulator S, and then S
sends its outputs (the simulated message) to the server. (See Fig. 5(b).) Again,
we look at (Z, client1, server,Auc) as A. Then Game3 is the simulation game
and Game2 is the real game. Therefore

|p3 − p2| ≤ |Pr[A outputs 1 in Gamereal] − Pr[A outputs 1 in GameL
sim]|,

and it is negligible from the assumption.
In Game3, (client1, client2) behaves exactly the same way as FL

vSSE in the
ideal world. So, considering (S, server,Auc) as a simulator Suc, we obtain

p3 = Pr[Z outputs 1 in the ideal world]

for this simulator. Consequently, we can say that for any Auc there
exists Suc such that |p0 − p3| = |Pr[Z outputs 1 in the real world] −
Pr[Z outputs 1 in the ideal world]| is negligible. ��

512 W. Ogata and K. Kurosawa

Theorem 4. If a no-dictionary vSSE scheme has UC security with leakage L
against non-adaptive adversaries for some L, it has satisfies L-privacy and reli-
ability.

This theorem is shown by the following lemmas.

Lemma 1. If vSSE has UC security with leakage L against non-adaptive adver-
saries for some L, vSSE has satisfies L-privacy.

Proof. Assume that the scheme has UC security with leakage L.
Consider a real adversary Auc

0 who sends Z all inputs that the corrupted
server receives from the client. That is, (I, C) and t(w) are sent to Z in the store
phase and the search phase, respectively. From the assumption, there exists an
ideal adversary Suc

0 for such Auc
0 , and any environment Z cannot distinguish the

real world and the ideal world (Fig. 6). That is,

|Pr[Z outputs 1 in the real world] − Pr[Z outputs 1 in the ideal world]|
is negligible for any Z. Note that Suc

0 can compute and send simulated (Ĩ, C̃)
and t̃(w) to Z.

Z

client server

Auc
0

(a)

Z

dummy
client

FL
vSSE

Suc
0

(b)

Fig. 6. (a) Auc
0 , (b) Suc

0

Now we consider restricted environments Z0 that do not use the answer
from the client/dummy client to distinguish the worlds. Namely, in the
real world, Z0 sends (D,W) and w to the client and receives (I, C) ←
Enc(K,D,W, {(w,D(w)) | w ∈ W}) and t(w) ← Trpdr(K,w) from Auc

0 in the
store phase and the search phase, respectively, and outputs a bit at last. This
situation is exactly the same as A in Gamereal (Fig. 7(a)). On the other hand,
in the ideal world, Z0 sends (D,W) and w to the dummy client and receives
(Ĩ, C̃) and t̃(w) from Suc

0 in each phase, and outputs a bit. This situation is
exactly the same as A in Gamesim (Fig. 7(b)). Therefore,

max
A

| Pr[A outputs 1 in Gamereal] − Pr[A outputs 1 in Gamesim]|
= max

Z0
| Pr[Z0 outputs 1 in the real world] − Pr[Z0 outputs 1 in the ideal world]|

≤ max
Z

| Pr[Z outputs 1 in the real world] − Pr[Z outputs 1 in the ideal world]|
= negl. ��

Efficient No-dictionary Verifiable Searchable Symmetric Encryption 513

Z0

client server

Auc
0

C

(a)

Z0

dummy
client

FL
vSSE

Suc
0

(C,S)

(b)

Fig. 7. Z0 in (a)real and (b)ideal world

Lemma 2. If vSSE has UC security with leakage L against non-adaptive adver-
saries for some L, vSSE has satisfies reliability.

Proof. We fix an arbitrary adversary B = (B1,B2) of reliability game. Consider
a real adversary Auc

B such that Auc
B interacts with the client like B2 (by control-

ling the server), while Auc
B interacts with Z like B1 (Fig. 8(a)). More precisely, at

the beginning of each phase, Auc
B suggests which (D,W) or w the environment

should send to the client.

Z

client server

A1

A2

Auc
(A1,A2)

(a)

Z1

client server

A1

A2

(b)

Fig. 8. (a) Auc
B , (b) Z1

If the scheme has UC security with leakage L, there exists an ideal adversary,
Suc
B , and any environment Z cannot distinguish the real world and the ideal

world.

514 W. Ogata and K. Kurosawa

Next, consider a simple environment Z1 performs as follows (Fig. 8(b)). At
the beginning of each phase, Z1 sends the client/dummy client (D,W) or w
suggested by Auc

B . When Z1 receives a message from the client/dummy client,
Z1 relays it to Auc

B . If Z1 receives D̃(w) �∈ {D(w),⊥} as a reply of w, then
outputs 1.

It is clear that

Pr[Z1 outputs 1 in the real world] = Pr[B wins in Gamereli].

On the other hand, in the ideal world, Z1 never receives D̃(w) �∈ {D(w),⊥} from
FL

vSSE through the client. Therefore,

Pr[Z1 outputs 1 in the ideal world] = 0.

Hence

Pr[B wins in Gamereli]
= |Pr[Z1 outputs 1 in the real world] − Pr[Z1 outputs 1 in the ideal world]| ,
which is negligible for any B from the assumption. ��

Corollary 1. Our transformed scheme is UC-secure with leakage L′ = (L′
1, L

′
2)

if the original SSE scheme has L = (L1, L2)-privacy, where L and L′ are given
in Theorem 1.

References

1. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.)
ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer, Heidelberg (2005). https://
doi.org/10.1007/11602897 35

2. Bost, R., Fouque, P.-A., Pointcheval, D.: Verifiable Dynamic Symmetric Searchable
Encryption Optimality and Forward Security, Cryptology ePrint Archive, Report
2016/62 (2016). http://eprint.iacr.org/

3. Byun, J.W., Lee, D.H., Lim, J.: Efficient conjunctive keyword search on encrypted
data storage system. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS,
vol. 4043, pp. 184–196. Springer, Heidelberg (2006). https://doi.org/10.1007/
11774716 15

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of 42nd FOCS (2001). https://doi.org/10.1109/SFCS.
2001.959888

5. Canetti, R.: Universally Composable Signatures, Certification and Authentication.
Cryptology ePrint Archive, Report 2003/239 (2003). http://eprint.iacr.org/

6. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Cryptology ePrint Archive, Report 2000/067 (2005). http://eprint.iacr.
org/

7. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

https://doi.org/10.1007/11602897_35
https://doi.org/10.1007/11602897_35
http://eprint.iacr.org/
https://doi.org/10.1007/11774716_15
https://doi.org/10.1007/11774716_15
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-40041-4_20

Efficient No-dictionary Verifiable Searchable Symmetric Encryption 515

8. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.-C., Steiner,
M.: Dynamic searchable encryption in very-large databases: data structures and
implementation. In: NDSS (2014). https://eprint.iacr.org/2014/853.pdf

9. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351–368.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 20

10. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

11. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: ACM Conference
on Computer and Communications Security 2006, pp. 79–88 (2006)

12. Full version of [16]: Cryptology ePrint Archive, Report 2006/210 (2006). http://
eprint.iacr.org/

13. Goh, E.-J.: Secure Indexes. Cryptology ePrint Archive, Report 2003/216 (2003).
http://eprint.iacr.org/

14. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over
encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004.
LNCS, vol. 3089, pp. 31–45. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24852-1 3

15. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

16. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM Conference on Computer and Communications Security, pp. 965–976
(2012). https://doi.org/10.1145/2382196.2382298

17. Kurosawa, K.: Garbled searchable symmetric encryption. In: Christin, N., Safavi-
Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 234–251. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45472-5 15

18. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32946-3 21

19. Kurosawa, K., Ohtaki, Y.: How to update documents Verifiably in searchable sym-
metric encryption. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013.
LNCS, vol. 8257, pp. 309–328. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-02937-5 17

20. The final version of [23]. Cryptology ePrint Archive, Report 2015/251 (2015)
21. Kurosawa, K., Sasaki, K., Ohta, K., Yoneyama, K.: UC-secure dynamic search-

able symmetric encryption scheme. In: Ogawa, K., Yoshioka, K. (eds.) IWSEC
2016. LNCS, vol. 9836, pp. 73–90. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44524-3 5

22. Kutzelnigg, R.: Bipartite random graphs and cuckoo hashing. In: Fourth Collo-
quium on Mathematics and Computer Science. Discrete Mathematics and Theo-
retical Computer Science, pp. 403–406 (2006)

23. Naveed, M., Prabhakaran, M., Gunter, C.: Dynamic searchable encryption via blind
storage. In: IEEE Security & Privacy (2014). https://doi.org/10.1109/SP.2014.47

24. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: auf der Heide, F.M. (ed.) ESA 2001.
LNCS, vol. 2161, pp. 121–133. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44676-1 10

https://eprint.iacr.org/2014/853.pdf
https://doi.org/10.1007/978-3-642-55220-5_20
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1007/978-3-662-45472-5_15
https://doi.org/10.1007/978-3-642-32946-3_21
https://doi.org/10.1007/978-3-319-02937-5_17
https://doi.org/10.1007/978-3-319-02937-5_17
https://doi.org/10.1007/978-3-319-44524-3_5
https://doi.org/10.1007/978-3-319-44524-3_5
https://doi.org/10.1109/SP.2014.47
https://doi.org/10.1007/3-540-44676-1_10
https://doi.org/10.1007/3-540-44676-1_10

516 W. Ogata and K. Kurosawa

25. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy 2000, pp. 44–55 (2000).
https://doi.org/10.1109/SECPRI.2000.848445

26. Taketani, S., Ogata, W.: Improvement of UC secure searchable symmetric encryp-
tion scheme. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp.
135–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22425-1 9

27. Wang, P., Wang, H., Pieprzyk, J.: Keyword field-free conjunctive keyword searches
on encrypted data and extension for dynamic groups. In: Franklin, M.K., Hui,
L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 178–195. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89641-8 13

https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1007/978-3-319-22425-1_9
https://doi.org/10.1007/978-3-540-89641-8_13

Faster Homomorphic Evaluation of Discrete
Fourier Transforms

Anamaria Costache, Nigel P. Smart(B), and Srinivas Vivek

University of Bristol, Bristol, UK
nigel@cs.bris.ac.uk

Abstract. We present a methodology to achieve low latency homomor-
phic operations on approximations to complex numbers, by encoding a
complex number as an evaluation of a polynomial at a root of unity.
We then use this encoding to evaluate a Discrete Fourier Transform
(DFT) on data which has been encrypted using a Somewhat Homomor-
phic Encryption (SHE) scheme, with up to three orders of magnitude
improvement in latency over previous methods. We are also able to deal
with much larger input sizes than previous methods. Due to the fact that
the entire DFT algorithm is an algebraic operation over the underlying
ring of the SHE scheme (for a suitably chosen ring), our method for the
DFT utilizes exact arithmetic over the complex numbers, as opposed to
approximations.

1 Introduction

Since its introduction by Gentry in 2009 [8] most work on Fully (resp. Some-
what) Homomorphic Encryption (FHE/SHE) has focused on evaluating binary
or arithmetic circuits. However, for many applications one needs to evaluate
functions over more complex data types. In many areas of scientific processing
one requires operations on real or complex number, and many applications con-
sist of evaluation of functions of relatively low multiplicative depth. For example,
basic statistical calculations are often linear (such as means) or quadratic (such
as standard deviations).

This need to process real and complex arithmetic homomorphically has led
some authors to propose encoding methods for such numbers [4–6] in the context
of encryption schemes based on Ring-LWE. Such schemes are typified by the
BGV scheme [3]. The BGV scheme and its extensions [7] are based on a ring

R = Z[X]/ΦM (X),

where ΦM (X) is some cyclotomic polynomial. The ring is considered with respect
to two moduli, the plaintext modulus p and the ciphertext modulus q. Writing
Rp and Rq for the ring reduced modulo p and q respectively, we have that Rp

represents the space of all possible plaintexts and R2
q is the ciphertext space.

The first methodology [5,6] to perform homomorphic operations on real num-
bers (and hence complex numbers) used a fixed point representation based on
c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 517–529, 2017.
https://doi.org/10.1007/978-3-319-70972-7_29

518 A. Costache et al.

the polynomial expansion of the real number with respect to some “base”. This
polynomial is then embedded into the plaintext space, and homomorphic oper-
ations on the polynomials map into homomorphic operations on the underlying
fixed point number. During a homomorphic operation the degree of the rep-
resenting polynomial increases, as does the size of the coefficients. These two
increases imply lower bounds on the degree of the ring R and on the plaintext
modulus p. It should be noted that we therefore need to track both noise growth
(as in all SHE operations) as well as plaintext growth in such an encoding.
See [5] where this growth in coefficient sizes of the representing polynomials is
considered in depth. This method uses (in most cases) a single ciphertext to
represent a single real number, thus no ciphertext “packing”, i.e. amortization,
is generally supported. On the other hand, once a given approximation is used
for an input plaintext, future homomorphic operations are computed exactly;
i.e. floating point precision does not decrease.

A second methodology to perform operations on approximations to complex
numbers was presented in [4]. In this methodology a set of deg(R) approxima-
tions to complex numbers are encrypted via a single polynomial. In more detail,
for each element in the plaintext space a ∈ Rp, we consider the associated poly-
nomial a(X) and then associate this with the deg(R) complex numbers a(θi),
where θi are the roots of the polynomial defining R. In other words, the asso-
ciated complex numbers are precisely the canonical embedding of the plaintext
polynomial. This methodology allows one to produce amortized homomorphic
operations via packing. A drawback is however that the associated plaintext
polynomial, for a given set of input complex numbers, can have relatively large
height.

In both [4,5] this ability to homomorphically evaluate on real and com-
plex numbers is demonstrated via a toy example of evaluating a simple image
processing pipeline consisting of a DFT, followed by the multiplication of a secret
Hadamard transform, followed by an inverse DFT. The results in [4] is partic-
ularly interesting, especially when throughput is considered. However, in many
applications the main impediment to using homomorphic encryption techniques
is low latency; i.e. we are more interested in the time to wait for a single answer
than the amortized time over multiple executions.

In this paper, we take this motivating algorithm and show that one can
evaluate it over two orders of magnitude faster, by utilizing a completely different
representation of the complex numbers. Our method is particularly tailored for
DFT operations, however we also show that it can be applied to other more
general operations on complex numbers. Note that there are potentially many
applications for evaluating DFTs on homomorphic data, as it is widely used in a
variety of applications such as signal processing of sound waves and radio signals,
or processing of other recurrent data in which determining periodic properties
is of interest.

Our techniques make use of the special cyclotomic ring

R = Z[X]/(XM + 1)

Faster Homomorphic Evaluation of Discrete Fourier Transforms 519

where M = 2m is a power of two. We note that in the ring R the value X
corresponds to a formal primitive 2 · M -th root of unity. Thus by selecting a
mapping X �→ ζ2·M we can interpret a polynomial in R as being an integer
linear combination of the powers of the complex number ζ = ζ2·M . Thus our
method can be seen as associating a polynomial with a single complex number
corresponding to a single component of the canonical embedding, as opposed
to the set of complex numbers used in [4]. This means our associated input
plaintext polynomials can have smaller height; but we will not be able to deal
with ciphertext packing. The effect of this is to improve latency, at the expense
of throughput.

For example, if we take a complex number α and then approximate it via
the sum

α ≈
N − 1∑

i=0

ai · ζi·2·M/N ,

then we can use this polynomial to encode the complex number. If the coefficients
ai are selected to be relatively small then the methodology in [5] can be applied
to estimate the associated coefficient growth of the encoding polynomials as
homomorphic operations are performed. Finding suitably small ai values can
be obtained for an arbitrary complex number via the use of the LLL algorithm
[11], in a relatively standard way. See Sect. 2 for more details on this general
methodology.

For the evaluation of the DFT pipeline our method can also dispense with the
associated approximations of complex numbers, and we find we can evaluate the
DFT pipeline using exact operations on encodings of exact complex numbers. If
N is a power of two which divides M then

Y = X2·M/N (resp. ζN = ζ
2·M/N
2·M) (1)

is a primitive N -root of unity lying in R (resp. C). Recall that the DFT operation
takes an input vector and applies a linear operation (defined over R) to the input
vector. Thus, as long as we encode our input in R, we can perform the DFT using
only algebraic operations in R. Thus we can homomorphically evaluate the DFT,
as long as the coefficient growth of the underlying polynomials can be supported
by our plaintext modulus p. When applying DFT in many applications the input
can be scaled to be an integer (e.g. in image processing), therefore the input can
easily be encoded in an exact manner as well.

This methodology enables us to achieve a considerable improvement in the
ability to homomorphically evaluate a DFT. Notice that despite the DFT being
linear, the large number of additions and scalar multiplications means that the
often heard mantra of “only multiplications matter” does not apply. We need to
be careful not only of the growth of the coefficients of the ring elements which
encode our values, but also of the homomorphic noise.

We are able to evaluate a DFT-Hadamard-iDFT pipeline of input size 8192
elements, as opposed to 1024 elements for [4,5]. In terms of latency we were able
to evaluate a pipeline for 256 elements in 9.43 s, compared to a latency of 581 min

520 A. Costache et al.

for [5] and 87 min for [4]. Our amortized times are however much worse; since
our method does not allow packing our amortized time for the same calculation
is still 9.43 s, compared to 89.4 s for [5] and 0.31 s for [4]. So whilst we obtain
faster latency (and exact computations), for high throughput calculations the
method of [4] is still to be preferred.

2 Encoding Approximations to Arbitrary Complex
Numbers

As discussed in the introduction, there are two prior methods used to encode
complex numbers. The first encodes the complex number as a pair of real num-
bers and therefore holds the encrypted complex number as the encryption of
two real numbers. The real numbers would then be encrypted using the meth-
ods suggested in [5,6] to encode fixed-point numbers. A major downside of this
methodology is that to add two encrypted complex numbers requires two homo-
morphic additions, and to multiply two encrypted complex numbers requires
four homomorphic multiplications. The second method suggested in [4] encodes
a set of approximations to complex numbers. It looks at these in the canonical
embedding of the ring R and then pulls the element back in the canonical embed-
ding to a polynomial. This second method allows multiple complex numbers to
be encoded, but the height of the pulled back ring element can be high if only a
single complex number is required to be approximated (as would be the case in
applications focused on latency).

In this section we present an analogue of the second method where one only
wishes to approximate a single complex number. We do this by presenting the
folklore method of finding a good approximation to an arbitrary complex number
by an element in R. We then can encode the complex number by the associated
element in R. As long as we can bound the coefficients of the associated element
(in terms of the power basis of R), we can use the method in [5] to bound
the growth of the plaintext coefficients as we perform homomorphic operations.
Thus we use the method in [5] to bound coefficients of polynomials representing
complex numbers, as opposed to polynomials representing fixed-point numbers.
The only difference is how we interpret the underlying polynomial/element of R.
In comparison to [4] we pull back a single coordinate in the canonical embedding,
which allows us a greater degree of freedom in selecting a “small” polynomial
to perform the approximation; hence our use of LLL [11] below to find this
approximation.

We pick a value n such that n divides M = 2m. This is purely to reduce the
size of the associated lattice below from M to the smaller value n, in order to
make lattice reduction more manageable. However, a larger value of n will result
in an approximation polynomial with smaller coefficients (heuristically, although
not provably). We let ζ denote a primitive n-th root of unity, so that ζ is a fixed

Faster Homomorphic Evaluation of Discrete Fourier Transforms 521

primitive root of the polynomial Zn − 1, where Z = XM/n. Our basic idea for
encoding (an approximation to) the complex number α is to write

α ≈ α =
n− 1∑

i=0

zi · ζi

for some “small” integer values zi, thus we can approximate α by α ∈ R.
We first fix a “large” integer C, say C = 1010, which encodes how close we

want the approximation to be. We then set, for i = 0, . . . , n − 1,

ai = �Re(C · ζi)� and bi = �Im(C · ζi)�,
and

a = �Re(C · α)� and b = �Im(C · α)�.
We form the rank n + 1 lattice L in R

n+3 generated by the columns of the
matrix

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
T

a0 . . . an− 1 − a
b0 . . . bn− 1 − b

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

for some non-zero constant T . The determinant of this lattice Δ(L) is given by√
det(AT · A) ≈ n · T · C2/2, assuming |a|, |b| < T · C. We then apply the LLL

[11] algorithm to the lattice generated by the columns of A. We let j denote the
index of the shortest LLL basis vector which is non-zero in the n-th position
(when the basis is ordered in increasing order of size). For a suitably large (but
not too large) choice of T , we expect that the j-th basis vector will have ±T in
its n + 1-st position, and hence will be of the form

y =

(
z0, . . . , zn− 1, ± T,

n− 1∑

i=0

zi · ai ∓ a,

n− 1∑

i=0

zi · bi ∓ b

)
.

We then have, by the usual bounds on LLL basis vectors, that the zi values for
i = 0, . . . , n − 1, to be of size bounded by

(
2n·(n+1)/4− 1 · n · T · C2

)1/(n+2− j)

,

resulting in an approximation α such that

C ·
∣
∣
∣α − α

∣
∣
∣ ≤
∣
∣
∣Re(C · α) −

n− 1∑

i=0

Re(C · zi · ζi)
∣
∣
∣+
∣
∣
∣Im(C · α) −

n− 1∑

i=0

Im(C · zi · ζi)
∣
∣
∣

≈
∣
∣
∣

n− 1∑

i=0

zi · ai − a
∣
∣
∣+
∣
∣
∣

n− 1∑

i=0

zi · bi − b
∣
∣
∣

� 2 ·
(

2n·(n+1)/4− 1 · n · T · C2
)1/(n+2− j)

.

522 A. Costache et al.

In other words, for large enough C, we get a good approximation α of α. In
addition, since LLL usually behaves much better than the theoretical bounds
predict, we expect the actual bound on the approximation and the zi values to
grow roughly as C2/n. Thus for fixed C, increasing the rank of the lattice - i.e.
increasing n - will result in an approximately linear decrease in the coefficient
sizes.

Our estimates of the accuracy of the method above depended on the fact that
a and b are not too big. In particular we assumed that |a|, |b| < T · C, so that
they produce a negligible effect on the determinant of the lattice we are reducing.
Thus in practice it helps to scale α down so that |α| is close to one, assuming this
is enabled by the application in hand. This may require the appropriate scaling
to be tracked through the homomorphic operation; much like was proposed in
the method from [5]. A similar scaling is needed in the method from [4].

2.1 Numerical Example

Suppose we are given the complex number

α = 0.655981733221013 + 0.923883055400882 · √−1 = a + b · √−1,

and we want to produce an approximation which is correct up to ten decimal
digits of accuracy using a lattice of dimension n = 16. We apply the above
method with C = 1010 and T = 10, and find that the LLL reduced basis of the
above rank n + 1 lattice in R

n+3 has its first basis vector given by

(0,−5, 0, 1,−4, 12, 8,−6,−1,−2,−1,−8,−2, 8, 0, 1, 10,−5,−1).

Thus if we form the polynomial

P (Z) = Z15 + 8 · Z13 − 2 · Z12 − 8 · Z11 − Z10 − 2 · Z9 − Z8

− 6 · Z7 + 8 · Z6 + 12 · Z5 − 4 · Z4 + Z3 − 5 · Z,

then

α = P
(

exp(π · √−1/16)
)

≈ 0.65598173270304 + 0.923883055555970 · √−1.

3 New Homomorphic DFT Method

The prior method to approximate complex numbers allows us to homomorphi-
cally evaluate operations on complex numbers, as long as there is no wrap-around
in the plaintext modulus space, i.e. the plaintext modulus p is chosen appropri-
ately large. Suppose we want to evaluate DFT on an input vector

v = (v0, ...vN − 1) (2)

Faster Homomorphic Evaluation of Discrete Fourier Transforms 523

of N integers in the range (−B, . . . , B). For most of this section, we will restrict
ourselves to the integer input case because it suffices for our application to
homomorphic image processing that we consider in Sect. 4. However, later in
this section, we deal with the case when the DFT inputs are integer polynomials
representing elements of the power-of-two cyclotomic rings, i.e. when we want to
apply the DFT to the general approximations obtained in the previous section.
When the inputs are integers, the nature of the DFT algorithm is such that (as
long as the plaintext modulus p is large enough) we obtain an exact computation
over the complex numbers. This is because the DFT is an algebraic (in fact linear)
operation over the ring R.

For simplicity, let us assume that N = 2n for some n ≥ 0. Recall that the
ith element (0 ≤ i < N) of the DFT output vector is computed as

DFT(v)[i] =
N − 1∑

j =0

vj · ζijN , (3)

where ζN is a primitive complex Nth root of unity. We require that ζN can be
represented by an element in R, and so we must have N dividing 2 · M . This
ensures that the DFT is evaluated exactly.

3.1 Bounding Coefficients

To simulate complex arithmetic in R, the plaintext modulus p must be chosen
to be greater than the largest occurring intermediate coefficient in the DFT
computation. Hence it is necessary to choose p such that the magnitude of the
largest coefficient is less than p/2, when we represent the modulo p integers in
the interval (−p/2, . . . , p/2). If this is not done then decrypting the result of
a homomorphic operation will not result in the correct value; regardless as to
whether the homomorphic noise has swamped the computation.

Substituting ζN in (3) by Y from (1), we obtain a vector of polynomials in
the indeterminate X,

(D0(X), . . . , DN − 1(X)),

where

Di(X) =
N − 1∑

j =0

v i · Y ij , (4)

for 0 ≤ i < N . This corresponds to the set of polynomials that encodes DFT(v)
using our encoding scheme. It is this set of polynomials that we wish to homo-
morphically compute.

For a polynomial U(X) =
d∑

k=0

uk·Xk ∈ Z[X] define ‖U(X)‖∞ := maxk{|uk|}

and ‖U(X)‖1 :=
d∑

k=0

|uk|. Recall that

∥∥a · Xk
∥∥

∞ = ‖a‖∞ , (5)

‖a + b‖∞ ≤ ‖a‖∞ + ‖b‖∞ , (6)

524 A. Costache et al.

where a, b, k ∈ Z and k ≥ 0. The first of the above two properties is crucial
to ensure that our encoding scheme leads to much slower growth of coefficients
than previous analysis in [5].

From (4) and using the above properties we obtain

‖Di(X)‖∞ ≤
N − 1∑

j =0

|v i| =
N − 1∑

j =0

‖v i‖∞ < N · B. (7)

Invariance. While (7) bounds only the size of the coefficients in the final output,
we need to bound the intermediate values as well. But this depends on the
method used to compute DFT. In the following, we argue that the bound in
(7) also holds for intermediate variables in most of the well-known methods to
compute DFT. Two popular methods to compute DFT are:

1. Naive Fourier Transform (NFT): the encoded input vector v is multiplied
with a matrix A of encoded powers of the primitive Nth root of unity Y ,
where A[i, j] = Y ij (mod p,XM + 1). This matrix-vector multiplication is
usually carried out for small dimensions using either the row approach (scalar
product of a column vector and v) or the column approach (as a span of
column vectors).

2. Fast Fourier Transform (FFT): this is a recursive divide-and-conquer proce-
dure, where the ith element DFT(v)[i] (0 ≤ i < N) is computed as

DFT(v)[i] = DFT(v [0, . . . , N/2 − 1])[i] + Y i · DFT(v [N/2, . . . , N − 1])[i]).

A hybrid of NFT and FFT is particularly interesting in the context of homomor-
phic evaluation. This is because it provides a trade-off between the number of
scalar multiplications and the depth of the circuit. Here, we count scaler multi-
plications as contributing to homomorphic depth. The resulting so-called Mixed
Fourier Transform (MFT) has been investigated in this context [5]. The divide-
and-conquer procedure is applied for instances of size greater than some B and
for instances of size lesser than or equal to B, the naive matrix-vector multi-
plication method is applied. However, in our methodology there is no difference
between the homomorphic depth required of the naive or the fast Fourier trans-
form. Since all scalar multiplications are by roots of unity in our algorithms,
the noise associated to a ciphertext is never increased by a scalar multiplication.
In particular, the noise vector is simply rotated by the scalar multiplication.
This means that scalar multiplication in our DFT algorithms does not increase
homomorphic ciphertext noise, and so does not contribute to the number of
levels required of our underlying SHE scheme.

In all the above methods, any intermediate intermediate plaintext polynomial
U(X) is of the form

U(X) =
N − 1∑

i=0

ui · v i · Xti (mod p,XM + 1),

Faster Homomorphic Evaluation of Discrete Fourier Transforms 525

where ui = 0 or ui = 1, depending upon whether the corresponding summand
should be present or not. Assuming no wrap around the modulus p, then using
properties (5) and (6), we obtain the same bound as in (7). That is,

‖U(X)‖∞ < N · B. (8)

Note that our bounds on the plaintext are also invariant of the method used to
compute the DFT, this is not the case with the previous method found in [5],
since the output is exact no matter which method is used.

3.2 Extending the Analysis to the Ring of Algebraic Integers

Now suppose that the DFT input vector v (cf. (2)) now contains integer poly-
nomials representing elements of R, instead of just elements from Z. Following
an analysis similar to that in Sect. 3.1, we obtain that any intermediate variable
U(X) in the DFT computation satisfies

‖U(X)‖∞ ≤
N − 1∑

i=0

‖v i(X)‖∞ ≤ N · max
i

‖v i(X)‖∞ . (9)

Note that the above bound is independent of the number of non-zero terms in
the input polynomials. This approximation is useful when we discuss a DFT-
Hadamard-iDFT pipeline in the next section.

4 Homomorphic Image Processing

In this section, we apply the bounds obtained in Sect. 3 to the case of homo-
morphic image processing. Previously, homomorphic image processing has been
investigated in the works of [1,2,4,5]. The works [1,2] investigate the problem of
performing radix-2 DFT in the encrypted domain using additively homomorphic
encryption schemes. Because DFT is a linear operation, the authors manage to
perform this homomorphically using Paillier encryption scheme [12].

In [5], the authors homomorphically implement a standard image process-
ing pipeline of DFT, followed by Hadamard component-wise multiplication by a
fixed but encrypted matrix/vector, and finally inverse DFT to move back from
the Fourier domain. The fact that the Hadamard vector is encrypted makes the
whole operation non-linear and hence prevents the use of additively homomor-
phic encryption schemes for this purpose. Yet much smaller parameters size is
achieved in [5] compared to [1,2], even for the operation of homomorphically
performing a single DFT only. See [5, Sect. A.2] for a detailed comparison of
their work with that of [1,2].

In [4] this application is considered again using the packed approximations
to complex numbers considered earlier. Here the authors were able to evaluate
a degree 256 DFT pipeline in 87 min latency (compared to 581) for the method
in [5]. In terms of throughput the authors of [4] obtained an amortized time

526 A. Costache et al.

of 0.31 s, compared to 89.4 s for [5]. Our results below show we can achieve a
latency for the same calculation of 9.43 s, but with no improvement possible due
to amortization. The largest DFT pipeline reported in previous works was that
of a degree 1024 DFT pipeline in [4]. We achieve a pipeline of degree 8192, which
we executed with a latency of 1026 s.

4.1 DFT-Hadamard-iDFT Pipeline

Inputs to the (homomorphic evaluation of) a DFT-Hadamard-iDFT pipeline
are usually (encrypted) integers in some interval [0, . . . , B := 2b1) representing,
for instance, the colour encoding of a pixel. Assume that there are N = 2n

integer DFT inputs and as many in the Hadamard vector for component-wise
multiplication. Using our encoding scheme from Sect. 3, we encode the input
integers as themselves in the ring R = Z[X]/(p,XM + 1), where as Y = X2M/N

encodes a complex primitive Nth root of unity. Because the powers of a primitive
root of unity are encoded as monic monomials in R, we do not need to bother
to specify the precision for the roots of unity.

From (8), we obtain that during the computation of DFT, the largest occur-
ring intermediate coefficient is bounded above by N · B. After the Hadamard
component-wise multiplication by a vector of (encrypted) integer entries, the
new upper bound is N · B2. Finally, using (9), we obtain the following bound
for any intermediate polynomial U(x)

‖U(X)‖∞ < N2 · B2.

Hence we need to choose a plaintext modulus p of the ring R such that

p ≥ 2 · N2 · B2.

4.2 Comparison of Concrete Parameters

In [5, Sect. A.3], the authors use a computational procedure to compute concrete
lower bounds for the sizes of p and deg(R) chosen to homomorphically evaluate
the above DFT-Hadamard-iDFT pipeline. As previously mentioned, this is with
the Hadamard vector also encrypted. This computational approach was followed
because obtaining sharp closed form bounds seems to be out of reach for their
encoding technique. Our technique by contrast enables us to obtain tight bounds
on the resulting coefficients relatively easily.

Table 1 compares concrete lower bounds for our method and those from [5]. As
in [5], we chose b1 = 8 bits of precision for the magnitude of each input, including
the entries of the Hadamard matrix. Unlike our case, in [5], the precision b2 of
the roots of unity had to be adjusted so that the final result has a precision of
32 bits. Since our computation is exact this is not a concern.

Note that, as remarked before, the lower bounds on p are independent of the
method used to compute DFT. The parameter B corresponds to the depth of
the MFT method used (cf. Sect. 3.1). We remark that the size of the plaintext

Faster Homomorphic Evaluation of Discrete Fourier Transforms 527

Table 1. Comparison of the parameters for the DFT-Hadamard-iDFT pipeline.

Method N b2 FFT B = 1 B =
√

N NFT B = N

log2 p deg(R) log2 p deg(R) log2 p deg(R)

≥ ≥ ≥ ≥ ≥ ≥
[5] 16 29 54 190 37 118 25 46

This paper 16 – 26 8 26 8 26 8

[5] 64 27 74 248 49 146 29 44

This paper 64 – 30 32 30 32 30 32

[5] 256 25 93 298 61 170 33 42

This paper 256 – 34 128 34 128 34 128

[5] 1024 23 112 340 72 190 37 40

This paper 1024 – 38 512 38 512 38 512

modulus in our method is close to that required in the case of NFT for [5]. Recall
that we also need to lower bound the degree of R by deg(R) = M ≥ N/2, which
is a much higher bound than that required in [5] for large values of N . However,
in practice the degree will need to be much larger than this lower bound to ensure
security of the underlying homomorphic encryption scheme. So this increase in
the lower bound on the degree is unlikely to be a problem in practice.

4.3 Comparison of Implementation Timings

As [5], we implemented the full pipeline using the HElib library [10] that imple-
ments the BGV Somewhat Homomorphic Encryption scheme [3,9]. Table 2 com-
pares the performance of our method with that of [5]. The experiments were run
on a machine with six Intel Xeon E5 2.7 GHz processors with 64 GB RAM. The
time, measured in seconds, is that required to evaluate the DFT-Hadamard-
iDFT pipeline in the encrypted domain. The parameter log2(q) corresponds to
the size of the fresh ciphertexts, and “HElib Levels” report the actual number
of levels consumed by HElib due to its internal choice of ciphertext moduli.
In particular, HElib was allowed to choose by default half-sized primes for the
ciphertext modulus chain. Unlike [4,5] we are unable to obtain any form of
amortization via SIMD packing.

Since HElib has a restriction of at most 60 bits for the plaintext modulus
p, not all instances of the MFT could be run with the method from [5] for our
comparison. Thus we compare only against the best possible values for B for
the method from [5] in the table below. Note that this restriction of HElib does
not affect our method at all. We are thus able to cope with a much larger range
of parameter choices, as described in Table 3. In this table we report the timing
results for our method for select instances of the MFT for the chosen values of
N . Indeed the fastest run time for our method always occurred when utilizing
the full DFT, i.e. for setting B = 1 in the MFT algorithm. For N = 1024, 4096

528 A. Costache et al.

Table 2. Comparison of the best timing results, for a given N , for homomorphically
evaluating a full image processing pipeline.

Method N B deg(R) �log2(q)� HElib levels CPU time (s)

[5] 16 16 16384 192 9 106

This paper 16 1 8192 150 7 0.46

[5] 64 8 32768 622 30 1500

This paper 64 1 8192 150 7 2.08

[5] 256 256 16384 278 11 34876

This paper 256 1 8192 150 7 9.43

Table 3. Timing results for select instances of MFT for homomorphically evaluating
a full image processing pipeline.

N B �log2 p� deg(R) �log2 q� HElib levels CPU time (s)

16 1 26 8192 150 7 0.46

16 4 26 8192 150 7 0.51

16 16 26 8192 150 7 0.90

64 1 30 8192 150 7 2.08

64 8 30 8192 150 7 2.75

64 64 30 8192 150 7 11.05

256 1 34 8192 150 7 9.43

256 16 34 8192 150 7 16.48

256 256 34 8192 150 7 165.85

1024 1 38 16384 192 9 104.12

4096 1 42 16384 192 10 464.44

8192 1 44 16384 192 10 1026.1

and 8192, we do not report timings for large values of B since we did not run
the computations until completion as the time taken was too long.

Acknowledgements. This work has been supported in part by ERC Advanced Grant
ERC-2015-AdG-IMPaCT and by the European Union’s H2020 Programme under grant
agreement number ICT-644209 (HEAT). We thank the referee for helpful comments
on an earlier version of this paper, and pointing out a few optimizations which we had
missed.

References

1. Bianchi, T., Piva, A., Barni, M.: Comparison of different FFT implementations
in the encrypted domain. In: 2008 16th European Signal Processing Conference,
EUSIPCO 2008, Lausanne, Switzerland, pp. 1–5. IEEE, 25–29 August 2008

Faster Homomorphic Evaluation of Discrete Fourier Transforms 529

2. Bianchi, T., Piva, A., Barni, M.: On the implementation of the discrete fourier
transform in the encrypted domain. IEEE Trans. Inf. Forensics Secur. 4(1), 86–97
(2009)

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325.
ACM (2012)

4. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-
metic of approximate numbers. IACR Cryptology ePrint Archive, 2016:421 (2016)

5. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed-point arithmetic in SHE
scheme. In: Selected Areas in Cryptography - SAC (2016). http://eprint.iacr.org/
2016/250

6. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M.,
Wernsing, J.: Manual for using homomorphic encryption for bioinfor-
matics (2015). http://www.microsoft.com/en-us/research/publication/
manual-for-using-homomorphic-encryption-for-bioinformatics

7. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive, 2012:144 (2012)

8. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

9. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

10. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption
library. http://people.csail.mit.edu/shaih/pubs/he-library.pdf

11. Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational coef-
ficients. Math. Ann. 261, 515–534 (1982)

12. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

http://eprint.iacr.org/2016/250
http://eprint.iacr.org/2016/250
http://www.microsoft.com/en-us/research/publication/manual-for-using-homomorphic-encryption-for-bioinformatics
http://www.microsoft.com/en-us/research/publication/manual-for-using-homomorphic-encryption-for-bioinformatics
http://crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-642-32009-5_49
http://people.csail.mit.edu/shaih/pubs/he-library.pdf
https://doi.org/10.1007/3-540-48910-X_16

Secure Channel Protocols

Short Paper: TLS Ecosystems in Networked
Devices vs. Web Servers

Nayanamana Samarasinghe(B) and Mohammad Mannan

Concordia Institute for Information Systems Engineering, Concordia University,
Montreal, Canada

{n samara,mmannan}@ciise.concordia.ca

Abstract. Recently, high-speed IPv4 scanners, such as ZMap, have
enabled rapid and timely collection of TLS certificates and other security-
sensitive parameters. Such large datasets led to the development of
the Censys search interface, facilitating comprehensive analysis of TLS
deployments in the wild. Several recent studies analyzed TLS certificates
as deployed in web servers. Beyond public web servers, TLS is deployed in
many other Internet-connected devices, at home and enterprise environ-
ments, and at network backbones. In this paper, we report the results of
a preliminary analysis using Censys on TLS deployments in such devices
(e.g., routers, modems, NAS, printers, SCADA, and IoT devices in gen-
eral). We compare certificates and TLS connection parameters from a
security perspective, as found in common devices with Alexa 1M sites.
Our results highlight significant weaknesses, and may serve as a catalyst
to improve TLS security for these devices.

