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Abstract. It is common for macroeconomic data to be observed at dif-
ferent frequencies. This gives a challenge to analysts when forecasting
with multivariate model is concerned. The mixed-frequency data sam-
pling (MIDAS) model has been developed to deal with such problem.
However, there are several MIDAS model specifications and they can
affect forecasting outcomes. Thus, we investigate the forecasting perfor-
mance of MIDAS model under different specifications. Using financial
variable to forecast quarterly GDP growth in Thailand, our results sug-
gest that U-MIDAS model significantly outperforms the traditional time-
aggregate model and MIDAS models with weighting schemes. Addition-
ally, MIDAS model with Beta weighting scheme exhibits greater forecast-
ing precision than the time-aggregate model. This implies that MIDAS
model may not be able to surpass the traditional time-aggregate model
if inappropriate weighting scheme is used.

1 Introduction

Policy makers require reliable forecasting of economic growth. An accurately
gross domestic product (GDP) measuring helps policy makers, economists, and
investors determine appropriate policies and financial strategies. Forecast of real
GDP growth depends on many economic variables, while the publication by
statistical agencies of GDP data is generally delayed by one or two quarters. For
forecasting GDP growth, Thailand’s GDP is available only as quarterly data
while other economic variables to be used as leading indicators may be available
in monthly data. There is a huge literature including [6] for the United States
of America and [3] for Euro area who employed financial variables as leading
indicators of GDP growth. Ferrara and Marsilli [7] concluded that the stock
index could improve forecasting accuracy on GDP growth.

Thus, involving data sampled at different frequencies in forecasting model
seems be to beneficial. From the literature, a way of using high frequency indi-
cators to forecast low frequency variable is the Mixed Data Sampling (MIDAS)
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model proposed by Ghysels et al. [10]. It has been applied in various fields such as
financial economics [13] and macroeconomics [4,5,15] to forecast GDP. Clements
and Galvo [5] concluded that the predictive ability of the indicators in compari-
son with an autoregression is stronger. It also allows the regressed and the regres-
sors to be sampled at different frequencies and is a parsimonious way of allowing
lags of explanatory variables. MIDAS regression model combined with forecast
combination schemes if large data sets are involved are computationally easy to
implement and are less prone to specification errors. Based on the parsimony of
representation argument1, the higher frequency part of conditional expectation
of MIDAS regression is often formulated in terms of aggregates which depend on
a weighting function. However, there are many weighting schemes such as Step,
Exponential Almon, and Beta (analogue of probability density function) [9].

The objective of this paper is to use such important financial leading indicator
as Stock Exchange of Thailand (SET) index to forecast Thailands quarterly
GDP growth by using the different weighted MIDAS models. In addition to
MIDAS model with weighting schemes, we also consider the traditional time-
aggregate model and the unrestricted MIDAS model. This will allow us to see
whether high frequency data render any benefit in predicting lower frequency
data, and if it does, which model specification performs the best in this setting of
forecasting Thailands quarterly GDP growth. The result of study will be useful
for government in imposing appropriate policies and strategies for stabilising
countrys economy.

The organisation of this paper is as follows. Section 2 describes the scope of
the data used in this study. Section 3 provides the methodology of this study and
provides the estimation of this study. Section 4 discusses the empirical results.
Conclusion of this study is drawn in Sect. 5.

2 Data

The data in this study consist of Thailand’s quarterly gross domestic product
(GDP) and monthly Stock Exchange of Thailand (SET) index. GDP is obtained
from the Bank of Thailand while SET index is obtained from the Stock Exchange
of Thailand. The series cover period of 2001Q1 to 2016Q4, while data during
2001Q1 to 2015Q4 are used for model estimation, the rest are left for out-of-
sample forecast evaluation. All variables are transformed into year-to-year (Y-o-
Y) growth rate to reduce the risk of having seasonality. Figures 1 and 2 provide
the plot of GDP growth and SET index growth.

It can be seen from the figures that there is a huge drop in GDP growth around
the end of 2008 and the beginning of 2009. The SET growth also changes in similar
manner during the sameperiod.This is believed to be the results ofUSfinancial cri-
sis. Also, around the end of 2011, it can be seen that there is a drop in GDP growth

1 Also called “The principle of parsimony”, it states that the parsimonious model
specification is the model that is optimally formed with the smallest numbers of
parameters to be estimated [2].
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Fig. 1. Quarterly GDP growth 2001Q1 to 2016Q4

Fig. 2. Monthly SET index growth 2001Q1 to 2016Q4

which was caused by the great flood in Thailand. Again, the SET index growth fol-
lows in the same direction. These figures may suggest that financial variable such
as the SET index is a potential predictor for GDP.

