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Abstract. This study investigates and compares the performance
of center method, equal weighted convex combination and unequal-
weighted convex combination methods through various GARCH and
copula-based approaches for the analysis of relationship between gold
and crude oil prices using interval data in Comex and Nymex tradings.
The results of this study confirm that unequal-weighted convex combina-
tion method improves the estimation and it tends to perform better than
both the center method and its equal-weighted variant. In addition, the
marginal from the best fit GARCH model is used to measure dependence
via copula function in the form of Student-t copula as selected according
to the lowest AIC among all candidates. Finally, we can conclude that
there exists the dependence between Comex and Nymex not only in the
normal event, but also in the extreme event.

1 Introduction

Commodities, especially gold and crude oil, and bond are important instruments
to diversify the risk. In the calculation of optimum risky weights for portfolio,
gold and crude oil are the most attractive commodities to be included for hedg-
ing risks in portfolio of investors. Gold and crude oil have played the vital role
in economics. In the last decade, many economists paid much attention to inves-
tigating the volatility and the relationship between gold and crude oil prices.
The most effective tool that is employed to measure this volatility and rela-
tion is Copula based GARCH model. The multivariate GARCH models have
demonstrated to be useful and effective for analyzing the pattern of multivariate
random series and estimating the conditional linear dependence of volatility or
co-volatility in different markets.

The study of the volatility and the relationship between gold and crude oil
prices, using Copula based GARCH, has been intensively conducted in the last
decade. However, those studies investigated their works using a closing price
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data series. Thus, if we consider only the closing prices, we might lack a valuable
intraday information and the obtained results might not be reasonable [11].
Recently some studies have proposed to use interval data, e.g. the lowest and
the highest price during each day or period of time, as an alternative to single
value data. In the ideal world, we should be able to predict both the lowest
daily price and the highest daily price. However, in practice, this is difficult, so
we would like to predict at least some daily price between these bounds. In the
past, researchers tried to predict the representative of the lowest and highest
prices, for example, a Center and MinMax methods of Billard and Diday [3],
Center and Range method of Neto and Carvalho [10], and model M by Blanco-
Fernndez, Corral, Gonzlez-Rodrguez [4], to deal with the interval data. These
methods aim to construct the model without taking the interval as a whole.
However, we expect that these methods, especially center method, may not be
robust enough to explain the real behavior of the interval data and this may
lead to the misspecification of the model. Therefore, it will be of great benefit
to relax this assumption of mid-point of center method and assign appropriate
weights between intervals. Thus in this study, a convex combination method of
Chanaim et al. [6] is employed to obtain the appropriate weights.

This study investigates and compares the dependence structure of crude oil
and gold prices using different interval values for copula-based GARCH model
estimation and prediction. The examined interval value methods include the
center method, equal weighted, and unequal-weighted convex combination. The
main findings will confirm the usefulness of the convex combination in copula-
based GARCH approach for evaluating the relationship, joint distribution and
co-movement between crude oil prices and gold prices for investors whose invest-
ment interest is in gold and crude oil.

The remainder of the paper is organized as follows: Sect. 2 provides method-
ology of study. Section 3 proposes the empirical results. Section 4 summarizes
this paper.

2 Methodology

In this section, we brief the convex combination in GARCH, EGARCH, and
GJR-GARCH models; and copula family for estimating joint density of the
obtained marginal from the GARCH families.

2.1 Operation with Interval Arithmetic

Let pi = [p
i
, pi] be lower and upper interval data at time i. This data can be

defined for arithmetic operations as in the following:
1. Addition

pi + pj = [p
i
+ p

j
, pi + pj ] (1)

2. Subtraction

pi − pj = [p
i
− p

j
, pi − p

j
] (2)
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3. Multiplication

pi.pj = [min A,max A].A = {p
i
p

j
, p

i
pj , pipj

, pipj} (3)

4. Division , p > 0

1
pj

= [
1
pj

,
1
p

j

] (4)

5. Addition and Multiplication by scalar

pi + a = {p
i
+ a, pi + a} (5)

a.pi =

⎧
⎨

⎩

[a.p, a.p], a < 0
0, a = 0

[a.p, a.p, a > 0
(6)

6. logarithm function, pi > 0

log pi =
∣
∣
∣log p

i
, log pi

∣
∣
∣ (7)