1 Introduction

Beyond user-level computing devices and back-end servers, there are many other
Internet-connected devices that serve important roles in everyday IT opera-
tions. Such devices include routers, modems, printers, cameras, SCADA (super-
visory control and data acquisition) controllers, DVR (digital video recorders),
HVAC (heating, ventilating and air conditioning technology), CPS (cyber phys-
ical systems), and NAS (network-attached storage) devices. Several past studies
have identified critical security issues in these devices, including authentication
bypass, hard-coded passwords and keys, misconfiguration, serious flaws in their
firmware and web interfaces; example studies include: [7–10,24,26]. The recent
massive DDoS attack on DynDNS as attributed to the Mirai botnet (e.g., [25]),
populated by DVRs, IP cameras and other IoT devices, shows the clear danger
of security flaws and weaknesses in these devices.

Over the years, manufacturers of networked devices have implemented some
security mechanisms, notably, the adoption of SSL/TLS for communication with

An extended version of this paper is available as a technical report [27], which addi-
tionally includes: analysis of certificate issuers, certificate reuse, DH prime number
reuse, stronger cipher suites, and device type ranking.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 533–541, 2017.
https://doi.org/10.1007/978-3-319-70972-7_30

534 N. Samarasinghe and M. Mannan

other devices. With the help of the ZMap [16] high-speed IPv4 scanner, some
recent projects analyzed the TLS ecosystem for web, email and SSH servers,
and identified and measured significant security issues in TLS deployments in
the wild; see e.g., [1,14,15,21].

Heninger et al. [20] highlighted faulty random number generators in net-
worked devices (see also the recent follow-up work [19]). Chung et al. [6] analyzed
over 80 million invalid TLS certificates, and attribute most of them to network
devices, including modems/home routers, VPNs, NAS, firewalls, IP cameras and
IPTVs. However, we are unaware of any comprehensive study on the overall TLS
ecosystem for networked devices. In this paper, we report our results on ana-
lyzing certificates and TLS parameters from 299,858 devices (out of 1,018,911),
collected from the Censys (censys.io) service on October 8, 2016. Unsurpris-
ingly, many devices still use crypto primitives that are currently being phased
out from modern browsers and web servers.

Specifically, we found a significant number of devices use unsafe RSA 512-
bit keys (4100 certificates) and 768-bit keys (8919 certificates). The vulnera-
ble/deprecated RC4 stream cipher is still widely used in devices (113,186, 37.7%).
A large number of devices (66,540, 22.2%; 19,063) also use (deprecated) SSLv3
and SSLv2, respectively. We also compare TLS security parameters between
devices and Alexa Top 1M sites, which clearly highlight the differences in these
two domains. In all security aspects that we consider (SSL/TLS version, signa-
ture, encryption and hashing algorithms, and RSA key length), all device types
are significantly more vulnerable than Alexa 1M sites (see [27]). Our analysis
focuses on TLS security weaknesses, but we also summarize the use of stronger
security primitives in devices and Alexa 1M sites. We hope our results, albeit
preliminary, to serve as a catalyst to quick fixing of TLS issues in devices, so
that these devices do not remain less secure than the HTTPS/web ecosystem in
the long run.

2 Related Work

We briefly discuss measurement studies on real-world TLS deployments.
To allow researchers to analyze SSL certificates, the EFF SSL Observatory

project [17] offered the first large-scale, open certificate repository containing
SSL certificates for the IPv4 address space in 2010. Later, in 2013, Durumeric
et al. [15] analyzed the ZMap collected data over a period of 14 months to
uncover all public certificate authorities (CAs) and the certificates they issued.
Censys [13] is a search engine used to query information of hosts and networks
stored in daily ZMap scans. As an example application for Censys, the preva-
lence of the unauthenticated Modbus protocol among SCADA systems has been
studied. Numerous such systems have been found across the globe. However,
non-SCADA devices, specifically, the TLS ecosystem for those devices have not
been studied. We extend existing work to understand the TLS ecosystem for net-
worked devices, mostly used at home, enterprise, and industrial environments,
and physical/network infrastructures.

Short Paper: TLS Ecosystems in Networked Devices vs. Web Servers 535

Heninger et al. [20] reported in 2012 that RSA/DSA algorithms as used
specifically in embedded network devices are vulnerable due to faulty random
number generators. They found that 0.75% of TLS certificates share keys, and
RSA private keys can be easily calculated for 0.50% of TLS hosts (also reported
similar results for RSA/DSA keys as used in the SSH protocol). However, other
TLS/certificate parameters were not analyzed in this study.

Pa et al. [24] propose the IoT honeypot (IoTPOT) to analyze malware attacks
against devices such as home routers, smart fridges, and other IoT devices. Their
honeypot data also shows significant increase in Telnet-based attacks, including
DDoS, against IoT devices. Costin et al. [7] devise a platform to find possible
reuse of fingerprints of SSL certificates, public/private keys of devices in ZMap
datasets; many devices were found with reused keys.

Shodan.io is a search engine similar to Censys, targeted towards IoT devices
(full access requires paid subscriptions). In addition to IPv4 devices, Shodan
claimed to have scanned millions of IPv6 addresses, reportedly by exploiting a
loophole in the NTP Pool Project [3]. Arnaert et al. [2] highlight challenges in
aggregating search results from Shodan and Censys, and propose an ontology to
make these engines more usable and effective for finding vulnerable IoT devices.

3 Methodology and Device Info

We rely on the Censys [13] search engine for our analysis. In this section, we
provide a brief overview of Censys, and detail our methodology.

Table 1. Type-wise device distribution
Device type Non-TLS % Non-TLS count TLS % TLS count

Infra. router 23.31 237,540 11.61 118,259

Modem 15.56 158,558 2.53 25,724

Camera 14.11 143,721 0.69 6809

NAS 7.07 71,997 5.45 55,503

Home router 5.04 51,347 2.52 25,667

Network 0.00 3 3.91 39,857

Printer 1.00 10,148 2.19 22,296

Scada 2.45 24,909 0.37 3773

CPS 1.26 12,820 0.09 868

Media 0.79 8000 0.11 1102

Total 70.57 719,043 29.43 299,858

Censys enables
querying data from
the Internet-wide scan
repository (scans.io),
a data repository host-
ing the periodic scan
results as collected by
the ZMap scanner [16].
Censys tags the col-
lected data with
security-related prop-
erties and device types,
allowing easy but pow-
erful search queries
through its online search interface and REST API. Censys also tags TLS and
certificate data of Alexa Top 1M web sites. Tagging is done by annotating the
raw scan data with additional metadata, e.g., type and manufacturer for devices,
and Alexa ranking for sites. The output from the application scanners is used to
identify device-specific metadata. The annotation process involves ZTag (paired
with ZMap and ZGrab), allowing researchers to add logic to define metadata
for currently untagged devices [13]. Apparently, search capabilities in Censys is
still evolving (not all device metadata is defined in ZTag, although ZTag can be

536 N. Samarasinghe and M. Mannan

extended by other researchers); thus, TLS/certificate data and tag information
for all device types are still not comprehensively reflected in Censys.

Table 1 lists available device types extracted from Censys, divided by TLS sup-
port. We further group some device types from Censys for easier presentation as
follows: modem (cable/DSL), printer (all printer models, print servers), network
(generic network devices, network analyzers), SCADA (scada controller, router,
gateway, server, frontend), media (set-top box, digital video recorders, VoIP, cin-
ema), CPS (PLC, HVAC, industrial control system, water flow controller, light
controller, power distribution unit, power monitor, power controller). Certain
device types (e.g., CPS) appear to be small in numbers. This may be due to the fact
that the tagging process in Censys is still not very comprehensive. We do not con-
sider some devices that are very low in number (e.g., 10 USB devices). The devices
appear to come from all around the world (75 countries with >1000 devices); the
top 10 countries host about 56% of all devices, including: Germany 17.9%, USA
15.0%, India 4.9%, and China 4.4%.

For comparison, we chose the Alexa Top 1M sites. Data extracted from
Censys was transformed to an intermediary format that requires a resource-
intensive post-processing phase. Search queries can be executed on Censys in
two ways: a RESTful web API or an SQL interface engine. We used the latter
option (with the help of a Censys author), as it is more efficient for large-scale
search results. After the TLS parameters and certificates are extracted for devices
and Alexa 1M sites, we first analyze our selected security parameters and algo-
rithms in devices. We then compare the security parameters from devices with
those from Alexa 1M sites, to highlight any important differences between them.
Similar to past work (e.g., [15,22]), we choose the following certificate/TLS para-
meters: cipher suite (algorithms used for hashing, key encryption, key exchange
and authentication, signature), SSL/TLS protocol version, and RSA key length.

4 Analysis and Results: Weak Security Practices

On October 8, 2016, we extracted certificates and TLS parameters (contained in
a daily dump) from 299,858 TLS-supporting devices (out of a total of 1,018,911
devices), and from 598,888 HTTPS sites in Alexa Top 1M. The client used to
extract TLS certificates are ZMap along with ZGrab (i.e., not following any
popular browser), which is later queried from Censys. In this section, we provide
the results of our analysis and compare the use of TLS/certificate parameters.
For each cryptographic primitive in a device certificate and TLS/SSL protocol
banner, we compute the percentage to compare the parameters between devices;
see Figs. 1, 2, 3, 4 and 5 for a comparison of the weak cryptographic primitives
(for exact data, see [27]). We also compare average values from devices with
Alexa sites (the last two bars). For brevity, we highlight results for algorithms
and parameters that are most vulnerable.

Hash functions in message authentication. The use of SHA1 is prominent
in all device types (67.4%), most notably in infrastructure routers (117,550,
99.4%) and network devices (35,918, 90.1%). In contrast, SHA1 usage in Alexa

Short Paper: TLS Ecosystems in Networked Devices vs. Web Servers 537

0

10

20

30

40

50

60

70

80

90

100

Infra
. r

oute
r

M
odem

Cam
era

NAS

Home ro
ute

r

Netw
ork

Prin
te

r

Sc
ad

a
CPS

M
edia

Devic
e av

g.

Alexa
1M

%

MD5 SHA1

Fig. 1. Hashing algorithms

0

10

20

30

40

50

60

70

80

90

100

Infra
. r

oute
r

M
odem

Cam
era

NAS

Home ro
ute

r

Netw
ork

Prin
te

r

Sc
ad

a
CPS

M
edia

Devic
e av

g.

Alexa
1M

%

MD5WithRSA SHA1WithRSA

Fig. 2. Signature algorithms

0

10

20

30

40

50

60

70

80

90

100

Infra
. r

oute
r

M
odem

Cam
era

NAS

Home ro
ute

r

Netw
ork

Prin
te

r

Sc
ad

a
CPS

M
edia

Devic
e av

g.

Alexa
1M

%

512 768 1024

Fig. 3. Key lengths (RSA)

0

10

20

30

40

50

60

70

80

90

100

Infra
. r

oute
r

M
odem

Cam
era

NAS

Home ro
ute

r

Netw
ork

Prin
te

r

Sc
ad

a
CPS

M
edia

Devic
e av

g.

Alexa
1M

%

3DES_EDE_CBC RC4_128

Fig. 4. Encryption algorithms

1M sites is far less (31.2%); see Fig. 1. Some devices still use MD5, e.g., cameras
(817, 12%) and media devices (176, 16%). MD5 is broken for more than a decade
now [30], and SHA1 is also becoming subject to feasible collision attacks [28]
(being phased out as of writing).

0

10

20

30

40

50

60

70

80

90

100

Infra
. r

oute
r

M
odem

Cam
era

NAS

Home ro
ute

r

Netw
ork

Prin
te

r

Sc
ad

a
CPS

M
edia

Devic
e av

g.

Alexa
1M

%

SSLv3 TLSv1.0 TLSv1.1

Fig. 5. SSL/TLS protocol versions

Hash functions in signature schemes.
The MD5-RSA signature scheme is pre-
dominantly used in devices, notably in
printers (16,993, 74.9%) and infra. routers
(64,879, 54.9%); see Fig. 2. These devices
are vulnerable to certificate collision
attacks, where attackers create certifi-
cates that collide with arbitrary pre-
fixes/suffixes [29]. SHA1-RSA is also used
more in modems (24,025, 93.4%), network
(37,836, 94.9%) and CPS (703, 81%).
A few devices (102) use “unknown” algo-
rithms; according to a Censys author
(email correspondence), these algorithms are not parseable.

538 N. Samarasinghe and M. Mannan

RSA key lengths. Certificates with 1024-bit RSA keys are deemed to be inse-
cure as of early 2016; see NIST SP 800-131A (at least 2048 bits should be
used). However, many devices still use 1024-bit keys (Fig. 3); most notably infra.
routers (98,432, 83.2%) and network devices (35,886, 90%). More seriously, we
found many devices with factorable 512-bit keys, e.g., infra. routers (3810, 3.2%),
cameras (77, 1.1%) and scada devices (76, 2%).

Encryption algorithms. We check the use of vulnerable ciphers such as RC4
(see e.g., [18], RFC 7465), and 3DES (the recent Sweet32 attack [5]). Except
infra. routers (96,433, 81.5%), the use of RC4 is relatively low in other devices
(Fig. 4). Some Alexa sites still use RC4 (3.1%). Note that the ZGrab application
scanner as used with ZMap includes RC4 as a supported cipher (in addition to
ciphers included in the Chrome browser), to support older TLS servers. The use
of 3DES is very limited overall, except in CPS devices (171, 19.7%). The use of
ChaCha20-Poly1305 (currently being standardized, RFC 7905) as a replacement
of RC4 is still negligible in devices.

TLS/SSL version. TLS 1.0 is mostly used in network devices (33,637, 84.4%)
and printers (18,367, 82.4%), and TLS 1.1 in CPS (168, 19.4%); see Fig. 5. TLS
1.0 is vulnerable to the BEAST attack [12]. More seriously, many infra. routers
(65,061, 55%) and media devices (175, 15.9%) use SSL 3.0 (vulnerable to the
POODLE attack [23]). Surprisingly, 19,063 devices still support SSL 2.0 (depre-
cated in 2011, see RFC 6176). Top-5 such device types include: NAS (manufac-
turers: QNAP, NetGear, Synology; count: 5517), network (Cisco: 2006), printer
(Lexmark, Sharp: 1812), camera (HikVision: 1324), and infra. router (Cisco:
1046). We do not include SSL 2.0 in Fig. 5 or other comparisons, as SSL 2.0
dataset is separately maintained by Censys.

5 Disclosure

The vulnerable deviceswe found aremanufactured by hundreds of different compa-
nies; see Table 2. We have contacted the ones with many vulnerable devices, where
we could locate contact emails, explaining our findings (Oct. 2016). As of writ-
ing, we got responses from Cisco, Honeywell, Hikvision, and Hewlett Packard –
most claiming to have released software/firmware upgrades in the past, but appar-
ently, users did not follow. Example responses include: [Honeywell] “This helps a

Table 2. Top 5 manufactures with vulnerable devices

Manufacturer MD5 RC4 SSLv3 <RSA1024 Device types

Cisco 347 98,904 65,413 12,731 Network, infra. router

Hewlett-Packard 1 5214 1 13 Network, printer, scada,
home router

AVM 78 5062 33 2 Modem

Hikvision 664 1085 214 75 Camera

QNAP 383 889 286 51 NAS

Short Paper: TLS Ecosystems in Networked Devices vs. Web Servers 539

lot and as we have looked almost all of the systems you identified are “out of date”
systems. Tridium/Honeywell released the patches to address your findings almost
three years ago with follow on updates each year. The end users are not updating
their systems to make them less vulnerable.”

6 Limitations and Future Work

Certain statistics as extracted from Censys appear to be unusual. For example,
there is only one infrastructure router from manufacturers, e.g., DrayTek and
LinkSys; Hewlett-Packard appears to have only one device with MD5 and SSLv3.
We communicated such observations to a Censys author, who attributed them to
be possible limitations of the current Censys logic, or device misconfiguration.
Also, the SQL engine in Censys is still evolving. Currently, it does not allow
querying all device-related information in a flexible structural format from the
data available in ZMap. We plan to extend the comparison including all IPv4
web servers, when data hygiene and structure of data improve in Censys.

Some TLS vulnerabilities may have no effect if the services are accessed
within a local network (e.g., inside a private home network), or via a modern
browser—e.g., no current browser would accept the RC4 cipher or SSL 2.0, even if
offered by a server. As these devices are varied (unlike regular web servers), actual
exploitation of their weaknesses will depend on how they are used/accessed.
These seemingly obsolete attack vectors can also be revived in the presence of
a vulnerable TLS proxy between a modern browser and the vulnerable server,
such as an anti-virus proxy [11]; simply supporting SSL 2.0 can be exploited
as well [4]. We hope our findings to raise awareness of this issue and positively
influence the manufactures to push appropriate firmware upgrades (possibly with
auto-update).

Acknowledgements. We thank anonymous FC 2017 and IMC 2016 reviewers for
their insightful comments and suggestions, and Zakir Durumeric for helping us with
Censys. We also appreciate the feedback we received from the members of Concor-
dia’s Madiba Security Research Group, especially, Xavier de Carné de Carnavalet. The
second author is supported in part by an NSERC Discovery Grant.

References

1. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A.,
Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow, E.,
Zanella-Béguelink, S., Zimmermann, P.: Imperfect forward secrecy: how Diffie-
Hellman fails in practice. In: CCS 2015, Denver, USA, October 2015

2. Arnaert, M., Bertrand, Y., Boudaoud, K.: Modeling vulnerable internet of things
on SHODAN and CENSYS: an ontology for cyber security. In: SECUREWARE
2016, Nice, France, July 2016

3. ArsTechnica.com. Using IPv6 with Linux? you’ve likely been visited by Shodan
and other scanners. News article, 1 February 2016

540 N. Samarasinghe and M. Mannan

4. Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N., Dankel, M., Steube, J.,
Valenta, L., Adrian, D., Halderman, J.A., Dukhovni, V., Käsper, E., Cohney, S.,
Engels, S., Paar, C., Shavitt, Y.: DROWN: breaking TLS using SSLv2. In: USENIX
Security, Austin, USA, August 2016

5. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: CCS 2016, October 2016

6. Chung, T., Liu, Y., Choffnes, D., Levin, D., Maggs, B.M., Mislove, A., Wilson, C.:
Measuring and applying invalid SSL certificates: the silent majority. In: IMC 2016
(2016)

7. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A large-scale analysis of the
security of embedded firmwares. In: USENIX Security, August 2014

8. Costin, A., Zarras, A., Francillon, A.: Automated dynamic firmware analysis at
scale: a case study on embedded web interfaces. In: ASIACCS 2016 (2016)

9. Cui, A., Costello, M., Stolfo, S.J.: When firmware modifications attack: a case
study of embedded exploitation. In: NDSS 2013, San Diego, USA, February 2013

10. Cui, A., Stolfo, S.J.: A quantitative analysis of the insecurity of embedded network
devices: results of a wide-area scan. In: ACSAC 2010, December 2010

11. de Carnavalet, X., Mannan, M.: Killed by proxy: analyzing client-end TLS inter-
ception software. In: NDSS 2016, San Diego, USA, February 2016

12. Duong, T., Rizzo, J.: Here come the ⊕ ninjas. Technical report, May 2011
13. Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.: A search engine

backed by internet-wide scanning. In: CCS 2015, Denver, USA, October 2015
14. Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver,

N., Amann, J., Beekman, J., Payer, M., Paxson, V.: The matter of Heartbleed. In:
IMC 2014, Vancouver, Canada, November 2014

15. Durumeric, Z., Kasten, J., Bailey, M.: Analysis of the HTTPS certificate ecosystem.
In: IMC 2013, October 2013

16. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its security applications. In: USENIX Security, August 2013

17. Electronic Frontier Foundation. The EFF SSL observatory. https://www.eff.org/
observatory

18. Garman, C., Paterson, K.G., Van der Merwe, T.: Attacks only get better: password
recovery attacks against RC4 in TLS. In: USENIX Security, August 2015

19. Hastings, M., Fried, J., Heninger, N.: Weak keys remain widespread in network
devices. In: IMC 2016, Santa Monica, USA, November 2016

20. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.: Mining your Ps and Qs:
detection of widespread weak keys in network devices. In: USENIX Security (2012)

21. Holz, R., Amann, J., Mehani, O., Wachs, M., Kaafar, M.A.: TLS in the wild: an
internet-wide analysis of TLS-based protocols for electronic communication. In:
NDSS 2016, San Diego, USA, February 2016

22. Lee, H., Malkin, T., Nahum, E.: Cryptographic strength of SSL/TLS servers. In:
IMC 2007, San Diego, USA, October 2007

23. Möller, B., Duong, T., Kotowicz, K.: This POODLE bites: exploiting the SSL
3.0 fallback. Techical report, September 2014. https://www.openssl.org/bodo/
ssl-poodle.pdf

24. Pa, Y.M.P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T., Rossow, C.:
IoTPOT: analysing the rise of IoT compromises. In: USENIX Security (2015)

25. ReadWrite.com. Dyn DDoS attack sheds new light on the growing IoT problem.
News article, 24 October 2016

26. Ronen, E., O’Flynn, C., Shamir, A., Weingarten, A.-O.: IoT goes nuclear: creating
a ZigBee chain reaction. Cryptology ePrint Archive, Report 2016/1047 (2016)

https://www.eff.org/observatory
https://www.eff.org/observatory
https://www.openssl.org/bodo/ssl-poodle.pdf
https://www.openssl.org/bodo/ssl-poodle.pdf

Short Paper: TLS Ecosystems in Networked Devices vs. Web Servers 541

27. Samarasinghe, N., Mannan,M.: Short paper: TLS ecosystems in networked devices
vs. web servers. Technical report 982186, Concordia University, February 2017.
http://spectrum.library.concordia.ca/982186/

28. Stevens, M., Karpman, P., Peyrin, T.: Freestart collision for full SHA-1. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 459–483.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 18

29. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,
de Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a Rogue
CA certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 55–69.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 4

30. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

http://spectrum.library.concordia.ca/982186/
https://doi.org/10.1007/978-3-662-49890-3_18
https://doi.org/10.1007/978-3-642-03356-8_4
https://doi.org/10.1007/11426639_2

Unilaterally-Authenticated Key Exchange

Yevgeniy Dodis1 and Dario Fiore2(B)

1 Department of Computer Science, New York University, New York, USA
dodis@cs.nyu.edu

2 IMDEA Software Institute, Madrid, Spain
dario.fiore@imdea.org

Abstract. Key Exchange (KE), which enables two parties (e.g., a client
and a server) to securely establish a common private key while com-
municating over an insecure channel, is one of the most fundamen-
tal cryptographic primitives. In this work, we address the setting of
unilaterally-authenticated key exchange (UAKE), where an unauthenti-
cated (unkeyed) client establishes a key with an authenticated (keyed)
server. This setting is highly motivated by many practical uses of KE on
the Internet, but received relatively little attention so far.

Unlike the prior work, defining UAKE by downgrading a relatively
complex definition of mutually authenticated key exchange (MAKE), our
definition follows the opposite approach of upgrading existing definitions
of public key encryption (PKE) and signatures towards UAKE. As a
result, our new definition is short and easy to understand. Nevertheless,
we show that it is equivalent to the UAKE definition of Bellare-Rogaway
(when downgraded from MAKE), and thus captures a very strong and
widely adopted security notion, while looking very similar to the sim-
ple “one-oracle” definition of traditional PKE/signature schemes. As a
benefit of our intuitive framework, we show two exactly-as-you-expect
(i.e., having no caveats so abundant in the KE literature!) UAKE pro-
tocols from (possibly interactive) signature and encryption. By plugging
various one- or two-round signature and encryption schemes, we derive
provably-secure variants of various well-known UAKE protocols (such as
a unilateral variant of SKEME with and without perfect forward secrecy,
and Shoup’s A-DHKE-1), as well as new protocols, such as the first
2-round UAKE protocol which is both (passively) forward deniable and
forward-secure.

To further clarify the intuitive connections between PKE/Signatures
and UAKE, we define and construct stronger forms of (necessarily inter-
active) PKE/Signature schemes, called confirmed encryption and con-
fidential authentication, which, respectively, allow the sender to obtain
confirmation that the (keyed) receiver output the correct message, or to
hide the content of the message being authenticated from anybody but
the participating (unkeyed) receiver. Using confirmed PKE/confidential
authentication, we obtain two concise UAKE protocols of the form: “send
confirmed encryption/confidential authentication of a random key K.”

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 542–560, 2017.
https://doi.org/10.1007/978-3-319-70972-7_31

Unilaterally-Authenticated Key Exchange 543

1 Introduction

Key exchange (KE) is one of the most fundamental cryptographic primitives.
Using a KE protocol, two parties can securely establish a common, private,
cryptographic key while communicating over an insecure channel. Although the
basic idea of KE dates back to the seminal work of Diffie and Hellman [7], a
proper formalization of this notion was proposed only much later by Bellare
and Rogaway [2]. In particular, Bellare and Rogaway considered the problem
of mutually authenticated key exchange where two parties (e.g., a client and a
server), each holding a valid long-term key pair, want to agree on a fresh common
cryptographic key, while being assured about the identity of their protocol’s part-
ner. In [2], Bellare and Rogaway proposed a model for mutually-authenticated
KE which allows to formally define security in this context, and in particular
formalizes the adversary’s capabilities in a proper way.

Building on this remarkable work, many other papers addressed KE in mul-
tiple directions, such as efficient and provably-secure realizations [15], or alter-
native security models [1,5,6]. Notably, the vast majority of papers in this area
considered only the mutually authenticated setting where both the server and the
client have long-term keys. However, it is striking to observe that many practi-
cal uses of KE protocols on the Internet work in a restricted setting where only
the server has a long-term (certified) public key. A notable example of this set-
ting is perhaps the simple access to web servers using the well known SSL/TLS
protocol. This notion of KE has been often called unilaterally-authenticated (or,
sometimes, anonymous, one-way or server-only) KE. To emphasize the distinc-
tion, in our work we will denote unilaterally-authenticated KE as UAKE, and
mutually-authenticated KE as MAKE.

In spite of the practical relevance of unilaterally-authenticated key-exchange,
we notice that most prior KE definitions targeted MAKE, and those works that
focused on UAKE (e.g., [10,11,17,21]) used definitions that were obtained by
slightly “downgrading” definitions of MAKE to the unilateral setting. The prob-
lem here is that existing definitions of MAKE are rigorous, but also pretty com-
plex and hard to digest. Therefore, when analyzing the simple notion of UAKE
by downgrading existing definitions of MAKE, one ends up with other complex
definitions.

One goal of this work is thus to address this state of affairs by taking a
different approach. Instead of considering UAKE as a downgraded version of
MAKE, we propose a new definition of UAKE obtained by slightly “upgrading”
the short and simple definitions of public key encryption and digital signatures.
Precisely, we build on the recent work of Dodis and Fiore [8] that proposes a
definitional framework for interactive message transmission protocols, and gives
new notions of interactive public key encryption (PKE) and interactive public
key message authentication (PKMA). These two notions naturally extend the
classical notions of IND-CCA encryption(resp. strongly unforgeable signatures)

544 Y. Dodis and D. Fiore

to the interactive setting. By building on this framework, we obtain a UAKE
definition which is (in our opinion) more intuitive and easier to digest.1 Never-
theless, we show that our differently-looking UAKE definition is equivalent to
the one of Bellare-Rogaway (BR) restricted to the single authenticated setting.
This shows that we are not providing a new KE notion, but simply suggesting
a different, simpler, way to explain the same notion when restricted to the uni-
lateral setting. In fact, the BR UAKE definition “downgraded-from-MAKE” is
actually noticeably simpler than the MAKE definition, but still (in our opinion)
not as intuitive as our new definition. Hence, by establishing our equivalence, we
offer a new path of teaching/understanding MAKE: (1) present our definition
of UAKE, and use it to design and prove simple UAKE protocols (see below);
(2) point out new subtleties of MAKE, making it hard (impossible?) to have a
simple “one-oracle” definition of MAKE; (3) introduce the “downgraded” BR-
framework (which has more finer-grain oracles available to the attacker) which
is equivalent to our UAKE framework; (4) extend the ”downgraded” BR frame-
work to the full setting of MAKE. We view this philosophy as a major
educational contribution of this work.

In the following, we describe our definitional framework and the remaining
results (including simple and intuitive UAKE protocols) in more detail.

1.1 Our Results

Definitional Framework. The definitional framework proposed by Dodis
and Fiore [8] consists of two parts. The first part is independent of the particular
primitive, and simply introduces the bare minimum of notions/notation to deal
with interaction. For example, they define (a) what it means to have concurrent
oracle access to an interactive party under attack; and (b) what it means to
‘act as a wire’ between two honest parties (this trivial, but unavoidable, attack
is called a ‘ping-pong’ attack). Once the notation is developed, the actual def-
initions become as short and simple as in the non-interactive setting (e.g., see
Definitions 5 and 6). So, by building on this framework, we propose a simple
notion of UAKE (cf. Definition 8) which we briefly discuss now. The attacker
A has concurrent oracle access to the honest secret key owner (the “server”),
and simultaneously tries to establish a (wlog single) session key with an honest
unauthenticated client (the “challenger”). If the challenger rejects, A ‘lost’.2 If
it accepts and the session is not a ping-pong of one of its conversations with the
server, then A ‘won’, since it ‘fooled’ the challenger without trivially forwarding
messages from the honest server. Otherwise, if A established a valid key with the

1 We stress, we are not suggesting that we can similarly simplify the more complicated
definitions of MAKE. In fact, we believe that UAKE is inherently easier than MAKE,
which is precisely why we managed to obtain our simpler definition only for UAKE.

2 Notice, since anybody can establish a key with the server, to succeed A must establish
the key with an honest client.

Unilaterally-Authenticated Key Exchange 545

challenger by a ping-pong attack, A ‘wins’ if it can distinguish a (well-defined)
‘real’ session key from a completely random key.3

Key Exchange Protocols. As we mentioned, our unilaterally-authenticated
key-exchange (UAKE) definition can be seen as a natural extension of the inter-
active PKE/PKMA definitions in [8]. As a result, we show two simple and
very natural constructions of UAKE protocols: from any possibly interactive
PKE scheme and a PRF, depicted in Fig. 2, and from any possibly interactive
PKMA scheme and CPA-secure key encapsulation mechanism (KEM), depicted
in Fig. 3. By plugging various non-interactive or 2-round PKE/PKMA schemes
(and KEMs, such as the classical Diffie-Hellman KE), we get a variety of simple
and natural UAKE protocols. For example, we re-derive the A-DHKE-1 protocol
from [21], the unilateral version of the SKEME protocol [14], and we get (to the
best of our knowledge) the first 2-round UAKE, depicted in Fig. 4, which is both
forward-deniable and forward-secure.

Hence, the main contribution of our work is not to design new UAKE proto-
cols (which we still do due to the generality of our results!), but rather to have
a simple and intuitive UAKE framework where everything works as expected,
without any caveats (so abundant in the traditional KE literature). Namely,
the fact that immediate corollaries of our work easily establish well known and
widely used UAKE protocols is a big feature of our approach. Unlike prior work,
however, our protocols: (1) work with interactive PKE/PKMA; (2) are directly
analyzed in the unilateral setting using our simple definition, instead of being
“downgraded” from more complex MAKE protocols.

Confirmed PKE and Confidential PKMA. To provide a further smoother
transition from basic notions of PKE/PKMA towards KE, another contribution
of our work is to define two strengthenings of PKE/PKMA which inherently
require interaction. We call these notions confirmed encryption and confidential
authentication, but for lack of space we present them in the full version of this
work. In brief, confirmed encryption is an extension of the interactive encryption
notion of Dodis and Fiore [8] in which the (unkeyed) sender gets a confirma-
tion that the (keyed) receiver obtained the correct encrypted message, and thus
accepts/rejects accordingly. Confidential authentication, instead, adds a privacy
property to PKMA protocols [8] in such a way that no information about the
message is leaked to adversaries controlling the communication channel (and,
yet, the unkeyed honest receiver gets the message). Clearly, both notions require
interaction, and we show both can be realized quite naturally with (optimal)
two rounds of interaction. Moreover, these two notions provide two modular and
“dual” ways to build secure UAKE protocols. Namely, we further abstract our
UAKE constructions in Figs. 2 and 3 by using the notions of confirmed PKE and
confidential PKMA, by showing that “confirmed encryption of random K” and
“confidential authentication of random K” both yield secure UAKE protocols.

3 Notice, for elegance sake our basic definition does not demand advanced properties,
such as forward security or deniability, but (as we show) can be easily extended to
do so. Indeed, our goal was not to get the most ‘advanced’ KE definition, but rather
to get a strong and useful definition which is short, intuitive, and easy to digest.

546 Y. Dodis and D. Fiore

Summary. Although we do not claim a special novelty in showing a connection
between PKE/signatures and KE, we believe that the novelty of our contribution
is to formally state such connection in a general and intuitive way. In particular,
our work shows a path from traditional non-interactive PKE/PKMA schemes, to
interactive PKE/PKMA, to (interactive) confirmed PKE/confidential PKMA,
to UAKE, to MAKE (where the latter two steps use the equivalence of our sim-
ple “one-oracle” definition with the downgraded Bellare-Rogaway definition).
Given that unilaterally-authenticated key-exchange, aside from independent
interest, already introduces many of the subtleties of mutually-authenticated
key-exchange (MAKE), we hope our work can therefore simplify the introduc-
tion of MAKE to students. Indeed, we believe all our results can be easily taught
in an undergraduate cryptography course.

1.2 Related Work

Following the work of Bellare and Rogaway [2], several works proposed different
security definitions for (mutually-authenticated) KE, e.g., [1,3–5,18]. Notably,
some of these works focused on achieving secure composition properties [6,21].
Unilaterally-Authenticated Key-Exchange has been previously considered by
Shoup [21] (who used the term “anonymous key-exchange”), Goldberg et al. [11]
(in the context of Tor), Fiore et al. [10] (in the identity-based setting), and by
Jager et al. [12] and Krawczyk et al. [17] (in the context of TLS). All these
works arrived at unilaterally-authenticated key-exchange by following essen-
tially the same approach: they started from (some standard definitions of)
mutually-authenticated KE, and then they relaxed this notion by introducing
one “dummy” user which can run the protocol without any secret (so, the unau-
thenticated party will run the protocol on behalf of such user), and by slightly
changing the party-corruption condition.

Our authentication- (but not encryption-) based UAKE protocols also have
conceptual similarities with the authenticator-based design of KE protocols by
Bellare et al. [1]. Namely, although [1] concentrate on the mutually-authenticated
setting, our UAKE of Fig. 3 is similar to what can be obtained by applying a
(unilateral) authenticator to an unauthenticated protocol, such as a one-time
KEM. As explained in Sect. 4, however, the derived protocols are not exactly the
same. This is because there are noticeable differences between authenticators and
interactive PKMA schemes. For example, authenticators already require secu-
rity against replay attack (and, thus, standard signature schemes by themselves
are not good authenticators), and also use a very different real/ideal definition
than our simple game-based definition of PKMA. In summary, while the con-
crete protocols obtained are similar (but not identical), the two works use very
different definitions and construction paths to arrive at these similar protocols.

In a concurrent and independent work, Maurer, Tackmann and Coretti [20]
considers the problem of providing new definitions of unilateral KE, and they
do so by building on the constructive cryptography paradigm of Maurer and
Renner [19]. Using this approach, they proposed a protocol which is based only

Unilaterally-Authenticated Key Exchange 547

on a CPA-secure KEM and an unforgeable digital signature, and is very similar
to one of our UAKE protocols.

Finally, we note that a recent paper by Krawczyk [16] considers unilaterally
authenticated key exchange and studies the question of building compilers for
transforming UAKE protocols into MAKE ones.

2 Background and Definitions

In our paper we use relatively standard notation. Before giving the definitions
of message transmission protocols and unilateral key exchange, we discuss two
aspects of our definitions.

Session IDs. Throughout this paper, we consider various protocols (e.g., mes-
sage transmission or key exchange) that may be run concurrently many times
between the same two parties. In order to distinguish one execution of a pro-
tocol from another, one typically uses session identifiers, denoted sid, of which
we can find two main uses in the literature. The first one is to consider purely
“administrative” session identifiers, that are used by a user running multiple
session to differentiate between them, i.e., to associate what session a message is
going to or coming from. This means that the honest parties need some concrete
mechanism to ensure the uniqueness of sid’s, when honestly running multiple
concurrent sessions. E.g., administrative sid can be a simple counter or any
other nonce (perhaps together with any information necessary for communica-
tion, such as IP addresses or some mutually agreed upon timing information), or
could be jointly selected by the parties, by each party providing some part of the
sid. However, rather than force some particular choice which will complicate the
notation, while simultaneously getting the strongest possible security definition,
in our definitions we let the adversary completely control all the administrative
sid’s (as the adversary anyway controls all the protocol scheduling). In order not
to clutter the notation with this trivial lower level detail, in our work we will
ignore such administrative sid’s from our notation, but instead implicitly model
them as stated above.

The second use of session identifiers in the literature is more technical as
sid’s are used in security definitions in order to define “benign” adversaries that
simply act as a wire in the network. With respect to the use of sid’s in security
definitions we see three main approaches in the literature. The modern KE app-
roach lets parties define sid’s as part of the protocol. While this is more relaxed
and allows for more protocols to be proven secure, it also somewhat clutters the
notation as the choice of the sid is now part of the protocol specification. The
second approach is to let sid be the transcript of a protocol execution, which
simplifies the notation and implies the previous approach. In both the first and
second approach, benign adversaries are those that cause two sessions have equal
sid’s. The third approach instead does not use explicit sid’s, and considers benign
adversaries those that cause two sessions have same transcript (seen as a “timed
object”). All the approaches have pros and cons. For example, both the second
and the third approach rule out some good protocols, but save on syntax and

548 Y. Dodis and D. Fiore

notation. Moreover, the third approach is the strongest one for security: it leaves
to protocol implementers the freedom of picking the most convenient “adminis-
trative” sid selection mechanism, without worrying about security, since in this
model adversaries can arbitrarily control the administrative sid’s. For these rea-
sons, in this work we follow the third approach, which also gives us the possibility
of making our definitions more in line with those of PKE/signatures, where there
are no explicit session identifiers.

Party Identities. Unlike the traditional setting of encryption and authenti-
cation, in the KE literature parties usually have external (party) identities in
addition to their public/secret keys. This allows the same party to (claim to)
have multiple keys, or, conversely, the same key for multiple identities. While
generality is quite useful in the mutually authenticated setting, and could be eas-
ily added to all our definitions and results in the unilateral setting, we decided
to avoid this extra layer of notation. Instead, we implicitly set the identity of
the party to be its public key (in case of the server), or null (in case of the
client). Aside from simpler notation, this allowed us to make our definitions
look very similar to traditional PKE/signatures, which was one of our goals.
We remark that this is a trivial and inessential choice which largely follows a
historic tradition for PKE/PKMA. Indeed, having party identities is equally
meaningful for traditional PKE/PKMA schemes, but is omitted from the syn-
tax, because it can always be trivially achieved by appending the identities of
the sender and/or recipient to the message. We stress, we do not assume any
key registration authority who checks knowledge of secret keys. In fact, in our
definition the attacker pretends to be the owner of the victim’s secret key (while
having oracle access to the victim), much like in PKE/PKMA the attacker tries
to “impersonate” the honest party (signer/decryptor) with only oracle access to
this party.

2.1 Message Transmission Protocols

In this section, we recall the definitional framework of message transmission pro-
tocols as defined in [8], along with suitable security definitions for confidentiality
(called iCCA security) and authenticity (called iCMA security).

A message transmission protocol involves two parties, a sender S and a
receiver R, such that the goal of S is to send a message m to R while preserving
certain security properties on m. Formally, a message transmission protocol Π
consists of algorithms (Setup,S,R) defined as follows:

Setup(1λ): on input the security parameter λ, the setup algorithm generates
a pair of keys (sendk, recvk). In particular, these keys contain an implicit
description of the message space M.

S(sendk,m): is a possibly interactive Turing machine that is run with the sender
key sendk and a message m ∈ M as private inputs.

R(recvk): is a possibly interactive Turing machine that takes as private input
the receiver key recvk, and whose output is a message m ∈ M or an error
symbol ⊥.