3 Methodology

Prior to model estimation and forecasting, it is recommended to check whether
series in the study is stationary or not. Therefore, in this section, we begin with
brief information regarding the unit root tests, followed by forecasting models
employed in this study.



Does Forecasting Benefit from Mixed-Frequency Data Sampling Model 433

3.1 Unit Root Tests

We start with the Augmented Dickey-Fuller (ADF) test [18] which is very well-
known and widely-used in empirical works. The test model can be specified as

Δyt = α0 + α1yt−1 +
p∑

i=1

α2iΔyt−i + εt (1)

where yt is the time series being tested and εt is residual. The hypothesis testing
can be specified as H0 : α1 = 0 for non-stationary against H1 : α1 < 1 for
stationary.

Next, the Phillips-Perron (PP) test [17] has been frequently used as an alter-
native test to the ADF test. The test employs the same null hypothesis of non-
stationary as in the ADF test. However, the advantage of this test is that the
additional lagged dependent variable is not required in the presence of serial
correlation. Additionally, it is robust to the functional form of the error term
in the model since the test is non-parametric. However, the test requires large
sample properties in order to perform well.

Unlike the ADF test and the PP test, the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test introduced by Kwiatkowski et al. [16] has the null hypothesis
of stationary. With alternative way of interpreting the null hypothesis, the KPSS
test complements other unit root tests.

By looking at the results from each test, we can have a better view before
making a conclusion on whether the series is stationary, non-stationary, or incon-
clusive. This is important since the stationarity of the series is required for the
forecasting models considered in the study. Now, we are going to describe the five
approaches that incorporate higher frequency data in forecasting lower-frequency
variables.

3.2 Time-Aggregate Model

Traditionally, when one working on forecasting that involves mixed frequency
data, all series must be converted into the same frequency. That means all the
series will be transformed into the frequency matching that of series which was
observed at the lowest frequency. As pointed out by Armesto et al. [1], this can
be easily done by taking an average of values from high frequency data within
the time frame of low frequency data. For instance, we work on variable X
which is measured monthly and Y being observed quarterly data. Then, X will
be transformed to match the same frequency of Y by taking the average of X
at each respective quarter. After transformation, we can now use the new Y to
help predict X. This is so-called the time-aggregate model. Suppose that we are
interested in one step forecast, the model can be mathematically specified as

Yt = α +
p∑

i=1

βiL
iYt +

r∑

j=1

γjL
jXt + εt (2)
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with

Xt =
1
m

m−1∑

k=0

X
(m)
t−(k/m) (3)

where Yt is a lower-frequency variable; X
(m)
t−(k/m) denotes the data from high

frequency variable k periods prior to the low frequency period t; m is the fre-
quency ratio between high and low frequency series (In the case of quarterly and
monthly, m = 3 since the higher frequency monthly variable can be observed
three times within each quarter); Xt is the average of X

(m)
t−(k/m) at the low fre-

quency period t. L is a lag operator such that LYt = Yt−1, L2Yt = Yt−2 and
so on. i and j denote the selected lag lengths which are determined by Akaike
Information Criterion (AIC). This approach is limited to the fact that it assumes
coefficients of XH

(t−k,m) within each period t to be the same. In addition, there
may be information loss due to the averaging [14].

3.3 MIDAS Regression Models

Ghysels et al. [10] proposed a Mixed Data Sampling (MIDAS) approach to deal
with various frequencies in multivariate model. Particularly, a MIDAS regression
tries to deal with a low-frequency variable by using higher frequency explanatory
variables as a parsimonious distributed lag. It also does not use any aggregation
procedure and can be modelled for the coefficients on the lagged explanatory
variables as allowing long lags in distributed lag function with only small number
of parameters that have to be estimated [5]. The general form of MIDAS model
is given by

Yt = α + γW (θ) X
(m)
t−h + εt (4)

where X
(m)
t−h is an exogenous variable measured at higher frequency than Yt. h

is forecasting step. If h = 1, it means we are going to forecast the dependent
variable by one period ahead using current and historical information of X.
W (θ) smooths historical values of X

(m)
t−h. Unlike the time-aggregate model which

simply takes the average, there are some weighting schemes here, controlled by
estimated parameter θ that allows us to convert the variable more efficiently. It
can be written as

W (θ) =
K∑

k=1

ω (k; θ) L(k−1)/m (5)

where K is the optimal number of lagged high frequency variable to be employed
in the model. L is the lag operator such that

L(k−1)/mX
(m)
t−h = X

(m)

t−h−( k−1
m ),

and ω (k; θ) is the weighting function that can be in various forms. It can be
noticed that it is possible to include the lagged dependent variable into the
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MIDAS model. Tungtrakul et al. [19] found that it provides a better forecast
accuracy. Hence, the general form of MIDAS model becomes

Yt = α +
p∑

i=h

βiL
iYt−h + γ

(
K∑

k=1

ω (k; θ) L(k−1)/mX
(m)
t−h

)
+ εt (6)

Now, we will discuss the different MIDAS weighting schemes employed in this
study.