2.2 Center Method

This method has been proposed by Billard and Diday [3]. The main idea is that
it uses the center of the interval data pc

t which is obtained from upper and lower
values of interval, say p

t
and pt, and can be derived by

pc
t =

p
t
+ pt

2
(8)

2.3 Autoregressive Moving Average-GARCH Model

Many previous studies suggested that volatility of financial return data is not
constant over time, but is rather clustered. This issue can be tackled using volatil-
ity modeling. Within a class of autoregressive processes with white noises having
conditional heteroscedastic variances, this paper considers a GARCH(1,1) model
to estimate the dynamic volatility. It is the workhorse model and mostly applied
in many financial data. The model is able to reproduce the volatility dynamics of
financial data. Thus, in this study, we consider ARMA(p,q)-GARCH(1,1) which
can be written as

rt = φ0 +
p∑

i=1

φirt−i +
q∑

i=1

ϕiεt−i + εt (9)

εt = σtηt (10)
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σ2
t = ω0 + ω1σ

2
t−1 + ω2ε

2
t−1 (11)

where ηt is a strong white noise which has normal distribution with mean zero
and variance one. σ2

t is the conditional variance in GARCH process by Tim
Bollerslev [5]. Some standard restrictions on the variance parameters are given.

ω1, ω2 > 0, ω1 + ω2 < 1 (12)

Furthermore, Simon [12] presented a family of variance models in asymmetry
EGARCH model and GJR-GARCH model.

2.4 EGARCH (Exponential GARCH)

From GARCH model, by introducing the parameters λ and ν, for λ = ν =1.
Then we can rewrite GARCH(1,1), Eq. (11) as

log σ2
t = ω0 + ω1 log σ2

t−1 + ω2

[ |εt−j |
σt−j

− E

{ |εt−j |
σt−j

}]

+ ω3

( |εt−j |
σt−j

)

(13)

The form of the expected value terms associated with ARCH coefficients in the
EGARCH equation depends on the distribution of innovation. If the innovation
distribution is Gaussian, then

E

{ |εt−j |
σt−j

}

= E {|Zt−j |} =

√
2
π

(14)

If the innovation distribution is Student’s t with ν > 2 degrees of freedom, then

E

{ |εt−j |
σt−j

}

= E {|Zt−j |} =

√
v − 2

π

Γ
(

v−1
2

)

Γ
(

v
2

) (15)

2.5 GJR-GARCH

The GJR-GARCH model is a GARCH variant that includes leverage terms for
modeling an asymmetric volatility clustering. In the GJR formulation, large
negative changes are more likely to be clustered than positive changes. The GJR
model is named for Glosten, Jagannathan, and Runkle [8]. The GJR-GARCH
model is a recursive equation for the variance process, and the simple GJR-
GARCH(1,1) can be written as

σ2
t = ω0 + ω1σ

2
t−1 + ω2ε

2
t−1 + ω3I[εt−1 < 0]ε2t−1 (16)

The indicator function I[εt−1 < 0] equals 1 if εt−1 < 0, and 0 otherwise. Thus,
the leverage coefficients are applied to negative innovations, giving negative
changes additional weight. For stationarity and positivity, the GJR model has
the following constraints

ω0 > 0, ω1 � 0, ω2 � 0, ω2 + ω3 � 0, ω1 + ω2 + ω3 < 1
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2.6 Convex Combination Method

The convex combination method is applied to deal with the interval return data,
where the appropriate value over the range of interval can be computed by

rcc
t = α0rt + (1 − α1)rt (17)

where α0 and α1 are the weighted parameters with value between 0 and 1. In this
study, we consider both fixed weighted and unequal-weighted convex combina-
tion methods. Thus, we set α = 0.5 for fixed weighted convex combination while
α ε [0, 1] is set as the parameter to be estimated for unequal-weighted convex
combination method. For example, in the case of ARMA(1,1)-GARCH(1,1), we
can rewrite Eqs. (9)–(11) as

αrt + (1 − α)rt = φ0 + φ1(αrt−1 + (1 − α)rt−1) + ϕ1εt−1 + εt (18)

rcc
t = φ0 + φir

cc
t−1 + ϕ1εt−1 + εt

εt = σtηt, ηt ∼ N(0, 1) (19)

σ2
t = ω0 + ω1σ

2
t−1 + ω2ε

2
t−1, ω0, ω1, ω2 > 0 (20)

2.7 Model Selection by Akaike Information Criterion (AIC)

In this study, we compare our models using Akaike information criterion applied
from Kullback Leibler Information. It is defined as:

AIC = −2 ln(L̂) + 2K (21)

where L̂ is maximized value of likelihood function, K is the number of parameters
in the model.