Unilaterally-Authenticated Key Exchange 549

We say that Π is an n-round protocol if the number of messages exchanged
between S and R during a run of the protocol is n. If Π is 1-round, then we
say that Π is non-interactive. Since the sender has no output, it is assumed
without loss of generality that the S always speaks last. This means that in an
n-round protocol, R (resp. S) speaks first if n is even (resp. odd). For compact
notation, 〈S(sendk,m),R(recvk)〉 = m′ denotes the process of running S and R
on inputs (sendk,m) and recvk respectively, and assigning R’s output to m′. In
our notation, we will use m ∈ M for messages (aka plaintexts), and capital M
for protocol messages.

Definition 1 (Correctness). A message transmission protocol Π = (Setup,

S,R) is correct if for all honestly generated keys (sendk, recvk) $← Setup(1λ), and
all messages m ∈ M, we have that 〈S(sendk,m),R(recvk)〉 = m holds with all
but negligible probability.

Defining Security: Man-in-the-Middle Adversaries. Here we recall the
formalism needed to define the security of message transmission protocols. The
basic idea is that an adversary with full control of the communication channel
has to violate a given security property (say confidentiality or authenticity) in
a run of the protocol that is called the challenge session. Formally, this session
is a protocol execution 〈S(sendk,m),AR(recvk)〉 or 〈AS(sendk,·),R(recvk)〉 where the
adversary runs with an honest party (S or R). AP denotes that the adversary
has oracle access to multiple honest copies of party P (where P = R or P = S),
i.e., A can start as many copies of P as it wishes, and it can run the message
transmission protocol with each of these copies. In order to differentiate between
several copies of P, formally A calls the oracle providing a session identifier
sid. However, as mentioned earlier, to keep notation simple we do not write sid
explicitly. The model assumes that whenever A sends a message to the oracle
P, then A always obtains P’s output. In particular, in the case of the receiver
oracle, when A sends the last protocol message to R, A obtains the (private)
output of the receiver, i.e., a message m or ⊥.

Due to its power, the adversary might entirely replay the challenge session by
using its oracle. Since this can constitute a trivial attack to the protocol, in what
follows we recall the formalism of [8] to capture replay attacks. The approach is
similar to the one introduced by Bellare and Rogaway [2] in the context of key
exchange, based on the idea of “matching conversations”.

Let t be a global counter which is progressively incremented every time a
party (including the adversary) sends a message. Every message sent by a party
(S, R or A) is timestamped with the current time t. Using this notion of time,4

the transcript of a protocol session is defined as follows:

Definition 2 (Protocol Transcript). The transcript of a protocol session
between two parties is the timestamped sequence of messages (including both
sent and received messages) viewed by a party during a run of the message

4 We stress that timestamps are only used in the security definition; in particular they
are not used by real-world parties.

550 Y. Dodis and D. Fiore

transmission protocol Π. If Π is n-round, then a transcript T is of the form
T = 〈(M1, t1), . . . , (Mn, tn)〉, where M1, . . . ,Mn are the exchanged messages,
and t1, . . . , tn are the respective timestamps.

In a protocol run 〈S(sendk,m),AR(recvk)〉 (resp. 〈AS(sendk,·),R(recvk)〉) we
denote by T ∗ the transcript of the challenge session between S and A (resp.
A and R), whereas T1, . . . , TQ are the Q transcripts of the sessions established
by A with R (resp. S) via the oracle.

Definition 3 (Matching Transcripts). Let T = 〈(M1, t1), . . . , (Mn, tn)〉 and
T ∗ = 〈(M∗

1 , t∗1), . . . , (M
∗
n, t∗n)〉 be two protocol transcripts. We say that T matches

T ∗ (T ⊆ T ∗, for short) if ∀i = 1, . . . , n, Mi = M∗
i and the two timestamp

sequences are “alternating”, i.e., t1 < t∗1 < t∗2 < t2 < t3 < · · · < tn − 1 < tn < t∗n
if R speaks first, or t∗1 < t1 < t2 < t∗2 < t∗3 < · · · < tn − 1 < tn < t∗n if S speaks
first. Note that the notion of match is not commutative.

Using the above definitions, we recall the notion of ping-pong adversary:

Definition 4 (Ping-pong Adversary). Consider a run of the protocol Π
involving A and an honest party (it can be either 〈S(sendk,m),AR(recvk)〉 or
〈AS(sendk,·),R(recvk)〉), and let T ∗ be the transcript of the challenge session, and
T1, . . . , TQ be the transcripts of all the oracle sessions established by A. Then we
say that A is a ping-pong adversary if there is a transcript T ∈ {T1, . . . , TQ}
such that T matches T ∗, i.e., T ⊆ T ∗.

Now that we have introduced all the necessary definitions, we recall the
two notions of interactive chosen-ciphertext PKE (iCCA) and interactive chosen-
message secure PKMA (iCMA) that capture, respectively, confidentiality and
authenticity of the messages sent by S to R. Let Π = (Setup,S,R) be a message
transmission protocol, and A be an adversary. The two notions are defined as
follows by considering the experiments in Fig. 1.

Experiment ExpiCCA
Π,A (λ)

b
$← {0, 1} ; (sendk, recvk)

$← Setup(1λ)

(m0, m1)←AR(recvk)(sendk)

b′←〈S(sendk, mb), AR(recvk)(sendk)〉
If A is “ping-pong”,

then output b̃
$← {0, 1}

Else if b′ = b and A is not “ping-pong”,
then output 1

Else output 0.

Experiment ExpiCMA
Π,A (λ)

(sendk, recvk)
$← Setup(1λ)

m∗←〈AS(sendk,·)(recvk), R(recvk)〉
If m∗ �= ⊥ and A is not “ping-pong”,
then output 1

Else output 0.

Fig. 1. Security experiments of iCCAand iCMAsecurity.

Definition 5 (iCCA security). For any λ ∈ N, we define the advantage of an
adversary A in breaking iCCA security of a message transmission protocol Π as
AdviCCA

Π,A (λ) = Pr[ExpiCCA
Π,A (λ) = 1] − 1

2 , and we say that Π is iCCA-secure if for
any PPT A, AdviCCA

Π,A (λ) is negligible.

Unilaterally-Authenticated Key Exchange 551

Note that for 1-round protocols, the above notion is the same as the classical
IND-CCA security.

Definition 6 (iCMA security). For any λ ∈ N, the advantage of A in break-
ing the iCMA security of a message transmission protocol Π is AdviCMA

Π,A (λ) =
Pr[ExpiCMA

Π,A (λ) = 1], and we say that Π is iCMA-secure if for any PPT A,
AdviCMA

Π,A (λ) is negligible.

Note that for 1-round protocols, the above notion is the same as the notion of
strong unforgeability for digital signatures.

3 Unilaterally-Authenticated Key-Exchange

In this section we build on the notions of iCCA/iCMA secure message transmis-
sion protocols recalled in the previous section in order to obtain a smoother and
clean transition from encryption/authentication towards key exchange. In par-
ticular, in this work we focus on unilaterally-authenticated key-exchange (UAKE,
for short). UAKE is a weaker form of mutually-authenticated key-exchange in
which only one of the two protocol parties is authenticated.

Following the definitional framework of message transmission protocols [8],
we define UAKE as a protocol between two parties—in this case, an un-keyed
user U and a keyed (aka authenticated) user T—so that, at the end of a successful
protocol run, both parties (privately) output a common session key.

Formally, a UAKE protocol Π consists of algorithms (KESetup,U,T) working
as follows:

KESetup(1λ): on input the security parameter λ, the setup algorithm generates
a pair of keys (uk, tk). Implicitly, it also defines a session key space K.

U(uk): is a possibly interactive algorithm that takes as input the public key uk
of the authenticated user, and outputs a session key or a symbol ⊥.

T(tk): is a possibly interactive algorithm that takes as input the private key tk,
and outputs a session key K or an error symbol ⊥.

In our security definitions we explicitly include the property that U terminates
correctly (i.e., no ⊥ output) only if U gets confirmation that T can terminate
correctly. For this reason, we assume without loss of generality that T always
speaks last. For compact notation, we denote with 〈U(uk),T(tk)〉 = (KU,KT) a
run of the protocol in which U and T output session keys KU and KT respectively.

Definition 7 (Correctness). An unilaterally-authenticated key-exchange pro-
tocol Π = (KESetup,U,T) is correct if for all honestly generated key pairs (uk, tk)
$← KESetup(1λ), and all session keys 〈U(uk),T(tk)〉 = (KU,KT), we have that,
when KU,KT 	= ⊥, KU = KT holds with all but negligible probability.

Security. For UAKE protocols we aim at formalizing two main security proper-
ties: authenticity and confidentiality. Intuitively, authenticity says that the only

552 Y. Dodis and D. Fiore

way for an adversary to make the un-keyed party terminate correctly (no ⊥ out-
put) is to be ping-pong. Confidentiality aims to capture that, once the un-keyed
party U accepted, then the adversary cannot learn any information about the
session key (unless it is ping-pong up to learning the key). We formalize these
two properties in a single experiment in which A runs a challenge session with
the un-keyed party U while having access to the keyed party T. As for the case
for message transmission protocols, the adversary formally refers to the keyed
party T oracle by specifying a session id sid. For simplicity of notation, however
we do not write explicitly these session identifiers.

Since in UAKE T speaks last, we allow the adversary to make one additional
query to T after T generated the last message: in this case T reveals its private
output KT. If A makes such an additional query in a ping-pong session then we
say that A is “full-ping-pong”.

Although the resulting experiment looks a bit more complex compared to
the ones of iCCA and iCMA security, we stress that it can be seen as a natural
combination of these two security notions. At a high level, the experiment con-
sists in first running (K0, ·)←〈U(uk),AT(tk)(uk)〉 and then analyzing U’s output
K0 (· means that we do not care about A’s output at this stage). If K0 	= ⊥
and A is not ping-pong, then A wins (it broke authenticity). Otherwise, we give
to A a real-or-random key Kb and A wins if it can tell these two cases apart
without, of course, pushing the ping-pong attack up to getting K0 revealed from
the oracle T. Notice that when K0 = ⊥ (i.e., the honest sender did not accept
in the challenge session), we also set K1 = ⊥. This is meant to capture that
if U does not accept, then there is no common session key established by the
two parties (essentially, no secure channel will be established). In this case the
adversary will have no better chances of winning the game than guessing b.

Experiment ExpUAKE−Sec
Π,A (λ)

(uk, tk) $← KESetup(1λ); b
$← {0, 1}

(K0, ·)←〈U(uk),AT(tk)(uk)〉
If K0 = ⊥, then K1 = ⊥
Else if K0 	= ⊥ and A is not “ping-pong”, then output 1
Else K1

$← K
b′←AT(tk)(Kb)
If A is “full-ping-pong”, then output b̃

$← {0, 1}
Else if b′ = b and A is not “full-ping-pong”, then output 1
Else output 0.

Definition 8 (Security of UAKE). Wedefine the advantage of an adversary A
in breaking the security of Π asAdvUAKE−Sec

Π,A (λ) =
∣
∣
∣Pr[ExpUAKE−Sec

Π,A (λ) = 1] − 1
2

∣
∣
∣,

and we say that a UAKE protocol Π is secure if for any PPT A, AdvUAKE−Sec
Π,A (λ)

is negligible.

Multi-user Extension of Our Notion. While we defined unilaterally-
authenticated key-exchange in the single-user setting, we stress that the defi-
nition easily extends to the multi-user setting. The reason is that in our notion

Unilaterally-Authenticated Key Exchange 553

there is only one keyed user, T. So, when considering the multi-user setting
with keyed users T1, . . . ,Tn, we can assume that an adversary attacking a given
Tj could simulate the keys of all remaining users Ti 	= Tj . In contrast, such
an extension is not equally straightforward in MAKE, where, for example, the
adversary could choose arbitrary keys for one of the two parties in the chal-
lenge session. We also refer the interested reader to [17] for a discussion on the
multi-user extension of UAKE.

Single-Challenge vs. Multiple Challenges. Similarly to CCA-secure
encryption and other privacy primitives, our attacker has only a single challenge
session. Using a standard hybrid argument, this is asymptotically equivalent to
the multi-challenge extension of our notion (with all challenge sessions sharing
the same challenge bit b). We stress, however, that single-challenge does not
mean single oracle access to T. Indeed, the attacker AT can start arbitrarily
many interleaved sessions with the keyed user T, both before and after receiv-
ing the (single) challenge Kb. In particular, any UAKE protocol where one can
recover the secret key tk given (multiple) oracle access to T will never be secure
according to our definition, as then the attacker will trivially win the (single)
challenge session by simulating honest T.

Relation with Existing Definitions. As we mentioned earlier in this
section, the notion of UAKE has been considered in prior work with different
definitions. Notably, two recent works [12,13,17] use a definition (Server only
Authenticated and Confidential Channel Establishment – SACCE) which for-
mally captures whether a party accepts or not in a protocol session, and requires
that the adversary A should not let the party accept if A does not correctly relay
messages. If we compare our security definition of UAKE given above and the
SACCE notion, we then observe the following main facts. (i) Our notion of ping-
pong is stronger than the notion of matching conversations used in SACCE in
that ping-pong takes into account the timing of the messages included in the
transcripts. (ii) While UAKE and SACCE are very similar w.r.t. capturing the
authenticity property, they instead differ w.r.t. confidentiality. In particular, our
notion aims to capture indistinguishability of the keys, whereas SACCE aims to
capture the security of the channel built by using the established session key.
As observed in [12], the latter security notion is weaker than mere session key
indistinguishability, and might thus be realized from weaker assumptions.

Finally, we formally consider the relation between our security notion of
UAKE and the security notion obtained by downgrading the Bellare-Rogaway
[2] definition for mutually-authenticated key exchange to the case of a single
authenticated party. Although the two definitions use a slightly different formal-
ism, below we show that the notions are essentially the same. The interested
reader can see the full version of this work for the Bellare-Rogaway security
definition.

The motivation of proving the equivalence to the BR model is to show that
our notion does not weaken existing, well studied notions, and can in fact be
used in place of them. Indeed, we believe our notion is shorter and more intu-
itive to work with, as we illustrate in this work. It is worth noting that this

554 Y. Dodis and D. Fiore

is not surprising. Overall, the one-way authenticated setting is simpler than
the mutually-authenticated one as there are fewer attacks to be modeled. For
example, in UAKE the security definition can involve only one long-term key,
and some advanced security properties such as key-compromise impersonation
no longer apply to the unilateral setting. In other words, this equivalence gives
the opportunity of modeling UAKE using our definition, and perhaps using the
equivalence to BR as a transition towards the more complex MAKE definition.

Theorem 1. Π is a secure UAKE protocol if and only if Π is secure in the
(unilateral version of) Bellare-Rogaway model.

For lack of space the proof appears in the full version.

Uniqueness of Matching Transcript. It is interesting to note that our
security definition implies that for any secure protocol there can be at most one
matching transcript. This for instance means that it is hard for an adversary to
force two distinct protocol sessions (in which one of the two parties is honest) to
have the same session key.5 Bellare and Rogaway prove in [2] that such property
is achieved by any protocol secure according to their (mutually-authenticated)
definition. By the equivalence of our UAKE notion to BR security one might
be tempted to conclude that this uniqueness property holds for UAKE-secure
protocols as well. This is only partially true as the proof in [2] is done for the
mutually-authenticated case, and in particular one case of the proof uses the fact
mutually-authenticated (BR-secure) protocols require at least 3 rounds. Below
we give a separate proof of this statement for UAKE protocols (the proof appears
in the full version)

Proposition 1. Let MultipleMatch be the event that in a run of ExpUAKE−Sec
Π,A (λ)

A is ping-pong and there are at least two sessions i and j, with transcripts Ti

and Tj, such that both Ti ⊆ T ∗ and Tj ⊆ T ∗. Then if Π is a secure UAKE
protocol, Pr[MultipleMatch] is negligible.

4 Constructions of UAKE Protocols Based on iCCA
and iCMA Security

In this section we show two realizations of unilaterally-authenticated key-
exchange based on message transmission protocols. The constructions are sim-
ple and they essentially show how to obtain a clean and smooth transition
from encryption/authentication towards key exchange. The first construction
(described in Fig. 2) uses an iCCA-secure protocol Π′ and a pseudorandom func-
tion. Our second construction of UAKE (described in Fig. 3) uses an IND-CPA-
secure key encapsulation mechanism and an iCMA-secure protocol Π′.

The security of these protocols is proven via the following theorems (whose
proofs appear in the full version):

5 We stress that here we mean to force two distinct oracle sessions to have the same
session key.

Unilaterally-Authenticated Key Exchange 555

Theorem 2. If Π′ is iCCA-secure, and F is a pseudo-random function, then the
protocol Π in Fig. 2 is a secure UAKE.

Theorem 3. If Π′ is iCMA-secure, and E is an IND-CPA-secure KEM, then the
protocol Π in Fig. 3 is a secure UAKE.

On the connection to authenticators [1]. We note that, due to the simi-
larity between iCMA-secure message transmission and the notion of authentica-
tors from [1], our design approach of Fig. 3 is similar to what can be obtained
by applying a (unilateral) authenticator to an unauthenticated protocol, such as
a one-time KEM. However, the derived protocols are not exactly the same. For
example, to obtain our same protocols when using the signature-based authen-
ticator one should slightly deviate from the approach of [1] and consider ek′ as
the nonce of the authenticator.

More conceptually, while the concrete protocols obtained are similar (but not
identical), the two works use very different definitions and construction paths
to arrive at these similar protocols. Our interactive PKMA notion is game-
based and essentially extends the simple notion of signature schemes, whereas
authenticators follow the real/ideal paradigm and also require built-in protection
against replay attacks. For instance, a regular signature scheme is a 1-round
iCMA secure message transmission, whereas it can be considered an authenticator
only with certain restrictions, (as per Remark 1 in [1]).

Instantiations of our protocols. In Sect. 5.1, we discuss four efficient
UAKE protocols resulting from instantiating the generic protocols in Figs. 2
and 3 with specific 1- or 2-round iCCA- and iCMA-secure schemes.

About freshness of session keys. It is worth noting that both above pro-
tocols have the property that the keyed party T generates the session key in a
“fresh” way (by sampling a fresh random s in the protocol of Fig. 2, or by run-
ning Encap with fresh coins in the protocol of Fig. 3), even if the first part of the
protocol is replayed. Such a freshness property is necessary for the security of
the protocols in our model. For instance, one might consider a simpler version of

Setting: a key pair (sendk′, recvk′) for an iCCA-secure protocol Π′ is gener-
ated. F : {0, 1}λ × {0, 1}λ → {0, 1}2λ is a PRF.

U(sendk′) T(recvk′)

r
$← {0, 1}λ U sends r to T using Π′

Get r′

If r′ �= ⊥ : s
$← {0, 1}λ

KU|c ←Fr(s) c′, s KT|c′←Fr′(s)
If c′ = c return KU

Else return ⊥ return KT

Fig. 2. UAKE from iCCA-secure encryption.

556 Y. Dodis and D. Fiore

Setting: a key pair (sendk′, recvk′) for an iCMA-secure protocol Π′ is
generated. E = (KG, Encap, Decap) is a public-key KEM.

U(recvk′) T(sendk′)

(ek′, dk′) $← KG(1λ) ek′
(c, K)

$← Encap(ek′)

Get (ek′′|c′) T sends (ek′|c) to U using Π′

If ((ek′′|c′) �= ⊥ and return K
ek′′ = ek′)

return Decap(dk′, c′)

Fig. 3. UAKE from iCMA-secure PKMA and IND-CPA-secure KEM.

the protocol of Fig. 2 in which T generates KT|c′←G(r) using a PRG G. Such a
protocol however would not be secure because of the following attack. Consider
an instantiation of Π′ with a non-interactive CCA encryption scheme. First the
adversary plays a ping-pong attack between the challenge session and an oracle
session with T: it obtains a real-or-random key Kb. In the second part of the
experiment, the adversary starts a new oracle session with T by sending to it
the first message of the challenge session. Finally, the adversary makes a last
query to T in this second session in order to obtain the corresponding session
key. Now, observe that the session key will be the same key as the real key K0 of
the challenge session, and thus the adversary can trivially use it to test whether
Kb = K0. To see the legitimacy of the attack note that the second oracle ses-
sion began after the challenge session ended, and thus it does not constitute a
full ping-pong. In contrast this attack does not apply to our protocol of Fig. 2:
there, even if one replays the first messages, every new session will sample a fresh
session key with overwhelming probability.

5 Advanced Security Properties and Concrete Protocols

In this section, we discuss advanced properties of forward security and deniability
for unilaterally-authenticated key-exchange, and then we discuss four possible
concrete instantiations of our protocols given in Sect. 4. Informally, forward secu-
rity guarantees that once a session is completed, the session key remains secure
even if the adversary learns the long-term secret keys (in the case of UAKE, only
the authenticated party T has a long-term secret key). Deniability is considered
with respect to the keyed party T. Informally, deniability says that the unkeyed
party U cannot use the transcript of its conversation with T to convince third
parties that T took part in that session. For lack of space, more formal definitions
appear in the full version.

5.1 Concrete Protocol Instantiations

Here we discuss four efficient UAKE protocols resulting from instantiating
the generic protocols in Figs. 2 and 3 with specific 1- or 2-round iCCA- and

Unilaterally-Authenticated Key Exchange 557

iCMA-secure schemes. Before proceeding to the analysis, let us briefly recall the
instantiations of the iCCA- and iCMA-secure schemes that we consider. First,
note that any IND-CCA encryption scheme is a 1-round iCCA protocol, and sim-
ilarly any strongly unforgeable signature scheme is a 1-round iCMA protocol.
Second, Dodis and Fiore [8] show a 2-round iCCA-secure protocol based solely
on IND-CPA security and a 2-round iCMA-secure protocol based on IND-CCA
encryption and a MAC. Briefly, the iCCA protocol works as follows: the receiver
chooses a “fresh” public key ek (of a 1-bounded IND-CCA encryption) and sends
this key, signed, to the sender; the sender encrypts the message using ek. The
iCMA protocol instead consists in the receiver sending a random MAC key r to
the sender using the IND-CCA encryption, while the sender sends the message
authenticated using r.

If we plug these concrete schemes in our UAKE protocols of Figs. 2 and 3,
we obtain the following four UAKE instantiations that we analyze with a special
focus on the properties of forward security vs. deniability:

1. Protocol of Fig. 2 where the iCCA protocol Π′ is a non-interactive IND-CCA
scheme: we obtain a 2-round UAKE based on IND-CCA that is (forward)
passive deniable (a perfectly indistinguishable transcript for an honest U is
easily simulatable), but it is not forwardœsecure (recovering the long-term
key recvk′ trivially allows to recover r). This protocol recover the unilateral
version of SKEME [14] (without PFS).

2. Protocol of Fig. 2 where the iCCA protocol Π′ is the 2-round protocol in [8]
based on IND-CPA security: we obtain a 3-round UAKE based on IND-CPA
security that is not deniable (as T signs the first message with a digital signa-
ture) but it is passive forward secure (since so is the 2-round iCCA protocol,
as shown in [8]).

3. Protocol of Fig. 3 where the iCMA protocol Π′ is a digital signature: we obtain
a 2-round UAKE based on IND-CPA security that is clearly not deniable (as
T signs c) but it can be shown passive forward-secure (as dk′ is a short-
term key which is deleted once the session is over). It is worth noting that
when implementing the KEM with standard DH key-exchange (ek′ = gx, c =
gy,K = gxy) we essentially recover protocol A-DHKE-1 in [21]. A very similar
protocol based on IND-CPA KEM is also recovered in the recent, independent,
work of Maurer et al. [20].

4. Protocol of Fig. 3 where the iCMA protocol Π′ is the 2-round PKMA pro-
posed in [8] (called Πmac) which is based on IND-CCA encryption and MACs:
we obtain a 2-round UAKE (as we can piggy-back the first round of Πmac

on the first round of the UAKE). Somewhat interestingly, this instantiation
achieves the best possible properties for a 2-round protocol: it enjoys both pas-
sive forward deniability (as Πmac is passive forward-deniable) and passive
forward security (since dk′ is short-term, as in the previous case). The result-
ing protocol is depicted in Fig. 4, and we note that it essentially recovers the
unilateral version of SKEME [14]. Moreover, by using the MAC of [9] and

558 Y. Dodis and D. Fiore

Setting: (ek, dk) is a key pair for an IND-CCA-secure PKE E = (KG, Enc,
Dec). E ′ = (KG′, Encap, Decap) is an IND-CPA-secure KEM, (Tag, Ver) a
strongly-unforgeable MAC.

U(sid, ek) T(sid, dk)

(ek′, dk′) $← KG′(1λ) ek′, c = Enc(ek, r) r′←Dec(dk, c)

r
$← {0, 1}λ

If Ver(r, ek′|c′, σ) = 1 c′, σ = Tag(r′, ek′|c′) (c′, K)
$← Encap(ek′)

return Decap(dk′, c′) return K

Fig. 4. A 2-round forward-deniable and forward-secure UAKE.

Setting: a key pair (ek, dk) for a labeled IND-CCA-secure PKE E = (KG,
Enc, Dec) is generated. E ′ = (KG′, Encap, Decap) is an IND-CPA-secure KEM.

U(ek) T(dk)

(ek′, dk′) $← KG′(1λ)

(ekM , dkM)
$← KG(1λ) ek′, ekM , c = EncekM (ek, r) r′←DecekM (dk, c)

r
$← {0, 1}λ

If Dec(ek
′|c′)(dkM , σ) = r c′, σ = Enc(ek

′|c′)(ekM , r′) (c′, K)
$← Encap(ek′)

return Decap(dk′, c′) return K

Fig. 5. A 2-round forward-deniable and forward-secure UAKE based on CCA
encryption.

by applying some optimizations6, we obtain a UAKE protocol based only
on CCA security. While for practical efficiency one may use faster MACs,
we show this protocol based only on CCA security mostly for elegance. The
resulting protocol is depicted in Fig. 5, where we use a “labeled” CCA-secure
PKE: EncL(ek,m) denotes a run of the encryption algorithm to encrypt a
message m w.r.t. label L; analogously DecL(dk, c) denotes decryption w.r.t.
label L. We recall that decryption of a ciphertext c w.r.t. L succeeds only if
c was created with the same label L.

Acknowledgements. The first author was partially supported by gifts from VMware
Labs and Google, and NSF grants 1319051, 1314568, 1065288, 1017471. The second
author is partially supported by the European Union’s Horizon 2020 Research and Inno-
vation Programme under grant agreement 688722 (NEXTLEAP), the Spanish Ministry
of Economy under project references TIN2015-70713-R (DEDETIS), RTC-2016-4930-7
(DataMantium), and under a Juan de la Cierva fellowship to Dario Fiore, and by the
Madrid Regional Government under project N-Greens (ref. S2013/ICE-2731).

6 By directly observing the MAC of [9], we notice that the ephemeral secret key dk′

(which is part of the MAC key with r) is only used for verification, and there is no
need to encrypt it inside c; instead, we can use labels to bind ek′ with c.

Unilaterally-Authenticated Key Exchange 559

References

1. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In:
30th ACM STOC, pp. 419–428. ACM Press, May 1998

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

3. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol.
1355, pp. 30–45. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024447

4. Blake-Wilson, S., Menezes, A.: Authenticated Diffe-Hellman key agreement proto-
cols. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 339–361.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48892-8 26

5. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44987-6 28

6. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 22

7. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

8. Dodis, Y., Fiore, D.: Interactive encryption and message authentication. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 494–513.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 28

9. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revis-
ited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 355–374. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 22

10. Fiore, D., Gennaro, R., Smart, N.P.: Constructing certificateless encryption and ID-
based encryption from ID-based key agreement. In: Joye, M., Miyaji, A., Otsuka,
A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 167–186. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17455-1 11

11. Goldberg, I., Stebila, D., Ustaoglu, B.: Anonymity and one-way authentication in
key exchange protocols. Des. Codes Cryptogr. 67(2), 245–269 (2013)

12. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE
in the standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5 17

13. Kohlar, F., Schge, S., Schwenk, J.: On the security of TLS-DH and TLS-RSA in
the standard model. Cryptology ePrint Archive, Report 2013/367 (2013)

14. Krawczyk, H.: SKEME: a versatile secure key exchange mechanism for internet. In:
1996 Proceedings of the Symposium on Network and Distributed System Security,
pp. 114–127, February 1996

15. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005). https://doi.org/10.1007/11535218 33

https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/BFb0024447
https://doi.org/10.1007/3-540-48892-8_26
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-46035-7_22
https://doi.org/10.1007/978-3-319-10879-7_28
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-642-17455-1_11
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/11535218_33

560 Y. Dodis and D. Fiore

16. Krawczyk, H.: A unilateral-to-mutual authentication compiler for key exchange
(with applications to client authentication in TLS 1.3). In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, CCS
2016, pp. 1438–1450. ACM, New York (2016)

17. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS proto-
col: a systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 24

18. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenti-
cated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007.
LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-75670-5 1

19. Maurer, U., Renner, R.: Abstract cryptography. In: Chazelle, B. (ed.) ICS 2011,
pp. 1–21. Tsinghua University Press (2011)

20. Maurer, U., Tackmann, B., Coretti, S.: Key exchange with unilateral authenti-
cation: Composable security definition and modular protocol design. Cryptology
ePrint Archive, Report 2013/555 (2013). http://eprint.iacr.org/

21. Shoup, V.: On formal models for secure key exchange. Cryptology ePrint Archive,
Report 1999/012 (1999). http://eprint.iacr.org/

https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
http://eprint.iacr.org/
http://eprint.iacr.org/

Formal Modeling and Verification for Domain
Validation and ACME

Karthikeyan Bhargavan1(B), Antoine Delignat-Lavaud2, and Nadim Kobeissi1

1 INRIA, Paris, France
{karthikeyan.bhargavan,nadim.kobeissi}@inria.fr

2 Microsoft Research, Cambridge, UK
antdl@microsoft.com

Abstract. Web traffic encryption has shifted from applying only to
sensitive websites (such as banks) to a majority of all Web requests.
Until recently, one of the main limiting factors for enabling HTTPS was
the requirement to obtain a valid certificate from a trusted certifica-
tion authority. This process traditionally involves steps such as paying
a certificate issuance fee, ad-hoc private key and certificate request gen-
eration, and domain validation procedures. To remove this barrier of
entry, the Internet Security Research Group (ISRG) introduced “Let’s
Encrypt”, a new non-profit certificate authority that uses a new pro-
tocol called Automatic Certificate Management Environment (ACME)
to automate certificate management at all levels (request, validation,
issuance, renewal, and revocation) between clients (website operators)
and servers (certificate authority nodes). Let’s Encrypt’s success is mea-
sured by its issuance of over 27 million free certificates since its launch
in April 2016. In this paper, we survey the existing process for issuing
domain-validated certificates in major certification authorities. Based on
our findings, we build a security model of domain-validated certificate
issuance. We then model the ACME protocol in the applied pi-calculus
and verify its stated security goals against our security model. We com-
pare the effective security of different domain validation methods and
show that ACME can be secure under a stronger threat model than that
of traditional CAs. We also uncover weaknesses in some flows of ACME
1.0 and propose verified improvements that have been adopted in the
latest protocol draft submitted to the IETF.

1 Introduction

Since the dawn of HTTPS, being able to secure a public website with SSL or
TLS requires obtaining a signature for the website’s public certificate from a
certificate authority [1] (CA). All major operating system and browser vendors
maintain lists of trusted CAs (represented by their root certificates) that can
legitimately attest for a reasonable link between a certificate and the identity of
the server or domain it claims to represent.

For example, all major operating systems and browsers include and trust
Symantec’s root certificates, which allows Alice to ask Symantec to attest that
c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 561–578, 2017.
https://doi.org/10.1007/978-3-319-70972-7_32

562 K. Bhargavan et al.

the certificate she uses on her website AliceShop.com has indeed been issued to
her, rather than to an attacker trying to impersonate her website. After Alice
pays Symantec some verification fee, Symantec performs some check to verify
that Alice and her web server indeed have the authority over AliceShop.com.
If successful, Symantec then signs a certificate intended for that domain. Since
the aforementioned operating systems already trust Symantec, this trust now
extends towards Alice’s certificate being representative of AliceShop.com.

The security of this trust model has always relied on the responsibility and
trustworthiness of the CAs themselves, since a single malicious CA can issue arbi-
trary valid certificates for any website on the Internet. Each certificate authority
is free to engineer different user sign-up, domain validation, certificate issuance
and certificate renewal protocols of its own design. Since these ad-hoc protocols
often operate over weak channels such as HTTP and DNS without strong cryp-
tographic authentication of entities, most of them can be considered secure only
under relatively weak threat models, reducing user credentials to a web login,
and domain validation to an email exchange.

The main guidelines controlling what type of domain validation CAs are
allowed to apply are the recommendations in the CA/Browser Forum Baseline
Requirements [2]. These requirements, which are adopted by ballot vote between
the participating organizations, cover the definition of common notions such as
domain common names (CNs), registration authorities (RAs) and differences
between regular domain validation (DV) and extended validation (EV).

These guidelines have not proven sufficient for a well-regulated and well
specified approach for domain validation: Mozilla was recently forced to remove
WoSign [3] (and its subsidiary StartSSL, both major certificate authorities) from
the certificate store of Firefox and all other Mozilla products due to a series of
documented instances that range from the CA intentionally ignoring security
best-practices for certificate issuance, to vulnerabilities allowing attackers to
obtain signed certificates for arbitrary unauthorized websites.

The lack of a standardized protocol operating under a well-defined threat
model and with clear security goals for certificate issuance has so far prevented
a systematic treatment of certificate issuance using well-established formal meth-
ods. Instead, academic efforts to improve PKI security focus on measurement
studies [4,5] and transparency and public auditability mechanisms [6,7] for
already-issued certificates.

In 2015, a consortium of high-profile organizations including Mozilla and the
Electronic Frontier Foundation launched “Let’s Encrypt” [8], a non-profit effort
to specify, standardize and automate certificate issuance between web servers
and certificate authorities, and to provide certificate issuance itself as a free-of-
charge service. Since its launch in April 2016, Let’s Encrypt has issued more than
27 million certificates [9] and has been linked to a general increase in HTTPS
adoption across the Internet.

Let’s Encrypt also introduces ACME [10], an automated domain valida-
tion and certificate issuance protocol that gives us for the first time a proto-
col that can act as a credible target for formal verification in the context of

http://AliceShop.com
http://AliceShop.com
http://AliceShop.com

Formal Modeling and Verification for Domain Validation and ACME 563

domain validation. ACME also removes almost entirely the human element from
the process of domain validation: the subsequently automated validation and
issuance of millions of certificates further increases the necessity of a formal
approach to the protocol involved.

In this paper, we formally specify, model and verify ACME using ProVerif,
an automated protocol verifier [11] that operates in the symbolic model and
accepts protocol representations in the applied-pi calculus. Against a classic
symbolic protocol adversary, ACME achieves most of its stated security goals.
Notably, we show that ACME’s design allows it to resist a substantially stronger
threat model than the ad-hoc protocols of traditional CAs that rely on bearer
tokens (passwords, cookies, authorization strings) for authentication and domain
validation, thanks to its stronger cryptographic credentials and to the binding
between the client’s identity and the validated domain.

Nevertheless, we still discover issues and weaknesses in ACME’s domain val-
idation and account recovery features, potentially amounting to user account
compromise. We attempt to address in this paper what seem to be open ques-
tions regarding ACME: how does ACME compare to the existing security model
of the actual top real-world certificate authorities? How can we most fruitfully
illustrate and formally verify its security properties, and what can we prove
about them?

Contributions. Our contributions in this paper consist of:

– A survey of the domain validation practices of current CAs: In
Sect. 2, we survey the issuance process and infrastructure of 10 of the most
popular certificate authorities. We observe that traditional CAs support mul-
tiple methods for assessing domain control, that rely on different security
assumptions.

– A threat model for domain validation: In Sect. 3, we specify a high-
level threat model for certificate issuance based on domain validation, which
applies both to both traditional CAs and ACME. We relate this threat model
to the various domain control validation methods surveyed in Sect. 2. In
Sect. 4, we demonstrate that ACME resists a stronger threat model than
other CAs.

– Formally specifying and verifying ACME: In Sect. 4, we formally specify
the ACME protocol within a symbolic model in the applied π-calculus that
encodes the adversarial capabilities described in Sect. 3. We verify the main
security goals of ACME using the ProVerif model checker. Although ACME
is shown to be more resistant to attacks than ad-hoc CAs, we also discover
weaknesses in ACME’s domain validation and account recovery and propose
countermeasures.

2 Current State of Domain Validation

A goal of this paper is to establish a relationship between current domain val-
idation practices in the real world and a more formal threat model on which

564 K. Bhargavan et al.

we base our security results. We begin by taking a closer look into the network
infrastructure, user authentication and domain validation protocols currently in
use by traditional CAs.

Our panel of surveyed CA is selected from the data set of Delignat-Lavaud
et al. [5], which uses machine learning to classify certificates issued by domain
validation. Our CA panel covers about 85% of the collected domain validated
certificates from 2014, which is consistent with the January 2015 market share
data from the Netcraft SSL survey1. For each CA, we obtain a regular one year,
single-domain certificate signature for a domain name that we own.

Section 3.2.2.4 of the CA/Browser Forum’s Baseline Requirements allow for
domain validation to occur in ten different ways, including over postal mail. Of
these methods, only three are in popular use: validation via email, the setting
of an arbitrary DNS record, or serving some HTTP value on the target domain.

2.1 Domain Validation Mechanisms

With ad-hoc CAs, user C authenticates its identity Cpk to CA A as a simple
username/password web login, with an option for account recovery via email. C
can then request that A validate some domain Cw ⊂ C�

w, where C�
w is the set of

all domain names that C controls. A’s flow with the various domain validation
channels proceeds thus:

– HTTP Identifier. A sends to C a nonce ANC via an HTTPS channel that C
must then advertise at some agreed-upon location under Cw. A then accesses
Cw using an unauthenticated, unencrypted HTTP connection to ensure that
it can retrieve ANC . This identifier depends both on honest DNS resolution of
the validated domain’s A/A6 records and an untampered HTTP connection
to the domain.
In practice, we find that CAs that allow HTTP identifiers require the nonce to
be written on a text file with a long random name in the root of the validated
domain. An attacker able to respond to HTTP requests for such names may
get a certificate without access to the domain’s DNS records.

– DNS identifier. A sends to C a nonce ADNSC via an HTTPS channel that C
must then advertise at some agreed-upon TXT record under the DNS records
of Cw. A then queries Cw’s name servers using to ensure that it can retrieve
ADNSC . This identifier is dependent on honest resolution of the TXT record.
None of the CAs we surveyed advertises DNSSEC support to ensure this
DNS resolution is indeed authentic. As an experiment, we set up a DNSSEC-
enabled domain and configured our nameserver to send an invalid RRSig for
the TXT record of the domain validation nonce for Comodo. The validation
ultimately completed, indicating that the use of DNSSEC does not currently
prevent attacks against DNS-based domain validation by current CAs.

– Email identifier. A sends to C a URI AURIC via an email to an address EC

that A presumes to belong to C. Accessing this URI causes A to issue the

1 https://www.netcraft.com/internet-data-mining/ssl-survey/.

https://www.netcraft.com/internet-data-mining/ssl-survey/

Formal Modeling and Verification for Domain Validation and ACME 565

certificate for Cw. This identifier is dependent on the confidential transport
of the email (which may be routed through third party SMTP servers that
are not guaranteed to use TLS encryption) and honest DNS resolution of the
validated domain’s MX records.
In practice, we observe that CAs use dangerous heuristics to generate a list
of possible EC that C can pick from: first, they presume that any email
addresses that appear in the WHOIS records of Cw is controlled by C. A
large majority of registrars provide WHOIS privacy services to defend against
spam. Such services can easily obtain certificates for any of their customers’
domains as validation email transit through their mail servers. Second, CAs’
heuristics include generic names such as postmaster, webmaster, or admin.
If the validated domain provides an email service for which users may chose
their username, an attacker may register under one of those generic names and
obtain a unauthorized certificate. Such attacks have been carried successfully
in the past against public email services such as Hotmail.