3.3.1 Step Weighting Scheme
Rather than transforming the high frequency variable to match the lower one,
this approach directly includes all lags of high frequency variable into the model.
It takes each lagged high frequency variable as an explanatory variable in the
model. Thus, no information has been lost. The MIDAS model under step weight-
ing scheme with step length of s can be specified as follows:

Yt = α +
p∑

i=h

βiYt−i +
K∑

k=1

γk,sX
(m)
t−h−(k−1)/m + εt. (7)

However, this approach puts a restriction on the coefficient of lagged high
frequency variable (γk,s), which is determined by the step parameter (s). For
instance, if the step parameter is equal to three (s = 3), it means the first three
lagged have the same coefficient, the next three lags will then employ another
same coefficient. This pattern will continue to the last lag that is incorporated
in the model.

For demonstration purpose, consider the case that p = 1, h = 1, m = 3,
K = 4, and s = 2, then the MIDAS model with step weighting scheme can be
specified as

Yt = α+β1Yt−1 + γ1,2X
(3)
t−1 + γ2,2X

(3)
t−1−1/3 + γ3,2X

(3)
t−1−2/3 + γ4,2X

(3)
t−2 + εt. (8)

If Yt is the GDP growth for the third quarter of 2017, then X
(3)
t−1 is a value

of an indicator from June 2017, X
(3)
t−1−1/3 is from May 2017, X

(3)
t−1−2/3 is from

April 2017, and X
(3)
t−2 is from March 2017. Also, the restriction on parameters

are γ1,2 = γ2,2, and γ3,2 = γ4,2.
Another drawback of the step weighting scheme is that the model may suffer

from large numbers of parameters due to high difference in frequency between
high and low frequency series [1]. Suppose that we work on annual series and
monthly, we can see that we have got at least 12 coefficients to be estimated.
Thus, the estimation outcome may not be satisfactory.

3.3.2 Exponential Almon Weight
This weighting scheme has been employed in various empirical studies due to
its flexibility despite involving a few parameters in estimation [8]. The weighing
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scheme can be specified as

ω (k; θ) =
exp

(
kθ1 + k2θ2

)
∑K

k=1 exp (jθ1 + j2θ2)
. (9)

To have a better view how the MIDAS model with Exponential Almon
weighting scheme is mathematically specified, let us consider the case that opti-
mal lagged high frequency variable is 3 (or K = 3), the ratio between high and
low variables is 3 (or m = 3), no lagged dependent variable, and forecasting for
one step ahead (h = 1). The model then can be written as follows

Yt = α + γ

⎛

⎜⎜⎜⎜⎜⎝

exp(θ1+θ2)∑3
k=1 exp(kθ1+k2θ2)

(
X

(3)
t−1

)

+ exp(2θ1+4θ2)∑3
k=1 exp(kθ1+k2θ2)

(
X

(3)

t−1−( 1
3 )

)

+ exp(3θ1+9θ2)∑3
k=1 exp(kθ1+k2θ2)

(
X

(3)

t−1−( 2
3 )

)

⎞

⎟⎟⎟⎟⎟⎠
+ εt. (10)

Suppose that Ytis measured at the 4th quarter of 2017, then X
(3)
t−1 is from

September 2017, X
(3)

t−1−( 1
3 )

is from August 2017 and X
(3)

t−1−( 2
3 )

is from July 2017.

α, γ, θ1, and θ2 can be estimated by using either maximum likelihood approach
or non-linear least squares (NLS) approach. Ghysels et al. [10] pointed out that
the number of parameters in the MIDAS model with exponential Almon weight
is not influenced by the number of lagged high frequency variables. This impor-
tant feature of MIDAS regression model allows us to employ large lagged high
frequency variables and, at the same time, maintain parsimonious parameter
estimation [1,12].