2.8 Bivariate Copula Approach

Let X,Y be random variables, the continuous marginal distributions are
F (x), G(y) then H(x, y) is a joint distribution, then 2-dimensional copulas
C : [0, 1]2 → [0, 1] can be defined by

Copula if property

Fi(xi) = u, G(yi) = v and H(x, y) = C(u, v)

so

C(0, v) = C(u, 0) = 0 C(u, 1) = u, C(1, v) = v, u < u′, v < v′

C(u′, v′) − C(u, v′) − C(u′, v) + C(u.v) ≥ 0,
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where C is copula function of marginal distribution random 2 variables. If mar-
ginal has continuous distribution, the copula function is

• Gaussian Copula

C(u, v) = Φ(Φ−1(u), Φ−1(v)) (22)

Lower and upper tail dependence or order parameters of Gaussian Copula is
kL = ku=

2
(1+ρ)

.Φ−1
n is quantile function for normal distribution function and

x = Φ−1(u), y = Φ−1(v) and u, v ∈ [0, 1]

• Student−t Copula

C(u, v) =
∫ t−1

v (u)

−∞

∫ t−1
v (v)

−∞
ft1(v)(x, y)dxdy (23)

where t−1
v (u) and t−1

v (v) are quantile functions with student−t distribution,
where v is degree of freedom and ft1(v)(x, y) is joint density function.

• Frank Copula

C(u, v) = −1
θ

log[1 + (e−θu − 1)
(e−θv − 1)
(e−θ − 1)

], θ ∈ R − {0} (24)

• Clayton Copula

C(u, v) = (u−θ + v−θ − 1)− 1
θ , θ > 0 (25)

• Gumbel Copula

C(u, v) = exp(−[(− log u)θ + (− log v)θ]
1
θ ), θ � 1 (26)

• Joe Copula

C(u, v) = 1 − (uα + vα − uαvα)
1
α , θ ≥ 1 (27)

Furthermore,this study also uses the bivariate copula family, presented by
Joe [9] for asymmetric lower and upper tail dependence including,
• BB1 coupla

C(u, v; θ, δ) = 1 + [(u−θ − 1)δ]−
1
θ , θ > 0, δ � 0 (28)

• BB2 coupla

C(u, v; θ, δ) = 1 + δ−1 log(eδ(u−θ−1) + eδ(v−θ−1) − 1)]−
1
θ , θ, δ > 0 (29)

• BB3 copula

C(u, v; θ, δ) = exp(−[δ−1 log(eδũ−θ

+ eδṽ−θ − 1)]−
1
θ ), θ � 0, δ � 0 (30)
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• BB4 copula

C(u, v; θ, δ) = (u−θ + v−θ − 1 − [(u−θ − 1)−δ + v−θ − 1)−δ]−
1
δ )−

1
θ , θ ≥ 1, δ ≥ 0 (31)

• BB5 copula

C(u, v; θ, δ) = exp(−[xθ + yθ − (x−θδ + y−θδ)− 1
δ ]

1
θ ), θ � 1, δ � 0 (32)

• BB6 copula

C(u, v; θ, δ) = 1 − (1 − exp−[log(1 − u−θ))δ + (− log(1 − v−θ))δ]
1
δ )

1
θ , θ � 1, δ � 0

(33)

• BB7 copula

C(u, v; θ, δ) = 1 − (1 − [(1 − u−θ)−δ + (1 − v−θ)−δ − 1]−
1
δ )−

1
θ , θ � 1, δ � 0 (34)

• BB8 copula

C(u, v; θ, δ) = δ−1(1 − {1 − η−1[1 − (1 − δu)ϑ][1 − (1 − δv)ϑ]} 1
ϑ (35)

where ϑ � 1, 0 < δ � 1, η = 1 − (1 − δ)ϑ

3 Empirical Result

3.1 Data Description

The data set consists of the Comex and Nymex for the period from 8 May 2009
to 15 July 2016, covering 376 observations. Interval data is the most important
issue in examining the interaction among these commodity prices. Therefore, we
have considered the weekly minimum and maximum of these prices and they were
collected from Thomson Reuters DataStream. The data description is shown in
Table 1 and the interval return plot is show in Figs. 1 and 2.