Once one of the above identifiers succeeds in validating C’s ownership of Cw

to A, A issues the certificate and the protocol ends.

2.2 User Authentication and Domain Validation

While CAs are required to document their certificate issuance policies in Certifi-
cate Practice Statements [12–19], we find that these statements are not always
accurate or complete (for instance, they typically provision for validation meth-
ods that are not offered in practice; the address heuristics for email-based vali-
dation is rarely listed exhaustively). Most ad-hoc CAs in our study favor email-
based validation. Unlike HTTP and DNS identifiers, email identifiers effectively
rely on a read capability challenge instead write access proof for C. In Sect. 3,
we discuss how email identifiers are the weakest available form of identification
given our threat model. In Sect. 4, we elaborate on a weakness in ACME affect-
ing both account recovery and domain validation. While this weakness is also
generalizable to traditional certificate authorities, ACME offers an opportunity
for a stronger fix.

None of CAs we surveyed offers a login mechanism that is completely inde-
pendent of email. An exception almost occurs with StartSSL, which supports
browser-generated X.509 client certificates for web login, but this exception is
negated by the email-based account recovery in case of a lost certificate pri-
vate key. Reliance on the security of the email channel can in many cases be
even more serious: in many surveyed CAs, simply being able to complete a web
login enables user to re-issue certificates for domains they had already validated
before, without further validation (Fig. 1).

A scan of the DNS MX and NS records of the web’s top 10,000 websites
(according to AliceShop.com) [20] showed that roughly 45% of surveyed domain
names used only six DNS providers, of which CloudFlare alone had a 18%

http://AliceShop.com

566 K. Bhargavan et al.

CA Identifiers Email
Recovery

Public Key
Auth.

Per-CSR
Check

AlphaSSL Email N/A

Comodo PositiveSSL Email

DigiCert Email

GeoTrust QuickSSL Email

GlobalSign HTTP, DNS,
Email

GoDaddy SSL HTTP, DNS

Let’s Encrypt (ACME
draft-1)

HTTP

Network Solutions Email

RapidSSL Email

SSL.com BasicSSL HTTP, DNS,
Email

N/A

StartCom StartSSL Email

Fig. 1. Popular CAs, their validation methods, whether they permit account recovery
via email, whether they allow login via a public-key based approach (such as client
certificates) and whether domain validation is carried out once for every certificate
request, even for already-validated domain names.

share.2 A similar centralization of authority exists with email, where the top six
providers serve more than 55% of domain names surveyed, with Google alone
holding roughly 27% market share (Fig. 2).

These results suggest that the number of actors of which the compromise
could affect traditional domain validation is significantly small. This is relevant
given how top CAs allow for account recovery, certificate re-issuance and more
with simple email-based validation.

3 A Security Model for Domain Validation

The protocols considered in this paper operate between a party C claiming to
serve and represent one or more domain names Cw (for which it wants certifi-
cates), and it is incumbent upon a certificate issuer A to verify that all domains

2 CloudFlare incidentally also operates Let’s Encrypt’s infrastructure, rendering it
a centralized point of failure for ACME and ad-hoc CAs alike. While ACME is
a centralization-agnostic protocol, Let’s Encrypt operates with a fully centralized
infrastructure.

Formal Modeling and Verification for Domain Validation and ACME 567

Other

DNSMadeEasy

Google

GoDaddy

Dynect

Akamai

CloudFlare

0 1750 3500 5250 7000

(a) Name Servers.

Other

Symantec

ProofPoint

GoDaddy

QQ

Microsoft

Google

0 1250 2500 3750 5000

(b) Mail Servers.

Fig. 2. Provider repartition among the Alexa Top 10,000 global sites, as of October
2016. Notably, CloudFlare and Akamai also provide CDN services to domains under
their name servers, allowing them stronger control over HTTP traffic.

in Cw are indeed controlled and managed by C. User C authenticates itself
to the certificate authority A using a public key Cpk of a private identity Ck.
C can then link identifiers under Ck that prove that it manages and controls
domains in Cw.

This and following sections are largely based on our full symbolic model3

of ACME and ad-hoc CA protocol and network flow, which is written in the
applied pi calculus and verified using ProVerif. Excerpts of this model are inlined
throughout.

3.1 Security Goals and Threat Model

Our security goals are straightforward: for any domain Cw ∈ Cw, A must not
sign a certificate asserting C’s ownership of Cw for that domain unless C can
validate Cpk as representing the identity that owns and manages this domain.
ACME allows C to validate Cw with respect to Cpk by using the secret value
Ck in order to demonstrate either read or write capabilities on certain pre-
defined network channels, each with its own security model. A domain name Cw

is considered validated under Cw if Ck can be used to complete a verification
challenge on one of the network channels offered by the ACME protocol between
C and A that in consequence asserts a relationship between Cpk and Cw.

The network topology, channels and actors are essentially the same for both
ACME and ad-hoc CAs. However, the manner in which these actors communi-
cate over the channels is different, and leads to different attempts to establish
the same security guarantees (Fig. 3).

Channels. Intuitively, the channels we want encapsulate the following proper-
ties:

3 Full model available at https://github.com/Inria-Prosecco/acme-model.

https://github.com/Inria-Prosecco/acme-model

568 K. Bhargavan et al.

– HTTPS Channel. Intuitively a regular web channel, we treat it as a A-
authenticated duplex channel whereupon anyone can send a request to A,
only A can read this request and respond, and only the sender can read this
response.

– Strong Identifier Channels. These channels must be assumed to be
writable only by C. They are therefore relevant for HTTP and DNS Identi-
fiers.

– Weak Identifier Channel. Anyone can write to this channel, but only
C can read from it. This makes it relevant for domain validation via email
identifiers.

DNS

HTTP

SMTP

C AAuth(Ck, newcert(C , C csr))

HTTPS Channel

DNS Channel

HTTP Channel

SMTP Channel

Fig. 3. Channels overview.

A shared consideration between
ACME and ad-hoc CAs involves
the critical importance of DNS res-
olution: if the attacker can simply
produce false DNS responses for A
resolving a domain request for any
domain in Cw, it becomes impossi-
ble to safely carry out domain vali-
dation under any circumstances. As
a sidenote, this allows us to argue
that since the DNS channel must be
trusted, it could also be considered as the safest channel on which to carry out
domain validation using DNS Identifiers since that would allow C to avoid need-
lessly involving other channels.

In formally describing our network model in ProVerif, we simulate simulta-
neous requests from Alice, Bob and Mallory as independent clients C. Alice and
Bob both act as honest clients, while Mallory acts as a compromised participant
client. All three follow the same protocol top-level process. We also simulate two
independent ACME CAs, which interchangeably assume the role of A. For each
C, we specify a triple of distinct channels:

(CHTTP , CEMAIL, CDNSTXT)

Each channel represents access to a different domain validation mechanism.
While C is given complete access over these channels, the channels are only
handed to CEMAIL is only handed to A after being applied through a “write
transformation” which returns a variant of the channel that is effectively write-
only:

w(channel) → channel

Similarly, a “read transformation” r(channel) → channel is applied to CHTTP

and CDNSTXT .

Formal Modeling and Verification for Domain Validation and ACME 569

A routing proxy is then specified in order to model the transportation across
these channels by executing the following unbounded processes in parallel4:

in(w(CEMAIL), x); out(r(CEMAIL), x)
in(pub, x); out(r(CEMAIL), x)

in(w(CHTTP), x); out(pub, x); out(r(CHTTP), x)
in(w(CDNSTXT), x); out(pub, x); out(r(CDNSTXT), x)

Threat Model. We assume that the adversary controls parts of the network
and so can intercept, tamper with and inject network messages. As such, an
attacker could make requests for domains they do not own, intercept and delay
legitimate certificate requests, and so on. Our adversary has full access to pub,
w(CEMAIL), r(CHTTP) and r(CDNSTXT). We also publish Mallory’s channels
and Ck over pub. As such, the attacker controls a set of valid participants (e.g. M)
with their own valid identities (e.g. Mk, Mpk). The attacker may advertise any
identity for its controlled principals, including false identities, and may attempt
to obtain a certificate for domains not legitimately under Mw.

The adversary also has at his disposal certain special functions:

– PoisonDnsARecord, which takes in a domain Cw and allows the attacker to
poison its DNS records to redirect to a server owned by M . Calling this
function triggers the ActiveDnsAttack(Cw) event.

– ManInTheMiddleHttp, which allows the attacker to write arbitrary HTTP
requests as if they were emitting from CHTTP by disclosing CHTTP to the
attacker. Calling this function triggers the ActiveHttpAttack(Cw) event.

3.2 ProVerif Events and Queries

Under ProVerif, queries under our symbolic model are constructed from
sequences of the following events, each callable by a particular type of actor:

– Client. The client is allowed to assert that they own some domain by trig-
gering the event Owner(C,Cw). Once C receives a certificate Cwcert

for Cw

from A, they also trigger CertReceived(Cw, Cwcert
, Cpk, Apk)

– Server. The server (ACME instance or CA) triggers the event
HttpAuth(Cpk, Cw), DnsAuth(Cpk, Cw) and EmailAuth(Cpk, Cw) depend-
ing on the type of domain validation used. Once A issues a certificate Cwcert

for Cw to C, they also trigger CertIssued(Cw, Cwcert
, Cpk, Apk)

– Adversary. As noted above, the adversary may trigger the events
ActiveDnsAttack(Cw) and ActiveHttpAttack(Cw). In addition, the adver-
sary is allowed to masquerade as M in order assert that they own some
domain by triggering the event Owner(Mpk, Cw).

4 We also specify a fully public channel named pub.

570 K. Bhargavan et al.

Queries. Queries encode the security properties that we expect our model to
satisfy. For example, informally, we expect the a CertIssued event may only
occur following an HttpAuth or DnsAuth event for the same domain, expressing
the fact that ACME should not issue a certificate for an non-validated domain
under any circumstance. Running ProVerif on the query can result in three
outcomes: either it diverges (in which case the model or query needs to be
simplified), or it proves that the model satisfies the query, or it finds a counter-
example and outputs its trace (which can be turned into an attack).

Validation with DNS Identifiers. We assert that if DNS validation succeeded,
then A must have been able to successfully carry out DNS validation accord-
ing to spec, or an adversary was able to instantiate an active DNS poisoning
attack (with no third possible scenario). In ProVerif, this can be expressed using
injective event queries:

DnsAuth(Cpk, Cw) =⇒ (Owner(Ck, Cw) ∨ DnsAttack(Cw))

Validation with HTTP Identifiers. We explicitly show that HTTP authentication
is weaker than DNS authentication, since it is possible under both cases of DNS
poisoning and an HTTP man-in-the-middle attack:

HttpAuth(Cpk, Cw) =⇒ Owner(Ck, Cw) ∨ (HttpAttack(Cw) ∨ DnsAttack(Cw))

Predictable Certificate Issuance. We attempt to verify that all received certifi-
cates were issued by the expected CA. This query fails to verify, and leads us to
the attack we discuss in Sect. 5.2:

CertReceived(Cw, Cwcert
, Cpk, Apk) =⇒ CertIssued(Cw, Cwcert

, Cpk, Apk)

4 Specifying and Formally Verifying ACME

In this section we provide a formal description of the ACME protocol functional-
ity and identify three issues that affect ACME’s security. We also discuss details
of how we describe the ACME protocol flow in the applied pi calculus, so that
we can verify for certain queries using ProVerif.

4.1 ACME Network Flow

Unlike ad-hoc CAs which are limited to a web login, ACME’s authentication
depends on C generating a private value Ck and a public signing key Cpk, which
are used to generate automated client signatures throughout the protocol.

Formal Modeling and Verification for Domain Validation and ACME 571

Web Server

Cw

Domain Owner

C

ACME Server

A

Knows Ck, Crk, Cpk, Cprk, Cc

Cw ⊂ Cw

Knows Ak

Sign(Ck, (newreg, Cc, Cpk, Cprk))

Creates account for C under Cpk

Generates recovery key pair (ArkAC , AprkAC)

CrecoveryA = KDF (CZA , CHA , recovery)

AprkAC

CrecoveryA = KDF (CZA , CHA , recovery)

Sign(Ck, newauthz)

authz(ANC)

(Cpk, ANC)

(Cpk, ANC)

Sign(Ck, newcert(Cwcsr))

Generates Cwcert based on Cwcsr

Sign(Ak, Cwcert)

Fig. 4. ACME draft-1 protocol functionality for C account registration, recovery key
generation, and validation with certificate issuance for Cw. This chart demonstrates val-
idation via an HTTP identifier. In draft-3 and above, the HTTP challenge (Cpk, ANC)
is replaced with Sign(Ck, (Cpk, ANC)).

HTTP Identifier. A sends to C a nonce ANC via the HTTPS channel. C must
then advertise, at an agreed-upon location under Cw, the value (Cpk, ANC). A
then accesses Cw using an unauthenticated, unencrypted HTTP connection to
ensure that it can retrieve the intended value.

ACME also supports a very similar validation mode that operates at the level
of the TLS handshake rather than at the HTTP level (using the SNI extension
and a specially crafted certificate in place of the HTTP request and response).
We believe this mode is intended for TLS termination software and hardware,
and despite its apparent complexity, it is semantically equivalent to the HTTP
identifier method. Since the details of the formatting of payloads is abstracted
in our symbolic model we model both TLS-SNI and HTTP validation under the
same framework in our model.

DNS Identifier. A sends to C a nonce AnonceC via the HTTPS channel. C
advertises this nonce in the form of a DNS record served by Cw’s name servers,
thereby proving ownership of Cw. A can then query its DNS server to verify
that the nonce has been set. While this behavior is specified in ACME, it is not
used in any implementation of Let’s Encrypt: since ACME is designed to take
advantage of domain validation methods that can be automated and since DNS

572 K. Bhargavan et al.

record management depends on a series of ad-hoc protocols of its own between
C and DNS service providers, it is not used by ACME.

Out-of-Band Validation. The ACME standard draft supports an out-of-band val-
idation mechanism, which can be used to implement legacy validation methods,
including email-based validation. However, since this method is underspecified,
we do not cover it in our models and advice against using any out-of-bound
validation unless it is analyzed under a specific model.

4.2 ACME Protocol Functionality

In this paper we focus on draft-1 of the IETF specification for the ACME pro-
tocol, which is as of October 2016 also the draft specification deployed in official
Let’s Encrypt client and server implementations. In part due to the issues we
discuss in the paper and have communicated with the ACME team, draft-3
(and subsequently draft-4) does away with some features, most notably Account
Recovery, and generally is resistant to the issues discussed here.

Preliminaries. In some parts of ACME’s protocol flow, C and A will need to
establish a number of shared secrets, each bound to a strict protocol context,
over their public keys. In ACME, this is accomplished using ANSI-X9.63-KDF:

1. C and A agree on a ECDH shared secret CZA using their respective key pairs
(Ck, Cpk) and (Ak, Apk).

2. A hashing function CHA is chosen according to the elliptic curve used to
calculate CZA : SHA256 for P256, SHA384 for P384 and SHA512 for P521.

3. ClabelA = KDF (CZA , CHA , label), with label indicating the chosen context
for this particular key’s usage.

As a protocol, ACME provides the following seven certificate management
functionalities (illustrated in Fig. 4) between web server C and certificate man-
agement authority A:

– Account Key Registration. In this step, C specifies her contact information
(email address, phone number, etc.) as Cc and generates a random private
signing key Ck with (over a safe elliptic curve) a public key Cpk. A POST
request is sent to A containing Sign(Ck, (newreg, Cc, Cpk)). The newreg
header indicates to A that this is an account registration request. If A has no
prior record of Cpk being used for an account, and if the message’s signature
is valid under Cpk, A creates a new account for C using Cpk as the identifier
and responds with a success message.

– MAC-Based Account Recovery. C may choose to identify an account recovery
secret with A. In order to do this, C generates an account recovery key pair
(Crk, Cprk) and simply includes Cprk in an optional recoverykey field in its
initial newreg message to A. A generates the complementary (ArkAC , AprkAC)
and both parties calculate CrecoveryA using their recovery key pairs. A com-
municates AprkAC in its response to C. Later, if C loses Ck, she can ask A

Formal Modeling and Verification for Domain Validation and ACME 573

to re-assign her account to a new identity (Ck′ , Cpk′) by using CrecoveryA as
a key to generate a MAC of some value chosen by A.

– Contact-Based Account Recovery. C can request that A send a verification
token to one of the contact methods previously specified in Cc. For example,
this could be a URI sent to an email in Cc. If C successfully opens this URI,
she becomes free to replace Cpk with a Cpk′ for some arbitrary Ck′ at A.

– Identifier Authorization. C can validate its ownership of a domain Cw in
Cw by providing one of the identifiers discussed in Sect. 3 to A. C must first
request authorization for Cw by sending a newauthz message. A then responds
with the types of identifiers it is willing to accept in a authz message. C is
then free to use any one of the permitted identifiers to validate its ownership
of Cw and allow A to sign certificates for it issued to C and tied to the identity
Cpk.

– Certificate Issuance and Renewal. After C ties an identifier to Cw under Cpk,
it may request that a certificate be issued for Cw simply by requesting one
from A. Generally, A will send the signed certificate with no further steps
required. The renewal procedure is similarly straightforward.

– Certificate Revocation. C may ask A to revoke the certificate for Cw by send-
ing a POST message containing the certificate in question, signed under either
Cpk or the key pair for the certificate itself. C may choose which key to use
for this signature. A verifies that the public key of the key pair signing the
request matches the public key in the certificate, and that the key pair signing
the request is an account key, and the corresponding account is authorized to
act for all of the identifier(s) in the certificate.

Given this description of the ACME protocol and the threat model defined in
Sect. 3, we modeled ACME using the automated verification tool ProVerif [21].
In our model, we involve three different candidates for C: Alice, Bob and Mallory,
and two CA candidates as A.

In our automated verification process, we consider an active attacker over the
three channels specified in Sect. 3. As a result, we were able to find the issues
discussed in Sect. 5.2. The first two are relatively minor; however, the third could
lead to account compromise in the case of contact-based account recovery, and
potentially to the issuance of false certificate signatures if email-based domain
validation were to be implemented in ACME. Furthermore, this third issue is also
generalizable to affect traditional certificate authorities, as described in Sect. 2.

4.3 Model Processes

Using the modeling conventions we established in Sect. 3 which include channels,
adversaries, actors and events, we instantiate in our ProVerif model of ACME a
top-level process that executes the following processes in parallel:

– ClientAuth. Run simultaneously by Alice, Bob and Mallory assuming the
role of C (with a compromised Mallory), this process registers a new account
with A and sends the queries illustrated in Fig. 4. The events Owner and
CertReceived are triggered as part of this process.

574 K. Bhargavan et al.

– ServerAuth. Run simultaneously by two independent CAs assuming the role
of A, this process accepts registrations from C and follows the protocol illus-
trated in Fig. 4. The events HttpAuthenticated and CertIssued are triggered
as part of this process.

The processes RoutingProxy, PoisonDnsARecord and ManInTheMiddleHttp,
all described in Sect. 3, are also run in parallel with the above.

5 Analysis Results

5.1 Weaknesses in Traditional CAs

Traditional CA dependence on weak channels gives us a threat model where
real-world attacks can have a small cost and come with severe consequences.

Email Validation. In ad-hoc CAs, C is generally simply sent an email containing
a URI to their email inbox, which they’re supposed to click in order to validate
for their chosen domain. Figure 5 shows an attack rendered possible by this
mechanism. A could instead, upon a validation request, redirect C’s browser to
a secret, nonce-based URI AURIC served to C over the HTTPS channel, and
independently mail C the value HMAC(Ahk, AURIC) for some secret Ahk held
by A. C would need to retrieve this second value and enter it inside the page at
AURIC . This approach would largely negate the weakness discussed in Sect. 5.2,
since an attacker-induced validation email would result in an email that does
not include a value matching the URI given by A to C at the beginning of the
validation process.

Usage of Nonces. Traditional CAs use random nonces with no special crypto-
graphic properties as the values that they then verify over HTTP, email or DNS.

Domain Owner

C

Attacker

V

CA Website

W

Mail Server

E

CertRequest(Cw, Cpk)

CertRequest(Cw,Mpk)

EmailChallenge(Cw, n)

ReadEmail(Cw, n)

V alidate(Cw, n)

Cert(W,Cw,Mpk)

Install Cert(W,Cw,Mpk)

Read(Cert(W,Cw,Mpk))

Fig. 5. Attack on email validation: concurrent request by active adversary.

Formal Modeling and Verification for Domain Validation and ACME 575

Domain Owner

C

Attacker

V

CA Website

W

DNS Server

D

CertRequest(Cw, Cpk) CertRequest(Cw,Mpk)

DNSChallenge(Cw, n)DNSChallenge(Cw, n)

WriteTXT (Cw, n)

ReadTXT (Cw, n)

Cert(W,Cw,Mpk)

Fig. 6. Active attack on DNS/HTTP/Email validation when using just nonces.

In addition to this helping caused the attack described above, another more gen-
eral attack on nonces is shown in Fig. 6 in the case of an active attacker. For
example, this attack can be used by a compromised CA website to get certifi-
cates issued for domain Cw by another (more reputable) CA, hence amplifying
the compromise across CAs. None of these attacks would be effective if nonces
were tied to some cryptographic properties, such as MACs or even just by deriv-
ing them from a hash of the certificate request’s public key.

In order to avoid a similar attack, ACME draft-3 and draft-4 require that
HTTP identifiers be validated by broadcasting Sign(Ck, ANC) via the web server
instead of ACME draft-1’s (Cpk, ANC) (Fig. 7).

Secure DNS Server

D

CA Website

W

Attacker

V

Mail Server

E

CertRequest(Cw, Cpk)

QueryMX(Cw)

MailServer(Cw,M)

EmailChallenge(Cw, n)

V alidate(Cw, n)

Cert(W,Cw, Cpk

Fig. 7. Attack on email validation: passive adversary on email channel

5.2 Weaknesses in ACME

Cross-CA Attacks on Certificate Issuance. Suppose an ACME client C requests
a certificate from A, and but A is malicious or the secure channel between A and
C is compromised. Now, an attacker can intercept authorization and certificate
requests from C to A, and instead forward them to another ACME server A′. If
A′ requests domain validation with a token T , the attacker forwards the token
to the client, who will dutifully place its account key K and token T on its
validation channel. A′ will check this token and accept the authorization and
issue a certificate that the attacker can forward to C.

576 K. Bhargavan et al.

This means that C asked for a certificate from A, but instead received a
certificate from A′. Moreover, it may have paid A for the service, but A′ might
have done it for free. This issue, while not critical, can be prevented if C checks
the certificate it gets to make sure it was issued by the expected CA. An alter-
native, and possibly stronger, mitigation would be for ACME to extend the Key
Authorization string to include the CA’s identifier.

More generally, this issue reveals that ACME does not provide channel bind-
ing, and this appears as soon as we model the ACME HTTPS Channel. We
would have expected to model this as a mutually-authenticated channel since
the client always signs its messages with the account key. However, although the
client’s signature is tunnelled inside HTTPS, the signature itself is not “bound”
to the HTTPS channel. This means that a message from an ACME client C to A
can be forwarded by A to a different A′ (as long as C supports both A and A′).
This kind of “credential forwarding” attack can be easily mitigated by channel
binding. For example, ACME could rely on the Token Binding specifications
to securely bind the client signature to the underlying channel. Alternatively,
ACME could extend the signed request format to always include the server’s
name or certificate-hash, to ensure that the message cannot be forwarded to
other servers.

Contact-Based Recovery Hijacking. While the use of sender-authenticated chan-
nels in ACME seems to be relatively secure, more attention needs to be paid
to the receiver-authenticated channels. For example, if the ACME server uses
the website administrator’s email address to send the domain validation token,
a näıve implementation of this kind of challenge would be vulnerable to attack.

In the current specification, the contact channel (typically email) is used for
account recovery when the ACME client has forgotten its account key. We show
how the careless use of this channel can be vulnerable to attack, and propose a
countermeasure. Suppose an ACME client C issues an account recovery request
for an account under Cpk with a new key Ck′ to the ACME server A. A net-
work attacker M blocks this request and instead sends his own account recovery
request for the account under Cpk (pretending to be C) with his own key Mk′ . A
will then send C an email asking to click on a link. C will think this is a request
in response to its own account recovery request and will click on it. Similarly to
the (slightly different) flow described in Fig. 5, A will think that C has confirmed
account recovery and will transfer the account under Cpk to the attacker’s key
Mk′ . In the above attack, the attacker did not need to compromise the contact
channel (or for that matter, the ACME channel).

The key observation here is that on receiver-authenticated channels (e.g.
email) the receiver does not get to bind the token provided by A with its own
account key. Consequently, we need to add a further check. The email sent from
A to C should contain a fresh token in addition to C’s new account key. Instead
of clicking on the link (out-of-band), C should cut and paste the token into the
ACME client which can first check that the account key provided by A matches
the one in the ACME client and only then does it send the token back to A,

Formal Modeling and Verification for Domain Validation and ACME 577

or alternatively that the email recipient at C visually confirms that the account
key (thumbprint) provided by A matches the one displayed in the ACME client.

The attack described here is on account recovery, but a similar attack appears
if we allow email-based domain validation. A malicious ACME server or man-
in-the-middle can then get certificate issued for C’s domains with its own public
key, without compromising the contact/validation channel. The mitigation for
that attack would be very similar to the one proposed above.

6 Conclusion

In this paper, we have provided the results of an empirical case study that allowed
us to describe a real-world threat model governing both traditional certificate
authorities and ACME in terms of user authentication and domain validation.
We formally modeled these protocols and provided the results of security queries
under our threat model, using automated verification. As a result of our disclo-
sures to the ACME team, the latest ACME protocol version (draft-4) has been
designed to avoid the pitfalls that make these attacks possible.

Given the weak threat model that traditional CAs are assuming for their
domain validation process, we are not surprised by the regular occurrences of
unauthorized certificate issuance (e.g. StartCom in 2008, Comodo and DigiNo-
tar in 2011, WoSign in 2016). We advocate the CA/Browser forum to eventually
mandate the use of ACME (or some other well-defined domain validation proto-
col that can be formally analyzed) to all certification authorities, as a long-term
solution to reduce unauthorized certificate issuance. Until the issuance process
for the whole PKI is unified, techniques to improve the validation of certifi-
cates such as certificate transparency [6] remain necessary to detect issuance
failures, and technologies such as DNSSEC [22], DANE [23], or SMTPS may
help strengthen the channels involved in legacy domain validation.

References

1. Chokhani, S., Ford, W., Sabett, R., Merrill, C., Wu, S.: Internet X.509 Public
Key Infrastructure: Certificate Policy and Certification Practices Framework, RFC
3647. Internet Engineering Task Force, November 2003

2. CA/Browser Forum: Baseline requirements for the issuance and management of
policy-trusted certificates, v. 1.1.5, May 2013

3. Gervase, M., Ryan, S., Richard, B., Kathleen, W.: WoSign and StartCom
4. Levillain, O., Ébalard, A., Morin, B., Debar, H.: One year of SSL internet mea-

surement. In: Proceedings of the 28th Annual Computer Security Applications
Conference, ACSAC 2012, pp. 11–20. ACM, New York (2012)

5. Delignat-Lavaud, A., Abadi, M., Birrell, A., Mironov, I., Wobber, T., Xie, Y.,
Microsoft Research: Web PKI: closing the gap between guidelines and practices.
In: NDSS (2014)

6. Google: Certificate transparency

578 K. Bhargavan et al.

7. Basin, D., Cremers, C., Hyun-Jin, K.T., Perrig, A., Sasse, R., Szalachowski, P.:
ARPKI: Attack Resilient Public-Key Infrastructure. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, CCS 2014,
pp. 382–393. ACM, New York (2014)

8. Internet Security Research Group: Let’s encrypt overview (2016)
9. Internet Security Research Group: Let’s encrypt statistics (2016)

10. Barnes, R., Hoffman-Andrews, J., Kasten, J.: Automatic Certificate Management
Environment (ACME), July 2016

11. Blanchet, B., Smyth, B., Cheval, V.: ProVerif 1.90: automatic cryptographic pro-
tocol verifier, user manual and tutorial (2014)

12. Comodo CA Ltd.: Comodo certification practice statement. Technical report,
Comodo CA Ltd., August 2015

13. DigiCert: DigiCert certification practices statement. Technical report, DigiCert,
September 2016

14. GeoTrust Inc.: GeoTrust certification practice statement. Technical report,
GeoTrust Inc., September 2016

15. GlobalSign CA: GlobalSign CA certification practice statement. Technical report,
GlobalSign CA (2016)

16. Internet Security Research Group: Certification practice statement. Technical
report, Internet Security Research Group, October 2016

17. Symantec Corporation: Symantec Trust Network (STN) certification practice
statement. Technical report, Symantec Corporation, September 2016

18. StartCom CA Ltd.: StartCom certificate policy and practice statements. Technical
report, StartCom CA Ltd., September 2016

19. LLC Network Solutions: Network solutions certification practice statement. Tech-
nical report, Network Solutions, LLC, September 2016

20. Alexa Internet Inc.: Top 1,000,000 sites (updated daily) (2013)
21. Küsters, R., Truderung, T.: Using ProVerif to analyze protocols with Diffie-

Hellman exponentiation. In: IEEE Computer Security Foundations Symposium
(CSF), pp. 157–171 (2009)

22. Ateniese, G., Mangard, S.: A new approach to DNS security (DNSSEC). In: Pro-
ceedings of the 8th ACM Conference on Computer and Communications Security,
pp. 86–95. ACM (2001)

23. Hoffman, P., Schlyter, J.: The DNS-based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) protocol: TLSA. Technical report (2012)

Why Banker Bob (Still) Can’t Get TLS
Right: A Security Analysis of TLS in

Leading UK Banking Apps

Tom Chothia(B), Flavio D. Garcia, Chris Heppell, and Chris McMahon Stone

School of Computer Science, University of Birmingham, Birmingham, UK

t.p.chothia@cs.bham.ac.uk

Abstract. This paper presents a security review of the mobile apps pro-
vided by the UK’s leading banks; we focus on the connections the apps
make, and the way in which TLS is used. We apply existing TLS testing
methods to the apps which only find errors in legacy apps. We then go on
to look at extensions of these methods and find five of the apps have seri-
ous vulnerabilities. In particular, we find an app that pins a TLS root CA
certificate, but do not verify the hostname. In this case, the use of cer-
tificate pinning means that all existing test methods would miss detect-
ing the hostname verification flaw. We also find one app that doesn’t
check the certificate hostname, but bypasses proxy settings, resulting in
failed detection by pentesting tools. We find that three apps load adverts
over insecure connections, which could be exploited for in-app phishing
attacks. Some of the apps used the users’ PIN as authentication, for
which PCI guidelines require extra security, so these apps use an addi-
tional cryptographic protocol; we study the underlying protocol of one
banking app in detail and show that it provides little additional pro-
tection, meaning that an active man-in-the-middle attacker can retrieve
the user’s credentials, login to the bank and perform every operation the
legitimate user could.

1 Introduction

The use of TLS in smartphone apps has proved challenging for developers to get
right. Common mistakes involve accepting self signed certificates, not checking
the hostname, accepting weak cipher suites and allowing SSL stripping due to
sending HTTPS links over insecure connections [4,9,12]. These issues are all
trivial to fix and easy to detect so we would expect that leading international
banks would not make such mistakes.

Banking organisations have previously threatened legal action against secu-
rity researchers [6,18] and the UK courts have granted temporary injunctions
against researchers on the grounds that they could not show that they followed
proper procedure in their analysis [5]. Therefore, when carrying our work it
would be useful to be able to follow all of the terms and conditions of use of

The original version of this chapter was revised: minor error in the author name was
corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-3-319-70972-7 36

c© International Financial Cryptography Association 2017, corrected publication 2023
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 579–597, 2017.
https://doi.org/10.1007/978-3-319-70972-7 33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70972-7_33&domain=pdf
https://doi.org/10.1007/978-3-319-70972-7_36
https://doi.org/10.1007/978-3-319-70972-7_33

580 T. Chothia et al.

the apps, failure to do so could lead to legal pressure not to publish the results
of the analysis. In particular, the terms and conditions of the banking apps and
app store, forbid reverse engineering the code, and accessing app stores outside
of your geographical area. We note that our analysis method does not require
this and allows analysis without breaking the terms and conditions of the app.

A correctly configured TLS client should check (among other things) that
the server it communicates with uses a certificate for the hostname the client is
expecting, and that this certificate is signed by someone the client trusts. Addi-
tionally, it is good practice for the client to check that the certificate is signed by
a single, prearranged Certificate Authority (CA), rather than an arbitrary CA
from the list of those trusted by the client’s OS. This additional check is known
as certificate pinning. There are a number of options as to which certificate in
the chain is being pinned to: pinning the server certificate provides the highest
security level but it also provides less flexibility, e.g., when this key expires or
needs to be revoked. Alternatively, it is possible to pin the intermediate or even
the root CA. The higher in the chain you pin, the more flexibility you get at the
cost of security.

In this paper we report on the analysis of Android and iOS apps from 15 of
the leading retail banks based in the UK (see Table 1). We test all of the apps
for the most common TLS flaws, i.e. whether they accept self-signed certificates;
correctly check the hostname; permit protocol downgrades or weak cipher suites;
allow SSL stripping (by sending secure links over insecure connections); Using
available tools and previous defined methods we found no vulnerabilities in any
of current versions of the apps.

However, we note that as one of our test devices was an old Apple tablet
that did not support the most recent version of iOS. We found that when apps

Table 1. Apps in our test set and vulnerabilities discovered.

A Security Analysis of TLS in Leading UK Banking Apps 581

were downloaded on these older devices, an older legacy version of the app was
provided. In fact, two of the legacy apps accepted self-signed certificates, and
using this an attacker could steal the initial setup code used to authenticate the
app, which is generated during the registration process. It seems likely that this
was a flaw in the application that had been previously detected and fixed, but
fixing the legacy version of the app had been overlooked.

While checking the up-to-date apps, we found that 7 of the 15 banks we
tested used certificate pinning, as we might expect from high security apps.
We note that the method of checking that apps are verifying server hostnames
used by others [9] is unreliable when certificate pinning is being used. This is
because by proxying TLS connections with a trusted certificate for an unrelated
hostname, one cannot distinguish whether the app rejects the connection because
the hostname is invalid, or because a chain of trust cannot be established due
to pinning being in use.

While pinning to the server public key would be secure, to test for apps
that pinned to higher up the certificate chain, we obtained a certificates from
corresponding root CAs but for our own hostnames. We found two apps that
accepted such certificates Co-op and Natwest bank, meaning that these apps
could be MITMed and were not secure. While pinning the certificates is good
security practice, it seems possible that in the case of Coops app, pinning the
certificate hid the more serious problem of having no hostname verification.
Natwest on the other hand was not pinning, but implemented proxy bypassing
measures. This additional security measure also hid the problem of no hostname
verification.

The banks involved all have rigorous security testing regimes, and during
the disclosure process they told us that they had also hired leading outside
penetration companies to test the apps; however the certificate pinning would
have meant that many of the standard penetration tests on apps (such as trying
to MITM with a valid certificate for the same hostname) would have failed.
While high security apps should certainly continue to pin the certificates, care
must be taken to ensure that this does not mean that other vulnerabilities are
missed.

When examining the apps we also found that some apps which passed all
of the TLS checks, requested some of their data over unencrypted connections.
While not a vulnerability in itself, a few of the apps were requesting images with
links to be displayed to the user. We found this vulnerability in apps from Allied
Irish Bank and Santander UK, among others. We additionally found unencrypted
update checks which could be used to make the app tell the user that they needed
to upgrade and redirect them to a site of the attacker’s choosing, e.g. a phishing
website.

When examining apps with failed TLS, we discovered that some apps use an
additional layer of security. Requirement 1 of the PCI PIN security regulations
[15] states that PINs must never appear in the clear outside of an SCD. If this
is applied to mobile banking application PINs, it would make a second layer
protocol compulsory. Web servers that decrypt TLS traffic from these apps are

582 T. Chothia et al.

unlikely to be Secure Cryptographic Devices (SCD). Therefore there is a need to
implement a second layer secure protocol so that PIN data can be forwarded to
the banks’ SCDs for processing. Further to this, new attacks have frequently been
discovered against TLS so an additional layer of security is a sensible precaution.
We found that some of the apps did use an additional cryptographic protocol on
top of TLS, however we show that this protocol is flawed, allowing an adversary
to obtain the information needed to log into the victim’s online banking. We go
on to propose an alternative protocol that would keep mobile banking secure
even when the TLS protection failed and we formally verify this protocol.

Summary of Our Contribution:

– Carrying out a manual analysis of the 15 leading UK banking apps and finding
that they are not vulnerable to TLS flaws previously reported in the literature.

– Discovering a new vulnerability that can arise when certificate pinning is used
incorrectly. We have manually tested for this vulnerability and found it in one
of the apps.

– Identifying “in app phishing” as an issue for apps which establish secure TLS
connections but request resources, such as images and links, via an insecure
connection. We found this vulnerability in three iOS banking apps and their
Android counterparts.

– Identifying the existence of vulnerable legacy versions of apps as being an
issue for the Apple App Store, and we have found two vulnerable apps from
UK banks that were still being made available to customers.

– Studying the cryptographic protocol used by one of the banks as a second
layer of security. We found that this protocol is flawed and that an attacker
can obtain the credentials needed to take control of a users’ Internet banking.

– We propose an improved protocol which addresses this problem and formally
verified it using ProVerif.

A summary of the issues found is given in Table 1. For two Android banking
apps, we are able to mount a man-in-the-middle attack that is able to retrieve
the user’s credentials (username and PIN/password), login to the bank and do
every operation the legitimate user can i.e., see the balance and past transactions,
make and modify bank transfers, etc. For three more iOS and Android banking
apps, we could inject our own content and links into the apps, and use this to
phish log-in details, and for two legacy iOS apps we found that we could MITM
the TLS connection and so eavesdrop on the initial setup process of the app.
These attacks are very practical. All an attacker needs to do is to create a “free
WiFi” hotspot at a popular coffee shop and run a script that waits for a user
to use their banking app, then MITMs the connection and collects the security
tokens and user PIN numbers, which the attackers could then use at a later date.
Through a lengthy disclosure process we have informed all of the banks involved
and all but one have now fixed the problem.

A Security Analysis of TLS in Leading UK Banking Apps 583

Structure of the Paper

In the next section we discuss related work and then we provide some back-
ground, briefly describing the TLS protocol and certificate pinning. Section 3
describes the apps we tested and the approach we took to our security assess-
ment. Section 4 presents a novel vulnerability that arises if certificate pinning
is used incorrectly. In Sect. 5 we perform an in depth analysis of an additional
protocol used by one of the apps, and show that it provides little extra security.
Section 6 looks at banking apps which are vulnerable because they load some of
their content over non-TLS connections, and we give examples of in app phishing
attacks against banking apps from Santander and Allied Irish Bank. We present
our improved secure banking protocol in Sect. 7 and we conclude in Sect. 8.

2 Background and Related Work

2.1 The TLS Protocol

Transport Layer Security (TLS) is a cryptographic protocol designed to provide
confidentiality, integrity and server authentication (with optional client authen-
tication) to application layer network traffic. To establish a secure connection
between a client and a server, the server must present the client with its public
key. This key is usually encapsulated in an X.509 certificate which also contains
other information required to provide assurance of the authenticity of the key.
A certificate includes a CommonName field and SubjectAltName set, which tie
the key to specified hostname(s); a cryptographic signature provided by a CA,
usually an RSA encrypted SHA-256 value; and a valid from date and expiry
date. Additional meta-data is also present (see RFC 5280).

In order to be sure that a public key belongs to a given server, client appli-
cations trust a predefined set of root certificates belonging to trusted certificate
authorities. These root CA certificates are carefully selected by the developers of
the OS e.g. Android or iOS, and come pre-installed in the OS. This trust store is
then updated as required by pushing updates to the OS, but can also modified
by the user.