3.3.3 Beta Weight
It is another weighting scheme, which is an analogue of probability density func-
tion. It has been considered in empirical works as alternative to the exponential
Almon weight [11]. According to Armesto et al. [1], this weighting scheme can
be specified as follows

ω (k; θ) =
f

(
k
K , θ1, θ2

)
∑K

k=1 f
(

k
K , θ1, θ2

) , (11)

where

f (x, a, b) =
xa−1(1 − x)b−1Γ (a + b)

Γ (a) Γ (b)
, (12)

and
Γ (a) =

∫ ∞

0

e−xxa−1 dx (13)

is the gamma function. θ1 and θ2 are parameters that control the weighing value
for each lagged high preference variable.
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3.4 Unrestricted MIDAS (U-MIDAS) Model

It can be noticed MIDAS models with weighting schemes may not completely
extract all information from high frequency variable [14] since it still involves a
frequency transformation. Kingnetr et al. [14] further asserted that the forecast-
ing outcome may be satisfactory in the MIDAS model with exponential Almon
weight framework when the difference in sampling frequencies between variables
in the study is relatively small. Additionally, the model requires assumption on
weighting scheme which may or may not be appropriate for every series. The
MIDAS with exponential Almon may work well with one series, but not another.
Foroni and Marcellino [8] suggested an alternative approach, the unrestricted
MIDAS (U-MIDAS) regression model, to deal with the issue.

The basic idea of U-MIDAS model is similar to the MIDAS with step weight-
ing scheme, except that the coefficient of each lagged high frequency variable is
allowed to differ. Suppose that low frequency data is measured quarterly, while
the high frequency is measured monthly, the U-MIDAS model for h-step fore-
casting can be written as

Yt = α +
p∑

i=1

βiYt−h−i +
K∑

k=1

γkX
(m)
t−h−(k−1)/m + εt. (14)

Yt is a quarterly variable at period t, X
(m)
t−h−(k−1)/m is a monthly indicator mea-

sured at k − 1 months prior to the last month of the quarter at period t − h, h
is the forecasting step, m is a frequency ratio, K is a number of monthly data
used to predict Yt.

By taking each lagged high frequency variable as additional explanatory vari-
able in the model, the parameters in U-MIDAS model can simply be estimated
using OLS estimation [8]. However, the U-MIDAS will lose its parsimonious fea-
ture if the number of frequency ratio between high and low frequency variables is
large. For instance, forecasting monthly series using daily series will involve more
than 20 parameters to be estimated, which would lead to undesirable estimation
and forecasting results.

4 Empirical Results

In this section, we begin with the results of unit root tests, followed by the
results from each forecasting model considered in the study and discussion on
their forecasting performances.

The results of unit root test are reported in Table 1. In the case of GDP
growth, the null hypothesis of non-stationary cannot be rejected in the case
of ADF test without intercept (specification C). However, the rest of the tests
show that GDP growth is stationary. Similarly, all tests, except for ADF with
trend and intercept, conclude that SET growth is stationary. Therefore, it is
reasonable to conclude that both series are stationary and can be undergone
model estimation and forecasting.
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Table 1. Unit root tests

Test Specification Conclusion

A: (Intercept) B: (Trend and Intercept) C: (None)

Panel I: GDP growth

ADF 0.000* 0.000* 0.286 Stationary

PP 0.003* 0.007* 0.028**

KPSS 0.302 0.040 –

Panel II: SET growth

ADF 0.062*** 0.166 0.044** Stationary

PP 0.005* 0.023** 0.002*

KPSS 0.087 0.058 –

Note:
1. The null hypothesis of ADF and PP unit root tests is non-stationary,
while the KPSS is stationary.
2. For ADF and PP tests, the number represents p-value.
3. For KPSS test, the number represents the test statistics.
4. The critical values for KPSS test for specification A (B) at 1%, 5%, and
10% are 0.739 (0.216), 0.463 (0.146), and 0.347 (0.119), respectively.
5. *, **, *** denote the rejection of null hypothesis at 1%, 5%, and 10%
levels of statistical significance, respectively.

As far as model estimation is concerned, the data sample during the period
of 2001Q1 to 2015Q4 is employed. The linear least squares estimation technique
is used to estimate parameters for the time-aggregate model, while parameters
in the MIDAS models are handled by the non-linear least squares. The optimal
lag lengths for all models are chosen by Akaike information criterion (AIC) with
the maximum of 24 lags. Then, we forecast the quarterly GDP growth rates
for 2016. Since we are interested in comparing forecasting performance between
models, it is advised to investigate how these models perform through figure.
Figure 3 provides a plot of actual value of quarterly GDP growth rate and its
forecasted values from different models.

It can be seen from Fig. 3 that the time-aggregate model, MIDAS model
with Beta weighting, and U-MIDAS model seem to predict the GDP growth
rate closer to the actual values than the MIDAS models with exponential Almon
and step weighting schemes. However, as the forecasting horizon expands, the
former three models seem to perform worse than the latter two. Table 2 provides
forecasting results in details together with lag selection for each model.