3.2 Results of Optimal Weights for ARMA-GARCH,
ARMA-EGARCH and ARMA-GJR GARCH Model Using
Convex Combination Method

In this section, we use Comex and Nymex interval returns to estimate ARMA-
GARCH(1,1), ARMA-EGARCH and ARMA-GJR-GARCH models with the
convex combination method to find the appropriate weights in the model in
the range of [0,1]. We conduct a grid search to find the best fit weight. Here,
the AIC is used to determine the appropriate weight in the interval [0,1] and
the results are shown in Table 2. Then, we compare three GARCH models
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Table 1. Data description and statistics of Comex and Nymex using interval return
data

Statistics Comex Nymex

Low High Low High

Min −0.1834 −0.0073 −0.276 0.0051

Max 0.013 0.1226 0.0012 0.2848

Mean −0.0315 0.0337 −0.0673 0.0662

Variance 0.0006 0.0005 0.0024 0.002

Skewness −1.9016 0.9806 −1.4245 1.5509

Kurtosis 10.1393 4.5066 5.4954 6.2506

source: calculation

2010 2011 2012 2013 2014 2015 2016
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Interval return of Comex

Fig. 1. Comex interval return

2010 2011 2012 2013 2014 2015 2016
-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Interval return of Nymex

Fig. 2. Nymex interval return

using Akaike Information Criterion (AIC) and the lowest AIC is preferred. The
results are also provided in Table 2 and we find that the GJR-GARCH model
with Student−t distribution is appropriate for present volatility of Comex and
EGARCH model with Student−t distribution is appropriate for present volatility
of Nymex. Therefore, we use this GARCH specification to obtain our marginals.

Table 3 presents the results of Comex from the estimation by GJR-GARCH
models. The results show that ω1 + ω2 = 0.89. This indicates that Comex
exhibits a significantly high persistent volatility. Table 4 presents the results
of Nymex from the estimation by EGARCH models. The results show that
ω1 + ω2 = 0.96. This indicates that Nymex exhibits a significantly high per-
sistent volatility. Moreover, we try to compare the results of the model with
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Table 2. Results of AIC value in family of GARCH

Family of GARCH ARMA(p,q) Distribution Comex ARMA(p,q) Nymex

AIC α AIC α

GARCH(1,1) p = 2, q = 0 Normal −1975.88 0.41 p = 4, q = 3 −1534.17 0.4

p = 4, q = 3 Student-t −1981.73 0.51 p = 4, q = 3 −1532.77 0.43

EGARCH(1,1) p = 4, q = 3 Normal −1981.03 0.41 p = 2, q = 1 −1560.48 0.45

p = 4, q = 3 Student-t −1982.6 0.41 p = 4, q = 3 −1567.34* 0.40*

GJR GARCH(1,1) p = 2, q = 0 Normal −1973.88 0.41 p = 4, q = 3 −1555.03 0.42

p = 4, q = 3 Student-t −1983.73* 0.40* p = 4, q = 3 −1555.57 0.4

source: calculation

Table 3. Estimated results of Comex by ARMA GJR-GARCH

ARIMA(4,0,3) with Student-t distribution

Parameter Value Standard error

Constant 0.00761 0.0019

AR(1) −0.06159 0.09549

AR(2) −0.59763 0.03891

AR(3) 0.50141 0.06967

AR(4) −0.21909 0.0583

MA(1) 0.44164 0.09855

MA(2) 0.68876 0.07449

MA(3) −0.37918 0.09753

Dof 13.418 7.498

GJR GARCH(1,1), Student-t distribution

ω0 0.000024 0.000022

ω1 0.85545 0.10459

ω2 0.05522 0.05242

ω3 0.00972 0.05459

Degree of freedom 13.418 7.498

AIC −1983.73

AIC (center method) −1978.51

source: calculation

convex combination and the center method, we find that the AIC of convex com-
bination is lower than center method for both ARMA(3.4)-GJR-GARCH(1,1)
and ARMA(3,4)-EGARCH(1,1). This result indicates the superiority of convex
combination method over the center method.