When attempting to set up a TLS connection, the server will provide a
chain of certificates so that the user can build up a chain of trust to one of the
trusted root CAs. Such chains typically have a length of three: the server or leaf
certificate; which is signed by the issuer or intermediate CA which is itself signed
by a trusted root CA.

To validate a TLS certificate, the client makes the following default checks:

– Validate that each certificate in the chain is signed by the previous one,
starting with the leaf certificate.

– The final certificate in the chain is that of a trusted CA.
– The requested hostname matches the certificate’s CommonName value or is

contained within the SubjectAltName set.
– The current date is within the certificate’s valid date range.

Further verifications should also be carried out such as checking the revocation
status of the certificates. However, these are often omitted.

584 T. Chothia et al.

2.2 Certificate Pinning

The trust model that TLS adopts is arguably its biggest weakness. If a single
Certificate Authority is compromised, then valid certificates for any hostname
can be produced by signing them with the compromised CA root certificate.
This would enable an attacker to MITM any TLS connection.

Additionally, an individual user’s trust store could be compromised. There is
the potential for an attacker to trick a user into adding a custom root certificate
to their trust store, for example by suggesting it is a requirement to install a free
app. Similarly, but more alarmingly, [19] showed how malicious apps on rooted
Android handsets can modify the trust store totally unbeknown to the user.
Previous work has also exposed the how bloated trust stores are and identified
many root certificates that are unused [16]. Removing these would reduce the
attack surface associated with CA compromise, however the risk still remains.

In order to mitigate these risks, Evans et al. proposed a technique named cer-
tificate pinning [8]. Applicable in situations where the hostname of the server is
known in advance, like connections made by a mobile application, the certificate
or public key that the app expects to see can be fixed. This aims at restricting
the trust from all valid certificate chains originating from root CAs in the trust
store, to a specific public key certificate, or ones derived from a particular fixed
certificate. In general there are two ways this can be implemented:

– Leaf certificate or Public Key - Pin the servers specific public key cer-
tificate which is usually achieved by hard coding it’s fingerprint (typically
a SHA-256 value). Alternatively, just the server’s public key can be pinned.
The downside of this type of pinning is reduced flexibility, as the certificate
may expire or the use of a static key may violate key rotation policies. If the
certificate changes, users will be forced to update the application to continue
use.

– Intermediary or Root certificate - A specific root CA or intermediary cer-
tificate can be pinned. The server can then re-new its leaf certificate whenever
needed as long as it is signed by the pinned root or intermediary certificate.

2.3 Related Work

Fahl et al. [9] carried out a large scale analysis of Android apps in 2012 and found
widespread misuse of TLS, in particular they found that many apps accepted
self-signed certificates, did not check the hostname they connected too and did
not encrypt some connections at all. Their testing methods would not find the
class of vulnerabilities we are dealing with here, as the use of certificate pinning
on its own would have been enough to pass their automated MITM tests. We
note that they did not find any flaws in banking apps.

Georgiev et al. [10] carried out a similar analysis for application and library
code and find similar issues, some of the same authors go on to develop a testing
tool [4] which randomly mutates certificates to look for errors, again this app-
roach would miss the vulnerabilities we present here, as the test would lack the
certificate required by the pinning.

A Security Analysis of TLS in Leading UK Banking Apps 585

Reaves et al. [17] reverse engineered banking apps from developing countries
and found a wide range of security issues. We note that while this work did look at
banking apps, the banks involved were not large banks that had invested heavily
in security, and all of the weaknesses could have been found by a competent
penetration testing company. Their analysis involved decompiling the app code
to look for vulnerabilities. This approach might find the code which allowed
any hostname however it requires considerable time and effort to carry out such
an analysis and so does not scale. Such an analysis also breaks the terms and
conditions of the app, which as we mention above is something our analysis
method does not do.

Oltrogge et al. [14] performed an extensive study on the applicability of
certificate pinning in mobile apps. A classification method to establish whether
an app would benefit from the use of pinning was applied to over 600,000 Android
apps. Developer feedback was collected from a number of respondents and found
that only a quarter of them grasped the concept of pinning and yet still found it
too complex to use. The pinning vulnerability presented in this paper is therefore
perhaps directly a result of the complexity of pinning implementations.

Google has developed a testing tool called “nogotofail”1 and there are a range
of similar online checking tools which carry out tests on TLS configurations2 but
again, none of these can detect the lack of hostname verification if certificate
pinning is used.

3 Testing Apps

Test Set. For test cases, this paper focuses on mobile apps from large, leading
retail banks. These types of apps have all the necessary ingredients for a good
case study:

– They use TLS.
– They are security critical applications, with well motivated attackers, and

large user bases.
– They often use techniques to provide additional security such as certificate

pinning and two-factor authentication.
– Unlike many other apps, they have been subject to thorough penetration

testing, so avoid basic vulnerabilities.

Additionally, customers of high-street banks are increasingly making use of
mobile apps to manage their finances. A report by the British Bankers Asso-
ciation [1] found that in 2015 there were 40,000 downloads and 11M logins to
UK banking apps per day. These usage statistics and the sensitive nature of the
data that is managed by these apps, highlights the need to carry out a thorough
review of their security.

We chose the top 15 consumer banks that are based in Great Britain or
Northern Ireland. These are all listed in Table 1.
1 https://github.com/google/nogotofail.
2 see e.g. https://geekflare.com/ssl-test-certificate/.

https://github.com/google/nogotofail
https://geekflare.com/ssl-test-certificate/

586 T. Chothia et al.

Approach. The first stage of our investigation was to look for well-known
TLS vulnerabilities and misuses that have been brought up in past literature.
These included the type of problems that should be detected by penetration
tests carried out during the development of the apps. We looked for:

– Sensitive data sent over insecure channels, using BurpSuite.3

– Basic invalid certificate verification, using Mallodroid4 and BurpSuite. Includ-
ing:
• Accepting self-signed certificates.
• Not validating that requested hostname matches CommonName value or

contained in SubjectAltName set.
– Secure HTTPS links sent over non-TLS connections. Using SSLStrip,5 we

proxied traffic looking for HTTPS links that we could downgrade to HTTP.
– TLS version downgrade vulnerabilities. Many TLS client implementations do

not solely rely on the standard negotiating mechanism. Some will make recon-
nection attempts using a downgraded version of TLS if initial handshakes fail.
We tested for this by proxying TLS handshakes.

We found that none of the up-to-date apps in our test set exhibited any of these
vulnerabilites. This led us to explore alternate ways that TLS could be broken
or mis-configured.

Vulnerable Legacy iOS Apps. Most of the banking apps we tested required
you to have one of the latest iOS versions. However, as one of our testing devices
was an old iPad running iOS v5, we found some apps that offered to install of
the latest version of the app compatible with your OS. At first glance this sounds
reasonable but when considering security critical applications like banking, this
deserves more care.

Concretely, we found that the banking apps from NatWest and the Royal
Bank of Scotland for iOS v5 would accept self-signed certificates. We established
this by using the BurpSuite (without modifying anything on the iOS device)
and verified that the apps would accept BurpSuite’s certificate and establish the
connection as usual, but having BurpSuite as man-in-the-middle. These vulner-
abilities have been patched and are no longer present in the latest version of the
apps. However, users who have older iOS devices are still exposed.

Legacy apps should either be suitably maintained and patched or removed
from the app store in order to avoid compromising user’s security and privacy.
Experimenting with the apps, we found that both apps first asked for registration
codes, which would be delivered to the user out of band. Once entered into the
app these codes were sent over the insecure TLS connection, meaning that they
could be captured by an attacker. Without accounts at either of these banks we
were unable to experiment further.

3 https://portswigger.net/burp/.
4 https://github.com/sfahl/mallodroid.
5 https://github.com/moxie0/sslstrip.

https://portswigger.net/burp/
https://github.com/sfahl/mallodroid
https://github.com/moxie0/sslstrip

A Security Analysis of TLS in Leading UK Banking Apps 587

Disclosure: We informed the banks concerned in January 2016, and shortly
after both apps were updated, to no longer accept self-signed certificates.

4 Certificate Pinning Without Hostname Verification

In addition to checking that the server’s certificate has a verifiable chain of trust,
it is essential to check that the requested hostname matches the CommonName
field or is contained in the SubjectAltName set of the X.509 certificate. This
however is an unnecessary step if the leaf certificate or the servers public key
is pinned in the application, since the valid hostname is implicit. On the other
hand, if the application is pinning to a root or intermediary certificate then
hostname verification is still required.

Past work in 2012 [9] has demonstrated that incorrect hostname verification is
a mistake that was regularly made by app developers. However, previous analysis
of TLS usage in mobile apps has failed to consider the possibility of incorrect
hostname verification when certificate pinning is in use.

To detect this form of invalid verification in mobile apps, we manually
analysed apps using the following process:

1. Establish if certificate pinning is being used
(a) We add a custom self-signed root certificate, generated by Burp, to the

phone’s CA trust store. The phone is also configured to use our machine
running Burp as a proxy.

(b) We start the apps, one by one, and select the log in option to trigger a
TLS connection attempt.

(c) We observe the network traffic and if the app accepts the server certifi-
cate signed by the Burp root CA in the handshake, then we know the
app is implementing chain of trust verification back to a trust store root
certificate. If not, then the app must be pinning a particular certificate
or public key.

2. Determine certificate chain in use
(a) From observations made in the previous test, we analyse the certificate

chain provided by the server that the app is communicating with.
(b) Given this information, we can then obtain a certificate for our own

domain from the same intermediary or root CA that the server’s cer-
tificate is signed by.

(c) We then install the newly obtained certificate onto our own TLS server.
3. Check if hostname verification is correctly implemented

(a) The app is then restarted and TLS connection attempts are triggered
again.

(b) The TLS traffic is re-directed to our own TLS server and the handshake
is analysed to determine if the hostname is being verified correctly. If so,
then it should reject the TLS connection attempt, and if not, we should
observe a fully successful TLS handshake with encrypted application data
being sent by the app.

588 T. Chothia et al.

For apps that are found to pin a certificate but not check the hostname, an
attacker could go to the CA used by the servers certificate and obtain a valid
certificate in their own name, as we demonstrate in our testing method. The
attacker’s certificate can then be used to Man-in-the-Middle TLS traffic and
hence break the security of the app.

Results: We followed the process described in Sect. 4 for the iOS and Android
apps from the UK banks in our test set. We found apps from two banks in
our test set, Co-op and Natwest, passed our initial round of tests, and accepted
certificates signed by the same expected root CA but for different hostnames. Co-
op pinned to a Comodo root certificate, but didn’t check the hostname. Natwest
on the other hand, initially appeared to be pinning, but upon further analysis
we found it was actually avoiding the phone’s proxy settings. Hence, it would
also accept a certificate signed by any of the phone’s trusted root CAs.

While pinning the certificates is a good security measure, it seems possible
that in the case of Co-op, pinning the certificate hid the more serious problem of
having no hostname verification. Natwest’s flaw was also hidden from the stan-
dard tests we carried out due to bypassing the phone’s proxy settings, another
reasonable security measure to take.

We note that these apps have a collective user-base of up to 5 million people,
illustrating the seriousness and potential for this vulnerability to be exploited
by an attacker. Additionally, this problem did not occur in any of the iOS apps
that we tested which suggests that the iOS API makes it harder for this mistake
to be made.

Attack Scenario: This attack could be carried out by an attacker that sets
up their own Wi-Fi hotspot, it could also be carried out by any attacker on the
route the data takes between the victim and the bank, or an attacker on the same
network as the victim, through use of techniques such as ARP or DNS poisoning.
Other attacks (e.g. [11]) have shown that it is sometimes possible to access a
home network, and when combined with these, an attack could performed against
anyone in the vicinity.

Disclosure: Both banks have been given over a year to ship fixes for their apps
before we published the issues. We initially contacted Co-op on a Friday, some
of their engineers met with us on the following Monday and they shipped a fixed
updated app by the end of the week. One month later they removed all support
for the vulnerable app and therefore this can no longer be used. A similar process
was carried out with Natwest. We note that Co-op said that they had previously
hired two penetration testing companies to test their apps, both of which had
missed this vulnerability, so they had no reason to believe that their apps were
insecure before we contacted them.

A Security Analysis of TLS in Leading UK Banking Apps 589

5 In-Depth Analysis of a Second Layer Banking Protocol

Breaking the TLS connection of a banking app does not necessarily mean that an
attacker can gain access to a victims account. Given the number of vulnerabilities
that have been found in the TLS protocol [2,7,13], it would make sense for the
apps to implement additional cryptographic protection.

The Co-op app we examined pinned to the Comodo root certificate (instead
of the specific bank’s certificate or the high security EV intermediate certificate).
Since Comodo offers free certificates signed by this root certificate, authenticated
only by e-mail, we were able to obtain a certificate for a domain we owned.
Equipped with this certificate we were able to get the app to establish a TLS
connection with us and take a look at the apps traffic which runs over TLS. We
found the app first requested a one-time registration code, sent to the user out
of band, after which it used an additional cryptographic protocol when the user
logs on.

Bank App Server
upgrade check−−−−−−−−−−−−−→
upgrade/fine←−−−−−−−−−−−−−
request key−−−−−−−−−−−−−→

Kpub←−−−−−−−−−−−−−−
generate Ks

pin inputted
Kpub(Ks),GUID,
{PinCode}Ks ...−−−−−−−−−−−−−→
session info.−−−−−−−−−−−−−→

request account info.←−−−−−−−−−−−−−−
account info.−−−−−−−−−−−−−→
.

Fig. 1. A 2nd level banking protocol

Traffic was sent between the app
and the server using HTTP post
requests containing JSON encoded
data. Much of this included human
readable tags. The first message
sent by the app, and response
from the server checked if the app
needed to be updated. Next, the
app sent a HTTP post request for
an RSAPublicKey. The app then
requested the user to enter their
banking pin code, and the following
two exchanged messages are shown
in the appendix.

The forth message includes a
JSON encoded modulus and expo-
nent, so it seems logical to conclude
this is an RSA key. The 5th mes-
sage contains a number of fields, of
particular interest is the passcode
field, which appeared to be encrypted, and the guid which appeared to contain
the global unique identifier for the app. The twk field is exactly the right length
for a single block of RSA cipher text.

To investigate this further we tried proxying the traffic, and sending our own
RSA public key to the app. Doing so we found that we could then decrypt the
twk field with our private key. This decrypted to 112-bits of correctly padded
data. This is the correct length for two DES keys, and triple DES is a popular
encryption algorithm in the banking community, therefore we tried decrypting
the passcode field with these two keys using triple DES and found our banking
PIN code, which was entered to access the account. Further investigation found
that only the GUID and a correctly encrypted PIN code were needed to access

590 T. Chothia et al.

revreSrekcattAppAgniknaB
request key−−−−−−−−−−−−−−−−→ request key−−−−−−−−−−−−−−−−→

Generate
Kpub←−−−−−−−−−−−−−−−−−

K′
pub←−−−−−−−−−−−−−−−−−− K′

pub,K
′
prv

generate Ks

Get PIN
from user

K′
pub(Ks),GUID,{PINCode}Ks−−−−−−−−−−−−−−−−−−−−−→ Ks,GUID

PIN Code
Kpub(Ks),GUID,{PINCode}Ks−−−−−−−−−−−−−−−−−−−−−→

.

Fig. 2. A simple MITM attack on the banking protocol

the account, and no other cryptographic verification was required after these
messages (although confirmation via SMS message was required to add new
payees).

We summarise the protocol in Fig. 1. As shown by our ability to learn the
PIN code this second level protocol is flawed, and therefore does not provide
any additional protection to the communication channel. Figure 2 describes a
simple man-in-the-middle attack against this protocol, in which an attacker can
substitute their own key for the banks. By running this attack, adversaries can
learn both the GUID and the user’s PIN number, which is all they need to
login to the user’s account. If the attacker wants to hide their actions they can
continue relaying traffic between the app and the bank, and store the GUID and
the PIN for use at some later date and some other location.

We additionally found that the bank did not use a fresh RSA key for each
session, in fact for the 2 month period we studied this app, the key was always
the same. This means that an attacker can simply record the traffic from the
app and replay the twk and the passcode fields, to gain access to the victims
bank account, at any time, without ever actually learning the PIN code.

We note that obfuscating the messages would not have improved security,
given the distinct sizes of the cryptography involved, it would have been rela-
tively easy to reverse engineer this protocol without the human readable tags.
What would have improved security would have been a correct protocol, which
was not vulnerable to MITM and replay attacks, as we propose in Sect. 7.

Disclosure: We described the problems with this protocol to the Co-op at the
same time as we disclosed the pinning but no hostname vulnerabilities, and we
suggested a secure alternative. The Co-op decided to only fix the TLS vulnera-
bility and leave the underlying protocol as it was. We note that the use of this
underlying protocol does not represent a vulnerability, but also does nothing to
protect the communications link.

A Security Analysis of TLS in Leading UK Banking Apps 591

6 In-App Phishing Attacks

While examining the banking apps from our test set, we noticed the First Trust
Bank, Santander and Allied Irish Bank apps mixed TLS and non-TLS traffic,
requesting some resources over a secure TLS connection and others over an
unprotected connection.

Mixing TLS and non-TLS traffic, does not necessarily make an app vulnera-
ble, so we examine the app in more detail and found that it was loading adverts
for the banks own products and links to information that may be helpful to its
users. In particular, the app loads an image to be displayed to the user and a
link to go to, if the user clicked on the image.

Figure 3a gives an example of this. The “Help Centre” box in the middle of
the screen on the left was loaded dynamically, and clicking on this takes the user
to the screen on the right. At other times adverts for mortgages and savings
accounts were loaded.

Downloading images and links over unprotected connections allows an
attacker, on the same network as the victim, to replace them with an image
and link of their own choice. This could be used to perform a phishing attack.
While phishing attacks against banking credentials are common, being able to
carry out the phishing attack inside the actual banking app means that the user
is far more likely to trust the link.

We give an example of this in Fig. 3b. On the left is a screenshot of the
real banking app, which we connected to a wi-fi hotspot we controlled. As no
protection is used we where able to replace the “Help centre” image with a
“Mobile Banking Log In” image (the real log on option can only be access via
the “Banking” icon). We additionally sent our own link to the app that sends
the user to the page shown on the right of Fig. 3b: a page with a spoofed URL
which steals the users credentials.

In the case of Santander UK, the image was displayed on the bottom portion
of the screen, e.g. the mortgage panel in Fig. 3c. Clicking on this takes the user
to a Santander website. We show a possible in-app phishing attack against this
in Fig. 3d. The real option to view the users accounts is under the menu at the
top right of the screen, so a large “My Accounts” button with the same logo
as the real one will likely attract many users. Additionally, we found that the
information asked for on our phishing page, on the right of Fig. 3d, is all that
is needed to install the Santander UK app on another phone. Again, as the app
does not use TLS on the site it links to, our site’s URL can be spoofed to look
like a Santander page to the user.

The Allied Irish Bank app turned out to be very similar to the First Trust
Bank, and we found out that the First Trust Bank is in fact a trading name
for Allied Irish. We additionally found that Allied Irish Bank performs an un-
encrypted version check, which, in the case the app needs updating, the server
replies to with a link to the Android Marketplace. This can be hijacked to redirect
the app’s user to any website of the attackers choice.

592 T. Chothia et al.

(a) First Trust Bank Real App (b) First Trust Bank Phishing Attack

(c) Santander Real App (d) Santander Phishing Attack

Fig. 3. In-App phishing attacks

Attack Scenario: To perform this attack, the attacker must have the same
access as required for the previous attack. However, for this attack, they do not
need a certificate of their own; as their is no protection on the image and link sent
to the app an attacker can substitute their own image and link. Additionally,
the attacker can spoof the address of the page to make it seem like it belongs
to the bank (none of the apps we found directed users to pages protected with
TLS). We emphasise that the attacker does not need to interfere with the victims
phone or the banking app in anyway, this attack is carried out purely externally.

Some of the apps we looked at did not have a direct log in button on the
opening page of the app. So placing such a button on the first page, with the
same look as the other buttons on the app, would attract a lot of users. For
systems that didn’t require two factor authentication, the users could then be
asked for their online banking credentials, or the information needed to install
the banking app on another device, so giving the attacker full access to the
victims online banking.

A Security Analysis of TLS in Leading UK Banking Apps 593

Disclosure: These vulnerabilities were disclosed to the banks involved in
January 2016 and they were fixed the following month. Shortly following this
Allied Irish and First Trust Bank updated their app to a completely new code
base, which did not have these errors.

7 A Secure Protocol for Mobile Banking

We have recently seen many attacks against TLS and we are likely to see more
in the future. These attacks will compromise the security of TLS used in apps
(indeed, when we first approach one of the banks to say we had discovered
a vulnerability, their first reaction was to ask if it was the POODLE attack,
as they were aware that this had been a problem and had only just fixed it).
Additionally, PCI standards on PIN security state that PINs must be encrypted
at all times [15], so it should not be sent over TLS in the clear if the host receiving
it is just going to send them on to another host to be verified.

In our view this means that TLS should not be the only protection and
a lightweight, second level protocol to protect the PIN number and messages
should also be used. However, as we have shown in Sect. 5, designing such a pro-
tocol appears to be error prone. In this section we work constructively, proposing
a protocol which is suitable for this purpose and that can be used, freely, by any
system designer. The protocol is a quite straightforward adaptation of an RSA
encrypted key transport protocol as depicted in Fig. 4.

Bank App Server

Kpub

upgrade check−−−−−−−−−−−−−→
upgrade/fine←−−−−−−−−−−−−−
request nonce−−−−−−−−−−−−−−→

Ns ∈R 2128

generate Ks,Km
Ns←−−−−−−−−−−−−−−

Get pin
from user Kpub(Ks,Km,GUID,Ns),

{PinCode}Ks−−−−−−−−−−−−−→
session info.−−−−−−−−−−−−−→

request info,MACKm←−−−−−−−−−−−−−−
account info,MACKm−−−−−−−−−−−−−−→

.

Fig. 4. An improved secure banking protocol

This protocol starts
off as the protocol in
Sect. 5, with an update
check. After that the user
requests and the server
generates a secure random
128-bit nonce. The bank-
ing app has the public key
of the bank Kpub hard-
coded, and this can be
updated automatically by
pushing an app update.
This makes use of a second
channel (the app update
process) to split the pub-
lic key distribution from
the PIN transfer. During
authentication, the app
will generate a session
key Ks and a MAC key
Km uniformly at random,
we would recommend AES
128-bit, but 3-DES may be required for compatibility with backend banking sys-
tems. When users input their PIN codes, the app will send an encryption of the

594 T. Chothia et al.

session key, a MAC key, app GUID and a nonce from the server encrypted with
the banks public key: Kpub(Ks,Km, GUID,Ns), along with an encryption of
the pincode with the session key Ks (plus potentially any relevant session infor-
mation as seen in Sect. 5). From this point on the app and the server exchange
information in the usual way but authenticating every message with a CBC-
MAC using Km. We pad the PIN and the messages for the CBC-MAC with
PKCS5.

Unlike the original protocol, our version includes the GUID in the block that
is encrypted with the banks public key. We note that the session key is 128/112
bits therefore, when encrypted in the original protocol it will be padded out to
2048 bits. So in our suggested version of the protocol the GUID and server nonce
replaces some of this padding, therefore we require no additional encryption and
the message becomes shorter.

We note that this protocol does not keep the session data secret, or prevent
message replays in the same session. This should be done by the application layer
and (most of the time) by TLS. What it does aim to do is to provide protection for
the customer that stops an attacker using their account in the case that the TLS
protections fail (which is unfortunately common e.g. [2,9,13]), in particular it will
keep the data needed for an attacker to log onto the victims account secret, it will
prevent replay attacks across different sessions, and it will prevent an attacker
from altering messages. Furthermore, it provides this additional protection using
a protocol that is slightly shorter and largely compatible with the original broken
version.

Additionally, in the case that TLS fails, an attacker is prevented from dis-
tributing to the victim a version of the app containing their own public key. In
Android, app updates are digitally signed by the app developer and the OS will
check that the update is signed with the same key as the current version of the
app.6 In iOS, the situation is even more robust. App updates are signed by the
developer and are then uploaded to their iTunes Connect account. Apple the
verify the update themselves and then re-sign it with their key before distrib-
uting it to customers.7 Upon receiving app updates, iOS devices will check it is
signed by Apple. In both cases, as long as the underlying signature scheme is not
broken, an attacker cannot change the public key that is used in our proposed
protocol.

Formal Analysis of Our Protocol. To offer assurance that our protocol is
correct we analyse it using the formal protocol analysis tool ProVerif [3]. This
uses a simple language for modelling protocols and can automatically prove a
wide range of security properties, including secrecy, absence of offline guessing
attacks, and correspondence assertions. Because ProVerif uses an automated the-
orem proving method it can prove that these properties hold against an active

6 https://developer.android.com/studio/publish/app-signing.html.
7 https://developer.apple.com/library/content/documentation/IDEs/Conceptual/

AppDistributionGuide/MaintainingCertificates/MaintainingCertificates.html.

https://developer.android.com/studio/publish/app-signing.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingCertificates/MaintainingCertificates.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingCertificates/MaintainingCertificates.html

A Security Analysis of TLS in Leading UK Banking Apps 595

Delov-Yao attacker for an unbounded number of runs of the protocol and pro-
tocol participants, however it may sometimes fail to terminate, or report false
attacks.

The main part of our model is presented is presented in the appendix of the
online version of this paper. In includes an App process to model the smart phone
app, and a Server process that defines a bank process and the entire system
is defined on the last line using the process key word. The system models an
unbounded number of banks that may be using the protocol, each bank has an
unbounded number of customers, some of which may be using the same PIN,
but each of which has a unique GUID, for each customer we run an arbitrary
number of App processes representing the user running the app and Server
processes representing the bank handling this particular user.

We use the ProVerif tool to first check that this protocol keeps the session
key and the PIN code secret, which ProVerif confirms it does. We next check the
authentication properties of this protocol, in particular that every time a server fin-
ishes with a particular set of values (a serverFinish(ks,km,guid,pin,bankkey)
event is reached) the app has also run the protocol using the same values, i.e.,
a appInit(ks,km,guid,pin,bankkey) event was reached with the same values
as with the serverFinish event. We also check in the other direction confirming
that the appFinish is always matched by a corresponding serverInit event with
matching values. ProVerif confirms that these correspondences always hold indi-
cating that anattacker cannot impersonate one side of theprotocol or interferewith
any of the values used, without being detected. Finally, as the PIN code may be a
low entropy secret we check if an attacker can perform an offline guessing attack
to find it, using ProVerif’s weaksecrect test and a second model that uses a fixed
PIN code. ProVerif confirms that no such guessing attack exists.

8 Conclusion

In this paper we have carried out an extensive security analysis of TLS imple-
mentations in the UK’s major banking mobile applications. We have discovered
a new vulnerability in one of these banking apps that arises due to a misuse of
certificate pinning. To avoid breaking the terms and conditions of high-security
apps, such as banking, we have shown to detect this vulnerability dynamically
and without reverse engineering the app. We also found one app that fails to
verifiy the hostname but hides this flaw from standard tests by bypassing proxy
settings. These two cases are examples of how additional security protections
have obscured the serious vulnerability of no hostname verification. We have
demonstrated how these vulnerabilities could be exploited by an attacker to
break the security of the app and eavesdrop sensitive information. We also found
apps that are vulnerable to phishing attacks, legacy apps that accept self-signed
certificates and a broken application layer banking protocol.

596 T. Chothia et al.

A Co-Op App Traffic

HTTP/1.1 200 OK

Server: webserver

X-response-id: -907159463

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT

Cache-control: no-cache no-store

Content-type: application/json;charset=UTF-8

Content-Length: 311

{"modulus":"9C8C54XXX

XXX

XXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 4082C1","exponent":"3","keyVersion":"81XXXXXX

C1"}

POST /mrs/3/security/session HTTP/1.1

user-agent: Mozilla/5.0 (Linux; Android 4.4.2; XT1021 Build/KXC20.82-14)

AppleWebKit /537.36 (KHTML, like Gecko) Version/4.0 Chrome/30.0.0.0 Mobile

Safari/537.36

client-version: 4.4.2

X-Request-Id: -907159453

Accept: application/json

Content-Type: application/json;charset=UTF-8

Cookie: JSESSIONID=9f7b4441e12b265fde33d1f0e73b; Path=/mrs; Secure

Cookie: JROUTE=9qIW.9qIW; Path=/mrs; Secure

Content-Length: 577

Connection: Keep-Alive

{"msisdn":"44XXXXXXXXXX","clientType":"|2.2.7||motorola|XT1021|Android|4.4.2|

|","passcode":"93XXXXXXXXXXXX07","twk":"8170b6XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXX

XXX

XXXabf54c",

"pinLength":"6","guid":"d2xxxxxxxxxxxxxx83","applicationName":"Coop",

"deviceID":"44XXXXXXXXXX","issuerName":"COOP","authenticationType"

:"passcode","clientVersion":"2.2.7","rootDetection":"NOT_DETECTED"}

Fig. 5. Messages sent between the app and bank (with some information blanked out)

References

1. British Bankers’ Association. The Way We Bank Now (2016)
2. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,

Pironti, A., Strub, P.-Y., Zinzindohoue, J. K.: A messy state of the union: taming
the composite state machines of TLS. In: IEEE Symposium on Security and Privacy
(2015)

A Security Analysis of TLS in Leading UK Banking Apps 597

3. Blanchet, B., Smyth, B., Cheval, V.: Proverif 1.88: Automatic Cryptographic Pro-
tocol Verifier, User Manual And Tutorial (2013)

4. Brubaker, C., Jana, S., Ray, B., Khurshid, S., Shmatikov, V.:. Using frankencerts
for automated adversarial testing of certificate validation in SSL/TLS implementa-
tions. In: IEEE Symposium on Security and Privacy (SP) 2014. IEEE, pp. 114–129
(2014)

5. Carolina, R., Paterson, K.: Megamos Crypto, Responsible Disclosure, and the
Chilling Effect of Volkswagen Aktiengesellschaft vs Garcia, et al. (2013)

6. Choudary, O.: The Smart Card Detective: A Hand-held EMV Interceptor (2010)
7. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: 24th

USENIX Security Symposium (USENIX Security 2015), USENIX Association,
Washington, D.C., August 2015

8. Evans, C., Palmer, C.: Certificate Pinning Extension for HSTS (2011)
9. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:

Why eve and mallory love android: An analysis of android SSL (in)security. In:
Proceedings of the 2012 ACM Conference on Computer and Communications Secu-
rity, CCS 2012 (2012)

10. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
most dangerous code in the world: validating SSL certificates in non-browser soft-
ware. In: Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security, CCS 2012, New York, NY, USA, pp. 38–49 ACM (2012)

11. Lorente, E.N., Meijer, C., Verdult, R.: Scrutinizing WPA2 password generating
algorithms in wireless routers. In: 9th USENIX Workshop on Offensive Technolo-
gies (WOOT 15), Washington, D.C., USENIX Association, August 2015

12. Marlinspike, M.: New Tricks for Defeating SSL in practice. In Black Hat Europe
(2009)

13. Möller, B., Duong, T., Kotowicz, K.: This POODLE Bites: Exploiting the SSL 3.0
Fallback (2014)

14. Oltrogge, M., Acar, Y., Dechand, S., Smith, M., Fahl, S.: To pin or not to pin-
helping app developers bullet proof their TLS connections, In: USENIX, Security,
pp. 239–254 (2015)

15. PCI. Pin Security Requirements (2014)
16. Perl, H., Fahl, S., Smith, M.: You won’t be needing these any more: on removing

unused certificates from trust stores. In: Christin, N., Safavi-Naini, R. (eds.) FC
2014. LNCS, vol. 8437, pp. 307–315. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45472-5 20

17. Reaves, B., Scaife, N., Bates, A., Traynor, P., Butler, K.R.: Mo(bile) money,
mo(bile) problems: analysis of branchless banking applications in the developing
world. In: 24th USENIX Security Symposium (USENIX Security 2015) (2015)

18. Sample, I.: Bankers fail to censor thesis exposing loophole in bank card secu-
rity. The Guardian (2010). https://www.theguardian.com/science/2010/dec/30/
bankers-thesis-bank-card-security

19. Vallina-Rodriguez, N., Amann, J., Kreibich, C., Weaver, N., Paxson, V.: A tangled
mass: The android root certificate stores. In: Proceedings of the 10th ACM Inter-
national on Conference on emerging Networking Experiments and Technologies,
pp. 141–148. ACM (2014)

https://doi.org/10.1007/978-3-662-45472-5_20
https://doi.org/10.1007/978-3-662-45472-5_20
https://www.theguardian.com/science/2010/dec/30/bankers-thesis-bank-card-security
https://www.theguardian.com/science/2010/dec/30/bankers-thesis-bank-card-security

Privacy in Data Storage and Retrieval

Lavinia: An Audit-Payment Protocol
for Censorship-Resistant Storage

Cecylia Bocovich1(B), John A. Doucette2, and Ian Goldberg1

1 University of Waterloo, Waterloo, ON, Canada
cbocovic@uwaterloo.ca

2 New College of Florida, Sarasota, FL, USA

Abstract. As distributed storage systems grow in popularity, there is
now a demand for a reliable incentive and payment system to guarantee
and reward the pristine storage of documents. However, many existing
proof-of-retrieval and micropayment protocols are not secure in a cen-
sorship resistance setting, in which powerful adversaries may infiltrate
a system or coerce the original publisher to remove content. Addition-
ally, most existing censorship resistance systems lack a rigorous game-
theoretic analysis. We propose Lavinia, an audit and payment protocol
for censorship-resistant storage. Lavinia incentivizes document availabil-
ity by providing micropayments to participating servers in exchange for
honestly storing and serving content. Our protocol enables the implemen-
tation of a digital printing press as described in Anderson’s Eternity Ser-
vice: allowing the publisher, as opposed to public interest or an appointed
editorial board, to decide whether a document is worth storing, and for
how long. In addition to proving the security of our protocol, we provide
an in-depth game-theoretic analysis and show that self-interested partic-
ipants of our system will faithfully implement the desired behaviour and
continue to store documents until their expiration date.

Keywords: Censorship resistance · Distributed storage
Economic incentives · Payment contracts

1 Introduction

Throughout history, the spread of information has been assisted by technological
advances, but has also faced barriers in the form of censorship. With each new
advance in technology that facilitates the spread of knowledge, ideas, and social
understanding, there is an increase in the efforts of censors to limit this spread.

A popular example in the history of censorship and its resistance is the advent
of the printing press [13]. Not only did the ability to print documents easily and
efficiently result in the distribution of previously guarded works, it also led to
an increase in the literacy rate of Europe. Despite censorship attempts, printed

An extended version of this paper is available as a technical report [6].

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 601–620, 2017.
https://doi.org/10.1007/978-3-319-70972-7_34

602 C. Bocovich et al.

documents proved to be resistant to state-level attempts to remove them. Borders
were difficult to patrol thoroughly, and the production of many copies of each
text made them almost impossible to eradicate completely. The only important
impediment to using a printing press was the acquisition of enough capital to
purchase the requisite raw materials and labour.

Today, worldwide use of the Internet has enabled an even faster and fur-
ther spread of ideas than the printing press, and provided the means for near-
instantaneous conversations between physically and politically distant groups.
However, although the Internet has made the distribution and mirroring of con-
tent easier and more cost effective than physical printing, it is also much easier
to censor electronic content on a large scale due to the centralized nature of
storage and routing services. For example, the Great Firewall of China [31],
capable of filtering and inspecting all traffic that enters and leaves the coun-
try, is a much more practical and scalable censorship strategy than finding and
searching the contents of every physical document that crosses the border. In
the United States, the Digital Millennium Copyright Act (DMCA) provides an
extremely flexible and versatile tool for commercial interests to target content
providers and censor digital content from the web [28].

In an attempt to decrease the centralization of today’s Internet services and
provide Internet users with the censorship-resistant properties of the printing
press, Anderson proposed the Eternity Service [2]. The Eternity Service is a
description of an ideal digital printing press and with it Anderson outlines a
conceptual framework for building censorship-resistant publishing systems in the
context of modern digital communications. However, despite myriad attempts
to build systems that fulfill Anderson’s goals, many of which do provide strong
censorship resistance [8,9,26,30], we are still removed from the model of the
printing press. Existing systems impose barriers above and beyond the publisher
simply paying for raw materials and labour, such as requiring the publisher
to stay online, take responsibility for distributing their document, or operate
without the guarantee that their document will remain in the system for the
desired amount of time.

Censorship-resistant storage relies on a large number of geo-politically diverse
participants providing bandwidth and storage space. A significant barrier to the
adoption of existing systems has been the lack of incentives to participate hon-
estly in a distributed storage system. Existing incentive models are unfit for
censorship resistance because they rely on a centralized audit and payment sys-
tem or lack a rigorous game-theoretic analysis of possible attempts to subvert
the system and thus maximize earnings. Until recently, incentive systems also
lacked a candidate electronic payment system with the security and anonymity
properties necessary to provide micropayments to participant servers in exchange
for their storage space and bandwidth. However, the development of cryptocur-
rencies has provided a new way to administer electronic payments and enforce
payment contracts, similar to the original printing press.

In this paper, we propose Lavinia: a distributed audit and payment proto-
col for censorship-resistant storage in which publishers pay for the storage and

Lavinia: An Audit-Payment Protocol for Censorship-Resistant Storage 603

bandwidth costs associated with distributing content securely in the presence
of powerful censoring adversaries, and receive in return strong guarantees that
their content will remain available for the specified amount of time. We give an
extensive game-theoretic analysis of our protocol and show that rational, self-
interested parties will implement our protocol faithfully, behaving no differently
from an honest, altruistic, participant.

In Sect. 2, we discuss related work on distributed audit and payment pro-
tocols. We then give the models and definitions for censorship-resistant storage
and payment contracts in Sect. 3. In Sect. 4 we describe the Lavinia protocol,
and we show that self-interest results in honest participation in the protocol in
Sect. 5. We give a security analysis in Sect. 6, and conclude in Sect. 7.

2 Related Work

Anderson first proposed a digital version of the printing press 20 years ago [2].
The Eternity Service is an ideal (yet unrealized) censorship-resistant publishing
system that comprises properties such as plausible deniability for participating
servers, anonymity for publishing authors, and notably a payment system to
mimic the model of the printing press where a publisher pays to have her work
replicated and distributed to readers in a way that is difficult for authorities to
track and prevent.

Many existing censorship-resistant publishing systems rely on in-kind pay-
ments and reputation-management protocols to incentivize honest participation
and to limit the effects of a storage-based denial-of-service attack, in which an
adversary prevents the publication of new documents by filling up all available
space. Tangler [30] assigns storage credits to participating servers, allowing them
to store a set amount of content proportional to their own donated capacity.
This gives them the option to “rent out” or donate their storage credits at their
own discretion. However, Tangler does not provide a protocol for credit rentals
or donations, leaving servers to adopt insecure or biased methods of collecting
remuneration for their services. Furthermore, there is no audit process to guar-
antee that servers continue to store and serve uncorrupted documents over time.
While Tangler does use a comparison of messages to inform other participat-
ing servers of nearby malicious servers, such a reputation system is not secure
against a large number of colluding servers.

Free Haven [11] employs a more complex reputation management system in
which servers assign a reputation and credibility value to all other known servers.
Each of these two values is also accompanied by a confidence rating that reflects
the depth of knowledge about the server in question. Servers broadcast referrals
that contain suggestions for these values in the event of honest, malicious, or
suspicious behaviour. Although such a system can pinpoint malicious servers, it
does not defend against more complicated game-theoretic attacks in which an
adversary behaves honestly but suspiciously in order to bait other servers into
giving false reports.

604 C. Bocovich et al.

Vasserman et al.’s one-way indexing scheme [29] solves the complexity of
distributed trust assignments by using a centralized editorial board to curate
content and defends against denial-of-service attacks by deleting unimportant
documents from the system. This centralized design is not ideal for censorship
resistance as users cannot store content that the editorial board deems to be
uninteresting or offensive, unless it is also popular.