It is possible to notice that it is still uncertain to see which model can gen-
erally perform better. Therefore, we now turn to the root mean square error
(RMSE) for evaluation. Table 3 shows the RMSEs for each model at each fore-
casting horizon.

The results from Table 3 suggest that, overall, the unrestricted MIDAS (U-
MIDAS) model exhibits higher forecasting accuracy than the rest of the models
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Fig. 3. Forecast and actual quarterly GDP growth in 2016

Table 2. Quarterly GDP growth forecast in 2016

Period Model Actual value

A B C D E

2016Q1 2.720 2.199 2.295 2.742 2.789 3.125

2016Q2 3.152 2.711 2.792 3.324 3.329 3.637

2016Q3 4.009 3.026 3.104 3.515 3.476 3.224

2016Q4 4.457 3.521 3.565 4.449 4.408 2.960

Lag selection 2 4 3 4 4

Note: The description for each model is as follows, (A) Time-
aggregate model, (B) MIDAS model with step weighting, (C)
MIDAS model with exponential Almon weighting, and (D)
MIDAS model with Beta weighting, and (E) U-MIDAS model.
The number is rounded to nearest thousandth.

in this study. The conclusion here is also consistent with the recent empirical
work by [14]. In addition, the superior in forecasting precision may due to the
fact that, in U-MIDAS framework, information of high frequency variable is fully
utilised. The results also suggest that the forecasting improvement is rather mod-
erate, when it comes to the comparison between MIDAS models with weighting
schemes and the traditional time-aggregate model. According to RMSEs, we can
see that only the MIDAS model with beta weighting scheme can outperform the
time-aggregate model in this study. This implies that using higher frequency will
not improve the outcome after all if the inappropriate weighting scheme is cho-
sen. Nevertheless, we can conclude that using high-frequency variable to predict
the lower frequency one improves forecasting precision under U-MIDAS model,
provided that the difference in frequency between series in a study is small.
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Table 3. Forecast evaluation based on RMSEs

Model Horizon

1 2 3 4

A 0.405 0.446 0.581 0.902

B 0.926 0.926 0.764 0.719

C 0.830 0.837 0.687 0.668

D 0.382 0.349 0.331 0.798

E 0.335 0.322 0.300 0.769

Note: The description for each model
is as follows, (A) Time-aggregate
model, (B) MIDAS model with step
weighting, (C) MIDAS model with
exponential Almon weighting, and (D)
MIDAS model with Beta weighting,
and (E) U-MIDAS model. The num-
ber is rounded to nearest thousandth.
At each horizon, the lowest RMSEs are
in bold.

5 Conclusion

In this paper, we investigate the forecasting performance of 5 different forecast-
ing models, including the time-aggregate model, the MIDAS model with step
weighting, exponential Almon weighting, and beta weighting, and the U-MIDAS
model. Thailand’s quarterly GDP growth was forecasted using a financial vari-
able, SET index, as a predictor. Unlike the time-aggregate model, the MIDAS
model with weighting scheme allows us to efficiently utilise the information of
high frequency variable to forecast lower frequency variable. However, it still
involves the concept of frequency conversion, as in the time-aggregate model,
via weighting schemes.

On the other hand, the U-MIDAS model fully exhausts information of high
frequency variable. The model directly incorporates high frequency variable into
forecasting model without frequency conversion. The data in this study spans
from 2001Q1 to 2016Q4 with 2016Q1 to 2016Q4 being left out for forecasting
performance evaluation. Our results, based on RMSEs, show that the U-MIDAS
model has greater forecasting precision than other models in this study. This
implies that, under the U-MIDAS framework, using high frequency variable to
predict lower frequency variable improves the forecasting accuracy.

In addition, we found that the improvement of using higher frequency variable
to predict lower frequency variable is rather small when it comes to the MIDAS
model with weighting scheme. The forecasting results may even be worst if the
weighting scheme is not appropriately chosen. If one wishes to employ such MIDAS
model, the results suggest that the MIDAS model with Beta weighting scheme
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performs best among other weighting schemes. Otherwise, the traditional time-
aggregate seems to provide acceptable predicting accuracy for short-horizon.

Nevertheless, this study focused on four-period forecasting using single pre-
dictor and ignored the possibility of having structural break in time series due to
the limitation of approaches. Therefore, the recommendation for future research
would be the inclusion of additional predictors in the model, longer forecasting
horizon and controlling for potential structural breaks.
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