3.3 In-Sample Forecast and Volatility

Then, the best fit GARCH model is used to predict the return of intervals and
volatility of Comex and Nymex as shown in Figs. 3 and 4. These figures illustrate
the accuracy of the predicted return against actual interval return (upper panel)
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Table 4. Estimated results form EGARCH of Nymex

ARIMA(4,0,3) with Student-t distribution

Parameter Value Standard error

Constant 0.0009 0.00001

AR(1) −0.31467 0.04812

AR(2) 0.77496 0.03358

AR(3) 0.75047 0.02937

AR(4) −0.324847 0.04747

MA(1) 0.64736 0.01685

MA(2) −0.60512 0.01967

MA(3) −0.95722 0.01944

Dof. 13.0926 0.00009

EGARCH(1,1), Student-t distribution

ω0 0.00246 0.00598

ω1 0.99951 0.00002

ω2 −0.03632 0.03329

ω3 −0.11246 0.0202

Degree of freedom 13.0926 0.00009

AIC −1567.34

AIC (center method) −1547.61

source: calculation

and closing price returns (bottom panel) to see the performance of GJR-GARCH
and EGARCH with convex combination. In addition, the predicted volatility
σ2

t is also plotted in the middle panel. From the graph, it is obvious that the
performance is satisfactory. Different results of predicted volatilities are shown
in the middle of Figs. 3 and 4. We observed that the volatility of Comex is high
during 2013–2014 corresponding to the Greek crisis. For Nymex, we observed
that the volatility is high during 2015–2016. We expected that the increasing
doubts about the success of the oil producers meeting and rising production as
well as the record US and global crude oil inventories have put a high pressure
on crude oil prices.

3.4 Results of Copulas

In this section, copula model is employed to measure the dependency of Comex
and Nymex. The obtained standardized residuals from the best fit GARCH
process are used to compute the dependence in the copula model. First of all,
we present the scatter plot of copula between Comex and Nymex in Fig. 5. We
observed an unclear relationship between Comex and Nymex, thus the various
families of copulas are proposed to capture the relationship between these two
variables.
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Fig. 3. Volatilities forecast and interval return of Comex
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Fig. 4. Volatilities forecast and interval return of Nymex
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Fig. 5. Scatter plot between Comex and Nymex prices

Table 5. Estimation results of copulas

Copula AIC Copula AIC

Gaussian −17.2708 BB6 −15.0331

Student-t −19.5115* BB7 −16.7158

Frank −13.4916 BB8 −15.3787

Clayton −17.0466 Rotated Joe −14.6511

Gumbel −16.1062 Rotated BB1 −16.2804

Joe −12.5512 Rotated BB7 −11.1828

BB1 −17.0757 Rotated BB8 −17.2221

ρ of student-t 0.2479 Lower-Upper tail dependence “[0.0392 0.0392]”

Degree of freedom 8.4774 Kendall tau 0.1594

source: calculation

Finally, the results of copula model are presented in Table 5. We found that
among 14 copula families, Student-t copula function shows the lowest value of
AIC (−19.5115). Thus, we selected Student-t copula function to explain the
dependence between Comex and Nymex. The result indicates that there exists
a weak positive dependence between Comex and Nymex (ρ = 0.2479, degree of
freedom = 8.4774). Moreover, we found the tail dependence between these two,
where the upper and lower tail dependence was found to be 0.0392. We can
conclude that there exists a dependence between Comex and Nymex not only in
the normal event, but also in the extreme event.
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4 Conclusion

This study investigates the performance of convex combination via various
GARCH families and copula-based approach. In this study, we consider crude oil
and gold with interval data as the application study. The results confirm that the
EGARCH and GJR-GARCH with convex combination method improve the esti-
mation. We also used the obtained standardized residuals from GARCH process
with the copula model to measure the dependency of crude oil and gold. We
found that among the various copula families, Student-t copula shows the low-
est value of AIC, thus we used a Student-t copula function to join the marginal
of crude oil and gold. The result of copula model showed that there exists a
positive dependence between these two variables. Moreover, we also found the
positive tail dependence which indicates that there exists a dependence in the
extreme event.
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