Although the development of an electronic payment protocol to incentivize
censorship-resistant publishing is novel, it builds on related work in the area
of distributed data storage and retrieval. A key problem in distributed storage
is that once a document is stored, the server responsible for it may decide to
discard the data or leave the storage network. Payment at the time of storage is
therefore ineffective, and incremental payments require careful management of
server reputations. There is a large body of work that addresses the problem of
distributed payment in peer-to-peer systems through the use of micropayments,
audits, and escrow services. Most early systems relied on a centralized payment
system or suffered from problems in scalability or anonymity [10], which render
them unsuitable for censorship resistance. More recent systems tend to rely on
escrow payments to incentivize storage, but still require centralized audits [15]
or in-kind payments where publishers pay by offering access to unused CPU
cycles or bandwidth [22]. These features are undesirable for censorship resistance,
where centralized third parties are vulnerable to attack and publishers (e.g.,
political dissidents) should be allowed to cease interaction with the system after
publication.

The proposed storage system most similar to our own [20] is fully distributed
and provides micropayments in return for the periodic verification of storage.
However, the proof of retrieval technique used to audit document availability
allows servers to distinguish between auditors and regular users. This knowledge
allows them to maximize profits by refusing to serve content to anyone but an
auditor. While this model is appropriate for storing documents that are meant
to be accessible by a single user, it does not fit the needs of a censorship-resistant
publishing system in which content is meant to be accessed by many users, and
serving content is equally as important as storing it. For this reason, our proposed
solution will make users indistinguishable from auditors, forcing servers to deliver
content for every access. We utilize a novel micropayment system in our protocol,
similar to existing work, but with additional features that ensure suitability for
censorship-resistant publication, storage, and retrieval.

3 Models and Definitions

3.1 Censorship-Resistant Storage

The structure of censorship-resistant publishing systems differs from that of tra-
ditional storage schemes. Censorship-resistant storage is largely decentralized
and dynamic, involving a diverse and constantly changing set of servers. As
with traditional printed documents, wide dispersal and redundancy are essential
for increasing the likelihood of a document’s continued existence over time in a

Lavinia: An Audit-Payment Protocol for Censorship-Resistant Storage 605

digital setting. The dispersal of sensitive documents across multiple jurisdictions
has important advantages: state-sponsored attempts to remove information from
the system will not be able to reach a significant subset of servers, and a sin-
gle entity’s attempts to compromise each machine will not scale to physically
separate servers.

Our payment and audit protocol will work with a wide variety of storage
schemes, including many existing censorship-resistant publishing systems. We
base our security and game-theoretic analysis on a general model of storage.
Here we briefly describe existing censorship-resistant storage systems and define
our general model.

File retrieval: Documents should be encrypted and split into multiple retriev-
able pieces using a threshold scheme [23]. The act of secret sharing provides hon-
est servers with plausible deniability about what they are hosting, and encryp-
tion adds an extra layer of protection, preventing servers that have acquired
multiple shares from using existing techniques to reconstruct the document. In
some jurisdictions, this may afford them legal protections. We refer to a single
document piece as a file f .

Many existing systems are built as overlays on top of structured peer-to-peer
(P2P) networks such as distributed hash tables (DHTs1) [18,21,25]. Each file
f is associated with a keyword, and the space of all keywords is partitioned
among participant servers to allow for efficient document storage and retrieval.
BitTorrent [1] and Freenet [9] are examples of unstructured P2P systems. Rather
than deterministically partitioning the keyspace among participant servers, doc-
uments are initially stored at one location, and then cached by additional servers
when they are retrieved from the system.

In our model, each file f is stored in the system under a lookup key denoted
lookup(f). Performing a lookup for this key will return the server that is currently
responsible for hosting that file. We assume that a lookup will be routed through,
on average, a set of k > 1 servers on its way to the correct host. Additionally, we
assume that given lookup(f), a user is unable to discover all lookup keys necessary
to reconstruct the entire document as in the one-way indexing technique [29].
This will provide servers and auditors with additional plausible deniability.

Redundancy: In the presence of an active censor, a high degree of redundancy
ensures that a document does not become lost if some servers leave the system or
refuse to serve content. We assume that the underlying storage scheme mirrors
each file f on a set of n ≥ 2 servers serverf1, serverf2, . . . , serverfn. We also
assume that the server responsible for the main copy of the file f (i.e., the
server that is targeted by performing a lookup on key lookup(f)) has a way of
contacting the mirroring servers.

Churn: Censorship-resistant storage systems are, by their nature, dynamic. We
assume that new servers may join the system and that existing servers will leave.

1 Although many DHTs are vulnerable to Eclipse [7] or Sybil attacks [12], we note
that securing DHT join and lookup protocols is an active area of research [4,7,24]
and is outside the scope of this paper.

606 C. Bocovich et al.

When a server joins the system, she becomes responsible for a subset of the
system files. The new server may contact the server(s) that were previously
responsible for her files, and any server operator may leave the system at any
time, and may contact the server(s) responsible for her files after she leaves.

3.2 Payment System

The main goal of providing compensation to participant servers in a censorship-
resistant storage system is to incentivize the storage and availability of a docu-
ment for an arbitrary amount of time. Anderson originally described an annuity
that could accomplish this goal by “following data around”, providing incremen-
tal payments to any server currently responsible for hosting and serving it [2].
Past precedent indicates that even small operators will go to great lengths to
recover valuable missing data [16].

Recent innovations in cryptocurrencies have provided a means to create a
travelling annuity. Funds may be transferred from a sending “wallet” to a recip-
ient wallet with knowledge of the sending wallet’s private key. This key can be
easily transported along with a file or document, thereby following it around
the storage system. In this section, we demonstrate the suitability of the Bitcoin
cryptocurrency [19] for our protocol. However, our protocol will work with any
payment system with the following properties: (1) coercion-resistant through
geo-political distribution or anonymization, (2) redeemable with a distributable
secret, (3) time-locked where funds can be placed in escrow until a fixed time
has passed, and (4) associated with an append-only log.

Bitcoin is coercion resistant through both geo-political distribution and
optional anonymous extensions. As long as at least 50% of miners accept Lavinia
transactions, there is a high probability that they will not be dropped from the
system. Furthermore, Zerocash [5] may be used for anonymization, eliminat-
ing the ability to link payments with specific documents and thereby thwarting
censorship attempts.

Bitcoins are redeemable with one or more secrets. To redeem (i.e., spend) a
coin, a user must be able to sign a transaction with the private key associated
with the coin’s wallet. It has a time-lock feature, which allows the sender to spec-
ify a date before which the coin cannot be redeemed. The payment blockchain
doubles as an append-only log, and the Bitcoin scripting language2 allows the
spender to enforce that specific values are added to this log before a payment
can be redeemed.

In our system, a publisher Alice constructs a series of payment contracts
P(X, t, S, v). Each contract places a set of funds X in temporary wallets with pri-
vate keys si ∈ S. The funds cannot be removed until after the time t has passed,
and upon redeeming these funds, the holders of the keys in S must publish the
value v to the Bitcoin blockchain.The set of funds, X = {s1 : x1, . . . , sn : xn},

2 https://bitcoin.org/.

https://bitcoin.org/

Lavinia: An Audit-Payment Protocol for Censorship-Resistant Storage 607

specifies the amount of Bitcoins xi that belongs to the wallet with private key
si. The funds may not be redeemed without the cooperation of all recipients.

Each recipient (i.e., holders of the private keys in S) fulfills the contract P by
having all recipients collectively sign and append a transaction to the blockchain
that spends the coins to their own personal accounts and posts the now-public
value v. We denote this transaction as T (proof(S), v). When the transactions
are complete, the funds will be divided amongst the recipients in the amounts
specified by X in the payment contract.

We can construct the payment contract

P({s1 : x1, s2 : x2}, t, {s1, s2}, v)

using the Bitcoin scripting language. When a transaction to spend a coin is
processed, its input script is concatenated to the output script of the transaction
that created the coin. Alice commits to P by submitting a transaction spending
coins worth a total of x1 + x2 to the blockchain. This transaction contains the
following output script:

timelock: t
Output: [
{x1,

<Pubkey s1> <PubKey s2> 2
OP_CHECKMULTISIG
OP_SHA256
<hash_of_v>
OP_EQUALVERIFY },

{x2,
<Pubkey s1> <PubKey s2> 2
OP_CHECKMULTISIG
OP_SHA256
<hash_of_v>
OP_EQUALVERIFY }]

It requires a proof of knowledge of the secrets s1 and s2 in the form of
signatures on the subsequent spend transaction. It also requires the next spend
transaction to include the value v in its input script. It verifies this value by
ensuring that it hashes to hash of v. The time lock ensures that the next spend
transaction will not be submitted to the blockchain until the time t has passed.

The transaction T that fulfills this contract must have the following
input script:

<v> <sig s1> <sig s2>

Each owner of a secret in the set S must provide a transaction with this input
script to redeem their funds. This involves signatures from both parties on each
transaction.

608 C. Bocovich et al.

4 Lavinia Protocol

4.1 Overview

Lavinia allows a publisher to publish content, submit payments, and then vanish
from the system completely—the continued availability of content is not contin-
gent on the actions of the original publisher. This protects against out-of-band
coercion tactics such as rubber-hose cryptanalysis in the case that the publisher
is captured or prosecuted. Additionally, third-party benefactors may fund exist-
ing documents to increase the likelihood that they will remain in the system
or extend the document’s lifetime. This ensures that even popular content with
higher bandwidth costs will remain in the system.

Micropayments to participating servers occur during audit periods chosen
by the publisher or benefactor during the initial payment step. The publisher
chooses a different auditing server for each audit period and places with them the
responsibility of checking a file for availability at some time during that period,
in exchange for a small remuneration. An auditor lacks sufficient evidence to
prove her auditor status and requests the file as a regular user would, forcing
the server to respond to both audits and regular requests for content. We place
restrictions on the auditor by preventing her from learning which files she will
audit until the previous audit period has passed. At that time, she may access
the file’s lookup key by searching the payment system’s append-only log. Finally,
we place additional incentives to ensure that all audits and remuneration occur
in a timely manner at each audit time.

An important challenge associated with making censorship resistance a pos-
sibly profitable endeavor is ensuring that a participant is unable to game the
system and receive payments without providing services. We assume that par-
ticipants in the Lavinia protocol are rational and self-serving entities who will
employ any means necessary to receive payments while incurring as few costs
as possible in the form of storage space and network bandwidth. The fault tol-
erance features of our protocol will also defend against a small number of irra-
tional, malicious participants. In Sect. 5, we show that exploiting this self-interest
strengthens the censorship-resistant properties of the system and increases the
likelihood that a document remains available until its expiration date.

Although Lavinia cannot directly help impoverished users publish documents
safely, it does provide a way for third parties to help them more efficiently by
allowing them to create payment contracts on behalf of the publisher or to
supplement existing documents. For example, concerned free speech advocates
could form a fund to store documents they felt were meritorious, and perhaps
even participate as servers in the storage system and host content for free.

4.2 Protocol Details

We give the full Lavinia protocol in Fig. 1. During publication (or at any time
throughout the life of the document) a publisher or benefactor, Alice, prepares
payments for each of their files f stored in the system.

Lavinia: An Audit-Payment Protocol for Censorship-Resistant Storage 609

Alice Server Auditor

kw(rsi , skSi)

Commits to P(X, ti, {skSi, skAi}, kw(ri, skAi), {skBi, x3})

ti−1, ti, kw(skAi−1, lookup(f)), kw(H(f‖skAi−1), skAi), ri−1, ri, kw(H(f‖skAi−1), rsi)

at time t

Finds value kw(ri−1, skAi−1)

Unlocks lookup(f)
Search for lookup(f) in storage

f

Decrypts skAi, rsi
rsi

(Posts kw(ri, skAi) to log)

T (proof({skSi, skAi}), kw(ri, skAi))

Can’t find kw(ri−1, skAi−1)

T (proof(skBi), skBi)

Fig. 1. Protocol for setting up payments and auditing a file f during the period
[ti−1, ti], where kw(s,K) is a function that encrypts a key K with a secret s. The
burn procedure is shown in red. (Color figure online)

Alice first determines a set of times T = {t1, . . . , tn} that separate the audit
periods during which she wishes her document to be checked for availability.
(For convenience, let t0 denote the time of publication of the document.) She
creates a payment contract for each time ti ∈ T . For example, if she wishes her
document to be audited approximately once a month for two years, she would
then create 24 payment contracts for each file f she uploads to the system. These
contracts form an agreement between Alice, the servers hosting her shares, and
the auditors responsible for ensuring her document’s availability.

For each of Alice’s contracts, she randomly generates new wallets with private
keys skA and skS for an auditor and server, respectively. She then decides on
the payment amounts X = {skA : xa, skS : xs} for the auditor and server.

The time lock enforces that funds will not be transferred until the audit
period ending at time ti has passed. Let kw(s,K) be a key wrapping function
that encrypts a key K with a secret s. We assume that this key wrapping function
is secure and that the ciphertext does not leak information about the secret s or
the key K. Alice encrypts the auditor’s secret with a random value r to produce
the masked secret v = kw(r, skA); v becomes the value that must be posted to
the append-only log to redeem the contract, as described in Sect. 3.2.

Alice now constructs a contract

P({skAi : xa, skSi : xs}, ti, {skSi, skAi}, kw(ri, skAi)).

610 C. Bocovich et al.

for each audit period by spending coins to the newly created wallets, as described
in Subsect. 3.2. This places funds for the file f in escrow with the server respon-
sible for hosting the share and the auditor responsible for assuring its existence
in the audit period [ti−1, ti]. She distributes the server secrets skSi for each
time ti to the server hosting the file by encrypting them with the key wrap-
ping function kw and a random value rsi

to produce the masked server secrets
{kw(rsi

, skSi)}n
i=1. If the file changes hands (as in a dynamic storage system),

the secrets {kw(rsi
, skSi)}n

i=1 travel with it.
Alice then selects auditors for each of her contracts, and sends to each of

them the beginning and end of their audit period, ti−1 and ti, the lookup key for
f encrypted with the previous auditor’s secret, kw(skAi−1, lookup(f)), and the
masked auditor secret, kw(H(f‖skAi−1), skAi), encrypted with a hash of the
file f concatenated with the previous auditor’s secret, where the cryptographic
hash function H is both pre-image resistant and collision resistant. The first
auditor for time period [t0, t1] will also receive the value skA0, randomly chosen
by Alice. Finally, she sends the auditor the random value ri−1, which is used
to decrypt the previous auditor’s secret, the random value ri, which the auditor
will use to encrypt her secret, and kw(H(f‖skAi−1), rsi

), which the auditor
will later decrypt and send to the server to unlock skSi. After this point, the
publisher or other benefactor is free to cease all interaction with the system.
The construction and distribution of the above payment information can be
performed during or after the publication of the document. Note that it is in
Alice’s interest to construct these values honestly. An incorrect or insecure value
that prevents a server or auditor from being paid or allows them to cheat the
system will increase the probability that her files will be dropped.

publication time = ti−1 time = ti

P(X, ti, {skAi, skSi}, kw(ri, skAi), {skBi, x3})
Alice commits to:

Alice gives Auditor [ti−1, ti]:
random values: ri−1, ri, kw(H(f‖skAi−1), rsi)
document key: kw(skAi−1, lookup(f)),
locked private key: kw(H(f‖skAi−1), skAi)
Burn secret: skBi

kw(ri−1, skAi−1)
Auditor [ti−2, ti−1] posts

Auditor [ti−1, ti] sends
T (proof(skBi), skBi)

Auditor [ti−1, ti]
decrypts skAi−1,
lookup(f)

Auditor [ti−1, ti]
retrieves file f

Auditor [ti−1, ti]
decrypts skAi

T (proof(skAi), kw(ri, skAi))
Auditor [ti−1, ti] sends:

Fig. 2. The timeline of an audit sequence for a file f from the perspective of its auditor
for period [ti−1, ti]. If the auditor for period [ti−2, ti−2] fails to complete their audit
and post their private key, the next auditor will follow the burn procedure shown in
red. (Color figure online)

To ensure that Alice’s files will be audited during each time period, the server
and auditor should not be paid before their audit period ends and they should not
be able to audit the document before their audit period begins. To accomplish
this, we use the payment system’s time-lock feature and encrypt thelookup keys

Lavinia: An Audit-Payment Protocol for Censorship-Resistant Storage 611

and secrets for auditor [ti−1, ti] with the published value v of auditor [ti−2, ti−1].
In order for the auditor of period [ti−1, ti] to unlock her secret skAi, she must
know skAi−1.

This scheme has the advantage of enforcing the time lock with self-interest.
The auditor [ti−2, ti−1] cannot redeem her payment until time ti−1 has passed.
When an auditor moves funds, she must also release her encrypted secret,
kw(ri−1, skAi−1) to a publicly viewable append-only log. At this time, the audi-
tor for the period [ti−1, ti], who owns ri−1, is able to compute her own secret and
perform the audit of the file. If the previous auditor releases her secret ahead of
time, she runs the risk of forfeiting her payment to the next auditor (since her
secret will then be visible to that auditor). We note that if a server is temporarily
unavailable at the time the auditor attempts to retrieve the file f , the auditor
can continue to query for the document until her audit period has passed. We
show the timeline for auditing a file f at audit time ti in Fig. 2.

Alice initializes this sequence by providing the first auditor with a randomly
generated initialization key skA0 and the following values:

t1, lookup(f), kw(H(f‖skA0), skA1), r1, kw(H(f‖skA0), rs1)

Note that this first auditor must still conduct a lookup of the file f to unlock
her secret skA1 and the server’s random secret rs1 .

4.3 Burn Contracts

A disadvantage of the method of sequential payments described above is the
impact of an auditor leaving the system, even temporarily. If the previous audi-
tor fails to release her information after time ti−1, the auditor during [ti−1, ti]
will not be able to perform her audit or receive remuneration for her efforts.
This in turn will prevent subsequent auditors from receiving the information
needed to perform their audits, effectively terminating the revenue stream for
the file. A malicious party could easily exploit this by posing as an auditor, and
simply declining to perform her audit, or coercing an honest auditor into skip-
ping a single payment on some targeted document. To avoid this, we extend the
requirements of our payment system to allow an auditor to burn the previous
auditor’s payment after her time has passed. If an auditor at time ti becomes
aware that the previous audit failed, she will be able to burn the money in both
her and her predecessor’s accounts and forward the secret to the next auditor
in the chain. In order to incentivize burning instead of complete inaction, we
allow auditors to keep a small fraction of the profits they would have received
if an audit were possible (though not so large that they would prefer burning
payments to performing audits).

We define P(X, t, S, v, {skB, x3}) to be an extension of the payment contract
in Subsect. 3.2 to allow Alice to specify a burn secret, skBi and a payment
amount x3 for each time ti. This will invalidate payments to the secrets in
skSi−1 and skAi−1, and pay the holder of this secret the amount x3. The money
is burned if and only if an auditor issues a transaction T (proof(skBi), skBi)

612 C. Bocovich et al.

where she posts skBi to the log. Alice provides the auditor for period [ti, ti+1]
with the previous auditor’s secret locked with their burn secret, kw(skBi, skAi)
at the initial time of payment. This will allow the auditor at time ti+1 to proceed
as usual.

Each auditor will then receive the previous auditor’s secret locked with the
previous burn secret. In addition to preventing deliberate attacks on the chain of
audits, this will incentivize auditors to complete their assigned audits before the
next time period begins. We now give an implementation of the burn functional-
ity in Bitcoin using the OP RETURN call. The following Bitcoin script implements
the payment contract:

P({skSi : x1, skAi : x2}, ti, {skSi, skAi}, kw(r, skAi), {skBi+1, x3})

Output: [
{x1,

<hash_of_skB> OP_EQUAL
OP_IF

OP_RETURN //burns the money
OP_ELSE

<Pubkey skS> <Pubkey skA> 2
OP_CHECKMULTISIG
OP_SHA256
<hash_of_kw(r, skA)>
OP_EQUALVERIFY

OP_ENDIF
}, {x2, //same as x1 script },
{x3,

<hash_of_skB> <Pubkey skB>
OP_CHECKSIG

}]

4.4 Choice of Auditors and Audit Times

Auditors can conceivably be any collection of entities willing to participate in
the Lavinia protocol. We do not make any assumptions about whether or not
they also participate as servers in the system. However, auditors do need to be
discoverable by Alice. For maximum security, Alice should choose a different
auditor for each audit time and file. This requires a potentially large number of
auditors. One way to increase the ease of distribution and discoverability is to
make the set of servers and auditors one and the same. This would allow Alice
to choose a random lookup key for each payment contract, and probabilistically
ensure that no one auditor will be responsible for multiple audit times of a
single file.

To reduce the ability of servers to guess future audit times, a publisher can
choose times at random intervals, distributed according to a Poisson process.
This defends against an attack in which servers only serve content during brief

Lavinia: An Audit-Payment Protocol for Censorship-Resistant Storage 613

time windows around fixed intervals in an effort to distinguish between auditors
and regular users.

We also note that any reader can claim to be an auditor for an audit time
t, and servers are unable to verify her identity. Even if the server is certain
about the next audit time, there will always be at least some period between
the release of the previous secret and the retrieval of the document by the next
auditor during which the servers will be forced to serve the document to all users.

5 Game Theory Analysis

In the Lavinia protocol, servers are incentivized to behave correctly by the poten-
tial profits they earn from delivering files. While individual operators might have
nobler motives, we claim that the harnessing of the profit motive is actually an
advantage of our system in many respects. Operators who see an opportunity
for profit can go to great lengths to ensure the integrity of the system, and to
ensure they are able to fulfill their obligations. However, the use of the profit
motive also has a distinct disadvantage: profit-seeking operators will not neces-
sarily conform to the desired protocols and behaviours of the system if they can
find and implement a more profitable protocol, which may not include desired
behaviours [14]. In this section, we show that rational, profit-maximizing server
operators will follow the Lavinia protocol faithfully by continuously storing and
serving documents to both regular users of the system and auditors.

Game theoretically, we model choices of servers within a censorship-resistant
storage system as a game played by the set of server operators A, and denote
player i by Ai. Each player operates one or more servers, all connected to the
same network, and tries to maximize her own profits, but does not try to reduce
the profits of other players (unless doing so increases her own profits).3 We
assume there are η servers in total, and denote the set of all servers by S, and
server j operated by player i with Si,j .

In our model, each player plays several families of games, in which they select
a strategy in the form of a set of policy decisions (e.g., when to store a file or
when to serve a requested file). Strategies are selected to maximize the profit
functions of each player, potentially based on what the other players do. The
set of strategies selected by all players is called a strategy profile. A strategy
profile forms a Nash equilibrium when, even with complete knowledge of what
the other players have done, no player could improve her profits by retroactively
adopting a different strategy. An equilibrium is a dominant strategy equilibrium
when no player could improve her profits, regardless of what the other players
may or may not do. If the dominant strategy equilibrium is not unique (there
exists, e.g., two equally good actions for a player to take), we assume that players
prefer the strategy that is closest to the Lavinia protocol (a useful assumption in
many game theoretic contexts [27]). This is essentially an assumption of sloth:
no player should waste resources to change from the default client behaviour to
something else, if there is no change in her overall profits.
3 We consider the impact of malicious servers in the next section.

614 C. Bocovich et al.

5.1 The Static Game

To begin, we consider a simplified version of the storage system where the net-
work topology is fixed. This environment is unrealistic, but could be a useful
approximation of the network in the long run (i.e., after it has operated for a
long time, and includes many players). Its study will also provide insights for
the model considered in the next subsection, in which servers can both join and
leave the network.

In this game operators must pick a strategy for operating their servers. An
operator must adopt the following policies:

– A serving policy, Πshare, that specifies for each file f held by a server, whether
or not to serve the file when it is requested. This policy is expressed as a set
of probabilities 0 ≤ Πshare(f) ≤ 1, each of which specifies the probability
that the server responds to a request for file f .

– A storage policy Πstore that specifies whether or not to continue storing a file
f expressed as a set of probabilities 0 ≤ Πstore(f) ≤ 1.

– A routing policy Πroute, that specifies how a server s responds to lookup
requests that are routed through it. This policy cannot depend on any par-
ticular f , but may instead depend on the server or lookup key. This pol-
icy can be split into three components: Πroute(s, any), Πroute(s, self) and
Πroute(s, others), respectively denoting whether the routing information from
server s is sent at all, whether the routing information contains correct infor-
mation about the keyspace managed by s, and whether the routing informa-
tion for the keyspace of other servers is correct.

We further model global properties of the network with Γsend(f), and
Γroute(s): the fraction of requests for a file f that are correctly routed (even-
tually) to the server storing f , and the fraction of routing traffic that passes
through s as a fraction of all traffic expected to pass through s (i.e., 1

η of all
traffic is expected to pass through s). Additionally, we denote by Γhop the aver-
age number of routing steps made by a given request. Finally, the function
λBR(f) denotes the ratio of lookup requests made by ordinary users to lookup
requests made by auditors for a particular file f . The functions gtransmit(f) and
ctransmit(f) denote the profit from sending f to an auditor, and the transmis-
sion cost of sending f to anyone, respectively. croute similarly denotes the cost
of sending routing information for one lookup key, and T is the total number of
lookups into the system. We are now able to state a formal characterization of
how rational actors will behave in the important set of static games of this kind
(see the extended version of this paper [6] for the proof).

Theorem 1. If
every server in the network is a starting point for 1

η lookups, and no lookup
will visit the same server more than once, then provided that for every server s

in the storage system,

∑
f

1
η (gtransmit(f) − λBR(f)ctransmit(f))

T
> croute, and

for every file f stored at s,
1
η
(gtransmit(f) − λBR(f)ctransmit(f)) > cstore(f),

Lavinia: An Audit-Payment Protocol for Censorship-Resistant Storage 615

then there exists a dominant strategy Nash equilibrium where all servers adopt
the strategy Πstore(f) = 1 and Πsend(f) = 1, for all f , and Πroute(s, all) = Rs,
where Rs is the correct routing information for s.

The interpretation of this result is that, in a static system in which traffic
levels for files are relatively constant in the longer term (i.e. λBR(f) does not
change much from the server’s initial belief), rational servers will conform to the
Lavinia protocol even if other servers behave irrationally, subject to some mod-
est, realistic, constraints. Further, when more servers behave rationally, Γsend(f)
increases, while ΓhopΓroute(s) decreases, making the cost of irrational behaviour
(relative to rational behaviour) increase (see the extended version of this paper [6]
for the proof). We conclude that this indicates the system should be quite stable
in practice, once established.

We note that, although storage and bandwidth costs will vary by jurisdiction,
the price of storage hardware at the moment amounts to approximately $0.03 per
GB in the United States,4 and the cost of bandwidth is approximately $10/month
per Mbps,5 which also equals $0.03 per GB. The profit from hosting a file,
gtransmit(f), should then be at least (η + λBR) $0.03

GB · |f |.

5.2 Estimating λBR

Since the strategy adopted by the server is dependent on λBR, the ratio of unprof-
itable reader traffic to profitable auditor traffic, we now explain how servers
might compute this quantity, and consequently compute their strategies.

If we assume that audit times are Poisson distributed, as mentioned above,
then a server Ai still needs to estimate the frequency of non-audit traffic to
compute λBR. In practice, the amount of non-audit traffic may change dramat-
ically over time (e.g., making it an inhomogeneous Poisson process or a Cox
process [17]). For example, one might expect a rapid increase in reader traffic if
an important file is posted, and then later discovered and reported in the press.
If Ai cannot model the change in the process’s value over time, then it cannot
reasonably decide whether to continue serving the file in response to sudden
spikes in traffic (like a denial of service attack). It also cannot decide whether or
not to continue storing the file if traffic grows too high (in the hope that traffic
rates will decline again in the future), or to discard it (under the assumption
that transmitting the file will never again be profitable).

In essence this is a traffic prediction problem, which is an active area
of research. We suggest the use of a simple piece-wise linear approximation
process [17], to estimate the current rate of requests. Since the auditor’s request
rates should not change over time, it can be estimated using a conventional
maximum likelihood approach, where events take the form of a payment by an
auditor. Thus, using the rate of payments for the file, λT , and the rate of total
requests for the file, λf , a server can calculate λBR = λf−λT

λT
.

4 http://www.mkomo.com/cost-per-gigabyte-update.
5 https://blog.cloudflare.com/the-relative-cost-of-bandwidth-around-the-world/.

http://www.mkomo.com/cost-per-gigabyte-update
https://blog.cloudflare.com/the-relative-cost-of-bandwidth-around-the-world/

616 C. Bocovich et al.

5.3 Dynamic Behaviours

Having established that Lavinia is stable when the set of players is static, we
now consider strategic behaviour in scenarios where servers can join and leave
the network. In this section, we rely heavily on the presence of cached content in
the storage system. When Alice publishes a document, she should store copies of
each file, along with its payment keys at mirroring servers. We will show in this
section that servers have strong incentives for continuing to store this information
in the long term.

After a server joins the network, it will be present in the routing information
of all servers that point to its keyspace6. The only needed result is to show
that newly joined servers will be able to acquire the content, and vitally, the
payment information, associated with their assigned keyspace. We refer to this
as the mirroring subgame. As stated, we assume that each file f is mirrored
by at least two other servers sf1 and sf2. The mirroring subgame is then a
game played between a new server that wishes to join the network, which we
call snew, and three other servers, sorig, sf1 and sf2. We denote by key(s) the
identity determining the keyspace of a particular server. The other servers are
defined as follows: sorig is the server that holds some files that the new server
snew would like to take over. sf1 and sf2 are currently mirroring the file f . We
derive the following equilibrium result (see the extended version of this paper [6]
for the proof):

Theorem 2. In the mirroring subgame, there is a Nash equilibrium where the
joining server snew offers a one-time payment to either sf1 or sf2, selected
randomly, and will receive f with certainty. Further, this amount is not more
than half the long-run total value of the mirrored file, ensuring a long-run profit
for snew.

We have now established that, under the assumption a joining server snew

will receive all income from acquired content, it can still plausibly acquire
said content. Having established this, it is straightforward to show that servers
are able to come and go from the network at will. To leave the network, a
server simply copies the content to the server that will be responsible for the
files after she leaves and mirrors the content at the new mirroring servers
serverf1, . . . , serverfn. These mirror servers will accept the extra load if the
content is profitable to host in the first place, because it can be sold to future
joining servers for a sum that will likely cover its costs, provided that network
churn occurs frequently enough relative to the storage cost of the content. Since
payment times are Poisson distributed, no particular block of time is worth more
than any other in expectation, so servers cannot gain value by repeatedly joining
and leaving. Note also that although many servers may thus end up with a given
file and the associated payment keys, only the server reached by an auditor will
receive the rs value needed to unlock payment for that time period.

6 Note that we assume the presence of a secure routing protocol, in which there are
protections against servers reporting incorrect routing information [7].

Lavinia: An Audit-Payment Protocol for Censorship-Resistant Storage 617

Under our assumptions regarding secure routing, Lavinia incentivizes an equi-
librium where servers can join and leave at will, and where content will be stored
redundantly. Coupled with the more robust equilibrium for a system with low
churn, our results reinforce the idea that Lavinia satisfies the goals of our pay-
ment protocol.

6 Security

We claim our audit protocol is secure if an attacker is unable to: (1) compute
the value of skA for any audit time t, unless she is the auditor for time t, or time
t has passed and the previous auditor has posted to the append-only log, (2)
receive a payment for auditing a file f at time t, unless she has retrieved f from
the system sometime after the previous audit time has passed, and (3) receive a
payment for serving a file f at time t, unless she has served f after the previous
audit time has passed. We defend against these attacks through the use of the
key wrapping function kw and the cryptographically secure hash function H.
For a full proof, see the extended version of this paper [6].

While the security of the protocol itself guarantees that an auditor or server
is unable to receive payment without faithfully implementing the protocol, there
are a number of attacks that a malicious adversary willing to forego personal
gains could employ to drop content from the system. We will now describe these
attacks and their defenses.

Denial-of-Service (DoS) Attacks: As mentioned, a document that is fre-
quently accessed will have a higher associated bandwidth cost for the hosting
server. An adversary could flood the storage system with lookups in order to
make content costly, incentivizing servers to stop serving certain files. There are
defenses that servers could deploy individually, such as rate limiting by IP or
requiring the performance of a small computational task, to limit the number
of lookups by a single user. However, these techniques are useless against dis-
tributed attacks. In any case, we argue that a short-lived DoS attack will not
result in content being dropped from system, but rather that servers will refuse
to serve content only until the number of requests drop back to normal levels.
A long-term DoS attack may be discoverable or too costly even for a state-level
censor. Even the DDoS attack on Github by the Chinese government [3], which
lasted five days, is still short term in the context of a document with a life span
of multiple years.

Auditor-Server Collusion: An integral part of our protocol is that an audit
must look no different from a regular request, forcing a server to deliver con-
tent at every request in return for possible payment. We show that an auditor
lacks a sufficient amount of proof to reveal her status to the server without
forfeiting her own payment. The only way for an auditor to prove her status
before faithfully collecting the file f during the audit is to provide the server
with kw(H(f‖skAprev), rs) and lookup(f), allowing the server to retrieve skS.
However, the server cannot validate that this signing key is correct without the

618 C. Bocovich et al.

other signing key skA, and the only way for the server to validate it without
serving the file to any auditor or reader that claims to possess skA is for the
auditor to give the server kw(H(f‖skAprev), skA), forfeiting her payment.

Join-and-Leave Attacks: In an effort to inherit content from existing servers
and drop it from the system entirely, an adversary can employ a join-and-leave
attack. By repeatedly joining the network, an adversary will inherit a subset
of documents from existing servers in the system. If the adversary leaves the
system without replicating or moving these documents, the content will be lost.
We argue that the existence of mirrored content and the profit motive will result
in multiple redundant copies of each document, and that these copies may be
found with minimal investigation.

False Payment Attacks: An adversary can attempt to trick servers or auditors
into dropping a document from the system by issuing false payment contracts,
forcing the server-auditor pairs to undergo the audit and payment protocol before
she realizes that there are no funds associated with the provided payment keys.
We argue that a document will still remain in the system as long as the original
payments provided by Alice cover the marginal cost of participating in the addi-
tional malicious audits, which would be very small. Furthermore, the adversary
is required to put some amount of funds in escrow and is unable to receive her
funds until the audit time t has passed, allowing an auditor and server pair to
race the adversary to complete the protocol and receive the additional payment.
An adversary may try to overwhelm Alice’s original contract by flooding the
system with thousands of worthless ones. Such an attack is quite costly, in both
computing resources and capital, as it requires a large amount of transactions
in which the adversary must submit real payment contracts.

7 Conclusion

We have proposed Lavinia, a novel audit and payment protocol that incentivizes
the continued availability of published content by remunerating server partic-
ipation in a privacy-preserving manner. Lavinia provides a publisher with the
means to specify an arbitrary storage time for her documents. The continued
availability of stored documents is ensured by an audit and payment protocol,
in which servers and auditors are compensated for ensuring that the document
stays in the system until its expiration date. We provide a game-theoretic analy-
sis that shows servers in the storage system acting on behalf of self-interest to
maximize profits will participate honestly in the Lavinia protocol. With these
requirements met, the Lavinia protocol provides the final pieces for a compre-
hensive realization of a true digital printing press for the Internet age.

Acknowledgements. We thank the anonymous reviewers for helping us to improve
this work. We thank NSERC for grant STPGP-463324.

Lavinia: An Audit-Payment Protocol for Censorship-Resistant Storage 619

References

1. BitTorrent. http://www.bittorrent.com/
2. Anderson, R.: The eternity service. In: Pragocrypt 1996, pp. 242–252 (1996)
3. Anthony, S.: GitHub Battles “Largest DDoS” in Site’s History, Targeted at

Anti-Censorship Tools. Ars Technica, 30 March 2015. http://arstechnica.com/
security/2015/03/github-battles-largest-ddos-in-sites-history-targeted-at-anti-
censorship-tools/. Accessed June 2016

4. Awerbuch, B., Scheideler, C.: Towards a scalable and robust DHT. In: Proceedings
of the Eighteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2006, pp. 318–327. ACM, New York (2006)

5. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: decentralized anonymous payments from Bitcoin. In: 2014 IEEE
Symposium on Security and Privacy (SP), pp. 459–474, May 2014

6. Bocovich, C., Doucette, J.A., Goldberg, I.: Lavinia: Censorship-Resistant Publish-
ing with Incentives (2017). http://cacr.uwaterloo.ca/techreports/2015/cacr2015-
06.pdf

7. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing
for structured peer-to-peer overlay networks. SIGOPS Oper. Syst. Rev. 36(SI),
299–314 (2002)

8. Clarke, I., Sandberg, O., Toseland, M., Verendel, V.: Private Communication
Through a Network of Trusted Connections: The Dark Freenet (2010). https://
freenetproject.org/papers/freenet-0.7.5-paper.pdf

9. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: a distributed anonymous
information storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy
Enhancing Technologies. LNCS, vol. 2009, pp. 46–66. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44702-4 4

10. Dai, X., Chaudhary, K., Grundy, J.: Comparing and contrasting micro-payment
models for content sharing in P2P networks. In: Third International IEEE Confer-
ence on Signal-Image Technologies and Internet-Based System, pp. 347–354. IEEE
(2007)

11. Dingledine, R., Freedman, M.J., Molnar, D.: The free haven project: distributed
anonymous storage service. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 67–95. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44702-4 5

12. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

13. Eisenstein, E.L.: The Printing Press as an Agent of Change, vol. 1. Cambridge
University Press, Cambridge (1980)

14. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

15. Gramaglia, M., Urueña, M., Martinez-Yelmo, I.: Off-line incentive mechanism for
long-term P2P backup storage. Comput. Commun. 35(12), 1516–1526 (2012)

16. Hern, A.: Missing: Hard Drive Containing Bitcoins Worth £4m in Newport Landfill
Site. The Guardian (2013)

17. Massey, W.A., Parker, G.A., Whitt, W.: Estimating the parameters of a nonhomo-
geneous poisson process with linear rate. Telecommun. Syst. 5(2), 361–388 (1996)

http://www.bittorrent.com/
http://arstechnica.com/security/2015/03/github-battles-largest-ddos-in-sites-history-targeted-at-anti-censorship-tools/
http://arstechnica.com/security/2015/03/github-battles-largest-ddos-in-sites-history-targeted-at-anti-censorship-tools/
http://arstechnica.com/security/2015/03/github-battles-largest-ddos-in-sites-history-targeted-at-anti-censorship-tools/
http://cacr.uwaterloo.ca/techreports/2015/cacr2015-06.pdf
http://cacr.uwaterloo.ca/techreports/2015/cacr2015-06.pdf
https://freenetproject.org/papers/freenet-0.7.5-paper.pdf
https://freenetproject.org/papers/freenet-0.7.5-paper.pdf
https://doi.org/10.1007/3-540-44702-4_4
https://doi.org/10.1007/3-540-44702-4_5
https://doi.org/10.1007/3-540-44702-4_5
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/978-3-662-45472-5_28

620 C. Bocovich et al.

18. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45748-8 5

19. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). http://
bitcoin.org/bitcoin.pdf. Accessed June 2016

20. Oualha, N., Roudier, Y.: Securing P2P storage with a self-organizing payment
scheme. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cavalli, A., Leneutre, J. (eds.)
DPM/SETOP 2010. LNCS, vol. 6514, pp. 155–169. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19348-4 12

21. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45518-3 18

22. Seuken, S., Charles, D., Chickering, M., Puri, S.: Market design & analysis for a
P2P backup system. In: Proceedings of the 11th ACM Conference on Electronic
Commerce, pp. 97–108. ACM (2010)

23. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
24. Singh, A., Ngan, T.-W., Druschel, P., Wallach, D.: Eclipse attacks on overlay net-

works: threats and defenses. In: Proceedings of the 25th IEEE International Con-
ference on Computer Communications, INFOCOM 2006, pp. 1–12, April 2006

25. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the 2001 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM 2001, pp. 149–160. ACM, New York
(2001)

26. Stubblefield, A., Wallach, D.S.: Dagster: censorship-resistant publishing without
replication. Technical report TR01-380, Houston, TX, USA (2001)

27. Thompson, D.R., Lev, O., Leyton-Brown, K., Rosenschein, J.: Empirical analysis
of plurality election equilibria. In: Proceedings of the 2013 International Conference
on Autonomous Agents and Multi-Agent Systems, pp. 391–398 (2013)

28. Urban, J.M., Quilter, L.: Efficient process or chilling effects—takedown notices
under section 512 of the digital millennium copyright act. Santa Clara Comput.
High Tech. L J. 22, 621 (2005)

29. Vasserman, E.Y., Heorhiadi, V., Hopper, N., Kim, Y.: One-way indexing for plausi-
ble deniability in censorship resistant storage. In: 2nd USENIX Workshop on Free
and Open Communications on the Internet. USENIX (2012)

30. Waldman, M., Mazieres, D.: Tangler: a censorship-resistant publishing system
based on document entanglements. In: Proceedings of the 8th ACM Conference
on Computer and Communications Security, pp. 126–135. ACM (2001)

31. Winter, P., Lindskog, S.: How the great firewall of China is blocking tor. In: Pro-
ceedings of the 2nd USENIX Workshop on Free and Open Communications on the
Internet (2012)

https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-642-19348-4_12
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/3-540-45518-3_18

A Simpler Rate-Optimal CPIR Protocol

Helger Lipmaa(B) and Kateryna Pavlyk

University of Tartu, Tartu, Estonia
helger.lipmaa@gmail.com

Abstract. In PETS 2015, Kiayias, Leonardos, Lipmaa, Pavlyk, and
Tang proposed the first (n, 1)-CPIR protocol with rate 1 − o(1). They
use advanced techniques from multivariable calculus (like the Newton-
Puiseux algorithm) to establish optimal rate among a large family of dif-
ferent CPIR protocols. It is only natural to ask whether one can achieve
similar rate but with a much simpler analysis. We propose parameters
to the earlier (n, 1)-CPIR protocol of Lipmaa (ISC 2005), obtaining a
CPIR protocol that is asymptotically almost as communication-efficient
as the protocol of Kiayias et al. However, for many relevant parameter
choices, it is slightly more communication-efficient, due to the cumula-
tive rounding errors present in the protocol of Kiayias et al. Moreover,
the new CPIR protocol is simpler to understand, implement, and ana-
lyze. The new CPIR protocol can be used to implement (computationally
inefficient) FHE with rate 1 − o(1).

Keywords: Communication complexity
Computationally-private information retrieval
Cryptographic protocols · Optimal rate

1 Introduction

A computationally private information retrieval ((n, 1)-CPIR, [11]) protocol
enables the receiver to obtain an �-bit element from sender’s database of n ele-
ments, without the sender getting to know which element was obtained. An effi-
cient CPIR protocol has to be implemented by virtually any two-party privacy-
preserving database application, and hence CPIR protocols have received signif-
icant attention in the literature.

Since there exists a trivial CPIR protocol with linear communication �n where
the sender just forwards the whole database to the receiver, a major requirement
in the design of new CPIR protocols is their communication efficiency. The first
CPIR protocol with sublinear communication was proposed by Kushilevitz and
Ostrovsky [11], and slightly optimized by Stern [16]. The first CPIR protocol with
polylogarithmic-in-n communication was proposed by Cachin et al. [3]. The first
CPIR protocols with asymptotically truly efficient communication complexity
were proposed by Lipmaa [12,13] and Gentry and Ramzan [6].

All mentioned papers were concerned in the communication complexity as
a function of n. However, optimizing the communication complexity of a CPIR
c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 621–638, 2017.
https://doi.org/10.1007/978-3-319-70972-7_35

622 H. Lipmaa and K. Pavlyk

protocol as a function of � is also important, especially in applications where the
database elements are very long, e.g., movies. Optimizing the rate—defined as
the size of useful information (log n + � in the case of an (n, 1)-CPIR protocol)
divided by the actual communication complexity of the protocol—is also an
interesting theoretical question. Indeed, achieving optimal rate (while still having
acceptable computational complexity) is a central question in many areas of
computer science and engineering.

The first constant-rate CPIR protocol was proposed by Gentry and Ramzan [6]
(ICALP 2005, rate 1/4) and Lipmaa [12] (ISC 2005, rate 1/2). Lipmaa devised
another variant of his protocol with optimized results; the resulting CPIR protocol
from [13] had rate 1 − 1/a + o(1) for some positive constant a > 1. However, the
drawback of the latter variant (see Sect. 3.3 for its full description) is an additive
term aκ log22 n in the communication complexity (here, κ is the security parame-
ter), which means that the optimal value of a is actually quite small unless � is very
huge. Moreover, a cannot depend on � (i.e., it has to be constant), and thus this
CPIR protocol does not achieve rate 1 − o(1).

In a recent paper, Kiayias et al. [10] proposed a general parameterized
family of so called leveled LBP-homomorphic encryption schemes with rate
1 − o(1). Here, LBP denotes the complexity class of functions implementable
by polynomial-size (leveled) large-output branching programs, [17]. They then
used the fact [8,13] that such an encryption scheme can be used to efficiently
implement CPIR.

However, achieving optimal rate required the authors of [10] to perform exten-
sive technical analysis. More precisely, following earlier papers like [11–13], the
(n, 1)-CPIR protocol of Kiayias et al. is recursive. First, [10] constructs a (lev-
eled) homomorphic encryption scheme that allows to compute an arbitrary func-
tion f by constructing a w-ary branching program (for some small w � n, e.g.,
w = 2) that computes f . Following [8], this homomorphic encryption scheme
privately implements the (w, 1) multiplexer function, needed in every internal
node of a branching program, by using a simple (w, 1)-CPIR protocol that has
minimal (i.e., rate 1 − o(1)) sender-side communication. However, it has linear
client-side (and hence, total) communication.

In addition, at every internal node, the (n, 1)-CPIR protocol of [10] applies a
precisely defined operation of splitting and concatenating, that guarantees that
at the level d of the branching program, the (w, 1)-CPIR protocol operates with
database elements of length sdκ, where sd is a parameter to be optimized. More
precisely, the outputs of the CPIR protocol from level d− 1 are cut into some td
pieces of length sdκ. By using this recursive construction, a suitable (w, 1)-CPIR
protocol can be used to securely implement any function from LBP.

Kiayias et al. [10] showed, by using an intricate analysis, that the optimal
communication is achieved when s1 = . . . = sm =: s, where m is the length of
the branching program. In a nutshell, they used multivariable calculus to show
that the communication complexity of their CPIR protocol is optimized when s
is equal to a root of a certain degree-(m + 1) polynomial fm. Then, they used
Galois theory to show that fm cannot be solved in radicals. Finally, they used

A Simpler Rate-Optimal CPIR Protocol 623

the theory of Newton-Puiseux series to numerically compute an approximation
of the optimal s. As the end result, they obtained a CPIR protocol of rate
1 − 1.72

√
κ/� log2 n + O(�−1).

Hence, the analysis used in [10] is (very) complicated, resulting in (a) a CPIR
protocol with a complex description, and (b) an optimal parameter choice that,
while it can be done efficiently, seems to be difficult to analyze. For example, the
optimal value of s in [10] is given by a series. After that, [10] proves that given the
so computed s, the communication complexity will be given by another explicit
series. However, in practice one needs to compute an integer approximation
of s efficiently. While [10] proposed an efficient algorithm for computing such
an approximation, it is unclear how this will influence the precise value of the
communication complexity in the general case.

Moreover, one problem of their scheme is due to “rounding errors”. First,
the claimed rate corresponds to the case when s is a real root while in practice
s must be an integer. To deal with this requirement, Kiayias et al. presented an
O(log log n)-time algorithm to compute an integer approximation of s. Second,
recall that each (w, 1)-CPIR protocol at every layer in [10] requires plaintexts
of the same length sκ. However, in the optimal construction of [10], there is no
guarantee that the total output length of the previous layer divides by s and
hence at every layer one has to round up the length of each plaintext. This means
that at every layer, there will be some undue increase in the number of applied
(w, 1)-CPIR protocols, which increases the actual communication complexity of
the resulting (n, 1)-CPIR protocol.

The authors of [10] did not compute precise upper bounds on the communi-
cation of their CPIR protocol after s is rounded to an integer and one adds up
the rounding errors. Instead, [10] provided empirical data (see Sect. 7.1.1 in [10],
or Fig. 1 in the current paper) that the increase in communication is insignificant
when � is large, at least for some practically relevant values of � and n.

Our Contribution. We show how to achieve almost the same communica-
tion complexity and rate as in the protocol of Kiayias et al. [10]. We provide
precise analysis and comparison in Sect. 5, where we show that the difference
between the communication of the “ideal” CPIR protocol of [10] (that does not
take into account rounding errors) and the new CPIR protocol is O(�1/2). After
taking into account the rounding errors, the new protocol will be slightly more
communication-efficient for all values of � and n analysed in [10]. (See Fig. 1.) The
new CPIR protocol can be used to implement rate 1 − o(1) oblivious transfer,
strong conditional oblivious transfer, asymmetric fingerprinting protocol, and
(computationally inefficient) fully-homomorphic encryption.

We use the CPIR protocol proposed by Lipmaa in ISC 2005 [12] and ICISC
2009 [13] but with parameters that we optimize in the current paper. In par-
ticular, we consider general w-ary decision trees instead of just binary contrary
to [12,13]. Alternatively, the proposed protocol is an instantiation of the CPIR
protocol family of Kiayias et al. [10] but with different parameter set, namely,
with the values td being constant, t1 = · · · = tm =: t, and the values sd being

624 H. Lipmaa and K. Pavlyk

�/κ Communication

No privacy Kiayas et al. [10] This work

Theoretical With rounding Theoretical With rounding

103 2 048 017 4 079 561 4 220 928 4 090 880 4 090 880

104 20 480 017 26 439 497 26 759 168 26 443 776 26 443 776

105 204 800 017 223 161 724 223 942 656 223 163 148 223 163 343

106 2 048 000 017 2 105 572 921 2 107 731 968 2 105 573 376 2 105 573 376

107 20 480 000 017 20 661 566 883 20 664 602 624 20 661 567 027 20 661 569 161

108 204 800 000 017 205 373 669 331 205 394 259 968 205 373 669 376 205 373 669 376

Fig. 1. Comparison with [10], for κ = 2048, w = 5, n = 57. The protocol from [10]
offers better communication if rounding is not taken into account. However, in all cases,
the current work offers better communication in practice (i.e., when parameters have
been rounded correctly)

slightly increasing. This means that the new CPIR protocol can be seen as
a t-times parallel implementation—each for ��/t�-bit databases—of the CPIR
protocol from [12], for an optimized value of t. The new analysis is significantly
simpler than the multi-page analysis of [10] but surprisingly enough delivers
almost the same results. (Intuitively, this happens since in [10], in different layers
one uses parameters (s, s, s, . . .) while in the new protocol, one uses parameters
(s, s + 1, s + 2, . . .). Since � and s both are considered to be large, s + 1 ≈ s.)

To show that our analysis is really simple, we will very briefly outline it next.
The communication function of the w-ary generalization of the CPIR from [12]
depends on n (the size of the database), � (the length of database elements),
κ (the security parameter), t (the parallelism factor) and w (the arity of the
decision tree). Here, t and w are the values to be optimized. First, we use simple
univariate analysis to derive the optimal value topt =

√
(w − 1)�/κ of t for any

w. Given the value of topt, we then “near optimize” (see Sect. 4) the value of
w. Here, near optimizing means that we write the communication function as a
series in �, and then choose the integer value of w (namely, w = 5) that minimizes
the most significant coefficients of this series. Since topt is a function of �, the
layout of the series crucially depends on the fact that we first fix topt.

We show that under these values of t and w, the asymptotic communication
of the resulting CPIR protocol is practically the same as in the optimal case
in [10]. On the other hand, for interesting1 values of �, the proposed variant will
have slightly better communication. More precisely, in the new CPIR protocol,
the communication complexity function, written down as a series in � coincides
with the one of the CPIR from [10] in the first three terms. The communication
complexity of the optimal CPIR of [10] has a tailing element O�(1/�) that makes

1 Here, by interesting we mean values of � that correspond to the length of an audio
or video file; this was also the motivating example given in [10]. If � is much shorter,
then optimizing the communication complexity as a function of � is not relevant.

A Simpler Rate-Optimal CPIR Protocol 625

their construction asymptotically slightly more efficient. However, the difference
is not big: for example, in a concrete case where the database elements are 106κ
bits long and the database has n = 57 elements (here, κ = 2048 is the currently
recommended security parameter), the CPIR of [10] is—when ignoring rounding
errors—more efficient than the new CPIR by 683 bytes out of more than 3 billion.
See Fig. 1 for more examples.

However, this comparison is purely theoretical since it operates with the
“ideal” communication function and does not take into account rounding errors.
Compared to [10], we do not run into rounding errors at every layer of the
construction. Intuitively, this is the case since in our construction, each ciphertext
of the previous layer is considered to be the plaintext of the next layer and hence
the length of the plaintexts increases by κ bits at each layer. On the other hand,
in [10], at each layer, the concatenation of t ciphertexts (of total length (s+1)tdκ)
is divided into new plaintexts, each of length sκ. The rounding error (at every
layer) is caused by the fact that for an s that is chosen optimally by the analysis
of [10], (s + 1)tdκ is essentially never divisible by s.

In fact, in the new construction, it is only important that s | � (or else we
get a one-time rounding error at the very bottom of the protocol construction).
This means, as we show numerically, that in practice, the new CPIR protocol
achieves slightly better communication complexity than the CPIR of [10], while
being much simpler. See Fig. 1 for a communication efficiency comparison. To
demonstrate the (relative) simplicity of the new construction, we will give a full
description of the new CPIR protocol on Fig. 3; the only important distinction
from the well-known CPIR protocol of [12], as modified by [13], is in the first
line (the choice of the paramrters). A comparable full description of the CPIR
protocol of [10] is significantly longer, albeit mostly due to the more complicated
procedure for selecting optimal parameters. In fact, [10] does not give a self-
contained description of their CPIR protocol. Figure 3 in [10] describes their
new LHE scheme (that then has to be modified to become a CPIR protocol),
but the choice of all parameters is described later in that paper, together with
the issues rising from rounding the parameters.

Extensions and Applications. Based on the ideas of [8,10] and of the current
paper, one can construct a rate 1 − o(1) homomorphic encryption scheme that
can homomorphically evaluate any function that has a polynomial-size large-
output branching program. All known fully homomorphic encryption schemes
have a very low rate. (See [7] for insights on why achieving good rate fully
homomorphic encryption scheme might be difficult.) Since the generalization
from binary decision trees, that are used to construct the new CPIR protocol,
to arbitrary branching programs is straightforward yet necessitates introducing
a lot of branching program-related terminology, we will omit further discussion
and refer to [10].

Similarly, one can build a rate 1 − o(1) oblivious transfer, given the new
CPIR protocol and known transformations, see [10] for discussion. Finally, based
on their CPIR protocol, [10] proposed a new rate 1 − o(1) strong conditional

626 H. Lipmaa and K. Pavlyk

oblivious transfer protocol [1], and based on the later, [9] constructed the first
optimal rate asymmetric fingerprinting protocol. One can plug in the CPIR pro-
tocol of the current paper to those constructions obtaining simpler yet slightly
more communication-efficient protocols for (strong conditional) oblivious trans-
fer and asymmetric fingerprinting.

2 Preliminaries

Notation. For a predicate, let [P (x)] ∈ {0, 1} denote the truth value of P (x),
e.g., [x = y] is equal to 1 iff x = y and to 0 otherwise. The Lambert’s W function
is defined by the equation z = W (z)eW (z). Asymptotically, W (z) ≈ ln z− ln ln z.
Let κ be the security parameter; in our case it corresponds to the key length in
bits, so κ ≥ 2048.

Public-Key Cryptosystem. A length-flexible cryptosystem (Gen,Enc,Dec)
[4,5] consists of three efficient algorithms, Gen for key generation, Enc for encryp-
tion, and Dec for decryption. The public key pk fixes the plaintext space, the
randomizer space Rpk, and the ciphertext space. For a public key pk, plaintext
m (of bitlength � = |m|), a positive integer length parameter s := ��/κ�, and
a randomizer r ∈ Rpk we have c = Encs

pk(m; r) and m = Decs
sk(c), and it is

required that Decs
sk(Enc

s
pk(m; r)) = m.

A length-flexible cryptosystem has to satisfy the usual IND-CPA security
requirement [4]. That is, no efficient adversary should be able to distinguish
between ciphertexts corresponding to m0 and m1 encrypted by using the same
integer length parameter, even if m0 and m1 were chosen by her.

Let the rate of the cryptosystem be |m|/|c|, i.e., the ratio between the number
of useful bits and the actual transmission length. A length-flexible cryptosystem
is optimal rate if |m|/|c| = 1 − o(1) when |m| increases.

A cryptosystem is additively homomorphic if Decs
sk(Enc

s
pk(m1; r1) ·

Encs
pk(m2; r2)) = m1 + m2. In [4,5], Damg̊ard and Jurik constructed two IND-

CPA secure optimal-rate length-flexible additively homomorphic cryptosystems.
See also [2]. An additively homomorphic cryptosystem is also required to be
rerandomizable in the sense that Encs

pk(m; r) · Encs
pk(0; r′

1) is computationally
indistinguishable from Encs

pk(0; r′
2), for uniformly random r′

1, r
′
2 ←r Rpk.

More precisely, in the cryptosystem of [4], the public key is a well-chosen
RSA modulus N = pq, the secret key is (p, q), and for a positive integer s,
Encs

pk(m; r) = (1 + N)mrNs

mod Ns+1, for m ∈ ZNs and r ∈ Z
∗
N . Hence, if

the plaintext is of length sκ, the cryptosystem of [4] has ciphertext of length
(s + 1)κ. The rate of this cryptosystem is

�

� + κ
= 1 − κ

�
+

κ2

�2
+ O�(�−3) .

This is intuitively optimal (up to the choice of κ) since κ bits are needed to
randomize the ciphertext. The Damg̊ard-Jurik cryptosystem from [4] is IND-
CPA secure under the DCR assumption [15].

A Simpler Rate-Optimal CPIR Protocol 627

If pk and r are understood in the context (or if their precise value is not
relevant), we will not write them down explicitly.

Computationally-Private Information Retrieval (CPIR). Assume n > 1
and � are positive integers, with n, � = poly(κ). An (n, 1)-CPIR protocol [11] for
�-bit strings allows the receiver on input x ∈ {0, . . . , n − 1} to obtain fx ∈ {0, 1}�

out of the sender’s database f = (f0, . . . , fn−1) without the sender getting any
information about x.

In a two-message CPIR protocol, the receiver first generates a public and
secret key pair (pk, sk), then sends a query Q ← Querypk(n, �;x) and pk to the
sender, who answers with a reply R ← Replypk(n, �;f , Q). After that, the receiver
uses a function Answersk(n, �;x,R) to recover fx.

The receiver’s communication is equal to |Q|, the sender’s communication
is equal to |R|, and the total communication is equal to com := |Q| + |R|. A
non-private CPIR protocol consists of two messages, Q = x (of log2 n bits) from
the receiver to the sender, and R = fx (of � bits) from the sender to the receiver.
We do not count pk as part of the communication, since (a) it is short, and (b)
it can—and will—be reused between many instances of the CPIR protocol. The
rate of a CPIR protocol is equal to (log2 n + �)/com.

A two-message CPIR protocol is IND-CPA secure if no efficient adversary A
can distinguish between queries corresponding to x0 and x1, even if x0 and x1

were chosen by her. That is,

Pr

[
(pk, sk) ← Gen(1κ), (x0, x1) ← Apk(1κ, n, �), b ←r {0, 1} ,

Q ← Querypk(n, �;xb) : Apk(n, �;Q) = b

]

is negligible in κ, for each probabilistic polynomial-time A and polynomially
large n and �.

3 Related Work

There are very few conceptually different approaches for constructing
communication-efficient (n, 1)-CPIR protocols. The (n, 1)-CPIR protocol by
Kiyaias et al. [10], following earlier protocols [8,11–13,16], homomorphically exe-
cutes a branching program, by using a (w, 1)-CPIR at every internal node of the
branching program. Here, w is a small constant. See [3,6] for a different app-
roach that however results in rate that cannot be better than 1/4; see [3,6] for
a discussion.

3.1 Linear-Communication (w, 1)-CPIR Protocol

Recall that s is a positive integer. The concrete underlying (w, 1)-CPIR protocol
used in [8,10,12,13] is a simple linear-communication CPIR protocol from [12]2.
2 As shown in [14], linear communication is the best one can hope when building a

CPIR protocol on top of an additively homomorphic cryptosystem while not using
recursion.

628 H. Lipmaa and K. Pavlyk

To transfer one � = sκ-bit database element, the receiver sends to the sender
w−1 ciphertexts, and the sender responds with one ciphertext, where the length
of each ciphertext is (s+1)κ bits. More precisely, the receiver sends to the sender
w − 1 ciphertexts Ci encrypting [x = i] for i ∈ {0, . . . , w − 2}, Ci = Encs([x =
i]; ri) for a random ri ←r Rpk. From {Ci}w−2

i=0 , by using additive homomorphism,
the sender obtains the ciphertext Cw−1 encrypting [x = w − 1] = 1−∑w−2

i=0 [x =
i]. Hence, (C0, . . . , Cw−1) encrypts the x-th unit vector, x ∈ {0, . . . , w − 1}.
Then, she uses {Ci}w−1

i=0 to homomorphically compute a randomized ciphertext
encrypting

∑n
i=1[x = i]fi = fx. That is, Q = Querypk(n, �;x) = (C0, . . . , Cw−2),

Cw−1 = Encs(1; 0)/
∏w−2

i=0 Ci, and R = Replypk(n, �;f , Q) =
∏w−1

i=0 Cfi

i ·Encs(0; r)
for a random r. The receiver just computes Answersk(n, �;x,R) = Decs

sk(R). This
CPIR protocol is IND-CPA secure given that the underlying Damg̊ard-Jurik
cryptosystem is IND-CPA secure, i.e., under the DCR assumption.

While this (w, 1)-CPIR has linear communication, importantly its sender-
side communication consists of only one ciphertext and thus has near-optimal
rate (log2 n + �)/(� + κ) = 1 − (κ − log2 n)/� + O(�−2) = 1 − o(1).

3.2 Lipmaa’s Recursive (n, 1)-CPIR Protocol from [12]

W.l.o.g., assume that n is a power of w, n = wm for some m, where w is a
small positive integer. (In the general case, one can add dummy elements to
the database.) The (n, 1)-CPIR protocols of [10–13] are built on top of a (w, 1)-
CPIR, w � n, in a recursive manner.

Let (Gen,Enc,Dec) be an optimal-rate length-flexible additively homomor-
phic cryptosystem like the one proposed by Damg̊ard and Jurik [4] and
(Query,Reply,Answer) be the (w, 1)-CPIR protocol of Sect. 3.1. In the (n, 1)-
CPIR protocol of Lipmaa from ISC 2005 [12], a w-ary decision tree of length
m := logw n is constructed on top of a database of n elements. Then, the inter-
nal nodes are assigned labels starting from bottom. Let x =

∑m−1
i=0 xiw

i, i.e.,
xi is the ith w-ary digit of x. For an internal node v that has distance i to the
leafs, the label of v is equal to the reply of the (w, 1)-CPIR protocol, given a
query Query(w, sκ;xi) and a database (f0, . . . , fw−1) consisting of the labels of
the children of v. (See Fig. 2.) Finally, the sender replies with the label of the
root of the binary decision tree, and the receiver applies to it m times the Answer
function to recover fx.

Since we use the (w, 1)-CPIR protocol of Sect. 3.1, if the labels of the children
of v are say (fv0, . . . , fv1), then the label of v is going to be Encs+i−1

pk (fvxi
) (as

in Fig. 2), and each application of Answer consists of a single decryption.
The receiver’s message in the (n, 1)-CPIR protocol corresponds to one (w, 1)-

CPIR receiver’s message for each length parameter s + i, i ∈ {1, . . . , logw n},
while the sender’s message corresponds to one (w, 1)-CPIR sender’s message for
the length parameter s + logw n. The resulting receiver’s communication is

A Simpler Rate-Optimal CPIR Protocol 629

R2 = Encs+2(Encs+1(Encs(fx2x1x0)))

Encs+1(Encs(f0x1x0))

Encs(f00x0)

f000 f001

Encs(f01x0)

f010 f011

Encs+1(Encs(f1x1x0))

Encs(f10x0)

f100 f101

Encs(f11x0)

f110 f111

Fig. 2. Using Lipmaa’s (w, 1)-CPIR from [12] with w = 2 and n = 8. The receiver sends
Encs(x0), Enc

s+1(x1), Enc
s+2(x2) to the sender. The sender computes recursively the

values at intermediate nodes, and then replies with R2.

rec1(w, n, �, κ) :=
logw n∑

i=1

(w − 1)(�/κ + i)κ

=(w − 1)(�/κ + (logw n + 1)/2) logw n · κ

=(w − 1)(� + (logw n + 1)κ/2) logw n

and the sender’s communication is

sen1(w, n, �, κ) := (�/κ + logw n)κ = � + κ logw n .

(Recall that communication is always measured in bits.) Hence, the total commu-
nication com1(w, n, �, κ) = rec1(w, n, �, κ)+ sen1(w, n, �, κ) of the CPIR protocol
from [12] is equal to

com1(w, n, �, κ) = ((w − 1) logw n + 1)� +
κ logw n · ((w − 1) logw n + (w + 1))

2
.

Its rate is (log2 n + �)/com1(w, n, �, κ) ≈ 1/((w − 1) logw n + 1). For large �,
com1(·, n, �, κ) is clearly minimal when w = 2, with

com1(2, n, �, κ) = (log2 n + 1)� +
κ log2 n · (log2 n + 3)

2

and rate ≈ 1/(log2 n + 1).

3.3 Optimizing the Communication by Data-Parallelization

In [12], Lipmaa additionally noted that one can reduce the communication
(assuming �/κ 	 log2 n) by executing the protocol from Sect. 3.2 separately
and in parallel on every (�/t)-bit chunk of the database elements, where t ≥ 1,
t | �, is a positive integer. This results in optimized total communication since
in the (n, 1)-CPIR protocol of Sect. 3.2, the receiver’s communication is much
larger than the sender’s communication. If t > 1, then the same receiver’s mes-
sage can be used in all t parallel invocations of the protocol from Sect. 3.2, while

630 H. Lipmaa and K. Pavlyk

the sender has to respond with t messages. Crucially, the bitlength of database
elements in each invocation is divided by t and thus every single message of the
receiver and the sender becomes shorter.

More precisely, assuming again t | �, the parallelized (n, 1)-CPIR protocol
of [12] has the receiver’s communication, the sender’s communication, and the
total communication

rec2(w, n, �, κ, t) :=rec1(w, n, �/t, κ) = (w − 1)(�/t + (logw n + 1)κ/2) logw n ,

sen2(w, n, �, κ, t) :=t · sen1(w, n, �/t, κ) = t(�/t + κ logw n) = � + tκ logw n ,

com2(w, n, �, κ, t) = (w − 1)(�/t + (logw n + 1)κ/2) logw n + � + tκ logw n . (1)

If t � �, then one has to round �/t upwards.
In ISC 2005 [12], Lipmaa considered parameter settings that resulted in rate

≈ 1/2. In ICISC 2009 [13], Lipmaa considered the following parameter settings:
w = 2 and t = a log2 n for large a. In this case,

com2(2, n, �, κ, a log2 n) =
(

1
a

+ 1
)

� +
(2a + 1)κ log22 n

2
+

κ log2 n

2
. (2)

Thus with such parameters the parallelized (n, 1)-CPIR protocol has rate

log2 n + �

com2(2, n, �, κ, a log2 n)
=

a

a + 1
+ O(�−2) ≤ 1 − 1

a
+ O(�−2) .

However, for this estimate to hold, it is needed that a = Θ�(1) does not depend on
�. Moreover, due to the additive term Θ(a)κ log22 n in Eq. (2), the communication
complexity will actually increase if a is too large. Hence, by using the parameters
proposed in [13], the parallelized (n, 1)-CPIR protocol from [12] cannot achieve
rate 1 − o(1).

3.4 The CPIR Protocol of Kiayias et al.

Kiayas et al. [10] proposed another twist on top of the CPIR protocol of
Lipmaa [12]. In a nutshell, during the recursive procedure, the parallelized CPIR
protocol of Sect. 3.3 stores at every childrens’ node the concatenation of t plain-
texts. The label of the parent node is defined to be equal to the concatenation of
t individual ciphertexts. In [10], each childrens’ node also stores the concatena-
tion of t plaintexts each being (say) L bits long. However, this concatenation is
then redivided into t′ equal-length new plaintexts (each of length �tL/t′�). The
new plaintexts are then encrypted individually and the resulting ciphertexts con-
catenated as the label of the parent node. The major contribution in [10] is the
computation of optimal values t and t′ (for each layer of the CPIR tree) and
establishing that one can choose those values so as to obtain a CPIR protocol
of rate 1 − o(1).

A Simpler Rate-Optimal CPIR Protocol 631

4 Simple Optimal-Rate CPIR Protocol

We now propose a different setting of the parameters for the parallelized (n, 1)-
CPIR protocol from Sect. 3.3, motivated by the approach of [10]. We first con-
tinue the analysis of [12,13], and find optimal values of the parameters. After
that, for the sake of completeness, we will give a full description of the resulting
CPIR protocol together with a security proof.

4.1 Optimization of Parameters

Recall that the communication complexity of Lipmaa’s parallelized (n, 1)-CPIR
protocol is given by Eq. (1). It depends on three variables (κ, �, and n) that are
fixed, and two variables (w and t) that can be optimized. We were unable to
find the global optimum of com2, due to the complicated form of ∂com2/∂w,

∂com2

∂w
=

ln n · ln w · (w ln w(2� + kt) − 2�(w − 1) − kt(2t + w − 1))
2tw ln3 w

+
ln2 n · kt(−2w + w ln w + 2)

2tw ln3 w
.

Instead, we will first optimize com2 as a function of t, and then we will “near
optimize” the result as a function of w. By doing so, we obtain a CPIR protocol
that has a rate very close to the rate of [10], but with a much simpler analysis.

We will find the optimal value of t by requiring that

∂com2

∂t
=

(t2κ − (w − 1)�) logw n

t2
= 0 .

Since n �= 0, this holds if

t = topt :=
√

(w − 1)�/κ .

Clearly,

com2(w,n, �, κ, topt) =

� +
2
√

w − 1
log2 w

·
√

�κ · log2 n +
(w − 1)(logw n + 1) logw n

2
· κ .

(3)

Finding a value of w that optimizes this function seems to be also compli-
cated. Hence, as in [10], we now choose w that just minimizes the most significant
term in com2 that depends on w, i.e., the second term, hoping that the result w
will be close to the optimal. The second additive term in the right hand side of
Eq. (3) is minimized when

d

dw

√
w − 1

log2 w
=

(w ln w − 2w + 2) ln 2
2
√

w − 1 · w ln2 w
= 0 ,

632 H. Lipmaa and K. Pavlyk

that is, when

w = − 2
W (−2/e2)

≈ 4.92 . (4)

Since w has to be an integer, we take w = 5, exactly as in [10]. Then, topt =
2
√

�/κ. Thus, recalling that � = t · sκ, we get that

s =
�

toptκ
=

�

2
√

�/κ · κ
=

1
2

·
√

�/κ .

4.2 Full Protocol

Before giving a full efficiency analysis (it will be done in Sect. 5), we now take a
step back and give a detailed description of the resulting (n, 1)-CPIR protocol.
In the description below we do not assume that (say) n is a power of w, hence we
will use the �·� function to compute intermediate parameters. See Fig. 3 for a full
description. We emphasize that—except the different choice of parameters—this
is the same protocol as described in Sect. 3.3 and hence we omit repeating the
intuition.

4.3 Security Proof

Lemma 1. Assume that the underlying public-key cryptosystem is IND-CPA
secure. Then, the new CPIR protocol is IND-CPA secure.

Proof (Sketch). The sender, not having access to the secret key, only sees a vector
of ciphertexts (Q00, . . . , Qm−1,w−2). Hence, the security of the CPIR protocol is
guaranteed by the IND-CPA security of the cryptosystem via a standard hybrid
argument. �

5 Communication Efficiency Analysis

5.1 Asymptotic Analysis

The given parameter choice results in the following theorem.

Theorem 1. Assume that s =
√

�/κ/2 and log5 n are integers. There exists an
(n, 1)-CPIR protocol for �-bit strings with communication complexity

com2(5, n, �, κ, 2
√

�/κ) = � +
4

log2 5
·
√

�κ · log2 n + 2
(
log25 n + log5 n

)
κ .

Proof. The result follows from preceding discussion. �

A Simpler Rate-Optimal CPIR Protocol 633

Parameters: κ, n, �, t = �2√
�/κ�, s = ��/(tκ)�, w = 5, m = �logw n�.

Receiver’s Querynew(n, �; x):
Generate a new public and secret key pair (pk, sk) for the Damg̊ard-Jurik cryp-
tosystem.
Write x =

∑m−1
d=0 xdw

d for xd ∈ {0, . . . , w − 1}.
For d = 0 to m − 1:
1. For j = 0 to w − 2:

(a) Generate a new randomizer rdj ← Rpk

(b) Let Qdj ← Encs+d−1
pk ([xd = j]; rdj)

2. Compute Qd,w−1 ← Encs+d−1
pk (1; 1)/

∏w−2
j=0 Qdj

Send pk and Querypk(n, �, x) := Q = (Qdj)d∈[0,m−1],j∈[0,w−2] to the sender
Sender’s Replynew

pk (n, �;f ,Q) :
For i − 0 to n − 1:
1. Denote L0,i = fi
2. Write L0,i = (L0,i,0, . . . , L0,i,t−1), with |L0,i,z| = sκ

For d = 0 to m − 1:
1. Compute Qd,w−1 ← Encs+d−1

pk (1; 1)/
∏w−2

j=0 Qdj

2. For i = 0 to n/wd+1 − 1:
(a) For z = 0 to t − 1:

i. Ld+1,i,z = Encs+d−1
pk (0; r′

diz) · ∏w−1
j=0 Q

Ld,iw+j,z

dj for random r′
diz ← Rpk

Let R = (R0, . . . , Rt−1) := (Lm,0,0, . . . , Lm,0,t−1).
Return Replypk(n, �;f ,Q) = R.

Receiver’s Answernew
sk (n, �;R) :

For d = m − 1 downto 0:
1. For z = 0 to t − 1: Rz ← Decs+d

sk (Rz)
Return fx = (R0, . . . , Rt−1)

Fig. 3. Full description of the new (n, 1)-CPIR protocol

Note that 4/ log2 5 ≈ 1.72. Note also that

rec2(5, n, �, κ, 2
√

�/κ) =
2

log2 5
·
√

�κ · log2 n + 2
(
log25 n + log5 n

)
κ ,

sen2(5, n, �, κ, 2
√

�/κ) = � +
2

log2 5
·
√

�κ · log2 n ,

and hence rec2 is sublinear in �.
To compare, the (n, 1)-CPIR protocol of [10] (see Cor. 1 therein) achieves

communication complexity

� +
4

log2 5
·
√

�κ · log2 n + 2
(
log25 n + log5 n

)
κ + O(�−1/2) .

Thus, the (n, 1)-CPIR protocol from the current paper has essentially the
same communication as in [10] (the first three terms of the series expansion
of the communication function com are the same as in [10]), but with a much
simpler analysis (and construction).

634 H. Lipmaa and K. Pavlyk

5.2 Optimization w.r.t. n

Consider now the task of optimization com2 (as in Eq. (1)) as a function of n.
First, finding of the optimal topt does not depend on whether we optimize as

a function of � or n. Hence, we will assume that topt =
√

(w − 1)�/κ, as before.
Writing down the expression for com2 as a—finite—series in log2 n, we get

com2(w, n, �, κ, topt) =� +
(w − 1)κ
2 log22 w

· log22 n

+
4
√

w − 1
√

�κ + (w − 1)κ
2 log2 w

· log2 n .

Interestingly enough, the second additive term of this expression is minimized
when w = − 2

W (−2/e2) ≈ 4.92 ≈ 5, which seems to hint that this value of w may
be close to the global minimum.

5.3 Rate

Assume again that s and log5 n are integers. By dividing the length of useful
information, log2 n + �, with the communication (3), we get that the new CPIR
has rate

R =
log2 n + �

com2(w, n, �, κ, topt)

=1 − 2
√

(w − 1)κ/� logw n +
2 log2 n + (w − 1)κ logw n(7 logw n − 1)

2�

+ O(�−3/2) .

(5)

Indeed, the communication function

com2(w, n, �, κ, topt) =
∞∑

i=0

ai�
1−i/2

is given by Eq. (3), where a0 = 1, a1 = 2
√

(w − 1)κ logw n, a2 = ((w − 1)
κ(logw n + 1) logw n)/2, ai = 0, where i ≥ 3. Let

R =
∞∑

i=0

bi�
1−i/2 .

A Simpler Rate-Optimal CPIR Protocol 635

We find bi from the condition com2(w, n, �, κ, topt) · R = log2 n + � comparing
coefficients of different powers:

�2 : a0b0 = 0 ⇒ b0 = 0 ,

�3/2 : a0b1 + a1b0 = 0 ⇒ b1 = 0 ,

� : a0b2 + a1b1 + a2b0 = 1 ⇒ b2 = 1 ,

�1/2 : a0b3 + a1b2 + a2b1 = 0 ⇒ b3 = −a1 ,

�0 : a0b4 + a1b3 + a2b2 = log2 n ⇒ b4 = log2 n + a2
1 − a2 ,

�i , i < 0 :
n∑

i=0

aibn−i = 0 ⇒ bi .

Thus we arrive to Eq. (5).
One can verify that the second term of Eq. (5) is minimized when w is as in

Eq. (4). Assuming w = 5, the rate is

1− 4
log2 5

·
√

κ/� · log2 n + ((14κ log5 n − 2κ + log2 5) log5 n) · 1
�

+ O(�−3/2) .

See Sect. 5.4 for a figure showing how the rate grows as a function of �/κ for a
concrete value of n.

5.4 Concrete Analysis

If the prerequisites of the theorem are not fulfilled (e.g., n is not a power of w), we
need to use ceiling function in the computation of the communication function,
that is, we are interested in the function �com2(. . .)� := �rec2(. . .)�+�sen2(. . .)�.

Kiayias et al. [10] gave a few numerical examples of the efficiency of their
CPIR protocol. In Fig. 1, we will give a comparison with the current work; the
columns “theoretical” give the value of the function com2, while the columns
“With rounding” give the value of the function �com2�. In all cases, κ = 2048
and n = wm = 57. As we can see, due to the rounding errors present in the
protocol of [10], the current work achieves always slightly better efficiency.

On Fig. 4, we depict the rate of the �com2� of the new CPIR protocol as a
function of log2(�/κ). In particular, the rate of the protocol from the current
paper (when rounding included) is 0.917714 for � = 105κ and 0.997207κ for
� = 108κ. Computing a similar graphic for the CPIR protocol of [10] would be
quite time consuming.

If n is arbitrary (not a power of w), then a standard approach is to add
to the database a number of dummy elements so as to increase the database
size to the next power of w. This will incur similar—very small!—penalties for
the protocols of [10] and of the current paper. For example, consider the cases
κ = 2048, � = 105κ, and w = 5. If n = 57 is increased to n = 57 + 1 (the worst
case, since one has to add 57 − 1 dummy elements), the rate will decrease from
0.917714 to 0.906919.

636 H. Lipmaa and K. Pavlyk

Fig. 4. The rate of the new CPIR protocol as a function of log2(�/κ), i.e., on logarithmic
scale, for w = 5, n = 57 and κ = 2048. The smooth (blue) line corresponds to the case
without rounding errors. The jumpy (purple) line corresponds to the case with rounding
errors; note that it also rounds up the non-private case, i.e., it uses � + �log2 n� as the
amount of useful information. This explains why the case with rounding errors usually
has a better rate than the case without (Color figure online)

Finally, the problem of optimizing the protocol for small values of � is clearly
out of scope for the current work since we try to decrease rate for large values
of �. See, e.g., Sect. 3 of [12] for a discussion of the case of small �.

6 Open Problems

A major open problem left by the current work is to construct a CPIR protocol
where the rate function grows faster than Eq. (5), or to show that this is not
possible. An impossibility proof might be possible in some restricted model.

The second open problem is to construct a rate-optimal CPIR protocol with
the better computational complexity. (See [10] for a detailed discussion about
the computational complexity.)

Acknowledgment. The authors were supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 653497 (project
PANORAMIX). The first (resp., the second) author was supported by institutional
research funding IUT2-1 (resp., IUT20-57) of the Estonian Ministry of Education and
Research.

A Simpler Rate-Optimal CPIR Protocol 637

References

1. Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing
on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 36

2. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Laih, C.-S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40061-5 3

3. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

4. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applica-
tions of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001.
LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44586-2 9

5. Damg̊ard, I., Jurik, M.: A length-flexible threshold cryptosystem with applications.
In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350–364.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45067-X 30

6. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 65

7. Gjøsteen, K., Strand, M.: Can there be efficient and natural FHE schemes? Techni-
cal report 2016/105, IACR (2016). http://eprint.iacr.org/2016/105. Accessed June
2016

8. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 31

9. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Communication opti-
mal tardos-based asymmetric fingerprinting. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 469–486. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16715-2 25

10. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal rate pri-
vate information retrieval from homomorphic encryption. Proc. Priv. Enhancing
Technol. 2015(2), 222–243 (2015)

11. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: FOCS 1997, pp. 364–373 (1997)

12. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992 23

13. Lipmaa, H.: First CPIR protocol with data-dependent computation. In: Lee, D.,
Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14423-3 14

14. Ostrovsky, R., Skeith, W.E.: Communication complexity in algebraic two-party
protocols. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 379–396.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 21

15. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

https://doi.org/10.1007/978-3-540-30539-2_36
https://doi.org/10.1007/978-3-540-40061-5_3
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-45067-X_30
https://doi.org/10.1007/11523468_65
http://eprint.iacr.org/2016/105
https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1007/978-3-319-16715-2_25
https://doi.org/10.1007/978-3-319-16715-2_25
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/978-3-642-14423-3_14
https://doi.org/10.1007/978-3-540-85174-5_21
https://doi.org/10.1007/3-540-48910-X_16

638 H. Lipmaa and K. Pavlyk

16. Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In:
Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 28

17. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and
Applications. Monographs on Discrete Mathematics and Applications. Society for
Industrial Mathematics, Philadelphia (2000)

https://doi.org/10.1007/3-540-49649-1_28

Correction to: Why Banker Bob (Still) Can’t
Get TLS Right: A Security Analysis of TLS

in Leading UK Banking Apps

Tom Chothia, Flavio D. Garcia, Chris Heppell,
and Chris McMahon Stone

Correction to:
Chapter “Why Banker Bob (Still) Can’t Get TLS Right:
A Security Analysis of TLS in Leading UK Banking Apps” in:
A. Kiayias (Ed.): Financial Cryptography and Data Security,
LNCS 10322, https://doi.org/10.1007/978-3-319-70972-7_33

In an older version of this paper, there was error in the author name, “Chris Heppel”
was incorrect. This has been corrected to “Chris Heppell”.

The updated original version of this chapter can be found at
https://doi.org/10.1007/978-3-319-70972-7_33

© International Financial Cryptography Association 2023
A. Kiayias (Ed.): FC 2017, LNCS 10322, p. C1, 2023.
https://doi.org/10.1007/978-3-319-70972-7_36

https://doi.org/10.1007/978-3-319-70972-7_33
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70972-7_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70972-7_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70972-7_36&domain=pdf
https://doi.org/10.1007/978-3-319-70972-7_33

Poster Papers

Accountability and Integrity for Data
Management Using Blockchains

(Poster)

Anirban Basu1(B), Joshua Jeeson Daniel2, Sushmita Ruj3,
Mohammad Shahriar Rahman1, Theo Dimitrakos4, and Shinsaku Kiyomoto1

1 KDDI Research, Fujimino, Japan
{basu,mohammad,kiyomoto}@kddi-research.jp

2 British Telecom, London, UK
joshua.daniel@bt.com

3 Indian Statistical Institute, Chennai, India
sush@isical.ac.in

4 University of Kent, Canterbury, UK
t.dimitrakos@kent.ac.uk

Abstract. The proliferation of cloud-hosted Internet-based services has
succeeded atop the storage and use of massive amounts of personal data
from individual users, who have limited or no control over how data
about them are stored, transferred across domain boundaries and used
for large-scale data analytics. Regulations (e.g., the EU GDPR 2016/679)
are being adopted that, amongst other things, seek accountability in
access to such personal data. In order to ensure technical compliance with
such data protection regulations, we envisage a permissioned blockchain-
supported framework that ensures data integrity, data protection policy
uniformity and integrity, and accountability of operations done on the
data stored across multiple cloud service providers. This blockchain will
be hosted by data service providers, data protection service providers,
regulators and other such stakeholders. We assume that every operation
on personal data is accounted for by the blockchain. Various proofs can
be used, with this framework for accountability, in the form of smart con-
tracts to support integrity and accountability verifications for operations
on the data. While the actual data will be stored in one or more cloud
environments, the blockchain will store information on any operation on
the data as a transaction on that data. Figure 1 is an illustration of the
information about a transaction. Implementing this framework over a
multi-cloud scenario and running user trials constitute avenues of future
work.

Anirban Basu—is also a Visiting Research Fellow at the University of Sussex, UK
and Rutgers University, USA.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 641–642, 2017.
https://doi.org/10.1007/978-3-319-70972-7

642 A. Basu et al.

Zero-or-more-element array

Fig. 1. An operation on data, represented as a ‘transaction’ is stored in the blockchain
for accountability. The source entity, if different from the data owner, is the initiator of
the operation while one or more sink entities are its optional beneficiaries. Data storage
could involve multi-cloud and cross-border scenarios.

The Amount as a Predictor of Transaction Fraud
(Poster)

Niek J. Bouman1(B) and Martha E. Nikolaou2

1 ABN AMRO Bank e-Channel Security Research, Amsterdam, The Netherlands
niek.bouman@nl.abnamro.com

2 IBM Analytics, IBM, Amsterdam, The Netherlands
m.e.nikolaou@nl.ibm.com

Abstract. New European banking legislation (Payment Services Direc-
tive 2) gives rise to a payment channel on which a so-called Third Party
Payment Service Provider sits in between of the bank and the cus-
tomer. It is expected that banks will see less customer meta-data (IP
addresses, browser cookies, etc.) on this payment channel. In the con-
text of transaction-fraud detection, this motivates research into detection
methods that are solely based on the primary features of a transaction,
like amount, timestamp, and payor and payee account numbers. In this
work we focus on the amount of a transaction as a predictor of fraud.
Although we do not claim that the transaction amount alone su ces
to distinguish between fraudulent and non-fraudulent transactions with
acceptable performance, we demonstrate empirically that the amount
does contain valuable information about the likelihood of fraud, which is
most useful when combined with other transaction-fraud classifiers based
on different features. Our approach is to estimate conditional discrete
probability distributions of the amount (with single-cent precision, and
up to some maximum amount), conditioned on whether the correspond-
ing transaction is fraudulent or non-fraudulent. The challenging part
is to estimate the distribution of the fraudulent amounts: our training
data (a set of past transactions) is very skewed towards non-fraudulent
transactions, and moreover the number of observations is four orders of
magnitude smaller than the size of the support of the distribution that we
would like to estimate. To deal with this issue, we model the distribution
of fraudulent amounts as a mixture of several components consisting of
spikes (Kronecker delta functions) at equispaced points in the support,
which we will call combs, for example, capturing multiples of ten euros.
Such a “multiples-of-ten comb,” will, given an observation of, say, 60
euros, influence the probability of all amounts that are multiples of 10.
Hence, the combs establish dependencies between certain amounts, which
aid in inferring probabilities of amounts which do not occur in the train-
ing set. We infer the mixture weights using Markov-Chain Monte Carlo
sampling. The key in making the inference procedure practically feasible
is to exploit the sparsity in the histogram of the fraudulent-transaction
amounts.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, p. 643, 2017.
https://doi.org/10.1007/978-3-319-70972-7

Σ-State Authentication Language,
an Alternative to Bitcoin Script

(Poster)

Alexander Chepurnoy(B)

IOHK Research, Sestroretsk, Russia
alex.chepurnoy@iohk.io

Abstract. Every coin in Bitcoin is protected by a program in stack-
based Script language. An interpreter for the language is evaluating
the program against a redeeming program (in the same language) as
well as a context (few variables containing information about a spend-
ing transaction and the blockchain), producing a single boolean value
as a result. While Bitcoin Script allows for some contracts to be pro-
grammed, its abilities are limited while many instructions were removed
after denial-of-service or security issues discovered. To add new crypto-
graphic primitives, for example, ring signatures, a hard-fork is required.
Generalizing the Bitcoin Script, we introduce a notion of an authenti-
cation language where a verifier is running an interpreter which three
inputs are a proposition defined in terms of the language, a context and
also a proof (not necessarily defined in the same language) generated by
a prover for the proposition against the same context. The interpreter
is producing a boolean value and must finish evaluation for any possible
inputs within constant time. We propose an alternative authentication
language, named Σ-State. It defines guarding proposition for a coin as
a logic formula which combines predicates over a context and crypto-
graphic statements provable via Σ-protocols with AND, OR, k-out-of-n
connectives. A prover willing to spend the coin first reduces the com-
pound proposition to a compound cryptographic statement by evaluat-
ing predicates over known shared context (state of the blockchain system
and a spending transaction). Then the prover is turning a corresponding
Σ-protocol into a signature with the help of a Fiat-Shamir transforma-
tion. A verifier (a full-node in a blockchain setting) checks the proposi-
tion against the context and the signature with an interpreter. Language
expressiveness is defined by a set of predicates over context and a set of
cryptographic statements. We show how the latter could be updated with
a soft-fork by using a language like ZKPDL (by Meiklejohn et al. Usenix

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 644–645, 2017.
https://doi.org/10.1007/978-3-319-70972-7

Σ-State Authentication Language, an Alternative to Bitcoin Script 645

Security, 2010), and how the former could be updated with a soft-fork
by using versioning conventions. We propose a set of context predicates
for a Bitcoin-like cryptocurrency with a guarantee of constant verifica-
tion time. We provide several examples: ring and threshold signatures,
pre-issued mining rewards, crowdfunding, demurrage currency.

Broker-Mediated Trade Finance
with Blockchains

(Poster)

Mohammad Shahriar Rahman(B), Anirban Basu, and Shinsaku Kiyomoto

KDDI Research, Fujimino, Japan
{mohammad,basu,kiyomoto}@kddi-research.jp

Abstract. Processing efficiency and transparency to all parties are the
two major factors in trade finance. Geographical distances may hinder
parties from verifying each other’s credit guarantees without an interme-
diary or a broker. We propose a blockchain-based trade solution whereby
information is shared among a seller, a broker, a buyer and their respec-
tive banks on a private distributed ledger that enables them to execute
a trade deal automatically through a series of digital smart contracts.
Each action in the workflow is captured in a permissioned blockchain,
B, giving transparency to authorized participants. The protocol consists
of six parties: (1) Buyer, (2) Buyer’s bank (B1), (3) Broker (4) Broker’s
bank (B2), (5) Seller, and (6) Seller’s bank (B3). Initially, the buyer,
broker and seller register themselves with the system and create their
individual ID, password pairs to login to the system for blockchain oper-
ations in the later stage. The protocol invloving the blockchain opera-
tions consists of the following steps: (1) Buyer creates a MCG (Master
Credit Guarantee) document for B1 to review and stores it in B. (2)
B1 receives notification to review the MCG. It can approve or reject it
based on the data provided. Upon approval, access is then provided to
B2 for approval. (3) B2 approves or rejects the MCG. Once approved, the
broker is able to view the MCG requirements and relevant documents.
(4) Broker creates a BCG (Back-to-back Credit Guarantee) document
for B2 to review and stores it in B. (5) B2 receives notification to review
the BCG and can then approve or reject it based on the data provided.
Upon approval, access is then provided to B3 automatically for approval.
(6) B3 approves or rejects the BCG. Once approved, the seller is able
to view the BCG requirements and relevant documents. (7) Seller com-
pletes the shipment, adds invoice and selling application data of required
documents. These documents are stored in B. (8) B3 approves or rejects
the application and documents. (9) Broker stores necessary application
data and documents in B. (10) B2 approves or rejects the application
and documents. If approved, the BCG goes straight to completed status;
otherwise, it is sent to the broker for settlement. (11) B3 reviews the data
and documents against the MCG requirements. If approved, the MCG
goes straight to completed status; otherwise, it is sent to the buyer for
settlement. (12) If required due to a discrepancy, the buyer can review
the export documents and approve or reject them.

Anirban Basu—is also a Visiting Research Fellow at the University of Sussex, UK
and Rutgers University, USA.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, p. 646, 2017.
https://doi.org/10.1007/978-3-319-70972-7

OpenTimestamps: Securing Software Updates
Using the Bitcoin Blockchain

(Poster)

Peter Todd1 and Harry Halpin2(B)

1 Toronto, Canada
peter@petertodd.org

2 Inria, 2 rue Simone Iff, 75012 Paris, France
harry.halpin@inria.fr

Abstract. A timestamp is a statement that a record existed prior to the
point in time given by the timestamp. A cryptographically-verified times-
tamp also proves the integrity of the record using a hash function (and
as such is a “proof of existence”). Yet how do we prove the time given by
the timestamp is correct? For example, time-stamps are critical in soft-
ware updates, so a user can verify that they have the latest updates and
all users have received the same update. An adversary with insider access
can change all the time-stamps or install a backdoor, and could even com-
pel key material to fake signatures (a concern in the Apple vs. FBI case).
An powerful adversary could even control and isolate the entire network of
a user. The Bitcoin blockchain provides a notary that can prove with rea-
son (due to hashing power already put into Bitcoin) that one is connected
to a larger network and that a time-stamp for a particular update is cor-
rect. OpenTimestamps adds the ability to add generic cryptographic time
stamps for any record to the Bitcoin blockchain by taking advantage of the
block header field nTime, so using Bitcoin block headers as attestations for
a cryptographic time-stamp, with the hash of the record being a commit-
ment that can be independently verified by any client.Unlike other existing
Bitcoin-based timestamp solutions where large numbers of commitments
(such as for an entire filesystem) inefficiently require a new transaction
for each file to the Bitcoin blockchain, OpenTimestamps instead creates
a separate Merkle Tree that contains the hash of each file, and only the
timestamp the tip of that tree is recorded in a single transaction. Aggrega-
tion servers that allow large sets of files submitted by separate and possi-
bly anonymous users to be aggregated. Although the concept is simple (for
links to code and a tutorial see http://opentimestamps.org) the poster will
describe OpenTimestamps in more detail, including a graph demonstrat-
ing time-to-commit and verification of time-stamps for updates of a real-
world large encrypted e-mail system LEAP (built by zriseup.net) as well as
the underlying Debian distribution. Since the largest problem OpenTimes-
tamps faces is variation in accuracy of when the timestamps are added to
the blockchain (ranging from minutes to up to a few hours), the second
graph empirically measures this variation. Currently, this delay is dealt
with by public calendering services that record the actual timestamp of
an aggregated group of records and then promise to commit them to the
Bitcoin blockchain. Lastly, we will discuss next steps including the use of
multiple notaries and extensions to permissioned “private” blockchains.

c© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, p. 647, 2017.
https://doi.org/10.1007/978-3-319-70972-7

http://opentimestamps.org

Author Index

Asghar, Hassan Jameel 39
Azarderakhsh, Reza 163

Bahmani, Raad 477
Barbosa, Manuel 477
Basu, Anirban 641, 646
Bhargavan, Karthikeyan 561
Bocovich, Cecylia 601
Bonneau, Joseph 321
Bouman, Niek J. 643
Brasser, Ferdinand 477

Cachin, Christian 59
Camenisch, Jan 59
Chan, Jonathan 39
Chauhan, Jagmohan 39
Chepurnoy, Alexander 376, 644
Chothia, Tom 579
Chow, Sherman S. M. 21
Costache, Anamaria 517

Delignat-Lavaud, Antoine 561
Daniel, Joshua Jeeson 641
Derler, David 124
Desmedt, Yvo 204
Dimitrakos, Theo 641
Dodis, Yevgeniy 542
Doucette, John A. 601
Du, Minxin 79

Fiore, Dario 542
Freire-Stögbuchner, Eduarda 59

Garcia, Flavio D. 579
Gardner, Jonathan 405
Gencer, Adem Efe 393
Gennaro, Rosario 321
Ghadafi, Essam 455
Goldberg, Ian 601
Goldberg, Sharon 405
Goldfeder, Steven 321
Green, Matthew 98
Gruss, Daniel 247

Halpin, Harry 647
Hao, Feng 357
Hartung, Gunnar 268
Heppell, Chris 579
Hoepman, Jaap-Henk 3

Ivanov, Sasha 376

Jakobsson, Markus 310
Jalali, Amir 163
Jao, David 163

Kaafar, Mohamed Ali 39
Kaptchuk, Gabriel 98
Kennedy, Haydn 405
Kiyomoto, Shinsaku 641, 646
Kobeissi, Nadim 561
Kurosawa, Kaoru 498

Lehmann, Anja 59
Lenders, Vincent 285
Li, Qi 79
Lipmaa, Helger 182, 621
Lisý, Viliam 204

Malhotra, Aanchal 405
Mangard, Stefan 247
Mannan, Mohammad 533
Martinovic, Ivan 285, 302
Maurice, Clémentine 247
McCorry, Patrick 357
Meshkov, Dmitry 376
Mohaisen, Aziz 79
Mohamed, Mohamed Saied Emam 437
Moser, Daniel 285

Narayanan, Arvind 321
Neupane, Ajaya 227
Nikolaou, Martha E. 643

Ogata, Wakaha 498

Pavlyk, Kateryna 621
Perrig, Adrian 424
Petzoldt, Albrecht 437
Portela, Bernardo 477

Rahman, Md. Lutfor 227
Rahman, Mohammad Shahriar 641, 646
Ramacher, Sebastian 124
Ren, Kui 79
Reyzin, Leonid 376
Ringers, Sietse 3
Rubin, Aviel 98
Ruj, Sushmita 641

Sadeghi, Ahmad-Reza 477
Safavi-Naini, Reihaneh 204
Samarasinghe, Nayanamana 533
Saxena, Nitesh 227
Scerri, Guillaume 477
Schwarz, Michael 247
Shahandashti, Siamak F. 357
Sirer, Emin Gün 393
Slamanig, Daniel 124
Smart, Nigel P. 517
Smith, Matthew 285
Soukharev, Vladimir 163

Stanley-Oakes, Ryan 145
Stone, Chris McMahon 579
Strohmeier, Martin 285
Szalachowski, Pawel 424
Szepieniec, Alan 437

Taylor, Vincent F. 302
Thyfronitis Litos, Orfeas Stefanos 340
Todd, Peter 647

Van Gundy, Matthew 405
van Renesse, Robbert 393
Varia, Mayank 405
Verheul, Eric 3
Vivek, Srinivas 517

Wang, Qian 79
Warinschi, Bogdan 477

Yoo, Youngho 163

Zhang, Haibin 21
Zhang, Tao 21
Zhao, Benjamin Zi Hao 39
Zindros, Dionysis 340

650 Author Index

	Preface
	Organization
	Contents
	Privacy and Identity Management
	An Efficient Self-blindable Attribute-Based Credential Scheme
	1 Introduction
	1.1 Related Work

	2 Attribute-Based Credential Schemes
	3 Preliminaries
	3.1 Intractability Assumptions
	3.2 A Signature Scheme on the Space of Attributes

	4 The Credential Scheme
	4.1 Unforgeability and Unlinkability

	5 Performance
	5.1 Exponentiation Count
	5.2 Implementation

	6 Conclusion
	A Unforgeability and Unlinkability Games
	References

	Real Hidden Identity-Based Signatures
	1 Introduction
	1.1 Our Contributions
	1.2 Relation to Existing Notions

	2 Preliminaries
	2.1 Notations
	2.2 Bilinear Map
	2.3 Assumptions

	3 Hidden Identity-Based Signatures
	3.1 Syntax of HIBS
	3.2 Syntax of Linkable HIBS
	3.3 Security Notions for HIBS

	4 Generic Construction
	4.1 Generic HIBS
	4.2 Extension with Linkability

	5 Efficient Instantiations
	5.1 Instantiation 1
	5.2 Instantiation 2
	5.3 Instantiation 3

	6 Concluding Remarks
	References

	BehavioCog: An Observation Resistant Authentication Scheme
	1 Introduction
	2 Overview of BehavioCog
	2.1 Preliminaries
	2.2 The BehavioCog Scheme

	3 The Cognitive Scheme
	3.1 Security Analysis
	3.2 Example Parameter Sizes

	4 The Behavioural Biometric Scheme
	4.1 Choice of Symbols
	4.2 Choice of Classifier
	4.3 Template Creation
	4.4 Classification Decision
	4.5 Feature Identification and Selection
	4.6 Implementation

	5 User Study
	6 Results
	7 Related Work
	8 Discussion and Limitations
	9 Conclusion
	References

	Updatable Tokenization: Formal Definitions and Provably Secure Constructions
	1 Introduction
	2 Preliminaries
	3 Formalizing Updatable Tokenization
	3.1 Privacy of Updatable Tokenization Schemes
	3.2 Definition of Oracles
	3.3 IND-HOCH: Honest Owner and Corrupted Host
	3.4 IND-COHH: Corrupted Owner and Honest Host
	3.5 IND-COTH: Corrupted Owner and Transiently Corrupted Host
	3.6 One-Wayness

	4 UTO Constructions
	4.1 An UTO Scheme Based on Symmetric Encryption
	4.2 An UTO Scheme Based on Discrete Logarithms

	References

	Privacy and Data Processing
	SecGDB: Graph Encryption for Exact Shortest Distance Queries with Efficient Updates
	1 Introduction
	2 Preliminaries and Notations
	2.1 Cryptographic Tools
	2.2 Fibonacci Heap

	3 System Model and Definitions
	3.1 Security Definitions

	4 Our Construction: SecGDB
	4.1 Overview
	4.2 Initialization Phase
	4.3 Shortest Distance Query Phase
	4.4 Supporting Encrypted Graph Dynamics
	4.5 Performance Analysis

	5 Security
	6 Experimental Evaluation
	6.1 Datasets
	6.2 Experimental Results

	7 Conclusion
	References

	Outsourcing Medical Dataset Analysis: A Possible Solution
	1 Introduction
	2 Objectives
	3 Background
	3.1 Anonymization
	3.2 Analysis as a Service
	3.3 Cost Consideration
	3.4 Existing Cryptographic Options
	3.5 Fully Homomorphic Encryption
	3.6 HELib
	3.7 Differential Privacy

	4 Construction
	4.1 Dataset Formatting
	4.2 Data Binning
	4.3 Integrity Check Embedding and Encryption
	4.4 Researcher Computation
	4.5 Verification
	4.6 Additive Noise

	5 Security Analysis
	6 Implementation
	7 Discussion
	8 Conclusion
	A Architecture Diagram
	B Protocol Diagram
	C Differential Privacy
	C.1 Sensitivity

	D Related Solutions
	D.1 Data Simulation
	D.2 Verifiable Delegation of Computation
	D.3 Systems with Limited Analytics
	D.4 Personalized Medicine

	E Optimization and Future Work
	E.1 Ciphertext Compression
	E.2 Multithreading
	E.3 Future Improvements to FHE

	References

	Homomorphic Proxy Re-Authenticators and Applications to Verifiable Multi-User Data Aggregation
	1 Introduction
	2 Preliminaries
	3 Homomorphic Proxy Re-Authenticators
	4 An Input Private Scheme for Linear Functions
	5 Adding Output Privacy
	5.1 Homomorphic Proxy Re-Encryption
	5.2 Putting the Pieces Together: Output Privacy

	6 Conclusion
	References

	Cryptographic Primitives and API’s
	A Provably Secure PKCS#11 Configuration Without Authenticated Attributes
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Vulnerabilities in Caml Crush
	4 Security Model and Assumptions
	4.1 Security Definition
	4.2 Security Assumptions

	5 Secure Templates
	6 Conclusion and Acknowledgements
	References

	A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies
	1 Introduction
	2 Isogeny-Based Cryptography
	2.1 Zero-Knowledge Proof of Identity

	3 Unruh's Construction
	3.1 Sigma Protocols
	3.2 Non-interactive Proof Systems
	3.3 Unruh's Construction
	3.4 Signatures from Non-interactive Zero-Knowledge Proofs

	4 Isogeny-Based Digital Signature
	4.1 Algorithmic Aspects
	4.2 Parameter Sizes

	5 Security
	5.1 Security of the Zero-Knowledge Proof
	5.2 Security of the Signature
	5.3 Number of Rounds

	6 Implementations
	6.1 Performance

	7 Conclusion
	References

	Optimally Sound Sigma Protocols Under DCRA
	1 Introduction
	2 Preliminaries
	2.1 Cryptographic Assumptions
	2.2 Paillier Elgamal Cryptosystem
	2.3 Protocols

	3 New Optimally Culpably Sound -Protocols
	3.1 -Protocol for Zero
	3.2 Protocol for Boolean
	3.3 Protocol for Circuit-SAT
	3.4 General Idea

	A Preliminaries: DFN
	A.1 RPK Model
	A.2 NIDVZK Argument Systems
	A.3 DFN Transform for the Paillier Elgamal Cryptosystem

	References

	Economically Optimal Variable Tag Length Message Authentication
	1 Introduction
	2 An Economic Model for Information Authentication
	2.1 Game Structure
	2.2 Players' Strategies

	3 Finding a Nash Equilibrium Using Backward Induction
	3.1 Tie Breaking of Indifferent Attacker
	3.2 Computational Complexity

	4 MILP Formulation of the Game
	4.1 Objective Linearization
	4.2 Best Response Constraints Linearization
	4.3 Compact Representation of the Attacker's Strategy
	4.4 Examples

	5 Related Works
	6 Concluding Remarks and Future Directions
	References

	Vulnerabilities and Exploits
	PEEP: Passively Eavesdropping Private Input via Brainwave Signals
	1 Introduction
	2 Background and Prior Work
	2.1 EEG and BCI Devices Overview
	2.2 Related Work

	3 Threat Model
	4 Experimental Design and Data Collection
	4.1 Design of the Task
	4.2 Experimental Set-Up
	4.3 Study Protocol

	5 Data Preprocessing and Feature Extraction
	6 Data Analysis and Results
	6.1 Task 1: Virtual Keyboard PIN Entry (VKPE)
	6.2 Task 2: Virtual ATM PIN Entry (VAPE)
	6.3 Task 3: Physical Numeric Keypad PIN Entry (PNKPE)
	6.4 Task 4: Physical Keyboard Password Entry (PKPE)
	6.5 High-End B-Alert Headset - VKPE Task

	7 Discussion and Future Work
	7.1 Vulnerability of the Brainwave Signals
	7.2 Password Entropy
	7.3 Possible Defensive Mechanisms
	7.4 Study Strengths and Limitations

	8 Concluding Remarks
	A Design of Experiments
	References

	Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript
	1 Introduction
	2 Background
	2.1 Microarchitectural Attacks
	2.2 JavaScript and Timing Measurements
	2.3 Timing Attacks in JavaScript

	3 Timing Measurements in the JavaScript Sandbox
	3.1 Recovering a High Resolution
	3.2 Alternative Timing Primitives
	3.3 Evaluation

	4 Reviving and Extending Microarchitectural Attacks
	4.1 Reviving Cache Attacks
	4.2 A New DRAM-Based Covert Channel

	5 Countermeasures
	6 Conclusion and Outlook
	A JavaScript Code
	References

	Attacks on Secure Logging Schemes
	1 Introduction
	2 LogFAS
	2.1 Description of LogFAS
	2.2 The Attacks
	2.3 Attack Consequences
	2.4 The Proof of Security

	3 The FssAgg Schemes
	3.1 Description of the BM-FssAgg Scheme
	3.2 Attack on the BM-FssAgg Scheme
	3.3 Description of the AR-FssAgg Scheme
	3.4 Attack on the AR-FssAgg Scheme
	3.5 Attack Consequences
	3.6 The Proofs of Security
	3.7 Experimental Results

	4 Summary
	A The Schnorr Signature Scheme
	References

	Economy Class Crypto: Exploring Weak Cipher Usage in Avionic Communications via ACARS
	1 Introduction
	2 Privacy in Aviation
	2.1 Blocked and Hidden Aircraft
	2.2 Privacy Expectations

	3 Threat Model
	4 Aircraft Communications Addressing and Reporting System
	4.1 ACARS at the Physical Level
	4.2 ACARS Messages
	4.3 Uses of ACARS
	4.4 Security in ACARS
	4.5 Real World Analysis

	5 Cryptanalysis of the ACARS Cipher
	5.1 Recovering Character Substitutions
	5.2 Character Recovery Heuristics
	5.3 Key Recovery

	6 Impact Analysis
	6.1 Usage Analysis
	6.2 Blocked Aircraft
	6.3 Security and Privacy Implications of the Message Content

	7 Discussion
	8 Related Work
	9 Legal and Ethical Considerations
	10 Conclusion
	References

	Short Paper: A Longitudinal Study of Financial Apps in the Google Play Store
	1 Introduction
	2 Google Play Store Analysis
	3 Dataset and Tools
	3.1 Vulnerabilities Analysed

	4 Results
	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Short Paper: Addressing Sophisticated Email Attacks
	1 Introduction
	2 Related Work
	3 Open Quarantine
	4 Recipient User Experience
	References

	Blockchain Technology
	Escrow Protocols for Cryptocurrencies: How to Buy Physical Goods Using Bitcoin
	1 Introduction
	2 Background and Tools
	2.1 ECDSA
	2.2 Secret Sharing and Threshold Cryptography
	2.3 ECDSA Threshold Signatures
	2.4 Stealth Addresses and Blinded Addresses

	3 Related Work
	3.1 Fair Exchange
	3.2 Exchanging Bitcoins for Digital Goods

	4 Escrow: Motivation, Definitions, and Model
	4.1 Our Scenario
	4.2 Active and Optimistic Protocols
	4.3 Security of Escrow Protocols
	4.4 Privacy
	4.5 Denial of Service

	5 Escrow Protocols
	5.1 Escrow via Direct Payment (The Silk Road Scheme)
	5.2 Escrow via Multisig
	5.3 Escrow via Threshold Signatures
	5.4 Escrow via encrypt-and-swap
	5.5 Escrow with Bond

	6 Group Escrow
	6.1 Definitions and Models
	6.2 Group Escrow via Multisig
	6.3 Group Escrow via encrypt-and-swap

	7 Conclusion
	References

	Trust Is Risk: A Decentralized Financial Trust Platform
	1 Introduction
	2 Mechanics
	3 The Trust Graph
	4 Evolution of Trust
	5 Trust Transitivity
	6 Trust Flow
	7 Sybil Resilience
	8 Related Work
	9 Further Research
	References

	A Smart Contract for Boardroom Voting with Maximum Voter Privacy
	1 Introduction
	2 Background
	2.1 Self-tallying Voting Protocols
	2.2 The Open Vote Network Protocol
	2.3 Ethereum

	3 The Open Vote Network over Ethereum
	3.1 Structure of Implementation
	3.2 Election Stages

	4 Design Choices
	5 Experiment on Ethereum's Test Network
	5.1 Timing Analysis

	6 Discussion on Technical Difficulties
	7 Conclusion
	References

	Improving Authenticated Dynamic Dictionaries, with Applications to Cryptocurrencies
	1 Introduction
	1.1 Our Contributions

	2 The Model for Two-Party Authenticated Dictionaries
	3 Our Construction
	3.1 Our Improvements

	4 Implementation and Evaluation
	5 Conclusion
	References

	Short Paper: Service-Oriented Sharding for Blockchains
	1 Introduction
	2 Service-Oriented Sharding
	3 Aspen
	3.1 Reward Structure
	3.2 Security

	4 Related Work
	5 Conclusion
	References

	Security of Internet Protocols
	The Security of NTP's Datagram Protocol
	1 Introduction
	1.1 Problems with the NTP Specification
	1.2 Provably secure protocol design.
	1.3 Related Work

	2 NTP Background
	3 The Client/Server Protocol in RFC5905
	3.1 Components of NTP's Datagram Protocol
	3.2 Query Replay Vulnerability in Appendix A of RFC5905
	3.3 Zero-0rigin Timestamp Vulnerability in RFC5905 Prose

	4 Leaky Control Queries
	5 Measuring the Attack Surface
	5.1 State of Crypto
	5.2 Leaky Origin Timestamps
	5.3 Zero-0rigin Timestamp Vulnerability
	5.4 Interleaved Pivot Vulnerability

	6 Securing the Client/Server Protocol
	7 Summary and Recommendations
	References

	Short Paper: On Deployment of DNS-Based Security Enhancements
	1 Introduction
	2 Background
	3 Security Enhancements Employing DNS
	3.1 Email
	3.2 TLS PKI Enhancement

	4 Current State of Deployment
	5 Reliability of DNS
	6 Tor and Security Enhancements
	7 Conclusions
	References

	Blind Signatures
	A Practical Multivariate Blind Signature Scheme
	1 Introduction
	2 Blind Signatures
	3 Multivariate Cryptography
	3.1 The Rainbow Signature Scheme
	3.2 The MQ-based Identification Scheme
	3.3 The MQDSS Signature Scheme

	4 Our Blind Signature Scheme
	4.1 The Basic Idea
	4.2 Description of the Scheme
	4.3 Reducing the Signature Length
	4.4 Correctness

	5 Security
	5.1 Blindness
	5.2 (One-More) Unforgeability
	5.3 Quantum Security

	6 Discussion
	6.1 Parameters
	6.2 Efficiency
	6.3 Implementation
	6.4 Comparison

	7 Conclusion
	References

	Efficient Round-Optimal Blind Signatures in the Standard Model
	1 Introduction
	2 Preliminaries
	3 New Intractability Assumptions
	3.1 The BSOM Assumption
	3.2 The BSOMI Assumption

	4 Syntax and Security of Blind Signatures
	5 Blind Signature Constructions
	5.1 Construction I
	5.2 Construction II

	6 Blind Schemes for a Vector of Messages
	6.1 Construction I
	6.2 Construction II

	7 Partially Blind Signature Schemes
	7.1 Construction I
	7.2 Construction II

	References

	Searching and Processing Private Data
	Secure Multiparty Computation from SGX
	1 Introduction
	2 IEEs, Programs, and Machines
	3 Labelled Attested Computation
	4 LAC from SGX-like Systems
	5 Secure Computation with IEEs
	6 A New MPC Protocol from SGX
	7 Implementation
	References

	Efficient No-dictionary Verifiable Searchable Symmetric Encryption
	1 Introduction
	2 Verifiable Searchable Symmetric Encryption
	2.1 Model
	2.2 Security Definition

	3 Building Blocks
	3.1 Cuckoo Hashing
	3.2 Pseudo-random Function

	4 Generic Transformation from SSE to vSSE
	4.1 Construction
	4.2 Example
	4.3 Efficiency
	4.4 Security

	A UC-Security for No-Dictionary vSSE
	References

	Faster Homomorphic Evaluation of Discrete Fourier Transforms
	1 Introduction
	2 Encoding Approximations to Arbitrary Complex Numbers
	2.1 Numerical Example

	3 New Homomorphic DFT Method
	3.1 Bounding Coefficients
	3.2 Extending the Analysis to the Ring of Algebraic Integers

	4 Homomorphic Image Processing
	4.1 DFT-Hadamard-iDFT Pipeline
	4.2 Comparison of Concrete Parameters
	4.3 Comparison of Implementation Timings

	References

	Secure Channel Protocols
	Short Paper: TLS Ecosystems in Networked Devices vs. Web Servers
	1 Introduction
	2 Related Work
	3 Methodology and Device Info
	4 Analysis and Results: Weak Security Practices
	5 Disclosure
	6 Limitations and Future Work
	References

	Unilaterally-Authenticated Key Exchange
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Background and Definitions
	2.1 Message Transmission Protocols

	3 Unilaterally-Authenticated Key-Exchange
	4 Constructions of UAKE Protocols Based on iCCA and iCMA Security
	5 Advanced Security Properties and Concrete Protocols
	5.1 Concrete Protocol Instantiations

	References

	Formal Modeling and Verification for Domain Validation and ACME
	1 Introduction
	2 Current State of Domain Validation
	2.1 Domain Validation Mechanisms
	2.2 User Authentication and Domain Validation

	3 A Security Model for Domain Validation
	3.1 Security Goals and Threat Model
	3.2 ProVerif Events and Queries

	4 Specifying and Formally Verifying ACME
	4.1 ACME Network Flow
	4.2 ACME Protocol Functionality
	4.3 Model Processes

	5 Analysis Results
	5.1 Weaknesses in Traditional CAs
	5.2 Weaknesses in ACME

	6 Conclusion
	References

	Why Banker Bob (Still) Can't Get TLS Right: A Security Analysis of TLS in Leading UK Banking Apps
	1 Introduction
	2 Background and Related Work
	2.1 The TLS Protocol
	2.2 Certificate Pinning
	2.3 Related Work

	3 Testing Apps
	4 Certificate Pinning Without Hostname Verification
	5 In-Depth Analysis of a Second Layer Banking Protocol
	6 In-App Phishing Attacks
	7 A Secure Protocol for Mobile Banking
	8 Conclusion
	A Co-Op App Traffic
	References

	Privacy in Data Storage and Retrieval
	Lavinia: An Audit-Payment Protocol for Censorship-Resistant Storage
	1 Introduction
	2 Related Work
	3 Models and Definitions
	3.1 Censorship-Resistant Storage
	3.2 Payment System

	4 Lavinia Protocol
	4.1 Overview
	4.2 Protocol Details
	4.3 Burn Contracts
	4.4 Choice of Auditors and Audit Times

	5 Game Theory Analysis
	5.1 The Static Game
	5.2 Estimating BR
	5.3 Dynamic Behaviours

	6 Security
	7 Conclusion
	References

	A Simpler Rate-Optimal CPIR Protocol
	1 Introduction
	2 Preliminaries
	3 Related Work
	3.1 Linear-Communication (w, 1)-CPIR Protocol
	3.2 Lipmaa's Recursive (n, 1)-CPIR Protocol from [12]
	3.3 Optimizing the Communication by Data-Parallelization
	3.4 The CPIR Protocol of Kiayias et al.

	4 Simple Optimal-Rate CPIR Protocol
	4.1 Optimization of Parameters
	4.2 Full Protocol
	4.3 Security Proof

	5 Communication Efficiency Analysis
	5.1 Asymptotic Analysis
	5.2 Optimization w.r.t. n
	5.3 Rate
	5.4 Concrete Analysis

	6 Open Problems
	References

	Correction to: Why Banker Bob (Still) Can’t Get TLS Right: A Security Analysis of TLS in Leading UK Banking Apps
	Correction to: Chapter “Why Banker Bob (Still) Can’t Get TLS Right: A Security Analysis of TLS in Leading UK Banking Apps” in: A. Kiayias (Ed.): Financial Cryptography and Data Security, LNCS 10322, https://doi.org/10.1007/978-3-319-70972-7_33

	Poster Papers
	Accountability and Integrity for Data Management Using Blockchains
	The Amount as a Predictor of Transaction Fraud
	Σ-State Authentication Language,an Alternative to Bitcoin Script(Poster)
	Broker-Mediated Trade Finance with Blockchains
	OpenTimestamps: Securing Software Updates Using the Bitcoin Blockchain
	Author Index

